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Abstract: Alpha is the predominant rhythm of the human electroencephalogram, but its function,
multiple generators and functional coupling patterns are still relatively unknown. In this regard,
alpha connectivity patterns can change between different cortical generators depending on the status
of the brain. Therefore, in the light of the communication through coherence framework, an alpha
functional network depends on the functional coupling patterns in a determined state. This notion
has a relevance for brain-state dependent EEG-TMS because, beyond the local state, a network
connectivity overview at rest could provide further and more comprehensive information for the
definition of ‘instantaneous state’ at the stimulation moment, rather than just the local state around
the stimulation site. For this reason, we studied functional coupling at rest in 203 healthy subjects
with MEG data. Sensor signals were source localized and connectivity was studied at the Individual
Alpha Frequency (IAF) between three different cortical areas (occipital, parietal and prefrontal). Two
different and complementary phase-coherence metrices were used. Our results show a consistent
connectivity between parietal and prefrontal regions whereas occipito-prefrontal connectivity is
less marked and occipito-parietal connectivity is extremely low, despite physical closeness. We
consider our results a relevant add-on for informed, individualized real-time brain state dependent
stimulation, with possible contributions to novel, personalized non-invasive therapeutic approaches.

Keywords: alpha oscillations; functional connectivity; source reconstruction; MEG; EEG state-
dependent TMS

1. Introduction

The origin of alpha waves and the function they subserve constitute long-lasting
scientific issues in neuroscience. Already by 1929, Berger had managed to isolate alpha
waves by means of a pioneering EEG set-up using scalp electrodes and described this
rhythm as the most prominent in the human electroencephalogram [1]. Recent advances
due to brain source reconstruction and invasive electrophysiological recordings have
provided evidence that alpha waves originate from several cortical and subcortical sites,
with direct evidence suggesting both thalamus and diverse cortical areas as possible origins
of such rhythm [2–4].

The functional role of alpha oscillations also is still far from being completely under-
stood. The “pulsed inhibition hypothesis”, for instance, proposes that alpha oscillations
actively inhibit neuronal firing in a phasic manner, opening and closing interleaved periods
of “high” and “low” excitability of the cortex by cyclically producing bouts of inhibi-
tion [5,6]. This hypothesis is in line with the idea behind brain-state dependent stimulation,
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that the outcome of an electro/magnetic perturbation depends on the instantaneous phase
state of a specific brain rhythm in a given area. In fact, studies investigating alpha in the
occipital cortex demonstrate that the alpha phase at the instant of a visual stimulus predicts
high or low probability of detection [7].

However, it is still not clear which is the exact role of alpha oscillations in opening states
of cortical excitability. For example, the aforementioned “pulsed inhibition hypothesis”
does not seem to apply to findings of brain-state dependent stimulation in the parietal
cortex, where the same directionality of inhibition vs. excitation as in the visual cortex does
not emerge [8–10]. In this regard, studies investigating µ-alpha in the parietal cortex show
that a principle of pulsed facilitation rather than inhibition would better explain the role of
alpha in the hand-knob of the sensorimotor cortex. In fact, it has been shown by means of
real-time EEG phase-dependent transcranial magnetic stimulation (TMS) that stimulation
at µ-alpha troughs results in facilitated motor evoked responses (MEPs, [8]), while at peaks
of the same oscillation, inhibition does not seem to occur in a significant proportion of
instances [9].

Even if there is no consensus as to whether alpha shapes neuronal recruitment by
determining windows of lower and higher excitability, or rather only by opening windows
of greater excitability, alpha oscillations appear to have a role in shaping neural recruitment.

Most of the protocols conceived to modulate cortical excitability by means of TMS use
a predefined stimulus sequence irrespective of the instantaneous brain-state, as opposed to
a real-time brain-state dependent stimulation, which delivers the stimulus in determined
phases of the alpha cycle [8]. If the phase of alpha reflects a phasic increase and decrease
of cortical excitability (as reported in the occipital cortex by [11], we should find different
outcomes depending on the local alpha phase at the instant of stimulation. First attempts
in this direction have tried to post-hoc determine the phase of alpha waves at the moment
of the stimulus. This has been mainly tested in the occipital cortex, where the conscious
visual percept has been linked post-hoc to the alpha phase at the instant of stimulus
presentation [7,12]). However, the effects were generally assessed by statistically estimating
the probability that the stimulus could be delivered at a given phase. Differently, phase-
state dependent stimulation leverages instantaneous EEG phase-states to trigger the TMS
pulse exactly at the phase of interest, without post-hoc tracing of it back to the moment
of analysis. Therefore, studies using this novel approach have led to more consistent and
reproducible results. For example, EEG-TMS has been used to investigate motor excitability
depending on mu-alpha in the parietal cortex. This line of research is relatively recent, but
several consistent pieces of evidence show that participants with a detectable mu-alpha
rhythm show larger motor evoked potentials (MEPs) when TMS stimulation at the motor
spot is delivered at mu troughs or at the early rising phase, compared to the conditions
where positive peaks or random phases are targeted [8,13,14]. These results are in line
with the hypothesis of the alpha rhythm as a mechanism modulating cortical excitability.
Attempts to link specific alpha phases to enhanced cortical excitability have also been made
in studies targeting the dorsolateral frontal cortex (DLPFC), where alpha-synchronized
rTMS at troughs appears to provide for a local alpha power decrease in patients with drug
resistant depression disorder. The same result is not obtained by intermittent theta burst or
random phase stimulation [15].

To sum up, the role of alpha phase has been investigated in at least three different
cortical areas and a relationship between alpha phase and cortical excitability has been
found in frontal, parietal and occipital regions [8,11,16]. However, there is still no clear
and organic consensus on a generalized functional role of the alpha phase. For example,
the alpha phase in the occipital cortex seems to elicit opposite effects with respect to the
other cortical areas: trough targeting has been proposed to decrease the possibility of
perceiving the stimulus [7]. Moreover, it has been shown that the conscious perception of a
visual stimulus not only depends on alpha phase in the occipital cortex but also on that in
fronto-central regions at the moment of stimulation [7,12] this would be in line with the
idea of the frontal control network allowing access to a conscious perception.
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This evidence, together with the assumption that coherence between brain regions
underlies integration of information [17], suggests that knowing the functional coupling
between stimulated (or post-hoc investigated) regions and other areas potentially connected
with the stimulation site is crucial in designing experiments aiming at a trial-based selective
perturbation of a given “brain state”. In this light, considering the functional coupling
patterns of the stimulated site is important in explaining EEG-TMS results and is even more
crucial when EEG-TMS protocols are intended, not only in terms of a single stimulation
site, but also as a technique for pathway-specific modulation targeting multiple functional
hubs: the next horizon of brain-state dependent stimulation. In this regard, this technique
has been shown to have the potential to modulate specific pathways [18], for example,
by coupling the stimulation to an activity state of that pathway (e.g., [13]). Therefore,
reliable metrics are required that can extract extended network states through long-range
connectivity. Such solid brain state landmarks would be certainly useful (before and after
a neuro-modulatory intervention) to assess whether the brain-stimulation has exerted
the desired network state modulation. Most importantly, however, they would be even
more crucial when time-resolved connectivity state estimates, describing the connectivity
pattern of the network, are used as real-time trigger condition. Nevertheless, gold-standard
metrics for connectivity generally consist of pseudo-statistics regarding different phase
consistency over several tens of trials and a consensus for a conceptual definition of single-
trial instantaneous connectivity is still missing. For this reason, we here try to open the way
to addressing the need for brain-state dependent protocols to take into account not only
the local state which usually triggers the stimulus, but also a general sensitivity state of the
system being modulated in its excitability.

Therefore, this study aims to identify suitable functional pathways between well-
known cortical alpha generators, whose connectivity state can be assessed with MEG/EEG
at rest. Here, we present a pipeline that effectively determines potential connections
from resting MEG/EEG data using Weighted Pairwise Phase Consistency (WPPC; [19])
and Weighted Phase Lag Index (WPLI; [20]). It is worth noticing that the choice of a
connectivity metric has to take into account its advantages and disadvantages in the
context of application [21,22]. Here we used WPPC and WPLI, exploiting their partial
complementarity, for the data under investigation. Both metrics depend on the consistency
between the phases of the signal of interest, and are not biased by sample size. WPPC
is based on the pairwise phase difference, thus it is still affected by zero-lag correlations
introduced by the spatial spread of the inverse solution. As a matter of fact, WPPC also
provides positive and statistically significant values when the phase difference is exactly
zero. This is a result that does not reflect real synchronization, because the finite (but not
null) propagation time of the nervous signal on the pathway connecting the two areas
is not taken into account. In contrast, WPLI does not have this problem because it is
computed from the sign of the imaginary part of the coherence, which vanishes for zero-lag
correlations. However, the WPLI signal to noise ratio is optimal for a phase delay of π/2,
which corresponds at a typical frequency of 10 Hz to an absolute time delay of 25 ms. Since
we are investigating the temporally resolved cortico-cortical connectivity, this is a large
delay if compared to the typical brain conduction delays within the same hemisphere. Thus
WPLI, despite being a less sensitive measure of phase consistency between the brain regions
under investigation, is useful to confirm that the connectivity already detected by the more
sensitive WPPC is real and not due to the spatial spread of the inverse solution. In this
sense, the two metrices are partially complementary. With this methodological set-up, we
investigated 203 healthy subjects with several minutes of resting MEG data and found alpha
connectivity stronger for parietal-prefrontal areas rather than for occipito-parietal areas.
The results of this study will be relevant to design real-time brain state-dependent EEG-TMS
experiments: connectivity priors [23] will be highly relevant as off-line acquired a priori
information for the development of real-time connectivity state estimation algorithms.
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2. Methods
2.1. Dataset and Acquisition

We analyzed magnetoencephalographic (MEG) resting state recordings of 203 healthy
participants (age range 18–57 years; see Figure 1a for age distribution) from the Cambridge
Centre for Aging and Neuroscience (CamCAN) public dataset. Prior to inclusion in the
dataset for neuroimaging measurements, all participants were tested for cognitive decline
(MMSE > 24; [24]), for matching vision, hearing and English language inclusion criteria
and for absence of serious neurological and psychiatric conditions (see [25] for details
about the dataset and acquisition parameters). For each participant, resting state activity
(eyes closed; 8 min and 40 s) and empty-room noise background (3 min) were recorded
using a 306-channel VectorView MEG system (102 magnetometers; 204 first order planar
gradiometers; sampling rate = 1000 Hz; high pass filter 0.03 Hz; low pass filter 330 Hz).
Anatomical landmarks (nasion, left and right pre-auricular points) were registered, as well
as at least 75 additional (isotrak) points, to model the head surface. For human resting state
data, continuous monitoring of the head position (cHPI), electro-ocular (EOHG, EOVG) and
electro-cardiac (ECG) recordings were available. Additionally, T1 weighted anatomical data
were collected using a 3T Siemens TIM Trio scanner (MPRAGE, TR = 2250 ms, TE = 2.99 s;
FOV = 256 × 256 × 192; voxel size 1 × 1 × 1 mm). All the subsequent analysis was
performed only on planar gradiometers using Fieldtrip ([26]), SPM ([27]), CAT12 (http:
//www.neuro.uni-jena.de/cat/ (accessed on 1 October 2021)) and custom MATLAB code.

Figure 1. (a) Distribution of sample age. (b) Distribution of detected IAF on the whole sample.
(c) Distribution of all condition numbers from SVD, aiming to define optimal dipole direction for
spectral data.

2.2. MEG Data Preprocessing

Collected MEG datasets (resting state and empty-room) were inspected and bad chan-
nels showing high noise levels and/or SQUID jumps were marked and removed from the
data. External magnetic source nuisance was removed by means of temporal Signal Space
Separation (tSSS, [28,29]) with a correlation threshold of 0.98 and a sliding time window of
10 s. Line noise contribution was removed by applying a 5th-order Butterworth two-pass fil-
ter centered at the line frequency and its first 3 harmonics, and spanning an interval of 2 Hz.
Head position of the resting state data was corrected every 200 ms using cHPI data and re-
referenced to a common head position. Human MEG data were cleaned from physiological
artifacts using an automated procedure. Muscular activity was detected by filtering data
between 100 and 140 Hz, transforming each channel data into a z-score relative to the whole
channel time series and rejecting segments where the z-score averaged across channels was
greater than 5 for at least 200 ms. Then we ran an extended Infomax Independent Compo-
nent Analysis (ICA; [30,31]) on data filtered between 0.5 and 125 Hz (Butterworth 4th order,
two-pass) and resampled to 250 Hz. Data resampling and digital filtering commute with
the ICA unmixing matrix estimation, provided the artifactual activity of interest lies in the
spared frequency band [31]. For this reason, and for computational efficiency, we computed
ICA on resampled data and applied unmixing matrices to unfiltered data at the original
sampling rate of 1000 Hz. Correlation coefficients of each extracted component with electro-
physiological channels (EHOG, EVOG and ECG) were computed and rejected using a

http://www.neuro.uni-jena.de/cat/
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recursive z-score based procedure that robustly discarded all components with correlation
more than 2 standard deviations from the coefficient distribution mean of all components.
Data cleaned from artifacts were then filtered and segmented. Empty-room data, later
used for noise covariance matrix estimation, were filtered broadly between 0.5 and 140 Hz
(4th-order Butterworth two-pass filter) and segmented in 1 s epochs. Human resting state
recordings were instead filtered around the alpha frequency band (4th-order Butterworth
two-pass filter between 5 and 16 Hz) and split into 2 s segments. Finally, all empty-room
and resting state segments exceeding a threshold of 10 standard deviations with respect to
the channel average, were further discarded in order to deal with potential residual SQUID
jumps and/or filter border effects.

2.3. Anatomical Data Processing

Structural T1w MRI scans were processed with the aim of extracting cortical surfaces
for forward and inverse model calculation and for common space mapping. We pro-
cessed T1w images using the CAT 12 toolbox pipeline (http://www.neuro.uni-jena.de/cat/
(accessed on 1 October 2021)). After bias normalization, denoising and skull stripping,
volumetric data were automatically co-registered to a template space (IXII 555 MNI space;
www.brain-development.org, (accessed on 1 October 2021)) Different tissue was then
segmented in native space in order to extract surface models of the head, the brain enclos-
ing surface and the cortical mantle. We modeled the cortical mantle with a tessellation
(20,484 vertices) of the mid thickness surface, i.e., the surface in between the pial and the
white/gray matter interface. The surface enclosing the brain and a surface model of the
head were also modeled as 20,000 vertices meshes. In addition to the extracted surfaces in
native subject space, co-registered spheres for projection on the FreeSurfer Average (5th
order icosahedron “fsaverage5”; [32]) superficial template space were computed, as well as
the corresponding interpolation matrices between template and native coordinate spaces.
Interpolation coefficients for each point were defined as inversely weighted average of first
neighborhood. The mapping of the native space cortical surface onto the FreeSurfer average
allowed us to identify, in template space, vertices belonging to 360 regions of interests of the
‘state of the art’ multimodal parcellation from the Human Connectome Project [33]. This
atlas was generated by combining structural, diffusion and resting state fMRI data from
210 healthy young adults. Being interested in phase consistency between frontal, parietal
and occipital areas, we defined three corresponding brain sectors, for each hemisphere,
by pooling together correspondent ROIs from the atlas. We selected the ROIs in order to
achieve a sufficiently large coverage of the three sectors of interest, while avoiding excessive
proximity that might lead to spurious connectivity due to potential spread of the inverse
solution. Finally, this led to 16, 7 and 18 regions of interest for the occipital, parietal and
frontal sectors, respectively. For the sake of computational efficiency, we refined the sectors
by trimming the borders in order to have the same number of dipoles per sector (D = 930).
A list of corresponding regions of interest, with MNI coordinates, can be found in Table 1.
All the subsequent analyses were performed only on these ROIs.

Table 1. List of Region of Interest (ROI) defining the three sectors. A brief description (from van
Essen) and the coordinate of the centroid in mm with respect to the template MNI space is reported.

ROI Sector
MNI Coordinates of Centroid (mm)

x y z

V1 Occipital −13.1 −82.0 1.5
V2 Occipital −12.4 −81.5 3.6

ProS Occipital −18.5 −52.2 0.1
V3 Occipital −18.3 −86.2 5.4
V4 Occipital −29.7 −82.5 −3.9
V6 Occipital −13.9 −78.0 27.2

http://www.neuro.uni-jena.de/cat/
www.brain-development.org
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Table 1. Cont.

ROI Sector
MNI Coordinates of Centroid (mm)

x y z

V6A Occipital −18.6 −84.3 38.1
V7 Occipital −23.8 −81.9 26.6

IPS1 Occipital −22.6 −71.7 33.0
V3A Occipital −17.2 −88.4 23.0
V3B Occipital −28.2 −78.9 16.3

V3CD Occipital −35.3 −85.7 12.3
IP0 Occipital −30.4 −73.5 25.5

PGp Occipital −39.8 −80.1 22.1
LO1 Occipital −37.8 −82.9 4.2
LO2 Occipital −42.7 −83.3 −4.9

1 Parietal −47.1 −24.5 52.3
2 Parietal −35.4 −34.4 49.7
3a Parietal −34.3 −21.8 41.8
3b Parietal −36.8 −24.1 51.6
4 Parietal −26.7 −19.7 53.8

6mp Parietal −14.1 −13.2 65.7
6d Parietal −34.9 −12.7 61.9

8BL Frontal −11.6 35.1 50.8
9p Frontal −18.9 44.0 36.4
9m Frontal −7.7 51.0 21.8
9a Frontal −19.7 53.2 23.8

8Ad Frontal −23.3 24.7 41.2
9–46d Frontal −28.7 42.1 21.4
8BM Frontal −6.3 29.5 43.1
8Av Frontal −37.1 18.0 47.4
46 Frontal −36.6 35.6 28.3
8C Frontal −40.3 16.1 35.0

p9–46v Frontal −43.3 29.2 26.3
a32pr Frontal −10.2 28.1 28.6
d32 Frontal −10.0 38.5 21.1

a9–46v Frontal −37.1 47.7 8.8
10d Frontal −12.1 62.9 8.4

p10p Frontal −23.6 55.0 5.2
p47r Frontal −41.2 40.3 1.5
IFSa Frontal −42.0 31.2 13.2

2.4. MEG Source Reconstruction Based on Individual Anatomies

We used Minimum Norm Estimation [34] to solve the inverse problem and compute
the projection matrix from sensors to source space. Native space surfaces were co-registered
to MEG coordinates in a first step, using correspondence between anatomical landmarks as
recorded during the MEG session and in the MRI anatomical image. Second, co-registration
was refined by aligning additional head surface points registered during MEG acquisition
to the tessellation representing the head surface. In this procedure, MEG isotrak points
anterior to the nasion were discarded since the anatomical MRI images were defaced
prior to being publicly available. We then computed a forward model solution for planar
gradiometers using the singleshell method and the brain enclosing surface as computed
before, and depth normalizing lead fields with a factor of 0.5. The source model for MNE
was defined as a free orientation set of dipoles uniformly distributed on the cortical surface
(mean spacing 3.1 mm) and the inverse solution was computed, with a 1% noise covariance
regularization. This procedure leads to a set of three time series of estimated cortical
activations for each resting state epoch and for each vertex of the source model mesh, in
the three cartesian coordinate system. MEG is blind to the radial component of magnetic
field generated by a current dipole in the source model [34,35]. Thus, even for realistic
forward solutions, the estimated current in the most radial direction, with respect to the
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head surface, is almost zero. Therefore, we performed a Singular Value Decomposition
(SVD) of the three source time series at each vertex and for each epoch, retaining only
the components associated with the first two singular values, while the third was always
almost zero. In this way we reduced the current estimate to its projection on the plane
orthogonal to the radial direction, resulting in two source activity time series for each vertex
and for each dipole represented hereafter by the two-dimensional vectors x(t).

2.5. Spectral Analysis

For each epoch and vertex of the cortical mesh, we computed Fourier coefficients X(f)
from the time dependent activity vectors x(t) in a frequency interval f = [8:14] Hz using
a Hanning window taper. Having thus two Fourier coefficients at each frequency, dipole
and epoch, we decided to reduce spectral data defining an optimal dipole orientation as
follows: we computed the cross spectral density matrix between the two Fourier components,
performed an SVD and keeping only the direction relative to the first singular value. This
resulted in an optimal dipole orientation û that depends on the dipole position, the epoch and
the frequency of interest, thus optimizing the detection of the brain signal at the frequency
of interest. We reduced accordingly the Fourier coefficient vector to a scalar one defined
as X( f ) = X( f ) · û. As a measure of the quality of the procedure, we pooled together all
condition numbers resulting from SVDs on all subjects: the average condition number was
1.5 × 103. This means that, on average, the dipole orientations were, in time, almost fixed
(see also [36]) and thus our optimization procedure captures most of the spectral content
of the data. The distribution of the logarithm of all condition numbers can be inspected in
Figure 1c, showing the reliability of the assumption. Fourier coefficients in the optimized
direction X(f) were then used to compute power spectral density at each vertex and for each
epoch. Pooling together all spectral densities and detecting the peak in the frequency band
of interest, we defined, for each subject, an Individual Alpha Frequency (IAF); a distribution
of all the 203 IAFs is reported in Figure 1b. All the subsequent connectivity analysis was then
performed at the individual alpha frequency. For this reason, the frequency dependence of
Fourier coefficients X(f) will be dropped hereafter in the notation.

2.6. Connectivity Analysis and Group Statistical Validation

We are interested in connectivity and phase relationships between region of interest
belonging to the frontal, parietal and occipital areas within each hemisphere. For this
reason, we computed two different spectral based connectivity metrics between all the
combinations of areas belonging to the three different sectors. In particular, given the
symmetricity of the connectivity metrics we use, we crossed occipital areas with parietal and
frontal, and parietal region of interests with frontal ones. For each resulting combination, we
computed the Weighted Pairwise Phase Consistency (WPPC; [20]) and the Weighted Phase
Lag Index (WPLI; [19]). The WPPC is based on the distribution of the phase differences
between all the pairs of observations (resting state 2 s epochs in our case). WPPC is a robust
non-biased measure of phase consistency of brain signals, but it is still affected by zero-lag
artificial correlations induced by the imperfection of the inverse model solution [21,22].
Complementary to WPPC, we estimated WPLI as a connectivity measure not affected by
the artificial zero-lag correlations. Being based on the imaginary part of the coherence,
WPLI is immune to zero-lag connectivity but it has another disadvantage: it achieves
maximal Signal to Noise Ratio (SNR) when the two brain signals are in a π/2 relationship.
For the frequency band of interest (around 10 Hz) this means a time delay of ~25 ms, a
long time when compared to typical brain signal propagation time. However, both metrics
strongly depend on a consistent phase relationship between signal of interest, and then they
can complementarily provide information about the phase consistency of alpha rhythmicity
between the sectors we are investigating.

Given the combination of two brain sectors (A and B) from the ones defined above
(O = occipital; P = parietal; F = frontal) we computed whole sector connectivity matrices,
using both WPLI and WPPC, as follows. Named for brevity as X = XA(da) and Y = YB(dB),
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the Fourier coefficients at each vertex da and db of the sectors A and B, respectively, we
computed a regional dipole-wise connectivity matrix CM

AB(da, db) ∈ M(D× D), where M
represents the metrics (M = WPPC or WPLI). Henceforth, for the sake of clarity, subscripts
and superscripts will be omitted when not necessary. In addition, we computed, for each
metrics, correspondent null connectivity matrices C̃A(da, dr) and C̃B(db, dr) from sector of
interest to a set of D dipoles {dr} randomly chosen within each subject space among the
set of dipoles not belonging to any sector of interest. These null connectivity matrices were
then used for group statistical validation, under the null hypothesis that connectivity to
random dipoles, differently chosen for each subject, will be distributed according only to
the metrics’ bias and sensitivity. To this aim we performed a bootstrap procedure at the
group level by comparing actual and random connectivity matrices: for each combination
(A, B) and for each subject, the actual connectivity matrix CAB and the random ones C̃A
and C̃B were permuted 10,000 times in order to estimate the empirical distribution of
the Fisher regularized difference of connectivity dC ≡ tan−1(CAB)− tan−1

(
C̃A/B

)
. The

comparison between the real dC with its null empirical distribution provided, for each
dipole, a bootstrap p-value. (only positive tailed comparisons were considered). Resulting
D2 p-values were then FDR corrected (q = 0.05) and only significant elements of C_AB were
considered in the subsequent analysis. Furthermore, we reduced the information in each
connectivity matrix by summarizing connectivity between the two sets of ROIs {ra} and
{rb} from the atlas [33] belonging to sectors A and B, respectively. To this aim we defined,
for all connectivity metrics, the following two quantities:

∆(ra, rb) ≡
#[CAB(da ∈ ra, db ∈ rB)]

D

Γ(ra, rb) ≡ P95{ f sg[CAB(da ∈ ra, db ∈ rB)]}

where # [·] and fˆsg [·] represents the count and the distribution of significant connectivity
values, respectively, while P_95 [·] represents the 95% percentile. The quantities Γ and ∆
were computed between regions for each combination {r_a,r_b} and from a single region
of interest to all the target sector {r_a,B}. Finally, bi-hemispheric results were collapsed
by averaging the contribution of both hemispheres. We defined the quantities ∆ and Γ to
summarize the connectivity between ROIs and/or sectors, given that inspecting he whole
dipole by dipole connectivity matrices would have been confusing and not clear to the
reader. The two quantities are conceptually derived from standard graph theory analysis.
The connectivity degree ∆(r_a,r_b) simply counts, from the connectivity matrix, the number
of statistically significant connections between dipoles of the two ROIs, disregarding the
strength of the connectivity and normalizing the count to the total number of dipoles in the
sector. This is conceptually analogous to the node degree in the context of network analysis.
The mean significant connectivity Γ(r_a,r_b) provides a refinement of the connectivity
degree, including the information about the connectivity (or phase consistency) strength.
This is achieved by selecting from the connectivity matrix only the statistically significant
connections between the dipoles of the two ROIs, extracting the 95% percentile of the
resulting distribution instead of just counting them. It is worth noticing that choosing the 95%
percentile is a conservative choice, given that usually connectivity values bounded between
0 and 1, even when Fisher regularized, can give rise to non-symmetrical distributions.

3. Results

Degree and mean connectivity between each ROI combination (∆(ra, rb) and Γ(ra, rb))
and from each ROI to the other sectors as a whole (∆(ra, B) and Γ(ra, B)) for WPPC and
WPLI are shown in Figures 2 and 3 as color coded source maps and connecto-grams. All
extracted values are listed in Tables 2 and 3. In general, we can notice that the connectivity
estimated from both metrics, each one differently depending on a consistent phase rela-
tionship, is predominant in the parietal–frontal connection. While the connection between
occipital and frontal sectors appears to be still relevant, the weakest phase consistency
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has been found between the occipital and the parietal areas. The predominance of phase
consistency in parieto–frontal connections is also confirmed by the value of Γ(P, F) = 0.06,
to be compared with Γ(O, P) = 0.03 and Γ(O, F) = 0.03 obtained by WPPC considering
the whole area as a single ROI in the analysis. When considering the same values but
extracted from WPLI, the pattern is less evident (Γ(O, P) = 0.012; Γ(O, F) = 0.015 and
Γ(P, F) = 0.013), since the mean connectivity between sectors as detected by the imaginary
part of the coherence is almost the same. However, this has to be interpreted in the light
of the different sensitivity of the two metrics with respect to the absolute value of phase
shift at IAF between the source activity in the two areas, which is ultimately related to the
propagation time of the nervous signal on the pathway connecting the ROIs under consid-
eration. As a matter of fact, comparing values of connectivity parameters as extracted from
WPPC and WPLI, we can see that the former are in general larger than the first ones. The
pattern of a predominant fronto-parietal connectivity with a less consistent pareto-occipital
connectivity is also less marked in the WPLI case. We interpret this, methodologically, by
considering the different sensitivity of WPPC and WPLI with respect to phase delay abso-
lute values. Being based on the imaginary part of the coherence, WPLI is more sensitive to
phase consistent signals whose time delay corresponds to values close to φ = π/2, which
translate in the alpha band into a propagation time delay of signals of ~25 ms. This time
is relatively large if compared to typical brain conduction delays, therefore we expect the
phase delay value giving rise to significant connectivity measures to be more toward a
phase difference of φ = 0, thus expecting WPPC to be more sensitive. However, because of
the finite conduction delays in the white matter, and in general in the brain, we expect more
distant areas having larger propagation time. Thus, we expect phase consistency between
distant areas to be more evident in the WPLI.

Figure 2. Results for WPPC connectivity. (a) Values of ∆(ra, B), for all sector combinations in color
code. (b) Values of Γ(ra, B), for all sector combinations in color code. (c) Connectome plots for
the three relevant sector combinations computed from G. Red/green/blue ROI names belongs to
occipital/parietal/frontal sectors respectively. The gray level of lines encodes the magnitude of
Γ(ra, rb) while the gray level of the dot encodes Γ(ra, B). In the inset the color code is explained:
assigning red/green/blue colors to occipital/parietal/frontal sectors, respectively, the intensity of
each area represents the overall magnitude of the parameter of interest, while the color encodes the
proportion of the magnitude due to connectivity to the other sectors. So, for example, a parietal area
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more towards blue has more consistent phase relationship to the frontal sectors, while, if more
towards red, the most relevant connection is to the occipital sector.

Figure 3. Results for WPLI connectivity. (a) Values of ∆(ra, B) , for all sector combinations in color
code. (b) Values of Γ(ra, B), for all sector combinations in color code. (c) Connectome plots for
the three relevant sector combinations computed from G. Red/green/blue ROI names belong to
occipital/parietal/frontal sectors, respectively. The gray level of lines encodes the magnitude of
Γ(ra, rb) while the gray level of the dot encodes Γ(ra, B). In the inset the color code is explained:
assigning red/green/blue colors to occipital/parietal/frontal sectors, respectively, the intensity of
each area represents the overall magnitude of the parameter of interest, while the color encodes the
proportion of the magnitude due to connectivity to the other sectors. So, for example, a parietal
area more towards blue has more consistent phase relationship to the frontal sectors, while, if more
towards red, the most relevant connection is to the occipital sector.

Table 2. Connectivity values for all ROIS towards each of the three sectors. Values of Γ(ra, b) and
∆(r, B) computed from WPPC are shown.

Occipital Parietal Frontal

V1 0.00005 0.01813 0.04801 0.03330
V2 0.00026 0.02336 0.03238 0.03052

ProS
V3 0.00054 0.02260 0.01536 0.02715
V4 0.00007 0.01750 0.00167 0.01769
V6 0.01140 0.03235 0.01202 0.02595

V6A 0.00591 0.02071 0.01167 0.01895
V7 0.00787 0.02024 0.01866 0.02350

IPS1 0.01689 0.03146 0.00290 0.01733
V3A 0.00240 0.02260 0.01683 0.02353
V3B 0.00526 0.02268 0.00203 0.01546

V3CD 0.00017 0.01639 0.00426 0.01660
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Table 2. Cont.

Occipital Parietal Frontal

IP0 0.00256 0.02089 0.00459 0.01869
PGp 0.00036 0.01662 0.00583 0.01964
LO1 0.00054 0.01236
LO2 0.00007 0.01632 0.00008 0.01108

1 0.00147 0.01513 0.01000 0.02590
2 0.01323 0.03352 0.00150 0.02274

3a 0.00182 0.02163 0.01169 0.06285
3b 0.00166 0.01980 0.00928 0.04439
4 0.00153 0.01990 0.01354 0.06664

6mp 0.00026 0.01459 0.00653 0.03106
6d 0.00037 0.01261 0.02895 0.05629

8BL 0.09001 0.02671 0.00231 0.01952
9p 0.08669 0.02861 0.00182 0.01623
9m 0.10542 0.03381 0.00006 0.01323
9a 0.11954 0.02970 0.00015 0.01537

8Ad 0.03460 0.01914 0.00374 0.01783
9–46d 0.05946 0.02154 0.00038 0.01336
8BM 0.04143 0.02319 0.00015 0.01470
8Av 0.00697 0.01461 0.06058 0.04594
46 0.01625 0.01679 0.00248 0.01423
8C 0.00071 0.01432 0.10138 0.05798

p9–46v 0.00158 0.01213 0.01557 0.01848
a32pr 0.00488 0.01591 0.00003 0.00649
d32 0.02711 0.02249 0.00003 0.00840

a9–46v 0.04548 0.01925 0.00283 0.01968
10d 0.07100 0.02592 0.00028 0.01980

p10p 0.05559 0.02151 0.00038 0.01635
p47r 0.01739 0.01740 0.01290 0.02046
IFSa 0.00425 0.01535 0.00776 0.01874

Table 3. Connectivity values for all ROIS towards each of the three sectors. Values of Γ(ra, b) and
∆(r, B) computed from WPLI are shown.

Occipital Parietal Frontal

V1 0.00004 0.01007 0.00103 0.01402
V2 0.00002 0.01189 0.00103 0.01511

ProS 0.00008 0.00814
V3 0.00004 0.01173 0.00041 0.01337
V4 0.00012 0.01177
V6 0.00007 0.01102 0.00013 0.01063

V6A 0.00014 0.00900 0.00013 0.01001
V7 0.00019 0.01040

IPS1 0.00023 0.01053
V3A 0.00005 0.01201 0.00014 0.01081
V3B 0.00016 0.01120

V3CD
IP0 0.00016 0.01141 0.00003 0.00919

PGp 0.00009 0.01005 0.00009 0.01133
LO1
LO2 0.00017 0.00917

1 0.00010 0.00946 0.00006 0.01010
2 0.00022 0.01309 0.00006 0.01011

3a 0.00008 0.01093 0.00022 0.01174
3b 0.00013 0.01032 0.00011 0.01131
4 0.00015 0.01078 0.00017 0.01302

6mp 0.00007 0.00970 0.00009 0.00931
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Table 3. Cont.

Occipital Parietal Frontal

6d 0.00018 0.01071 0.00027 0.01096
8BL 0.00266 0.01300 0.00008 0.01005
9p 0.00664 0.01340 0.00006 0.00831
9m 0.00505 0.01418 0.00003 0.00788
9a 0.00261 0.01296

8Ad 0.00063 0.01018 0.00010 0.00953
9–46d 0.00206 0.01211 0.00002 0.00974
8BM 0.00133 0.01180 0.00002 0.00744
8Av 0.00011 0.00886 0.00074 0.01142
46 0.00043 0.01072 0.00010 0.00949
8C 0.00003 0.00789 0.00090 0.01296

p9–46v 0.00017 0.00939 0.00025 0.01076
a32pr 0.00051 0.01047 0.00002 0.00623
d32 0.00134 0.01224 0.00003 0.00763

a9–46v 0.00119 0.01163 0.00005 0.00786
10d 0.00269 0.01193

p10p 0.00150 0.01111 0.00012 0.00804
p47r 0.00051 0.01068 0.00007 0.00797
IFSa 0.00029 0.00949 0.00011 0.00918

Inspecting more in detail ∆(ra, B) and Γ(ra, B)), as we can see from Figure 2a,b, the
overall higher values for both the quantities extracted from WPPC correspond to the pareto–
frontal connections, giving frontal area 8C the overall highest values (∆(8C, P) = 0.1 and
Γ(8C, P) = 0.06)). This predominance can be also appreciated in the connecto-grams
(Figure 2c), where connections between frontal areas 8C and 8av appear to be the highest
in this sector’s combination and with respect to the other sector combinations. This result
is further confirmed by values obtained from WPLI, as shown in Figure 3. In this case
also, referring to the parietal-frontal connection, area 8C is the most connected, with
∆(8C, P) = 0.0009 and Γ(8C, P) = 0.013. We can thus conclude that this pattern is not due
to the proximity of area 8C with respect to the frontal sector, WPLI being insensitive to
zero-lag connections by design. However, in this case, the degree and the mean connectivity
of areas 8c and 8av are not the highest with respect to other sector combinations, as can
be appreciated in the connecto-grams of Figure 3c and in the color-coded source maps of
mean connectivity in Figure 3b.

As regards the occipito–frontal connections, the highest WPPC connectivity and degree
values has been found from frontal area 9a to the occipital sector, being ∆(9a, O) = 0.12
and Γ(9a, O) = 0.03. The corresponding values for WPLI are ∆(9a, O) = 0.003 and
Γ(9a, O) = 0.013 while, in this case, areas 9m and 9p have also been found among the most
connected to the occipital sector (∆(9m, O) = 0.007 and Γ(9m, O) = 0.015; ∆(9p, O) = 0.007
and Γ(9p, O) = 0.013). This pattern is confirmed also by inspecting the connecto-grams in
Figure 2c for WPPC and Figure 3c for WPLI, where, in the latter case, connectivity from
frontal areas to occipital is more evident than in the WPPC case. As we pointed out before,
we interpret this as a byproduct of the different sensitivity of WPPC and WPLI to coherent
signals whose phase delay is more towards φ = 0 or φ = π/2.

Finally, also in the single ROI connectivity values inspection, the occipito–parietal
connectivity seems to be less relevant. This can be appreciated in the connecto-grams
for WPPC in Figure 2c, where the highest values, in this case, can be found in frontal
area 2 (Γ(2, O) = 0.034 and in occipital area V6 (Γ(V6, F) = 0.033) for the WPPC. This is
confirmed also from WPLI results (Γ(2, O) = 0.013 and (Γ(V6, F) = 0.012). However, in
this case the predominance of these two areas in the occipito-parietal connectivity is less
marked as can be noticed from the connecto-grams in Figure 3c.
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4. Discussion

Our aim was to provide the brain-state dependent EEG-TMS community with a work
describing functional phase-dependent relationships between frontal, parietal and occipital
areas. In these regions, alpha phase-dependent cortical excitability has been studied both
in healthy controls and patients via brain-state dependent stimulation [8,13–15]. (Since the
attempts at manipulating the effects of stimulation triggered by the phase detected on a
region different from the target have no clear effectiveness [8], we believe that taking into
account off-line phase-dependent connectivity patterns between the areas of interest would
be of substantial help in predicting results from these studies.

Furthermore, consideration of the general phase-dependent connectivity state of the
target region, (either trigger-region or not), could be essential for explaining changes in
connectivity patterns for the time after application of plasticity protocols up to the moment
where the behavioral measure has returned to baseline. Considering not only the TMS
trigger-state (phase of the frequency of interest) but also the general connectivity state
of the brain between the regions of interest would in fact be useful both for predicting
plasticity protocols’ efficacy and for interpreting results. For these reasons, we investigated
spectral-resolved connectivity metrics that depend on a consistent phase relationship at IAF
between frontal, parietal and occipital regions at rest. Results showed greater functional
coupling between frontal and parietal areas, compared to very low functional coupling
values between frontal and occipital and parietal and occipital pairs (Figure 2). These
results are consistent with previous evidence of a fronto-parietal network at rest (e.g., [37]).
We used MEG data and three different phase-coherence measures to show that a clear
coupling emerges at IAF between frontal and parietal parcels at rest.

The ability to assess the strength of frontoparietal coupling from resting state data
before and after an intervention makes this a suitable pathway for the investigation of
pathway-specific plasticity. The alpha frequency band is relevant because this is the
frequency band where phase-specific modulation of cortical excitability was previously
demonstrated both in the motor system [8,13,14] and in the prefrontal cortex [15]. Therefore,
in frontal and sensorimotor regions, state-dependent stimulation based on the phase of
alpha frequency appears effective in modulating cortical excitability at rest. However, when
TMS is applied to the motor cortex in response to the phase of alpha recorded from the
occipital cortex at rest, no modulation of corticospinal excitability was found [8].

For future development of real-time estimators of instantaneous connectivity states,
we propose that connectivity metrics which depend on phase relationship between ar-
eas, and therefore describe whether two regions share trial-averaged functional coupling,
can provide off-line connectivity priors in order to enable more accurate time-resolved
connectivity estimates. This broad state of functional coupling will, in fact, constitute a
novel level of a priori information to assess whether real-time EEG-TMS paradigms will be
effective in modulating cortical excitability in one area when the trigger is recorded from
another area. In this light, for example, our finding of the limited functional coupling at
rest between occipital and parietal areas can help elaborate on the reason why no effect was
found when the hand knob of the motor cortex was stimulated on the basis of the occipital
alpha phase [8].

Therefore, we propose that, in order to improve the efficacy of brain-state dependent
stimulation protocols, the definition of “brain state” should not only refer to the instanta-
neous phase of the considered frequency which is triggering the stimulus, but also to the
predisposition of the network to be globally perturbed by a stimulus triggered by a given
phase of a determined frequency. In this regard, measures of functional coupling of regions
at rest or during tasks that involve different functional coupling patterns would allow the
obtaining of “off-line” connectivity priors.

In essence, beside the targeting of a local oscillation phase, brain-state dependent
stimulation might leverage the off-line acquired, a priori knowledge regarding functional
patterns in order to causally test the functional coupling between the brain regions involved.
As an example of potential relevance of this approach, it has been shown that a network of



Brain Sci. 2022, 12, 348 14 of 17

prefrontal and occipito–parietal areas is involved in visual target detection and that alpha
phase in this network is essential for a correct visuospatial processing [38,39]. Standard
brain-state dependent stimulation could be used in order to further test the relationship
between these cortical areas. In fact, brain-state dependent stimulation could potentially
modulate cortical excitability of one area given the phase of alpha from another region.
However, according to our approach, this brain-state dependent stimulation could lead
to more effective results only when the two regions are embedded in a functional pattern
that describes a state of sensitivity to be modulated [13,21]. A relevant part of cortical
excitability could derive therefore from functional coupling of the target areas at rest (or
during a task) at a given frequency.

This new perspective would also be useful for developing new and more effective
individualized approaches for rehabilitation via brain-state dependent stimulation. In this
regard, individualized stimulation rehabilitative protocols have been proposed in stroke
patients for whom specific adaptive connectivity patterns between specific cortical regions
should be reinforced in order to achieve recovery [40]. In this light, our approach combining
brain-state dependent stimulation with phase-dependent connectivity measures would
nicely suit this purpose.

Finally, it must be noticed that our work is the first attempt at measuring coherence
at IAF during rest between these three regions of the cerebral cortex. Most of the resting
state literature consists of fMRI studies, which lack the temporal resolution that MEG
measures provide [41–43]. It is also worth noticing that, depending on the connectivity
metric employed, we obtain slightly different results in the coupling between frontal and
occipital areas, with the WPLI showing some functional coupling between the two regions
compared to other measures. The WPLI is a measure based on the imaginary part of
coherence. This metric is not sensitive to zero-lag spurious correlations. However, its
maximum SNR spuriously coincides with π/4. Since we are investigating IAF which, on
average, refers to around 10 Hz, the maximum SNR of WPLI measures has a phase-lag of
about 25 ms. For these reasons, the functional relationship between distant areas like the
frontal and occipital cortices might be captured thanks to this longer phase-lag that allows
pick-up of the coupling between signals with longer propagation time.

To summarize, our findings suggest that brain-state dependent stimulation could
benefit from taking into account a broader concept of “state” of the system. Depending on
whether brain-state dependent stimulation is practiced at rest or during a task, one should
consider the functional coupling patterns between the areas of interest in the frequency
band whose phase is used as a trigger. Furthermore, we suggest that the physical distance
between the regions could also be taken into account when choosing the coherence metric
to assess functional coupling based on a consistent phase relationship in the frequency
band of interest.

5. Conclusions

Brain-state dependent brain-stimulation has the potential to reliably modulate specific
neural pathways using a “Closed-Loop” approach [44]. How to achieve a time-resolved real-
time estimation of EEG-derived brain connectivity states remains a key challenge. In this
study, we addressed the off-line estimation of phase-based connectivity patterns between
different regions of interest, presenting a pipeline to determine candidate pathways for
real-time paradigms, for instance where the trigger-signal is extracted from one cortical site,
and the stimulation targets a different site, or considering the target region and downstream
effects to distal cortical regions.

In summary, offline connectivity measures have a twofold purpose: first, the estimate
of connectivity patterns before and after can represent a biomarker of cortico-cortical
changes after single and repetitive state-dependent TMS. In fact, for mu-alpha, stimulation
at troughs was found to enhance Transcranial evoked potentials (TEPs) in both ipsi and
contralateral hemisphere at 100 ms after stimulus even when the stimulus was provided at
90% of motor threshold [10]. Moreover, the same kind of stimulation has been found to be
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responsible for an enhancement of connectivity between the two sensorimotor cortices [45].
Connectivity joined with TEP analysis could be even more relevant when analyzing non-
motor areas such as the dorsolateral prefrontal cortex, where one cannot rely on as reliable
and consistent an outcome as that of the MEPs.

Second, an off-line connectivity analysis can be used as prior information for future
online estimates, to determine a correlation between areas oscillating at the same frequency
or in an anticorrelation, a phase state which was previously suggested as a possible marker
of functional segregation [46], or no correlation at all. The offline measures can serve as a
benchmark for determining the optimal trade-off between the temporal resolution (window-
length) and the estimator error variance for a given experimental condition, noting that the
window-length must be short enough to capture physiological transitions [47].
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