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Data on the frequency-wavenumber spectra and dispersion relation of the dynamic
water surface in an open channel flow are very scarce. In this work, new data on
the frequency-wavenumber spectra were obtained in a rectangular laboratory flume
with a rough bottom boundary, over a range of subcritical Froude numbers. These
data were used to study the dispersion relation of the surface waves in such shallow
turbulent water flows. The results show a complex pattern of surface waves, with
a range of scales and velocities. When the mean surface velocity is faster than the
minimum phase velocity of gravity-capillary waves, the wave pattern is dominated
by stationary waves that interact with the static rough bed. There is a coherent
three-dimensional pattern of radially propagating waves with the wavelength approx-
imately equal to the wavelength of the stationary waves. Alongside these waves,
there are freely propagating gravity-capillary waves that propagate mainly parallel
to the mean flow, both upstream and downstream. In the flow conditions where
the mean surface velocity is slower than the minimum phase velocity of gravity-
capillary waves, patterns of non-dispersive waves are observed. It is suggested that
these waves are forced by turbulence. The results demonstrate that the free surface
carries information about the underlying turbulent flow. The knowledge obtained
in this study paves the way for the development of novel airborne methods of
non-invasive flow monitoring. C 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4964926]

I. INTRODUCTION

The study of the free surface of the sea has received considerable attention in the past. Since
the fundamental work of Miles1 and Phillips,2 the various mechanisms that allow the wind to
produce characteristic patterns of gravity-capillary waves have been well known. The understanding
of these phenomena facilitated greatly the development of remote monitoring techniques, which
thereafter became a formidable aid to the study of ocean dynamics.3 In comparison with the surface
of the ocean, the free surface of shallow flows such as rivers and in manmade open channels is
less understood. Understanding of the relationship between the rough static bed and the turbulence
processes in the shallow flow and the resultant free surface pattern is important for the development
of acoustic, radar, and optical monitoring techniques, which may enable us to measure the hydraulic
processes remotely.4

The mechanism that is mostly responsible for the generation of the wave patterns at the free
surface of a shallow water turbulent flow has not been unambiguously identified yet. A number
of researchers have focused on the boils and scars that form at the free surface due to the direct
interaction with turbulent coherent structures such as large scale vortices (for a classification of these
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phenomena see the work of Nezu and Nakagawa5 and Brocchini and Peregrine6). These patterns
have been studied both experimentally7,8 and numerically.9,10 In shallow open channel turbulent
flows the effect of gravity is dominating, but the turbulence can effectively disturb the free surface
to the point of breaking.6 The correlation between the free surface elevation and the flow vorticity or
turbulent velocities is high in numerical simulations,10 but generally much lower in experiments,11,12

where it is difficult to obtain high quality data near the surface, and dispersive waves can affect the
correlation locally.11

The bed topography can also generate patterns of gravity-capillary waves. The amplitude of
these patterns depends on the two-dimensional spatial spectrum of the bed roughness, and they
propagate in space and in time.13 When the flow velocity exceeds the minimum phase velocity
of gravity-capillary waves, stationary patterns of waves can develop. If the wave amplitude is
small, these patterns can be determined from the linearized free surface equations derived for an
irrotational flow.14 Additional unsteady patterns such as periodic successions of solitons or cnoidal
waves propagating upstream require a nonlinear analysis.15

The vertical variation of the streamwise velocity in a shallow flow complicates the analytical
treatment of the problem. The dispersion relation changes when the vertical velocity profile is
considered, and so does the wavenumber of the stationary waves.16,17 The flow rotationality can also
promote the growth of resonant waves. The resonant growth of freely propagating gravity waves in
a sheared flow has been studied both as the result of the (laminar) critical layer instability18,19 and
of the interaction with turbulent pressure fluctuations.20 Teixeira and Belcher20 also described the
growth of non-resonant forced waves, which do not satisfy the dispersion relation of gravity-capillary
waves but have the same velocity of the pressure turbulence perturbation.

There has been a very limited number of numerical21,22 or experimental11 studies that tried to
quantify the frequency-wavenumber spectrum of the waves on a free surface turbulent flow. The
numerical simulations21,22 show patterns of forced waves similar to the ones predicted by the model
of Teixeira and Belcher,20 in which the frequency is governed by the turbulent forcing, as well as
shorter freely propagating patterns following the dispersion relation of gravity-capillary waves. The
measurements reported by Savelsberg and van de Water11 are the only known experimental results
that describe the dispersion of the surface patterns on shallow turbulent flows in three-dimensions,
but they are focused on grid-generated turbulence which is not representative of the turbulence in
open channel shallow flows. The spectral resolution of their spectra was limited. This hindered
the observation of the dispersion relation near the dominant scales and did not allow for definitive
conclusions on the generation mechanism of the observed free surface patterns.

This paper aims to address the apparent lack of experimental data on the spectrum and dispersion
relations of the waves generated on the surface of a turbulent free surface flow. The purpose of this
work is to test the following four hypotheses: (i) that the interaction with the rough bed produces
patterns of gravity waves on the free surface, and that their dispersion relationship can be predicted
by taking into account the vertical profile of the streamwise velocity. (ii) That large coherent
turbulent structures in the flow also produce patterns on the free surface, which advect at the velocity
close to the velocity of the flow near the surface. (iii) That the first of these two mechanisms is
the dominant one when the mean surface velocity is larger than the minimum phase velocity of the
gravity-capillary waves, and that it produces stationary waves which govern the typical temporal and
spatial scales of the free surface of a shallow turbulent flow. (iv) That the free surface of a turbulent
shallow flow becomes progressively more rough as the characteristic Froude number increases.

In order to test these hypotheses, a set of 13 experiments was performed in a rectangular
laboratory flume with rough bed for a wide range of flow conditions. Two orthogonal arrays of wave
probes were used to measure the frequency-wavenumber spectrum of the free surface fluctuations in
the streamwise and transverse directions. This allowed the quasi-3D characterization of the dynamic
behaviour of the free surface.

This paper is organized as follows. Section II describes the experimental setup. Section III
summarizes the analysis procedure that allowed the determination of the frequency-wavenumber
spectrum of the free surface. This includes an iterative algorithm for the reconstruction of the
spatial correlation function on a uniform set of spatial locations, which is described in the Appendix.
Section IV presents the derivation of the free surface dispersion relation in an inviscid incompressible
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flow with a power function velocity profile, which was used to interpret the experimental data.
Section V presents the experimental results, which are discussed in Section VI. The final conclusions
are drawn in Section VII.

II. EXPERIMENTAL SETUP

A. Experimental flume

All the experiments were performed in a rectangular laboratory flume with a fixed roughened
bed. The flume was 12.6 m long and 0.459 m wide. An adjustable gate at the downstream end of the
flume ensured that the mean flow depth was uniform along the channel. The flow discharge and the
flume bed slope were controlled in order to obtain the desired flow mean depth and velocity. The
channel bed was covered with three layers of hexagonally packed plastic spheres with the diameter
d = 25.4 mm. The uniform flow depth H was measured by a set of manual point gauges distributed
along the channel at various locations in the longitudinal and transverse directions. The accuracy
of the depth measurements is estimated to be ±0.5 mm. The depth datum should be defined such
that the streamwise velocity distribution is best fitted by the Nikuradse logarithmic law, of which
the power function profile is an approximation. In the case of a bed of spheres, the datum is in the
range of 0.15d to 0.3d below the crests of the spheres.5 Here the datum was set at the distance d/4
below the crests in accordance with the results of Nakagawa, Nezu, and Ueda.23

The mean streamwise surface velocity U0 was measured by timing the passage of neutrally
buoyant floats along a streamwise distance of 1.53 m and taken as the average of 10 successive
measurements. The maximum standard deviation across the 10 velocity measurements was found to
be smaller than 3.5% of U0. The characteristic Froude number, F = U0/

√
gH , was determined from

the mean surface velocity and the uniform mean flow depth.17 The depth-averaged velocity, UH , was
calculated from the flow discharge and from the flow area determined by the uniform flow depth
and the channel width. The discharge was measured using a U tube manometer and a calibrated
orifice plate in the inlet pipe.

Measurements of the average streamwise velocity profiles were performed previously using
a particle image velocimetry system over the same rough bed and are detailed by Nichols.4 The
analysis of these data indicate that the power function profile

U = U0(z/H)n (1)

approximates the shape of the measured velocity distributions within ±8% of the local mean velocity
U(z) in the range 0.2 < z/H < 0.8. The values of n which provided the best interpolation to the
data reported by Nichols4 are shown in Fig. 1. These were compared to the predictions by Cheng24

(equations 34 and 35, p. 1781, with the relation n−1


f = 1.0, where f is the friction factor)
at ReH = 104 and ReH = 5 × 105. The Reynolds number ReH was based on the depth-averaged
velocity UH and defined as ReH = 4ρUHHµ−1, in accordance with Cheng.24 In the measurements of
Nichols, ReH varied between 4.7 × 104 and 2.9 × 105, while n varied from 1/2.4 at the submergence
H/d = 1.7 to 1/3.3 at the submergence H/d = 4, with a minimum n = 1/3.8 at H/d = 3.6. In

FIG. 1. The exponent n of the power-function average streamwise velocity profile in the flume: (squares) best interpolation
to the velocity profile data measured by Nichols,4 (lines) prediction24 assuming n−1 f = 1.0 for (dashed) ReH = 104, and
(solid) ReH = 5×105.
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the measurements reported here, 3.0 × 104 ≤ ReH ≤ 2.1 × 105 and 1.6 ≤ H/d ≤ 4.0. The expected
values of n based on the formula proposed by Cheng24 were between 1/2.8 and 1/3.5. These values
are reported for each condition in Table II. n = 1/3 was selected as a representative value. In the
range of flow conditions and frequencies described here, the maximum difference between the
dispersion relation (Equations (7) and (12)) with n = 1/2.8 and n = 1/3.6 was equal to 2.3 rad/m,
measured along the wavenumber axis. The maximum difference when n varied from n = 1/2.4 to
n = 1/3.8 was equal to 4.5 rad/m. These differences were comparable to the maximum resolution
of the measurements in this study, which was estimated as 4.05 rad/m.

B. Surface elevation measurements with non-equidistant arrays of waveprobes

Wave probes provide an attractive alternative to several optical methods which are harder to
implement on a flow in a flume with a rough non-transparent bed, although the optical methods
generally have a better spatial resolution. The surface gradient detector developed by Zhang and
Cox25 was applied successfully by Dabiri and Gharib26 and Dabiri27 to the study of the free
surface of a horizontally sheared flow. However, the size of the measurement area in these studies
was very limited. The free surface synthetic Schlieren method described by Moisy, Rabaud, and
Salsac28 is based on the refraction of non-collimated light at the free surface and uses a random
pattern of dots. Savelsberg and van de Water11 measured the frequency-wavenumber spectrum of
the free surface slope in two orthogonal directions also from the refraction of a scanning laser
beam. Refraction-based methods require either the light source to be immersed in water or the flow
bottom to be transparent; therefore, they are not practical for a flume with a rough non-transparent
boundary. The Fourier transform profilometry technique29 was extended to the measurement of the
water free surface by Cobelli et al.30 and Maurel et al.31 and is based on the airborne projection of
a two-dimensional fringe pattern on the free surface. This method was applied to the measurement
of the frequency-wavenumber spectrum of gravity-capillary wave turbulence in a wave tank by
Herbert, Mordant, and Falcon,32 Cobelli et al.,33 and Aubourg and Mordant.34 The technique requires
adding a white dye to the water in order to improve its light diffusivity. This requirement makes
the profilometry technique less practical for this study due to the large amount of water recirculated
by the laboratory system, the large test area size, and the practical issues with the disposal of dyed
water. For these reasons, a setup with arrays of waveprobes was adopted in the experiments. It
provided the temporal and spatial resolution desired in this study.

The instantaneous surface elevation was measured in time by 16 conductance wave probes
arranged non-equidistantly in two orthogonal arrays. Each probe comprised of two 0.24 mm
thick vertical tinned copper wires that were anchored separately to the flume bed. The two wires
were tensioned and parallel and aligned along the transverse y-direction. An alternating current
was passed through the wires, so that the voltage at their free ends was a function of the water
conductivity and varied linearly with the instantaneous surface elevation. Two arrays of wave probes
were employed, one in the streamwise x-direction (8 probes, 1(x), 2(x), . . . , 8(x)) along the flume
centreline and the other in the transverse y-direction (8 probes, 1(y), 2(y), . . . , 8(y)). The spatial
arrangement of these two arrays is shown in Fig. 2. The coordinates of the probes for all arrays are

FIG. 2. The arrangement of the wave probe arrays. The origin of the x-y coordinates is 9 m downstream from the flume
inlet, along the centreline.
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TABLE I. The spatial distribution of the conductance wave probes for the
two arrays.

Probe locationa (mm)

Array 1 2 3 4 5 6 7 8

x-direction 0 26.0 116.5 297.5 541.5 694.5 750.0 762.5
y-direction 0 17.5 35.0 51.5 69.0 95.0 119.0 151.0

aThe origin of the x-y coordinates is 9 m downstream from the flume inlet,
along the centreline.

quoted in Table I. The spacing between the two wires was 13 mm for the longitudinal array and
10 mm for the transverse array.

The conductance wave probes were calibrated in stationary water at 6 depths from 30 mm to
130 mm. The average voltage output was measured at each depth and the line of best fit was applied
to the data to determine the calibration function for each probe. The average calibration sensitivity
of the probes was of the order of 10 mm/V. The elevation time-series were recorded through a set of
Churchill Controls WM1A wave monitors and digitized by a National Instrument PXIe acquisition
board. The data acquisition system had an accuracy of 0.3 mV that corresponded to a 0.003 mm
vertical resolution. The wave probe recordings in still water were characterised by a very slow
unsteady drift in time (less than 10−2 mm over 10 s). As a result, the rms noise level estimated
from 10 min measurements was approximately 0.05 mm, which was reduced below 0.01 mm by
band-pass filtering the signal with a second-order Butterworth filter between the frequencies 0.1 Hz
and 20 Hz.

Each measurement lasted for 10 min. The sampling frequency was 500 Hz. The maximum
frequency of the waves which the waveprobes were able to resolve was estimated as
ω(ks,x/2,0)/2π = 16.6 Hz, where ks,x was the Nyquist wavenumber which is determined in
Sec. III. ω(ks,x/2,0) was calculated from the dispersion relation of gravity waves in an irrotational
flow (Equations (12) and (10)), in the conditions where the Doppler shift due to the current was
maximum. The recorded data sets were therefore downsampled to an effective sampling frequency
of 50 Hz after filtering.

C. Flow conditions

Thirteen different flow conditions were studied. Each flow condition was unique in terms of the
uniform mean flow depth, H , and the slope, s, of the flume. These parameters are reported in Table II
together with the measured mean surface velocity U0 and the characteristic Froude and Reynolds
numbers. Table II also reports the measured standard deviation of the free surface fluctuations, σ.
This was determined as the average across all the probes of the streamwise array. The wavenumber of
the stationary waves, k0, expected from Equation (9) for each flow condition is also given in Table II.

The non-dimensional parameter k0H/π corresponds to twice the ratio between the uniform flow
depth and the wavelength of the stationary waves. In a deep irrotational flow, k0H = 1/F2, where
F is the Froude number. When k0 is determined for the 1/3 power function profile, k0H represents
the inverse of a squared Froude number, corrected for the velocity profile of the shallow turbulent
flow. In an attempt to investigate the behavior of the free surface when the Froude number changes,
the different flow conditions reported in Table II were grouped based on the value of k0H/π. Flow
conditions 2–5 had k0H/π > 1.4 and F < 0.5. They were representative of relatively deep flows.
Flow conditions 10–13 had k0H/π < 1 and 0.61 ≤ F ≤ 1, and they represented the largest Froude
number flows across our measurements. Conditions 6–9 had k0H/π between 1 and 1.36 and they
constituted the intermediate range of Froude number in our measurements (0.52 ≤ F ≤ 0.61). The
threshold values of 1 and 1.4 were chosen arbitrarily in order to give the same number of flow
conditions in each group. Condition 1 had the mean surface velocity lower than the minimum phase
velocity of gravity-capillary waves; therefore, the stationary waves could not exist under this flow
condition and it was impossible to define k0 based on Equation (9).
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TABLE II. Test flow conditions.

Flow H a sb U0
c Fd Ree σf k0

g k0H/π 1/nh

condition (mm) (-) (m/s) (-) (-) (mm) (rad/m) (-) (-)

1 42.2 0.001 0.19 0.30 8.0 × 103 0.05 . . . . . . 2.8

2 72.9 0.001 0.35 0.41 2.5 × 104 0.40 89.7 2.08 3.3
3 101.0 0.001 0.41 0.41 4.1 × 104 0.50 63.6 2.05 3.5
4 42.2 0.002 0.30 0.47 1.3 × 104 0.25 131.5 1.77 2.8
5 101.3 0.002 0.49 0.49 4.9 × 104 1.79 45.1 1.45 3.5

6 43.0 0.003 0.34 0.52 1.5 × 104 0.49 99.7 1.36 2.8
7 73.1 0.002 0.46 0.54 3.4 × 104 1.21 52.4 1.22 3.3
8 40.5 0.004 0.36 0.57 1.5 × 104 0.34 89.5 1.15 2.8
9 43.4 0.005 0.40 0.61 1.7 × 104 0.46 72.6 1.00 2.8

10 99.0 0.003 0.60 0.61 5.9 × 104 2.03 31.4 0.99 3.5
11 72.4 0.003 0.54 0.64 3.9 × 104 1.17 39.4 0.91 3.3
12 43.1 0.006 0.43 0.66 1.8 × 104 0.57 63.8 0.88 2.8
13 73.2 0.004 0.58 0.68 4.2 × 104 1.10 34.8 0.81 3.3

aH is the mean depth as measured with mechanical point gauges.
bs is the channel slope.
cU0 is the mean surface velocity.
dF is the Froude number based on the mean depth and mean surface
velocity, F =U0(gH )−1/2.
eRe is the Reynolds number based on the mean surface velocity and mean
depth, Re= ρU0H µ−1.
fσ is the mean standard deviation of the free surface elevation (average
across all longitudinal probes).
gk0 is the characteristic wavenumber estimated according to Equation (9).
hn is the exponent of the power-function velocity profile estimated accord-
ing to Cheng,24 Equations (34) and (35), with n−1 f = 1.0.

III. ANALYSIS PROCEDURE

For each flow condition, the free surface elevation with respect to H , ζ , was measured
simultaneously at each wave probe in the two arrays. The data were analysed separately for the
streamwise and the transverse array. In this section, the analysis procedure is presented for the
streamwise measurements. The extension of this procedure to the transverse array is straightforward.
The standard deviation σν at the νth probes was calculated as

σ2
ν =

1
M

M
µ=1

�
ζ
�
xν, tµ

��2
, (2)

where xν was the spatial position of the probe. The recording at each probe was sampled in time with
the frequency f s = 1/∆t = 50 Hz. The duration of each measurement was T = M∆t, and tµ = µ∆t,
µ = 1,2, . . . ,M was the sampled time vector. The space-time correlation function was assumed to
be independent of the position x and time t. This assumption does not hold if there are spatial
patterns on the surface that are constant in time, such as stationary waves. The above limitation to
the analysis was addressed by splitting the measured signal into 59 separate segments, each being
10 s long. For each of these segments, the linear trend in time was removed from the measurement.
This procedure eliminated the deterministic stationary component of the free surface elevation from
each time series. The resulting space time-correlation function in the direction x only depended on
the spatial and temporal separations, rn and τm, respectively. Each combination of two probes (ν,η)
defined a temporal correlation function at the spatial separation rn = xν − xη. All combinations of
two probes (ν,η) whose spatial separation was similar and within ±δr were identified, where δr
was set equal to 5 mm. For these combinations the average separation r̄n was determined, so that
Nr̄n was the number of pairs (ν,η) with r̄n − δr ≤ xν − xη ≤ r̄n + δr . The space-time correlation
function was then determined as
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Wx(r̄n, τm) =


rn≈r̄n

M
µ=1

ζ(xν, tµ)ζ(xη, tµ − τm)
σνσηNr̄

. (3)

This procedure applied to the arrays of wave probes produced 2Nx − 1 = 57 unique separations r̄n
along the streamwise array, and 2Ny − 1 = 25 unique separations along the transverse array. Nx = 29
and Ny = 13 were the number of non-negative separations for each of the arrays, respectively. The
resulting set of spatial separations r̄n was non-equidistant. The direct application of the discrete
Fourier transform to the correlation function of Equation (3) in order to determine the frequency-
wavenumber spectrum would be affected by strong spectral leakage. Donelan, Hamilton, and Hui35

introduced a least-squares fitting procedure in the reciprocal domain to correct for the distortion
caused by spectral leakage. Here an alternative iterative method where the correlation function
Wx(r̄n, τm) was interpolated onto an equidistant set of separations r̄e prior to performing the Fourier
transform was adopted. The interpolation was performed by means of an iterative algorithm36

combined with a sinc function reconstruction technique.37,38 The details of this technique are
explained in the Appendix. The result was the regularized function Ŵx(r̄e, τm). This was defined at
2Nx − 1 equally spaced locations r̄e between −Lx and Lx, with Lx = 762.5 mm (between −Ly and
Ly, with Ly = 151.0 mm for the transverse array), and at 2M − 1 time separations τm between −T
and T , where T = 10 s. The spatial and temporal increments in the streamwise flow direction were
∆r̄e = 2Lx/2(Nx − 1) and ∆τ = 2T/2(M − 1), respectively.

The reconstructed correlation function at 0 time lag Ŵx(r̄e,0) is compared to Wx(r̄n,0) in Fig. 3
for flow condition 11. In order to eliminate the discontinuity at the boundary where the correlation
function was non-zero (see Fig. 3), Ŵx(r̄e, τm)(κ) was multiplied by a two-dimensional Hanning
window in space and time. The frequency-wavenumber spectrum was finally calculated with the
standard two-dimensional discrete Fourier transform at the equidistant discrete radian frequency ω
and wavenumber kx as

Sx(kx,ω) =
M

m=1

Nx
e=−Nx

Ŵx(r̄e, τm) exp [i (kxr̄e − ωτm)]∆r̄e∆τ, (4)

with the typical frequency and wavenumber resolution ∆ω = 2π f s/(2M − 1) and ∆kx = 2π/(2Nx −
1)∆r̄e, respectively. Sx(kx,ω) was normalized such that

ω(ks,x/2,0)
ω=0

ks,x/2
kx=−ks,x/2

Sx(kx,ω)∆kx∆ω = 1, (5)

where the summation was carried out over both the frequency and the wavenumber axes. The
frequency power spectrum was estimated from the sum

FIG. 3. An example of the correlation functions at 0 time lag, for condition 11: (squares) estimated directly, Wx(r̄n,0),
(circles) reconstructed through the proposed iterative procedure at the 183-th iteration, Ŵx(r̄e,0)(183).
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Sx(ω) =
ks,x/2

kx=−ks,x/2
Sx(kx,ω)∆kx, (6)

taken along the wavenumber axis only.
It should be noted that Sx(kx,ω) and Sx(ω) were determined from the space-time correlation

function in the x-direction; therefore, they depended on the projection of the wavenumber k in the
streamwise direction, kx = |k| cos θ, which is different from k = |k| in general. The corresponding
spectra in the transverse y-direction, Sy(ky,ω) and Sy(ω), depended on ky = |k| sin θ and they
were found in the similar way, with the obvious change of the indices and coordinates. From
the sensor arrangement reported in Table I, the spectral resolutions were ∆kx = 4.05 rad/m and
∆ky = 19.95 rad/m in the x- and y-direction, respectively. The Nyquist wavenumber ks was
governed by the average separation ∆r̄e, as 2π/∆r̄e. It was ks,x = 231 rad/m and ks, y = 499 rad/m
for the two directions, respectively.

IV. DISPERSION RELATION OF GRAVITY-CAPILLARY WAVES ON A SHALLOW
TURBULENT FLOW

The solution to the linearized boundary problem of gravity-capillary waves propagating at the
surface of a shallow flow with vorticity has been derived by several authors for different relationships
used to describe the shape of the vertical velocity profile.16,17,19,39 The numerical solution proposed
by Shrira19 applies to an arbitrary shape of the velocity profile, but it has been determined for the
infinite depth case only, while the solution derived by Patil and Singh39 is valid for the logarithmic
profile and for the long wavelength limit. The vertical velocity profile in a turbulent shallow flow
with rough static bed can be approximated by a power law of the vertical coordinate (Equation (1)),
such as the 1/7 power function considered by Fenton17 and by Lighthill in the Appendix of the work
of Burns.16

In this work, the same derivation reported by Fenton17 and Lighthill16 was adopted to study the
dispersion relation for flows with the exponent n = 1/3. The flow was assumed to be inviscid and
incompressible, with a constant uniform depth H , so that the bed roughness was neglected. The
vertical coordinate z varied from z = 0 at the bottom to z = H + ζ at the free surface. ζ(x, y, t) was
represented in terms of the trigonometric series ζ(x, y, t) =  j Z jei(kj·x−ω j t+ψ j), where only the real
part of ζ(x, y, t) must be considered. kj = kx, jix + ky, jiy is the wavenumber vector with magnitude
k j =

�
kj
�
= 2π/λ j, where λ j is the wavelength and ω j is the radian frequency. ψ j represents the

phase of the jth term with amplitude Z j.
Previous works16,17 considered a single plane harmonic wave ζ (ξ, t) in the plane (ξ, z) parallel to

kj so that kj · iξ = k j and attempted to find an expression for the phase velocity cj(k j) = ω j/k j. In this
work, the component of the mean velocity in the direction ξ was given by Uξ(z) = U0(z/H)n cos θ j,
where θ j is the angle between the wavenumber kj and the direction of the mean flow, ix, and Uξ is
constant along the direction ξ. The phase velocity was found by numerically integrating a first-order
nonlinear Riccati equation (Equation (18) in Fenton17). With respect to the notation used by Fenton,
Uξ(z) was written in place of U(y), and the gravity constant, g, was replaced by g̃ = g + k2

jγ/ρ,
where γ is the surface tension coefficient and ρ is the density of water. The integration was then
performed with a fourth-order Runge-Kutta method on a grid of 100 points between ẑ = 0 and ẑ = 1,
in terms of the non-dimensionalized z-dependent factor of the stream function, p(ẑ). The solution
p(1) at ž = 1 was then used in order to determine the phase velocity (from now on the subscript j is
omitted),

c2 =
Hp(1) (g + γ

ρ
k2
)

(1 − ϵ) [np(1)ϵ − ϵ + 1] (7)

for a given ϵ = U0 cos θ j/c. The phase velocity of the gravity-capillary waves in still water with
infinite depth is

cs(k) =

g

k
+
γ

ρ
k (8)
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that has a minimum cmin ≈ 0.23 m/s. In this work, the initial value problem had a singularity when
the projection of the time-averaged flow velocity in the direction of the wave propagation was
equal to the phase velocity of the gravity-capillary waves, i.e., Uξ = c. In this case, the numerical
integration was impeded. This singularity (which corresponds to the critical layer instability) was
found for all waves propagating upstream with |cs | < U0. Therefore, a solution with the power
function velocity profile was not attempted for these waves. The stationary waves with c(k0) = 0
that propagate against the flow with θ = π had the wavenumber k0 which was found analytically
according to Lighthill16 (the similar equation reported by Fenton17 has a mistake),

k0
I−1/2−n(k0H)
I1/2−n(k0H) =

g + γ
ρ

k2
0

U2
0

, (9)

where In is the modified Bessel function of order n. Equation (9) has two solutions when U0 ≥ cmin

in the range of depths which were studied in this work (between 40 mm and 100 mm). Of these, the
solution with the smaller k that represents the gravity waves is of larger interest for this study.

When the velocity is constant along z, U(z) = U0, the irrotational solution is found as

cirr(k, θ) = U0 cos θ ± cs(k)
√

tanh kH , (10)

where the ± sign represents waves that can propagate in both directions parallel to the wavenumber
vector k. The wavenumber of the stationary waves propagating against the flow with θ = π based
on the irrotational theory, k I

0 , was found from the solution of

U0 = cs(k I
0)


tanh k I
0 H . (11)

The dispersion relation was defined as

ω(k, θ) = kc(k, θ), (12)

where c was determined from Equation (7) for the 1/3 profile or from Equation (10) for the constant
velocity profile, respectively. The group velocity of gravity-capillary waves, cg , was defined as

cg(k, θ) = ∂ω(k, θ)
∂k

. (13)

In order to quantify the difference between the proposed dispersion relations and the measured
spectra, the same strategy as described by Herbert, Mordant, and Falcon32 was implemented.
The ridges of the streamwise spectra Sx(kx,ω) were identified with a Gaussian fitting along the
wavenumber kx at each frequency ω. The maximum fit indicated the wavenumber of the measured
ridges. This was then subtracted from the wavenumber predicted at the same frequency by each of the
proposed relations. The root mean squared average of the difference between the two wavenumbers,
defined as εk, was calculated separately in the frequency ranges ω < 2k0U0 and ω > 2k0U0 for both
the irrotational dispersion relation (Equation (10)) and the relation with the 1/3 velocity profile
(Equation (7)). These two frequency ranges were representative of the two types of surface patterns
discussed in Section V B. The values of εk are shown in Fig. 12 and reported in Table III for all
the measured flow conditions and for both the irrotational dispersion relations and the dispersion
relations obtained with the 1/3 velocity profile.

TABLE III. Root mean squared average difference, εk , between the ridges of the measured streamwise spectra, Sx(kx,ω),
and the proposed dispersion relations, evaluated along the kx axis. Dimensions are in rad/m.

Flow condition 1 2 3 4 5 6 7 8 9 10 11 12 13

1/3 profile, ω̂ < 2 2.5 8.9 2.0 34.1 3.1 13.2 2.1 7.6 3.4 3.5 3.7 2.9 5.7
Irrotational, ω̂ < 2 1.1 6.3 3.3 30.3 1.5 12.2 3.8 6.2 3.2 4.7 7.0 8.2 8.5
1/3 profile, ω̂ > 2 . . . 2.0 5.0 . . . 2.0 3.5 2.7 1.9 2.1 2.8 3.2 2.4 2.8
Irrotational, ω̂ > 2 5.4a 2.3 4.0 . . . 2.3 6.0 4.1 2.4 1.0 1.7 4.6 1.3 3.7

aDifference calculated with respect to the relation kx =ω/U0 in the frequency range 0 <ωU0/g < 0.3.
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FIG. 4. An example of the time series of the free surface elevation for condition 13, before filtering and downsampling.
(Solid) Probe 1(x). (Dashed) Probe 2(x). The mean surface velocity was U0= 0.58 m/s, and the distance between the probes
was 26 mm.

V. EXPERIMENTAL RESULTS

A. The spatial and temporal scales

An example of the free surface elevation measured with two wave probes on the x-axis (probes
1(x) and 2(x)) is shown in Fig. 4. The average of the standard deviation σν over all probes from
1(x) to 8(x), σ, is shown in Table II. A clear empirical relationship that describes the dependence of
σ from the flow characteristics could not be found.

Fig. 5 shows examples of the dimensional power spectral density, σ2Sx(ω), and of the spatial
correlations at zero time lag, Wx(rx,0) and Wy(ry,0), respectively, for flow conditions 1, 4, 7, and
10. These conditions were representative of the range of spatial and temporal scales, 2π/k0 and k0U0,
respectively. In this and in the following figures, the spectra are only shown up to the frequency
ω(ks,x/2,0). Fig. 5(a) shows the increase of the power spectral density at all frequencies when the
Froude number increases. This pattern of behavior was not observed for all flow conditions.

Fig. 5(b) shows examples of the correlation function at zero time lag as a function of the spatial
separation, for the same flow conditions. The spatial correlation function at the time lag τ = 0 was
representative of the instantaneous free surface topology, and it was symmetrical with respect to
both rx = 0 and ry = 0. rx and ry represented the complete set of non-equidistant separations rn in
the streamwise and transverse direction, respectively. The spatial correlation function appeared to
shift towards the larger values of rx and ry from conditions 1 and 4 to condition 7 and condition 10.

As an attempt to provide a more clear representation of the free surface behavior across the
range of measurements, the radian frequency and the spatial separation were non-dimensionalized

FIG. 5. (a) The dimensional frequency power spectral density σ2Sx(ω) for conditions 1, 4, 7, and 10. Sx(ω) is calculated
from Equation (6). (b) The spatial correlation at zero time lag for the same flow conditions. The negative x-axis shows the
transverse correlation, Wy(ry,0), while the positive x-axis shows the streamwise correlation, Wx(rx,0).
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based on the characteristic quantities k0U0 and 2π/k0, respectively. The choice of these parameters
for the normalization derived from hypothesis (iii) that the typical spatial scale of the free surface
patterns is governed by the interaction with the static rough bed, which produces the stationary
waves with the wavenumber k0. 2π/k0 is the wavelength of the stationary waves which were
found from the solution of Equation (9). In condition 1, k0 could not be defined; therefore, the
non-dimensionalization for this condition was based on the quantities g/U0 and 2πU2

0/g. The latter
is the wavelength of the stationary waves determined for an infinitely deep flow if the surface tension
is negligibly small.

Examples of the spatial correlation function at τ = 0 along the two directions, Wx(rx,0)
and Wy(ry,0), are given in Fig. 6 for all the investigated conditions. The correlation function
for condition 1 (see Fig. 6(a)) decays monotonously and symmetrically from rx, y = 0 in both
directions. The correlation at zero time lag decays rapidly below 0.15 at rx, yg/(2πU2

0 ) = 1.5, which
corresponds to rx, y = 35 mm. The patterns on the free surface were isotropic and had horizontal
scales comparable with the depth of the flow. The correlation function remains approximately equal
to 0.1 between rx, yg/(2πU2

0 ) = 2 and rx, yg/(2πU2
0 ) = 10 (rx, y = 231 mm), then it decays rapidly to

zero.
The remaining flow conditions shown in Figs. 6(b)–6(d) display the fluctuation of Wx(rx,0)

and Wy(ry,0) with a minimum between rx, y/(2π/k0) = 0.5 and rx, y/(2π/k0) = 0.8 and a relative
maximum between rx, y/(2π/k0) = 1 and rx, y/(2π/k0) = 1.6. The smaller values are found for the
higher Froude number conditions of Fig. 6(d), and the larger for the lower Froude number conditions
of Fig. 6(b). The fluctuation is not observed for the streamwise correlation Wx(rx,0) in condition
4 (Fig. 6(b)), and the minimum of the transverse correlation Wy(ry,0) is positive in conditions 3
(Fig. 6(b)), 9 (Fig. 6(c)), and 12 (Fig. 6(d)). The spatial correlations are slightly asymmetric, and
the larger negative minimum was found for the streamwise correlation Wx(rx,0). The increased
amplitude of the fluctuations of Wx(rx,0) towards rx = Lx which can be seen in Fig. 3 relative

FIG. 6. The normalized spatial correlation at zero time lag, with normalized spatial separation, rk0/2π. The negative
x-axis shows the transverse correlation, Wy(ry,0), while the positive x-axis shows the streamwise correlation, Wx(rx,0).
(a) Condition 1, (b) conditions 2–5 (F < 0.5), (c) conditions 6–9 (0.52 ≤ F ≤ 0.61), (d) conditions 10–13 (0.61 ≤ F ≤ 0.68).
Note the different normalization in (a), where k0 cannot be defined.
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to one single realization cannot be observed from the average correlations, which remain within
±0.1 when rx, y/(2π/k0) ≥ 2 in all flow conditions, before the Hanning window was applied. The
decay rate of the correlation in the region rx, y/(2π/k0) ≤ 0.5 is similar in both directions, and more
rapid at the higher Froude numbers. In the lower and intermediate Froude number conditions where
k0H/π > 1 (Figs. 6(b) and 6(c)), the correlation function is equal to 0.5 at rx, y/(2π/k0) ≈ 0.2. In
the higher Froude number conditions where k0H/π < 1 (Fig. 6(d)), the value of 0.5 is attained at
rx, y/(2π/k0) ≈ 0.15.

Fig. 7 shows the frequency power spectra Sx(ω̂) and Sy(ω̂), calculated according to Equation (6)
from the measured streamwise and transverse spectra, Sx(kx,ω) and Sy(ky,ω), respectively. The

FIG. 7. The frequency power spectrum (Equation (6)) of the normalized surface elevation calculated from the streamwise
spectrum Sx(ω̂) ((a), (c), (e), (g)), and the transverse spectrum Sy(ω̂) ((b), (d), (f), (h)), with the normalized frequency
ω̂ =ω/k0U0. (Dashed, red) Power decay ∝ ω̂−5, shown for reference. Note the different scaling in (a) and (b).
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frequency spectra for flow condition 1 are shown in Figs. 7(a) and 7(b). Both the streamwise and
the transverse spectra showed a slow decay with the frequency ωU0/g and had one small peak near
ωU0/g = 0.1 and one larger peak near ωU0/g = 0.3. The frequency spectra for the flow conditions
other than condition 1 (see Figs. 7(c)-7(h)) decayed smoothly from a maximum at the frequency
that tended asymptotically to ω̂ = 0. The frequency spectra showed a similar behavior when plotted
against the non-dimensional frequency ω̂, in each range of Froude numbers. The rate of decay of the
frequency spectra of Figs. 7(c)-7(h) increased at the higher frequencies. In Figs. 7(c)-7(h), the power
function law S(ω) ∝ ω̂−5 is represented only for reference. The comparison with the measurements
in Figs. 7(c)-7(h) shows that the decay of the spectra in the region ω̂ > 2 is slower for the higher
Froude number conditions (Figs. 7(g) and 7(h)) than for the lower and intermediate Froude number
conditions (Figs. 7(c)-7(f)).

B. The frequency-wavenumber spectra of the free surface in two spatial dimensions

Figs. 8(a) and 8(b) show the contours for the logarithm of the dimensional streamwise and
transverse frequency-wavenumber spectra log10σ

2Sx(kx,ω) and log10σ
2Sy(ky,ω), respectively, for

flow condition 13. Four contours are plotted in Figs. 8(a) and 8(b) for each order of magnitude.
In order to improve the visualization at the higher frequencies, Figs. 8(c) and 8(d) also show the
colormaps for the corresponding normalized frequency-wavenumber spectra Sx(k̂x, ω̂)/(Sx(ω̂)/ks,x)
and Sy(k̂y, ω̂)/(Sy(ω̂)/ks, y). The colors in Figs. 8(c) and 8(d) are on a linear scale. The non-
dimensionalized frequency and wavenumber axes in Figs. 8(c) and 8(d) were defined as ω̂ = ω/k0U0
and k̂ = k/k0, respectively. The negative k̂x represents the solution where c < 0, i.e., the waves that
travel upstream in the laboratory frame of reference. The dimensional spectra show clear ridges in
which the width is constant and comparable to the spectral resolution ∆kx and ∆ky in Figs. 8(a) and

FIG. 8. (a) Contour plot of the dimensional frequency-wavenumber spectrum for condition 13, log10(σ2Sx(kx,ω)), (b) trans-
verse spectrum log10(σ2Sy(ky,ω)). (c) The normalized frequency-wavenumber spectrum, Sx(k̂x, ω̂)/(Sx(ω̂)/ks,x), (d) nor-
malized transverse frequency-wavenumber spectrum Sy(k̂y, ω̂)/(Sy(ω̂)/ks, y). (Dashed) Irrotational dispersion relation,
Equation (10). (Solid) Dispersion relation with the 1/3 velocity profile, Equation (7), with θ = 0. (Dotted) Non-dispersive
relation, ω = kxU0. (Dashed-dotted) Dispersion relation with the 1/3 velocity profile, Equation (7), with constant k = k0.
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8(b), respectively. Away from the ridges, the spectra show a noise floor which is almost constant at
the same frequency, and it is a consequence of measuring with a non-equidistant array of sensors.
The amplitude of the ridges is between 2 and 7 times the noise amplitude at each frequency. The
noise floor appears constant across the whole normalized spectrum, with the level ≈1 in Figs. 8(c)
and 8(d).

In the region where ω̂ ≥ 2, the streamwise spectrum Sx(k̂x, ω̂) in Fig. 8(c) shows a ridge which
extends from k̂x ≈ 1 to k̂x ≈ 3. This ridge was compared with two dispersion relations, based on
Equation (12). In the first relation, the phase velocity c was determined from the irrotational solution
of Equation (10). In the second relation, c was found from the solution of Equation (7) for the 1/3
velocity profile. The ridge of the transverse spectrum Sy(k̂y, ω̂) of Fig. 8(d) in the same frequency
range, ω̂ ≥ 2, has k̂y ≈ 0. Therefore in both relations it was assumed that the waves propagate in the
positive x-direction, but only parallel to the flow velocity (i.e., θ = 0 and k = |kx |). The free surface
pattern in the region with ω̂ > 2 corresponded to gravity waves which propagated downstream,
parallel to the mean flow.

The region of the spectrum in Fig. 8(c) for which −1 < k̂x < 1 is characterized by a ridge that
closely follows a straight line connecting the point k̂x = −1, ω̂ = 0 with the point k̂x = 1, ω̂ = 2 and
crossing the ordinate axis at ω̂ = 1. The wavenumber of the stationary waves corresponds to the
intersection of the dispersion relations with the abscissa axis. This was estimated from Equation (9)
for the 1/3 velocity profile and from Equation (11) for the irrotational flow, giving k0 = 34.8 rad/m
and k I

0 = 27.1 rad/m, respectively. In condition 13, the intersection of the spectral ridge with
the axis ω̂ = 0 in Fig. 8(c) occurs at kx ≈ −40 rad/m (k̂x ≈ −1.15). The difference between the
measured wavenumber of the stationary waves and that predicted by Equation (9) was thus very
close to the resolution of the spectra, ∆kx = 4.05 rad/m. The stationary waves also correspond to
the maximum of the dimensional frequency-wavenumber spectrum in Fig. 8(a). The dashed-dotted
lines in Figs. 8(c) and 8(d), were found by assuming a radial isotropic distribution of waves with
the wavenumber k0, propagating in all directions. The corresponding dispersion relation was the
solution of Equations (7) and (12), where kx = k0 cos θ, ky = k0 sin θ, Uξ(z) = U0(z/H)n cos θ, and
θ was allowed to vary between 0 and π. This relation approximates the curved ridges in the region
ω̂ ≤ 1 in Fig. 8(d) and the straight ridge between k̂x = −1 and k̂x = 1 in Fig. 8(c).

The proposed dispersion relations slightly underestimate the frequency of the measured spectrum
in the region −1 < k̂x < 1 of Fig. 8(c) and overestimate it in the region k̂x > 2. These differences
were comparable to the resolution of the spectrum, and they were caused by the uncertainty of the
surface velocity measurements. The root mean squared average wavenumber difference between the
maxima of the spectrum and the proposed relations was εk = 5.7 rad/m in the region ω̂ < 2 and
εk = 2.8 rad/m in the region ω̂ > 2 (see Table III). εk changed to εk = 4.5 rad/m where ω̂ < 2 and to
εk = 3.2 rad/m where ω̂ > 2, respectively, if the mean surface velocity was reduced from 0.58 m/s
to 0.56 m/s, which was within the measurement uncertainty.

The part of the frequency-wavenumber spectrum in Fig. 8(c) for which k̂x > 1 shows an
additional ridge at the frequencies ω̂ < 2. This ridge extends from k̂x ≈ 1 and ω̂ = 0 to k̂x ≈ 2.5,
where ω̂ ≈ 1. The first point corresponds to the condition of stationary waves. The spectrum is
compared with the dispersion relation of gravity-capillary waves propagating parallel to the flow
velocity, but this time with the direction opposite to that of the flow, i.e., with θ = π and k = |kx |.
Although this relation (which is irrotational) overestimates slightly the frequency in this range, it
approximates well the ridge with k̂x > 1 in Fig. 8(c). This suggests that these waves propagated
against the flow with the phase velocity in still water (Equation (8)) slower than U0, so that they were
advected downstream with 0 < c < U0. In this way, they differed from the radial waves described
earlier in which the phase velocity could be negative. Fig. 8(c) shows that these two types of waves
occupy the same range of frequencies. In Fig. 8(d), only one type of wave (with the two curved
ridges that follow the dashed-dotted lines) is clearly recognizable in the same frequency range.
From the observation of the two separate spectra Sx(k̂x, ω̂) and Sy(k̂y, ω̂) in Figs. 8(c) and 8(d),
it is not possible to say whether or not these ridges should also be attributed to the waves with
0 < c < U0. These slowly propagating two-dimensional waves were observed in flow condition 3
and in conditions 10–13 with the higher Froude number, but they were not clearly recognizable
in the remaining intermediate conditions. It is likely that this was caused by the limited spatial
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FIG. 9. (a) Contour plot of the dimensional frequency-wavenumber spectrum for condition 7, log10(σ2Sx(kx,ω)), (b) trans-
verse spectrum log10(σ2Sy(ky,ω)). (c) The normalized frequency-wavenumber spectrum, Sx(k̂x, ω̂)/(Sx(ω̂)/ks,x),
(d) normalized transverse frequency-wavenumber spectrum Sy(k̂y, ω̂)/(Sy(ω̂)/ks, y). (Dashed) Irrotational dispersion rela-
tion, Equation (10). (Solid) Dispersion relation with the 1/3 velocity profile, Equation (7), with θ = 0. (Dotted) Non-dispersive
relation, ω = kxU0. (Dashed-dotted) Dispersion relation with the 1/3 velocity profile, Equation (7), with constant k = k0.

resolution of the adopted array of waveprobes. Because of these limitations, the Gaussian fitting
was not applied in this region of the spectrum.

The data for the intermediate Froude number flow conditions show a similar behavior to the
case which was described in the previous paragraphs. Figs. 9(a) and 9(b) show the dimensional
frequency-wavenumber spectra for flow condition 7. Figs. 9(c) and 9(d) show the corresponding
normalized spectra. The spectra in Fig. 9 show the same ridges as in Fig. 8. The slow upstream
waves advected downstream with the positive wavenumber and low frequency are less clear from
the streamwise spectrum in Fig. 9(c) than those visible in Fig. 8(c). This is attributed to the limited
spatial resolution of the measurements. The maximum of the spectrum of Fig. 9(a) is at the frequency
ω ≈ 0 and the wavenumber kx = ±60 rad/m, which compares well with the wavenumber of the
stationary waves, k0 = 52.4 rad/m. The agreement with the dispersion relation of the radial pattern
in the frequency range 0 ≤ ω̂ ≤ 2 in Figs. 9(c) and 9(d) is better than in Figs. 8(c) and 8(d), with
εk = 2.1 rad/m in the region ω̂ < 2 and εk = 2.7 rad/m in the region ω̂ > 2.

The pattern of the measured frequency-wavenumber spectra was consistent for all the tested
flow conditions, with the exception of conditions 1 and 4. The former requires a separate discussion
because the mean surface velocity U0 < cmin did not allow for the formation of stationary waves.
The frequency-wavenumber spectra for flow condition 4 are shown in Fig. 10. In this condition, the
dispersion relation with the 1/3 velocity profile predicts the wavelength of the stationary waves equal
to 2π/k0 = 47.8 mm, which is comparable to the shortest waves that could be accurately measured by
the streamwise array, where k0∆re/(2π) = 0.55. The streamwise frequency-wavenumber spectrum
in Fig. 10(c) shows a cloud of points enclosed within the region of k̂x ≈ −0.8 and 0 ≤ ω̂ ≤ 0.5.
This was caused by the limited spatial resolution of the array. There is a ridge that corresponds
to the gravity waves propagating downstream, which extends from k̂x ≈ 0.4 to k̂x = 0.9 and from
ω̂ ≈ 1 to ω̂ ≈ 1.8, hence kx < k0. There is a second ridge that goes from k̂x ≈ −0.2 to k̂x ≈ 0.3 and
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FIG. 10. (a) Contour plot of the dimensional frequency-wavenumber spectrum for condition 4, log10(σ2Sx(kx,ω)), (b) trans-
verse spectrum log10(σ2Sy(ky,ω)). (c) The normalized frequency-wavenumber spectrum, Sx(k̂x, ω̂)/(Sx(ω̂)/ks,x), (d) nor-
malized transverse frequency-wavenumber spectrum Sy(k̂y, ω̂)/(Sy(ω̂)/ks, y). (Dashed) Irrotational dispersion relation,
Equation (10). (Solid) Dispersion relation with the 1/3 velocity profile, Equation (7), with θ = 0. (Dotted) Non-dispersive
relation, ω = kxU0. (Dashed-dotted) Dispersion relation with the 1/3 velocity profile, Equation (7), with constant k = k0.

from ω̂ ≈ 0.5 to ω̂ ≈ 1.2, but this is strongly curved and it does not follow the prediction based
on the radial pattern with the constant modulus of the wavenumber k = k0. The root mean squared
average wavenumber difference between the maxima of the spectrum and the proposed relations was
εk = 34.1 rad/m, estimated between ω̂ = 0 and ω̂ = 2. The transverse spectrum shown in Fig. 10(d)
has a similar behavior to that of the flow conditions discussed so far, but the region where k̂y , 0
is within 0.2 ≤ ω̂ ≤ 1.3, and the maximum transverse wavenumber is k̂y ≈ 0.6. These observations
suggest that the radial pattern of waves had the modulus of the wavenumber smaller than k0. The
curved ridge in Fig. 10(a) suggests that the pattern was not axially symmetric, i.e., that the waves
propagating parallel to the streamwise direction had the larger wavenumber (were shorter) than
those propagating perpendicularly to it. The reasons for the different behavior in condition 4 are not
clear and warrant further investigation.

The flow in condition 1 had the mean surface velocity U0 which was smaller than the minimum
of the phase velocity in still water, cmin ≈ 0.23 m/s. Therefore the stationary waves which otherwise
would dominate the free surface could not form. Figs. 11(c) and 11(d) show the normalized
frequency-wavenumber spectra for condition 1 as the function of the non-dimensional wavenumber
kU2

0/g and the non-dimensional frequencyωU0/g. The streamwise frequency-wavenumber spectrum
is shown in Figs. 11(a) and 11(c). It shows a ridge that follows closely the dispersion relation of
Equation (7) with θ = 0. The agreement with Equation (7) was quantified by εk = 2.5 rad/m. The
behavior was similar to that observed in the other flow conditions, but the ridge in the spectrum
for condition 1 extends to the lower frequency ωU0/g = 0, and the maximum of the spectra is
near kxU2

0/g = 0. On the other hand, the ridge which was attributed to the waves with the constant
wavenumber k = k0 propagating radially is absent in the spectrum obtained for condition 1, which
confirms that the observed radial pattern was related to the stationary condition. There is a new
ridge which was not noticed in the spectra for the other conditions and which follows approximately
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FIG. 11. (a) Contour plot of the dimensional frequency-wavenumber spectrum for condition 1, log10(σ2Sx(kx,ω)),
(b) transverse spectrum log10(σ2Sy(ky,ω)). (c) The normalized frequency-wavenumber spectrum, Sx(kxU2

0/g,ωU0/g )/
(Sx(ωU0/g )/ks,x), (d) normalized transverse frequency-wavenumber spectrum Sy(kyU

2
0/g,ωU0/g )/(Sy(ωU0/g )/ks, y).

(Dashed) Irrotational dispersion relation, Equation (10). (Solid) Dispersion relation with the 1/3 velocity profile,
Equation (7), with θ = 0. (Dotted) Non-dispersive relation, ω = kxU0.

the non-dispersive linear relation ωU0/g = kxU2
0/g. In Fig. 11(c), this ridge extends from the origin

of the spectrum to the point with kxU2
0/g = 0.3 and ωU0/g = 0.3, after which it becomes less

clear because of the limited resolution of the measurements. The transverse spectrum in Fig. 11(d)
shows a clear ridge with kyU2

0/g = 0 where 0 ≤ ωU0/g ≤ 0.2, but it also becomes less clear at the
higher frequency. The non-dispersive ridge in Fig. 11(a) has the amplitude 2–3 times larger than
the dispersive ridge at each value of the wavenumber. The root mean squared difference between
the relation kx = ω/U0 and the wavenumber of the ridge obtained from the Gaussian fitting was
εk = 5.4 rad/m, evaluated in the range 0 < ωU0/g < 0.3. The frequency spectra of flow condition
1 shown in Figs. 7(a) and 7(b) have a peak at the frequency ωU0/g ≈ 0.3 (ω ≈ 15 rad/s). At the
same frequency, the streamwise spectrum of Fig. 11(a) shows a horizontal ridge spanning the whole
wavenumber range, while the transverse spectrum of Fig. 11(b) has a peak at ky ≈ 0.

VI. DISCUSSION

The most important result of this study was the observation of the dispersion relation of the free
surface patterns in turbulent shallow flows with a rough static bed. With respect to the experiments
of Savelsberg and van de Water,11 which focused on grid-generated turbulence and relatively short
waves, the dispersion relation has been determined near the largest scales where the interaction with
the bed manifests itself more clearly. The measurements have been compared with the dispersion
relation of gravity-capillary waves in a flow with a 1/3 power function velocity profile and with the
standard irrotational theory of gravity-capillary waves. The difference between the two dispersion
relations and the measured spectra has been quantified with the Gaussian fitting of the ridges of
the streamwise spectra, Sx(kx,ω). The root mean squared wavenumber difference, εk, is shown in
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FIG. 12. Root mean squared average difference, εk , between the ridges of the measured streamwise spectra, Sx(kx,ω),
and the proposed dispersion relations, evaluated along the kx axis in the interval (a) ω̂ < 2, (b) ω̂ > 2. (Squares) Dispersion
relation with the 1/3 velocity profile. (Circles) Irrotational dispersion relation. The numbers indicate the flow conditions. The
spectral resolution of the spectrum is ∆kx = 4.05 rad/m.

Fig. 12 and its values are reported in Table III for all conditions. In most flow conditions, the two
theories gave very similar results, close to the resolution of the spectra. In the conditions with larger
Froude number, the relation based on the 1/3 velocity profile was more accurate in the region ω̂ < 2,
where most of the amplitude of the spectrum was concentrated.

The dispersion relation based on the 1/3 velocity profile was less accurate in conditions 2, 4,
6, and 8. Of these, conditions 4, 6, and 8 had the lower mean depth of approximately 40 mm, and
the smaller Froude number F < 0.6. Condition 4 showed a very different pattern from all other
conditions, which was not fully understood. It is expected that when the submergence H/d becomes
very small, the free surface would follow the shape of the boundary and the linearized equations
would not be valid. It is suggested that the proposed dispersion relations become less accurate when
the flow is more shallow and the Froude number is relatively low, as a consequence of either the
change of the velocity profile and/or the reduced validity of the linearization of the surface equations.
The results reported here support hypothesis (i), that the dispersion relation of the free surface of a
shallow turbulent flow with homogeneous static bed roughness can be predicted by including the
velocity profile in the derivation of the linearized equations, although further investigations would
be needed in order to clarify the observed behaviour.

In all conditions with U0 > cmin (see Figs. 8–10), the maxima of the frequency-wavenumber
spectra lie near kx = ±k0, showing that the stationary waves represented the dominant pattern on the
free surface. Patterns of waves which propagate radially in all directions, resembling the model of
concentric gravity waves being shed by vertical vortices suggested by Savelsberg and van de Water,11

were also observed. In the measurements reported here, the scale of the pattern was governed by the
wavelength of the stationary waves rather than by the scale of the attached vortices. An exception
was represented by condition 4, where the radial waves were shorter than the stationary waves,
and the pattern was non-isotropic. Further investigations are needed in order to clarify the reasons
for the different behavior at this flow condition.

The measurements of the zero-lag correlation function of the free surface elevation (Fig. 6)
showed a fluctuation with the period of approximately 2π/k0, which is the typical scale of the
stationary waves. In flow condition 1, the stationary waves cannot form, and the correlation function
does not fluctuate. Savelsberg and van de Water11 and Horoshenkov et al.40 associated the decay rate
and the period of the correlation function of the free surface elevation with the characteristic scales
of turbulence, although Horoshenkov et al.40 looked at the maxima in the time correlation function
at each spatial separation, rather than at the zero-lag correlation at τ = 0. Savelsberg and van de
Water11 and Horoshenkov et al.40 found a correspondence between the scales of the correlation
and the characteristic integral scales of turbulence. Savelsberg and van de Water11 also observed that
the correlation function becomes anisotropic when the turbulence in the flow is also anisotropic.
The measurements presented here showed that when the mean surface velocity was larger than the

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

143.167.254.160 On: Sat, 12 Nov 2016 17:26:36



105105-19 Dolcetti et al. Phys. Fluids 28, 105105 (2016)

minimum phase velocity of gravity-capillary waves, the stationary waves rather than the turbulent
scales determined the dominant scales of the free surface. This was in agreement with hypothesis
(iii). The Froude number also seemed to affect the spatial characteristics of the free surface. In
fact, the period of the correlation function relative to 2π/k0 and the spatial rate of decay tended to
decrease when k0H/π also decreased.

These observations are supported by the frequency spectra shown in Fig. 7. The shape of the
frequency spectra was governed by the temporal scale k0U0, showing that the dynamic behavior
of the free surface was linked to the characteristic scales of the stationary waves. The frequency
spectra decayed less rapidly at the larger frequencies when k0H/π < 1 and the Froude number was
larger. This indicates that more energy was found in the relatively shorter and faster waves when
the Froude number increased, in agreement with the progressive shift of the spatial correlation
function. Smolentsev and Miraghaie8 also observed the increase of the frequency spectrum at the
higher frequencies when the Froude number increased and related this effect to the interaction
with turbulence. The decrease of the slope of the spectrum resulted in an increase of the first- and
second-order spatial gradients of the free surface elevation, hence it was associated with a rougher
water surface. This supports hypothesis (iv) that the increase of the Froude number causes the water
surface to become more rough.

The flow in condition 1 had the mean surface velocity U0 which was smaller than the minimum
of the phase velocity in still water, cmin ≈ 0.23 m/s. Therefore the stationary waves which otherwise
would dominate the free surface could not form. In this condition, a markedly different behavior of
the correlation function and of the spectra has been observed. In condition 1, the spatial correlation
function (see Fig. 6(a)) did not display a fluctuating behavior. Conversely, the frequency spectrum
(see Figs. 7(a) and 7(b)) displayed a peak at the non-dimensional frequency ωU0/g ≈ 0.3. The latter
peak corresponds to the dimensional frequency of 2.5 Hz, which is approximately the solution of
∂ω/∂k = 0 based on Equation (13), where θ = π. Kitaigordskii et al.41 showed that the frequency
spectrum S(ω) and the wavenumber angular spectrum S(k, θ) are related by

S(ω) =


S(k, θ)k
∂Ω/∂k

δ (k − K(ω,θ)) dkdθ, (14)

where K(ω,θ) represents the wavenumbers that satisfy the dispersion relationΩ(k, θ) at the frequency
ω, i.e., Ω(K(ω,θ), θ) = ω. The integral of Equation (14) can become very large if the group velocity
is small, which is possible for waves propagating against the flow. The peak of the frequency
spectrum in Figs. 7(a) and 7(b) near the frequency where ∂ω/∂k = 0 can be justified by the
existence of waves propagating upstream in flow condition 1.

The difference between condition 1 and the other conditions where U0 > cmin is evident from
the frequency-wavenumber spectra shown in Fig. 11. These spectra still show a ridge that represents
gravity waves propagating downstream, but the ridge extends to very low frequencies. This signified
the existence of long waves with the wavelength comparable to the length of the array of probes,
whereas in the other conditions the longest waves had the wavelength 2π/k0. The presence of the
dispersive ridge in the spectrum of Figs. 11(a) and 11(c) shows that the gravity waves propagating
downstream were not related to the stationary waves, which could not form in condition 1. These
dispersive waves could be transient waves generated by the rough boundary or freely propagating
gravity-capillary waves that originated from turbulence forced waves after the forcing has ended
(e.g., because of the loss of coherence of the turbulent structures as they interact with the sheared
flow near the surface,20 or because the spatial scale of these waves is within the dissipative range of
turbulence21). The same spectra of Figs. 11(a) and 11(c) reveal one additional set of waves which
follow the non-dispersive relation ω = kxU0. This non-dispersive ridge is believed to represent
random patterns on the surface with a broad spatial spectrum, which were advected by the flow
at the constant velocity U0. These patterns are dominating over the dispersive freely propagating
gravity waves at each value of the wavenumber. Teixeira and Belcher20 have suggested that the direct
interaction with turbulence is able to produce patterns of forced waves on the free surface, even
when the conditions for the resonant interaction are not met. These waves are expected to follow the
dispersion relation of the turbulence inside the flow, which, as a first approximation, corresponds
to the non-dispersive relation ω = kxU0. This has been observed in Figs. 11(a) and 11(c). The
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results of this study provide limited evidence to support the turbulence forcing mechanism described
by Teixeira and Belcher,20 which corresponds to hypothesis (ii). More detailed hydrodynamic
measurements are needed to confirm a direct link with turbulence.

VII. CONCLUSIONS

The frequency-wavenumber spectra of the free surface fluctuations in a shallow turbulent flow
have been compared with a model of small amplitude waves in a rotational flow with the 1/3
power function velocity profile. The model was originally proposed by Lighthill14 and improved by
Fenton.17 It represents an improvement with respect to the irrotational theory at the larger Froude
number, and it matches the experimental results with an uncertainty comparable to the resolution
of the measurements (see Fig. 12), in accordance with hypothesis (i). The deviation which was
observed at the smaller depths and Froude numbers suggests that the accuracy of the model could
decrease for very shallow flows.

The results reported here show that the dominant patterns on the free surface are caused by
the interaction with the rough static bed when U0 > cmin. The direct link between the scales and
the statistics of the turbulence and of the free surface, which was proven experimentally11,40 and
numerically,21,22 may become secondary due to the dominant effect of the bed roughness in many
practical applications. When the mean surface velocity of the flow is larger than the minimum phase
velocity of the gravity-capillary waves, cmin = 0.23 m/s, the typical spatial and temporal scales of
the free surface are governed by the wavelength of the stationary waves, 2π/k0. The correlation
function at zero time lag fluctuates with the period of approximately 2π/k0, as shown in Fig. 6.
The shape of the frequency spectrum is governed by the characteristic frequency k0U0, as shown
in Fig. 7. The maximum of the frequency-wavenumber spectrum is found at the wavenumber ±k0
(Figs. 8–10). These results prove hypothesis (iii), that the spatial and temporal scales of the free
surface can be predicted based on the wavelength of the stationary waves.

The Froude number (or the related parameter k0H) also affects the patterns of the free surface,
although less strongly. When the Froude number increases, the period of the correlation function
increases relative to 2π/k0 (see Fig. 6), and the frequency spectra decay less rapidly at the
frequencies larger than 2k0U0 (see Fig. 7). Both effects are associated with a larger contribution from
the shorter waves, which indicates a relatively rougher water surface. These observations agree with
the classification of turbulent free surface flows proposed by Brocchini and Peregrine6 and were
also observed and linked to the interaction with turbulence by Smolentsev and Miraghaie.8 They
support hypothesis (iv).

In the flow condition where the mean surface velocity was slower than 0.23 m/s, the free surface
was dominated by patterns moving at a velocity close to the mean surface velocity. These patterns
may be explained by the interaction with coherent turbulent structures in the flow according to the
model of Teixeira and Belcher.20 The results presented here provide limited evidence to support
the existence of such a mechanism, which corresponds to hypothesis (ii). It is postulated that the
observed non-dispersive waves may be present in most flow conditions, although the limited spatial
resolution of the arrays of wave probes in the current study and the smaller amplitude compared to
the dominant stationary waves did not allow measuring them in the conditions when U0 > cmin. This
work is of importance for the development of novel, airborne instrumentation for the non-invasive
characterization of the hydraulic processes in shallow water flows such as in the case of natural
rivers and floods.
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APPENDIX: INTERPOLATION OF THE CORRELATION FUNCTION

The adopted interpolation method used the sinc function,

sinc(r) = sin(πr)
πr

, (A1)

as a weighing kernel defined on the single dimension r for each value of τm. The sinc kernel gives
more accurate results than the Lomb-Scargle periodogram for non-uniformly sampled signals with
harmonic components42 and it defines a valid estimator of the correlation function.37 In this work, an
iterative algorithm36 was added to the sinc interpolation method37,38 to further minimize the leakage
due to non-orthonormality of the sinc coefficients for the irregular set of probe separations. At the
first iteration, the interpolation Ŵx(r̄e, τm)(1) of Wx(r̄n, τm) was calculated as

Ŵx(r̄e, τm)(1) =
Nx−1

n=−Nx+1

Wx(r̄n, τm)sinc


2(r̄e − r̄n)
Γ∆r̄e


, (A2)

where ∆r̄e is the period of the target regular set, r̄e = e∆r̄e, and Γ is a numeric arbitrary coefficient
that defines the width of the reconstruction kernel. Similar to Rehfeld et al.,42 ∆r̄e = Lx/(Nx − 1)
was used, where Nx is the number of unique non-negative separations in the direction x and Lx is the
maximum of r̄n. A discussion about the importance of the width parameter Γ and some guidelines
for its selection can be found in the work of Rehfeld et al.42

The Fourier spatial transform of Ŵx(r̄e, τm)(1) is given by the convolution of the spectrum
of Wx(r̄n, τm) with the characteristic spectrum of the kernel function. The sinc kernel causes
the low-pass filtering of the original spectrum, where the cutoff spatial frequency decreases if Γ
increases so that it is advisable to minimize Γ. On the other hand, the reconstruction procedure
becomes unstable if the kernel width Γ∆r̄e becomes much smaller than the maximum gap in the
non-equidistant set r̄n. With the relatively sparse arrays of probes that were used in this study, the
best compromise between the spectrum cutoff and the convergence of the analysis was found when
Γ = 2. The same value was used in the benchmark test described by Rehfeld et al.42

Equation (A2) corresponds to the discrete sinc transform of Wx(r̄n, τm) from the irregular set
of samples r̄n to the regular set r̄e. It is easy to find that the coefficients of transform (A2) are
not linearly independent if r̄n are non-equidistant. This produces spurious contributions to the
regularized correlation Ŵx(r̄e, τm)(1). The iterative procedure applied to a discrete signal comprises
of the following steps:36 (i) the discrete sinc transform is applied to the original irregularly sampled
correlation in space, Wx(r̄n, τm), at each time separation τm, (ii) the inverse sinc transform is applied
to the initial guess of the reconstructed correlation, Ŵx(r̄e, τm)(1). The result is Wx(r̄n, τm)(1), which
is defined on the original set of samples, r̄n. If the reconstructed signal is bandlimited to π/∆r̄e, the
inverse transform does not produce additional errors because it is applied to the regularly spaced set
r̄e, where the coefficients are linearly independent.38 (iii) The residual at the first iteration ε(r̄n, τm)(1)
is found from the difference between Wx(r̄n, τm)(1) and Wx(r̄n, τm), (iv) the residual is transformed
to the regular set r̄e, to produce ε̂(r̄e, τm)(1), and (v) this is subtracted from the initial guess of
Ŵx(r̄e, τm)(1) in order to reduce the effect of nonlinearities. The result is the improved estimate
Ŵx(r̄e, τm)(2). The steps (ii)–(v) can be repeated until the residual becomes sufficiently small.

The inverse transform (step (ii)) of Ŵx(r̄e, τm)(κ) at the κth iteration is written as

Wx(r̄n, τm)(κ) =
Nx−1

e=−Nx+1

Ŵx(r̄e, τm)(κ)sinc


2(r̄n − r̄e)
Γ∆r̄e


. (A3)

The residual ε(r̄n, τm)(κ) (step (iii)) is given by

ε(r̄n, τm)(κ) = Wx(r̄n, τm)(κ) −Wx(r̄n, τm). (A4)

The discrete transform applied to ε(r̄n, τm)(κ) (step (iv)) produces the correction at the κth iteration,

ε̂(r̄e, τm)(κ) =
Nx−1

n=−Nx+1

ε(r̄n, τm)(κ)sinc


2(r̄e − r̄n)
Γ∆r̄e


. (A5)
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The improved estimate at the iteration κ + 1 (step (v)) is

Ŵx(r̄e, τm)(κ+1) = Ŵx(r̄e, τm)(κ) −ϖε̂(r̄e, τm)(κ), (A6)

where ϖ is an under-relaxation factor that controls the convergence, and ε̂(r̄e, τm)(κ) can serve as a
convergence parameter.

The experimental results presented in this paper were obtained following the above procedure,
where Γ = 2. The same procedure was repeated in the y-direction, where ∆r̄e = Ly/(Ny − 1). Ly and
Ny have the same meaning of Lx and Nx, but in the y-direction. The convergence was considered
to be reached when the maximum correction, ε̂(r̄e, τm)(κ), over the whole range of (r̄e, τm) became
smaller than 1% of the maximum of the correlation function, Wx(r̄n, τm), the latter value being equal
to 1. ϖ was set equal to 0.1 in order to reach the convergence in usually less than 200 iterations.
Larger values of the under-relaxation factor made the iteration procedure unstable. The correction
was found diverging in the region where the density of points r̄n was smaller if a stricter convergence
criterion was chosen, which was attributed to numerical instability. Fig. 3 shows the comparison
between Wx(r̄n, τm) and the last iteration of Ŵx(r̄e, τm)(κ) for one single realization when τm = 0, and
κ = 183, with flow condition 11 (see Table II).
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