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Abstract We construct isoentropic equations of state (EOSs)
of β-stable dense hadronic matter considering the possibility
that a quark deconfinement phase transition can take place.
These conditions can be actually realized in different astro-
physical contexts like core-collapse supernovae (CCSNe),
during the early stages of the evolution of a newly formed
neutron star (protoneutron star, PNS) or in the postmerger
compact object formed in binary neutron star (BNS) merg-
ers. We consider four different EOSs to describe the hadronic
phase: three EOSs from relativistic mean field theory and
one EOS recently derived from microscopic calculations in
the framework of the Brueckner–Hartree–Fock approach.
We combine these hadronic EOSs with a quark matter EOS
obtained from a modified MIT-Bag model which takes into
account some perturbative corrections in the grand canonical
potential due to the quark–quark interaction. The two phases
are then joined up through a Gibbs construction. For each
model we study thermal and neutrino trapping effects on the
matter composition and consequently on the EOS. We finally
determine the PNS static structure integrating the Tolman–
Oppenheimer–Volkoff equations. We find that the thermal
contribution and particularly the effect of neutrino trapping
play an important role on the full EOS. The latter can get
softer or stiffer according to the strangeness content in the
hadronic phase. These effects are thus crucial to provide a
proper description of the dynamical evolution of both the
postmerger compact object formed in a BNS merger or the
PNS formed in a CCSN.

a e-mail: domenico.logoteta@pi.infn.it (corresponding author)

1 Introduction

The physics of hot and dense matter is of interest for a large
variety of different physical systems spanning from heavy-
ion collisions to binary neutron star (BNS) mergers. The latter
have received particular attention in the last years due to their
strong connection with the physics of gravitational waves
(GWs) and more in general of multimessenger astronomy
[1–4]. The description of neutron stars (NSs) as well as of
astrophysical events like core collapse supernovae (CCSNe)
[5,6] and BNS mergers [7–9] requires the knowledge of the
equation of state (EOS) of matter [10,11], namely the relation
between pressure (P), energy density (ε) and temperature (T )
for given matter composition. One of the greatest challenge
here is the large variety of thermodynamic conditions that
matter experiences in these events, spanning several orders
of magnitude in all the relevant variables [11,12]. However,
according to the specific system under investigation, matter
can be characterized by definite thermodynamical conditions
like low temperature or approximately constant entropy per
baryon (S/A), at least over some timescales of interest. In
particular in the present work we consider the specific situa-
tion in which S/A can be considered constant and we accord-
ingly study and build up the corresponding EOS. The latter
condition is expected to be realized in good approximation in
the core of protoneutron stars (PNSs) [10,13–16] and in the
compact object that forms after the merging of two neutron
stars if a prompt collapse to a black hole (BH) does not take
place [7,17–20]. Such a postmerger remnant can be possibly
gravitational unstable and survive only a few milliseconds
before collapsing into a BH, but it can also evolve into a
long-lived massive NS, with a collapse timescale changing
by orders of magnitudes or eventually evolve to a stable NS.
The precise fate of the postmerger remnant and the collapse
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timescale depend on several factors, including the masses and
the spins of the colliding NSs, the properties of the EOS at
supra-nuclear densities, the strength of the magnetic field and
of all processes responsible for the redistribution of angular
momentum inside the remnant. Indeed, several mechanisms
can temporally prevent the collapse of the central object to
a BH and the most relevant ones are the differential rotation
of the remnant and the thermal support provided by dense
matter in semi-degenerate conditions [7].

Another crucial point for the modeling of the above men-
tioned astrophysical phenomena is related to the composition
of hot and dense matter. In fact due to the very large densities
and/or temperatures reached in a PNS or in the postmerger
remnant of a BNS merger, various hadronic species (in addi-
tion to nucleons) and phases of QCD matter are expected to
appear. Hyperons are the first of such “exotic” constituents
[21–25]. Moreover, a transition to a phase with deconfined
quarks (quark matter) is also expected according to various
QCD-inspired models [26–34]. The study of the quark decon-
finement phase transition in hot and dense matter and of
its implications for the structure and evolution of compact
objects is one of the main objective of the present work.

Hot and dense matter in the center of CCSNe and BNS
mergers produces copious quantities of neutrinos through
weak interactions. Over the cooling timescale all neutri-
nos have escaped, the PNS or the long-lived BNS merger
remnant has become transparent and cold and neutrino-less
weak equilibrium (also called neutrino-less β-equilibrium)
has been achieved. This is the case of cold, deleptonized NSs.
However, during the early stages of the evolution of PNSs
and BNS merger remnants, the neutrino diffusion time (∼ 30
s) is larger than any relevant dynamical timescale and neu-
trinos can be considered as trapped (or partially trapped) and
possibly in weak equilibrium with matter [7,10,13,15,35–
37]). If this physical condition is actually realized for several
seconds before neutrinos escape, the trapped neutrino com-
ponent provides a contribution to the matter’s pressure and
alters the composition of the stellar material thus modifying
the EOS with respect to the case of neutrino-free matter [10].

According to these considerations, it is relevant to ask
if thermal and neutrino trapping effects act in direction to
support the newly formed hot compact object against the
collapse to BH or contrarily favor the collapse.

In the present work we thus study how these physical
effects impact on the EOS of hot and dense matter, particu-
larly how they influence the onset of the quark deconfinement
phase transition, and as a whole how they affect the evolu-
tion of PNSs and BNS postmerger remnants. These effects
may turn out to be important when encoded in numerical
dynamical simulations of CCSNe and BNS mergers.

We want to emphasize that in the present work we assume
that compact stars containing deconfined quarks are hybrid
stars; in doing so we do not consider the possibility of the

formation of the so called strange stars. The existence of the
latter is based on the rightness of the hypothesis about the
absolute stability of strange quark matter by Bodmer [38]
and Witten [39], and it has been revised in light of the GW
signal GW190814, whose light component was interpreted
as a strange star of mass around 2.5 − 2.6 M� [40] (but see
[41] or [42,43] for alternative interpretations).

The paper is organized as follows: in Sect. 2, we briefly
review the EOSs adopted for both the hadronic and the quark
matter phases. In the Sect. 3, we show results about the com-
position, temperature profiles and structure of hot compact
remnants using isoentropic EOSs and considering various
stellar conditions expected during the PNS evolution and/or
dynamical astrophysical processes like BNS mergers and
CCSNe. In the last section we outline the main conclusions
of our work.

2 Equations of State

In our study we have considered four different EOS mod-
els to describe the hadronic phase (i.e. the phase of mat-
ter with quarks confined within baryons and mesons). In
the first case the EOS is calculated making use of the
non-relativistic Brueckner–Hartree–Fock (BHF) many-body
approach, whereas the other three EOSs are constructed
according to a relativistic mean field (RMF) model. The EOS
for the quark phase, i.e. the phase of matter composed of the
three lightest quark flavors, namely up (u), down (d) and
strange (s) quarks, is modeled using an extended version of
the MIT bag model.

For both the hadronic and the quark phases we consider
matter in equilibrium, with respect to the weak interaction,
with electrons (e−), muons (μ−), and eventually with neu-
trinos (in the case of matter with trapped neutrinos) and we
include the contributions of all the corresponding antiparti-
cles.

We next assume a first order phase transition between
the two phases and, following Glendenning [44], we require
global electric charge neutrality of bulk stellar matter. An
important consequence of imposing global charge neutrality
is that the hadronic and the quark phases can coexist over a
finite range of pressures. This treatment of the phase transi-
tion is known in the literature as the Gibbs construction for
the hadronic-quark mixed phase.

2.1 Hadronic matter EOS

In the first case the hadronic phase is modeled as a uni-
form fluid of neutrons and protons (nuclear matter) in β-
equilibrium with electrons and muons, and possibly with
neutrinos (in the case of matter with trapped neutrinos).
The zero temperature version of this model (hereafter the
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BL EOS) was derived in Ref. [45] within the BHF many-
body approach making use of realistic two-nucleon (NN)
[46] and three-nucleon (NNN) [47] interactions derived in in
the framework of chiral effective field theory (χEFT) (e.g.
[48,49]). These chiral nuclear interactions reproduce with
high accuracy the nucleon-nucleon (NN) scattering data and
the experimental binding energies of light (A = 3, 4) atomic
nuclei. The BL EOS reproduces the empirical properties
(energy per nucleon, symmetry energy and its slope parame-
ter L , incompressibility) of nuclear matter at saturation den-
sity (n0 = 0.16 fm−3; see [47]), it does not violate causality
(i.e. vs < c, with vs being the speed of sound in the nuclear
medium), and it is consistent (see Fig. 2 in [45]) with the mea-
sured elliptic flow of matter in heavy-ion collisions experi-
ments [50]. When computing static neutron star configura-
tions, the BL EOS (for the β-stable case) gives a maximum
mass Mmax = 2.08 M� (compatible with present measured
NS masses [51–54]), and a quadrupolar tidal polarizability
coefficient �1.4 = 385 (for the 1.4 M� neutron star [55])
compatible with the constraints derived from GW170817
[2,56]. Based on the universal relation derived in Ref. [20],
the threshold mass for the prompt collapse to a BH for equal
mass BNS mergers is 2.79 M� for this EOS, indicating that
GW170817 is compatible with being a NS-NS system that
did not undergo a prompt BH formation [18,20,57].

The BL EOS has been recently extended in Ref. [58] to
finite temperature and out-of-β-equilibrium matter (hereafter
the BLh EOS). This EOS model was successfully used in
several numerical simulations of BNS mergers ([59–62]).

Moreover, the zero temperature version of this EOS was
extended in Ref. [23] to include, in addition to neutrons and
protons, the � hyperons. In particular, the authors of Ref.
[23] have investigated the role of the three-baryon interaction
(NN�) between two nucleon and a � hyperon on the EOS
of hyperonic matter. It was found that it is possible to have
hyperonic stars with a maximum mass of ∼ 2 M� when the
NN� interaction is included in the Hamiltonian indicating a
possible solution of the so called hyperon puzzle in neutron
stars [63,64].

The second, the third and the forth hadronic EOSs we
consider are based on a RMF scheme which includes nucle-
ons: DD2 ([65]) and TM1-2 ( [66]), or nucleons and hyper-
ons: TM1-2Y ([66]). All the RMF models considered in this
work are based on a quantum field theory Lagrangian density
in which nucleons are assumed to interact via the exchange
of effective σ , ω and ρ mesons. The equation of motion
of the various fields are derived in the Hartree approxima-
tion. The TM1-2 model is a reparametrization of the origi-
nal TM1 model ([67]) where the parameters entering in the
Lagrangian density were adjusted (see Ref. [66]) in order to
give, for the calculated pressure in symmetric nuclear matter,
a result which is consistent with the measured elliptic flow of
matter in collision experiments between heavy atomic nuclei

[50]. Specifically, in the present work we use the param-
eters set denoted as TM1-2 in Table 1 of Ref. [68]. One
of the main difference between the TM1-2 and the DD2
models is that the latter contains some density dependent
terms in the Lagrangian density while the TM1-2 one has
none. Both these two EOS models when used in NS struc-
ture calculations produce a quadrupolar tidal polarizability
coefficient �1.4 compatible with the constraints derived from
GW170817 [1,56].

We remark that all the nucleonic EOS models used in our
calculations, besides reproducing fairy well the empirical sat-
uration density of nuclear matter n0 = 0.16±0.01 fm−3 and
its corresponding energy per baryon E/A0 = −16.0 ± 1.0
MeV (e.g., [66]), predict values of the nuclear symmetry
energy at saturation density in the interval Esym(n0) =
25 − 37 MeV, and slope parameter L = 30 − 90 MeV, in
agreement with several microscopic calculations as well as
with experimental results [69,70]. The DD2 EOS model has
been also widely employed in literature in numerical simu-
lations of CCSNe [5,6] and BNS mergers [7,8]. Finally, the
TM1-2Y is an extension of the TM1-2 model which includes
the hyperons of the baryonic octect. The coupling constants
that determine the interactions between nucleons and hyper-
ons and between hyperons for this model were set in Ref.
[68] using SU(6) symmetry and to reproduce reasonable val-
ues of the hyperons’ single particle potentials at saturation
density in symmetric nuclear matter. The maximum mass of
NSs predicted by the TM1-2Y is compatible with measured
NS masses having M ∼ 2 M�.

At baryon density below n ∼ 0.05 fm−3 one has a transi-
tion to non-uniform nuclear matter. In this low density regime
the DD2 and the TM1-2 models have a consistent exten-
sion up to very low density according to the very same RMF
approach. For the BLh model this extension is not straightfor-
ward and it would require the solution of the Bethe-Goldstone
equation in finite nuclei. In order to avoid this complication,
we have instead used the procedure discussed in Ref. [58],
namely for the low density part of the EOS we have smoothly
matched the microscopic BHF calculations with the SFHo
EOS [71].

2.2 Quark matter EOS

To model the quark phase we use an extended version of
the phenomenological bag model EOS which includes the
effects of gluon mediated QCD interactions between quarks
up to the second order in the QCD coupling αs [72–74]. The
grand canonical potential per unit volume can be written as
(we use units where h̄ = c = 1):


 =
∑

f


0
f + 3

4π2 (1 − a4)μ
4 + Beff + 
0

g + 
0
γ . (1)
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The first term on the right hand side of Eq. (1) gives the con-
tributions to 
 originating from the fermionic constituents of
matter, i.e. f = u, d, s, e−, μ− (and their antiparticles) with
the possible addition of neutrinos and antineutrinos (in the
case of matter with trapped neutrinos), all described as ideal
relativistic Fermi gases. The second term on the right hand
side of Eq. (1) accounts for the perturbative QCD corrections
to O(α2

s ) [72–74] and its value represents the degree of devi-
ations from an ideal gas EOS, with a4 = 1 corresponding to
the ideal gas case. The chemical potential μ in Eq. (1) can be
written in terms of the u, d and s quark chemical potentials as
μ = (μu+μd +μs)/3. The term Beff is an effective bag con-
stant which takes into accounts in a phenomenological way
nonperturbative aspects of QCD. We assume that both the a4

and Beff coefficient do not depend on the temperature. The
last two terms in Eq. (1) represents the contributions from
gluons and photons, both calculated as ideal Bose gases.

In the following we refer to this quark matter EOS model
as effective MIT bag model (eMIT). We adopt two different
parametrizations of this EOS that we refer to as: eMIT1 and
eMIT2. In the first case we set: Beff = 240 MeV anda4 = 0.7
while in the second: Beff = 190 MeV and a4 = 0.7. These
values have been chosen in such a way that, when the quark
EOS is combined with a given hadronic EOS the maximum
mass configuration of the resulting hybrid star sequence sat-
isfies the two solar mass requirement [51–54].

2.3 EOS for protoneutron stars and postmerger remnants

We construct finite temperature and composition dependent
NS EOSs by combining a hadronic and a quark EOS. We
assume a smooth Gibbs construction [44] to join the hadronic
and the quark phases. We thus require global electric charge
neutrality of bulk stellar matter. As a consequence of this, the
hadronic and the quark phases can coexist for a finite range
of pressures. We are aware that, depending on the nature of
the hadron-quark matter interface [75,76], other possibilities
exist like to consider a sharp Maxwell construction [77] or
to analyze the formation of specific matter geometries in the
mixed phase (spheres, rods, ...) that minimize the total energy
of the system, as discussed for instance in Ref. [78–80].

Moreover, in the case of matter with trapped neutrinos,
we include electron and muon neutrinos (and their antipar-
ticles) and describe them as as ideal relativistic Fermi gases
in thermal and weak equilibrium with matter. In addition,
we have fixed the value of the electronic lepton fraction to
YLe = (ne + nνe )/n to YLe = 0.3 and the muonic lepton
fraction YLμ = 0, where ne and nνe are the net electron and
electron neutrino densities, respectively. These values forYLi

are typical ones obtained in hydrodynamical simulations of
the early stages of PNS. Throughout the paper we have kept
these values of YLe and YLμ in the case of trapped neutri-
nos, unless explicitly specified. In the subsequent evolution,

the cooling process is associated with a significant delep-
tonization towards cold neutrino-less weak equilibrium. It is
important to stress that in the case of BNS mergers, matter is
characterized by an initially low YLe ∼ 0.1, and experiences
a leptonization process because of matter decompression and
temperature increase. We emphasise that, in case of neutrino
trapped matter, neutrinos have been included in the full EOS
density range and not only in the high density regime.

We remark that we have included the contribution of the
photons in all the density range of the EOSs considered in the
present work. We additionally remark that even in the case of
EOSs that take into account of a deconfinement phase transi-
tion, the assumption of constant entropy per baryon is kept.
This last contest has been considered in a few works in the
past [81–83]. A comment is in order: it is well known that
during a first order phase transition the entropy per baryon is
not constant but suffers a jump together with the total bary-
onic density of the system [84]. However, as pointed out in
the previous works, stellar matter after phase transition can
be considered again in a condition of approximately constant
value of S/A. Such value will be different and in particular,
due to neutrino diffusion, higher than the one before the phase
transition. Clearly the precise value of the entropy variation
should be calculated by a dynamical simulation while in the
present work we can just address some general though qual-
itative behaviour.

Throughout the paper we adopt the following combi-
nations of hadronic and quark EOS models: BLh+eMIT1,
DD2+eMIT2, TM1-2+eMIT2 and TM1-2Y+eMIT2. Notice
that when we combine the eMIT quark phase model to the
DD2 and TM1-2 hadronic phase models various values of
the (Beff , a4) parameters can be adopted (in addition to the
eMIT2 set) while keeping the two solar mass limit require-
ment for the resulting maximum mass hybrid star configura-
tion. This is a consequence of the quite stiff behaviour of the
EOS for these two models which allows for a large window
of the quark matter parameters. The quark phase parameter
space is instead strongly reduced in combination with the
BLh model. This in turn reflects the softer character of the
BLh model in comparison to the DD2 and TM1-2 ones. How-
ever for the analysis that we have carried out, the parameters
choice is adequate to highlight the salient features of our
discussion.

3 Results

In Fig. 1 we show the composition (i.e. the particle frac-
tions Yi for the various matter constituents) of β-stable stel-
lar matter as a function of the baryon density n. In the
left panel of this figure we present the particle fractions for
the BLh+eMIT1 EOS for matter with constant entropy per
baryon S/A = 2 in the case of neutrino-free matter (con-
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Fig. 1 Composition (i.e. particle fractions Yi for the various matter
constituents) ofβ-stable stellar matter as a function of the baryon density
n. Left panel: particle fractions for the BLh+eMIT1 EOS for matter with
constant entropy per baryon S/A = 2 in the case of neutrino-free matter
(continuous lines) and neutrino-trapped matter with YLe = 0.3 (dashed
lines). Central panel: same as the left panel but for the DD2+eMIT2

EOS. Right panel: particle fractions for the DD2+eMIT2 EOS, in the
case of cold (T = 0) neutrino-free matter (continuous lines) and
S/A = 2 matter with trapped neutrinos (dashed lines). The upward
pointing arrow in each panel denotes the central density of the stellar
maximum mass configuration in the case of neutrino-free matter

tinuous lines) and neutrino-trapped matter with YLe = 0.3
(dashed lines). As we can see neutrino trapping shifts the
onset of the hadron-quark mixed phase to a larger den-
sity with respect to the neutrino-free matter case [10]. This
behaviour can be explained as a consequence of the softening
of the EOS of the pure nucleonic phase with trapped neutri-
nos compared to the neutrino-free case. In fact, in neutrino-
trapped matter the chemical equilibrium conditions between
nucleons, electrons and electron neutrinos reads:

μn − μp = μe − μνe , (2)

to be compared with μn − μp = μe in the case of neutrino
free matter. Neutrino trapping, i.e. electronic and muonic
lepton number conservation (YLe = 0.3 and YLμ = 0 for
the corresponding lepton fractions) during the early stages
of PNS evolution produces an increase of the net electron
fraction and consequently (due to charge neutrality) of the
proton fraction (compare the corresponding dashed and con-
tinuous lines in Fig. 1 left panel) and makes nuclear mat-
ter more proton rich (i.e. more symmetric) and thus softer
with respect to the neutrino-free case. The upward pointing
arrow in each panel of Fig. 1 denotes the central density of
the stellar maximum mass configuration in the case of ν-
free matter. The corresponding arrow representing the same
quantity for ν-trapped matter is very close (see 4th column
in Table 1) to the one reported for the case of ν-free mat-
ter and it is not shown for clarity. The results reported in
the left panel of Fig. 1 thus indicate that in the case of the
BLh+eMIT1 EOS quark deconfinement occurs only in the
core of stars with a mass close to the maximum mass config-
uration producing hybrid stars with a inner core with mixed
hadron-quark phase. This outcome applies both to the case

of neutrino free and neutrino trapped matter. Similar results
are obtained for the composition of stellar matter in the case
of the DD2+eMIT2 EOS model (Fig. 1 central panel). Again
neutrino trapping shifts the onset of the mixed hadron-quark
phase to a larger density compared to the neutrino free mat-
ter. Now quark deconfinement occurs at a lower density as
compared to the previous case (BLh+eMIT1 EOS), but again
the pure quark phase is not present in hybrid stars described
by this EOS model. The different values for the onset of the
mixed hadron-quark phase for the two models (BLh+eMIT1
and DD2+eMIT2) is essentially a consequence of the larger
stiffness of the DD2 EOS with respect to the BLh EOS; this
feature favours the onset of the phase transition at lower den-
sities even assuming the same quark matter EOS for the two
models.

In the right panel of Fig. 1, we compare the composi-
tion of matter with S/A = 2 and trapped neutrinos (dashed
lines) with that of cold (T = 0) neutrino free matter (contin-
uous lines) using the DD2+eMIT2 EOS model. These two
cases represent the composition of matter in PNSs and in cold
deleptonized NSs respectively. From the results in the right
panel of Fig. 1, we see that the combined thermal (S/A = 2)
and neutrino trapping effects shift the onset of the mixed
phase to a slightly higher density with respect to the cold
neutrino free case. To disentangle the outcome of the thermal
effects on matter composition we can compare the results for
S/A = 2 neutrino free matter (continuous lines in the cen-
tral panel of Fig. 1) with those relative to T = 0 neutrino
free matter (continuous lines in the right panel of Fig. 1).
From this comparison we see that thermal effects move the
threshold density for quark appearance to a lower value with
respect to the T = 0 case. Thus thermal and neutrino trap-
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ping effects have an opposite influence on the value of the
baryon density where deconfined quarks appears in neutron
star cores.

In Fig. 2 we show the temperature (TS) of β-stable mat-
ter as a function of the baryon density along three differ-
ent isoentropic paths (S/A = 1, 2, 3). Results in the left
(middle) panel have been obtained using the BLh+eMIT1
(DD2+eMIT2) EOS model. The continuous (dashed) lines
in both panels refer to the neutrino-free (neutrino trapped)
matter case. For each curve in Fig. 2, TS increases up to a
maximum value which occurs for a value of the baryon den-
sity that is close to the one for the onset of the hadron-quark
mixed phase.

The increase with baryon density of the temperature
along isoentropic paths in the pure nucleonic phase can
be explained using arguments grounded on the properties
of mixtures of ideal degenerate Fermi gases [85–87]. For
example for a degenerate mixture of non-interacting neu-
trons and protons, with densities nn and n p respectively,
neutron-proton asymmetry β = (nn − n p)/n = 1 − 2Yp

and neglecting the neutron-proton mass difference (m in Eq.
(4) denotes the nucleon mass), the temperature of the system
along isoentropic paths can be writen [85,86] as:

TS = χ(β)
S

A
n2/3 , (3)

where

χ(β) = h̄2

m

( 3

π

)2/3
[(1 + β

2

)1/3 +
(1 − β

2

)1/3
]−1

. (4)

Thus for fixed entropy per nucleon and fixed density, TS goes
down by a factor 2−2/3 ∼ 0.63 going from pure neutron
matter (β = 1) to symmetric nuclear matter (β = 0).

This argument can be extended to the case of degenerate
ideal relativistic Fermi gases [87], as electrons, muons and
neutrinos, coming into play in dense stellar matter. The same
Fermi gas argument can be used to explain the decrease,
at fixed baryon density, of TS when neutrinos are trapped
(dashed lines in Fig. 2) with respect to the case of neutrino-
free matter (continuous lines in Fig. 2).

As the system enters in the mixed phase, TS decreases
(Fig. 2) with density. Again this behaviour can be under-
stood using the argument based on the properties of mixtures
of ideal degenerate Fermi gases and since the entropy is an
extensive (i.e. additive) thermodynamic quantity. In fact, in
the mixed phase one has the coexistence of nucleons (even-
tually hyperons), leptons and deconfined quarks and gluons.
Thus the number of degrees of freedom in the mixed phase
is larger than those in the pure hadronic (nucleonic) phase,
accordingly for fixed S/A the temperature TS of the system
is lower than the corresponding one for the pure hadronic
(nucleonic) phase at the same density. As the density of the
mixed phase rises, the quark Fermi seas are increasingly pop-
ulated whereas the nucleons, electrons and muons concen-
trations (see Fig. 1) go down. As a result TS decreases with
density in the mixed phase. Eventually, if stellar matter could
enter in the pure quark phase, TS will rise again with density
(see central panel in Fig. 2).

As already pointed out in connection with the matter com-
position results (Fig. 1), hybrid star configurations computed
using the BLh+eMIT1 and the DD2+eMIT2 EOS models
have inner cores made of mixed hadron-quark matter. To
illustrate this outcome we plot in the left and central pan-
els of Fig. 2 a full circle on the top of each continuous line
(neutrino-free matter) which represents the values of the cen-
tral density and central temperature of the stellar maximum
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Fig. 2 Temperature profiles of β-stable EOSs for the BLh+eMIT1
model (left panel) and the DD2+eMIT2 model (middle panel) consid-
ering three values of S/A. Continuous (dashed) lines refer to the case of
neutrino-free (-trapped) matter. In the right panel we show the variation

of the temperature profiles according to three different values of YLe

and fixing S/A = 2. The heavy dots on the curves corresponding to
the ν-free matter case denote the central density and temperature of the
maximum neutron star mass configuration
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mass configuration. Thus the portion of the TS(n) curve on
the right of the full circle can not be realized in hybrid stars
described by the EOS models used in Fig. 2. In the right panel
of Fig. 2 we show the effect of the variation of the electronic
lepton fraction YLe on TS (with S/A = 2) in the case of β-
stable matter with trapped neutrinos using the BLh+eMIT1
EOS. Increasing the value of YLe makes stellar matter more
neutrino rich and again, for fixed values of S/A, lower tem-
peratures are obtained. Results similar to those reported in
Fig. 2 have been obtained in the case of the TM1-2+eMIT2
and TM1-2Y+eMIT2 EOS models.

In Fig. 3 we report the pressure as a function of the energy
density for β-stable matter in the case of the BLh+eMIT1
EOS (left panel) and DD2+eMIT2 EOS (right panel) for three
different values of the entropy per baryon (S/A = 1, 2, 3) in
the case of neutrino-free matter (continuous lines) and mat-
ter with trapped neutinos (dashed lines). For both models the
mixed hadron-quark phase is delimited by the two kinks in
the pressure curves. The heavy dot in each of the continu-
ous lines denotes the values of the central energy density and
central pressure of the stellar maximum mass configuration
in the case of ν-free matter. The largest outcome of thermal
effects on the EOS is observed in the mixed hadron-quark
phase. In this region the EOS becomes softer with increas-
ing S/A both in the case of neutrino-free matter (continuous
lines) and neutrino-trapped matter (dashed lines) [81]. This
behaviour is opposite to what is obtained in the pure hadronic
(nucleonic) phase, where thermal effects increase the pres-
sure as the temperature or the entropy per baryon rises. We
note however that in the latter case the effect of S/A on the
EOS is small compared to that in the mixed phase and it can
be barely be appreciated in Fig. 3. This reversal of the thermal
effects in the mixed hadron-quark phase is mainly determined
by the following two factors (see Fig. 3): (i) the onset of the
mixed phase moves to smaller densities when S/A increases
(as already noted analysing the results for matter’s compo-
sition in Fig. 1); (ii) a larger values of S/A favour a larger
quark fraction and, as a consequence, a smaller nucleonic
content thus making the EOS of the mixed phase softer.

We now discuss the neutrino trapping effects on the EOS.
Again the largest consequences of neutrino trapping on the
EOS are observed in the mixed hadron-quark phase for all
the considered values of S/A. As discussed in connection
with the results reported in Fig. 1, neutrino trapping shifts
the onset of the mixed phase to larger density with respect to
the neutrino free matter case. As shown in Fig. 3 this density
shift produces a significant net increase of the pressure in the
mixed phase at fixed energy density [81]. In the pure hadronic
phase the change of pressure due to neutrino trapping is small
compared to the one in the mixed phase with neutrino trap-
ping making the EOS stiffer (softer) at low (high) densities.

In the following lines we discuss the role of hyperons on
the quark deconfinement phase transition and on the EOS

of hot and dense stellar matter. We will pay special atten-
tion to the interplay between hyperon population and neu-
trino trapping to control the EOS of hybrid stars. For all the
results reported in the following Figs. 4 and 5 the EOS for
hadronic (hyperonic) phase has been derived using the TM1-
2Y model whereas the EOS of the quark phase using the
eMIT2 parametrization of the extended version of the MIT
bag model.

In the left panel of Fig. 4 we show the composition of β-
stable hyperonic matter with S/A = 2 , in the case of neutrino
free (continuous lines) and neutrino trapped (dashed lines)
matter. As we can see neutrino trapping shifts the threshold
densities for the various hyperon species to larger values 1

and makes the EOS of hyperonic matter stiffer (compare the
dashed and continuous lines in the right panel of Fig. 4) in
agreement with previous works (e.g. [10,88]. Again this
outcome can be understood comparing the chemical equilib-
rium conditions in neutrino trapped and neutrino free matter.

In general the chemical potential μi of a baryon species
i in β-stable matter with trapped neutrinos can be written as
[10]:

μi = biμn − qi (μe − μνe ) , (5)

where bi andqi are the baryon number and the electric charge
(in unit of the elementary electric charge) of the baryon
species i , μn is the neutron chemical potential, and μe and
μνe are the chemical potentials for electrons and electron neu-
trinos respectively. In the case of hyperonic matter using Eq.
(5), the chemical potential for the �− hyperon in neutrino
trapped matter can be written as

μ�− = μn + (μe − μνe ) . (6)

Since (μe − μνe ) in neutrino trapped matter is smaller than
μe in neutrino free matter [10] and since μn decreases too,
because matter becomes more proton rich (see Fig. 4 left
panel), the right hand side of Eq. (6) decreases (at a given
baryon density) when neutrinos are trapped. Thus the thresh-
old density for the �− hyperons is shifted to a larger density
and their abundance decreases with respect to the neutrino
free case (Fig. 4 left panel).

In the case of the � hyperon (or other charge neutral hyper-
ons) the chemical equilibrium condition (5) gives μ� = μn

both in neutrino free and neutrino trapped matter. At first
glance it would seem that neutrino trapping has no effect on
the condition of chemical equilibrium and therefore on the

1 Looking at Fig. 4 (left panel), it seems that neutrino trapping moves
the threshold densities for the �− and �0 hyperons to smaller densities
with respect to the neutrino free case. However this is a misleading
visual effect due to the value for minimum particle fractionYmin = 10−3

reported in the Y-axis of the figure. Using a smaller Ymin (e.g. 10−5)
makes clear that neutrino trapping shifts the threshold densities of the
�− and �0 hyperons to larger values as for the case of the other hyperons
of the bayon octet.
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value of the threshold density for � hyperons. But obviously
it is not so because the chemical potentials of neutrons and
� hyperons change if we consider the case of trapped or
untrapped neutrinos. In fact, as can be seen in Fig. 4 (left
panel), neutrino trapping produces an increase of the proton
fraction Yp in β-stable nuclear matter and thus reduces the
neutron fraction Yn and the neutron chemical potential μn .
Consequently neutrino trapping shifts the threshold density
for the � hyperons to larger values in agreemment with the
results reported the left panel of Fig. 4. As a result (Fig. 4 left
panel) neutrino trapping produces a stiffening of the EOS of
hyperonic matter [10,88].

We next discuss the interplay between neutrino trapping
and the presence of hyperons on the threshold density for
the mixed hadron-quark phase and on the EOS of hybrid
star matter. First we consider the case with no hyperons and

report in the left panel of Fig. 5 the composition of β-stable
matter with S/A = 2 using the TM1-2+eMIT2 EOS. In
accordance with the results obtained for the BLh+eMIT1
(Fig. 1 left panel) and the DD2+eMIT2 (Fig. 1 central panel)
EOS models, again we find that neutrino trapping shifts the
onset of the mixed hadron-quark phase to a larger density
with respect to the neutrino free case. Afterwards we include
hyperons among the constituents of the hadronic phase (NY
matter) and use the TM1-2Y model to calculate its EOS.
The composition of β-stable matter with S/A = 2 using the
TM1-2Y+eMIT2 EOS is depicted in the right panel of Fig.
5. One more neutrino trapping shifts the onset of the hadron-
quark mixed phase to a larger value compared to the neutrino
free case.

To explore the role of hyperons on the quark deconfine-
ment phase transition we compare the composition of β-
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stable stellar matter without and with hyperons depicted
respectively in the left and right panels of Fig. 5. This compar-
ison reveals that the presence of hyperons moves the thresh-
old density for the hadron-quark mixed phase to a higher
value with respect to the case where hyperons are not present
[10]. This is true both in the case of neutrino free matter (con-
tinuous lines in the left and right panel in Fig. 5) and in the
case of neutrino trapped matter (dashed lines in the left and
central panel in Fig. 5).

The neutron star structure is determined by integrating
the Tolman–Oppenheimer–Volkoff (TOV) equations which
describe the hydrostatic equilibrium in general relativity for
a spherical non-rotating body [26,27]. The calculated gravi-
tational maximum mass (MG,max ), baryonic maximum mass
(MB,max ), and the corresponding stellar radius (R) and cen-
tral baryon density (nc for the various EOS models used in
this work are reported in Tab. 1.

The gravitational mass as a function of the radius (here-
after the mass-radius relation) is shown in the left and central
panel of Fig. 6 for the BLh+eMIT1 and DD2+eMIT2 mod-
els respectively for different thermodynamic situations. First
of all, it is interesting to note a different behaviour of the
two EOS models concerning the dependence on the entropy
per baryon of the gravitational maximum mass. In the case
of the BLh+eMIT1 EOS model MG,max is almost constant
with increasing S/A whereas in the case of the DD2+eMIT2
MG,max decreases with S/A. For example in the case of
the DD2+eMIT2 model and neutrino free-matter MG,max

decreases of about 5% passing from T = 0 to S/A = 2.
As we already pointed out discussing the results in the left
panel of Fig. 1, in the case of the BLh+eMIT1 EOS quark
deconfinement occurs only in the core of stars with a mass
close to the maximum mass configuration producing hybrid
stars with a small inner core with mixed hadron-quark phase.

Thus for this EOS model deconfined quarks does not have a
sizeable influence on the maximum mass. Consequently the
present results for MG,max (S/A) are in line with the finding
of Ref. [10,89] for nucleonic stars and accordingly the max-
imum mass does not change significantly as function of of
S/A. We want to remark that adopting the BLh model for the
confined phase and employing a different parametrization of
the quark matter EOS that allows to obtain a larger quark con-
tent in the final hybrid star configurations, a behaviour similar
of the DD2+eMIT2 model is recovered. However such alter-
native parametrizations (like the eMIT2 one for instance) do
not allow to satisfy the two solar mass limit and have been
therefore ruled out.

In the right panel of Fig. 6 we report the mass-radius rela-
tions for the TM1-2 and TM1-2Y models, at fixed entropy
per baryon S/A = 2, considering different possible matter
compositions as described in details in the figure caption.
Concerning the cases in which only nucleonic degrees of
freedom are considered the behaviours are very similar to
the corresponding ones for the DD2 model. It is interesting
to note instead that when hyperons are included in the sys-
tem, together with a trapped neutrino component, the maxi-
mum mass supported is larger than the corresponding one for
hyperonic neutrino free matter. This is clearly in agreement
with the scenario discussed in Fig. 3. This shows that accord-
ing to the different composition of hot neutron star matter and
in particular to the strangeness content, neutrinos can act in
such a way to stabilize the system against collapse to BH
like in the case of hyperonic matter, or go in the opposite
direction like in the case of nucleonic matter.

The early evolution of a PNS is driven by thermal and
neutrino trapping effects on the EOS. The main features of
this process can be schematically investigated considering
the following two snapshots of the evolution process:
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Table 1 Maximum mass configuration properties for the various EOS models and thermodynamic conditions (first column) used in this work

EOS model MG,max R nc MB,max

[M�] [km] [fm−3] [M�]
BLh T = 0 2.070 10.18 1.175 2.457

BLh S/A = 1 2.076 10.37 1.141 2.446

BLh S/A = 2 2.082 10.81 1.098 2.390

BLh S/A = 3 2.088 11.97 0.992 2.296

BLh S/A = 1 ν 2.021 10.39 1.190 2.323

BLh S/A = 2 ν 2.034 10.92 1.129 2.289

BLh S/A = 3 ν 2.051 12.07 1.018 2.223

BLh+eMIT1 S/A = 1 2.015 11.04 1.053 2.353

BLh+eMIT1 S/A = 2 2.017 11.74 0.982 2.296

BLh+eMIT1 S/A = 3 2.031 13.59 0.851 2.217

BLh+eMIT1 S/A = 1 ν 2.004 10.74 1.163 2.299

BLh+eMIT1 S/A = 2 ν 2.014 11.49 1.049 2.259

BLh+eMIT1 S/A = 3 ν 2.030 12.80 0.959 2.195

BLh+eMIT1 T = 0 2.015 10.60 1.253 2.374

DD2 T = 0 2.422 11.90 0.839 2.923

DD2 S/A = 1 2.417 12.02 0.844 2.889

DD2 S/A = 2 2.424 12.72 0.790 2.822

DD2 S/A = 3 2.448 13.95 0.735 2.747

DD2 S/A = 1 ν 2.385 12.38 0.834 2.776

DD2 S/A = 2 ν 2.396 12.97 0.771 2.729

DD2 S/A = 3 ν 2.424 14.20 0.737 2.676

DD2+eMIT2 S/A = 1 2.131 12.80 0.761 2.474

DD2+eMIT2 S/A = 2 2.050 13.78 0.725 2.299

DD2+eMIT2 S/A = 3 1.980 16.64 0.575 2.128

DD2+eMIT2 S/A = 1 ν 2.288 13.17 0.786 2.634

DD2+eMIT2 S/A = 2 ν 2.252 14.12 0.726 2.525

DD2+eMIT2 S/A = 3 ν 2.214 16.25 0.619 2.392

DD2+eMIT2 T = 0 2.159 12.52 0.809 2.536

TM1-2 T = 0 2.256 12.14 0.862 2.660

TM1-2 S/A = 2 2.296 13.49 0.773 2.639

TM1-2 S/A = 2 ν 2.265 14.87 0.763 2.546

TM1-2+eMIT2 S/A = 2 2.001 14.52 0.686 2.236

TM1-2+eMIT2 S/A = 2 ν 2.192 15.81 0.720 2.442

TM1-2Y T = 0 1.98 12.15 0.880 2.291

TM1-2Y S/A = 2 1.992 13.41 0.838 2.236

TM1-2Y S/A = 2 ν 2.079 15.27 0.803 2.300

TM1-2Y+eMIT2 S/A = 2 1.936 13.93 0.771 2.161

TM1-2Y+eMIT2 S/A = 2 ν 2.080 15.03 0.802 2.300

TM1-2Y+eMIT2 T = 0 1.956 12.28 0.861 2.257

Gravitational maximum mass MG (second column), stellar radius R (third column), central baryon density nc (forth column), baryonic maximum
mass (MB ). EOS models for neutrino-trapped matter are denoted with the extra label ν in the first column
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Fig. 7 Gravitational mass as function of the baryonic mass for the
BLh+eMIT1 model (left panel), the DD2+eMIT2 model (central panel)
and the TM1-2 model (right panel). In each panel the red upper curves
refer to β-stable matter with S/A = 2 and trapped neutrinos while
black curves describe the cold deleptonized neutron stars. In the right
panel the red dotted (red continuous) line represents stellar configura-

tions which include (do not include) the presence of hyperons in hot
matter. In each curve the terminal point represents the maximum mass
configuration, whereas the circles on each curve denote the the stel-
lar configuration with central density equal to the onset of the mixed
hadron-quark phase for the specific stellar conditions considered

(i) the hot PNS at a time t ∼ 3 s after core bounce (t = 0),
described by the isoentropic EOS with trapped neutrinos;

(ii) the cold and deleptonized NS at t ∼ 30 s (neutrino diffu-
sion time), described by the cold and neutrino-free EOS.

Since most of the matter accretion on the forming NS hap-
pens in the very early stages after birth (t < 3 s) [90], the
neutron star baryonic mass MB [91] stays almost constant
during the evolution between these two configurations. Thus
the evolution of a PNS can be unambiguously analyzed in
the MG–MB plane [92] (see also [82]). To this purpose we

show in Fig. 7 the gravitational mass as a function of the
baryonic mass for the following stellar sequences: (i) PNSs
(red lines), i.e. isoentropic EOS with S/A = 2 and trapped
neutrinos with Yle = 0.3, (ii) cold deleptonized NSs (black
lines), with T = 0 and neutrino-free matter, in the case of the
BLh+eMIT1 (left panel), DD2+eMIT2 (central panel), and
TM1-2Y+eMIT2 (right panel) EOS models. The end point
on each curve represents the corresponding maximum mass
configuration, which we denote as M (i)

G max and M (i)
B max for

the PNS sequence, and with M ( f )
G max and M ( f )

B max for the final
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cold deleptonized NS sequence. The values of these quan-
tities, for the considered EOS models, are reported in Tab.
1. The circle, on each curve in Fig. 7, represents the stellar
configuration with a central density equal to the onset of the
mixed hadron-quark phase for the considered EOS model and
stellar conditions. Thus all neutron star configurations with
a baryonic mass larger than the one corresponding to the cir-
cle contains a mixed phase core (hybrid stars). We denote
the baryonic masses of the stellar configurations associated
to these circles as M (i)

B,q (red circle) and M ( f )
B,q (black circle)

with similar notation for the corresponding stellar gravita-
tional masses.

To begin with we consider the BLh+eMIT1 EOS model
(Fig. 7, left panel). A PNS born with a baryonic mass
M (i)

B < M (i)
B,q does not contain quark matter (nucleonic

PNS). This star will evolve to the cold deleptonized nucle-
onic star having a gravitational mass M ( f )

G and the same

baryonic mass of the initial PNS configuration i.e. M ( f )
B =

M (i)
B . The total binding energy of the star will increase by

�B = (M (i)
G −M ( f )

G )c2. This energy will be released mainly
through neutrino emission. PNSs born with a baryonic mass
in the range M (i)

B,q < M (i)
B ≤ M (i)

B,max are hot hybrid stars.
As shown by our results in Fig. 7 (left panel), these stars will
evolve to cold deleptonized nucleonic stars. In other words,
in this stellar baryonic mass range neutrino escape and stel-
lar cooling trigger a reconfinement phase transition (i.e. a
transition from deconfined quark matter to nucleonic matter)
in the stellar core. This peculiar behaviour of the evolution
of PNSs, in the above quoted baryonic mass range, can be
interpreted comparing the values of the central pressure in
the PNS and in the final cold deleptonized NS. For example,
considering M (i)

B = 2.241 M� the central pressure of the
star goes down from 452 MeV/fm3 (PNS) to 232 MeV/fm3

(NS). At this “low” value of the pressure in cold neutrino free
matter, the quark phase has a larger Gibbs energy per nucleon
with respect to that of the nucleonic phase, thus a transition to
the nucleonic phase take place [93]. We next consider a PNS
with M (i)

B max < M (i)
B ≤ M ( f )

B max . In this case the PNS can
not be supported by the matter pressure against gravitational
collapse since its baryonic mass M (i)

B is greater than the max-

imum possible baryonic mass M (i)
B max for the initial configu-

ration. Thus the collapsing stellar core will collapse to a BH
after reaching supranuclear densities. In the classical analysis
à la Oppenheimer–Volkoff, where the dynamical evolution
of the PNS is not taken into account, stars in this baryonic
mass range will be considered to have a stable equilibrium
configuration in the cold deleptonized stellar sequence. Thus
the gravitational mass M∗

G max ≡ M ( f )
G (M (i)

B max) of the star
corresponding to the evolution of the maximum mass PNS
configuration, plays the role of an effective maximum mass

for the cold deleptonized NS sequence [92]. Finally when
M (i)

B > M ( f )
B max the stellar core will collapse to a BH.

Consider now a NS in a binary stellar system in which the
companion star is a normal star. If during the evolution of
the binary system a common envelope is formed the NS can
accrete matter from its companion star with a certain accre-
tion rate ṀB. After a sufficiently long time the NS could
increase its baryonic mass above the value M (i)

B max and it
will start to populate the portion of the final NS sequence
with M (i)

B max < MB ≤ M ( f )
B max , eventually reaching and then

overcoming the Oppenheimer–Volkoff maximum mass con-
figuration M ( f )

B max . Thus, as pointed out for the first time in

[92], in the baryonic mass range [M (i)
B max , M ( f )

B max] one can
have both NSs and BHs. In the case of the BLh+eMIT1 EOS
model (Fig. 7, left panel) this matter accretion mechanism is
the only way to form hybrid stars, since PNS evolution will
always produces nucleonic stars.

A similar analisys can be done in the case of the
DD2+eMIT2 EOS model (Fig. 7, central panel). In partic-
ular, in the baryonic mass range [M ( f )

B q , M (i)
B q] the quark

deconfinement phase transition will take place during the
evolution of the newly born star, and a pure nucleonic PNS
will evolve to a cold deleptonized hybrid star.

The evolution of PNSs described by TM1-2Y+eMIT2
EOS model (Fig. 7, right panel) shares many common
features with those described by the DD2+eMIT2 model,
with one major exception: in the case TM1-2Y+eMIT2
EOS model, PNSs with a baryonic mass in the range
[M ( f )

B max, M (i)
B max] after neutrino escape and cooling will col-

lapse to black holes. This outcome is related to the presence
of hyperons among the stellar constituents in the TM1-2Y
model and to role played by neutrino trapping on the EOS.
In fact, neutrino trapping (as discussed in the previous pages)
shifts the onset of hyperons (and of the quark deconfinement
phase transition) to larger density values with respect to those
for neutrino free matter, making as a consequence the EOS
of PNS matter stiffer and thus resulting in M (i)

B max > M ( f )
B max.

4 Discussion and conclusions

In this work, we have carried out a study of hot β-stable neu-
trino trapped and neutrino free hadronic matter EOS consid-
ering the possibility that a quark deconfinement phase tran-
sition can take place. In this study we have considered the
case in which the entropy per baryon, S/A, can be analyzed
as constant since this condition is expected to be realized in
the inner core of neutron stars during some stages of the evo-
lution of high energy astrophysical phenomena like CCSNe
or BNSs mergers. We have employed four different EOSs to
describe the hadronic phase, namely the BLh, DD2, TM1-2
and TM1-2Y. We have then combined these hadronic EOSs
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with a quark matter EOS derived from a modified MIT-Bag
model which takes into account some perturbative correc-
tions in the grand-canonical potential due to the quark-quark
interaction. We have finally performed a Gibbs construction
to join up the two phases.

We have found that according to the strangeness content in
the hadronic phase, the thermal contribution and the effect of
neutrino trapping can get the EOS softer or stiffer. In particu-
lar the presence of hyperonic degrees of freedom in neutrino
trapped matter produces a stiffer EOS compared to the case of
neutrino free matter. In addition, the neutrino trapped compo-
nent moves the onset of the phase transition to higher densi-
ties. The central density corresponding to the maximum mass
configuration can accordingly lay in the mixed phase or in the
quark phase. For the parametrizations adopted in the present
work none of our models shows the formation of a pure quark
phase in the final star configurations. Note however that a
pure quark phase could be efficiently realized in dynamical
BNS merger simulations [94–97]. Another very important
point is that the metastable object that can be formed after
the merging of two neutron stars is at least initially in a state
of differential rotation. A more realistic description would
indeed require the integration of the equations for differen-
tially rotating neutron stars using stellar conditions similar to
the ones that we have discussed in this paper. Differentially
rotating neutron stars [98–101] represent indeed the previous
stage to the one described in this paper and in some sense
trigger the existence of the final star configurations obtained
in the present work. These issues will be the topic of a forth-
coming work.

Based on our results, we conclude that the effects
described in the present paper are crucial for dynamical sim-
ulations of BNSMs and CCSNe and may affect the stability
of the compact object formed after the neutron star-neutron
star merging process.
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