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Abstract. Membrane computing is a discipline that aims to perform
computation by mimicking nature at the cellular level. Spiking Neu-
ral P (in short, SN P) systems are a subset of membrane computing
methodologies that combine spiking neurons with membrane computing
techniques, where “P” means that the system is intrinsically parallel.
While these methodologies are very powerful, being able to simulate a
Turing machine with only few neurons, their design is time-consuming
and it can only be handled by experts in the field, that have an in-depth
knowledge of such systems. In this work, we use the Neuroevolution of
Augmenting Topologies (NEAT) algorithm, usually employed to evolve
multi-layer perceptrons and recurrent neural networks, to evolve SN P
systems. Unlike existing approaches for the automatic design of SN P
systems, NEAT provides high flexibility in the type of SN P systems,
removing the need to specify a great part of the system. To test the pro-
posed method, we evolve Spiking Neural P systems as policies for two
classic control tasks from OpenAI Gym. The experimental results show
that our method is able to generate efficient (yet extremely simple) Spik-
ing Neural P systems that can solve the two tasks. A further analysis
shows that the evolved systems act on the environment by performing a
kind of “if-then-else” reasoning.

Keywords: Neuroevolution · NEAT · Membrane Computing · Spiking
P Systems · OpenAI Gym

1 Introduction

Membrane computing is a branch of natural computing initiated by Păun in 1998
[1]. The goal of membrane computing is to perform computations by emulating
nature at the cellular level. In the area of membrane computing, membrane sys-
tems (also called P systems) indicate models that have parallel and distributed
computation capability. Spiking Neural P (in short, SN P) systems [2, 3] in-
corporate the idea of spiking neurons (and spike trains) into P systems. SN P
systems, differently from other combinations of neural models and P systems
[4], use time as a source of information in the computation, similarly to what
happens in biological brains. Moreover, it has been proved that a SN P system
can simulate a Turing machine, given a sufficient number of neurons [5–7].

While SN P systems have proven to be applicable to a wide variety of prob-
lems, their design is (almost always) currently done manually by an expert. Very
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few attempts have been made at automating this step [8, 9]. The lack of auto-
matic design methodologies, of course, represents a bottleneck in the development
of the field, as a lot of work (and time) is needed to design such systems.

Here, we employ a well-known neuroevolutionary algorithm, namely the Neu-
roevolution of Augmenting Topologies (NEAT) [10], to automatically design SN
P systems for a given task. More specifically, we modify the original NEAT algo-
rithm to handle the parameters of a specific type of SN P systems by increasing
the number of parameters contained in the genotype and adapting them to the
parameters of this type of neurons.

To the best of our knowledge, our work represents the first attempt to use
neuroevolution to fully design SN P systems. In fact, while other approaches
for the automatic design of SN P systems do exist, they limit the parameters
that can be optimized, e.g., by fixing the topology [8] or, by fixing the rules
[9]. Our approach, instead, allows to optimize all the SN P system’s parameters
(except for the number of rules) simultaneously. In this sense, it reduces the
need of experts for designing such systems, which in turn may foster a broader
applicability of the SN P systems.

In a nutshell, the goal of this paper is to address two main research questions:

– Is it possible to evolve SN P systems by using (a modified version of) the
NEAT algorithm?

– How do SN P systems evolved with NEAT compare to other methodologies
for classic control tasks?

Our results on two classic control tasks, namely MountainCar-v0 and CartPole-
v1 from OpenAI Gym [11], show that our approach is able to produce SN P
systems of good quality that are competitive with the state of the art.

The rest of the paper is structured as follows. The next section introduces
the background concepts on SN P systems. Section 2 summarizes the related
work, followed by Section 4, which describes the proposed method to evolve SN
P systems. Section 5 presents the numerical results and their analysis. Finally,
Section 6 draws the conclusions of this work and suggests future works.

2 Background

In the neurophysiological behavior of biological neurons, a neuron transmits
an electric pulse, a spike, via its synapses. In particular, the spiking neurons
considered in our study carry information by means of the number and the
timing of the spikes rather than the size and the shape of each spike, assuming
that all the spikes of a spiking neuron are identical.

A P system is a computing device based on the progression of objects in a
membrane structure initialized with a specific number of objects in each mem-
brane. The system then operates using the rules present in the membrane until
its computation is finished. After finishing the computation, the result is pro-
vided as the number of objects in each membrane.
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A neural-like P system is a P system that has its compartments structured
as in a neural net. The behavior of a neural-like P system is based on the state of
its neurons and their interactions. Finally, SN P systems are a class of neural-like
P systems that apply the idea of spiking neurons.

In the following, we describe the formal definition of a SN P system with the
same notions of regular languages used in [2]. A standard SN P system of degree
m ≥ 1, is formally defined as follows:

Π = (O, σ1, . . . , σm, syn, Iin, Iout) (1)

where:

– O = a is a singleton alphabet, where a represents a spike;
– σ1, . . . , σm are neurons, each one defined as: σi = (ni, Ri), 1 ≤ i ≤ m, being

ni the number of spikes initially present in σi and Ri a finite set of rules in
σi, respectively;

– syn is the set of synapses, where each synapse is defined in {1, . . . ,m} ×
{1, . . . ,m};

– Iin and Iout indicate, respectively, the sets of input and output neurons, with
each of them being a mutually exclusive subset of {σ1, . . . , σm}.

At each timestep, the state of the system is updated based on the number of
spikes and the set of rules in each neuron.

The first type of rule (E/ac → ap; d) is called spiking rule (or firing rule).
In the formula, E is a regular language over O; c and p < c denote the number
of spikes consumed and the number of spikes generated, respectively, when the
spiking rule is applicable; d is the “refractory” period that forces the neuron to
wait d timesteps between two consecutive spikes. Denoting with g the number
of spikes contained in a neuron σi, the spiking rule above can be interpreted
as follows: the rule is applicable only if the number of spikes g is greater than
or equal to the number of spikes to be consumed c (i.e., g ≥ c). At a certain
timestep, if the number of spikes g contained in σi is above the threshold c, then
σi consumes c spikes to fire the neuron and g − c spikes remain in the neuron.
After immediately emitting p spikes, the neuron cannot fire for the following d
timesteps.

The second type of rule (E/af → λ) is referred to as forgetting rule. In the
formula, f denotes the exact number of spikes needed to apply the forgetting
rule, and λ represents an empty string. At a certain timestep, if a neuron σi

contains exactly f spikes and the spiking rule is not applicable, then the neuron
consumes f spikes without producing any spikes.

Concerning the set of synapses, syn, its elements have the form of (j, i, wj,i)
where 1 ≤ j, i ≤ m, j ̸= i denote the neuron indexes and the weight on synapse
(j, i), denoted by wj,i, is an integer. Thus, syn describes the topology of the
connections among neurons, and their weights. Figure 1 shows the graphical
representation of a SN P system used in the rest of the paper. Each node in
the graph represents a neuron σi. Each neuron is either an input or an output
neuron: Iin = {σ1, σ2} and Iout = {σ3}. The text in the input nodes, tv1 or
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Fig. 1: Graphical representation of an example SN P system.

tv2, indicates the number of spikes for the corresponding input variables ob-
tained from the environment of the given task. Each output neuron, which has a
given id, produces a response to the environment by emitting spikes. Lastly, the
edges between neurons show the synapses syn, and the weight of each synapse
is specified on each edge.

One additional note is that a neuron can use only one rule at each timestep.
If there are more than two applicable rules for a neuron σi at any timestep, one
of them is chosen non-deterministically with the same probability.

3 Related work

Spiking Neural P systems One of the earliest applications of SN P systems
was to use the spike trains as language generators: in [3], a binary language
generating device was introduced, based on the distances between spikes. Then,
several extensions of this idea were investigated in [12], to get a language over an
alphabet with as many symbols as the number of concurrently generated spikes.

SN P systems have also been used to solve several computationally hard
problems. The baseline idea, i.e., to activate the exponentially large number
of inactive neurons in polynomial time, was proposed by [13], to solve a SAT
problem. This idea was further extended in [14, 15], by starting with an ex-
ponentially large precomputed workspace instead of producing an exponential
workspace in polynomial time. After that, a variant of SN P systems called Op-
timization Spiking Neural P systems (OSNP systems) was introduced in [16],
to obtain an analytic solution for the knapsack problem, which is known to be
NP-complete. This variant introduces a “guider” that adaptively adjusts rule
probabilities to solve combinatorial optimization problems. OSNP systems were
further improved in [17] to address the Travelling Salesman Problem (TSP),
which is known to be NP-hard. The major difference w.r.t. [16] is that they em-
ploy a genetic algorithm (GA) to adjust the rule probabilities instead of following
the guide algorithm specified in [16].

In [18], Ionescu et al. applied SN P systems for simulating logical gates. They
encoded the Boolean values, 0 and 1 respectively, into one and two spikes, as
inputs given to one neuron. This study inspired the application of SN P systems
for designing the arithmetic logic unit used in CPUs. For instance, a variant
of SN P systems using anti-spikes was proposed in [19], to perform arithmetic
operations such as addition and subtraction, as well as logic operations such
as AND, OR and NOT. Further improvements to this approach were made in
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[20], with the introduction of asynchronous parallelism. XOR and NAND gate
operations were later simulated by Song et al. in [21], using SN P systems with
astrocyte-like control.

Another important area of application of SN P systems is fuzzy reasoning,
particularly in the area of fault diagnosis in power systems. In [22], Peng et al.
proposed a fuzzy reasoning Spiking Neural P system (FRSNP system) to han-
dle fuzzy diagnosis knowledge and reasoning, which are indispensable for some
fault diagnosis applications. Their proposed method includes several mechanisms
such as fuzzy logic and a new firing mechanism, and was tested on the fault di-
agnosis of a transformer. Such FRSNP system was further improved in [23] and
[24]. In particular, the method proposed in [23], called adaptive FRSNP system
(AFRSNP system), is able to adjust the weights in the fault diagnosis model au-
tomatically. In [24], the efficiency of the AFRSNP system was further improved
by optimizing the learning algorithm by means of particle swarm optimization
(PSO).

Other works have used SN P systems and their variants to perform pattern
recognition tasks. In this area, [25, 26] used SN P systems to implement a parallel
method for image skeletonizing. The proposed method, based on SN P systems
with weights that are associated with the synapses, was used as a thinning al-
gorithm for skeletonizing binary images. SN P systems have been used also for
fingerprint recognition. For this task, [27] proposed a double-layer self-organized
SN P system that can adaptively create and delete neurons present in the differ-
ent layers. Finally, Song et al. [28] introduced a variant called SN P system with
Hebbian learning function to recognize English letters. The use of the learning
function, which enables a dynamic update of the neuron connections during the
computation, allowed the proposed method to obtain promising results compared
to traditional neural networks based optimized by back-propagation.

While previous attempts to the automatic design of SN P systems do exist [8,
9], they still require an expert to specify the hyperparameters of these algorithms.
Our approach, instead, removes almost all the hyperparameters, leaving only the
number of rules (inside each neuron) as parameter that the user has to specify
(besides the hyperparameters for NEAT).

Neuroevolution Neuroevolution, that is the application of evolutionary al-
gorithms to optimize neural networks, is a growing field in Computational In-
telligence. In this area, Neuroevolution of Augmenting Topologies (NEAT) [10]
is a well-established technique that is capable to optimize both the parameters
and topology of neural networks. The earliest applications of NEAT concerned
evolutionary learning in control problems, such as pole balancing [10] and pole
chasing [29].

Later, NEAT has been widely used in games, in particular to obtain optimal
strategies to decide which action to take given as input a description of the
current state of the game. In [30], NEAT was used to play Go by evaluating
where the next stone should be placed. Taylor et al. [31] employed NEAT for
the same task, but their proposed method accelerates learning by using transfer
learning. A real-time version of NEAT (rtNEAT) was introduced in [32] to evolve
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neural networks in real time, so that the proposed method makes agents improve
their behavior while the game is being played. This method was tested on a game
called neuroevolving robotic operatives (NERO), to improve the competitiveness
of a virtual robot team in real time.

More recently, NEAT has been applied to the automatic design of deep neu-
ral networks (DNNs). In 2019, Miikkulainen et al. proposed a further extension
of NEAT, called CoDeepNEAT [33], that can be applied to DNNs to perform
coevolutionary optimization of topology, network components, and hyperparam-
eters. They evaluated their method on various tasks: object recognition, language
modeling and automated image captioning. CoDeepNEAT achieved promising
results comparable to human-designed networks.

NEAT and its variants discussed above are restricted to traditional (connec-
tivist) neural networks, including DNNs. In contrast, [34, 35] applied NEAT to
spiking neural networks (SNNs). In particular, in [34] a powerful neuromorphic
hardware called SpiNNaker was used for evolving neural controllers based on
SNNs through NEAT. In [35], NEAT was used to develop a recurrent spiking
controller that can solve nonlinear control problems in continuous domains. The
proposed method was evaluated on a pole balancing task, demonstrating that
the learning speed of the evolved spiking controller is significantly faster than
that of a traditional neural network that makes use of a sigmoidal activation
function.

Finally, we should note that while NEAT is one of the most popular neuro-
evolutionary algorithms, it is not the only one. In fact, several other methods
have been recently proposed for evolutionary neural architecture search [36–38].
However, most of these methods evolve neural networks by composing high-level
blocks, while the aim of our work is to evolve neural networks by optimizing
them at the level of single neurons.

4 Method

In order to validate our approach, we consider here the automatic design of basic
SN P systems (i.e., not the advanced variants discussed in Section 3). This choice
was made to ensure that NEAT is able to deal at least with the simplest SN
P systems. Moreover, for simplicity we consider neurons that have exclusively
one spiking rule and one forgetting rule, and we set the initial number of spikes
to ni = 0. These assumptions make these neurons a specialization of the more
general type of neurons that can be used in SN P systems. While these neurons
may be significantly less expressive than the general ones, they allow us to adapt,
with minimal effort, the NEAT algorithm. However, the reduced expressiveness
of SN P systems with only two rules per neuron may reduce their performance
in some tasks where higher expressiveness (for each neuron) is required.

Another assumption we make regards the weights: in fact, we evolve SN P
systems whose connections may have a (either positive or negative) weight, as in
[6]. The weight acts as a multiplier for the number of tokens that are produced
by the neurons, i.e., given to tokens in output from neuron o and a connection
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from o to p with weight wo,p, the total number of spikes given in input to the
neuron p is tp = to · wo,p.

While, ideally, given an input we want to wait that the SN P system has
finished the computation (i.e., no more spikes are produced in the system), this
may significantly slow down the evolution. To speed up the evolutionary process,
we constrain the computation in the SN P system to 100 timesteps.

4.1 NEAT

The NEAT algorithm starts the evolutionary process from minimal networks
that, as the evolutionary process goes on, are complexified by means of muta-
tion and crossover. Each network is encoded through two lists: the list of nodes
and the list of connections. Moreover, the algorithm allows to perform efficient
neuroevolution by allowing the detection of similar individuals, and preserves
diversity by using niching. More details on these aspects of the algorithm can be
found in [10].

4.2 Genotype

We adapt the original NEAT algorithm1 to our purpose by including into the
genotype the following parameters of every neuron σi:

– ci ∈ N \ {0}: no. of spikes needed to fire the neuron;
– pi ∈ N \ {0}: no. of output spikes;
– di ∈ N: minimum delay between two subsequent spikes for the neuron;
– fi ∈ N: no. of spikes needed to activate the forgetting rule;
– wj,i ∈ Z: weight of synapse (j, i) for each synapse in input to the neuron.

Moreover, we also optimize the set of connections syn.

4.3 Phenotype

When translating a genotype into a phenotype (i.e., an instance of SN P sys-
tems), the following constraints are handled:

– pi ≤ ci: if pi > ci then it is set to pi = ci;
– fi < ci: if fi ≥ ci then it is set to fi = ci − 1.

Moreover, since during the initialization of the genotypes the values for the
parameters are sampled from Gaussian distributions, to create the SN P systems
the parameters are cast into integers by taking the floor of the number.

Each resulting phenotype consists then of a SN P system containing k neu-
rons, where k is the number of non-hidden nodes from the genotype. Subse-
quently, a connection is created for each enabled connection gene, connecting
the created previously neurons.

1 Our code, which is based on the neat-python package [39], is publicly available
online at https://github.com/leocus/snps.

https://github.com/leocus/snps
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4.4 Input features

The tasks considered in our experimentation use real-valued input data, which
are incompatible with the data type employed in SN P systems. To mitigate this
problem, we perform a very simple conversion from floating-point encoding to
integer encoding. The conversion consists in normalizing each input in its range
of variation:

x̄k =
xk −min(xk)

max(xk)−min(xk)
(2)

Then, we convert the normalized input into a number of input spikes as follows:

tk = ⌊k · x̄k⌋ (3)

In our experiments, we empirically set k to 20. Finally, the input spikes
{t0, . . . , tn}, where n is the number of inputs, are fed into the SN P system.

4.5 Fitness evaluation

After the genotype-phenotype mapping is applied, each SN P system is evalu-
ated in nep episodes, where an episode consists in our case in a simulation of
the control task at hand. At each timestep of a simulation, we transform the
raw inputs coming from the simulator into integer features, using the proce-
dure described in the previous subsection; then, we feed the features into the
SN P system, which produces an output vector containing the number of spikes
for each output neuron (with size equal to the number of actions). The action
performed by the SN P system is then the argmax of the output vector.

When the nep episodes have been completed, the phenotype is assigned a
fitness equal to the mean score across the nep episodes.

Note that, when evaluating the SN P system, each neuron cannot contain a
negative number of spikes. So, when si < 0, the number of spikes inside that
neuron is reset to si = 0.

5 Results

To test the capabilities of our approach, we evolve SN P systems on two classic
control tasks, namely MountainCar-v0 and CartPole-v1, taken from the OpenAI
Gym library [11]. While these two tasks may seem trivial for testing modern
neuro-evolutionary approaches, it must be noted that, to our knowledge, this is
the first application of SN P systems as controller for control tasks, thus their
ability to work in these scenarios is yet to be determined. The MountainCar-v0
task is a “driving” task, where there is a car, initially in a valley, that has to
reach the rightmost hill. To do so, the agent must learn how to build momentum
by swinging between the two hills. In this case, the agent takes in input both
the horizontal position and velocity of the car and must produce a decision
a ∈ {0, 1, 2} that corresponds to: accelerate to the left, do not accelerate, and
accelerate to the right, respectively. In this task, each timestep gives a reward of
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−1 points, so the quicker the agent solves the task, the higher the score. The task
is considered solved if the agent reaches a score s > −110. On the other hand, the
CartPole-v1 environment consists in a classic pole-balancing task. In this task,
the agent takes the following inputs: horizontal position (x), horizontal velocity
(y), angle of the pole (θ), angular velocity of the pole (ω), and must produce a
binary decision a ∈ {0, 1} that consists in moving the cart to the left or to the
right, respectively. The reward given to the agent at each timestep consists in
1 point. If the pole falls, the simulation is terminated, If the maximum score is
reached (500), the simulation is terminated. The task is considered as solved if
the agent reaches a score s > 475. Table 1 shows the parameters used to evolve
SN P systems with the NEAT algorithm. The same parameters were used on
both the MountainCar-v0 and the CartPole-v1 tasks.

Table 1: Parameters used for the NEAT algorithm.
Parameter Value Parameter Value

Population size 300 Generations 300
Init ci ∼ N (30, 10) Init pi ∼ N (30, 10)
Init di ∼ N (30, 10) Init fi ∼ N (30, 10)
Init weight ∼ N (0, 3) ci range [1, 100]
pi range [1, 100] di range [0, 100]
fi range [1, 100] Weight range [-10, 10]
Mutation power ∼ N (0, 3) Mutation rate 0.2
Replacement rate 0.1 Add connection rate 0.5
Remove connection rate 0.5 Add node rate 0.5
Remove node rate 0.5 Toggle “enable” rate 0.1
Max stagnation period 20

Table 2 shows the results obtained in 10 independent runs on the two tasks.
Note that, to speed up the computation, we set a stopping criterion based on the
score: if the agent achieves a mean score that is greater or equal than a threshold,
the evolution is stopped. For the CartPole-v1 task, the maximum score is 500,
while the minimum score required for solving the task is 475. In this case, we
set the threshold to 499. On the other hand, for the MountainCar-v0 task there
is no maximum score, and the minimum score required is -110. Here, we set
the threshold to -105. While this stopping criterion may hinder reaching the
global maximum, it significantly speeds up the evolution process. As shown in
the table, our approach is able to solve the task in 100% of the cases (computed
on 10 independent runs) for both tasks.

Figures 2a and 2b show the fitness trends averaged over the 10 indepen-
dent runs for each task, where it can be observed that the proposed method is
fairly robust across multiple runs, and converges quite quickly (after about 40
generations in the case of MountainCar-v0, 20 in the case of CartPole-v1).
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Table 2: Descriptive statistics of the results obtained by the proposed method
in 10 independent runs on the two tested tasks.

Task Min Mean Median σ Max Solved

MountainCar-v0 -105.18 -104.56 -104.37 0.34 -104.14 10/10
CartPole-v1 491.52 497.49 498.05 2.86 500.00 10/10
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Fig. 2: Fitness trend (mean ± std. dev. across 10 independent runs) for the best
individuals found during the evolutionary process on the two tested tasks. The
dashed line represents the “solved” threshold.

5.1 Analysis of the solutions

In the following, we analyze the best SN P system evolved for each task, trying
to gain insights on the evolved policies.

MountainCar-v0 Figure 3 shows the diagram of the best SN P system ob-
tained for this task, where tx and tv represent the number of tokens (i.e., spikes)
obtained from the real-valued inputs coming from the simulator (x and v stand
for position and velocity of the car, respectively) by means of the “translation”
process described in Section 4.4. Each circle with a number inside represents a
spiking P neuron, where the number represents its id. Each circle with a sym-
bol inside represents an input neuron, where the symbol identifies the spikes
generated from the corresponding input. Ignoring Neuron 0 and 1 (that do not
contribute to the control of the agent), the evolved parameters are:

– Neuron 2 (Accelerate to the right):
ci = 43, pi = 31, di = 31, fi = 14

The policy shown in Figure 3 acts as an “if-then-else” policy. In fact, since
we choose the action based on the argmax, two scenarios may happen:

– Neuron 2 does not produce any spike: in this case, the action taken is 0
(Accelerate to the left). This happens because the argmax function returns
the first index that contains the max.
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– Neuron 2 produces one or more spikes: in this case, the argmax would be 2
and the agent will accelerate to the right.

0 1 2

tx

tv

−1

5

Fig. 3: Best SN P system evolved for the MountainCar-v0 task.

CartPole-v1 Figure 4 shows the best SN P system obtained for this task, which
follows the same representation of Figure 3. In this case, the evolved parameters
are:

– Neuron 0 (Accelerate to the left):
c0 = 31, p0 = 2, d0 = 22, f0 = 26

– Neuron 1 (Accelerate to the right):
c1 = 47, p1 = 36, d1 = 25, f1 = 8

This policy seems more complex than the one produced for the MountainCar-
v0 task. In fact, here we observe that all the input variables (tx, tv, tω and tθ)
contribute (positively) to the output of Neuron 1, while only two variables,
namely tx and tθ, contribute to the output of Neuron 0, and tθ contributes
negatively to it.

However, by inspecting how Neuron 0 works, we can conclude that also this
policy can be reduced to an “if-then-else”. In fact, for each spike in tx 2 spikes
will be added to this neuron, and, for each spike in tθ, 5 spikes will be removed
from it. Since a neuron cannot contain a negative number of spikes, the number
of spikes that Neuron 0 can contain is:

s0,in = max(0, 2(tx − tθ)) (4)

This means that, after all the spikes in tθ have been consumed (assuming tx > tθ)
2 spikes will be added to s0,in at each timestep. Then, three scenarios can happen:

– tx ≤ tθ ⇒ s0,in = 0;
– tx − tθ ∈ [0, 13) ⇒ s0,in will be too small to trigger any rule;
– tx−tθ ∈ [13, 20] ⇒ s0,in will be equal to 26 at a certain point, so the forgetting

rule will be applied. The number of spikes that can be added in the following
steps will be insufficient to trigger any rule.

This means that Neuron 0 will never fire any spike and, for this reason,
also this SN P system represents an “if-then-else” policy, similarly to what we
obtained for the MountainCar-v0 task.
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Fig. 4: Best SN P system evolved for the CartPole-v1 task.

5.2 Comparison with state of the art

Tables 3 and 4 compare our approach to the state of the art on the two tasks
(from either the OpenAI Gym Leaderboard2 or the literature). We observe that
our approach is competitive with the state of the art. Moreover, the fact that we
used a stopping criterion based on the fitness may have hindered the discovery
of a better performing method on the MountainCar-v0 task.

Table 3: Comparison of our approach to the state of the art on the MountainCar-
v0 task. The boldface indicates the best values known so far.

Source Method Score

Zhiqing Xiao3 Closed-form policy -102.61
Keavnn4 Soft Q Networks [40] -104.58
Harshit Singh5 Deep Q Network -108.85
Colin M6 Double Deep Q Network -107.83
Amit7 SARSA -105.99
Anas Mohamed8 SARSA -109.41
Custode & Iacca [41] Decision Tree -101.72

Ours SN P system -104.14

2 github.com/openai/gym/wiki/Leaderboard
3 github.com/ZhiqingXiao/OpenAIGymSolution
4 github.com/StepNeverStop/RLs, accessed: 3 aug 2021.
5 github.com/harshitandro/Deep-Q-Network
6 github.com/CM-Data/Noisy-Dueling-Double-DQN-MountainCar
7 github.com/amitkvikram/rl-agent
8 github.com/amohamed11/OpenAIGym-Solutions
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Table 4: Comparison of our approach to the state of the art on the CartPole-v1
task. The boldface indicates the best values known so far.

Source Method Score

Meng et al. [42] Deep Q Network 327.30
Meng et al. [42] Tree-Backup(λ) 494.70
Meng et al. [42] Importance-Sampling 498.70
Meng et al. [42] Qπ 489.90
Meng et al. [42] Retrace(λ) 461.10
Meng et al. [42] Policy discrepancy w/ β 499.90
Meng et al. [42] Policy discrepancy w/ η 493.20
Meng et al. [42] Watkins’s Q(λ) 484.30
Meng et al. [42] Policy discrepancy w/ β 494.90
Meng et al. [42] Policy discrepancy w/ η 493.30
Meng et al. [42] Peng & Williams’s Q(λ) 496.70
Meng et al. [42] Policy discrepancy w/ β 500.00
Meng et al. [42] Policy discrepancy w/ η 499.40
Meng et al. [42] General Q(λ) 499.90
Meng et al. [42] Policy discrepancy w/ β 500.00
Meng et al. [42] Policy discrepancy w/ η 500.00
Xuan et al. [43] Deep Q Network 98.33
Xuan et al. [43] Bayesian Deep RL 113.52
Xuan et al. [43] Bayesian Deep RL weighted 136.75
Beltiukov [44] K-FAC 321.00
Custode & Iacca [41] Decision Tree 500.00

Ours SN P system 500.00

6 Conclusions

Spiking Neural P (in short, SN P) systems are a computational tool from the
field of membrane computing that gained a lot of attention in recent years.
Several variants of these systems have been proposed for different applications.
However, until now, these systems have almost always been manually derived
from experts. The approach presented here aims to automate the design step, so
that SN P systems can be automatically produced for a given task with no (or
little) supervision from an expert. We tested our method on two classic control
tasks, and found that our approach is able to solve both tasks in all the runs.
Moreover, it produces controllers whose performances are competitive with the
state of the art.

The most important limitation of this work is that we assumed rather simpli-
fied SN P systems. In particular, we limited the number of rules that each neuron
can employ. In future work, we expect to remove this limitation. Moreover, we
considered only a basic version of SN P systems, while it would be interesting
to combine our approach with more advanced variants such as OSNP systems
[16], in order to perform both “architectural search” and real-time parameter
optimization.
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Other relevant future directions include, for instance: 1) testing our approach
on different (and more challenging) tasks; 2) applying techniques to allow SN P
systems to work with non-integer inputs; 3) evolving SN P systems that, instead
of using the number of spikes for each neuron, use the difference between two
spikes as the output, as proposed in [2]; 4) extend our approach to evolve also the
number of timesteps allowed in the computation; and 5) test novel approaches
for the neuro-evolution of SN P systems, such as Cartesian genetic programming
[45].
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