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Abstract. We analyze the relative entropy of certain KMS states for scalar self-interacting quantum field
theories over Minkowski backgrounds that have been recently constructed by Fredenhagen and Lindner
in [FL14] in the framework of perturbative algebraic quantum field theory. The definition we are using
is a generalization of the Araki relative entropy to the case of field theories. In particular, we shall
see that the analyzed relative entropy is positive in the sense of perturbation theory, hence, even if the
relative modular operator is not at disposal in this context, the proposed extension is compatible with
perturbation theory. In the second part of the paper we analyze the adiabatic limits of these states
showing that also the density of relative entropy obtained dividing the relative entropy by the spatial
volume of the region where interaction takes place is positive and finite. In the last part of the paper
we discuss the entropy production for states obtained by an ergodic mean (time average) of perturbed
KMS states evolved with the free evolution recently constructed by the authors of the present paper. We
show that their entropy production vanishes even if return to equilibrium [Ro73, HKT74] does not hold.
This means that states constructed in this way are thermodynamically simple, namely they are not so
far from equilibrium states.

1 Introduction

Recently, Lindner in is PhD Thesis [Li13] and Fredenhagen and Lindner in [FL14] have con-
structed equilibrium states in the adiabatic limit for a perturbatively constructed interacting
quantum scalar field which propagates on a Minkowski spacetime. In this paper we show how
relative entropy among equilibrium states for different interactions can be given within pertur-
bation theory.

The analysis performed in [Li13, FL14] is done in the context of perturbative algebraic
quantum field theory (pAQFT) [BDF09, FR12, FR16, HW01, HW02, HW03]. According to the
algebraic paradigm, the emphasis is posed on the set of observables of the theory and on the
relations among them. In particular, the observables form a ∗−algebra that we indicate by A(M)
where M is the Minkowski spacetime1 where fields propagate. A review of the construction of

1Many of the concepts presented here can be generalized to the case of globally hyperbolic spacetimes [BG12].
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the ∗−algebra of the free scalar Klein Gordon field can be found e.g. in [BFV03]. The self-
interaction of a scalar field φ is described by a Lagrangian density of the form

L = ∂µφ∂
µφ+m2φ2 + λLI(φ)

where LI is the interaction Lagrangian density, which is assumed to be a formally selfadjoint
constant section of the jet bundle constructed over φ which is not simply quadratic in the field.
The corresponding non linearities in the field equations can be treated with perturbation theory.
According to pAQFT the observables of the interacting algebra AI(M) can be represented
as elements of A(M)[[λ]], the algebra of formal power series in the coupling constant λ with
coefficients in the free algebra (λ = 0). This representation is realized by the quantum Møller
map, whose action is given by the Bogoliubov formula,

RV (F ) = S−1 ⋆ (S ·T F ) , (1)

where F is a local interacting field. Furthermore V is the smeared interaction Lagrangian LI and
S is the time ordered exponential of the smeared interaction Lagrangian V . Finally ⋆ denotes
the product in A and ·T is the corresponding time ordered product. The algebra of both free
and interacting theories can be analysed in a state independent way and this task is nowadays
well understood.

A state of the theory is described by a linear positive normalized functional over A(M).
Once a state is chosen, the standard representation of any quantum theory in terms of operators
on a Hilbert space can be recovered applying the celebrated Gelfand Neimark Segal (GNS)
construction. The analysis of the state space in perturbation theory is not straightforward, in
particular, having a state of the free algebra, we can obtain a state for the interacting algebra
simply composing with the Møller map. However, the physical meaning of the state is modified
in this procedure. In particular, if one starts with an equilibrium state (a state which satisfies
the Kubo Martin Schwinger (KMS) condition [HHW67]) over A(M) the composition with the
Møller operator leads to a state which does not satisfy the equilibrium property anymore.

In [Li13, FL14] the authors managed to find the way to modify an equilibrium state for the
free theory ωβ so to obtain an equilibrium state for the interacting theory. This construction is
an extension of the work of Araki [Ar73], about the perturbation of KMS states in the context of
von Neumann theories, see also [BR97], to pAQFT. Furthermore, the formulation of equilibrium
states proposed in those papers survives the adiabatic limits, namely the limit where the coupling
constant tends to one, with the caveat that all the elements of the theory are understood in the
sense of formal power series.

In the literature, equilibrium states for interacting fields are constructed by means of Keldysh
formalism see e.g. [LW97, Le00] and reference therein. However, infrared problems at higher
perturbative orders are not completely avoided in that manner. The imaginary time formalism
is more efficient in this respect, in particular the perturbative construction of the partition
function of the state can usually be performed with the imaginary time formalism, expanding
the propagators over the Matsubara frequencies. Unfortunately, in this formalism, the direct
computation of the correlation in position space require a backward Wick rotation which is not
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completely under control. Actually, a complete construction which extends the work of Araki
was possible only thanks to some recent achievements in pAQFT.

In particular, the first new ingredient is the time slice axiom, by means of which, being A(M)
the algebra of observables, a state over A(M) is fixed once it is known on the subalgebra A(Σǫ)
of observables supported on a small neighborhood Σǫ ≃ Σ× (−ǫ, ǫ) of a Cauchy surface Σ of M .
This fact holds for both free and perturbatively constructed interacting quantum field theories
[CF09].

Second, the causal factorization properties of the S−matrix, used to construct the Møller
map implies that algebras of interacting fieldsAI(Σǫ) constructed perturbatively with interaction
Lagrangians which coincides over Σǫ are equivalent up to isomorphisms.

For this reason, in [Li13] and [FL14], the authors considered interaction Lagrangians of the
form

V h
χ =

∫
χ(t)h(x)LI(t,x) dt d

3x , (2)

where (t,x) are standard Minkowski coordinates used to parametrize the points of the Minkowski
space M , χ ≥ 0 is a function of time which makes the support of V h

χ past compact and it is
constructed in such a way that χ = 1 on J+(Σǫ), h ≥ 0 is a spatial cutoff. Furthermore,
the interaction Lagrangian density LI is assumed to be invariant under translations. In the
subsequent part of the paper, we shall simply denote the smeared interaction Lagrangian with
V whenever the dependence on χ and h is not strictly necessary for the understanding. In this
way, V h

χ is a local field and thus the perturbative construction of interacting fields by means of
the Møller map (1), is both ultraviolet and infrared finite. The algebra of interacting fields in the
adiabatic limit can be easily constructed by means of the observations given above considering
the algebra AI(Σǫ), generated by RV (Floc), where Floc are interacting local fields, and taking
the inductive limit h → 1 while keeping χ fixed [BF00]. We stress once more that although this
procedure realizes the interacting algebra AI(Σǫ) as a ∗-subalgebra of A(M)[[λ]], the ∗-algebra
of formal power series in the coupling λ with coefficients in A(M), the algebras AI(Σǫ) and
A(M)[[λ]] are ∗-isomorphic. As mentioned above this is again due to the time-slice axiom and
to the fact that RV (F ) = F if the support of F lies in the past of the support of V . In particular,
this implies that states on A(M) can be regarded as states on AI(Σǫ) and viceversa.

The perturbative construction of KMS states given by Araki in [Ar73] can be repeated for
AI(Σǫ) comparing the automorphisms of both the free and interacting time evolution. However,
these states depend on the spatial cutoff h, in [FL14] it is shown that the limit h → 1 of
the expectation values of interacting fields can be taken when the background free theory is
a massive Klein Gordon field theory. The case of certain massless background theories as for
the case LI = φ4 can be addressed adding the thermal mass present in that context to the
background theories by means of the principle of pertrubative agreement, see [HW05, DHP16].

Standard results, which hold in the case of Quantum Statistical Mechanics, can be gener-
alized to this case. As an example, the return to equilibrium property given in the context of
C∗−dynamical systems in [BKR78, Ro73] has been recently extended to the case of field theories
in [DFP17].
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In this paper we address the relative entropy [Ar76, Ar77] and entropy production [OHI88,
Oj89, Oj91, JP01, JP02a] among the above mentioned class of states. In particular, we will
exploit the time-slice axiom in order to identify AI(Σǫ) as A(M)[[λ]], so that all states mentioned
above can be compared within the same algebra. Within this setting, we shall see that the
relative entropy can be computed and it gives finite results. Thus, the relative entropy is
a concept compatible with perturbation theory. Furthermore, we shall see that the relative
entropy is positive in the sense of perturbation theory. This shows that at least in this case
the relative entropy can be expressed by means of fields, contrary to the general case where the
relative entropy is given in terms of the relative modular operator which is not available in the
algebra of interacting field observables.

More precisely, the formula for the relative entropy we shall give below (11) can be tested
among copies of equilibrium states ωβ,V1 , ωβ,V2 constructed with different interaction Lagrangians
and, when V1 = 0 and V2 = V , it reduces to the

S(ωβ , ωβ,V ) = ωβ(βK) + log(ωβ(U(iβ))) ,

where logωβ(U(iβ)))/β is the relative free energy and K, which is the generator of the cocycle
which intertwines the free and interacting time evolution in A(M)[[λ]], plays the role of the
perturbation of the Hamiltonian of the system. The formula is obtained by analogy with the
Araki formula evaluated for different Araki states (see the appendix A). We shall thus prove
that the basic properties of the relative entropy are satisfied by it.

The formula for the relative entropy we give below in (11) survives the thermodynamical
limit (h → 1) if spacelike densities are considered, however, it can only be tested among the
perturbatively constructed KMS states described above. In particular, evolving a perturbatively
constructed KMS state with the free evolution by a time step t and taking the limit where t tends
to infinity, one gets back the KMS state for the free theory when the interaction Lagrangian has
compact spatial support. On the contrary, if the adiabatic limit is considered this does not hold
anymore. Actually, in [DFP17] it was shown that the ergodic mean, namely the time average, of
this states converges to a non equilibrium steady state (NESS). We would like to evaluate how far
this NESS is from one of the perturbatively constructed KMS states and usually the (symmetric
part of the) relative entropy could be used to reach this goal. Unfortunately, we cannot directly
apply the given definition. To this end, in the second part of paper, we analyze the entropy
production in these states following ideas present in [OHI88, Oj89, Oj91, JP01, JP02a]. We
prove that the entropy production of the NESS described above vanishes. This implies that this
state is not so far from an equilibrium state.

Indeed, the interest in non-equilibrium states and entropy production has increased in the
recent past years both in Statistical Mechanics (see for instance [SL77], where non-equilibrium
steady states for a cristalline system is studied, or [Sp78] for a definition of entropy production
in the framework of quantum semigroups) and in Quantum Field Theory, in particular with
reference to 2-dimensional Conformal Field Theory [BD15, BD16] and, more recently [HL16],
but also for the Klein-Gordon field [DLSB15].

The paper is organized as follows. First of all, in the second part of the introduction, we shall
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give a brief introduction to pAQFT and we recall the notion of relative entropy given by Araki.
In the second section we analyze the concept of relative entropy for KMS states of interacting
theories for spatially compact perturbations and in the third section we discuss their adiabatic
limit. Section 4 contains the discussion of the entropy production and of its use to evaluate how
far from equilibrium are certain non equilibrium steady states constructed by a time average of
interacting KMS states evolved with the free evolution. Some conclusion are presented in the
fifth section. Finally, some minor or known useful results are collected in the appendix.

1.1 Brief introduction to pAQFT

Perturbative algebraic quantum field theory (pAQFT) is a recently developed framework in
which ideas of algebraic quantum field theory [Ha92] are combined with methods proper of
perturbation theory [EG73, St71, BS59] to treat interacting quantum fields. The first paper
where this formulation was presented is [BDF09], and further developed in [BF09, FR12, FR16].
The analysis of interacting quantum field theory in the algebraic framework was previously
formulated in [BF00], while the analysis of the curved case was presented in [KW91], [HW01,
HW02, HW03], [BFV03].

In this paper we are interested in interacting scalar quantum field theory constructed by
means of perturbation theory over free massive theories in a Minkowski spacetime M whose
metric η is assumed to have signature (−,+,+,+). The classical equation of motion of the
theory we want to treat is the following

−✷φ+m2φ+ λV (1)(φ) = 0 , (3)

where ✷ = ∇µ∇
µ is the D’Alembert operator, m is the mass of the field, λ is a coupling

constant which is often set to 1 and V (1)(φ) is a local interaction Lagrangian, it is actually the
first functional derivative of (2) in the limit where both χ and h are taken to be equal to 1. We
briefly recall how this theory is treated in pAQFT.

The starting point is the choice of the space C of off-shell field configurations which are
assumed to be real-valued smooth functions over M , in particular, we shall denote the generic
configuration as follows

φ ∈ C := C∞(M ;R) .

The set of observables we are looking for are the (non linear) functionals over the field config-
urations. We shall restrict our attention to the functionals which admit functional derivatives
to all order, which have functional derivatives that are compactly supported distributions and
whose wave front set is microcausal. More precisely, the set of microcausal functionals is
denoted by

Fµc :=
{
F : C → C

∣∣∣F (n) ∈ E(Mn), WF(F (n)) ∩ (V
+n

∪ V
−n

) = ∅, ∀n
}

where (x1, . . . , xn; p1, . . . , pn) ∈ V
±n

⊂ T ∗Mn if, for every i, pi is a causal covector respectively
future/past directed. Sometimes it is requested that the elements of Fµc have only finitely
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many nonvanishing functional derivatives. If this is the case, only polynomial interactions can
be treated with the formalism. If more complicated interactions are treated, it is necessary
to introduce some notion of convergence for having a well-defined quantum non commutative
product, see e.g. [BDF09]. When equipped with the pointwise product and with the complex
conjugation as involution, Fµc forms the commutative ∗−algebra of classical field observables.
Relevant subsets of this algebra are the set of local functionals

Floc :=
{
F ∈ Fµc

∣∣∣ suppF (n) ⊂ Dn, ∀n ∈ N

}
,

where Dn ⊂ Mn is the diagonal of Mn, namely the set of points (x, . . . , x) ∈ Mn, and the set
of regular functionals

Freg :=
{
F ∈ Fµc

∣∣∣F (n)(φ) ∈ C∞
c (Mn), ∀n ∈ N, ∀φ ∈ C

}
.

The canonical quantization of (Fµc, ·) is realized by deforming the pointwise product. In the
case of a free theory (i.e. when λ = 0 in (3)) the star product is defined as

F ⋆ω G := e
~〈ω, δ2

δϕδϕ′ 〉 F (ϕ)G(ϕ′)
∣∣
ϕ′=ϕ

,

where ω ∈ D(M2)′ is an Hadamard bidistribution, namely, a weak bisolution of the equation
of motion up to smooth functions, whose antisymmetric part ω(x, y) − ω(y, x) = i∆(x, y) is
proportional to the causal propagator ∆ = ∆R −∆A, namely the retarded ∆R minus advanced
∆A fundamental solutions of the theory. Furthermore, the wave front set of ω ismicrocanonical

[Ra96, BFK95] so that, at each order in ~ the ⋆ω product of microcausal functionals is well
defined. From now on we shall set ~ = 1 if not strictly necessary for the understanding. The
set of microcausal functionals equipped with the star product A := (Fµc, ⋆ω) is the ∗−algebra of
quantum observables of the free theory. The set of local non linear functionals contains the Wick
polynomials of the theory. Algebras constructed with different Hadamard bidistributions are
isomorphic, however, single non linear local functionals are not left invariant by this isomorphism.
For this reason, the representation of objects like the Wick square or the stress tensor needs to
be carefully discussed [HW01, HW05, Mo03].

In order to implement interactions perturbatively, a time ordering map T needs to be intro-
duced [BF00, EG73, HW01, HW02]. It maps multilocal functionals to microcausal functionals

T :
⊕

n≥0

F⊗n
loc → Fµc ,

we refer to [HW01] for its precise definition and for the analysis of the freedom in its construction.
The key property for our analysis will be the casual factorization property which implies that

T (F,G) = F ⋆ G, if F & G ,

where F & G holds if the support of F is not contained in J−(suppG). Having a time ordering
map, a time ordered product can be obtained as F ·T G = T (T−1(F ), T−1(G)), and hence,
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S(F ) := expT (iF ), the S−matrix of a local functional F , can be constructed. Finally the
Bogoliubov map

RV (F ) = S(V )−1 ⋆ (S(V ) ·T F )

is used to map the interacting local fields into the algebra of free fields. In general, both S(F ) and
RV (F ) are given in terms of power series in the coupling constant and thus they are meaningful
only in the sense of perturbation theory and when the support of V is compact.

If the support of F is compact, the causal factorisation property permits to understand the
limit of RV h

χ
(F ) where both χ and h in (2) tends to 1 as an inductive limit within A to all order

in perturbation theory. This limit is called algebraic adiabatic limit [BF00].
The Bogoliubov map is also used to represent the interacting evolution in the free theory.

In particular, let αt(F ) be the one parameter group of ∗−automorphisms which represents the
free time evolution and which is defined on a local functional F as follows

αt(F )(ϕ) := Ft(ϕ) := F (ϕt) ,

where, in the fixed Minkowski coordinate system we have chosen, ϕτ (t,x) := ϕ(t−τ,x). The one
parameter group of ∗−automorphisms representing the interacting time evolution is obtained as

αV
t (RV (F )) := RV (αtF ) .

The free and interacting evolution can be interwined by a cocycle U(t) which has been explicitly
constructed in [FL14] for observables supported in the region where χ in V h

χ in (2) is equal to
1. More precisely

αV
t (F ) = U(t) ⋆ αt(F ) ⋆ U(t)∗ , (4)

hence
U(t+ s) = U(t) ⋆ αt(U(s)).

Furthermore, it satisfies the following equation

d

dt
U(t) = iU(t) ⋆ αt(K) , (5)

where the generator K = Kh = Kh
χ of the cocycle is related to V h

χ in (2) as follows

Kh
χ := RV h

χ
(V̇ h

χ ), V̇ h
χ :=

∫
χ̇(t)h(x)LI (t,x)dtd

3x , (6)

a direct formula for αV
t in terms of K can be found in the appendix, see (43).

1.1.1 KMS states

Equilibrium states at inverse temperature β with respect to the time evolution αt are assumed
to satisfy the Kubo Martin Schwinger (KMS) condition, see e.g. [HHW67]. We shall now recall
the construction of certain KMS states recently presented by Fredenhagen and Lindner [FL14].
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The state of the free theory we shall start with is ωβ, i.e. the KMS state which is extremal in
the set of KMS states for the free theory. ωβ is a quasi-free state whose two-point function is
the following

ωβ
2 (x, y) :=

1

(2π)3

∫
dp σ(p0)δ(p

2 +m2)
1

1− e−βp0
eip(x−y) , (7)

where δ is the Dirac delta function and σ is the sign function. This two-point function is an
Hadamard bidistribution and thus, we shall use it to construct the star product of the algebra
of the free theory. Hence, from now on A = (Fµc, ⋆) = (Fµc, ⋆ωβ

2
).

The state for the interacting algebra obtained applying directly ωβ on RV (F1)⋆ · · · ⋆RV (Fn)
is not a KMS state with respect to αV

t . Nevertheless, Fredenhagen and Lindner [FL14] have
shown that using the cocycle U(t) constructed above, the Araki construction of KMS states
[Ar73] for perturbed systems can be applied. Hence we may introduce

ωβ,V (A) :=
ωβ(A ⋆ U(iβ))

ωβ(U(iβ))
, (8)

and this is a KMS state for the interacting theory. A direct expansion of ωβ,V (A) in terms of
free connected n−point functions was also given in [Li13, FL14]. For completeness, this direct
representation is recalled in equation (44) in the appendix.

The construction recalled above is well-posed, in the sense of perturbation theory, outside
the adiabatic limit, namely when h has compact support. At the same time, the construction
of U depends on the cutoff function h and hence, ωβ,V depends on h. Hence, the analysis of the
well posedness of the state under the adiabatic limit needs to be discussed carefully. Adiabatic
limits of ωβ,V (A) have been analyzed in [FL14] and in [Li13]. They have shown that, for the
case of a massive quantum field theory, the limit h → 1 of ωβ,V (A) can be taken in the sense
of van Hove. More precisely, according to Definition 2 in [FL14], a van Hove sequence of cutoff
functions is a sequence of compactly supported smooth functions {hn}n∈N such that

0 ≤ hn ≤ 1 ; hn(x) = 1, |x| < n ; hn(x) = 0, |x| > n+ 1 . (9)

We say that a functional C∞
c (R3) ∋ h 7→ f(h) ∈ C converges to L in the sense of van Hove if

limn→∞ f(hn) = L for every van Hove sequence and we shall indicate it as

v-lim
h→1

f(h) = L .

Notice that, for each V , the state ωβ,V given in (8) can be interpreted as a state for the free
theory. More precisely, since U is defined as a formal power series in the coupling constant, for
every compactly supported V ωβ,V is a state for A(M)[[λ]]. This property is preserved in the
adiabatic limit. Furthermore, in a similar way, the interacting time evolution αV

t given in (4)
can be seen as ∗−automorphisms of A(M)[[λ]] and hence ωβ,V are KMS-states with respect to
αV
t at inverse temperature β also on A(M)[[λ]].
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1.2 Relative entropy for C∗−dynamical systems

Let us consider a von Neumann algebra A ⊂ BH and two normal states Ψ and Φ. The Araki
relative entropy [Ar76, Ar77, BR97, Do90] is defined as minus2 the logarithm of the relative
modular operator. More precisely, the construction starts with the operator S, defined as the
closure of the operator

SAΨ = A∗Φ, A ∈ A.

The relative modular operator is then obtained as

∆Ψ,Φ := S∗S

and the relative entropy is
S(Ψ,Φ) := −(Ψ, log(∆Ψ,Φ)Ψ). (10)

Unfortunately, this formula cannot be directly applied in the context of pAQFT to test the
relative entropy between interacting KMS states (8) constructed with different interactions La-
grangians because neither the generators of the free or interacting evolutions nor the correspond-
ing modular or relative modular operators are at disposal in A. What is available in pAQFT
is the relation between the free and interacting evolution given in (4). Hence, below, we shall
generalize the definition of relative entropy specialized to the case of perturbatively constructed
KMS states. To this end, in appendix A we derive some expressions for (10) which involves only
the generators of the cocycles intertwining free and interacting evolutions.

2 Relative entropy in pAQFT

To discuss thermodynamical properties of states, a notion of entropy is very helpful. In the
literature, for the case of C∗−dynamical systems whose algebras of observables are von Neumann
algebras, also known as W ∗−dynamical systems, the definition of relative entropy was given by
Araki in [Ar76]. It plays a key role in the description of thermodynamical relations among states.
Unfortunately, that definition makes use of the relative modular operator and the latter is not
at disposal in the context of field theory. For this reason, here we generalize that definition in
certain cases and we prove that the generalized relative entropy has similar properties as the
original extent.

Definition 2.1. Let V1, V2 and V3 be three spatially compact and past compact real perturbation
potentials of the form (2) with fixed χ and h. Consider ωβ,V1 and ωβ,V3 the KMS states obtained
by means of perturbation theory from ωβ, which is the extremal KMS state with respect to the
time αt at inverse temperature β. Consider αV2

t the one parameter group of ∗−automorphisms
obtained perturbing the time evolution αt with V2. The relative entropy between ωβ,V1 ◦ αV2

t

2We are adopting the definition of Araki, it differs by a minus sing from [BR97]. In this way the relative
entropy is positive.
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and ωβ,V3 is defined as

S(ωβ,V1 ◦ αV2
t , ωβ,V3) := −ωβ,V1(βK1 − βK2) + ωβ,V1(αV2

t (βK3 − βK2))

− log(ωβ(U1(iβ))) + log(ωβ(U3(iβ))) , (11)

where Ki are the generators associated to Vi as in (6) and Ui the corresponding co-cycles (5).

First of all notice that the expression (11) is defined in terms of formal power series in
the coupling constant λ. In particular, log(ωβ,V1(U1(iβ))) can be computed in terms of the
connected functions as given in section 4.4.2 of the PhD thesis of Lindner [Li13], see also (47) in
the appendix. As it is clear from the discussion presented in the introduction and in appendix A,
this definition is a generalization of the Araki relative entropy given in (41) to the case of KMS
states of a perturbatively constructed quantum field theory. Before analyzing some properties
of that expression we notice that in the case where t and either V1 or V3 vanish the definition
2.1 and in particular (11) give

S(ωβ , ωβ,V ) = ωβ(βK) + log(ωβ(U(iβ))) ,

S(ωβ,V , ωβ) = −ωβ,V (βK)− log(ωβ(U(iβ))) .

Remark Notice that, as discussed in the introduction, log(ωβ(U(iβ)))/β is nothing but the
difference of the free energies in the states ωβ and ωβ,V . At the same time K is the generator
of the co-cycle U(t) which intertwines the time evolutions of ωβ and ωβ,V . Hence, the previous
two expressions recall the definition of entropy as the difference of the internal and free energies
multiplied by β. This is in accordance with the thermostatic formalism introduced in [Li13, Sec-
tion 4.4.], where, in addition, the first non-trivial order for the free energy is computed, finding
an agreement with the results present in the physical literature. This suggests that the present
definition should have a direct counterpart in the standard perturbative QFT language. There,
thermal equilibrium states are built using the Keldysh contours formalism and perturbative
expansions of the propagators through the Matsubara formalism. A direct connection between
the two formalisms will be the subject of future investigations.

The generalized relative entropy for perturbed KMS states described so far has similar prop-
erties as those shown by the Araki in [Ar76] for the case of the relative entropy of states of von
Neumann algebras. Actually the following proposition holds.

Proposition 2.2. The generalized relative entropy S(ωβ,V1 ◦ αV2
t , ωβ,V3) satisfies the following

properties:

a) (Quadratic quantity) the lowest order contribution both in Ki (which are related to Vi as
in (6)) and in the coupling constant λ in S(ωβ,V1 ◦ αV2

t , ωβ,V3) is the second.

b) (Positivity) S(ωβ,V1 ◦ αV2
t , ωβ,V3) is positive in the sense of formal power series for every t

when V1 6= V3 or for t 6= 0 when V1 = V3 6= V2 and it vanishes in the remaining cases.
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c) (Convexity) S(ωβ,V1 ◦αV2
t , ωβ,V3) is convex in V1, in V2 and also in V3 in the sense of formal

power series.

d) (Continuity) S(ωβ,V1 ◦ αV2
t , ωβ,V3) is continuous in Vi in the sense of formal power series

with respect to the topology of microcausal functionals.

Proof. a) Let us start observing that

S(ωβ,V1 ◦ αV2
t , ωβ,V3) = S(ωβ,V1 , ωβ,V3) + ωβ,V1((αV2

t − αV1
t )(βK3 − βK2)). (12)

Expanding ωβ,Vi and ωβ(log(Ui(iβ))) in equation (11) with (44) and (47) we obtain the following
expansion in powers of K:

S(ωβ,V1 , ωβ,V3) =

∫ β

0
du ωc,β(βK1 ⊗ αiuK1)−

∫ β

0
du ωc,β(βK3 ⊗ αiuK1)

−

∫

βS2

dUωc,β(αiu1K1 ⊗ αiu2K1) +

∫

βS2

dUωc,β(αiu1K3 ⊗ αiu2K3) +O(K⊗3) , (13)

where we recall that S2 := {(u1, u2) ∈ R
2| 0 ≤ u1 ≤ u2 ≤ β}, cfr. equation (45), while ωβ,c

denotes the connected part of the state ωβ, see equation (46). Furthermore, in view of (43),

ωβ,V1((αV2
t − αV1

t )(βK3 − βK2)) =

= −iβ

∫ t

0
ds
(
ωc,β(αs(K1 −K2)⊗ αt(K3 −K2)))− ωc,β(αt(K3 −K2)⊗ αs(K1 −K2)))

)

+O(K⊗3). (14)

Since K is at least of order 1 in λ, equations (12), (13) and (14) prove a).

b) In order to prove that S(ωβ,λV1 ◦αλV2
t , ωβ,λV3) is positive in the sense of formal power series

we have to be sure that the lowest order contribution in the coupling constant is positive and
that the higher contributions are real. Notice that every term in the expansion in powers of K
in S(ωβ,λV1 ◦ αλV2

t , ωβ,λV3) is real because Ki is formally selfadjoint for every i. If we prove that
the second order in K in (12), which is obtained from (13) and from (14), is strictly positive,
we prove the sought positivity, because the lowest contribution in the λ expansion of the second
order expansion in K remains positive. Notice the second order contributions in K are given in
(13) and in (14) in terms of connected functions with two entries. We thus proceed analyzing
the following connected functions for any copies of formally selfadjoint microcausal functionals
A,B

ωc,β(A⊗B) =
∑

l

1

l!
Dl

12(A⊗B)
∣∣∣
(0,0)

:=
∑

l

1

l!
〈A(l), (ωβ

2 )
⊗lB(l)〉l

∣∣∣
(φ,φ)=(0,0)

,

11



where 〈 , 〉l denotes the standard pairing between smooth functions over M l, which is tacitly

extended to distributions. Moreover, ωβ
2 is the operator obtained by the Schwartz kernel theorem

from the two-point function of the free KMS state at temperature β given in (7), hence

ωc,β(αiu1A⊗αiu2B) =
∑

l≥1

1

l!

∫
dPl




l∏

j=1

e−wj(u2−u1)λ+(pj) + ewj(u2−u1−β)λ−(pj)

2wj(1− e−βwj)


 Ψ̂l(−Pl, Pl) ,

where Pl = (p1, . . . , pl) with pj = (pj0,pj) ∈ R
4 and wj =

√
p2
j +m2. Furthermore, λ±(pj) =

δ(pj0 ∓ wj) where δ is the Dirac delta function and thus λ±(pj) impose the restriction on the

positive or negative mass shell of the domain of the pj−integration. Finally, Ψ̂l is the Fourier
transform of the distribution

Ψl(X,Y ) = A(l)(X)⊗B(l)(Y )
∣∣∣
(φ,φ)=(0,0)

, X, Y ∈ M l .

Notice that, since A,B are formally self-adjoint, Â(l)(−P ) = Â(l)(P ). The integrals over every
pi0 can now be performed thanks to the delta functions supported on the mass shells which are
present in λ±. We obtain

ωc,β(αiu1A⊗ αiu2B) =

∑

l≥1

1

l!

∫
dPl

l∏

j=1

(
e−

β
2
wj

2wj(1 − e−βwj )

) ∑

{E+,E−}

e−
∑

k pk0(u2−u1−
β
2 )Ψ̂l(−Pl, Pl)

∣∣∣pa0=±wa

∀a∈E±

(15)

where the sum is taken over all possible partitions of {1, . . . , l} in two subsets {E+, E−} ∈
P2{1, . . . , l} which can also be empty.

Let us start using equation (15) to expand the second order contributions in (13). Notice
that the integrals over u1, u2 and u can be taken before the integration over P because Ψ̂(−P,P )
is not of rapid decrease for large momenta only for the directions P for which f =

∑
k pk0 = 0

and pi = 0 ∀i. Furthermore, if f = 0 and pi = 0, ∀i, Ψ̂(−P,P ) is polynomially bounded in

P and its growth is tamed by the factor e−
β
2

∑

j wj . See Theorem 4 and its proof in [FL14] for
further details. In particular, using the fact that

∫ β

0
e−ua+β

2
adu = 2

sinh
(
β
2a
)

a
,

∫ β

0
du2

∫ u2

0
du1e

−u2a+u1a+
β
2
a = β

sinh
(
β
2a
)

a
+R(a),

where R is antisymmetric for changes of a to −a, symmetrizing the summand over the par-

titions {E+, E−} and noticing that under that symmetrization 2K̂
(l)
i K̂

(l)
j (P0,P) is mapped to

12



K̂
(l)
i K̂

(l)
j (P0,P) + K̂

(l)
i K̂

(l)
j (P0,−P) we obtain

S(ωβ,V1 , ωβ,V3) =
∑

l≥1

1

l!

∫
dPl

l∏

j=1

(
e−

β
2
wj

2wj(1− e−βwj )

) ∑

{E+,E−}

β sinh
(
β
2 f
)

f

·

(
K̂

(l)
1 − K̂

(l)
3

)(
K̂

(l)
1 − K̂

(l)
3

)∣∣∣∣∣
pa0=±wa, a∈E±

+O(K⊗3
i ) , (16)

where
f :=

∑

k

pk0 , (17)

and where the minus sign appearing in front of −P is removed by a change of integration
variables. Notice that since the right hand side of (16) is a sum of positive quantities hence the
sought positivity is proven for the case t = 0 and V1 6= V3.

In order to analyze the remaining cases, in view of (12), we need to discuss

ωβ,V1((αV2
t − αV1

t )(βK3 − βK2)) . (18)

Let us start observing that

ωβ,V1((αV2
t − αV1

t )(βK3 − βK2)) = −iβ

∫ t

0
ds ωβ ([αs(K1 −K2), αt(K3 −K2)]⋆) +O(K⊗3).

(19)

Furthermore, from (15) we have that for any A,B formally self-adjoint microcausal functionals

−iβ

∫ t

0
ds ωβ ([αs(A), αt(B)]⋆) = β

∑

l≥1

1

l!

∫
dPl

l∏

j=1

(
e−

β
2
wj

2wj(1− e−βwj )

) ∑

{E+,E−}

sinh

(
fβ

2

)

·

(
1

f
(1 − cos(ft))

(
Â(l)B̂(l) + B̂(l)Â(l)

)
− i

sin(ft)

f

(
Â(l)B̂(l) − B̂(l)Â(l)

))∣∣∣∣pa0=±wa

∀a∈E±

, (20)

where f is given in (17) and we have symmetrized the summands over {E+, E−}. Notice that if

both A = B = K1−K2, the terms proportional to ÂB̂− B̂Â in (20) vanish, while the remaining
terms are all formally positive.

We now proceed with the discussion of the generic case. If

A = K1 −K2, B = K3 −K2

13



we have that

(
Â(l)B̂(l) + B̂(l)Â(l)

)
= 2

∣∣∣∣∣∣
K̂

(l)
1 + K̂

(l)
3

2
− K̂

(l)
2

∣∣∣∣∣∣

2

−
1

2

∣∣∣∣K̂
(l)
1 − K̂

(l)
3

∣∣∣∣
2

. (21)

Furthermore, since 0 ≤ 1 − cos (ft) ≤ 2, the negative contributions proportional to |K̂
(l)
1 −

K̂
(l)
3 |2 are controlled by S(ωβ,V1 , ωβ,V3), as is clear from (16) and the terms proportional to∣∣∣∣K̂
(l)
1 + K̂

(l)
3 − 2K̂

(l)
2

∣∣∣∣
2

are formally positive. Moreover,

(
Â(l)B̂(l) − B̂(l)Â(l)

)
= K̂

(l)
1 K̂

(l)
3 − K̂

(l)
3 K̂

(l)
1 − K̂

(l)
2 K̂

(l)
3 + K̂

(l)
3 K̂

(l)
2 + K̂

(l)
2 K̂

(l)
1 − K̂

(l)
1 K̂

(l)
2 . (22)

Finally, summing (16) and (20) composed with (21) and with (22) we get

S(ωβ,V1 ◦ αV2
t , ωβ,V3) = β

∑

l≥1

1

l!

∫
dPl

l∏

j=1

(
e−

β
2
wj

2wj(1− e−βwj )

) ∑

{E+,E−}

sinh
(
fβ
2

)

f
F̂ F̂

∣∣∣∣∣∣pa0=±wa

∀a∈E±

+O(K⊗3) ,

(23)

where

F = sin

(
ft

2

)
(K1 +K3 − 2K2) + i cos

(
ft

2

)
(K1 −K3) , (24)

and where f is given in (17). The expression (23) implies that the second order contribution of
the relative entropy S(ωβ,V1 ◦ αV2

t , ωβ,V3) cannot be negative.

To conclude the proof of the positivity of the relative entropy we need to prove that the
second order contributions are strictly positive unless very special conditions are met.

To reach this goal we observe that the generic contribution to (23) corresponding to an
arbitrary but fixed partition {E+, E−} is non-negative. Therefore, it is sufficient to analyze in
details only one of them, we thus chose the contribution E− = ∅ in the sum over partitions
{E+, E−} in the second order term of (23). This gives

CE−=∅ = β
∑

l≥1

1

l!

∫
dPl

l∏

j=1

(
e−

β
2
wj

2wj(1− e−βwj )

)
sinh

(
fβ
2

)

f
F̂ F̂

∣∣∣∣∣∣
pa0=wa∀a

where in this case f =
∑

k wk. Notice that, if K1 6= K3, then cos(ft2 )
2(K1 − K3)

2 is positive

for fixed t and for almost every f . Furthermore, if K1 = K3 6= K2, sin(
ft
2 )

2(K1 +K3 − 2K2)
2

at fixed t 6= 0 is positive for almost every f . In the remaining case V1 = V3 = V2 the relative
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entropy is trivial because ωβ,V1 ◦ αV1
t = ωβ,V1 and the same holds whenever t = 0 and V1 = V3,

because S(ωβ,V , ωβ,V ) = 0 for every ωβ,V . This concludes the proof of point b).

c) The convexity in Vi for every i can be proved in the sense of perturbation theory analyzing
the lowest non vanishing order in λ of (23). This gives a sum of quadratic elements, namely, all
possible FF in (23) for various l, Pl and E±. Since all these elements are convex, we have the
thesis.

d) The perturbative expansion of the relative entropy (23) guarantees continuity for Vi in Fµc

with respect to the topology of microcausal functionals in the sense of perturbation theory.

Remark Notice that while the positivity of both S(ωβ,V1 ◦ αV2
t , ωβ,V3) and S(ωβ,V1 , ωβ,V3) is

proved in point b) of the previous proposition 2.2, it is not guaranteed that their difference

S(ωβ,V1 ◦ αV2
t , ωβ,V3)− S(ωβ,V1 , ωβ,V3) = ωβ,V1((αV2

t − αV1
t )(βK3 − βK2))

is positive as can be seen composing (12) with (19) and then with (20). This will have some
implication on the entropy production that we shall introduce and discuss below.

Remark The proof of the positivity of in S(ωβ,V1 ◦ αV2
t , ωβ,V3) given in (12) can be given in

the following alternatively shorter way. Let us start analyzing the K-second order contributions
in S(ωβ,V1 , ωβ,V3) given in (13) which is the first term in S(ωβ,V1 ◦ αV2

t , ωβ,V3) as displayed (12).
Exploiting the KMS condition we notice that the integrals over the simplex S2 can be given in
terms of integrals over a single variable. In particular, we obtain that

∫

βS2

dUωc,β(αiu1K1 ⊗ αiu2K1) =
β

2

∫ ∞

0
du ωc,β(K1 ⊗ αiuK1).

We thus obtain

S(ωβ,V1 , ωβ,V3) =
β2

2
(K1 −K3 |K1 −K3)β +O(K⊗3) (25)

where we used the Duhamel like two-point function which is a sesquilinear product defined in
the following way

(A |B)β :=
1

β

∫ β

0
ωc,β(A∗ ⊗ αiu(B))du,

see [BR97, Section 5.3] for more details and on the properties of this product. Since, (· | ·)β is a
positive semidefinite sesquilinear form and K1 −K3 is formally selfadjoint we immediately have
the positivity of S(ωβ,V1 , ωβ,V3).

To treat the second order contributions in the remaining term given in (14) or in (19), we
use the analyticity property of the state ωβ and its time translation to transform the time
integration into an imaginary time integration thus recognizing again a couple of Duhamel two-
point function. Actually we obtain

ωβ,V1((αV2
t −αV1

t )(βK3−βK2)) = β2(K1−K2|K3−K2)β−β2(K1−K2|αt(K3−K2))β+O(K⊗3)
(26)
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Combining the two contributions (25) and (26), exploiting the sesquilinearity of (·|·)β and its
time translation invariance we obtain

S(ωβ,V1 ◦ αV2
t , ωβ,V3) =

β2

2
(F |F )β +O(K⊗3)

where, in analogy with (24), F is the formal selfadjoint element

F =
1

2

(
−αt/2 (K1 +K3 − 2K2) + α−t/2 (K1 +K3 − 2K2) + αt/2 (K1 −K3) + α−t/2 (K1 −K3)

)
.

Hence, the sesquilinearity of the Duhamel two-point function and the form of Ki implies that
S(ωβ,V1 ◦ αV2

t , ωβ,V3) is positive semidefinite in the sense of formal power series. To ensure the
strict positivity the expansion given in (23) can be now directly used. We thank the anonymous
referee for suggesting some steps of this alternative proof.

3 Adiabatic limits

In this Section we investigate the adiabatic limit, namely the limit where the spatial supports
of Vi of the form (2) tend to the whole space (h → 1).

We shall in particular use some ideas and some technical achievements given in [DHP16,
FL14] to prove similar results concerning the adiabatic limit of the relative entropy given in
(11).
First of all we notice that, in the adiabatic limit, the relative entropy diverges due to the integral
over an infinite space present in its definition. In [FL14], Fredenhagen and Lindner have shown
that the adiabatic limit can be taken in the sense of van Hove for the state ωβ,V (A) if A is of
compact support. Furthermore, Lindner has shown, in Chapter 4.4 of his PhD Thesis [Li13],
the finiteness of the van Hove limit v-limh→1 log(ω

β(Uh(iβ)))/I(h) where

I(h) :=

∫

R3

h(x)dx . (27)

In addition, it is known that another kind of infrared divergences appear when the adiabatic
limit is taken in ωβ(αV

t (A)), see e.g. [Al90, LW97, Le00, St95] and Proposition 4.2 in [DFP17]
for an explicit computation.

For all these reasons we expect to be able to consider the adiabatic limit of expressions of
the form

E = lim
h→1

1

I(h)
S(ωβ,V1 ◦ αt, ω

β,V3),

which has the dimension of an entropy density. Hence, we expect to be able to resolve the
infinite volume integration discussing the corresponding densities. We have actually the following
definition

16



Definition 3.1. Let V h
i for i ∈ {1, 3} be two interaction Lagrangians of the form (2) with the

same spatial cutoff h ∈ C∞
c (R3). We define the relative entropy per unit volume as

s(ωβ,V1 ◦ αt, ω
β,V3) := v-lim

h→1

1

I(h)
S(ωβ,V h

1 ◦ αt, ω
β,V h

3 ) , (28)

where I(h) is the integral of the cutoff function over the volume R
3 given in (27) and the limit

h → 1 is taken in the sense of van Hove.

We now proceed checking that the relative entropy per unit volume is finite, hence the
previous definition is well posed. We need a preliminary proposition and a remark. Let us start
considering the Kh constructed as in (6) with an interaction Lagrangian V of the from (2), we
have that

Kh =

∫
h(x)H(x)d3x, (29)

for a suitable H(x), then the following proposition holds.

Proposition 3.2. Consider the function

l(t,x) := ωβ,V1(αt(βH3(x)))

constructed with V1 and V3 of the from (2), with

H3(x) = RV3(V̇3
δx
)

given as in (29) and where the limit h → 1 has already been taken both in V1 and V3. The
function l(r,x) is constant in x and uniformly bounded in t.

Proof. To prove this proposition we proceed as in the proof of Theorem 5.1 of [DFP17]. First
of all we notice that thanks to Theorem 3 in [FL14] the van Hove limit used in the definition
of l(t,x) is well defined. We may thus consider the expansion of ωβ,V1 in the adiabatic limit in
terms of the connected functions

ωβ,V1(αt(A)) = ωβ(αt(A))

+
∑

n≥1

∫

βSn

dun . . . du1

∫

R3

d3x1· · ·

∫

R3

d3xn ωβ,c(αt(A)⊗ αiu1,x1(R)⊗ · · · ⊗ αiun,xn(R)) , (30)

where R := −RV1(V̇1
δ0
), A = H3(x) and αt,x indicates the automorphisms implementing

Minkowski spacetime translations of (t,x). Notice that, thanks to causality and to the form
of χ, both R and A have compact support, and as an interacting field R is supported on the
points (t, 0) where t ∈ suppχ̇. Furthermore, as in the proof of Theorem 4 in [FL14], the connected
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n−point functions can be written by means of the following graphical expansion

ωβ,c(αiu0,x0(A) ⊗ αiu1,x1(R)⊗ · · · ⊗ αiun,xn(R)) =

∑

G∈Gc
n+1

∏

k<j


D

lkj
kj

lkj!


 · (αiu0,x0(A)⊗ αiu1,x1(R)⊗ · · · ⊗ αiun,xn(R))

∣∣∣∣∣∣
(φ0,...,φn)=0

=:
∑

G∈Gc
n+1

1

Symm(G)
Fn,G(u0,x0;u1,x1; . . . ;un,xn) ,

where the sum is taken over the oriented connected graphs joining n+1 vertices and Symm(G)
is a normalization factor. Following the proof of Theorem 4 in [FL14], Fn,G can be computed as

Fn,G(u0,x0;u1,x1; . . . ;un,xn) =

∫
dP

∏

l∈E(G)

eipl(xs(l)−xr(l))(λ+(pl) + λ−(pl))

2wl(1− e−βωl)
· Ψ̂(−P,P ) ,

(31)

where E(G) is the set of lines of the graph G, s(l) and r(l) are respectively the indexes of the
source and the range of the points joined by the line l. Furthermore, Ψ̂(−P,P ) is the Fourier
transform of Ψ(X,Y ) defined as

Ψ(X,Y ) =
∏

l∈E(G)

δ2

δφs(l)(xl)δφr(l)(yl)
(A⊗R⊗ · · · ⊗R︸ ︷︷ ︸

n times

)

∣∣∣∣∣∣
(φ0,...,φn)=0

,

so that X and Y stand for (x1, . . . , xk) and (y1, . . . , yk) and k indicates the number of lines in
E(G). Hence, in the Fourier transform Ψ̂(−P,P ), P = (p1, . . . , pk).

Furthermore, the positive and negative frequency contributions in Dij are then indicated by

λ+(pl) = e−wl(ur(l)−us(l))δ(pl0 − wl), λ−(pl) = ewl(ur(l)−us(l)−β)δ(pl0 + wl) , (32)

with wl =
√

p2
l +m2. We proceed expanding the products of the sums of positive and negative

frequencies parts in (31) and performing the spatial integrals over x1, . . . ,xn in Fn,G. Arguing
as in the proof of Theorem 5.1 in [DFP17], we obtain that each graph G in Gc

n contributes to
ωβ,V (αt(A)) with a term proportional to
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∫

βSn

dun . . . du1

∫

R3

d3x1· · ·

∫

R3

d3xn Fn,G(u0 − it,x0;u1,x1; . . . ;un,xn)

=
∑

{E+,E−}∈P2(E(G))

∫

βSn

dU

∫
dP

∏

l+∈E+

e−wl+
(ur(l+)−us(l+))

2wl+(1− e−βwl+ )
·
∏

l−∈E−

ewl−
(ur(l−)−us(l−)−β)

2wl−(1− e−βwl− )
· Ψ̂(−P,P )

∣∣∣∣∣∣pk0=±wk,
∀k∈E±

·e

ix0







∑

l∈E(G)
s(l)=0

pl





 ∏

j∈{1,...,n}

δ



∑

l∈E(G)
s(l)=j

pl −
∑

l∈E(G)
r(l)=j

pl


 ·

∏

e+∈E+

s(e+)=0

e−itwe+ ·
∏

e−∈E−

s(e−)=0

eitwe− ,

where the product of delta functions expresses the momentum conservation. The exponentials
e−itwe+ and eitwe− are uniformly bounded in time, and the same holds for the results of the
remaining P and U integrations. Finally, we observe that the delta functions implementing
momentum conservations imply that

∑
l∈E(G)
s(l)=0

pl= 0, and hence for every graph, Fn,G becomes

constant in x0 after integration over the other spatial variables, thus concluding the proof.

Remark We notice that the adiabatic limit, namely the limit h → 1 discussed here can be
decomposed in two limits. Actually, arguing as in Theorem 3 of [FL14], see also Lemma C.1 in
Appendix C of [DHP16], it is possible to observe that the following limits coincide

v-lim
h→1

1

I(h)
ωβ,V h

(RV h(V̇ h)) = v-lim
h1→1

v-lim
h2→1

1

I(h1)
ωβ,V h2

(RV h2 (V̇
h1)) , (33)

where Kh = RV h(V̇ h). Loosely speaking, the limit h → 1 can be taken in different steps without
altering the final result.

Proposition 3.3. The relative entropy per unit volume s(ωβ,V1◦αt, ω
β,V3) given in (28) is finite.

Proof. In [Li13, Prop. 4.4.2] it has been shown that the van Hove limit

L := v- lim
h→1

log
(
ωβ(U(iβ))

)

I(h)
(34)

exists and is finite. Recalling the definition of relative entropy (11), to ensure the finiteness of
the relative entropy density (3.1) in the adiabatic limit we just need to prove the finiteness of
the following two limits

L1 := v-lim
h→1

1

I(h)
ωβ,V h

1 (βKh
1 ), L2 := v-lim

h→1

1

I(h)
ωβ,V h

1 (αt(βK
h
3 )). (35)
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We shall now consider only L2 because the same conclusions for L1 follow fixing t = 0 and
V3 = V1. Let us decompose Kh

3 as in (29) by introducing Hh
3 (x) = RV h

3
(V̇ δx

3 )

Kh
3 =

∫
h(x)Hh

3 (x)d
3x.

Equation (33) discussed in the remarks above implies that

L2 := v-lim
h1→1

v-lim
h2→1

1

I(h1)

∫
h1(x)ω

β,V
h2
1 (αt(βH

h2
3 (x)))d3x.

We taken now the limit h2 → 1 and thanks to Proposition 3.2 we have that

l2(x) := v-lim
h2→1

ωβ,V
h2
1 (αt(βH

h2
3 (x)))

exists, is constant in x and bounded in t. We can now take the limit h1 → 1 and from (27) we
have that L2 = l2 thus concluding the proof.

Proposition 3.4. The relative entropy per unit volume s(ωβ,V1 ◦ αt, ω
β,V2) is positive.

Proof. First of all notice that if V1 = V2 and t = 0 the relative entropy per unit volume vanishes
because S(ωβ,V1 , ωβ,V1) is zero for every h. In the other cases consider a van Hove sequence hn
converging to 1. Notice that I(hn) is positive for every n because hn are positive functions. The
relative entropy S is also positive for every n as shown in proposition 2.2. The limit for n → ∞
of positive quantities is positive, thus we have the thesis.

4 Entropy production

We start this section recalling the definition of entropy production given for C∗−dynamical
systems in [JP01, JP02a, JP02b], see also the previous works [OHI88, Oj89, Oj91] and [Ru01,
Ru02] for the case of spin systems. Let ω be a KMS state with respect to αt and let αV

t be the
dynamics perturbed by V , then, the entropy production3 of αV

t with respect to αt in the state
η is usually defined as

EV (η) := η
(
σV
)
, where σV := −

d

dt
αt(βV )

∣∣∣∣
t=0

= −
d

dt
αV
t (βV )

∣∣∣∣
t=0

,

where the last equality can be obtained from the cocycle condition of UV and the definition
of its generator. Unfortunately, in the case of field theories, σV cannot be easily computed
because the explicit form of the Hamiltonian generating αt is not known. In spite of this fact,
a generalization of that formula can be obtained in the case of states which possess a time

3Notice that the sign of EV , which descends from the sign of σV , differs only apparently from the definition
given in [JP01] because in that paper β is assumed to be −1 as it is common in the context of Tomita-Takesaki
theory.
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invariance. In particular, if η is a state invariant under the one parameter group of weakly
continuous automorphisms αV1

t , it holds that

EV2(η) =
d

dt
η(αV1

−tαt(−βV2))

∣∣∣∣
t=0

, EV2(η ◦ αs) =
d

dt
η(αV1

−tαt(−βV2))

∣∣∣∣
t=s

,

EV2(η ◦ αV2
s ) =

d

dt
η(αV1

−tα
V2
t (−βV2))

∣∣∣∣
t=s

.

These expressions can be directly generalized to the case of quantum field theories constructed
perturbatively, we actually introduce the following definition valid in that context.

Definition 4.1. Let Vi, for i ∈ {1, 2, 3}, be three perturbation Lagrangians of the form (2)
constructed with the same cutoff function h ∈ C∞

0 (R3) which are past compact and of compact
spatial support. Consider η, a state which is invariant under the one parameter group of auto-
morphisms αV1

t . The entropy production in the state η of αV2
t relative to αV3

t (or to ωβ,V3) is
defined as

E
V2
V3
(η) :=

d

dt
η
(
αV1
−tα

V2
t (β(K3 −K2))

)∣∣∣∣
t=0

. (36)

Analogously, the entropy production in the state η ◦ αV2
t of αV2

t relative to αV3
t is defined as

E
V2
V3
(η ◦ αV2

s ) :=
d

dt
η
(
αV1
−tα

V2
t (β(K3 −K2))

)∣∣∣∣
t=s

. (37)

In analogy to Theorem 1.1 in [JP01] for the case of C∗−dynamical systems, the following
proposition, which motivates the name entropy production, holds true:

Proposition 4.2. Consider Vi for i ∈ {1, 2, 3} three perturbation potentials which are past
compact and with spatially compact supports and the KMS state ωβ,V3 then

S(ωβ,V1 ◦ αV2
t , ωβ,V3) = S(ωβ,V1 , ωβ,V3) +

∫ t

0
E
V2
V3
(ωβ,V1 ◦ αV2

s ) ds (38)

where E
V2
V3
(ωβ,V1 ◦ αV2

s ) is the entropy production relative to the KMS state ωβ,V3.

Proof. Equation (12), the invariance of ωβ,V1 with respect to αV1
t and the fact that αV2

0 is the
identity imply that

S(ωβ,V1 ◦ αV2
t , ωβ,V3)− S(ωβ,V1 , ωβ,V3) = ωβ,V1((αV2

t − αV1
t )(βK3 − βK2)) =

ωβ,V1(αV1
−tα

V2
t (βK3 − βK2))− ωβ,V1(αV1

0 αV2
0 (βK3 − βK2)) =

∫ t

0

d

ds
ωβ,V1(αV1

−sα
V2
s (βK3 − βK2)) ds.

The proof can thus be concluded recalling the definition 4.1.
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Remark Notice that, the entropy production is not always positive, because as discussed
in the remark after proposition 2.2, the difference S(ωβ,V1 ◦ αV2

t , ωβ,V3) − S(ωβ,V1 , ωβ,V3) is not
necessarily positive. However, if ergodic means (infinite time average) are considered, we have
that the entropy production is positive. We shall prove this fact below.

Notice also that from the definition 4.1 it holds that E
V1
V3
(ωβ,V1 ◦ αV2

t ) vanishes if V2 = V3.
Furthermore, proposition 4.2 implies that the entropy production vanishes also in the case
V1 = V2.

We shall now rewrite the entropy production in a way which shall be useful in the analysis
of time averages.

Proposition 4.3. In the case of V2 = 0 it holds that

EV3(ω
β,V1 ◦ αt) = βωβ,V1(αt(Φt))

where
Φt = −i[α−tK1,K3]⋆ .

Proof. Notice that
αV
t (A) = UV (t) ⋆ αt(A) ⋆ UV (t)

∗ ,

furthermore, the cocycle condition and the form of the generator K imply

−i
d

dt
UV (t) = UV (t) ⋆ αt(K) .

Starting from the definition of entropy production (37) we have

EV3(ω
β,V1 ◦ αt) = β ωβ,V1

(
d

dt
αV1
−tαt(K3)

)

= β ωβ,V1

(
d

dt
(UV1(−t) ⋆ K3 ⋆ UV1(−t)∗)

)

= −iβ ωβ,V1 (UV1(−t) ⋆ α−t([K1, αt(K3)]⋆) ⋆ UV1(−t)∗)

= −iβ ωβ,V1

(
αV1
−tαt([α−tK1,K3]⋆)

)

= −iβ ωβ,V1 ◦ αt ([α−tK1,K3]⋆) .

Hence, the thesis holds.

Notice that similar results have been obtained in another context by Haag and Trych-
Pohlmeyer in [HTP77]. We proceed discussing the adiabatic limits of the entropy production
and its relations to the relative entropy per unit volume introduced in definition 3.1. In partic-
ular, we analyze the interplay with the return to equilibrium property discussed for the case of
scalar field theories in [DFP17]. In that paper it was proven that return to equilibrium holds
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if V is of spatially compact support. It is furthermore shown that for a perturbation potential
which is not of spatial compact support, ω ◦ αV

t and ωβ,V ◦ αt do not converge for large time t.
For this reason their ergodic means (temporal averages) have been considered. Furthermore, in
[DFP17], it was shown that the limit

ω+
V := lim

t→∞
v-lim
h→1

1

t

∫ t

0
ds ωβ,V h

◦ αs (39)

results in a state (constructed perturbatively) for the free algebra. Although not being a KMS
with respect to αt, this state is invariant under time translations, hence, it is a non equilibrium
steady state (NESS) [Ru00].

We would like to estimate how far is ω+
V from the equilibrium state ωβ. This could be

done estimating their relative entropy, but, unfortunately, (11) cannot be directly applied. It is
slightly easier to analyze the entropy production in ω+

V adopting the definition given for example
in [JP01].

Furthermore, to avoid infrared problems, the entropy production per unit volume of a NESS
ω+ is then obtained extending Definition 4.1 to the infinite volume case as previously done in
Definition 3.1 of Section 3 for the relative entropy. Hence, in close analogy to equation (1.2) of
[JP01], the entropy production per unit volume of αt in the state ω+

V1
is defined as

eV3(ω
+
V1
) := lim

t→∞
v-lim
h→1

1

t

1

I(h)

∫ t

0
ds ωβ,V h

1 ◦ αs(βΦs), Φs = −i[α−sK
h
1 ,K

h
3 ]⋆, (40)

where the normalization factor is given in (27) and where we have the reformulation of E(ωβ,V1 ◦
αt) given in Proposition 4.3.

From the positivity of the relative entropy given in Proposition 2.2, it descends that if
V1 = V3 = V , the entropy production per unit volume eV (ω

+
V ) is positive, actually

eV (ω
+
V ) = lim

t→∞
v-lim
h→1

1

t

1

I(h)

∫ t

0
ds ωβ,V h

◦ αs(βΦs) = lim
t→∞

v-lim
h→1

1

t

1

I(h)

∫ t

0
E(ωβ,V h

◦ αs) ds

= lim
t→∞

v-lim
h→1

1

t

1

I(h)

(
S(ωβ,V h

◦ αt, ω
β,V h

)− S(ωβ,V h

, ωβ,V h

)
)

= lim
t→∞

v-lim
h→1

1

t

1

I(h)
S(ωβ,V h

◦ αt, ω
β,V h

) ,

where in the last but one equality we used the fact that S(ωβ,V , ωβ,V ) = 0. Furthermore, the
right hand side of the previous equation is positive because, thanks to item b) in Proposition
2.2, S(ωβ,V ◦αt, ω

β,V ) is positive for every h and I(h) is also positive. However, we shall now see
in the next proposition that, since S/I is bounded uniformly in h and t, the entropy production
per unit volume vanishes also in the generic case.

Theorem 4.4. Let V1, V3 be two interaction Lagrangians of the form (2) constructed with the
same cutoff function h, the NESS ω+

V obtained with the time average as described in (39) is
thermodynamically simple, namely

eV3(ω
+
V1
) = 0 .
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In other words, the entropy production per unit volume referred to any interacting KMS state
vanishes.

Proof. Start from (40), then proposition 4.2 implies that

eV3(ω
+
V1
) = lim

t→∞
v-lim
h→1

1

t

1

I(h)

(
S(ωβ,V h

1 ◦ αt, ω
β,V h

3 )− S(ωβ,V h
1 , ωβ,V h

3 )
)
,

hence (12) implies that

eV3(ω
+
V1
) = lim

t→∞
v-lim
h→1

1

t

1

I(h)

(
ωβ,V h

1 (αt(βK
h
3 ))− ωβ,V h

1 (βKh
3 )
)
.

In order to analyze the limits h → 1 and t → ∞ we notice that

ωβ,V1(αt(βK3)) =

∫

R3

h(x0)ω
β,V1(αt(βH3(x0)))d

3x0.

Furthermore, arguing as in the proof of Proposition 3.3, we obtain that the result of

L = v-lim
h→1

1

I(h)
ωβ,V1(αt(βK3)) ,

is equal to
l(t,x0) = v-lim

h→1
ωβ,V1(αt(βH3(x0)))

which is a function constant in x and uniformly bounded in time thanks to Proposition 3.2.
Hence, it exists a constant C such that

|L| = |l| ≤ C.

This implies that ∣∣∣eV3(ω
+
V1
)
∣∣∣ ≤ C

t
,

for every t > 0 hence, eV3(ω
+
V1
) vanishes.

Theorem 4.4 and Proposition 4.2 imply that the non-equilibrium steady state ω+ defined in
[DFP17] has vanishing entropy production per unit volume. The physical consequence of this
fact is that ω+ is thermodynamically close to ωβ, that is ω+ is not far from being an equilibrium
state. In the standard Statistical Mechanics, this would imply the NESS to be in the normal
folium of the free KMS ωβ.
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5 Conclusion

In this paper we have defined the notion of relative entropy between interacting KMS states intro-
duced by Fredenhagen and Lindner [FL14] in the framework of perturbative algebraic quantum
field theory. We have shown that this definition is compatible with perturbation theory, in par-
ticular, it is quadratic with respect to the coupling constant, it is positive, convex with respect
to sums of perturbation Lagrangians and continuous with respect to the topology of microcausal
functionals. Furthermore, this definition can be used also for KMS states in the adiabatic limit
if the corresponding densities are considered. In the second part of the paper, we have also
analyzed the entropy production for this class of interacting states and, in Proposition 4.2 we
have proved an analogous result to those presented in [JP01]. Also in this case the adiabatic
limit can be taken consistently by passing to densitized quantities.

The introduction of this formalism allowed us to characterize the non-equilibrium steady state
ω+, defined originally in [DFP17], as a thermodynamically simple state, i.e. a non-equilibrium
state whose entropy production vanishes. Actually, it would be interesting to check if this state
could be interpreted as a Generalized Gibbs Ensemble, see [GE16] and references therein.

Since entropy is one of the principal tools in the study of non-equilibrium Physics, these two
definitions may open the way to a deepened study of the thermodynamics of non-equilibrium
steady states in the context of field theory, as to some extent, it is done in the present work.
For instance, it would be very interesting to obtain a definition and computation of the energy
fluxes which characterize this class of states (see [JP02a, JP02b]), so getting a formulation of
a second law of Thermodynamics in the framework of perturbative Algebraic Quantum Field
Theory.

From a conceptual point of view it would be interesting to extend our Definition 2.1 to a larger
class of states. In this respect, a possibility would be to consider the variational formulations
for the relative entropy proposed in [Ko86], which may provide a correct generalization to the
QFT setting.

Finally, recently, Hollands and Sanders [HS17] have introduced a notion of “relative entan-
glement measure” of a normal state as the infimum of the Araki relative entropy among all
separable states. It will be interesting to merge those results with the extension of relative
entropy analyzed in this paper.
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A Araki relative entropy for perturbed KMS states

Consider a finite dimensional4 C∗−dynamical system formed by the von Neumann algebra N

and a the automorphisms αt which implements the time evolution. Let Ω0 be the KMS state at
inverse temperature β with respect to time translations generated by H.

Consider three perturbations Pi, i ∈ {1, 2, 3} which are self-adjoint elements of N and KMS
states Ωi obtained by means of the Araki construction over Ω0. It holds that

Ωi =
1

Ni
UiΩ0, Ui = e−

β
2
(H+Pi)e

β
2
H , N2

i = (Ω0, U
∗
i UiΩ0).

Let Wi(t) be the weakly continuous one-parameter groups of unitary evolutions obtained by
means of the Stone theorem from the generators H + Pi.

The relative modular operator between the states Ψ := W2(t)Ω1 and Φ := Ω3 is obtained
starting from

SΨΦAW2(t)Ω1 = A∗Ω3 = A∗ 1

N3
U3Ω0

=
N1

N3
A∗U3U

−1
1 Ω1

=
N1

N3
W2(t)W2(t)

∗A∗U3U
−1
1 Ω1

=
N1

N3
W2(t)S1U

−1
1

∗
U∗
3AW2(t)Ω1 ,

where we have used S1, the operator which realizes the conjugation S1AΩ1 = A∗Ω1. Hence

∆ΨΦ =

(
N1

N3

)2

U3U1
−1S∗

1S1U
−1
1

∗
U∗
3 =

(
N1

N3

)2

e−β(H+P3) ,

where we have used the fact that the modular operator of Ω1 is ∆1 = S∗
1S1 = e−β(H+P1). Hence

the relative entropy

S(Ψ,Φ) = −β(Ω1, (P1 − P2)Ω1) + β(W2(t)Ω1, (P3 − P2)W2(t)Ω1)− log(N2
1 ) + log(N2

3 ) . (41)

In particular, one finds

S(Ω1,Ω3) = −β(Ω1, (P1 − P3)Ω1)− log(N2
1 ) + log(N2

3 ) . (42)

B Further explicit expression for the interacting evolution in

pAQFT

In this appendix, we shall collect some explicit expressions for the interacting evolution, for its
cocycle and the corresponding KMS states in pAQFT.

4The very same formulas hold in the infinite case too, see [BR97]. The finite-dimension assumption allows us
to avoid some technicalities which are inessential for the scope of this Appendix.
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B.1 Expansion of the the interaction αV
t

Once the generator Kh is identified as in (6), the interaction dynamics can be expanded in terms
of the free one in the following way.

αV h

t (A) = αt(A) +
∑

n≥1

in
∫

tSn

[
αt1(K

h), . . . ,
[
αtn(K

h), αt(A)
]
⋆

]
⋆
dt1 . . . dtn, (43)

B.2 Expansion of ωβ,V in terms of connected functions

Following [Li13, FL14], see also [Ar73], if ωβ is the extremal KMS state with respect of the
evolution αt at inverse temperature β of the free theory we have that, for every V which is of
compact support,

ωβ,V (A) = ωβ(A) +

∞∑

n=1

(−1)n
∫

βSn

dU ωc,β

(
A⊗

n⊗

k=1

αiuk
(K)

)
. (44)

where the integrals are taken over

Sn= {(u1, . . . , un) ∈ R
n| 0 ≤ u1 ≤ . . . ≤ un ≤ 1} , (45)

the n−dimensional simplex of edge 1 and K is the generator of the cocycle U which intertwines
the free and interacting evolution. The functional ωβ,c is the connected part of the state ωβ,
which is defined by the equation

ωβ(A1 ⋆ . . . ⋆ An) =
∑

P∈P{1,...,n}

∏

I∈P

ωβ,c

(⊗

ℓ∈I

Aℓ

)
∀A1, . . . , An ∈ A ,∀n ∈ Z+ , (46)

together with the condition ωβ,c(1A) = 0. Here P{1, . . . , n} denotes the set of partition of
{1, . . . , n} in non-empty subsets.

B.3 Normalization factor

In this appendix we would like to recall the way in which log(ωβ(U(iβ))) can be obtained
following the presentation given in the PhD Thesis of Lindner [Li13]. Exploiting the properties
of the connected functions ωc,β of ωβ one finds that

ωβ (U(iβ)) =
∞∑

n=1

(−1)n
∫

βSn

dU ωβ (αiu1K ⋆ · · · ⋆ αiunK) =

exp

(
∞∑

n=1

(−1)n
∫

βSn

dU ωc,β (αiu1K ⊗ · · · ⊗ αiunK)

)
,

where the integrals are taken over Sn the n−dimensional simplex of edge 1. Furthermore, the
first equality is nothing but the expansion of U(iβ) in terms of its generator K. Taking the
logarithm we obtain:
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log
(
ωβ(U(iβ))

)
=

∞∑

n=1

(−1)n
∫

βSn

dU ωc,β (αiu1K ⊗ · · · ⊗ αiunK) . (47)
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