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Abstract

Recently, a new functional analytic construction of quasi-free states for a
self-dual CAR algebra has been presented in [FiRe16]. This method relies on the
so-called strong mass oscillation property. We provide an example where this
requirement is not satisfied, due to the nonvanishing trace of the solutions of the
Dirac equation on the horizon of Rindler space, and we propose a modification of
the construction in order to weaken this condition. Finally, a connection between
the two approaches is built.
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1 Introduction

The algebraic approach is a mathematically rigorous scheme which is especially
well-suited for formulating quantum theories also on globally hyperbolic spacetimes
– see [Fu89, Ha12, DG13, BDFY15] for textbooks, [BDH13, HS13, FrRe16] for recent
reviews and [DMP09, DMP11, SDH14, DNP16, DP14, BBSS15] for some applications.
The quantization of a theory in the algebraic approach is based on two steps. The
first consists of the assignment to a physical system of a ∗-algebra of observables
which encodes structural properties such as causality, dynamics and the canonical
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commutation/anticommutation relations. The second step calls for the identification
of an algebraic state, which is a positive, linear and normalized functional on the
algebra of observables. The image of an algebra element under the action of a state
is interpreted as the mean value of the associated observable on that state: In this
way, it is possible to recover the usual probabilistic interpretation proper of quantum
theories. However, not every state can be regarded as physically relevant. It is
widely accepted that a criterion to single out the physical ones is to require the
so-called Hadamard condition [GK89, Wa94, FV13] The reasons for this choice are
manifold: For example, it implies the finiteness of the quantum fluctuations of the
expectation value of every observable and it allows to construct Wick polynomials
following a covariant scheme, see [HW02] or [KM15] for recent reviews. Thanks to
the seminal work of Radzikowski [Ra96a, Ra96b], the Hadamard condition has been
translated into the language of microlocal analysis, as a constraint on the wavefront
set of the bidistribution associated to the two-point function of the state. Nowadays,
several methods to construct Hadamard states are known, see for example [FSW78,
FNW81, DMP06, GW14, GW16, BDM14, WZ14, DD16]. Yet there are several,
physically interesting scenarios which have not been analyzed. In a recent paper
[FiRe16] a new functional analytic construction of quasi-free states for a massive
Dirac field in a general class of globally hyperbolic spacetimes was proposed. This
method takes advantage of the results in [Ar71], in particular, the one proving that the
construction of a projection operator in a Hilbert space is equivalent to the assignment
of a pure, quasi-free state on a CAR ∗-algebra. In particular, the procedure calls for
the identification of a specific operator, dubbed Fermionic Projector. In a few words,
it works as follows: Consider both the Dirac equation with the mass m varying
parametrically and its smooth solutions, which are chosen to be spacelike compact
as well as compact in m. Such set can be completed to Hilbert space with respect to
the scalar product induced by integration both over the manifold and over the mass.

Subsequently we assume the so-called strong mass oscillation property, that is a
constraint on the decay rate at infinity of the solutions of the massive Dirac equation
after integration over the mass. As a by-product this leads to the identification on the
space of such solutions a continuous sesquilinear form. By applying Riesz theorem,
this is tantamount to the assignment of a family of bounded symmetric operators,
each acting on the subspace of solutions with a specific, fixed value of the mass. The
net advantage of this construction is its independence from any structural property
of the underlying background, such as the existence of specific Killing fields. This
method has been successfully applied in [FMR16, FiRe17] to construct a distinguished
Hadamard state for a Dirac field on Minkowski spacetime, in the presence of an
external time-dependent potential, subject to suitable technical constraints. Despite
these successes, an undeniable limitation of this method is the intrinsic difficulty of
proving that the strong mass oscillation property holds true. It has to be checked
case by case, and, in general, there exist spacetimes, e.g., Rinder, where it fails to be
true.
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The goal of this paper is thus twofold. On the one hand we investigate an alter-
native procedure aimed at weakening the strong mass oscillation property, on which
the construction of the Fermionic Projector lies. On the other hand, we use this novel
approach to identify a class of Hadamard states for suitable spacetimes. Our main
idea consists of individuating unitary operators that intertwine the dynamics of two
Green hyperbolic operators differing only by a mass term, extending thus the work of
[DHP17, DD16]. Such operators in combination with an integration over the mass of
the solutions of the Dirac equation defines a new sesquilinear form. This is continuous
in either one or both entries, whenever two modified versions of the mass oscillation
property are satisfied. Once more, on account of the Riesz representation theorem,
such sesquilinear form yields on the Hilbert space, built out of the smooth solutions
of the Dirac equation, a symmetric, linear operator that is unbounded when only the
modified weak mass oscillation property holds, while it is bounded in the other one.
In addition, we construct a pure and quasi-free state on the CAR ∗-algebra associated
to a Dirac field, still using the results of Araki [Ar71], and we discuss whether the
Hadamard condition is satisfied. To prove the robustness of our novel method, we
investigate in detail a concrete example in which the strong mass oscillation property
does not hold true, but the modified weak one does: a massive Dirac field on Rindler
spacetime.

The paper is structured as follows: In Section 2 we outline both the geometric set-
ting necessary to present the Dirac equation and its space of solutions. Subsequently,
we quantize the Dirac field following the algebraic approach. Section 3 is focused on
introducing the results of [FiRe16] while in Section 4, we construct the new class of
modified Fermionic Projector states. Finally, in Section 5 we outline an example in
which only the modified weak mass oscillation property holds.

2 Algebraic approach to quantum Dirac fields

2.1 Dirac operator

To make the present paper sufficiently self-contained, we summarize a few basic struc-
tural properties of spinor fields in curved spacetimes. For more details, we refer to
[Is78, LM89].

Let M be a spacetime, namely a four dimensional, Hausdorff, connected, ori-
entable and time orientable smooth manifold endowed with a smooth Lorentzian
metric g of signature (+,−,−,−). In order for the Cauchy problem of the Dirac
equation to be well-posed, we consider only spacetimes which are globally hyper-
bolic, i.e. they possess a Cauchy surface Σ. This is a codimension 1, achronal
subset whose domain of dependence coincides with the whole manifold. In view of
the analysis in [Is78], the spinor bundle can be defined as the trivial vector bundle
SM

.
= M × C

4. Its dual, the cospinor bundle, is S∗M
.
= M × (C4)∗. Given any

vector bundle E
π
→ M of finite rank, we denote by Γc(E),Γsc(E), Γfc(E), Γpc(E)

and Γtc(E) = Γfc(E) ∩ Γpc(E) the spaces of compact, space-/future-/past-/time-like
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compact elements respectively [Sa13]. Smooth global sections of SM and of S∗M are
called spinors and cospinors respectively. We will indicate with ≺ | ≻ the point-
wise fiber pairing between smooth sections of Γ(SM) and of Γ(S∗M). In addition, we
introduce the γ-matrices {γa}a=0,1,2,3, the choice of which corresponds to fixing an
irreducible representation of the Clifford algebra Cℓ1,3(C). Since each γa is invertible,
we define the adjunction map

A : SM → S∗
M (x, v) 7→ (x, v†γ0), (2.1)

which turns out to be a complex anti-linear vector bundle isomorphism. Here †
indicates the operations of transpose and of conjugation. The covariant derivatives
both for spinors and for cospinors can be introduced as the first order linear partial
differential operators

∇(s) : Γ(SM) → Γ(SM) ∇(s)ψ
.
= Trg(γ∇ψ)

∇(c) : Γ(S
∗
M) → Γ(S∗

M) ∇(c)φ
.
= Trg(∇φγ) .

Here Trg denotes the metric-contraction of the covariant two-tensor γ∇ψ taking values
in Γ(SM). A similar definition applies to ∇φγ taking values in Γ(S∗M). We have
now all necessary tools to introduce the Dirac operator Dβ : Γ(SM) → Γ(SM)

Dβψ
.
= i∇(s)ψ − βψ ,

where β ∈ C∞(M,R). We introduce the sesquilinear form

〈ψ | φ〉
.
=

∫

M

≺ ψ | φ ≻ dµg, (2.2)

for any ψ ∈ Γ(SM), φ ∈ Γ(S∗M) such that ≺ ψ | φ ≻∈ L1(M). Equivalently, we call
D ⋆

β : Γ(S∗M) → Γ(S∗M) the formal adjoint of Dβ , unambiguously defined via

〈
ψ | D ⋆

β φ
〉
= 〈Dβψ | φ〉 ψ ∈ Γ(SM), φ ∈ Γ(S∗

M),

which reads explicitly D ⋆
β φ = −i∇(c)φ− βφ.

2.2 The space of solutions

In this section, we want to characterize the space of smooth, space-like compact
solutions of the Dirac equation. For a complete analysis, we refer to [Ni02, BGP07,
Wa12, Bä14].

Since the Dirac operator Dβ is a prenormally hyperbolic operator [Wr12],
i.e. Dβ ◦Dβ is of hyperbolic type, there exist unique advanced/retarded propagators,
namely continuous operators E±

β : Γpc/fc(SM) → Γpc/fc(SM) such that

E±
β ◦Dβ = Dβ ◦ E±

β = IdSM, supp(E±
β ψ) ⊆ J±(supp(ψ)),
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where J±(O) denotes the causal future/past of O. Taking the difference between the
advanced and the retarded propagator, we can define the causal propagator as
Eβ

.
= E+

β − E−
β : Γtc(SM) → Γ(SM) . As a by-product, the space of smooth, space-

like compact solutions of the Dirac equation, denoted by Sol(Dβ)
.
= Eβ

(
Γc(SM)

)
is

isomorphic to

Sol(Dβ) ≃
Γc(SM)

DβΓc(SM)
. (2.3)

Now, for any ψ1, ψ2 ∈ Sol(Dβ), let (· | ·)(s) be the scalar product defined by

(ψ1 | ψ2)(s)
.
=

∫

Σ
≺ Aψ1 | γµnµψ2 ≻ dµΣ, (2.4)

where Σ is any, but fixed Cauchy surface with future pointing unit normal n. Through-
out the paper the subscript (s) (resp. (c)) denotes spinor (resp. cospinor) quantities.
Since ψ1, ψ2 ∈ Sol(Dβ), the scalar product does not depend on the choice of Σ (we
refer to [BD15] for the details). We denote with H(s),β the Hilbert space obtained
by completing Sol(Dβ) with respect to (· | ·)(s). By duality, the space Sol(D ⋆

β ) of
space-like compact and smooth sections of S∗M such that D ⋆

β φ = 0 is isomorphic to

Sol(D ⋆
β ) ≃ Γc(S

∗
M)/D ⋆

β Γc(S
∗
M). (2.5)

Similarly we denote H(c),β the Hilbert space obtained as the completion of Sol(D ⋆
β )

with respect to (· | ·)(c)
.
= (A · | A ·)(s).

2.3 Algebra of Dirac fields

Having under control the dynamics of a classical Dirac fields, we are ready to quantize
it. Our quantization scheme is based on the so-called algebraic approach to quantum
field theory, initially developed by Haag and Kastler in Minkowski spacetime [HK64]
and later extended to curved backgrounds by Dimock [Di80]. To introduce the alge-
braic approach to Dirac fields, we also profit from[Di82, FV02, DHP09, Sa10, Za14,
BDFY15].

First of all we introduce the unital, universal tensor algebra over C,

Aβ(M, g)
.
=
⊕

n∈N

Sol⊗n
β ,

where Sol⊗0
β ≡ C and Solβ

.
= Sol(Dβ) ⊕ Sol(D ⋆

β ), equipped with the ∗-operation
induced by the anti-unitary involution

Υ : Solβ → Solβ Υ(ψ ⊕ φ)
.
= A−1φ⊕Aψ , (2.6)
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extended per anti-linearity to the whole Aβ(M, g). Here A is the adjunction map
introduced in (2.1). Aβ(M, g) can be equipped with a natural topology as follows:
We require that every fj = ⊕nf

n
j converges to ⊕nf

n in Solβ with respect to the limit
Fréchet topology and that there exists N ∈ N such that fnj vanishes for every n > N
and for every j. We equip Solβ with the scalar product

(ψ1 ⊕ φ1 | ψ2 ⊕ φ2)
.
= (ψ1 | ψ2)(s) + (φ1 | φ2)(c) ,

for any ψ1, ψ2 ∈ Sol(Dβ) and φ1, φ2 ∈ Sol(D ⋆
β ). The algebra of Dirac fields on M

is the unital, topological ∗-algebra obtained by the quotient

Fβ(M, g)
.
=

Aβ(M, g)

I
, (2.7)

where I is the ∗-ideal generated by the abstract elements that satisfy the canonical
anti-commutation relations {ψ1 ⊕ φ1, ψ2 ⊕ φ2} − (ψ1 ⊕ φ1 | ψ2 ⊕ φ2) 1Fβ(M,g), where
1Fβ(M,g) is the unit element of Fβ(M, g). Notice that, since Υ is anti-unitary, the action
of its extension to Aβ(M, g) descends to Fβ(M, g). The algebra of Dirac fields (2.7)
is an example of self-dual CAR algebra. For more details see [Ar71].

2.4 Quasi-free states

The quest to find a representation of the algebra of Dirac fields on a suitable Hilbert
space is a difficult aspect of the algebraic approach to quantum field theory, which
relies on the notion of a state. On Fβ(M, g) this is nothing but a complex linear
functional ω : Fβ(M, g) → C, which is normalized, ω(1Fβ(M,g)) = 1, and positive,
ω(a∗a) ≥ 0 for all a ∈ Fβ(M, g). Once a state has been fixed, the ∗-algebra can
be represented in terms of linear operators on a Hilbert space. This is, indeed, a
consequence of the renown GNS representation theorem for unital ∗-algebras. We
refer to [DHP10, KM15] for more details. Due to the natural grading on Fβ(M, g), a
state is specified once its n-points functions

ωn(f1, . . . , fn)
.
= ω(f1 ⊗ . . .⊗ fn) fj ∈ Solβ j = 1, . . . , n,

are assigned. We focus on quasi-free (or Gaussian) states, namely those whose
n-point functions vanish for odd n, while for even n, they are defined as

ωn([f1], . . . , [fn]) =
∑

σ∈S′
n

(−1)sign(σ)
n/2∏

i=1

ω2

(
[fσ(2i−1)], [fσ(2i)]

)
,

where S′
n denotes the set of ordered permutations of n elements. On account of the

isomorphisms (2.3) and (2.5), we can uniquely associate to ω2 a bidistribution in(
Γc

(
SM⊕ S∗M

)2)′
by means of the relation

ω̃2(u⊕ v, u′ ⊕ v′)
.
= ω2(ψu ⊕ φv, ψu′ ⊕ φv′),
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where ψu(′)
.
= Eβu

(′), φv(′)
.
= E∗

β v
(′) where u, u′ ∈ Γc(SM), v, v′ ∈ Γc(S

∗M) while
Eβ, E

∗
β are the causal propagator for Dβ and D⋆

β respectively (see section 2.2). A
characterization of the quasi-free states on Fβ(M, g) was obtained by H. Araki in
[Ar71]:

Lemma 2.1. Let Q be a linear bounded operator on Hβ
.
= H(s),β ⊕H(c),β satisfying:

0 ≤ Q = Q∗ ≤ 1, Q+ΥQΥ = IHβ
. (2.8)

Then

ω2(Υf, g) = (f | Qg) ∀f, g ∈ Solβ ,

defines a quasi-free state on Fβ(M, g). Conversely, for every quasi-free state on
Fβ(M, g) there exists a bounded linear operator Q on Hβ fulfilling (2.8).

It is widely accepted that, among all possible states, the physical ones are re-
quired to satisfy the Hadamard condition [Ra96a, BFK96, FV13], namely a state ω
on Aβ(M, g) is said to be of Hadamard form if and only if the two-point bidistri-
bution ω̃2 satisfies:

WF(ω̃2) = {(x, y, kx,−ky) ∈ T ∗
M

2\{0}| (x, kx) ∼ (y, ky), kx ✄ 0},

where (x, kx) ∼ (y, ky) means that there is a null geodesic γ connecting x to y, such
that kx is cotangent to γ at x and ky is the coparallel transport along γ of kx from
x to y. In addition, kx ✄ 0 selects future pointing covectors. Since we deal with
vector-valued distributions, the standard convention for the wavefront set is to take
the union of the wavefront set of its components in an arbitrary but fixed local frame.
It turns out that this definition does not depend on the chosen local frame, see [SV01]
. For completeness and historical reasons, we remark that this condition can also be
characterized in any geodesically convex neighborhood. We refer to [FSW78, FNW81]
for more details.

3 Fermionic Projector

The aim of the section is to focus on the construction of the so-called Fermionic
Projector. To achieve our goal, we refer to an earlier work due to Finster and
Reintjes [FiRe16], though we also benefit from [FMR16].

Let α ∈ R \ {0} and Iα ⊆ R \ {0} be an open interval containing α. Consider
an arbitrary but fixed Cauchy surface Σ and let Ψ0 ∈ C∞

c (Σ × Iα,C
4) be a smooth

compactly supported function on Σ×Iα. Solving for every β ∈ Iα the Cauchy problem

DβΨ(x, β) = 0 Ψ(x, β)
∣∣
Σ
= Ψ0 ,
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we obtain a family Ψ of solutions of the Dirac equation for a variable mass parameter
β ∈ Iα in the class C∞

sc,c(M× Iα,C
4). We endow the C-vector space built out of such

families of solutions with the following scalar product

(Ψ1 | Ψ2)Iα
.
=

∫

Iα

(Ψ1,β | Ψ2,β)(s) dβ, (3.1)

where dβ is the Lebesgue measure and (· | ·)(s) is the scalar product defined in (2.4),
which involves integration over Σ. Taking the completion of such space, we obtain
the Hilbert space H(s),Iα : It contains measurable families Ψ

.
= (Ψβ)β∈Iα such that

Ψβ ∈ H(s),β for almost all β ∈ Iα and Ψβ|Σ is square integrable on any Cauchy surface
Σ. We denote with ‖ · ‖(s),Iα the norm of H(s),Iα .
In H(s),Iα we can distinguish two different dense subspaces. The first one, denoted

SolIα , is the collection of of families Ψ̃
.
= (Ψ̃β)β∈Iα such that Ψ̃β ∈ Sol(Dβ) for almost

all β ∈ Iα. The second one, denoted H(s),∞
.
= C∞

sc,c(M× Iα,C
4)∩H(s),Iα , is built out

of families Ψ
.
= (Ψβ)β∈Iα which are compact in the mass parameter. On H(s),Iα , we

introduce two self-adjoint operators: The first one multiplies by β

T : H(s),Iα → H(s),Iα (TΨ)β
.
= βΨβ .

while the second one, denoted as smearing operator, integrates over β

p : H(s),∞ → Γsc(SM) pΨ(x)
.
=

∫

Iα

Ψβ(x)dβ. (3.2)

Notice that, even if Ψ ∈ SolIα , pΨ 6∈ Sol(Dβ) regardless the choice of β. The smearing
operator plays a central role since it allows to construct the sequilinear form

N : D(N) → C, N(Ψ1,Ψ2)
.
= 〈pΨ1 | pΨ2〉(s)

.
= 〈pΨ1 | ApΨ2〉 , (3.3)

with D(N)
.
= {(Ψ1,Ψ2) ∈ H(s),Iα ×H(s),Iα | 〈pΨ1 | pΨ2〉(s) exists finite} ⊆ H(s),∞ ×

H(s),∞, where 〈 | 〉 is defined in (2.2).

Definition 3.1 ([FiRe16]). The Dirac operator Dα on (M, g) has the weak mass

oscillation property (WMOP) in the interval Iα with domain H(s),∞ if for any
Ψ1 ∈ H(s),∞

1) ∃C = C(Ψ1) > 0 such that

| 〈pΨ1 | pΨ2〉(s) | ≤ C(Ψ1)‖Ψ2‖(s),Iα ∀Ψ2 ∈ H(s),∞ (3.4)

2) it holds

〈pTΨ1 | pΨ2〉(s) = 〈pΨ1 | pTΨ2〉(s) ∀Ψ1,Ψ2 ∈ H(s),∞. (3.5)
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Whenever N satisfies the WMOP, we can represent it as the linear symmetric operator
S : H(s),∞ → H(s),Iα , namely

N(Ψ1,Ψ2) = (SΨ1 | Ψ2)Iα . (3.6)

We stress that the integral on the left hand side of equation (3.6) is over M while the
one on the right hand side is taken on an arbitrary but fixed Cauchy surface Σ. We
refer to S as the Fermionic Signature operator. We want to underline that up
to this stage, we are not able to define a self-adjoint operator on H(s),α. Therefore a
stronger condition is needed.

Definition 3.2 ([FiRe16]). The Dirac operator Dα on (M, g) possesses the strong

mass oscillation property (SMOP) in the interval Iα with domain H(s),∞ if there
exists a constant C > 0 such that

| 〈pΨ1 | pΨ2〉(s) | ≤ C

∫

Iα

‖Ψ1,β‖(s)‖Ψ2,β‖(s)dβ ∀Ψ1,Ψ2 ∈ H(s),∞. (3.7)

The SMOP plays a crucial role, since it is equivalent to the following two conditions:

(i) for any Ψ1, Ψ2 ∈ H(s),∞ it holds (3.5) and

| 〈pΨ1 | pΨ2〉(s) | ≤ C‖Ψ1‖(s),Iα‖Ψ2‖(s),Iα ; (3.8)

(ii) there exists a family (Sβ)β∈Iα , where each Sβ acts on H(s),β as a self-adjoint
linear bounded operator, such that

sup
β∈Iα

‖Sβ‖ < +∞, β 7→ (Ψ1,β | SβΨ2,β)(s) is continuous ∀Ψ1,Ψ2 ∈ H(s),∞

(3.9a)

(SΨ1 | Ψ2)Iα =

∫

Iα

(SβΨ1,β | Ψ2,β)(s) dβ ∀Ψ1,Ψ2 ∈ H(s),Iα . (3.9b)

For the technical details, we refer to Theorem 4.2 and to Proposition 4.4 in [FiRe16].
As a direct consequence of (3.8), the SMOP implies the WMOP. Moreover, in formula
(3.9b) a bounded, symmetric operator Sα onH(s),α is defined. Using spectral calculus,
we can define the Fermionic Projector to be

ΠFP
.
= χ(Sα) =

∫

σ(Sα)
χ(λ) dµλ : H(s),α → H(s),α ,

where χ is the Heaviside step function, while dµλ is spectral measure associated to
Sα.
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Remark 3.3. Out of the Fermionic Projector, we can construct a quasi-free state
on the algebra of Dirac fields. This can be done by defining the operator Q

.
= ΠFP ⊕

(IH(c),β
−AΠFPA

−1) on Hβ . By direct inspection it satisfies both conditions in (2.8);
hence, applying Lemma 2.1, we obtain a quasi-free state denoted by ωFP. We refer to
it as FP state.
On a generic spacetime, this construction can be thought as a generalization of the
frequency splitting for the Hamiltonian of the theory and on Minkowski spacetime,
the usual vacuum state is recovered. In general, it is not clear if the state ωFP will
be Hadamard or not. However, there are already explicit cases [FMR16, FiRe17] in
which the construction is known to enjoy this property.

4 Modified Fermionic Projector state

From the mathematical point of view, the construction of ωFP depends strongly
on the SMOP, which must be checked case-by-case on each spacetime. It would be
desirable to individuate a weaker requirement for implementing the whole procedure.
In the following we show that this indeed possible, though we have to rely on a non-
canonical construction. This is our main result. The key idea is to avoid the SMOP
by defining a continuous immersion H(s),α →֒ H(s),Iα through a suitable bounded map
Rα. Composing the map p described in (3.2) with Rα, leads to a modified version
both of the SMOP and of the WMOP. In particular, the modified MOPs are now
formulated directly on H(s),α. Thus it will be enough to check the latter propriety to
define a pure quasi-free state on Fα(M, g).

4.1 Sequence intertwining operator.

In this section we introduce the embeddings Rα : H(s),α → H(s),Iα which are nothing
but a direct sum of “Møller type” maps. These are well known in the literature and
they allow to intertwine the dynamics of two Green hyperbolic operators differing by
a smooth potential. The Møller map was used by Peierls [Pe52] as a general procedure
to define the Poisson brackets for the algebra of observables. Results on the existence
of Møller operators can be found in [BFV09, DF03, DHP17] and references therein.
With this in mind, we introduce first the intertwining map Rβ,α : H(s),α → H(s),β ,
β ∈ Iα, eventually describing its direct sum as a map Rα : H(s),α → H(s),Iα . Consider
two Cauchy surfaces Σ± such that Σ+ lies in the future of Σ−. Let ρ+ ∈ C∞(R) be
a non decreasing function such that ρ+|J+(Σ+) = 1 and ρ+|J−(Σ−) = 0. We introduce
ρ− = 1 − ρ+. For any ψ ∈ Sol(Dα), we define Rβ,αψ ∈ Sol(Dβ) as follows. First
consider the unitary operator which maps the Cauchy data ψ|Σ−

to the corresponding
Cauchy data on Σ+ by evolving it via the dynamics ruled by the Dirac equation
with mass m(β, α) = βρ+ + αρ−. Secondly define Rβ,αψ as the solution of the Dirac
equation with mass β and Cauchy data provided by those previously obtained on Σ+.
The whole procedure can be described explicitly as the composition of the following
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maps:

R+
m,α = Id− E+

m(β − α)ρ+, R−
β,m = Id− E−

β (α− β)ρ−, Rβ,α = R−
β,m ◦R+

m,α,

where E+
m denotes the advanced propagator for the Dirac equation with mass m.

Note that (β − α)ρ+, (α− β)ρ−, are past- and future-compact respectively; thus the
composition with E+

m, E−
β is well defined.

The map Rα,β is thus densely defined as a linear unitary map from Sol(Dα) to Sol(Dβ),
whose extension will be denoted again by Rα,β . We define Rα : H(s),α → H(s),Iα by

Rαψ(β)
.
= Rβ,αψ ∈ H(s),β ∀β ∈ Iα, ∀ψ ∈ H(s),Iα . (4.1)

In view of the continuous dependence of the solutions of the Dirac equation on the
mass parameter (see [Ta11]), the function β 7→ Rβ,αψ is integrable in the sense
required by the definition of H(s),Iα : Furthermore

‖Rαψ‖
2
Iα =

∫

Iα

‖Rβ,αψ‖
2
(s)dβ = |Iα|‖ψ‖

2
(s) <∞,

thus proving that Rαψ ∈ H(s),Iα and that Rα is an almost isometric linear bounded

operator from Hα to H(s),Iα , with ‖Rα‖ =
√

|Iα|. We refer to Rα as the sequence
intertwining operator.

4.2 Modified Mass Oscillation properties.

The sequence intertwining operator (4.1) allows formulating the mass oscillation prop-
erties directly on H(s),α. Notice that, for any ψ ∈ H(s),α, the element Rαψ lies in
SolIα but a priori not in H(s),∞ since we have no control on the support properties
of Rαψ as a function of β. Thus, in order to make contact with the Definitions 3.1
and 3.2, we localize Rαψ with an arbitrary smooth, compactly supported function
m ∈ C∞

c (Iα).

Definition 4.1. The Dirac operator Dα on (M, g) has the modified weak mass

oscillation property (mWMOP) in the interval Iα with domain Sol(Dα) if, for any
m ∈ C∞

c (Iα) and ψ1 ∈ Sol(Dα), there exists a constant C(m, ψ1) > 0 such that

| 〈pmRαψ1 | pmRαψ2〉(s) | ≤ C(m, ψ1)‖ψ2‖(s) ∀ψ2 ∈ Sol(Dα). (4.2)

Similarly, Dα on (M, g) has the modified strong mass oscillation property

(mSMOP) in the interval Iα with domain Sol(Dα) if for any m ∈ C∞
c (Iα) there

exists a constant C(m) > 0 such that

| 〈pmRαψ1 | pmRαψ2〉(s) | ≤ C(m)‖ψ1‖(s)‖ψ2‖(s) ∀ψ1, ψ2 ∈ Sol(Dα). (4.3)
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Remark 4.2. We want to stress that comparing Definition 4.1 with Definitions 3.1
and 3.2, we avoid the commutation property (3.5). This is a requirement used to show
the equivalence between the different formulations of the SMOP (3.7-3.8) and it plays
no role in our construction.

We describe now the relation between the new modified MOP and the properties
introduced in Definition 3.1 and 3.2.

Corollary 4.3. The modified mass oscillation properties are weaker requirements
than the mass oscillation property, namely the following diagram holds

SMOP

��

WMOP+3

��

mSMOP mWMOP .+3

Proof. Let be Ψ1,Ψ2 ∈ H(s),∞ and let ψ1, ψ2 ∈ Sol(Dα). The horizontal arrows
descend taking C(Ψ1) = C||Ψ1||(s),Iα in (3.4) and C(m, ψ1) = C(m)‖ψ1‖(s) in (4.2).
In order to show that SMOP⇒mSMOP (and similarly for the weak properties), it is
enough to substitute Ψ1 = mRαψ1, Ψ2 = mRαψ2 in (3.8) and to use1 ‖mRαψ‖Iα =
‖m‖L2(Iα)‖ψ‖(s). This proves that the m-WMOP is a proper weaker requirement than
both the SMOP and the WMOP.

4.3 New classes of Fermionic Projectors.

In this section, we describe how to build a quasi-free state from the modified MOPs.
For sake of completeness, we first discuss the case in which the mSMOP holds true.
Eventually, we focus on the case where only the mWMOP holds true. We stress that
the main point here is to provide a construction of a state which also holds in cases
where the method of [FiRe16] cannot be applied immediately.

Theorem 4.4. If the mSMOP holds true, then, for any m ∈ C∞
c (Iα), there exists

a unique self-adjoint operator sα,m : H(s),α → H(s),α, henceforth called modified

Fermionic Signature operator, defined by

(sα,mψ1 | ψ2) = 〈pmRαψ1 | pmRαψ2〉(s) ∀ψ1 ∈ Sol(Dα),∀ψ2 ∈ H(s),α. (4.4)

The spectral decomposition of sα,m yields a spectral projector

ΠmFP = χ(sα,m) : H(s),α → H(s),α (4.5)

and hence a quasi-free state ωmFP : Fβ(M, g) → C.
1With a little more effort, one may prove that SMOP implies that, there is a constant C > 0 such

that, for any ψ, φ ∈ Sol(Dα), it holds | 〈pRαψ | pRαφ〉(s) | ≤ C‖ψ‖(s)‖φ‖(s). Since this alternative
modified SMOP plays no role in the following, we will stick to the “localized” definition, which allows
a more direct comparison between MOPs and mMOPs.
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Proof. If the mSMOP holds true then, for any m ∈ C∞
c (Iα), by (4.3) we can define

a linear bounded operator sα,m : H(s),α → H(s),α defined via Riesz Theorem. Indeed
(4.3) assures that, for any ψ1 ∈ Sol(Dα), ψ2 7→ 〈pmRαψ1 | pmRαψ2〉(s) is a densely
defined continuous linear functional. After extension on H(s),α we can apply Riesz
Theorem to obtain

(sα,mψ1 | ψ2) = 〈pmRαψ1 | pmRαψ2〉(s) ∀ψ1 ∈ Sol(Dα),∀ψ2 ∈ H(s),α,

where we already made explicit the linear dependence on ψ1 of the element sα,mψ1 ∈
H(s),α. Thus, we have found the modified Fermionic Signature operator, namely a
linear map sα,m : Sol(Dα) → H(s),α, which is also symmetric on account of (4.4).
Notice that this procedure only makes use of the bound on ψ2: Hence it is valid also
in the case where the mWMOP holds true (see (4.2)). In the case of the mSMOP,
we can also conclude that sα,m is bounded, actually ‖sα,m‖ ≤ C(m). We have thus
a self-adjoint operator sα,m : H(s),α → H(s),α, whose spectral decomposition allows
to define a projector ΠmFP = χ(sα,m). From it we can construct a state, ωmFP by
applying Lemma 2.1, once we defined

Q
.
= ΠmFP ⊕ (IH(c),β

−AΠmFPA
−1),

where A as been introduced in (2.1) . This completes the construction of the modified
Fermionic Projector state in the case of the mSMOP.

We deal now with the case in which the mWMOP holds true but not the mSMOP.

Theorem 4.5. If the mWMOP holds true, then there exists a densely defined, sym-
metric operator sα,m : H(s),α → H(s),α. Moreover we obtain a quasi-free state
ωmFP : Fβ(M, g) → C out of the operator ΠmFP : H(s),α → H(s),α defined by

ΠmFP =
1

2

∫

σ(s2
α)
ρ−

1
2 (sα + ρ

1
2 ) dµρ (4.6)

where dµ is the spectral measure associated to sα.

Proof. Following the first part of the proof of Theorem 4.4, the mWMOP in combi-
nation with the Riesz representation Theorem allow us to introduce, for all choices
of m ∈ C∞

c (Iα), a densely defined symmetric linear operator sα,m

(sα,mψ1 | ψ2) = 〈pmRαψ1 | pmRαψ2〉(s) ∀ψ1 ∈ Sol(Dα),∀ψ2 ∈ H(s),α.

However, this time we have a priori no boundedness condition on sα,m . Nevertheless,
we can still use techniques similar to the ones used in [FiRe16] (cfr. Section 3.2)
to obtain the projector ΠmFP. First we use the Friederich method to construct a
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self-adjoint extension for s2α (see [La02] for more details); subsequently we define a
spectral projector of sα as

ΠmFP
.
= χ(sα)

.
=

1

2
√
s2α

(
sα +

√
s2
α

)
=

1

2

∫

σ(s2
α)
ρ−

1
2 (sα + ρ

1
2 ) dµρ,

where dµ is the spectral measure associated to sα. As before, we obtain the quasi-free
state ωmFP by introducing Q

.
= ΠFP ⊕ (IH(c),β

− ΥΠFPΥ) and by applying Lemma
2.1.

Remark 4.6. Whenever the modified Fermionic Signature operator sα,m is also self-
adjoint, formula (4.6) is reduced to (4.5).

To conclude this section we analyze of the Hadamard condition for the class of
states ωmFP. A general treatment would lead to a case-by-case analysis because it is a
priori not clear which class of globally hyperbolic spacetimes M enjoys the modified
strong/weak Mass Oscillation Properties. Nevertheless, a positive answer can be
obtained whenever the FP state ωFP satisfies the Hadamard condition. This entails
that our construction leads to a new class of Hadamard states.

Theorem 4.7. Let assume that the SMOP holds true on the interval Iα and that
the states ωFP,β constructed out of ΠFP,β

.
= χ(Sβ) satisfy the Hadamard condition

for all β ∈ Iα. Then the state ωmFP constructed out of ΠmFP

.
= χ(sα,m) satisfies the

Hadamard condition.

Proof. First, we make connection with the construction of [FiRe16], in particular we
discuss the relation between the operators S and sα,m . Let assume that the SMOP
holds true. For any ψ1, ψ2 ∈ Sol(Dα) it holds

(sα,mψ1 | ψ2) = 〈pmRαψ1 | pmRαψ2〉(s)

=(SmRαψ1 | mRαψ2)Iα =
(
(mRα)

†
SmRαψ1 | ψ2

)
.

Thus we find sα,m = (mRα)
†SmRα or explicitly

sα,mψ1 =

∫

Iα

dβ|mβ|
2R†

β,αSβRβ,αψ1 .

Since Rβ,α is unitary one finds that

ΠmFP
.
= χ(sα,m) =

∫

Iα

dβ|mβ |
2R†

β,αΠFP,βRβ,α , ΠFP,β
.
= χ(Sβ) .

Since by hypothesis ΠFP,β leads to a Hadamard state, one can use standard arguments
on the propagation of singularities (see [DD16, Theorem 4.1] or [Mu17, Theorem 5.2.1]

to infer that R†
β,αΠFP,βRβ,α satisfies the Hadamard property. Since the integration

over β does not affect the singular behavior of the state, we obtain that ωmFP satisfies
the Hadamard condition.
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Remark 4.8. (i) The hypothesis of Theorem 4.7 are satisfied in Minkowski spacetime
in the presence of a time-dependent external field [FMR16] and of a plane electro-
magnetic wave [FiRe17].
(ii) Variations on the construction of ωmFP can be obtained by varying the spectral
function χ in the definition of ΠmFP . Indeed, any real-valued bounded function f on
the spectrum of sα,m would lead to a state ωmFP,f constructed out of f(sα,m). The
arbitrariness of f can be used in concrete examples to select states ωmFP,f satisfying
the Hadamard condition, in the spirit of [FL15].
(iii) By construction, our procedure depends on the chosen mass cut-off m ∈ C∞

c (Iα).
Definition 4.1 allows to perform the construction of ωmFP for any choice of m, but
it does not fix any continuous dependence of this latter parameter. 2 Thus we do
not expect, in general, to be able to perform a limit m → 1 which would remove the
dependence on m.
Finally, notice that for the whole construction of the Fermionic Signature operators
Sα and sα, we restricted ourself to the case of constant mass α. In the case of non-
constant α ∈ C∞(M,R) we can still successfully apply the intertwining operator Rβ,α,
but it is not immediately clear what should be the analogous of the space H(s),Iα . One
may try to consider β ∈ C∞(M,R)∩L2(M, g), thus inducing a Gaussian measure on
that space: The space H(s),Iα may than be defined as in Section 3 with dβ substituted
by the Gaussian measure.

5 Rindler spacetime and the mass oscillation properties

We describe now an explicit example to construct a modified Fermionic Projector
state which could not have been dealt in [FiRe16]. More precisely, we consider a
spacetime where neither the SMOP nor the WMOP holds true, while the mWMOP
does.

Let M be the four dimensional Minkowski spacetime and let R be the Rindler
spacetime, defined as

R
.
= {(t, x, y, z) ∈ M | |t| ≤ x} .

R is globally hyperbolic spacetime and a foliation by smooth Cauchy hypersurfaces
can be given, fixing hyperbolic coordinates (t, x, y, z) = (r sinh(s), r cosh(s), y, z),
as Σs0 = {s = s0}. We prove now that, while the SMOP holds true on M (see
[FiRe16, FMR16]), it does not in R. The reason is the failure of (3.5) on the latter
space. Thus none of the mass oscillation properties introduced in the Definitions 3.1
and 3.2 can be satisfied. Nevertheless, we show that the inequality (3.4) still holds
true, thus implying the validity of the mWMOP.
First, we focus on (3.4): The proof follows the same path described in [FiRe16,
FMR16] in the case of Minkowski spacetime. This is related to the observation that a

2One could modify the definition of both mWMOP and mSMOP to avoid the mass cut off m,
but this would create additional difficulties in the comparison between the mMOPs and the original
MOPs.
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spacelike compact solution ψR ∈ Sol(Dα)R of the Dirac equation in Rindler spacetime
can be obtained by restriction of a spacelike compact solution ψM ∈ Sol(Dα)M of the
same equation on the whole Minkowski spacetime. Moreover the norm of ψR in the
space Sol(Dα)R coincides with the norm of ψM on Sol(Dα)M , i.e. ‖ψR‖R = ‖ψM ‖M .
We can write ψR = 1RψM , being 1R the characteristic function of R.

Proposition 5.1. In Rindler spacetime, the weak and the strong mass oscillation
properties do not hold, while the modified weak mass oscillation property (4.2) does.

Proof. We first prove that (3.4) holds true on R. Let ΨR,ΦR ∈ H(s),∞,R be two
families of solutions of the Dirac equation on R with spacelike compact support
which are also compactly supported in the mass parameter, as described in Section
3 (the index R stresses that the latter space is the one obtained regarding R as the
ambient space). Let NR : D(NR) → C, be the sesquilinear form introduced relatively
to Rindler space:

NR(ΨR ,ΦR) = 〈pΨR |pΦR〉R =

∫

R

≺ pΨR | ApΦR ≻ dµh,

being dµh the induce volume measure on R and being

D(NR)
.
={(ΨR ,ΦR) ∈ H(s),∞,R ×H(s),∞,R | 〈pΨ1 | pΨ2〉(s) exists finite}

⊆ H(s),∞,R ×H(s),∞,R.

Exploiting the relation between ΨR and ΨM , we find

|NR(ΨR ,ΦR)| =

∣∣∣∣
∫

M

≺ pΨM | A1RpΦM ≻ dµg

∣∣∣∣

=

∣∣∣∣
∫

R

∫

Σt

≺ pΨM | A(γ0)21RpΦM ≻ |ΣtdµΣdt

∣∣∣∣

=

∣∣∣∣
∫

R

(
pΨM |Σt | γ

01RpΦM |Σt

)
t
dt

∣∣∣∣ ,

where in the last equality we have fixed the foliation of M in terms of the Cauchy
hypersurfaces Σt = {t = constant} (note that such hypersurfaces are not Cauchy hy-
persurfaces for R). The scalar product (· | ·)t is the (time dependent) scalar product
on L2(Σt), formally equal to (2.4). However, note that

(
pΨM |Σt | γ

01RpΦM |Σt

)
t
is

not time independent since none of the functions involved is a solution of the Dirac
equation. Nevertheless, for any t ∈ R, both pΨM |Σt and 1RpΦM |Σt lie in L2(Σt).
Thus, by applying the Schwarz and the Hölder inequalities

|NR(ΨR ,ΦR)| ≤

∫

R

‖pΨM |Σt‖t‖pΦM |Σt‖tdt.
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As discussed in Lemma 3.1 in [FMR16], we can control the latter integrands with

‖pΦM |Σt‖t ≤
√

|Iα|‖ΦM ‖Iα =
√

|Iα|‖ΦR‖Iα , ‖pΨM |Σt‖t ≤
C(ΨM )

1 + t2
,

where the constant C(ΨM ) depends on the spatial Sobolev norm of ΨM |Σt . We can
conclude that

|NR(ΨR ,ΦR)| ≤ c(ΨM )‖ΦR‖Iα . (5.1)

Thus (3.4) holds true and on account of Remark 4.2 the mWMOP follows immedi-
ately.
We prove now that condition (3.5) fails: Using TΨR(β) = DβΨR(β), partial integra-
tion gives a boundary term

NR(TΨR ,ΦR)−NR(ΨR ,TΦR) =

∫

∂R

≺ pΨM | pΦM ≻ |∂R ,

where ∂R
.
= {(t, x, y, z) ∈ M | |t| = x}. To show that this latter contribution does

not vanish in general, we observe that
∫

∂R

≺ pΨM | pΦM ≻ |∂R = i

∫

Iα

dβ

∫

Iα

dβ̃

∫

R2

dx⊥

∫ +∞

0
ds
[
(ψβ(γ

1 − γ0)φ
β̃
)(s, s, x⊥)

+(ψβ(γ
1 + γ0)φ

β̃
)(−s, s, x⊥)

]
, (5.2)

where ψβ(t, x, x⊥) = ΨM (t, x, x⊥, β) and φ
β̃
(t, x, x⊥) = ΦM (t, x, x⊥, β̃). Note that,

since ψβ , φβ̃ are solutions on R, the integrand vanishes if s 6∈ (0,+∞). Therefore we
can extend the integral over the whole real line. Without loss of generality, we choose
ψβ and φ

β̃
as positive frequency solutions, namely

ψβ(t, x, x⊥) =

∫
dk⊥

∫
dkc+(k, k⊥, β)e

−iωteikxeik⊥x⊥ ,

φ
β̃
(t, x, x⊥) =

∫
dk⊥

∫
dkc̃+(k, k⊥, β̃)e

−iω̃teikxeik⊥x⊥

(5.3)

with ω2 = k2 + |k⊥|
2 + β2 (resp. ω̃2 = k2 + |k⊥|

2 + β̃2) and c+ (resp. c̃+) a suitable
smooth function in k which is compactly supported in the mass variable β (resp. β̃).
For simplicity, we also assume that c+ and c̃+ are symmetric in the k variable. Later
on, we will argue that the dependence on the mass parameter can be chosen in such a
way that the integral in (5.2) does not vanish. Using the Fourier representation (5.3)
in (5.2), we find

∫

R2

dx⊥

∫

R

ds
[
(ψβ(γ

1 − γ0)φ
β̃
)(s, s, x⊥) + (ψβ(γ

1 + γ0)φ
β̃
)(−s, s, x⊥)

]

=

∫

R2

dk⊥

∫

R

dk

∫

R

dp
[
δ(k− − p−)c+(k, k⊥, β)(γ

1 − γ0)c̃+(p, k⊥, β̃)

+δ(k+ − p+)c+(k, k⊥, β)(γ
1 + γ0)c̃+(p, k⊥, β̃)

]
, (5.4)
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where k± = ω ± k, p± = ω̃ ± p. Changing variables and exploiting the symmetry of
c+, c̃+ in k we are lead to

(5.4) = 2

∫ +∞

0
dk r(k, k⊥, β)r(k, k⊥, β̃)c+

(
k2 − β2(k⊥)

2k
, β

)
γ1c̃+

(
k2 − β̃2(k⊥)

2k
, β̃

)
,

where β2(k⊥) = β2 + |k⊥|
2 and r(k, k⊥, β) =

k2+β2(k⊥)
2k2

. It is then enough to choose

c+, c̃+ in such a way that r(k, k⊥, β)c+

(
k2−β2(k⊥)

2k , β
)

is the total derivative in the

mass parameter β of a smooth function in β which, at β = sup Iα, is equal to a
positive fast decreasing function in k, while it vanishes at β = inf Iα. The integral is
thus nonvanishing.

This implies that the SMOP cannot be satisfied and hence it is not possible to
construct the Fermionic Projector. Nonetheless (5.1) is a sufficient condition for the
realization of the mWMOP.
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[DG13] J. Dereziński, and C. Gérard, “Mathematics of quantization and quantum fields.”
Cambridge University Press, (2013)

[Di80] J. Dimock, “Algebras of local observables on a manifold.” Commun. Math. Phys. 77,
219 (1980)

[Di82] J. Dimock, “Dirac quantum fields on a manifold.” Trans. Amer. Math. Soc. 269 133
(1982)

[DHP17] N. Drago, T.-P. Hack and N. Pinamonti, “The generalised principle of perturbative
agreement and the thermal mass.” Annales Henri Poincare 18, 807 (2017)

[DP14] N. Drago and N. Pinamonti, “Influence of quantum matter fluctuations on geodesic
deviation.” J. Phys. A 47 375202 (2014)

19
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