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Abstract

Machine learning has become one of the most emerging topics in a lot of research areas,
such as pervasive and ubiquitous computing. Such computing applications always rely
on the supervised learning approach to recognize user’s context before a suitable level
of services are provided. However, since more and more users are involved in modern
applications, the monitored data cannot be guaranteed to be always true due to wrong
information. This may cause the mislabeling in machine learning and so affects the
prediction. The goal of this Ph.D. thesis is to improve the data quality and solve the
mislabeling problem caused by considering non-expert users. To achieve this goal, we
propose a novel algorithm, called Skeptical Learning, aiming at interacting with the
users and filtering out anomalies when an invalid input is monitored. This algorithm
guarantees the machine to use the pre-known knowledge to check the availability of its
own prediction as well as the label provided by the users. This thesis clarifies how we
design this algorithm and makes three main contributions: (i.) we study the predictability
of human behavior through the notion of personal context; (ii.)we design and develop
Skeptical Learning as a paradigm to deal with the unreliability of users when providing
non-confidential labels that describe their personal context; (iii.) we introduce an MCS
platform where we implement Skeptical Learning on top of it to solve unreliable labels
issue. Our evaluations have shown that Skeptical Learning could be widely used in
pervasive and ubiquitous computing applications to better understand the quality of the
data relying on the machine knowledge, and thus prevent mislabeling problem due to
non-expert information.

Keywords: Machine learning, ubiquitous and mobile computing, fixing mislabeling,
mobile information processing system
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Chapter 1

Introduction

1.1 The Context

With the development of mobile devices, many different sensors are embedded in smart-
phones and variant applications are installed. Smartphones are becoming a more and
more important part of people’s daily life. Applications on smartphones, such as personal
assistant, smart home monitor and healthcare monitor, are designed to make people’s life
more convenient and easier. There are tons of applications working on people’s phone
nowadays. Here we give some examples of a few categories. For example, these map
applications, e.g., Google map1 and Baidu map2, can give the user suggested paths to his
destination. The user could select one of them basing on what he need. For example, the
user may choose the one with the shortest distance because he does not want to walk too
much, or the one that will take the least time because he wants to arrive there earlier, or
the one with a set of location points included because these are the places that he wants
to pass by. There are some applications or systems for health-care purpose. For instance,
TrackYourTinnitus (TYT), TrackYourHearing (TYH), TrackYourDiabetes (TYD), and
TrackYourStress (TYS) keep track of the progress of users’ hearing loss, diabetes, or
stress level, respectively [56]. This helps the users to be more aware of symptom changes
in specific contexts. Another type of the applications focuses on smart environment.
These applications allow the user to control and monitor the devices in a certain space.
For example, work in [73] described a smartphone application that can be connected

1https://maps.google.com
2https://map.baidu.com
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with the home gateway remotely, thus the user can control and monitor the devices in
home, and manage schedules. Some of the applications provide certain services at certain
time wherever the user is and whatever the user is doing. As you may notice, these
applications may interrupter the user at an inappropriate time. It can be smarter if they
can offer the user appropriate assistance at a right moment. This requires the application
or system to understand the user’s current context before providing further services.

Automatic recognition of personal context is one of the approaches to realize the
context-aware applications or systems, which “use context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task” according to
the definition of context-awareness in [21]. For instance, if an application, working
on user’s phone as his personal smart assistant, is aware that the user is alone at home
according to the noise detection, and is in an important online meeting according to his
agenda, it should keep the smartphone in a quiet mode to avoid potential interruption of
incoming call or message. When it detects that the user has been sit for a long time, it
should remind the user to have a break, as a real assistant will do. Even better, if this
application also have access to the information from third part, such as the user’s smart
refrigerator, and detects that there is no enough food for today, it could remind the user
and suggest him to order a take-away lunch.

1.2 The Problem

Another example of a context-aware application is when the application detects that the
user is in an environment which need to be quiet, such as a Church or a library, it should
not push information or messages to the user with a ringer and turn the phone to a quiet
mode automatically. A simple solution is to keep track of the user’s location by reading
the GPS data from the phone. But it is not always a good solution when the location is not
detectable or multiple activities could happen in the same location. One more complicate
example is that when the smartphone detects that the user is in his office area, it should
push message quietly if the user is in a meeting, but it should also allow the message to
come in with a ringtone if the user is just having a rest or chatting with his colleagues.
Although the term of context recognition in [60, 82] means activity recognition, above
examples shows that personal context recognition is more than only location recognition
or activity recognition. The model of personal context should be designed or chosen
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wisely depending on the need of the task.

Machine learning algorithms are good tools to solve the recognition problem, es-
pecially supervised machine learning. The machine can learn from a labeled data set,
and when it is given a new input, it can output a label as its prediction. The accuracy
of prediction highly depends on the quality of the data set. However, a data set with
high-quality labels are rare to meet in the real world. The implicit assumption made in
(even recent) mainstream machine learning is that annotators are experts. While, with the
fast paced development of mobile devices and the evolution of data collection method,
more and more normal users are involved. Normal-user involvement generates a new set
of challenges. Among them, the biggest one is the data quality, due to the inaccurate
input from non-expert users. This is a phenomenon that relate to the people response

biases, e.g., conditioning, memory bias, and sometimes also unwillingness to report,
cognitive bias, e.g., the inadequate recall of respondents when providing an annotation,
and carelessness, namely not putting enough attention in providing the answer, e.g.,
because of hurriedness [39].

The main problems that we identify in this these are listed below:

• An appropriate context model is needed for the personal context recognition task.

• The quality of the annotations provided by the normal user is usually not high.
Users may make mistakes when they give their labels. And the mislabeling issue
has impact on the performance of the subsequent machine learning algorithms.

• A system or a platform is needed to collect high-quality data by interacting with
the users in real time.

1.3 The Solution

A good designed context model is necessary and fundamental to context recognition
tasks. We propose to use the personal context model which is introduced in [37]. This
model takes into account different dimensions of the environment, namely time, location,
activity being carried out, and social ties. It enables downstream context recognition
tools to leverage the correlations between these dimensions. We then investigate the role
played by this four dimensions (or modalities) of the context model on the predictability
of individuals’ behaviors. A set of data analysis was taken on a data set that generated in
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the SmartUnitn Project. This project was designed to understand the university students’
behaviour, and the annotations of the students’ context was collected together with
the sensor data from their smartphone. The results of the analysis firstly show that
multi-modality model is necessary since it provides more information than the single-
modality ones. It further highlights the fundamental importance of the jointly interplay of
different contextual modalities in behavior analysis. And in turn, it proves the correctness
of selecting multi-modality personal context model. Secondly, the results support the
argument that subjective location is far more informative than objective location for
predicting behavior. Last buy not least, the results of analysis present the diversity of
individuals, and it shows that individuals are more easily identified by rarer, rather than
frequent, context annotations.

To solve the data quality issue caused by non-expert users, we propose a general
algorithm for Skeptical Learning, which interacts with the user and challenges him when
a potential inaccurate of his input is detected. The key idea is that the machine uses the
knowledge it has available to check the correctness of its own prediction and of the label
provided by the user. By keeping track of the sequence of wrong and right answers, the
machine builds a measure of confidence towards itself and the user, which is then used,
in the case of a contradiction, to decide what is actually the case. In this context, by
available knowledge we mean both the knowledge inductively built out of the previous
learning activity and the knowledge which may come from third parties or may be built-in
as a prior knowledge.

To solve the last problem that is identified in this thesis, we propose a general
Mobile Crowd Sensing (MCS) platform that, together with the i-Log application, can
be used to collect sensor data and user’s annotations. And On top of the platform, it
runs the Skeptical Learning algorithm that we proposed to deals with the unreliability of
non-expert users when providing labels.

To be corresponding to the problems, we conclude the main contributions of this
thesis as following:

• We propose to use a multi-modality personal context model. And we evaluate our
model by analysing data collected in SmartUnitn project.

• We propose the Skeptical learning algorithm to deal with the mislabeling issue.

• We propose the architecture of a MCS platform which runs the Skeptical learning
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on the top of it to improve the quality of the data collected from the users.

1.4 The Structure of the Thesis

In Chapter 2 the state of the art on five related research topics are introduced. We firstly
introduce personal context models are designed in other work, and the advantages and
disadvantages of these models. Secondly since in our work the context is mainly about the
student’s life, we introduce some work which study university students’ life in different
ways. In most of traditional machine learning works, that make use of user’s annotation
to train machine, one big challenge is how to deal with the label noise, so we introduce
how label noise issue is solved in other work. We finally introduce the state of the art
work on mobile crowd sensing systems.

Chapter 3 introduces the personal context model that we use in our work. We also
introduce different representation of the personal context, namely endurant and perdurant
context. These concepts are then used to design the personal context annotation. The
main citation of this chapter is [37]. The personal context model we use was firstly
proposed by their work. In this chapter, based on that work, we introduce the concepts
of objective, subjective and machine context additionally. We apply subjective context
when design the annotations, which is from human perception and allows users to give
annotations of their subjective point of view. It was later proven that subjectivity is
necessary for framing behavior from the subject’s perspective, and it has a substantial
effect on predictability and regularity of behavior in practice. Then we introduce the
SmartUnitn projects as use cases since the personal context model was applied in these
experiments. The goal of this series of experiments is to understand how university
students manage their time and how their time management ability affects their academic
performance. We also introduce the design of the experiments, including the population,
the duration, the data collection of these two experiments, and the data sets generated.
The data sets are also the ones we use in the subsequent sections.

In Chapter 4, we firstly introduce the personal context model aiming at capturing the
array of relevant subjective experiences characterizing a specific behavior of an individual.
And then we study the predictability of human behavior through the notion of personal
context. We investigate the role played by four contextual dimensions (or modalities),
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namely time, location, activity being carried out, and social ties, on the predictability of
individuals’ behaviors. This chapter is based on the following publication:

• Wanyi Zhang, Qiang Shen, Stefano Teso, Bruno Lepri, Andrea Passerini, Ivano Bi-
son, and Fausto Giunchiglia. Putting Human Behavior Predictability in Context.[J]

EPJ Data Science, 2021. (Accepted)

In Chapter 5, we introduce the annotation of personal context and the quality issue.
We propose a methodology to evaluate the annotations provided by users. This chapter is
based on the following publication:

• Fausto Giunchiglia, Mattia Zeni, Enrico Bignotti, Wanyi Zhang. Assessing anno-

tation consistency in the wild[C] 2018 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops). IEEE, 2018:
561-566.

In Chapter 6, we firstly study the related work about label noise problem which is
caused by non-expert annotator. Then we introduce the Skeptical Learning algorithm
that we propose to solve the mislabeling issue. And finally we give a detailed description
of the experiment we have carried out, which highlights the advantages of an interactive,
skeptical approach to learning over state-of-the-art but non-skeptical machine learning
alternatives. This chapter is based on the following publications:

• Mattia Zeni, Wanyi Zhang, Enrico Bignotti, Andrea Passerini, and Fausto Giunchiglia.
Fixing mislabeling by human annotators leveraging conflict resolution and prior

knowledge[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2019, 3(1): 1-23.

• Wanyi Zhang. Personal Context Recognition via Skeptical Learning[C]. IJCAI.
2019: 6482-6483.

• Wanyi Zhang, Andrea Passerini, and Fausto Giunchiglia. Dealing with Mis-

labeling via Interactive Machine Learning[J]. KI-Künstliche Intelligenz, 2020:
1-8.

In Chapter 7 , we focus on data quality issues in Mobile Crowd Sensing (MCS) area.
The main contribution is that we propose a general MCS platform for integrating at
scale sensor data and user’s general data in the form of labels, together with the statics
knowledge of the world. This chapter is based on the following publication:
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• Wanyi Zhang, Mattia Zeni, Andrea Passerini, and Fausto Giunchiglia. Skeptical

Learning – an Algorithm and a Platform for Dealing with Mislabeling in Personal

Context Recognition.[J]. Algorithms, 2022. (Accepted)

Finally, in Chapter 8 we present the conclusions and future work respectively.
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Chapter 2

State of the Art

To solve the first problem that has been identified in the introduction chapter, i.e., an
appropriate context model shall be chose for the personal context recognition task. Thus
we firstly investigate the existing personal context models. Since our work mainly
focuses on a university student’s life scenario, and the experiment of the proposed
skeptical learning is carried out on the data set of students’ university life, therefore we
investigate secondly the existing studies on students’ life. As for solving the problem
of mislabelling issues, we introduce some existing approaches dealing with label noise
issues. Last but not least, our work is within the research area of participatory sensing and
mobile crowd sensing, thus we introduce some existing mobile crowd sensing systems.

2.1 Personal Context model

A context model defines how context data are structured. A good context model should
capture all kinds of situational information relevant to the application at hand [21] and
use the right level of abstraction [6]. Ontology is a widely accepted tool for formalizing
context information [59], and several context ontologies have been proposed. Typical
examples include CONON [103] and CaCONT [106]. CONON focuses on modeling
locations by providing an upper ontology and lower domain-specific ontologies organized
into a hierarchy. CaCONT defines several types of entities, and provides different levels
of abstraction for specifying location of entities, e.g., GPS and location hierarchies.
Focusing on semantic information of place, the work in [109] proposed a place-oriented
ontology model representing different levels of place and related activities and improve
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the performance of place recognition. In [54], they proposed an ontology model involving
social situation and the interaction between people.

These models, however, suffer from two main limitations. First, in order to support
context recognition, the model should account for subjectivity of context descriptions.
For instance, the objective location “hospital” plays different roles for different people:
for patients it is a “place for recovering”, while for nurses it is a “work place”. This makes
all the difference for personal assistants because the services that a user needs strongly
depend on his or her subjective viewpoint. Most context models ignore this fact, with few
exceptions, cf. [53]. Second, arguably answers to four basic questions – “what time is
it?”, “where are you?”, “what are you doing?”, and “who are you with?” – are necessary
to define human contexts. Correlations between these aspects are also fundamental in
recognition and reasoning: if the user is in her room, a personal assistant should be more
likely to guess that she is “studying” or “resting”, rather than “swimming”. In stark
contrast, most models are restricted to one or few of the above four aspects and therefore
fail to capture important correlations, like those between activity and location or between
time and social context.

2.2 University Student’s Life Study

The main population of our experiments is students, since they are a relevant sample of
population for sociological studies, especially with respect to their time management
ability, which includes setting goals and priorities and plays a crucial role in improving
students’ performance [68]. Another area that focuses on students, due to their wide
adoption of smartphones and tech-savviness [9], is computational social sciences, which
is based on approaches for extracting and analyzing behaviors using smartphone data
such as proximity, location, and call logs [26]. These data are combined with surveys,
which may be administered via smartphones, for socio-psychological metrics such as
personality traits, daily mood, or sleep quality [9]. Within the work in computational
social sciences, the Student Life study [101] is the closest one to ours. For this study,
smartphones were used to assess the impact of workload on stress, sleep, activity, mood,
sociability, mental well-being and academic performance of a class of 48 students (38
males and 10 females) of a computer science class across a 10-week term at Dartmouth
College. Moreover, the SmartGPA study [102] used the data from [101] to show that
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there is evidence of a link between the students’ GPA and their behavioral patterns. In
this work, regression analyses were used to develop a behavioral slope and behavioral
breakpoints in order to identify changes in a student’s behavior on a weekly basis. The
temporal granularity and the predictive model does not consider raw data, since the
pre-built classifiers feed into a regression model, e.g., the accelerometer. Differently
from our work, these studies do not have approaches in place for assessing the quality
of the students’ annotations. In fact, they rely on heuristics, e.g., spending at least 20
minutes in a library means that the student is studying, and classifiers, which may be
inaccurate, e.g., conversation classifiers cannot distinguish a person speaking in a TV
from one physically in the room [45].

2.3 Label Noise

While traditional approaches to concept learning assume perfectly labeled training sets,
most recent supervised learning techniques can tolerate a small fraction of mislabelled
training instances (see for instance [31]). A common solution consists in designing
learning models which are robust to (some) label noise [30]. In particular, by averaging
predictions of multiple learners, ensemble methods usually perform well in terms of
noise robustness [22, 77]. In this line of thought, the robustness of random forests, the
ensemble method used in this paper, has recently been shown both theoretically and
empirically [33]. Nonetheless, label noise badly affects the performance of learning
algorithms [67]. Our approach diverges from existing solutions since it involves an
interactive error correction phase. This process allows tolerating a much larger amount
of noise, achieving substantial improvements over the previous work.

The field of statistical relational learning [5] deals with the integration of symbolic and
sub-symbolic approaches to learning. Frameworks like Markov Logics [80], Semantic-
Based Regularization [23] or Learning Modulo Theories [96] combine logical rules or
other types of constraints with learnable weights to encourage predictions consistent with
the available knowledge. Our main difference is that we use knowledge in an interactive
way to identify potential errors in user feeback, and activate a conflict resolution phase to
solve such controversies.

While many machine learning approaches assume an expert user, it is not the case in
other areas of research, e.g., mobile crowdsensing [43], where users collect and share
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sensed data and their annotations via their smartphones. A relevant issue here is assessing
the quality of users’ annotations (see [78] for a comprehensive review). However, the
focus in these works is on gathering reliable information about locations or events of
common interest among a set of users. The key difference from this work is that we
focus on personal data, e.g., personal context and activities, to be used by the user herself.
Thus, the quality of a user’s annotation cannot be evaluated by comparing it with other
annotations from the crowd (which would be very hard if not impossible, since we deal
with personal data) but, rather, by comparing it with the machine’s knowledge.

2.4 Mobile Crowd Sensing System

In recent years, Mobile Crowd Sensing (MCS) has become an emerging sensing paradigm
where, as from [43], ordinary citizens contribute data sensed or generated from their
mobile devices. Such data are then aggregated for crowd intelligence extraction and
people-centric service delivery. Human involvement is one of the most important char-
acteristics of MCS, especially in applications where participatory sensing applies. One
such example are the applications that are designed for environmental monitoring. Work
in [29] apply the MCS-RF model to infer the real-time and fine-grained PM2.5 throughout
Beijing. In their application, Users can upload images with a time stamp and GPS infor-
mation. Users’ input is used along with other official data sources, such as meteorological
data and traffic data published by relevant agencies to do the environmental monitoring.
Another kind of applications are those designed to monitor the use’s health status. For
example, the application in [75] is designed to monitor the user’s daily activities and emo-
tions for health caring purposes. It collects sensor data and meanwhile asks for the user’s
self-report observations. The TrackYourTinnitus (TYT) project tracks user’s tinnitus
by his answers to questionnaires and the sensor data collected by his phone. Similar to
that, TrackYourHearing (TYH), TrackYourDiabetes (TYD), and TrackYourStress (TYS)
keep track of the progress of users’ hearing loss, diabetes, or stress level, respectively
[56]. This helps the users to be more aware of symptom changes in specific contexts.
Finally, there are other applications that collect urban data, such as the reports of damaged
infrastructures, with the final goal of monitoring urban safety [114, 62]. In this case the
user is asked to report observations by answering questionnaires or uploading images.

In MCS systems, a major problem is that of the quality of the data. In [49], the
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authors deal with this problem by computing the reputation score of the device as a
reflection of the trustworthiness of the contributed data. Dually, in [107], the reputation
system focuses on the reputation of the human participants. Differently from this work
we propose a hybrid approach where we evaluate both users and the machine, we deal
with personal data, and our metrics leading to reputation are the result of a machine
learning activity.



13

Chapter 3

Data Gathering and Annotation

3.1 Introduction

In this chapter we introduce the definition of personal context model and the annotations
of context. This work is based on the paper [37] and paper [91]

A good designed context model is necessary and fundamental to context recognition
tasks. The term “context” refers to any kind of information that is necessary to describe
the situation that an individual is in [21]. But human individual has a limited view of
their surroundings all the time in their life. Work in [34] gives the definition of personal
context, i.e., “a theory of the world which encodes an individual’s subjective perspective
about it”. Personal context modeling should take this relation between the user and the
context into consider.

Most existing work focus on a controlled, predefined environment in a closed domain,
and suffer from two main limitations, i.e., they do not taking subjectivity context into
account and fail to capture important correlations, like those between activity and location
or between time and social context.

We propose a personal context model based on [34]. it takes into account different
dimensions of the environment and enables downstream context recognition tools to
leverage the correlations between these dimensions. We also explain the notions of
endurant and perdurent context, objective and subjective context. The notions are then
used to create an ontology accounting for the way how perception guides humans to
aggregate their description of their surrounding environment. We apply and test our
approach by collaborating with sociology experts and taking part to the SmartUnitn
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project, which aims at recognizing behavioral patterns of students to see how their life
style affects their academic performance. The collaboration with sociology experts
provides us with useful methodological considerations on how to adapt our ontology to
be usable in real life. Basing on these considerations we provide three list of context
annotations which can be used for tracking user’s activity, location and social relations,
in accordance with sociological methodologies such as time use surveys [12].

3.2 Personal Context Model

To illustrate the personal context, we firstly consider a scenario that occurrences in a
Ph.D student’s daily life. It is Tuesday morning, and Ph.D student Wanyi is in a meeting
with her supervisor Prof. Fausto and her colleague Andrea. The topic is to discuss about
the paper they will submit. The meeting is taking place in office 230, with a desk in the
middle and a white board on the wall. Wanyi is talking about her idea and writing on the
board to explain it in detail.

Figure 3.1 present this scenario as a knowledge graph. Each node represents an entity,
e.g., the person and the room, with its respective attributes and their attribute values.
For instance, the attributes of Fausto in Figure 3.1 are “Class”, “Name”, and “Role”,
and their corresponding attribute values are “Person”, “Fausto”, and “Professor”. Edges
represent relations between entities, e.g., “Office room” has two relations: “HasActivity”
for “Meeting”, and “In” for “Board” and “Desk”.

We formalize the relation between context, which is a partial representation of the
real world, and the person, which is centered on from Figure 3.1, as

MyWorld = 〈me,Context〉

where:

• me is the person on which the context is centered, and it is an entity with its
attributions and relations.

• Context is the real world context of the person, aggregating different elements
surrounding the user. Notice that, it is not the global view of the environment, but
local view of the environment encompassing a user centered subset.
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Figure 3.1: The five dimensions of the context, centered on the user.

In Figure 3.1, the blue dashed arrows represent the relations between me and Context.
They link different elements of the context directly to the person, e.g., the smartphone
that the person has, and the office room that the person is in.

Context is a theory of the world that encodes an individual’ subjective perspective
about it [34]. Individuals have a limited and partial view of the world at all times in their
everyday life. For instance, consider the example we present in Figure 3.1 that Wanyi is
in a meeting with her professor and colleague in an office. Despite all the commonalities,
each person in the room has a different context because they focus on different elements
of their personal experience (Wanyi focuses on telling they her idea while Fausto and
Andrea focus on listening to her) and ignore others (like the sound of the projector,
the weather outside, and so on.). Given the diversity and complexity of individual
experiences, formalizing the notion of context in its entirety is essentially impossible.
For this reason, simpler but useful application-specific solutions are necessary.

Previous work has observed that reasoning in terms of questions like “what time is
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it?”, “where are you?”, “what are you doing?”, “who are you with?”, “what are you with?”
is fundamental for describing and collecting the behavior of individuals [34]. Motivated
by this observation and our previous work [36, 37, 69] , we designed an ontology-based
context model organized according to the aforementioned dimensions of the world: time,
location, activity, social relations and object. Formally, context is defined as a tuple:

Context = 〈TIME,WE,WA,WO,WI〉

where:

• TIME captures the exact time of context, e.g., “morning”. We refer to it as the
temporal context. Informally, it answers the question “When does this context
occur?”.

• WE captures the exact location of context, e.g., “office room”. We refer to it as the
location context. Informally, it answers the question “Where are you?”.

• WA captures the activity of context, e.g., “studying”. We refer to it as the activity

context. Informally, it answers the question “What are you doing?”.

• WO captures the social relations of context, e.g., “friend”. We refer to it as the
social context. Informally, it answers the question “Who is with you?”.

• WI captures the materiality of context, e.g., “smartphone”. We refer to it as the
object context. Informally, it answers the question “What are you with?”.

3.3 Endurant and Perdurant Context

Context aggregates different dimensions of a person’s environment, addition to that,
context also accounts for the fact that it aggregates based on points of view, i.e., humans
fundamentally use two elements to drive their representation: location and activity. We
explain this with the notions of endurant and perdurant context.

According to [32], endurants are always wholly present at anytime they are present.
Endurants are entities that are in time but lack temporal parts (all their parts flow with them
in time), e.g., buildings and locations. While perdurants extend in time by accumulating
different temporal parts. At any time they are present, they are present partially. Some of
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Figure 3.2: The difference between the notions of endurant and perdurant context.

their proper parts (previous or future phases) may not be present. Perdurant are entities
that happen in time and can have temporal parts, all their parts are fixed in time, e.g.,
events and activities.

Therefore, the context can provide different representation of the same state of affairs
depending on which element is more important. For instance, consider the scenario
described in Section 3.2. In an endurant context, Wanyi could say “I’m in the office”,
implying a certain level of granularity within the building (in fact, saying “I’m at the
university” would work too). In a perdurant context, Wanyi could say “I’m having a
meeting”, while some other activities may be happening at the same time, e.g., somebody
is knocking at the door or Fausto and Andrea are discussion. The state of the world is the
same, but the representation is different.

Figure 3.2 extends the scenario described in Section 3.2 by taking a subset of the
ontology based on [38]. This work proposed an ontology unifying human perception and
knowledge representation, thus corroborating how contexts allow for different perceptions
of the environment based on location or activity. Notice that Figure 3.2 is at the level of
the entity class from Figure 3.1, and focuses only on WA and WE for clarity’s sake.

The two possible representation are as follows:

• Endurant context: “I’m in the office”. In this representation, the office room is
more relevant, while the activities that are performed are not fixed, either woking
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Level TIME WE WA WO

Objective
Context

2020-04-11
11:30am

Via Sommarive, 9,
38123 Povo TN

Talk Prof. Fausto

Subjective
Context

Morning Office Have meeting Supervisor

Machine
Context

1586597400000 46°04’01.9”N
11°09’02.4”E

Accelerometer:
0g,0g,0g

“Fausto” is in
contact list

Table 3.1: An example of our three-partitioned context model.

or having a meeting could be possible.

• Perdurant context: “I’m having a meeting”. In this representation, having meet-
ing is more relevant among all the activities, while the possible locations are less
relevant, and there may be different locations.

Notice that the relations in bold between locations and activities, i.e., “HasActivity”
and “ActivityIn”, are not simply inverse functions. In other words, HasActivity =

Activity−1 does not necessarily hold. For example, in the endurant context in Figure 3.2,
“HasActivity” maps “Office” to both “Have meeting” and “Work”, while in the perdurant
context, “ActivityIn” maps “Have meeting” to not only “Office” but also “House”. This
shows that relations do not always have one to one mappings and the structure changes
depending on the viewpoint.

These phenomena affect the identification process of the activity, because depending
on which context is active, the elements to be identified and expected will change, along
with possible services. For example, if a user is describing his context with endurant, it
means the location is more relevant for him, and location-based services, e.g., sharing
location with friends, may be more needed for him.

3.4 Objective, Subjective and Machine Context

The example in Figure 3.1 is presented in objective terms, that is, facts are stated as if they
were independent of personal conscious experiences. However, each person interprets the
world and her surroundings from her personal privileged point of view, which accounts
for her personal knowledge, mental characteristics, states, etc. For instance, while in
Figure 3.1 “Fausto” has an objective role of professor, for other people “Fausto” plays
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the roles of a “supervisor”, a “friend”, or a “father” subjectively. The subjective context
which is related to personal consciousness, knowledge, etc. can provide more information
for applications such as personal assistant in order to give more intelligent services.

Notice that a person’s view of her context is radically different from what her handheld
personal assistant observes. In fact, machines interpret the world via sensors, while
humans do not only interpret the world via their perceptions but with their knowledge
as well. For instance, while a machine views location (e.g., a building) as a set of
coordinates, humans interpret it based on its function (e.g., whether the building is their
home or office).

To model context precisely and completely, in addition to considering four dimen-
sions as discussed in Section 3.2, we also model three perspectives: objective context,
subjective context and machine context. Table 3.1 shows the above example viewed
through three types of perspective. The objective context captures the fact that at the
University of Trento, Italy, at 11:30 AM, a person is talking to Fausto. When moving
from objective to subjective, things change dramatically. From the perspective of the
machine, the temporal context “11:30 AM” is viewed as a timestamp “1586597400000”,
and in subjective terms it becomes “morning”; similarly, “University of Trento” becomes
coordinates “Office” from a subjective perspective and “46°04’N,11°09’E” for the ma-
chine perspective. For the activity context, the activity of talking can be subjectively
annotated as “Have meeting” by user, but it can be described as “connecting WIFI of
classroom, sensors such as gyroscope, accelerometer are sensed as static”. For the social
context, “Fausto” is described as “Supervisor” subjectively by the user and the machine
senses “Fausto” is in the contact list of the user.

3.5 Personal Context Annotation

In Section 3.2, we present the definition of personal context model which is a tuple with
different dimensions as components. Now we model each dimension as an ontology based
on the general ontology in [38] unifying human perception and knowledge representation.
Ontology can act as a hierarchy of labels to be used as annotations, and it contains more
information than isolated labels. However, ontology is hard to use for users in real life
since it can become arbitrarily complex and general. They must adapt to be usable by
specific application or scenario.



20
Thus we present them to the users as time diaries, which is widely used in sociology to

analyze human behavior where respondents report activities performed, location visited,
and people encountered during their day [95].

Time use surveys are particularly relevant approaches, since they are widely used
to investigate a specific aspect of people’s time management, e.g., working, academic
performance, and so on [12]. In fact, we based our modelling for activities on several
time use surveys, especially the American Time Use Survey (ATUS) [90].

We apply and test our methodology in the SmartUnitn project that was introduced in
Section 3. The interaction with the sociology experts in the project leads to an adaptation
of our ontology to the experiment accounting based on the following methodological
considerations:

• Perdurannt context: Since activities are the main focus of this experiment, the
context to be mapped to the annotation is a perdurant context. It allows us to reflect
the relevance of activities, since events are the aggregating elements for perdurant
context.

• Subjective context: We model each dimension from human perception and allow
the user to give their subjective annotations.

• From ontology to annotation lists: Following the sociology experts inputs, to
make the ontology usable it has to be adapted to a list of annotations, without any
sort of hierarchy. In fact, a simpler, leaner presentation is more likely to elicit
and engage the users’ answers, coupled with a controlled vocabulary for reducing
possible ambiguities. In order to capture the most salient triple of location, activity
and social relations [47], the annotations act as a list of possible answer for the
corresponding questions, i.e. “Where are you?” (locations), “What are you doing?”
(activities) and “Who is with you?” (social relations).

• No WI context annotations: In the case of this experiment, object context (WI)
was not collected as it is hard to track without disrupting the user’s routines. And
the sociology experts do not deem the WI context relevant. Thus no object context
annotation is required.

• No Time context annotations: We simplify the annotations of time to “morning”,
“afternoon”, “evening” and “night”, and it is easily inferred from the timestamp.
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Thus we do not bother users to give annotations of temporal context, though it is
an important dimension.

• Order of the questions: According to the sociology experts, and in general for
time use surveys [47], activities are more relevant than locations and social relation
in the experiment. Thus, the ordering of the three question reflects this hierarchy:
activities first, locations second and then social relations.

• No locations and activities constraints: In activity recognition, locations can
often act as constraints for the activities performed there [79]; for instance, when in
bathrooms, people take a shower instead of cooking. However, from a sociological
point of view, constraints may lead to a loss of valuable sociological data, e.g.,
students studying in places not explicitly designed for it, such as workplaces,
bars or gyms. As a result, no constraints are imposed between the locations and
activities annotation lists.

• Adding “Other”: In time use surveys, the answer “Other” is a standard option
with possible variations, e.g., the “n.e.c.” field (i.e., Not Elsewhere Classified) in
the ATUS [90]. Methodologically speaking, this means that the possible activity,
location or social relation is outside the research scope of the sociologist, so it does
not matter; “Other” covers such cases [12]. Ontologically speaking, “Other” acts as
an element of openness, i.e., as a placeholder node in the ontology to accommodate
and expand new pieces of information to be added in time to an ontology.

The mapping from three different dimensions of context to the annotation lists will
be introduced in the following subsections.

3.5.1 Activities

Figure 3.3 shows the mapping of activities, i.e., the WA context, from the perdurant
context and the question about activities. Here the annotations are adapted by the first
tier of activities, especially for “Relax”, which maps to 4 annotations, i.e., “Hobbies”,
“Cultural Activity”, “Other Free Time”, and “Social Life”. This coarseness in the mapping
is due to the fact that, in order to capture high level patterns, activities are required to
be very general. Furthermore, more detailed activities, as underlined by the sociology
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Figure 3.3: The mapping from the WA context to the activities annotation list.

experts, would cause more cognitive load in terms of memory for students and force
them to answer more questions to reach an unnecessary fine grained level of detail.

3.5.2 Locations

Figure 3.4 shows the mapping from the locations, i.e., the WE context, of the perdurant
context to the question about locations. Here the mapping is almost one to one with the
lowest tier, except for “Other Universityplace” and “Other Home”, since they group more
specific types of buildings.

Notice that, even though “En route” is an activity, it refers to actual locations. So,
if a student chooses it, then, instead of the options in Figure 3.4, a list of means of
transportation is provided and the question is “How are you travelling?”. The possible
means of transportation are listed exactly as suggested by the sociology experts, i.e.,
“By Foot”, “By Bus”, “By Train”, “By Car”, “By Motorbike”, and “By Bike”. See the
questionnaires that are introduced in Figure 3.6 and Figure 3.7

3.5.3 Social Relations

In the case of social relations, unlike locations and activities, the mapping is one to
one, since they are a simple list in our current version of the WO context, as shown in
Figure 3.5.
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Figure 3.4: The mapping from the WE context to the locations annotation list.

Figure 3.5: The mapping from the WO context to the social relations annotation list.

The three lists of annotations composes the questionnaire to be administered to the
users. Figure 3.6 shows the one we used in SmartUnitn One Project. Each list of
answers is the mapped set of annotations from Figure 3.3, Figure 3.4 and Figure 3.5,
answering questions “What are you doing?”, “Where are you?” and “Who is with you?”
respectively. The link between the fourth question “How are you travelling?” and the
“En route” activity is shown via an asterisk at the end of the latter. Similar to Figure 3.6,
Figure 3.7 shows the one that we used in SmartUnitn Two Project. One more question
was asked in that questionnaire, i.e., “What is your mood?”, since in the second project
experiment, we also wanted to understand the relationship between student’s emotion
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and behaviours.

3.6 Use Case: Student’s University Life

Academic performance is important to university students. Obtaining a university degree
will help the student to get a good job. On the other hand, students’ drop-out is a waste
of economic and social resources within a society. How university students allocate
their time between academic activity and other daily activity is their time management
ability. Researches have shown that students’ time management ability is important
aspect that effects the students’ academic performance. It is especially true for students
in universities who have no parental support or teacher supervision.

To understand the students’ time allocation, sociological researchers usually use
surveys, which ask the users to report their total time amount and how they spend for
given activities. However, traditional tools like survey suffers from the data quality issues
due to the reliability of the users.

We ran the SmartUnitn One and Two experiments in 2016 and 2018 respectively to
collect time use data from students in the University of Trento. The final goal of these
experiments is to understand the how the students spend their time and how their time
management ability affects their academic performance. Instead of using traditional
survey, we designed and developed an App i-Log installed in students’ mobile phone to
collect students’ answers and collect data of sensors embedded in the phone. We apply
the personal context model in these two experiments when the students give annotations
of their own life. Notice that, the data sets generated in these two experiments are the
ones that we use for the experiments and analysis in the next few chapters.

3.6.1 SmartUnitn One

The population of the experiment

The first iteration of experiment is SmartUnitn One. It was carried out in the University
of Trento in the late 2016. Generally speaking, the sample of SmartUnitn One consists of
university students who enrolled in the academic year of 2015-2016. The selection of
the population took account of the distribution in terms of gender, department and their
economic status. To get available academic performance data, it requires the students
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taking part in the project must attend the lessons regularly during the experiment. Further
more, since the i-Log is an App developed based on Android system, it requires the
students to own an Android smartphone with 5.0.2 or higher operating system.

The length of the experiment

SmartUnitn One experiment had two phases. Each phase last for one week. The first
phase starts from 29/11/2016. In this first week, the students responded to the time diaries
and annotated their activities, locations and social relations by answering the questions.
Meanwhile the i-Log App ran in the background collecting sensor data. The second
phase starts from 06/12/2016. Different from the previous week, time diaries were not
sent to the students, and the students only had to keep the App running in the background
without answering the questions.

The frequency of data collection

Except the third-party data which can be obtained from the administrative office (e.g.,
GPA and ECTS), the rest types of data, smartphone-based data and survey-based data,
can be collected by the functionalities provided by i-Log. And for different data, we set
different collection frequency.

• Survey-based data. This data was the students’ response to the time diaries sent by
i-Log. In SmartUnitn One experiment, the time diaries were sent to the students
only in the first week. Each time diary would be sent every 30 minutes. If the
student did not answer it in time, it would be stores in a queue. After 5 time diaries
stacked in the queue, the least one would be expired and its answer would be
treated as null.

• Smartphone-based data. This data was collected from the sensors embedded in the
smartphone. For different sensors, the data collection frequency was different. See
the details in the Table 3.2:

The time diary and annotation list

During the SmartUnitn One experiment, we use the time diaries to ask the students what
context they were in at that moment. The questions that have been asked in the time diary
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Table 3.2: Collection frequency of sensor data.

Sensor Frequency Sensor Frequency Sensor Frequency
Acceleration 20Hz Screen Status On change Proximity On change
Linear Acceleration 20Hz Flight Mode On change Incoming Calls On change
Gyroscope 20Hz Audio Mode On change Outgoing Calls On change
Gravity 20Hz Battery Charge On change Incoming Sms On change
Rotation Vector 20Hz Battery Level On change Outgoing Sms On change
Magnetic Field 20Hz Doze Modality On change Notifications On change

Orientation 20Hz Headset plugged in On change Bluetooth Device Available
Once every
minute

Temperature 20Hz Music Playback On change
Bluetooth Device Available
( Low Energy )

Once every
minute

Atmospheric Pressure 20Hz WIFI Networks Available
Once every
minute Running Application

Once every
5 seconds

Humidity 20Hz WIFI Network Connected to On change Location
Once every
minute

are show in Figure 3.6.

Figure 3.6: The questionnaire in SmartUnitn One.

3.6.2 Data and Tools

According to the final goal we set for the SmartUnitn projects, we define the following
three types of data that we need to collect:

• Smartphone-based data: we collect these data from the sensors in accordance with
the smartphones’ specifications.
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• Survey-based data: to understand the students’ time allocation, we still need their

annotations on their activities. Psychological questionnaires will be sent to the
students and their answer labels will be sent back and collected.

• Third-party data: to understand the relationship between students’ time manage-
ment ability and their academic performance, we also need their academic data,
such as GPA and ECTS from the administrative offices of the University of Trento.

To collect these data, a technology tool called i-Log [110] was used. It is a mobile
phone App that can be installed in the students’ phones and it provides two functionalities:

• Data collection: i-Log is designed to collect data from multiple sensors on phone
simultaneously, from hardware (e.g., GPS, accelerometer, gyroscope and so on)
to software (e.g., the applications running on the devices). A dedicated back-end
infrastructure manages the tasks of synchronizing and storing the streams of data
from the smartphones.

• Time diaries: i-Log could also push time dairies to the App users. Each time diary
is composed of questions of activities, locations and social relations of students.
The time diaries would be sent every 30 minutes, and the student user’s answers
could detail how he/she allocated his/her time during the day. Every time diary
could be answered within 150 minutes, with a maximum of 5 time diaries stacked
in a queue. And once a time diary get expired, its answer would be treated as null.
To avoid bothering the students, these time diaries would appear on their phones as
silent notifications. Due to the minor difference between SmartUnitn One and Two,
the questions in time diaries are a little bit different, and they will be introduced in
the next sections.

3.6.3 SmartUnitn Two

The population of the experiment

SmartUnitn Two was the second iteration of the experiments. It was carried out in 2018.
The population design of this experiment is similar to the previous one. But this time
we wanted to involve more participants so that we sent invitations to the entire student
population of the University of Trento. The population excluded 1) the students who did
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not have a smartphone with Android system 5.0 or higher, 2) the students who did not
participate in regular university life, and 3) the students who were born after 1993 to
limit the dynamics of students out-of-school.

The length of the experiment

SmartUnitn Two experiment also had two phases. In this experiment, we tried to collect
more data by involving more students and lengthening the experiment duration. The first
phase started from 07/05/2018 and last for 2 weeks. In these weeks, the students need to
let i-Log running on their phone and responded to the time diaries. The second phase
starts from 21/05/2018 and last for another 2 weeks. In the rest weeks, to avoid bothering
the students too much, only 5 time diaries would be sent everyday.

The frequency of data collection

The frequency of data collection in SmartUnitn Two was similar to SmartUnitn One.
The smartphone-base data from sensors were collected by the same frequency as shown
in Tabel 3.2. And the settings of sending time diaries in the first phases of both the
experiments were the same, which is that the students had to answer the questions every
30 minutes. The only difference was that in the second phase of SmartUnitn Two, the
students were still sent the time diaries but with lower frequency, one time diary in every
2 hours

The time diary and annotation list

In the SmartUnitn Two, we updated the design of the questionnaires. We asked not
only the student’s context at that moment, but also their emotion. Figure 3.7 shows the
questions that have been asked in SmartUnitn Two:

3.6.4 Date Sets

Data Set of SmartUnitn One

In SmartUnitn One, to initialize the experiment, 312 students enrolled in the first academic
year in any of the bachelor courses active in 2016 at our University were contacted
through a web survey to ask for their participation. From this initial population, 104
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Figure 3.7: The questionnaire in SmartUnitn Two.

students fulfilled three specific criteria: i) to have filled three university surveys in order
to obtain their socio-demographics, shown in Table 3.3, and other characteristics, e.g.,
psychological and time use related; ii) to attend lessons during the period of our project
in order to describe their daily behavior during the university experience, and iii) to have
a smartphone with an Android version 5.0.2 or higher.

Overall, 75 students accepted to participate, but three of them declined during the
project due to unexpected technological incompatibility with the application. In the end,
the final sample consisted of 72 students to reflect the general population of freshman
year students of our University in terms of gender and departments.

Table 3.3: Socio-demographics of students from the experiment

Gender Departments Scholarship Age
Male Female Scientific Humanities True False Min Max
61.1% 39.9% 56.9% 43.1% 37.5% 62.5% 19 22

The students were asked to attend an introductory presentation where they were
presented with the aims of the project and how to use the application. Those who decided
to participate after this presentation were presented with a consent form to sign, after
which they installed the application on their smartphones. Users were informed about all
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aspects of the management of their personal information concerning privacy, from data
collection to storage to processing. Furthermore, before starting the data collection, we
obtained approval from the ethical committee of our university.

The resulting data set contains 20 billion sensor values plus user annotations, resulting
in a total size of 110GB. In addition, it is merged with both the pre and post project
surveys collecting socio-demographic characteristics of students, their time use habits,
some psychological traits measured by validated scales (i.e., pure procrastination scale
and goal orientation scale), and academic performance data from the administrative office
from our university. All the data were collected in compliance with the latest regulations
in terms of privacy and are stored entirely anonymously.

Data Set of SmartUnitn Two

In SmartUnitn Two experiment, we sent e-mails to invite participation in the data col-
lection to all 12000 regularly enrolled students at the University of Trento. The e-mail
clearly explained that students could choose to participate in the study for two or four
weeks, and that in the first two weeks they would receive a notification every half hour,
while in the second two weeks every two hours. There were 273 students registered and
logged in i-Log after the invitation. Remove the students who have just downloaded the
App without answering it and those who abandoned the experiment during the App test
(between 7th to 8th), there were 237 students remained. The total events recorded during
the whole experiment were 130489. 110702 of those were detected in the first phase, and
19787 of those were detected in the second phase.

However, not all those 237 students performed correctly. Only 22 students answered
all the time diaries in the first phase and 23 did in the second phase. If we relax the
restriction of a “valid” participant of the first phase using the following standards, there
were 184 valid participants in the first phase: 1)failure to reply at most 7 times for a
continuous period of more than 10 hours, 2) completed the questionnaire for at least 13
days, and 3) provided a number of valid answers greater than 300.

3.7 Summary

In this chapter we introduced a personal context model based on [34], which is divided
into five dimensions of the environment. We also introduced the notions of endurant and
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perdurant context, objective and subjective context. The notions are then used to create
an ontology accounting for the way how perception guides humans to aggregate their
description of their surrounding environment. Last but not least, we made some adaption
of our ontology and generated three list of context annotations in open domains. The
personal context model introduced in this chapter was applied in the SmartUnitn Projects
where the questionnaire about the students’ context was designed. As we mentioned in
the Section 1.3, a good designed context model is necessary and fundamental to context
recognition tasks. This is the context model that we proposed to use in the personal
context recognition task. This model is further validated in the next chapter.

Then we introduce the SmartUnitn One and Two experiments, which belongs to the
same family of projects, including the population of the experiments, the length of the
experiments, the frenquency of data collection and the time diaries and the annotation
list that were used in the experiments. There are three different types of data. One is
smartphone-based data which come from the sensors embedded. Another one is survey-
based data which is the users’ annotations of their context during the experiment. And
the last one is third-party data which is the users’ academic performance. To collect the
data, we used the i-Log application and the time diaries. We also introduce the generated
data sets, which will be then used in the coming chapters.
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Chapter 4

Predictability of the Personal Context

4.1 Introduction

The work in this chapter is based one of our publication [113].
Context prediction are usually used to recognize the current context. To do context

recognition, we firstly try to understand how predictable are the various aspects of human
behaviors. In the last decade, several works have investigated the role of randomness
in human behavior and how predictable are various aspects of human activities such as
mobility [8, 42, 94, 61, 93, 2, 16, 1], social interactions [27, 25, 65, 83], shopping [58, 19],
and online [92] behaviors.

Research studies have also highlighted how similar mechanisms seem to govern
different human activities. For example, people show a finite number of favourite
places [2] and friends [65]. In a similar way, some individuals tend to explore and
change favourite places [70] over time, as they do with friendships [65] and mobile phone
apps [20], while others tend to maintain stable their behavior.

However, existing studies on human dynamics have been often limited to a single or to
the combination of few behavioral dimensions (e.g. mobility and social interactions) [42,
94, 11, 24, 97]. Moreover, these studies have adopted the perspective of an outside
observer who is unaware of the motivations behind the activities of a given individual.

In this chapter, we propose a different angle for analyzing the predictability of
human behavior. In particular, our study revolves around the observation that, in typical
circumstances, human behavior is deliberated based on an individual’s own perception
of the situation s/he is involved in, as captured by the notion of personal context which
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was introduced in Chapter 3. We analyze regularity and diversity in behavior through the
joint interplay of four modalities of personal context (i.e. time, location, activity, and
social ties) widely used in context-aware and ubiquitous computing communities [21, 99,
6, 37, 100].

In particular, we perform a rigorous statistical analysis of the effects of these four
modalities of personal context on the predictability of human behavior using a month
of collected mobile phone sensor readings and self-reported annotations about time,
location, activity and social ties from more than 200 volunteers, which was introduced in
Chapter 3. Our analysis leverages information theoretic techniques introduced by studies
on human mobility [94, 76, 92] to characterize the predictability of individual behavior
for single modalities and extends them to study correlations across distinct modalities.
In addition, we look at behavior diversity across individuals through the lens of the four
identified contextual modalities.

Our analyses and findings offer several pieces of evidence in support of the role
played by the investigated contextual modalities. As a first step, we have estimated the
performance of an ideal, optimal classifier for independently predicting each modality
(i.e. time, location, activity, and social ties) for each individual in the data set. This
showed that an optimal classifier with access to the previous annotations for the same

user and contextual modality, but not their chronological order, cannot do better than
45% to 65% accuracy. In other words, ignoring correlations across time and between
contextual modalities entails a large irreducible error of 35% to 55%, depending on the
target modality. Disclosing the order of past annotations (again, available for the target
modality only) makes the optimal classifier performs much better and the irreducible error
decreases to 10% to 15%. However, supplying the optimal classifier with information
about the other modalities (e.g. providing time, activity, and social ties while predicting
location) but not their order decreases the irreducible error even more, below 5%. This
shows that taking inter-modality correlations into account makes a substantial difference
in the predictability of an individual behavior and supports the idea that inter-modality
correlations may be more important than short- and long-term correlations over time.
These results, which hold for optimal classifiers, were shown to carry over to practical
classifiers (namely, Random Forests) in a location recognition experiment. This experi-
ment also shows that some locations that are hard or impossible to predict using sensor
data suddenly become easy to predict when information from time, activity, and social
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ties is taken into account. This further highlights the fundamental importance of the
jointly interplay of different contextual modalities in behavior analysis.

Then, the analysis was extended to determine the impact of subjectivity on predictabil-
ity of behavior. Consistently with our finding that activity and location are strongly tied,
we compared the impact of injecting objective versus subjective location information
on the performance of optimal classifiers for activity and social ties. Here, subjective
location was implemented using self-reported annotations, while objective location was
derived from GPS measurements. Our results support the argument that subjective
location is far more informative than objective location for predicting behavior.

In a final experiment, we investigated the role played by the identified four contextual
modalities in studying behavior diversity across individuals. The goal of this experiment
was to determine whether common or uncommon behaviors are what distinguishes
different individuals. The results clearly show that, first of all, the context distribution is
heavy tailed, and therefore that contextual modalities offer support for analyzing “rare”
behaviors, and second that annotations in the tail of the context distribution are much
more effective than those in the head at identifying individuals. This was verified in a
practical identity recognition experiment.

4.2 An Overview of the Dataset

In this work, we use the personal context model that was introduced in Chapter 3. We fo-
cus on fore modalities of the context, i.e., temporal context, activity context, location con-
text and social context, which are widely used in ubiquitous computing communities for
capturing and describing situations occurring in daily life [21, 99, 6, 37, 100]. The con-
text can be represent as a tuple: Context = 〈TIME,WE,WA,WO〉. Thus the example
we gave in Chapter 3, i.e., Ph.D student Wanyi is having meeting with her supervisor Prof.
Fausto in a office, can be represented as 〈“morning”, “office”, “have meeting”, “supervisor”〉

4.2.1 Data PreProcessing

The data we use in this work is generated in the project SmartUnitn Two, which was
introduce in Chapter 3. As previously said, the data collection was split in two phases,
each two weeks long. In the first phase (7th to 24th of May) questionnaires were
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submitted to the volunteers every 30 minutes, while in the second one (25th of May to 7th
of June) every 2 hours, to lessen the cognitive load. In this second stage, the volunteers
were also specifically requested to leave the app running at all times.

Before analyzing the predictability of personal context, we firstly clean the raw
annotations and give an overview of the dataset.

In a first step, a simple criterion was used to identify valid (that is, “trustworthy”)
study participants. A participant was deemed valid if s/he failed to reply no more than
7 times within any 10-hour window, completed all questionnaires for at least 13 days,
and provided at least 300 valid answers. All of these conditions must hold for a study
participant to be deemed valid. A total of 184 study participants were marked as valid.
The records of all invalid study participants were discarded. The next step was to delete
events with invalid or missing values (like empty string labels) and records spuriously
occurring outside the date window, i.e., before the 8th of May or after the 5th of June.
Finally, in order for all statistics of the data in the two phases to be directly comparable,
the records obtained from the second phase were replicated four times.

4.2.2 Number of Annotations per Participant
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Figure 4.1: Number of annotations per participant in the final data set.

After the processing, there are 156 study participants with 124,963 records in to-
tal in the data set. The processed dataset consists of several time series ~xu,m, one
time series for each valid study participant u ∈ {1, . . . , 156} and contextual modal-
ity m ∈ {TIME,WE,WA,WO}. Each time series can be viewed as a vector ~xu,m =

(xu,m1 , . . . , xu,mT ), where T is the number of questionnaires administered to a study par-
ticipant during the collection procedure and every xu,mt , with t = 1, . . . , T , indicates
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the annotation for modality m reported by study participant u at time t. The number of
annotations per study participant, reported in Figure 4.1, shows that most participants
have in-between 400 and 1000 records.

4.2.3 Distribution of Annotations

Study

Sleeping

Eating

En route

Social life

Class

TV

Self-care
WHAT

Home (Own)

Home (Rel.)

Workplace

Outdoors

Lab

Hall

On foot

Home (Misc)
WHERE

0.0 0.2 0.4 0.6 0.8
Number of records

Alone

Friends

Relatives

Partner

Roommates

Classmates

Colleagues

Other
WHO

Figure 4.2: Value distribution of different aspects. From top to bottom: WA, WE, and
WO.

Figure 4.2 reports the distribution of annotations in the data. The plot shows that,
for all contextual modalities, few values take up most of the mass. Only the eight most
frequent annotations are shown for each aspect. Roughly speaking, this means that study
participants spend most of their time performing four basic activities (namely studying,
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sleeping, eating, and moving between locations, which account for about 55% of the
records), mostly stay at home (either their home or their relatives, more than 50%), and
mostly by themselves or with their friends (almost 50% and 16%, respectively). The
boxes extend from the 1st to the 3rd quartiles, while the bars extend to±1.5 inter-quartile
range from the median. Study participants with very high annotation frequency (i.e.
outliers) are denoted by crosses.

TIME is special in that its annotations are extremely regular and mostly determined
by the experimental setup rather than by individual preferences. This is especially
true for nocturnal annotations, as the user can set i-Log to “sleep mode” so that it will
automatically reply to the questionnaires accordingly during the night. For this reason,
TIME is omitted from the figure.

The profile transpiring from the data reflects the source demographics.1 The con-
centration of mass on few preferred values is consistent with previous studies on mobil-
ity [94, 2].

4.2.4 Regular and Irregular Users

To get an intuition of the regularity in the behavior of volunteers, we selected two partici-
pants with the highest and lowest annotation diversity and visualize their annotations in
Figure 4.3. For each participant, sub figures from left to right represent his annotations
for What (activity), Where(location), and Who(social relation). Each row in sub figures
is a day, and columns are hours. Weekends are indicated on the y axis. Colors indicate
different values. The values were grouped by similarity, for interpretability. Missing
values are in blue.

Figure 4.3 shows that the most regular study participant has a distinctly simpler
behavior than the other one, as expected. The figure also shows that even the behavior
of the more regular volunteer is still quite irregular and displays substantial variability
across days and across weeks.

1Considering that the volunteers are university students, the self-reported amount of studying is likely
to be a (slight) over-estimate.
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Figure 4.3: Annotations of an irregular (top) and a regular (bottom) study participant.

4.3 Entropy

We are interested in understanding to what degree individual modalities are predictable
and whether some modalities are inherently more predictable than others. In line with
previous work [42, 94, 76, 92], we answer these questions using entropy and predictabil-

ity.
Entropy measures the number of bits necessary to encode a random source: an entropy

of b bits indicates that, on average, an individual who chooses her/his next value (i.e.
location, activity, or social tie) randomly according to the ground-truth distribution will
be found in 2b distinct states with high probability [15]. Hence, higher entropy implies
higher uncertainty. In order to evaluate the contribution of different factors, consistently
with previous studies [94, 92], we estimated three forms of entropy:

(1) The random entropy, defined as:

Hrand(X
u,m) = log2N

u,m
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where Xu,m is a random variable that represents the value of modality m for individual u
and Nu,m is the number of distinct values observed for that modality and individual in
the full data set. The random entropy assumes that the study participant is equally likely
to choose any of the values that s/he has annotated.

(2) The time-uncorrelated or flat entropy, defined as:

Hflat(X
u,m) = −

∑
x Pr(Xu,m = x) log2 Pr(Xu,m = x)

where the sum runs over all the possible values for modality m and Pr(Xu,m = x)

denotes the empirical probability that individual u reported value x for modality m, as
estimated from the data. The flat entropy is more informed than the random entropy as it
takes the full value distribution into account.

(3) The true entropy, defined as the limit of the joint entropy:

Htime(X
u,m) = limT→∞

1
T

∑T
t=1H(Xu,m

1 , . . . , Xu,m
t )

Here Xu,m
t is a random variable that captures the value provided by individual u for

modality m at time t, and the joint entropy H(Xu,m
1 , . . . , Xu,m

t ) measures the disorder
of t random variables:

−
∑

x1,...,xt
Pr(Xu,m

1 = x1, . . . , X
u,m
t = xt)

× log2 Pr(Xu,m
1 = x1, . . . , X

u,m
t = xt)

Compared to the flat entropy, the true entropy takes correlations over time, including
short- and long-range correlations, into account. The true entropy is estimated from the
data using the Lempel-Ziv estimator [55].

4.4 Predictability

While entropy measures uncertainty, it only gives indirect information about how “easy to
guess” a random source is. This is better captured by the notion of predictability, which
was introduced to assess regularity of human mobility [94]. Formally, the predictability
Π(X) ∈ [0, 1] of a random variable X is the accuracy of an optimal classifier for X , that
is, the probability that this classifier outputs the correct value. As a consequence, if the
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predictability of a random variable is 0.8, then no classifier can have an accuracy higher
than 80% – or, in other words, all classifiers must be mistaken 20% of the time. This
means that predictability measures the irreducible error intrinsic in a random source. A
notable property of the predictability Π is that, thanks to Fano’s inequality [15], it can be
derived directly from the entropy H by solving the equation:

H = − (Π log2 Π + (1− Π) log2(1− Π)) + (1− Π) log2(N − 1) (4.1)

Here N is the number of distinct values that X can take. Please see [94] for a detailed
derivation. For our goals, it suffices to know that, very intuitively, lower entropy entails
higher predictability. In order to measure the effect of annotation distribution and
correlations over time, the predictability of each individual u and modality m was
obtained by solving Eq. 4.1 using the random, flat, and true entropy. The resulting values
are indicated as Πu,m

rand , Πu,m
flat , and Πu,m

time , respectively.

4.4.1 Intra-modal Entropy and Predictability

Figure 4.4 illustrates the distribution of entropy (left) and predictability (right) for each
modality. From top to bottom, they represent for WA, WE, and WO. The bar height
indicates the number of participants. The histograms show that while all modalities are to
some extent regular, some are more regular than others. This is partly due to the fact that
the theoretical maximum of the entropy is log2N

m, and it is controlled by the number of
possible values Nm for modality m. Hence, modalities with more states, like activity and
location, are inherently more uncertain and less predictable than modalities with fewer
states. In our setting, the theoretical maximum of the entropy (represented in the entropy
plots by a green line) is about 4.4 for location, 4.3 for activity, and 3 for social tie.

The plots show that entropy is largely determined by distributional information, and
short- and long-range correlations always impact the measured entropy: random entropy
(blue) is always much higher than flat entropy (red), which is itself much higher than
true entropy (purple). These changes in uncertainty demonstrate that taking annotation
distribution and time correlations into account can substantially lower uncertainty and
increase predictability. The same effect can be observed for all modalities, with some
differences. For all entropy measures, the WA modality has the highest entropy, followed
by WE and WO. However, the difference between modalities is more pronounced for the
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Figure 4.4: Empirical distribution of entropy (left) and corresponding predictability
(right).

random and flat entropy, while it is limited for the true entropy, confirming the usefulness
of taking time correlations into account.

Modality Hrand Hflat Htime Πrand Πflat Πtime

WHAT 4.11± 0.15 3.32± 0.31 1.25± 0.23 0.20± 0.07 0.45± 0.07 0.85± 0.03
WHERE 3.88± 0.24 2.43± 0.57 0.87± 0.22 0.32± 0.07 0.65± 0.10 0.90± 0.03
WHO 2.58± 0.30 1.82± 0.37 0.82± 0.20 0.40± 0.15 0.67± 0.10 0.89± 0.04

Table 4.1: Empirical entropy (left) and predictability (right) averaged over all study
participants and standard deviation thereof.

Figure 4.4 (right) shows predictability of each modality for the different types of
entropy. Comparing these histograms with those on the left makes it clear that increasing
the amount of information dramatically increases predictability, as expected. Table 4.1
reports means and standard deviations of empirical entropy and predictability of each
modality and type of entropy. The predictability for the true entropy Πtime (and hence
maximal prediction accuracy) is 85% for activity, 89% for social tie, and 90% for location.
This entails that irreducible error, even when taking all the available information into
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account, is about 10%–15% across modalities. The irreducible error for the flat entropy
is even larger, 35%–55%.

The standard deviation of predictability – that is, the spread of the histogram – does
considerably shrink as more information is taken into consideration. This points at the
fact that, as more information is considered, all participants appear to act more predictably.
It is worth noting that, however, the standard deviation of the true entropy is non-zero,
hinting at the fact that some participants are intrinsically less predictable than others.
This partially motivates our study of behavior diversity across individuals, presented later
on.

4.4.2 Inter-modal Entropy and Predictability

So far, we have studied individual modalities taken in isolation. This approach is
simplistic in that it ignores correlations between modalities, which we hypothesize to
be very significant. In the following, we study the effect of inter-modal correlations on
predictability.

This is achieved by estimating the conditional entropy H(Xu,m|Xu,m′
), which quan-

tifies the number of bits b needed to encode a random source Xu,m assuming that Xu,m′

is known (with m′ 6= m). Intuitively, the more Xu,m′ influences or determines Xu,m, the
lower the conditional entropy [15]. The conditional entropy is defined as:

H(Xu,m|Xu,m′
) =

∑
x′ Pr(Xu,m′

= x′)H(Xu,m|Xu,m′
= x′)

where H(Xu,m|Xu,m′
= x′) is the entropy of Xu,m estimated only on those records

that satisfy Xu,m′
= x′. An issue with conditioning is that it is incompatible with the

full entropy Htime, as it breaks time correlations: two non-consecutive records may
appear to be consecutive in the conditional data set simply because they satisfy the same
condition Xu,m′

= x′ and none of the records in-between them does. This means that the
conditional and unconditional entropy cannot be compared directly.2 For this reason, in
the following we use the flat, time-uncorrelated entropy Hflat in all computations.

The reduction in flat entropy due to conditioning, averaged over all study participants,
is illustrated in Figure 4.5 (top). From left to right, the target modality is WA, WE,

2A naı̈ve comparison shows that the conditional full entropy appears to be larger than the unconditional
full entropy, which is clearly impossible.
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Figure 4.5: Entropy (top) and predictability (bottom) of each modality after conditioning
on all subsets of other dimensions, averaged over all study participants.

and WO, respectively. The green line represents the entropy prior to conditioning (as
reported in Table 4.1), while the red bars represent the conditional entropy. The change
in predictability is reported below in the same figure.

The plots show very clearly that in all cases, inter-modal information substantially

reduces uncertainty and improves predictability.3 Indeed, conditioning any modality
on the rest of the context (including TIME, rightmost bar in the plots) reduces entropy
by more than 80% and increases predictability by at least 30%. More in detail, upon
conditioning on the full context model, the entropy drops from 3.32 to 0.42 for WA, from
2.43 to 0.28 for WE, and from 1.82 to 0.29 for WO. At the same time, the predictability
goes from 0.45 to 0.96 for WA, from 0.65 to 0.97 for WE, and from 0.67 to 0.97 for
WO, cf. Table 4.1. This shows that the potential gain in accuracy from using multi-
modal contextual dimensions is extremely large for all the modalities. The results for
predictability make this point even clearer, as conditioning gives an impressive reduction
of the irreducible error (that is, 1− Π). In particular, the irreducible error of WA sees
a huge drop from 55% to 4%, that of WE from 35% to 3%, and that of WO from 33%

to 3%. This is consistent with our argument that time, location, activity, and social ties
strongly influence each other, and provides empirical evidence in favor of our approach
of taking into consideration all the four contextual dimensions.

The magnitude of entropy reduction is largely independent of the target modality:
conditioning reduces entropy of WA by 84%, of WE by 86%, and of WO by 81%, and

3The conditional entropy is – by definition – never larger than the unconditional entropy, that is,
H(X |X ′) ≤ H(X), regardless of the relation between X and X ′. Still, if X ′ is independent of X , then
conditioning has no effect on entropy. This is clearly not the case in our plots.
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increases predictability by 160%, 133%, and 131%, respectively. At the same time, some
modalities appear to carry more information than others: while conditioning on TIME
shrinks entropy by only 15-20%, conditioning on WO, WA, and WE reduces entropy by
45%, 54–67%, and 59–77%, respectively. The four modalities can be ordered by average
impact as TIME ≺ WO ≺ WA ≺ WE, meaning that TIME is the least informative
modality and location the most informative one in the setting under investigation in this
study. The largest impact is observed when conditioning activity on location or vice
versa, although conditioning on multiple modalities makes this effect more noticeable.

Comparing these results, which refer to flat entropy and predictability and that
therefore ignore correlations over time, with those for full entropy supports the idea that
inter-modal correlations are more influential than pure temporal correlations. Indeed,
the full entropy of WA, WE, and WO reported in Table 4.1 are 1.25, 0.87, and 0.82,
respectively, while the flat entropy obtained upon conditioning on the rest of the context
is much lower, namely 0.42, 0.28, and 0.29, respectively.

4.5 Location Prediction

The above analysis shows that taking multiple contextual modalities into account helps
to identify regularities in the behavior of individuals. Along this line, we also expect that
some activities, locations, or social relationships cannot be predicted unless information
from other modalities is available. Furthermore, while predictability measures the
performance of an optimal classifier, it is important to study whether improvements in
predictability due to conditioning affect the performance of real classifiers in practice.

To investigate this issue, we carried out a practical location prediction experiment.
Specifically, we measured the difference in prediction performance between a prototypical
statistical classifier [48] that predicts location from sensor measurements and that of
analogous classifiers that were additionally given annotations about activity and/or social
ties. As for the classifier, we opted for Random Forests due to their performance and
reliability [7].

We trained one Random Forest classifier for each participant u. Each Random Forest
takes as inputs the sensor measurements sut of user u at time t – and optionally the
annotations for the activity xu,WA

t and social ties xu,WO
t – and predicts the corresponding

location xu,WE
t . For simplicity, the sensor measurements sut were restricted to features
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Figure 4.6: Left: Macro mean F1 scores achieved by a Random Forest classifier for
location using sensors only, sensors with WO, sensors with WA, and sensors with WO and
WA. Right: per-label F1 score achieved by the same classifier for individual locations.

derived from GPS information, and in particular to longitude, latitude, and total distance
traveled by the subject since the last questionnaire. This simple setup is sufficient for
location prediction, and readings from the other sensors were found empirically to not be
very relevant for the task at hand.

Prediction performance was evaluated using a 5-fold cross validation procedure.
Namely, for each study participant, her/his records were randomly partitioned into 5
folds: one fold was used for performance evaluation while the remaining four were used
for training the classifier. This step was repeated five times by varying the test fold. The
performance of the Random Forest was taken to be the average over the five repeats.

For each user, we evaluated the impact of inter-modal annotations by comparing the
performance of four classifiers: a baseline Random Forest that uses only GPS-derived
inputs sut and three Random Forests – with the very same depth – that were given also
annotations for WA and/or WO as inputs. All hyper-parameters were kept to their
default values4. except for forest depth, which was selected on a separate validation
set to optimize the performance of the baseline Random Forest. In order to account
for annotations skew (i.e. some locations are naturally more frequent than others),
performance was measured using the macro F1 score. The latter is simply the F1 score
of individual locations averaged over all locations.

The overall macro F1 scores averaged across study participants, as well as a break-

4As given in the scikit-learn package, version 0.24 [71]
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down of the F1 scores for individual locations, are reported in Figure 4.6. The plots
show that GPS information can predict reasonably well several locations (red bars), like
“Home”, “Relative’s home”, and “Library”, among others, on which the baseline Random
Forest achieves 40% F1 score. We conjecture this to be partially due to the fact these
locations are very specific – in our data, the home of most users is unique and often easily
identified from even few examples – and partially due to the abundance of annotations
for these locations, cf. Figure 4.2. GPS information, however, is clearly insufficient
for locations like “Shop/Supermarket/etc.”, “Theater/Museum/etc.”, “Gym”, which are
far more generic. Here the baseline Random Forest performs very poorly. This can
be explained by two facts. First, these locations are composed of multiple objective
locations (e.g. different shops, some of which possibly never observed during training),
and therefore they are harder to predict based on GPS data alone. Second, the number of
annotations for these locations is much lower.

Performance dramatically improves once WA and WO are supplied as inputs. In
particular, the overall F1 score increases by about 30%. Moreover, while knowledge
of either WO or WA always helps recognition performance, supplying both improves
performance even more, as expected. We also note that WA is more useful than WO in
general. These observations are consistent with the results for the optimal classifier.

One question is whether these results are influenced by the performance of particularly
easy to predict classes. We assessed this possibility by computing a variant of the macro
F1 that considers the median (rather than the mean) performance over classes, and as a
result is naturally insensitive to classes that perform exceptionally well or exceptionally
badly. The results are as follows: the macro mean F1 for the four cases (sensors only,
sensors with WO, sensors with WA, and sensors with WO and WA) is 0.19, 0.25, 0.42

and 0.47 respectively, whereas the macro median F1 is 0.09, 0.13, 0.43 and 0.47. The
more significant difference between macro mean and median F1 appears when no activity
information is present: the baseline drops by about 10% and the “with WO” Random
Forest by 13%. However, the latter can be almost entirely explained by the former:
adding social information contributes roughly +5% to both macro mean and median F1

(from 0.19 to 0.25 and from 0.09 to 0.13, respectively). Summarizing, this shows that
the macro mean F1 overestimates the quality of the sensor-only baseline by about 10%.
This probably occurs because all on-the-way locations like driving and walking are very
hard to predict from sensors only (they individually achieve less than 8% F1), meaning
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that the macro median F1 tends to consider the higher-performing classes as outliers and
ignores them. Most importantly, the contribution of inter-modal information to predictive
performance is confirmed even by this more strict metric.

An important finding of this experiment is that some locations that were completely
unpredictable from GPS data alone, are much easier to recognize if WA and WO annota-
tions are supplied as inputs. The two most impressive examples are “Shop/Supermarket/etc.”
and “Theater/Museum/etc.”, in which the correlation between location and activity boosts
the F1 score from less than 5% to more than 70%. This very encouraging result offers
further support for the jointly leverage of different contextual modalities, as some loca-
tions that are essentially impossible to recognize suddenly become essentially trivial to
recognize when rich contextual information is provided.

4.6 Subjectivity and Predictability

Here, we investigate whether subjective annotations are more relevant than objective
ones for determining predictability of behavior.

In particular, we compared the reduction in entropy due to conditioning on subjective
location (namely, the WE annotations) to that due to conditioning on objective location,
interpreted here in terms of GPS coordinates and related information. As in the location
recognition experiment, we defined objective location using longitude, latitude, and total
distance travelled since the last questionnaire. Computing the conditional entropy for
continuous variables – in our case, the GPS coordinates – is not statistically straight-
forward. In order to avoid issues, we discretized the GPS information using a simple
binning procedure. In particular, we allocated k = 3 equal size bins for each of the
three dimensions (longitude, latitude, amount travelled), for a total of 27 values for the
objective data. This is done by using the KBinsDiscretizer class provided by scikit-learn
[71] using the “quantile” strategy, which ensures that all bins contain roughly the same
number of points. The number of bins roughly matches the number of subjective values
(i.e. locations), which are 22. Since the variance of the conditional entropy estimator
depends strongly on the number of alternative values, our choice of having roughly the
same number of values for both subjective and objective data discourages the estimator
from having dramatically different variances for the two cases.

A comparison of conditional entropy of WA and WO obtained by conditioning using
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Figure 4.7: Entropy (up) and predictability (down) of modality WA and WO after
conditioning on subjective labels (red) and objective labels (blue).

subjective (red) versus objective (blue) location is reported in Figure 4.7. The two left
bars in each plot refer to conditioning the target modality using location only, while
the two right bars indicate conditioning on all other modalities. There is a very clear
difference between self-reported locations (WE) and GPS data: while knowing the GPS
coordinates and traveled distance of the study participant reduces entropy in all cases, the
reduction is far more modest than that obtained by conditioning on subjective location.
The impact on predictability is analogous: GPS information provide a substantial boost
to predictability (cf. Table 4.1), from 45% to 70% for WA and from 67% to 81% for
WO. This is compatible with the results obtained above for inter-modal correlations.
The improvement is however always inferior to the one induced by subjective location:
for WA, predictability is 70% when supplying objective location but goes up to 92%

when supplying subjective annotations. For WO, the difference is less pronounced:
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81% (objective location) against 90% (subjective). This is, again, likely due to the
strong connection between activity and location. The situation is roughly unchanged
if we condition the target modality on the rest of the context, namely location (either
subjective or objective), time, and the remaining modality. These results show that
subjectivity, besides being necessary for framing behavior from the subject’s perspective,
has a substantial effect on predictability and regularity of behavior in practice.

4.7 Diversity of Personal Behavior

4.7.1 Motivation

In the last experiment we studied the diversity of personal behavior. The motivation
underlying this experiment is to provide some evidence of the intrinsic diversity, both
objective and subjective, of the personal context of an individual. It is a widespread
intuition that most of the time people behave similarly to each other. Indeed, everybody
sleeps, eats, works, and socializes, and these activities take up most of our time. So,
at a high level, everybody behaves the same during these high-frequency (subjective)
activities. Our intuition is that individual differences manifest themselves in infrequent
behaviors – for instance, while most people only go to the cinema in the evening, a
cinephile has no issue going to a matinée.

A prerequisite to this argument is that rare behaviors occur often enough to be
statistically meaningful. To determine whether this is the case, we checked whether the
empirical distribution of context annotations is heavy-tailed. This was achieved by fitting
three candidate distributions, a power law distribution, a log-normal distribution, and an
exponential distribution to the data.5. It is apparent from the plot shown in Figure 4.8
that the log-normal distribution (with µ = −8.2, σ = 1.6) offers a much better fit of
the behavior of individuals than the exponential model, which is not heavy-tailed. This
supports the idea that individual behavior described using the four identified contextual
modalities is heavy-tailed, as expected.

Inspired by some studies on the uniqueness of mobility [18, 81] and apps usage [84]
behaviors, we investigate whether annotations in the tail of the context distribution are
indicative of personal identity, that is, whether it is easier to identify individuals using

5Using the powerlaw package [3].
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Figure 4.8: Comparison of power-law distribution and exponential distribution fit on the
empirical distribution.

annotations from the tail or from the “head” of the distribution. For instance, in our
university setting we expect common (head) annotations like 〈morning, classroom, lesson,
classmates〉 to convey very little information about individual identity, as most univer-
sity students attend lectures in the morning, and rarer (tail) annotations like 〈morning,
workplace, work, alone〉 to be far more informative.

4.7.2 Experiment and Results

We designed a classification task in which the goal was to predict the identity of individu-
als based on context annotations only. All records in our data set were annotated with the
ID of the subject they were generated by. The head and tail of the distribution were then
defined using an arbitrary threshold τ ≥ 0: annotations that appear with frequency below
τ were taken to fall in the tail and the others in the head. Next, we trained two Support
Vector Machine (SVM) classifiers [13] separately on the tail data and on the head data,
and compared their performance. Both models received annotations for all modalities as
inputs. As above, performance was measured in terms of F1 score (the higher the better)
in a 10-fold cross validation setup. Notice that the number of personal IDs is 156, which
is fairly large and renders the classification task highly non-trivial. For reference, the
expected F1 score of a random classifier is 1/156 (indicated in cyan in the plots).



51

0
0.

00
00

1
0.

00
00

2
0.

00
00

3
0.

00
00

4
0.

00
00

5
0.

00
00

6
0.

00
00

7
0.

00
00

8
0.

00
00

9
0.

00
01

0.
00

01
1

0.
00

01
2

0.
00

02
2

0.
00

03
2

0.
00

04
2

0.
00

05
2

0.
00

06
2

0.
00

07
2

0.
00

08
2

0.
00

09
2

0.
00

10
2

0.
00

11
2

0.
00

12
2

0.
00

13
2

0.
00

14
2

0.
00

15
2

0.
00

16
2

0.
00

17
2

0.
00

18
2

0.
00

19
2

0.
00

69
2

0.
01

19
2

0.
01

69
2

0.
02

19
2

0.
02

69
2

0.
03

19
2

0.
03

69
2

0.
04

19
2

0.
04

69
2

0.
05

19
2

0.
05

69
2

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f1

-s
co

re
F1-score of tail data and head data over all users

tail data
head data
all data
random classifier

0 20 40 60 80 100 120 140 160
0.0

0.1

0.2

0.3

0.4

f1
-s

co
re

F1-score of tail data, head data of each user. (Threshold = 0.00001)
tail data
head data

0 20 40 60 80 100 120 140 160
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f1
-s

co
re

F1-score of tail data, head data of each user. (Threshold = 0.00007)
tail data
head data

Figure 4.9: Top: average F1 score over all study participants for classifiers trained on tail
(blue) and head (red) data for increasing values of the threshold τ . The performance of
a classifier trained on all data (green) and of a random baseline (cyan, dashed) are also
reported, for comparison. Bottom: F1 score of each individual for thresholds τ = 0.00001
(left) and τ = 0.00007 (right). The x-axis represents the 156 participants. Individuals
are sorted by increasing F1 score of the tail classifier.

The results can be viewed in Figure 4.9. The top plot shows the F1 score of the two
classifiers as the threshold τ is increased. Recall that a lower threshold entails that fewer
annotations fall in the tail and more in the head. The threshold ranges from 0 (left of the
plot), in which case no annotation falls in the tail, to the smallest value for which all data
fall in the tail, which is ≈ 0.57 (right of the plot). Broadly speaking, the tail classifier
always outperforms the head classifier by a large margin, while the head classifier never
performs better than a classifier trained on both head and tail annotations (the green line
in the figure). In order to better analyze the plot, we split it into three regions, highlighted
by the purple lines (notice that the sticks on the x-axis are non-uniform.) In the leftmost
region, the tail classifier does outperform the head classifier as soon as there are enough
annotations in the tail, and it stabilizes at around 40% F1 score for τ from about 0.00005

to 0.00012. Here the tail is maximally informative, presumably because it only contains
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rare and informative context annotations. As the threshold increases and less “rare”
annotations fall in the tail (middle region), the tail classifier drops off in performance but
it still outperforms the “all” and the head classifiers. The head classifier also performs
worse and worse, as more annotations move from the head to the tail. In the rightmost
region, the tail converges to the full data set and hence the tail classifier converges to the
performance of the “all” classifier.

A break-down of performance for different study participants is reported in Figure 4.9
(bottom) for the two thresholds corresponding to the minimum (τ = 0.00001) and maxi-
mum (τ = 0.00007) of F1 respectively. Individuals are sorted on the x-axis according to
the F1 score of the tail classifier, for readability. In the left figure, when τ = 0.00001, the
size of tail data is extremely small and only less than 20 users have annotations. This
explains clearly why the performance of the tail classifier drops when the threshold is
too small. On the other hand, for τ = 0.00007 (right figure) the overwhelming majority
of individuals is more likely to be identified correctly by looking at their infrequent
behaviors – with less than 10 exceptions. This provides evidence in support of the fact
that the tail of the distribution conveys much more information about personal identity
than the head. The “exceptional” participants themselves can also be easily explained.
These individuals are hard to classify because their behavior is slightly more regular than
that of the other volunteers, meaning that their most of their annotations occur more
frequently and therefore are more likely to fall in the head of the distribution. Indeed, we
verified that this issue disappears once the threshold is increased slightly (data not shown).
A proper solution for this issue would be to choose the threshold τ on a subject-by-subject
basis. This is however orthogonal to our goals, and beyond the scope of this paper.

4.8 Summary

In this work, we have studied the predictability of human behavior through the notion of
personal context. Our study captures a rich, multi-faceted picture of individual behavior
by looking at four orthogonal but interrelated dimensions – namely time, location, activity,
and social ties – viewed from the subject’s own perspective. An empirical analysis on a
large data set of daily behaviors shows the benefit of this choice: the different contextual
modalities and their subjective description are shown to provide important cues about the
predictability of individual behavior. Motivated by this, we also applied our contextual
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modalities to study behavioral diversity. The obtained results highlight that individuals
are more easily identified from rarer, rather than more frequent, subjective context
annotations.

This work can be extended in several directions. First and foremost, while our
results are promising, we plan to further validate them in more settings and in specific
applications. To this end, we are currently working on collecting a much larger data set,
with students from several universities in four different countries, which will serve as a
basis for a thorough investigation of the results presented here.

This work also highlights an interesting conundrum. Our results suggest that subjec-
tive annotations are very useful for predicting certain contextual modalities. However,
these subjective annotations, obtained by filling questionnaires, have some degree of
error related to, for example, the list of alternatives that are allowed to the respondent, e.g.
the list of activities, places, or people; the memory effect of the respondent when s/he
does not respond immediately; the social desirability effect that may prevent the study
participant from reporting certain (socially disapproved) activities; and unreported activi-
ties when the participant perceives this as an intrusion into her/his privacy. Moreover,
in practical applications, collecting self-reported annotations is not always an option.
This means that in some settings and scenarios one has to compute predictions from
sensor measurements only, which is likely to incur a substantial performance penalty.
Going forward, one option is to replace the ground-truth self-reported annotations with
predictions. This makes especially sense in a multi-task prediction pipeline in which
all contextual modalities are predicted jointly from sensor measurements. This way, the
predictor can leverage inter-modal correlations, which are key for inferring some loca-
tions and activities and for avoiding inconsistencies. This prediction pipeline would be
fully operationalizable even in the absence of subjective annotations, so long as an initial
training set is available. The downside is that replacing annotations with predictions
does introduce noise into the system. Finding a complete solution to this problem is an
interesting avenue for future work.
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Chapter 5

Personal Context Annotations Quality

5.1 Introduction

The work in this chapter is based on the work we published in [40]. Understanding
human behaviour and human context in real life scenarios can not be done by sensor
data alone without human knowledge. One solution is to involve human by asking
users to give annotations to report their daily behavior. Users’ annotations will then be
used to train machines together with sensor data. This helps the machine to understand
user’s behavior or context automatically at appropriate moments before providing further
services. This solution is widely used in some research areas such as participatory sensing
[50] and mobile crowd sensing [43].

A relevant issue is the quality of the data provided by users [72, 52]. Majority
of the existing studies focus more on the quality of sensor data, e.g., lack of sensor
calibration, environmental noise, and data redundancy [63]. And there is still a lack of
systematic approach concerning users’ annotations [44], especially the annotations in the
wild which is not a controlled environment. It is vital to have high-quality annotations
for learning and understanding users’ behavior and context without relying on time-
consuming manual validation by experts, which is used in some controlled environment
[46, 51]. In fact, even experts are unlikely to be able to mirror the experience of users,
except in some simple tasks, e.g., traveling [10]

In this chapter, we propose a methodology to evaluate users’ annotation by using
the entropy from information theory, which was introduced in Section 4.3. We firstly
generate annotation clusters for each user basing on the coordination of the locations.
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The main idea is that, if an annotation cluster has higher number of unique annotations in
it, it will be harder to infer which location this cluster is actually referring to. In other
words, a cluster with higher entropy is more difficult to be predicted. And a user with
more consistent clusters completes the annotation task more consistently.

The evaluation of the annotation process is performed on the data set from SmartUnitn
One project which was introduced in Chapter 3. In this project, the annotations are built
semantically depending on users’ understanding of their context. While the project
collected the users’ annotations of different dimensions of context, we focus on the
annotations that are provided to describe their locations and traveling habits. Furthermore,
we propose to exploit the ontological information that is used in building the annotation
labels to group semantically the labels to improve the results. The results show that our
student users are consistent with respect to the random baseline. and the results can be
improved by exploiting the semantics of annotations.

5.2 Annotation Consistency

It is not easy to evaluate the quality of user’s annotation in the wild. More exist work
focus on the evaluation of the sensor data. In fact, annotations can not be evaluated
without the corresponding sensory data, which makes developing a general approach and
a challenging task. To the best of our knowledge, there are still no systemic approached
for assessing the quality of annotations in the wild in the literature.

We propose a methodology to assess the quality of user’s annotation, and validate our
solution on the data set generated from project SmartUnitn One, which was introduced in
Chapter 3. To evaluate the annotations quality, we focus on two specific annotation types,
i.e., locations and movement. Notice that, though movement is not one of the dimensions
of the personal context that we proposed (Chapter 3), when a user answers the question
“What are you doing?” with the label “En route”, s/he will be asked with “How are
you traveling?” instead of “Where are you?”. Thus instead of generating a location
annotation, s/he will generate a movement annotation to indicate his/her transportation
means using one of the following labels: “by foot”, “by bus”, “by train”, “by car”, “by
motorbike” and “by bike”.

The main reason for choosing these two types of annotation is that both location and
movement are relatively easy to recognize from the point of view of sensing strategies,
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and there is no need to rely on complex combinations of sensor data to identify them. An
other reason for locations is that locations are endurants, which are not likely to change
its function or position during the time of the experiment. This is important for this work
since we do not have external ground truth to compare the annotation with, e.g., students’
home addresses, which are not provided for privacy concerns.

5.2.1 Annotation Clustering

We firstly formalize a annotation A as a tuple 〈L,LOC〉, where the L is a label that the
user provides to answer the questions “Where are you?” or “How are you traveling?”, and
the LOC is the physical location collected by the smartphone sensor at the time when the
question is generated. The LOC is represented as a triple 〈latitude, longitude, altitude〉.
It can be collected by the GPS or calculated by the network Wi-Fi connection.

Secondly, for each user, we cluster his annotations by using DBSCAN algorithm [28]
with their physical location regardless of the collection time. DBSCAN is a density-
based clustering algorithm that, given a set of points in some space, it groups the points
that are closely packed together (points with many nearby neighbors), and marks the
points as outliers which lie alone in low-density regions (whose nearest neighbors are
too far away). The purpose of clustering all the annotations by their physical location
coordinates is to generate a series of proxy locations or movements for every user. More
formally, a cluster of annotations is defined as a set of labels CL = [L1,L2, . . . ,LN ],
where Li is the i-th label, N is the total number of the labels in this cluster. Let M to
be the number of total unique labels, then M ≤ N. An alternative way to see a cluster
is to group all the instances of the same M labels in the cluster with the number of
their occurrence O, so that CL = [L1 : O1,L2 : O2, . . . ,LM : OM ]. CL is a vector
of pairs Li,Oi, which means label Li happens Oi times in this cluster. For instance,
there are two clusters for the same user: CL1 = [Home : 132,Office : 1,Library : 1] ,
and CL2 = [Home : 48,Office : 40,Library : 46]. We can infer that, the user intends
to annotate the first cluster CL1 as his own home, while “Office” and “Library” are
obviously outliers due to, e.g., uncertainly in the measurement accuracy or the wideness
of the window for collecting sensor data. On the other hand, for the second cluster CL2,
it is not clear which location this cluster is referring to. Finally, annotations from a user
U can be represented as a set of Q clusters: U = [CL1, CL2, . . . , CLQ].
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5.2.2 Definition of Consistency

As we can see in the examples in last subsection, cluster in which most space points are
annotated with the same label, e.g, CL1, is a consistent cluster, while a cluster with an
even distribution of labels, e.g., CL2, is an inconsistent cluster. Intuitively, a user with
more consistent clusters is a relative consistent user. We base our intuition of consistency
on the entropy H(X) as defined in information theory [89]. We shortly introduced
three types of entropy in Section 4.3. The entropy we use here in this section is the flat
entropy, which takes the full value distribution into account but ignore the information of
collecting time. The formal definition is:

H(X) = E[−lnP (X)] = −
n∑

i=1

P (xi) log2 P (xi)

where H(X) is the entropy of a discrete random variable X with n possible values
x1, x2, . . . , xn and probability mass function P (X).

The entropy is a measure of unpredictability of the information represented as a
number between 0 to 1, where the lower the entropy is, the higher the predictability of
the variable will be. If all the labels in a cluster are the same, which means the annotation
task is consistent, then this cluster is highly predictable. On the other hand, if all the
labels in this cluster is different, then this cluster is highly unpredictable. Since the
consistency should intuitively be better when high, while entropy behaves in the opposite
way, we decide to define the consistency of a cluster CL as:

C(CL) = 1−H(CL)

where, recalling the definition, CL = [L1 : O1,L2 : O2, . . . ,LM : OM ]. Then the
consistency formula becomes:

C(CL) = 1 +
M∑
i=1

P (Li) log2 P (xi)

where
P (Li) =

Oi∑M
j=1Oj

is the probability of the occurrence of the i-th label Li in the cluster CL. After this
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consideration, a cluster can be represented as CL = C(CL) : NA, which is composed
by the consistency value C(CL) and the total number of annotations in this cluster
NA =

∑M
i=1Oi.

Now, in order to compute the consistency value of a user CU , recalling that U =

[CL1, CL2, . . . , CLQ], we compute the average of weighted consistency value of each
cluster of this user.

CU =
1∑Q

i=1NAi

Q∑
i=1

C(CLi)NAi (5.1)

5.3 Assessing Location and Movement Consistency

In order to evaluate the consistency of the students’ annotations generated in the SmartU-
nitn One project, we compute the consistency values CU using Equation 5.1 for each of
the 72 students in the dataset. To achieve better evaluation, we decided to use four differ-
ent annotation sets for each user: i) Labels, ii) Semantic labels, iii) Random Baseline,
and iv) Random Stratified Baseline. The result is shown in Figure 5.1

Labels are the annotations that the students provided during the project. The consis-
tency of a student calculated with label annotation is represented as a round dot in the
plot. The mean consistency value is 0.69 and the standard deviation is 0.12.

As for Semantic labels, they are semantically related labels that are grouped basing
on the semantics of the ontology concepts as in Section 3.5.3 where we introduced the
personal context annotation. This step followed two different levels of abstractions:

1. Being in buildings vs. Travelling: We firstly divide the annotations according to
whether they refer to actual buildings or whether they refer to any traveling. Thus
dividing them is to group all the following annotations as “traveling”: “outdoors”,
“by foot”, “by bus”, “by train”, “by car”, “by motorbike” and “by bike”, and leave
the rest as they are.

2. Home vs. University: We further divide the annotations according to whether
they refer to educational, residential or other buildings. We focus on the first two
types of buildings since they are the two main contexts that students spend most
of their daily lives on. For education buildings, we group “class”, “study hall”,
“library”, and “other university place”. And for the residential buildings, we group
“home” and “other private house”.
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Figure 5.1: Consistency of four annotation sets. Consistency values on the Y axis and
different student on the X axis.

These two categories allow us to smooth the distribution of closely relates spatial
elements, e.g., study hall and libraries that belong to the same building and semantically
refer to the educational context, and distinguishing when a user is moving. The final
result obtained by adding this semantic step is that the mean consistency value is 0.74
and the standard deviation is 0.13, which further improves the initial result by students.

To properly assess the consistency value as defined in this work, it must be compared
with a baseline value. For this reason, we present two different baseline, as shown
in Figure 5.1. The first baseline is the Random Baseline, which simulates an entirely
random behavior of each user. More specifically, we consider the same number of labels
of each user annotation from the original dataset. This random baseline annotation set
is generated by simply replacing each original annotation with a randomly chosen label
from the 19 possible labels in the time diary. As expected, the consistency value is lower
for all users, showing a final value of 0.15 (standard deviation is 0.13).
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The second baseline, called Random Stratified Baseline, relied on stratified random

sampling [87]. It randomly provides labels considering their original distribution for
every user. The mean consistency value for this baseline is 0.38, and the standard
deviation is 0.12.

The results of the evaluation show that the users annotated their own data almost five
times more consistently that the entirely random baseline, and 50% more consistently
than the stratified random baseline. It also shows that exploiting semantics in the whole
process from the building of annotations to the analysis can improve the result by
additional 7.2%. It is important to notice that, concerning standard approaches which rely
on constrained environments and human experts intervention, the labels were collected at
a significantly low rate (1 label every 30 minutes). Given that the labels were collected in
a real-world scenario with such a low frequency, the results are even more significant.

5.4 Summary

In this chapter, we introduced a methodology that evaluates the users’ annotation quality
basing on the computation of entropy from information theory. It was then applied on
the data set which is generated in the SmartUnitn One project. We mainly focused on
the annotations of locations and movement among all modalities. The results show that
the students were fairly consistent respect to the random baseline in giving annotations
during the project experiment. And by considering the semantics of labels, the results
can be improved.
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Chapter 6

Skeptical Learning

6.1 Introduction

The work in this chapter is based on our work in [111] and [112].
Nowadays, our smartphones are no longer just miniature computers to send emails or

access the Web, but they are becoming more and more like assistants for our everyday life.
The critical factor for the change of roles that machines play in our lives is knowledge; in
fact, machines need to have access to our knowledge and not just convey it. Knowledge is
however diverse and heterogeneous, and what a person knows may differ radically from
another, and this requires humans to help machines in understanding the world in the same
way that they do. In recent approaches in computer science such as (supervised) machine
learning [86] or mobile crowd sensing [43], human knowledge is usually provided as
annotations or labeling of data collected with sensors or other means. Involving human
knowledge as we mentioned in the chapter 5 will help the machine to better understand
the user’s current context. This type of human contribution is at the heart of the “human
in the loop” paradigm which leverages both human and machine intelligence to create
machine learning models by involving humans in training, tuning and testing data for a
particular machine learning algorithm. The final goal is to use humans to improve the
quality of the results of the machine.

The performance of supervised learning algorithms crucially depends on the quality
of the labeling of the data they are trained on. A perfectly labeled training set however
is a condition rarely met in real-world scenarios. Most modern supervised learning
approaches can tolerate a small fraction of mislabelled training instances. The implicit
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assumption made in (even recent) mainstream machine learning and also in [31] is that
annotators are experts. However, with the use of machine learning becoming viral, more
and more applications are being developed where the tagging is provided by non-expert

users.
Normal users (non-expert users) can make mistakes and more often than not un-

knowingly or unwittingly, due to their biases, which alter their perception and judgment
of reality. Research in the Social Sciences provides evidence of the unreliability of
people when required to compile self-reports such as time diaries [95] describing their
behavior. For instance, respondents have difficulties recalling sequence and relevance of
distant activities, i.e., memory bias and cognitive load [98], or may feel discouraged or
non-cooperative because they do not understand the instructions or other reasons, i.e.,
unwillingness to report [14], or change their reported behavior to one that is considered
socially desirable, i.e., conditioning [104].

We propose Skeptical Learning algorithm (SKEL) to deal with the untrustfulness and
unreliability of human annotators. The main idea is that the machine exploits its available
knowledge to assess the correctness of both its prediction and of the user. The machine
can obtain a confidence measurement about not only itself but also the user by monitoring
the sequence of wrong and correct answers. When a contradiction arises, namely the
user’s label and the prediction label generated by the machine are not compatible, these
confidences label are then used by the machine to make a estimation whether it is the user
gives an incorrect label or it is the machine not well-trained gives a wrong prediction.
The machine will be further trained in the previous case and the user will be challenged
to confirm his label in the later case.

In this chapter, we also introduce an evolved SKEL algorithm, in which the predictor
is implemented as a hierarchy of classifiers matching prior semantic knowledge. The
experiments and evaluation have been substantially extended by comparing our algorithm
with three alternative strategies for dealing with conflicts.

We evaluate the SKEL algorithm on the data set generated in SmartUnitn One project.
The results highlight the advantages of this interactive, skeptical approach to learning
over state-of-the-art but non-skeptical machine learning alternatives. Results show that a
SKEL architecture improves over an approach relying only on the noise-robustness of
the underlying learning algorithm, as is customary in the machine learning community.
Questioning user labeling and exploiting semantic knowledge for conflict resolution are
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crucial aspects underlying the observed increase in performance. The results provided
also show the extreme variability of the students’ behaviors and, therefore, the need for a
person-centric customized solution to the problem of mislabeling.

6.2 Method

To solve the mislabeling issue of human annotation, we propose a method which is
composed of a set of three basic ingredients, namely:

• A reference architecture, described in Section 6.2.1, which integrates the two
main components used in supervised learning, namely the machine learning (ML)
algorithms and the user providing feedback with two extra components, namely a
knowledge component which stores the prior knowledge and the skeptical learning
algorithm. The key idea is that the algorithm component, based on its internal
strategy, involves the user and the ML algorithms in the most suitable way aimed
at solving the mislabeling problem. This strategy may or may not involve using the
prior knowledge or asking the user for different tasks, for instance, asking her for a
second opinion on a previous labeling, with the goal of solving a contradiction;

• The main skeptical learning algorithm, described in Section 6.2.2, which exploits
the critical idea that this algorithm can be in one of three states, namely: TrainMode

where the goal is to accumulate enough knowledge about the user dynamics,
RefineMode where, being confident of the previously acquired knowledge, SKEL
starts checking the user provided label quality and, finally, RegimeMode where
SKEL deploys an active learning strategy where the user is only occasionally asked
for feedback as the way to check that SKEL and the user herself are aligned in their
ability to interpret the world;

• The conflict management algorithm described in Section 6.2.3, which solves
possible labeling conflict by optionally involving the prior knowledge and an
oracle, for instance, the user herself on a second opinion, who is called upon
making the final decision about what is the case.

We describe these three main components in the remainder of this section.



64
6.2.1 The SKEL Architecture

Figure 6.1: The SKEL architecture.

Figure 6.1 shows the multi-layer architecture of the Skeptical Learning. The funda-
mental intuition is that the human annotator(s) and the machine learning algorithm(s)
are treated as interpretation channels which provide their fallible perspective on what
is the case in the real world. In Figure 6.1, the first layer, inside the dashed box, is the
HW/SW Machine, e.g., a smartphone with its software, implementing the overall SKEL
functionality while the third and the last layer is the world, which is only indirectly
accessible to the Machine. In the second layer, Machine and World are connected via, on
one side, a set of n sensors S1, ..., Sn (as they exist, e.g., in a smartphone or a smartwatch)
which generate a set of streams {xt}Si

, with xt the value collected at time t by the sensor
Si and {xt}Si

the stream of data generated by Si and, on the other side, the Machine
reference user, namely the person who is the direct beneficiary of its services.

The reference user, on request (outgoing arrow on the left of the dashed box) provides
a label yt which is interpreted as the value at time t of a specific property Pj , thus
generating, by giving answers to different questions, a set of label streams {{yt}Pj

}u. For
instance, the label “University” which answers the question “Where are you?” (ingoing
arrow on the bottom left of the dashed box) is interpreted as Int(User,University). It is
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important to underline how the answer by the user is provided based on her perception
of the world and without any clue of the sensor values nor of how the Machine uses her
input. The mapping from sensor values to user-provided labels is produced by a set of
machine learning algorithms, whose existence may not be even known by the user, as
described below. Note how this design decision allows for full freedom in the choice of
the machine learning algorithms which can, therefore, be tuned to the specific learning
problem.

As from Figure 6.1, the Machine consists of three components:

1. The SKEL main algorithm, hence SKEL implementing the skeptical learning
strategy as described in the next sections;

2. A Predictor PRED consists of an ensemble (see, e.g., [74]) ofm learning algorithms
f1, .., fm, each taking in input an array of data xt (the concatenation of all sensor
readings at a certain time) and producing a score fk(xt, y) for all possible labels
y ∈ Yj of a given property Pj . These scores are then aggregated by PRED into
a single label yt which, similarly to the user, is the value that a certain property
Pj takes at time t (from the point of view of PRED). Different properties can be
managed using different ensembles (one per property) or having the ensemble
score a combination of labels, one for each of the properties. PRED, similarly
to the user, provides its internally produced labels on request by SKEL, where
requests are represented in Figure 6.1 as right outbound arrows from SKEL. As
implied in Figure 6.1, both the user and the predictor do not answer back to SKEL
but rather store their answers in the knowledge component SD. This process allows
for the possibly asynchronous interaction of SKEL with the user and PRED, which
leaves room for independent loosely connected reasoning strategies;

3. A Knowledge component which stores whatever prior knowledge the machine has
accumulated in time. It consists of three sub-components:

(a) The Stream Data storage SD, with SD being

SD = < {xt}Si
, {{yt}Pj

}p, {{yt}Pj
}u >

where {xt}Si
is the set of data streams coming from the sensors and {{yt}Pj

}p

and {{yt}Pj
}u are the multiple streams, one per property Pj , provided by the
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predictor and the user, respectively, as answers to the SKEL queries;

(b) the component called GK, for Ground Knowledge, contains factual knowledge
about the world (in the actual implementation it is stored as a knowledge
graph), which can be generated in one of three possible ways: (i) it was
provided to the machine as a priori knowledge, (ii) it was independently
provided by third parties or (iii) it was previously generated by SKEL, as
described below. GK is where the Machine cumulates the knowledge learned
in time. One example of GK is the knowledge about specific locations, or
events, or people, for instance, the fact that Fausto’s office is part of the
Department building, which in turn is a part of the University premises;

(c) the component called SK, for Schematic Knowledge which contains general
knowledge, for instance in the form of a hierarchy of concepts stated in a
certain language, see, e.g., [35]. One trivial example of SK content is an
axiom stating that resting is a more general concept than sleeping. Another
example is general statements about locations and sub-locations, for instance,
the fact that Department buildings are always inside the Univesity premises.
In this paper, we assume that SK is static and not growing and that it is known
by the Machine because it is provided as a priori knowledge.

GK and SK are pivotal for the correct interpretation of the Machine and user’s’
answers. As described in detail in Section 6.2.3, they are quite useful in the conflict
resolution phase as, whenever this is the case, they allow to infer that the user and the
Machine meant the same thing even though they used different labels. Thus, for instance,
the SK can be used to infer that the user is resting from her assertion that she is sleeping

while the GK can be used to infer that she is in the University from her assertion that she
is in her office, which is part of the University. The key observation is that the GK and
the SK, which provide a model-driven view of the world, are unavoidable components
whenever there is an interest in making the machine capable of fully understanding the
user input, in its intended semantics and, vice-versa, in enabling the user in providing
semantics to (i.e., in fully understanding) the output of the Machine internal data-driven
machine learning algorithms.
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6.2.2 The SKEl Main Algorithm

In this section, without loss of generality, we assume that there is a single property of
interest P , e.g., the location of the user at a particular time. We represent by Y the set of
possible values for this property.

Algorithm 1 Skeptical Supervised Learning (SKEL)
1: procedure SKEL(θ)
2: init cu = 1, cp = 0
3: while TRAINMODE(cp, cu, θ) do
4: xt = SENSORREADING()
5: yt = ASKUSER()
6: ŷt = PRED(xt)
7: TRAIN(xt, yt)
8: UPDATE(cp, ŷt, yt)

9: while REFINEMODE(cp, cu, θ) do
10: xt = SENSORREADING()
11: yt = ASKUSER()
12: ŷt = PRED(xt)
13: SOLVECONFLICT(cp, cu,xt, ŷt, yt)

14: while True do
15: xt = SENSORREADING()
16: ŷt = PRED(xt)
17: if CONF(xt, ŷt, c

p
ŷt

) ≤ θ then
18: yt = ASKUSER(ŷt)
19: SOLVECONFLICT(cp, cu,xt, ŷt, yt)

SKEL is an algorithm which takes in input a continuous stream of sensor data as they
are stored in SD (see Figure 6.1). The pseudocode of SKEL is reported in Algorithm 1.
The algorithm can be in one of three modalities which, for simplicity, we assume are
activated sequentially, namely: Train mode as in typical supervised learning, Refine mode
which checks the quality of the user answers and, under certain conditions, it challenges
them, and the Regime mode where it starts being autonomous and only queries the user
for particularly ambiguous instances.

The algorithm takes as input a confidence threshold θ. It starts by setting the user
confidence to one and the predictor confidence to zero for all classes (|cu| = |cp| = |Y|).
Then the training phase begins. The algorithms collect sensor readings (xt) to be used as
input for the predictor. In our current implementation, the prediction procedure PRED
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simply returns the highest scoring prediction:

PRED(x) := argmax
y∈Y

1

m

m∑
j=1

fj(x, y) (6.1)

where the score of a prediction y is the average score given to that label by the learners
in the ensemble (in the first iteration, when no training has not been performed yet,
PRED(x) returns a randomly chosen label). The system then asks the user for a label
(yt) to be used as ground truth. The input-output pair is used to train the predictor using
the TRAIN procedure. This procedure can either perform batch learning, in which the
predictor is retrained from scratch using all input-label pairs stored in memory, or do
an online learning step [88], where the novel input-output pair is used to refine the
current predictor. The choice between these learning modalities depends on the specific
implementation and constraints (e.g., storage capacity), see Section 6.3 for the details on
the actual implementation. After training, the confidence of the predictor is updated using
the UPDATE procedure, receiving as input the ground truth label and the predicted one
before the training step. When the predictor is confident enough to start challenging the
user on the correctness of a certain labeling, the training stage is stopped. The confidence
in a prediction y for an input x is obtained from the product of the score of the prediction
times the confidence cp

y the predictor has in predicting that label:

CONF(x, y, cp
y) := cp

y ·
1

m

m∑
j=1

fj(x, y) (6.2)

The system remains in training mode as long as the expected probability of contra-
dicting the user does not exceed the threshold:

TRAINMODE(cp, cu, θ) :=

E[1(CONF(x, ŷ, cp
ŷ) > cu

y · θ)] ≤ θ/2
(6.3)

where ŷ = PRED(x) is the predicted label for input x, y is the label provided by the user
for that input, 1(ϕ) evaluates to one if ϕ is true and zero otherwise, and the expectation
is taken over all inputs seen so far. The user is contradicted when the confidence in the
predicted label exceeds a factor θ of the confidence of the user in her own label.

Once the system enters the refinement mode, it keeps asking the user for labels, but it
starts to compare them with its predictions. The SOLVECONFLICT procedure deals with
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this comparison, and will be described in detail later on in this section. The refinement
stage is stopped when the predictor is confident enough to stop asking for feedback to
the user on every input, but selectively query the user on “difficult” cases. In general, it
should be the user who decides when to switch mode, trading off system maturity and
cognitive load. A simple fully automated option, similar to the one used for the train
mode consists of staying in refine mode as long as the expected probability of querying
the user exceeding the threshold:

REFINEMODE(cp, cu, θ) :=

E[1(CONF(x, ŷ, cp
ŷ) ≤ θ)] ≥ θ/2

(6.4)

again with expectation taken over all inputs are seen so far.
When leaving the refine mode, the system enters the regime one, where it remains

indefinitely. In this mode, the system stops asking feedback for all inputs, and an active
learning strategy [85] begins. The system queries the user only if the confidence in a
certain prediction is below the “safety” threshold θ. If the system decides to query the
user, it includes the tentative label in the query, and then behaves as in refinement mode,
calling SOLVECONFLICT to deal with the comparison between the predicted and the user
labels.

6.2.3 The Conflict Management Algorithm

Algorithm 2 shows the SOLVECONFLICT procedure. The procedure takes as input the
predictor and user confidence vectors cp and cu, an input x with its predicted label (ŷ)
and the label given by the user (y). It firstly compares the two labels according to the
ISCOMPATIBLE procedure. In the simplest case, this outputs true if the two labels are
identical, and false otherwise. In more complex scenarios, this procedure can use existing
knowledge, as stored in the SK or in the GK, to decide whether two distinct labels are
compatible, e.g., if the concept denoted by one is a generalization of the concept denoted
by the other. In case the labels are compatible, a consensus label is taken as the ground
truth, and the predictor and user confidences are updated accordingly. A natural choice
for the consensus (and the one we use in our experiments) is being conservative and
choosing the least general generalization of the two concepts.

A labeling conflict arises in the case of the two labels are not compatible. In case
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Algorithm 2 Procedure for solving labeling conflicts.

1: procedure SOLVECONFLICT(cp, cu,x, ŷ, y)
2: if ISCOMPATIBLE(ŷ, y) then
3: y∗ = CONSENSUS(ŷ, y)
4: UPDATE(cp, ŷ, y∗)
5: UPDATE(cu, y, y∗)
6: else if CONF(x, ŷ, cp

ŷ) ≤ cu
y · θ then

7: TRAIN(f,x, y)
8: UPDATE(cp, ŷ, y)
9: else

10: y∗ = ASKUSER(ŷ, y)
11: if not ISCOMPATIBLE(ŷ, y∗) then
12: TRAIN(xt, y

∗)

13: UPDATE(cp, ŷ, y∗)
14: UPDATE(cu, y, y∗)

the confidence of the prediction is not large enough to contradict the user, the user label
is taken as ground truth, the predictor is retrained with this additional feedback, and its
confidence is updated accordingly. Otherwise, the system queries the user providing the
two conflicting labels as input, asking her to solve the conflict. The user is free to stick
to her own label, change her mind and opt for the label suggested by the predictor, or
provide a third label as a compromise. As we are assuming a non-adversarial the setting,
the system eventually trusts the newly provided label (even if unchanged) which becomes
the ground truth. At this point, a compatibility check is made in order to verify whether a
retrain step is needed, and the predictor and user confidences are updated. Notice how
this is only an initial choice which can be extended in many different ways. What is
needed at this point in the algorithm is a trusted oracle which will give its final word on
the dispute. This oracle can be the user herself asked for a second opinion, as discussed
above, or some trusted learning algorithm, as in the experiments below, or some kind
of social opinion by, e.g., some friends or people nearby, or any combination of these
possibilities.

The UPDATE procedure takes as input a confidence vector, a tentative label (ŷ) and a
ground truth label (y∗), and updates the confidence vector according to the relationship
between the two labels. The new confidence vector is as a label-wise running average
accuracy over the current and past predictions, for a certain window size d.
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6.3 Experiments and Results

6.3.1 Data Processing and Setup

We validate SKEL algorithm on the data collected in the SmartUnitn Project. The
evaluation on this dataset required a pre-processing stage that generated a set of 122
feature vectors for each user, using all the available sensors inputs (the number depends
on the smartphone, and consequently on the user). The features can be described based
on the type of the data they refer to:

• Periodic data that include hardware sensors recording data every 1/20 seconds,
mostly three-dimensional coordinates. To aggregate this type of data the norm of
the axes for each row falling in the time slot is computed. This avoids discrepancies
deriving from different smartphone positions/orientations at the time of the reading.
Furthermore, unreasonable spikes in the reading are discarded. Finally, mean and
variance are calculated from the resulting vector of norms;

• On change data, that represent discrete events generated by the device software.
Features computed for this category include the time in milliseconds a particular
state persists within the time slot, e.g., for how long a screen is on and off respec-
tively. Additionally, a value denoting the presence of events and one keeping track
of the number of events seen are recorded;

• Other types of data, including any sensor generating data that does not belong
to the above categories. The most important features are the ones about the user
location. These consist of a set of features indicating: i) proximity to one of the
ten most common locations visited by the students during the experiment (one
flag per location). Most common locations were computed using the DBSCAN
clustering algorithm [28] using a maximum distance of 12.5m for considering
two points part of the same neighborhood. To avoid single users with a high
number of diverse locations to skew the results in their favor, the clustering was
run an additional time on the clustering resulting from the first run, this time with a
distance of 10m. Among the resulting super-clusters, the 10 most common were
eventually selected; ii) proximity to the home of the user. The home of the user
was identified by running the DBSCAN algorithm with a distance of 108.27m
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(the average accuracy of the considered points) on those location points that were
collected by the application in two situations: between 5:30AM and 7:30AM (the
best moment according to [57]) and right before the GPS stops collecting data,
past midnight, when it is reasonable to assume that the user just reached home to
go to sleep. Among the resulting clusters, we chose the largest cluster’s centroid to
be the home location. From this point, the feature we considered is the distance
calculated in meters from the current position; iii) none of the above. Additionally,
the distance between the first and the last detected points and the total distance
travelled within the time interval are recorded. For the data relative to proximity
networks (WiFi and Bluetooth) information such as number of unique devices in
range (if at all) is recorded. Finally, for the running applications, for each window
the features represent which categories of applications run for how much time

in milliseconds, (eg. Social : 10000, Tools : 25000) and the number of events

recorded.

The features were calculated using a window size of 30 minutes, which is the time be-
tween two consecutive annotations. The analysis focuses on the locations the participants
visited during the two weeks of the experiment. We decided to focus on locations because
it is easier to verify the correctness of such data with respect to, for example, activities.
To this aim, we created an additional element, the oracle, which provides ground truth
labels independently of both the predictor and the user annotations. The oracle relies on
information regarding the location of the University buildings, and identifies the home of
a user by clustering the locations she labels as home via DBSCAN [28] and choosing
the cluster where she spends most of the time during the night. Note that SKEL has no
access to this information. The oracle is used for the evaluation of the performance of
the system in predicting actual labels, and to simulate a non-adversarial, collaborative
user as detailed in the next section. By comparing the labels provided by the users with
the ones generated by the oracle, we discovered that 65 out of 72 participants provided
more than 10% wrong labels, while 35 of them provided 30% wrong ones. In order to
highlight the potential advantage of the SKEL framework in highly noisy scenarios, we
focused on the subset of users with more than 20% labeling errors (42 users). Note that
this proportion of errors is substantially higher than the one usually expected in machine
learning applications. We implemented the predictor as a random forest classifier [7]
(with batch training), which is known to be robust to labeling noise [33], in order to
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evaluate the ability of SKEL to improve over an already noise-robust baseline. For
simplicity, we used an infinite window (d = ∞) for the confidence update, also given
the relatively short duration of the experiment. The confidence parameter θ was set to
0.2 in order to achieve a reasonable trade-off between accurate training and reasonable
cognitive effort for the user, considering the complexity of the learning task.

6.3.2 SKEL with No Prior Knowledge

Figure 6.2: Results of SKEL algorithm and non-skeptical algorithm with no prior
knowledge

The first experiment we performed is aimed at evaluating the robustness of SKEL
to labeling noise, without using semantic information on user labels, as obtained from
the prior knowledge stored within the system. We collapsed the original labels into
three classes, Home, University and Others. In this setting, the oracle can provide
accurate ground truth values for all labels, as Others is recognized as not being Home
and University. The procedure ISCOMPATIBLE inside Algorithm 2 in this case simply
returns true if the two labels are identical and false otherwise. Given that we are working
on previously collected data, we cannot query users in real-time in case a conflict arises.
To simulate a collaborative, non-adversarial user, we replace the ASKUSER procedure in
Algorithm 2 with a call to the oracle, i.e., the user returns the ground truth label when her
initial label is contested.

Figure 6.2 reports the results of SKEL as compared to a solution never contradicting
the user (obtained by replacing SOLVECONFLICT with a train and update step, as happens
in the training phase). Here we refer to the SKEL as SSML, standing for SKEL Supervised
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Mahcine learning, and we refer to this baseline simply as SML, standing for (non-
skeptical) Supervised Machine Learning. Results were averaged over all users with a
number of training samples greater than 200. On the left of Figure 6.2, it reports the f1
score of the SKEL (solid red) and SML (dashed red) predictors for increasing number
of iterations. The score was computed on a fixed test set, namely the latest 15% of
the all data available for each user, which was not used for training. This provides an
estimate of the performance of the algorithms when doing predictions on future data.
The results indicate that with a slight increase of queries to the user, the system achieves
a 34.2% relative improvement in performance (from f1 = 0.38 to f1 = 0.51). On the
right of Figure 6.2, it reports the number of queries made to the user by SKEL and SML
respectively (red solid and red dashed). It also reports, for the SKEL case, the number
of times the user was contradicted (green) and in how many of these cases the user (as
simulated by the oracle) ended up agreeing with the predictor (brown). It is interesting to
notice that most of the times in which SKEL contradicts the user, the oracle agrees with
it.

When looking at the performance of individual users, we observe very different
behaviors. We range from a very accurately modeled user (f1 = 0.96 at the last iteration)
to one where the predictor ends up always predicting the same label (f1 = 0.12). Note that
in the former case the conflict management strategy is responsible for the performance,
as the non-skeptical alternative learns a degenerate model predicting the same label most
of the times. In some cases, SKEL also learns a degenerate model. This happens because
a long stream of annotations with the same label forces the model to focus on it with very
high confidence, move to the regime mode and stop interacting with the user. Smarter
initialization strategies could help to avoid this behavior. Our aim here is not to fine-tune
the system for this specific problem, but rather highlight the potential of challenging
user feedback in general interactive learning scenarios. A more detailed analysis of the
behavior of the system with various ”prototypical” users is provided in Section 6.3.5.

6.3.3 SKEL with Prior Knowledge

The second experiment is aimed at evaluating the impact of semantics on the overall
performance of the SKEL, in particular at the Schematic Knowledge level (see Figure 6.1).
To do so, we created a set of labels including all the thirteen classes in the original dataset,
plus three novel labels representing superclasses, as shown in Table 6.1. The latter were
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Figure 6.3: Results of SKEL and non-skeptical algorithm with prior knowledge.

Table 6.1: Table showing the location labels that the users in the experiment could select
and the mapping with the three superclasses we defined.

Bar Gym Shop Outdoors Workplace Other Home Home Class Canteen Study hall Library
Others Home University

the same as the ones used in the first experiment, namely Home, University and Others.
Semantics was introduced in terms of part-of relationships, such as Class and Laboratory

being part-of University. In this setting, ISCOMPATIBLE returns true if the two labels
belong to the same super-class (or if they are the same), false otherwise. The CONSENSUS

procedure is implemented as a conservative choice that always returns the super-class,
e.g, University, Home or Others. Concerning the oracle (and thus, the replacement of the
ASKUSER procedure within Algorithm 2 as well as the one used to generate test labels),
the ground truth label is the user provided one if compatible with the one detected by the
oracle, otherwise it is the label of the oracle.

Figures 6.3 report the results of this experiment, for f1 score and number of queries
respectively. The overall performance in this setting is lower than in the non-semantic
case, despite a higher number of queries to the user, because the larger number of classes
substantially increases the complexity of the labeling task. Nonetheless, the trend is
very similar, with a relative performance improvement of 30.7% (from f1 = 0.26 to
f1 = 0.34).



76
6.3.4 Objective vs. Subjective Labelling

Our algorithm aims to learn to predict the ground truth labels, despite being fed with
user-provided labels in the first place. We can think of the former, the ones provided by
the oracle, as objective labels and of the latter, the ones provided by the user when not
acting as an oracle, as subjective labels. In this section, we investigate the performance
of the SKEL algorithm with respect to these two types of labels.

Figure 6.4: Average f1 score of the SKEL and SML algorithms on all the users in the
experiment.

Figure 6.4 shows the average f1 scores in four different settings, in the scenario
including semantic information (the one described in Section 6.3.3). The solid red curve
and the dashed red curve show the same results as in Figure 6.3. They represent f1 scores
of the SKEL and SML algorithms, computed on the test set using objective labels as the
ground truth. The solid blue curve and the dashed blue curve represent again f1 scores of
the SKEL and SML algorithm respectively but computed on the test set using subjective
rather than objective labels as the ground truth.

These results provide some interesting insights into the performance of the algorithm.
Overall, the performance evaluated on subjective labels (blue curves) is higher than
the one evaluated on objective labels (red curves). This means that learning subjective
labels is easier than learning objective labels; this is is an expected result, given that the
algorithm often receives subjective labels as feedback. When comparing the performance
of the SKEL algorithm (solid curves) with respect to the SML one (dashed curves), we
observe opposite behaviors depending on whether we evaluate them in terms of objective
or subjective labels. The SKEL algorithm is effective in improving prediction quality on
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objective labels (solid red curve vs. red dashed curve), as discussed in Sections 6.3.2,
6.3.3. Conversely, the conflict management phase of the SKEL algorithm is harmful
when the evaluation is made in terms of subjective labels (solid blue curve vs. blue
dashed curve). This is also an expected result and indicates that challenging the user is
pointless if the final goal is adapting to her subjective viewpoint rather than trying to
make it match any type of objective knowledge. The decision of which choice to make
must be made in a more global setting i) as a function of the specific type of knowledge,
ii) the final goal to be achieved, and iii) what the user wants to do with the machine
learning results. Thus, for instance, a certain place could objectively be closer to the
user than another one, but subjectively farther, given the user’s specific knowledge of the
paths to both places (including taking some shortcuts not known to the general public).

Figure 6.5 reports the confusion matrices for all settings. The first row refers to SML
and the second to SKEL, while the first and second columns refer respectively to the
objective and subjective labels. Results are normalized over the sum of all the elements
in the matrix. The fact that all matrices are quite sparse explains the low f1 score of the
overall results presented in Figure 6.4. Overall, the Home and Other labels are the most
common. Comparing the matrices on objective and subjective labels, we can see that
true positives on Home on subjective labels are significantly higher than on objective
ones. In the latter case, there are many cases in which the algorithm predicts Home, but
the actual label was Other. This is a clear example of misleading feedback from the
user, who always answers Home when being in some Other location. By looking at the
first column, we see that our SKEL algorithm is capable of partially fixing this problem,
bringing true positives for the Other label from 0.0% to 7.09%. This can explain the gap
between SKEL and SML on objective labels (red curves) in Figure 6.4.
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Figure 6.5: Confusions matrices of the SKEL and SML algorithms computed at the last
iteration reported in Figure 6.4.
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6.3.5 Variability of Users

In this section, we present a breakdown of the performance of the SKEL algorithm with
respect to a recognizable pattern of user behaviour. We analysed the performance graphs
of the different users and identified four patterns as highly common. These performance
patterns can be related to some distinct behavioural patterns, which we discuss in the
following. Figure 6.6 reports the results for these prototypical users, where each row
refers to a specific user. Left figures report f1 scores in different settings, which are the
very same as in Figure 6.4 (i.e., objective vs subjective labels, SKEL vs SML). Right
figures report information on the number of queries and agreement with the user and
with the oracle, same as in Figures 6.2(b) and 6.3(b).

Inattentive user The results of the first row in Figure 6.6 show that the highest score is
achieved by the SKEL algorithm evaluated on objective labels. All other settings
achieve substantially lower performance. This behavior can be explained in terms
of an inattentive user, who often provides subjective labels which are different
from the objective ones (difference between red and blue curves), and is largely
inconsistent in the initial feedback, which makes predicting subjective labels harder
than objective ones (solid red vs. dashed blue), even if most of the feedback is
subjective anyhow. The inconsistency of the user is also reflected in the right graph
of the first row of Figure 6.6, showing a rather large fraction of times in which the
user is contradicted (because there is no agreement) and the predictor agrees with
the oracle. This is the type of user for which the SKEL algorithm is most beneficial.
Note that the fact that SKEL manages to correct user inconsistencies indicates that
the system reaches a confidence which is sufficient to start challenging the user,
i.e., the user is a “detectably” inconsistent one.

Predictable user The second case is a particularly interesting one. For the first 20
iterations, both SKEL and SML are completely incapable of predicting the user
labels. After this initial step, the algorithm learns to predict subjective labels with
a high accuracy (solid red against solid blue). This happens because the user is
consistent in providing feedback, but her subjective labels are largely different
from the objective ones. At a certain point, the system starts challenging the user
and soon afterward (around iteration 190), the system learns to predict objective
labels with an higher accuracy with respect to subjective ones. We refer to this user



80

Figure 6.6: Results for four different prototypical users: the first row shows an inattentive
user; the second one a predictable user; the third one a reliable user and the last one a
tricksy user. The images on the left report the f1 scores in different settings while the
ones on the right report information about the number of queries and agreement with the
user and the oracle. The Time axes represent the number of iterations the algorithm is
going through.



81
as “predictable”. Albeit subjective labels are mostly different from objective ones
for this user, both of them can be predicted with high accuracy, once the system
receives the appropriate feedback. This is confirmed by the high number of times
in which predictor and oracle agree, as shown in the right figure. A predictable
user is thus another case in which the benefits of SKEL are substantial, even if it
takes some time for the system to figure out the discrepancy between subjective
and objective labels.

Reliable user The third row of Figure 6.6 shows the results of a user for which the
performance of the SKEL and SML algorithms are basically the same. This is
because the user is already reliable in providing initial feedback, as can be seen
by the substantial overlap between the red and blue curves. Indeed, the user is
contradicted only occasionally (green curve in right figure), and even rarer are the
cases in which the oracle agrees with the predictor against the subjective label of
the user (brown curve). This is a user for whom SKEL is not helpful, but also not
harmful, as it ends up asking about the same number of queries as SML (solid
and dashed red curves in the right figure). Both systems never exit the refinement
phase and keep asking for feedback, because the location of this specific user keeps
changing and, most importantly, almost all the labels in the label space are selected.

Tricksy user The last one is a case in which the SKEL algorithm completely fails to
predict user behavior. By looking at the difference between red and blue curves, it
is apparent that the problem is in the difference between subjective and objective
labeling. The algorithm keeps learning the former, even when given the chance to
question user labeling. The right figure shows that this chance is rarely taken by
the algorithm, and almost never leads to discovering the cases in which subjective
and objective labels disagree. The user here succeeds in fooling the system by
convincing it of the correctness of her own feedback, namely the fact of being
at home way more often than what was actually the case. Note that additional
prior knowledge would substantially help the system in figuring out that something
strange is going on. Indeed, GPS information clearly shows that “home” is in too
many places for this user. We kept this information hidden from the system in this
study because we used it to implement the oracle. However, in a real setting with
actual users as oracles, this information would be part of the prior knowledge of the
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Table 6.2: Table showing the means of transportation considered in the experiment and
the mapping with the three superclasses used.

Label On foot Bus Train Car Motorbike Bike
Superclass On foot In vehicle On bicycle

system and contribute to its capacity to identify inconsistencies in user feedback.

Additional types of users could be identified, e.g., an “average” user behaving sim-
ilarly to Figure 6.4, or an “unpredictable” one for whom the system was incapable of
learning neither subjective nor objective labels. Overall, these results highlight how
the performance of SKEL is strongly affected by the behavior of the user, and call for
additional work to deal with the difficult cases. For instance, finding a way to make the
system aware of cases when the user is not being helpful would allow it to start searching
for some additional source of information, e.g., nearby users, in order to compensate for
the lack of reliable feedback.

6.3.6 SKEL in Few-Shot Learning

In order to evaluate the generality of the skeptical learning algorithm, we ran a second
test aimed at recognizing the means of transport of users during their movements. We
decided to focus specifically on movement activities since as for the location experiment,
we could simulate a collaborative user with an oracle replacing the ASKUSER procedure
in Algorithm 2, as will be shown in the following. During the data collection process,
the user could indicate one of six possible means of transportation if in movement, as
shown in Table 6.2. We created a hierarchy of labels by introducing three novel labels
representing superclasses, namely On foot, In vehicle and On bicycle. In this setting,
ISCOMPATIBLE works as for the experiment presented in Section 6.3.4, it returns true if
the two labels belong to the same super-class or if they are the same, false otherwise. The
CONSENSUS procedure is again implemented as a conservative choice that always returns
the super-class, e.g., On foot, In vehicle, and On bicycle. We created an oracle for the
prediction of means of transportation leveraging on the Google data that users were asked
to provide at the end of the data collection experiment. By default, Google keeps track
of the users’ movements and detects how the user was moving at fixed time intervals.
At every detection, a list of possible labels (namely On foot, In vehicle, On bicycle,
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Figure 6.7: Results of SKEL and non-skeptical algorithm on the task of predicting the
means of transportation.

Still, Tilting, Exiting vehicle and Unknown) is provided with an attached confidence
value, from 0 to 100. In processing Google data, we ignored the labels Unknown, Still,
Tilting and Exiting vehicle, which have no correspondence in the set of candidate user
answers, and focused on On foot, In vehicle and On bicycle. Google data, when available,
have a frequency of a label per minute on average. On the other hand, users provide
labels once every 30 minutes. We combined Google provided labels into oracle labels
by taking the most common label over the 30-minute interval. As for the prediction
of location with prior knowledge, the oracle only provides labels for the superclasses
of the hierarchy (see Table 6.2). As for that setting, the ground truth label is the user
provided one if compatible with the one detected by the oracle; otherwise, it is the label
of the oracle. Out of 72 users participating in the experiment, only 31 of them provided
Google data. Furthermore, movement data are sparser than location ones, with just 15
iterations labelled as moving activities on average for each user over the two weeks of the
experiment. This is in line with the expected behavior of an average student that passes
most of her time either at home or at the University, commuting only few times a day
for short trips. This challenging setting is known as few-shot learning in the machine
learning literature and allows us to test the ability of SKEL to achieve improvements
even with just a handful of labeled examples.

Results are shown in Figure 6.7. As for the previous settings, the left graph reports
the f1 score of the SKEL and SML predictors for increasing number of iterations, while
the right graph reports the number of queries made to the user by SKEL and SML,
the number of times SKEL contradicts the user and in how many of these cases, the
user (as simulated by the oracle) ends up agreeing with the predictor. While having
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Figure 6.8: Confusions matrices of the non-skeptical algorithm (left) and SKEL (right)
algorithms computed at the last iteration reported in Figure 6.7.

larger oscillations and closer curves because of the minimal number of examples, the
f1 prediction results show a clear trend towards an advantage of SKEL over SML. The
difference in the number of iterations (i.e., training instances) between these graphs and
those in Figures 6.2 and 6.3 can give an idea of the amount of supervision available in
this setting and confirm the capability of SKEL to exploit even very limited feedback to
improve prediction performance. Figure 6.8 reports confusion matrices of the SML (left)
and SKEL (right) algorithms at the last iteration. The advantage of SKEL is due to its
ability to better predict the On foot and Bus labels, at the cost of a moderate decrease in
the accuracy of the Train and Car ones.

6.4 Envolved Skeptical Learning with Prior Knowledge

In Section 6.2 we have introduced the skeptical learning architecture and the main SKEL
algorithm. In this section, we will introduce an evolved skeptical learning, where the
predictor is implemented as a hierarchy of classifiers matching the prior knowledge.
The evolved algorithm will be compared with three alternatives which have different
strategies dealing with the conflict. And the extended evaluation and new results will be
introduced in next section.
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6.4.1 The Prior Knowledge

Figure 6.9: Ontology of the labels used in the experiment. Bold contours correspond to
classifiers in the PRED procedure.

We have introduces two components GK (Ground Knowledge) and SK (Schematic
Knowledge) in the SKEL architecture in Section 6.2.1. Both of the components provide
the system prior knowledge that can be used in the conflict resolution phase. They allow
to infer that the machine and the user meant the same thing with different labels. The
difference is that GK contains the factual knowledge, for example, the fact that Fausto’s
office is part of the Department building, while SK contains general knowledge in concept
level, for example, resting is a more general concept than sleeping. The GK component,
stored as a knowledge graph, can be updated and growing as it is where the machine
accumulates the knowledge learned in time. The SK component, however, containing
general knowledge about the world, is a static and not growing component.

A detailed description of SK is outside the main focus of our work; the interested
reader can read [35] for a detailed account of the approach and the resource. Here is is
worth noticing that SK is a hierarchy, more precisely a multi-rooted DAG, where each
node is labeled with a concept and where a child-parent link codifies a subsumption
axiom between a more specific and a more general concept. This hierarchy has more than
100 thousand nodes and codifies a few million subsumption axioms. One trivial example
of SK content is a subsumption axiom stating that vehicle is a more general concept than
bus, in DL formulas bus v vehicle. Another example is any general statement about
locations and sub-locations, for instance, the fact that Department buildings are always
inside (they are partOf) the University premises. The hierarchy in Figure 6.9, which has
been exploited in the evaluation, is a very minor portion of the SK hierarchy itself. From
a technical point of view, it is worth noticing how the hierarchy in Figure 6.9 is (partially)
a partOf hierarchy rather than an is-a hierarchy, the latter being directly codified into a
set of subsumption axioms. PartOf relations on locations can be codified as subsumption
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relations by seeing locations as sets of points. Under this assumption, the points in a part
are always a subset of the points in the whole. The SK encompasses both isa-like and
partOf -like relations (the first being called hyponym, the second, meronym) [35].

6.4.2 Evolved Algorithm

Algorithm 3 Evolved Skeptical Learning (SKEL)
1: procedure SKEL(θ)
2: init cu = 1, cp = 0
3: while TRAINMODE(cp, cu, θ) do
4: xt = SENSORREADING()
5: yt = ASKUSER()
6: ŷt = PRED(xt)
7: TRAIN(xt, yt)
8: UPDATE(cp, ŷt, yt)

9: while REFINEMODE(cp, cu, θ) do
10: xt = SENSORREADING()
11: yt = ASKUSER()
12: ŷt = PRED(xt)
13: SOLVECONFLICT(cp, cu,xt, ŷt, yt)

14: while True do
15: xt = SENSORREADING()
16: ŷt = PRED(xt)
17: if min

ŷ′t∈SMERS(ŷt)
CONF(xt, ŷ

′
t, c

p
ŷ′t

) ≤ θ then

18: yt = ASKUSER()
19: SOLVECONFLICT(cp, cu,xt, ŷt, yt)

How the prior knowledge would be used in the conflict management phase has been
introduced in Section 6.2.3. The main innovation of the evolved skeptical learning
algorithm is that the system is given semantic knowledge as the prior knowledge. And
this knowledge is used not only to solve the conflict of labels, but also to build a set
of classifiers matching the hierarchy of ontology as the predictor. The pseudocode of
evolved SKEL algorithm is reported in Algorithm 3. We will introduce the main changes
of this algorithm comparing to the previous one in the next subsections.
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Algorithm 4 Hierarchical predictor

1: procedure PRED(x)
2: init y = yroot
3: while not IS LEAF(y) do
4: y = argmaxy′∈CHILDREN(y) fy(x, y

′)

5: return y

6.4.2.1 The Predictor

The prediction procedure PRED is implemented as a hierarchy of classifiers matching
the SK ontology for the property to be predicted. There is one multi-class classifier for
each internal node in the ontology (bold contour nodes in Figure 6.9), discriminating
between its children. Prediction starts from the root classifier and progresses down in the
hierarchy following the highest scoring class at each node, until a leaf node is reached
which is the class eventually predicted. In the first iteration, when no training has been
performed yet, each classifier returns a random label. See algorithm 4 for the pseudocode
of PRED, where fy(x, y′) is the classifier at node y, and yroot is the most general value
for the property (e.g., a generic Location in Figure 6.9).

Note that, thanks to the fact that the transitive closure over the SK axioms is pre-
computed, the system can infer, at run time, all the labels which subsume that provided
by the user, i.e., all those from the root to the user label. Each classifier in the path is
thus retrained with the addition of its corresponding input-output pair during a TRAIN

procedure.

6.4.2.2 The Confidence Computing

After training, the confidence of the predictor is modified via the UPDATE procedure
which takes as input the ground truth label and the one predicted before the training step.
The UPDATE procedure takes as input a confidence vector, a tentative label (ŷt) and a
ground truth label (yt), and updates the confidence vector according to the relationship
between the two labels. The new confidence vector computed is as a label-wise running
average accuracy over the current and past predictions, for a certain window size d.
Notice that, similar to the TRAIN procedure, the confidence updates are applied not only
to the predicted and ground truth label pair, but also to all implied label pairs according
to the SK, i.e., those from the root to the predicted (respectively) ground truth label.
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However, difference from equation 6.2, where the score of a prediction y is the average
score given to that label by the classifiers in the ensemble, here we use the score given by
the parent classifier only:

CONF(x, y, cp
y) := cp

y · fPARENT(y)(x, y) (6.5)

Same to the strategy used in Section 6.2.2, the system stays in training mode till the
expected probability of contradicting the user becomes bigger than the threshold (see the
Equation 6.3), and the system stays in refine mode as long as the expected probability of
querying the user exceeds the threshold (see the Equation 6.4).

However, since we are using the semantic knowledge and the predictor is implemented
according to the hierarchy in Figure 6.9, when a predicted label is compared with a user
provided label, care must be taken in making a sensible comparison. If the two labels
belong to different branches of the hierarchy (e.g., Train and On foot), they cannot
be directly compared as confidences are normalized across siblings. Therefore, the
system recovers all the labels in the hierarchy up to the first common root, i.e., the

least common subsumer [4] and compares them instead of the original ones. Thus,
in the previous example, Train implies In vehicle which is then compared to On foot

as they are both children of On the move. Therefore, the labels to be compared in
Equation 6.3 are obtained as (ŷ, y) = LCS CHILDREN(PRED(x), yu), where PRED(x),
the predicted label for input x, yu is the label provided by the user for that input, and
the LCS CHILDREN procedure outputs a pair of implied predicted/user labels which are
children of the least common subsumer.

When the system enters the regime mode, the system stops asking feedback for all
inputs and will start an active learning strategy. Notice that, see line 17 in Algorithm 3 and
line 17 in Algorithm 1, instead of simply comparing the confidence the prediction label
ŷt with threshold, it takes a conservation approach and considers the smallest confidence
of all the prediction’s subsumers. For instance, if the prediction is Train, it will check the
confidence in Train of classifier In vehicle, the confidence in In vehicle of classifier On

the move, and the confidence in On the move of classifier Location. And if the smallest of
those three confidence is not exceeds the threshold, the active learning strategy will start.
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Algorithm 5 Procedure for solving labeling conflicts

1: procedure SOLVECONFLICT(cp, cu,x, ŷ, y)
2: if ISCOMPATIBLE(ŷ, y) then
3: y∗ = CONSENSUS(ŷ, y)
4: UPDATE(cp, ŷ, y∗)
5: UPDATE(cu, y, y∗)
6: else
7: (ŷ′, y′) = LCS CHILDREN(ŷ, y)
8: if CONF(x, ŷ′, cp

ŷ′) ≤ cu
y′ · θ then

9: TRAIN(f,x, y)
10: UPDATE(cp, ŷ, y)
11: else
12: y∗ = CHALLENGEUSER(ŷ)
13: if not ISCOMPATIBLE(ŷ, y∗) then
14: TRAIN(xt, y

∗)

15: UPDATE(cp, ŷ, y∗)
16: UPDATE(cu, y, y∗)

6.4.2.3 The Conflict Management Algorithm

The evolved SOLVECONFLICT procedure is described in Algorithm 5. SOLVECONFLICT

takes as input the predictor and the user confidence vectors cp and cu, the input x with its
predicted label (ŷ) and the label given by the user (y). The first step is to compare the two
labels according to the ISCOMPATIBLE procedure. As the SK encodes a subsumption
hierarchy for the property of interest, the procedure returns true if the two labels are the
same or if one subsumes the other. When the two labels are compatible, a consensus
label is taken as the ground truth, and the predictor and user confidences are updated
accordingly. As a natural choice for the consensus, the system chooses the more general
among the two labels, this being the choice also used in the experiments. The motivation
is that both the user and the system are taken to be truthful and, therefore, the system
chooses the label which carries more meaning.

If the two labels are not compatible, a conflict management phase starts. In particular,
when the confidence of the prediction is not large enough, the user label is taken as
ground truth, the predictor is retrained with this additional feedback, and its confidence
is updated accordingly. Otherwise, the system contradicts the user, advocating its own
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prediction as the right one1. The user is now responsible for solving the conflict. She
can decide to stick to her own label, realize that the machine is right and converge on the
predicted one, or provide a third label as a compromise. Note that the user can, and often
will because of imperfect memories, make a prudent choice and return an intermediate
node of the label hierarchy rather than a leaf. As we are assuming a non-adversarial
setting, and we aim at providing a support to the user rather than a replacement for her,
eventually the system will trust the latest provided label (even if unchanged), which in
turn will become the ground truth. As a last step, a compatibility check is performed
to verify whether there is a need for retrain and the predictor and user confidences are
updated.

6.5 Experiment and Results of evolved SKEL

6.5.1 Comparing SKEL with Three Alternative Strategies

As discussed in Section 6.4.2.1, the PRED procedure of SKEL consists of a hierarchy
of multiclass classifiers, one for each internal node in the hierarchy. Each classifier
implemented a random forest [7], which is known to be robust to labeling noise [33],
to evaluate the ability of SKEL to improve over an already noise-robust baseline. The
confidence parameter θ of SKEL has been set to 0.2, which has resulted in a reasonable
trade-off between accurate training and cognitive effort for the user. For simplicity, we
have used an infinite queue (d =∞) for the confidence update due to the relatively short
duration of the experiment. Being the experiment built on previously collected data,
we could not query users in real-time in case of conflicts. To simulate a collaborative,
non-adversarial user, we assumed that the user returns the ground truth label when her
initial label is contested.

The evaluation of SKEL is done by comparing it with three alternative algorithms:

• NONSKEL, that never contradicts the user (obtained by replacing SOLVECONFLICT

with a train and update step, as happens in the training phase);

1In order to support its argument, the machine could provide some sort of explainable critique to the
user feedback, in terms of counter-examples or evidence of inconsistencies with respect to the SK. This is
a promising direction for future research.
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• IGNORE, that simply ignores any example for which a conflict arises (obtained by

removing everything from the ELSE onwards in Algorithm 2);

• BOTHER, that always contradicts the user (obtained by calling CHALLENGEUSER

after all ASKUSER calls, and removing SOLVECONFLICT).
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Figure 6.10: Results averaged over users with at most 10% (top row), from 10% to 25%
(middle row) and more than 25% (bottom row) labelling errors. Left colume: F1 scores
on left-out data. Right column: number of times user is contradicted.

As presented in the previous section, a surprisingly high proportion of labels present
inconsistencies. To estimate the effect of this large and very diverse proportion of
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labelling errors on the performance of the system, we divided the set of users in the three
groups reported in the table. Figure 6.10 reports the results of SKEL and of the three
alternatives for an increasing number of iterations. Each row represents the results for
a different group of users: at most 10% labelling errors (top), 10% to 25% (middle),
more than 25% (bottom). The left column reports f1 scores averaged over all users in the
corresponding group with a number of training samples greater than 200. The score for
each user is computed on a fixed test set, namely the latest 15% of the all data available
for that user, which was not used for training. This score provides an estimate of the
performance of the algorithms when making predictions on future data. Note that we
consider a label as correctly predicted if it is compatible with the ground-truth label,
because this is the only type of reliable supervision we have access to. Results clearly
indicate that our skeptical algorithm (red curve) consistently outperforms a non-skeptical
alternative (blue curve). As expected, the advantage is moderate for users with a relatively
small fraction of labelling errors (top figure), and grows with the unreliability of the
users, reaching a gap of 0.20 for users with more than 25% labelling errors (bottom
figure). Ignoring conflicting cases (brown curve) is clearly not an option, as it achieves
the worst performance in all cases. On the other hand, having always access to correct
supervision, BOTHER (green curve) clearly achieves the highest performance. However
SKEL is capable of getting reasonably close to this upper bound when enough iterations
are provided, at a fraction of the cost in terms of user effort. The right column reports the
number of times the user is contradicted for SKEL (red curve) and for BOTHER (green
curve), for which they are simply the number of iterations. SKEL clearly contradicts
more when facing increasingly unreliable users. However, the cost remains substantially
lower than the one of BOTHER, going from 13% (top figure) to 23% (bottom figure).

Figure 6.11 reports the confusion matrices of the Location classifier (the root of the
hierarchy in Figure 6.9) for the last time instant of the different algorithms shown in
Figure 6.10. Results are normalized over the sum of all the elements in the matrix. In
each matrix, rows are ground truth labels, columns are predicted labels. Matrix entries
are coloured, with darker shades corresponding to larger entries. Each row represents the
results for a different group of users who have at most 10%, from 10% to 25% and more
than 25% labelling errors respectively. The matrices in the first column report results of
the SKEL algorithm, the second column report results of the NONSKEL one, the third
column report results of the BOTHER one, and the last column report results of IGNORE
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Figure 6.11: Confusion matrices for the evaluation on oracle labels at the last iteration of
the algorithms. Oracle labels are on the rows, predicted labels are on the columns. All
the matrices refer to the Location classifier and are normalized over all entries.

one.
Clearly, BOTHER has the best performance, as can be seen by the dark colouring

of the main diagonal (corresponding to correct predictions), and shows the upper limit
one can reach by having always access to the ground truth during training. While not
as accurate, SKEL has a similar qualitative behavior, with on-diagonal entries typically
larger than off-diagonal ones. The bad performance of IGNORE and NONSKEL are due
to the fact that they tend to overpredict certain classes (as shown by the dark columns),
University and On the Move for IGNORE, University and Home for NONSKEL.

The first row represents the results on the users with fewer labeling errors. Given
that these users tend to provide high-quality labels, SKEL is only slightly better than
NONSKEL. This is consistent with the F1 score in the first row of Figure 6.10, where the
rad curve and blue curve are close to each other. However, SKEL manages to substantially
improve the recognition ability for On the move and Other location, the classes for which



94
the user feedback is least frequent, at the cost of a (smaller) decrease in accuracy for the
most popular ones, University and Home. This behaviour is even more evident when
considering users with a higher fraction of errors (middle row, from 10% to 25% labelling
errors), where the fraction of times On the move and Other location get predicted and
the prediction is correct increases from 2.64% to 10.96% and from 1.52% to 5.69%
respectively. The third row reports results for the least reliable users, with more than 25%
labeling errors. While the distance to the “ideal” (for the machine) setting represented by
BOTHER increases, the advantage of SKEL over NONSKEL (and IGNORE) also widens.
The tendency of the user to always reply with Home and University does affect SKEL,
which starts to show a similar behaviour (dark columns in the matrix). On the other hand,
despite the substantial unreliability of the use feedback, it still manages to recover a large
fraction of the On the Move (from 6.63% to 14.70%) and the Other location (from 0.62%
to 8.28%) classes, both virtually lost by NONSKEL.

6.5.2 Variability of Users

Similar to the analysis on users’ performance in Section 6.3.5, in this section, we
investigate the performance of the SKEL algorithm with respect to two types of labels.
One is objective label provided by the oracle, and the other one is subjective label

provided by the user. By analysing performance graphs of every single user, we can
identify four different patterns that are related to distinct behavior patterns. Figure 6.12
shows the results for these four prototypical users. Each row refers to a specific user.
Left figures report f1 scores with respect to the objective labels and the subjective labels.
Figures on the right column report the number of queries by SKEL, the number of times
when SKEL challenges the user, and the number of times when SKEL agrees with the
oracle label. It is clearly to see that these prototypical performance of users match the
types we find in Section 6.3.5, namely Inattentive user, Predictable user, Reliable user

and Tricksy user.



95

0 50 100 150 200
Time

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

SkeL on objective labels SkeL on subjective labels

0 50 100 150 200
Time

0

50

100

150

200

#

# of queries made by SkeL
# of times SkeL contradicts user

# of times SkeL agrees with oracle

0 50 100 150 200 250 300
Time

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

SkeL on objective labels SkeL on subjective labels

0 50 100 150 200 250 300
Time

0

50

100

150

200

250

300

#

# of queries made by SkeL
# of times SkeL contradicts user

# of times SkeL agrees with oracle

0 50 100 150 200
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
 sc

or
e

SkeL on objective labels SkeL on subjective labels

0 50 100 150 200
Time

0

50

100

150

200

#

# of queries made by SkeL
# of times SkeL contradicts user

# of times SkeL agrees with oracle

0 50 100 150 200
Time

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

SkeL on objective labels SkeL on subjective labels

0 50 100 150 200
Time

0

50

100

150

200

#

# of queries made by SkeL
# of times SkeL contradicts user

# of times SkeL agrees with oracle

Figure 6.12: Results for four different prototypical users, namely an inattentive user, a
predictable user, a reliable user, and a tricksy user (from the top to the bottom).
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6.6 Summary

In this chapter we introduced Skeptical Learning (SKEL) as a paradigm for dealing with
the unreliability of users when providing labels that describe their personal context. The
fundamental idea is to use the available knowledge when deciding what is more reliable
between the output of the machine learning algorithms and the user input, and to engage
in a conflict resolution phase when a controversy arises. We also introduced an envolved
skelptical learning algorithm, which implemented the predictor as a hierarchy of classi-
fiers matching prior semantic knowledge. Experimental results show the pervasiveness
of mislabelling when dealing with feedback from non-expert users, and the effectiveness
of Skeptical Learning in addressing the problem as compared to existing approaches to
deal with noisy labels.
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Chapter 7

The Skeptical Learning Platform

7.1 Introduction

Mobile crowd sensing (MCS), with reped development of technologies in mobile devices,
has become an emerging sensing paradigm in recent years, where ordinary citizens can
contribute data sensed or generated from their mobile devices. The goal of MCS is to
extract crowd intelligence from the information provided by users and their smart phones.
And the crowd intelligence can be used to provide better people-centric service to users
in return. For example, [108] proposed an application that monitors the noise level in the
city by collecting and analyzing the microphone data from users’ phone. Similar to that,
the application in [66] can monitor the traffic congestion from the user’s coordination
data. These applications can then provide useful environment information for the crowds
and society. Another kind of application is concerning the user’s own benefits. For
example, the application in [75] is designed to monitor the user’s daily activities and
emotions for health caring purposes. It collects sensor data and meanwhile asks for the
user’s self-report observations.

Human involvement is one of the most important characteristics of MCS. Most
participants of MCS applications are norm (non-expert) users, which allows systems
to collect human annotations and information as much as possible. However, as we
mentioned in Chapter 6, the biggest challenge is was brought due to this characteristic.
Normal users might provide incorrect annotations, intentionally or unintentionally, as
input to the system. These incorrect annotations could impact the performance of
downstream machine learning algorithms. Controlling data quality is much easier in
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Figure 7.1: The platform architecture.

traditional sensing systems which rely on high-quality devices and annotations from
trained experts. But to the best our knowledge, there is no existing MCS system that can
deal with the mislabeling issue caused by normal users.

In this chapter, we propose a general MCS platform for integrating at scale sensor
data and label data generated by users, together with the static knowledge of the world.
The former informs SKEL main algorithm about the world evolution, while the latter
codifies the prior knowledge which will be used in the conflict resolution phase. On the
top of the platform, it runs the SKEL algorithm that we proposed in last chapter to deal
with the unreliability from users.

7.2 The architecture of the platform

The SKEL platform is depicted in Figure 7.1. To better understand it, the reader should
assume that all processes between components run asynchronously. This platform
combines two parts: the i-Log front-end interacting with the world in terms of user and
device (left) and a back-end implementing, among others, the SKEL logic (right). There
is an instance of i-Log, and corresponding back-end, per user while there is a single
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storage for all the users. We analyse below these three components.

7.3 Front End

One of the core functionalities provided by the platform is the ability to acquire knowledge
about the world via both sensors and users, and to make these data available for later
processing and data analysis. Since the concept behind SKEL is to empower ordinary
citizens, this task becomes more challenging with respect to solutions in other scenarios.
As from Figure 7.1, i-Log has two main input elements: the user on one side, that
provides annotations in form of answers yt, y∗ to questions yt?, y∗?. The former is a
type of question sent at fixed time interval, which answers are mainly used as standard
annotations, while the latter is sent on demand, when the system decided to challenge the
user. On the other side there is the world, that is captured through sensors embedded in
the smartphone and wearables, generating sensor readings xt. i-Log is composed by four
high level components: (1) askUser, (2) sensorReading, (3) user interface and (4) sensor

interface. Let us analyze these components in turn.

7.3.1 askUser

The main functionalities of askUser are related to the collection of feedback from the
user in form of answers to questions. Its responsibilities are end-to-end, meaning that
it has to deliver the questions yt?, y∗? to the user (dashed lines in Figure 7.1), but also
to deliver the answers yt, y∗ to the back-end system (continuous lines in Figure 7.1).
The questions are received from the back-end through an external messaging system
such as Google’s messaging service Firebase1, or Baidu Messaging2, among others.
The advantages of using such external services can be summarized in four elements:
(1) battery optimization, (2) time to deliver, (3) size of the message and (4) caching.
Concerning battery optimization, Google Firebase has a functionality built in that is
responsible for delivering messages in an efficient way in ”windows”. It basically consists
in a mechanism that groups together messages coming from different applications and
delivers all of them together, i.e., to wake up the phone only once when in sleep mode.

1https://firebase.google.com
2https://push.baidu.com/
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This leads to important savings in terms of battery life on the device side, since the phone
doesn’t need to listen to incoming messages continuously. At the same time, messages
are usually delivered in a short time frame, in most cases within few seconds which is
perfect even for real-time use cases.

Another important aspect to keep under control on mobile devices is the network cost,
especially in some countries. If it is true that nowadays it is not uncommon to see data
plans for tens of GB, this is not true in all countries around the world. For this reason,
the transmission of data should always be optimized and compressed. Firebase helps in
this regard since every message has a size limit of 4KB, which forces the developer to
transmit only the essential information. Moreover, sending all messages together and
compressed reduces the amount of bytes that need to be transferred.

Finally, the last advantage of using an external delivering message system is that
in most situations, i.e., with Firebase and Baidu, a caching system is provided. In fact,
smartphones are characterized by intermittent network connections, that can leave the
device disconnected from the internet multiple times a day for an arbitrary amount of
time. Consider for example when the user enters a building with no signal, or when the
devices switches between cellular networks. In such situations it’s important to have a
caching system in place when delivering messages, since if the message is delivered at the
wrong moment in time, when the phone is disconnected, it could get lost. Services like
Firebase provide a robust caching mechanism that can be customized on a per-message
basis. We can specify the amount of minutes according to which the message should be
delivered, as soon as the device is connected. If this time interval expires and the message
has not been delivered, the message itself is discarded. This mechanism is perfect in the
situations mentioned above, when the phone disconnects for short periods of time, but it
applies also when the user turns off the phone for hours, i.e., during the night.

It is important to underline that this component works in an asynchronous fashion:
the questions are received as soon as they are generated by the back-end, but the answers
are collected asynchronously, since they involve an action from the user. Finally, this
component collects two types of answers, yt that are timediaries asked at fixed time
intervals by the askUser back-end component, and y∗ which instead are answers to a
challenge request by SKEL.



101
7.3.2 sensorReading

The main functionality of sensorReading is to collect sensor readings xt from the edge
device and synchronize them with the back-end system. Similarly to the askUser com-
ponent, it also works asynchronously: the front-end collects sensor readings from the
device continuously, without any input from the back-end, and synchronizes them only at
specific moments in time, to make them available to the back-end and SKEL. This is done
for different reasons, the most important ones being the battery life of the edge device
and the network costs for the user. In fact, depending on the MCS task, xt can be big
in size, considering that it can collect up to 30 different sensor streams simultaneously,
with frequencies up to 100Hz. The list of the supported sensor streams and the sampling
rate has been introduced in Table 3.2 of Chapter 3 when we introduce the frequency of
smartphone-based data.

7.3.3 User interface

User interface is the component that the user interacts with directly on her smartphone
when it comes to collecting the user answers to askUser and challengeUser in SKEL. Its
main responsibilities are to display a user interface tailored for the specific device that
contains the corresponding questions yt?, y∗?. In the current implementation, there are
different question formats that are usable by the system. They all have in common the
question field, which is text based. Some of them have additional graphical elements
that can support the question, such as images, among others. Finally, the answer field is
diverse for each type. The most relevant question formats are: text question with multiple
choice answer (with (1) single and (2) multiple selection allowed), (3) text question with
free text input allowed, (4) text question supported by a map view and a pointer displayed
on it with multiple choice answer, (5) text question supported by a map view and a path
displayed on it with multiple choice answer and (6) a text question with the possibility
for the user to take a picture. An example of the usage of the latter format is presented in
[62].

An important feature of the user interface is that it keeps track of is the time required
by the user to answer each question, i.e., the delay between when a question is received
and when it is answered, plus the time taken to provide the answer, namely the elapsed
time between when the user opens a question and when he presses the finish button.
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These two parameters are important because they allow to filter out answers during the
analysis. In [41] linked these time measures to biases in the respondents, memory and
carelessness.

Finally, this component is also in charge of implementing the logic of dependency
between questions and answers. This feature is crucial in that it allows to customize
the next question based on the previous answer given by the user. For example, if the
user replies to the question ”What are you doing?” with ”I’m travelling”, then the next
question will be ”Where are you going?” rather than ”Where are you?”. These types of
dependency must be setup in the back-end while generating the sequence of questions.

7.3.4 Sensor interface

This is the component that interacts directly with the hardware of the edge device,
e.g., the accelerometer and the gyroscope. Its main goal is to abstract the hardware
from the higher level processes and to generate the streams of sensors data xt. A
second main functionality of this component is also to generate streams of what we call
”software sensors”. Software sensors are software modules that generate data generated
by monitoring the various software modules running on the device. One example of
software sensor is the one that monitors the status (ON/OFF) of the screen, another one
detects the name of the application that is running in foreground, every 5 seconds, among
others.

The Sensor interface component is of primary importance to enable a systematic
sensor data collection on different edge devices. This applies to both hardware and soft-
ware sensors. In fact, in each MCS task we will have multiple smartphone models, with
different operating system’s versions, since the user uses her own personal smartphone.
These aspects affect the sensor data collection in two ways: (1) different smartphones
have different sensors and (2) even if the sensor set is the same, those sensors will
generate data differently on each device. The Sensor interface component addresses both.
First of all, for each device it enables only the sensor streams that are present on the
smartphone, automatically, disabling the other ones. Secondly, it collects data in such
a way so that the generated streams are consistent, with similar collection frequency,
amplitude, precision, and so on.
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7.4 Back End

The back-end, as shown in Figure 7.1, works paired with the front-end part to provide an
end-to-end user experience. This is why each user has an instance of the back-end, as well
as the front-end. In fact, each user has different parameters that customize the dynamics
in the back-end, to deliver a tailored user experience. Three out of five components
map directly between front-end and back-end, (1) askUser (and (2) challengeUser), (3)
sensorReading, while the other two (4) Question Dispatcher and (5) SKEL are only
available in the back-end.

7.4.1 askUser

askUser performs two tasks: (1) it accepts answers yt from the device, processing and
storing them in the StreamBase database (see the next subsection), while, at the same
time (2) triggering questions yt? at fixed time intervals, tailored on the user. The time
interval can vary because different users behave differently: some of them are more
reliable in replying and have less variance in their activities throughout the day, while
others may have a lot of variance or may be unreliable. For the former ones the system
requires less annotations/ answers and the time interval can be kept in the order of 30-60
minutes, while for the latter more annotations are required. The content of each question
is configurable in the system and is usually experiment-based. Since every MCS task has
a different goal, the questions may differ every time. An example of such questions is
presented in Figure 3.6 and Figure 3.7 in Chapter 3.

7.4.2 challengeUser

challengeUser similarly to askUser, accepts answers y∗ from mobile devices and gen-
erates questions y∗? to be sent to the the user. Differently from askUser, the questions
are not generated at fixed time intervals but rather on demand, whenever a conflict in
the SKEL component arises. When this happens, this component takes the prediction ŷt
from StreamBase which is generated by SKEL. Then, asynchronously this component
detects a new question and triggers question y∗? to the user.
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7.4.3 sensorReading

sensorReading is a component responsible for accepting sensor data xt from the mobile
device. The operations is performs are (1) pre-processing the data, (2) normalizing
them and finally (3) pushing such data in StreamBase. Due to the size of the data, this
component is the one in the back-end that needs the biggest resources.

7.4.4 Question Dispatcher

Question Dispatcher is the component that is responsible for efficiently delivering ques-
tions yt?, y∗? to the mobile devices. To do so it relies on external services depending
on the need: the system can be easily configured in this regard. Using external services
removes an important overhead on our side and allows to send content to mobile devices
efficiently as previously explained in the front-end part.

7.4.5 SKEL

SKEL is the architectural component that embeds an implementation of the SKEL
algorithm. It takes sensor data xt and user’s answers yt as input to train the predictor.
When new sensor data is generated by the edge devices and synchronized with the server,
it generates a prediction label ŷt. SKEL can detect a conflict by comparing user’s answer
and predictor’s label. When it happens, and the predictor’s confidence is high enough,
it triggers challengeUser to generate an additional question to be sent to the user. The
user’s answer y∗ is asynchronously collected and considered as ground truth. It is used to
retrain the predictor and to update the confidence value of user and predictor accordingly.

7.5 Stream Base

StreamBase is the storage solution that is in charge of storing all the information collected
from smart phones. As can be seen in Figure 7.1 it is part of the back-end system but it is
logically separated from it. In fact, while the back-end has an instance per user, we can
consider the database as a unique entity where all the data is stored, logically separated
for privacy reasons. The technology at the core of it is a NoSQL database called Apache
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Cassandra3. The reason why we decided to adopt it is that the amount of information and
the growth rate can be significant even with a limited amount of users for our use-cases.
For this reason, standard solutions based on SQL could not satisfy the requirements in
terms of latency and scalability. In the current configuration, Cassandra is distributed
on multiple nodes in the cloud, thus allowing us to handle huge bursts in the number of
requests. Three main types of information are stored in Cassandra, all as streams of data
with an attached timestamp: (1) sensor values xt, (2) questions yx? and (3) answers yt.
Let us analyze these types of data in turn.

Sensor values are the biggest in size, mainly due to their frequency. Depending on
the configuration of the MCS task, we can have the inertial sensors generating values
add up to 100Hz. All such data is stored in the database as time series. There are two
columns common to every other sensor, timestamp and day. The former is used to allow
temporal queries, while the latter is used as partition key in Cassandra to balance the
data in the different distributed nodes composing the cluster. The remaining columns
are different for every sensor. For example, in Table 7.1 we present the structure of the
inertial sensors used to identify the movement of the smartphone, the accelerometer.

Table 7.1: Accelerometer sensor data stored in StreamBase.

Day Timestamp X Y Z
20200118 20200118100500 9.18 0.00 0.01
20200120 20200120125603 0.89 6.18 4.04
20200120 20200120120500 2.74 2.01 9.20
20200120 20200120131836 2.94 0.32 15.86

The second type of data stored are the questions that are asked to the user. It is important
to keep track of them, with the proper provenance information in order to reconstruct
the flow from the system to the user. In this regard, the questions IDs are essential to the
SKEL algorithm. An additional field present is the status of the question, which can be
either DELIVERED, SENT or DISCARDED. Apart from these we have the ”question”
field which contains the text that was shown to the user, and ”timestamp” which is the
time when the question was generated in the back-end. An example of question stored in
the database can be seen in Table 7.2.
The last type of data in the StreamBase storage system are the answers to the questions

3https://cassandra.apache.org/
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Table 7.2: Questions stored in StreamBase.

Day Question Timestamp Id Status
20200118 {”q”: ”What are...”} 20200118100500 aDFQivswqA delivered
20200119 {”q”: ”What are...”} 20200119200500 ELYs/3HeJY delivered
20200120 {”q”: ”Were you...”} 20200120125603 pmQXTjxrLA delivered
20200120 {”q”: ”What are...”} 20200120120500 tLN6iIQpdz delivered
20200120 {”q”: ”Were you...”} 20200120131836 Yw6q7KXw3c sent

generated by the askUser and challengeUser components. An example of such data can
be seen in Table 7.3. The ”day” field is common to the other types of data. We then have
”answer” and ”payload” that respectively contain the text response and any additional
response element that the user provided, i.e., a picture, information on a map, etc. We
then have the ”question id” which links the answer to the corresponding question as
presented in table 7.2. Finally, we have multiple columns that define time variables:
”question timestamp” is the same as in the question table, which refers to the time at
which the question was generated and sent to the device; ”notification timestamp” refers
to the time when the front-end received the question (usually within few seconds if the
phone is turned on and connected) and finally ”answer timestamp” which is the time
when the user answers the question. Two additional fields are present, delta and duration
which map to the answering behaviour of the users as explained in the front-end part
previously in the paper.

Obviously, most of the data in the storage system that refer to the user is sensitive
information. However, in the contest of GDPR and personal data, none of them is
considered personal identifier, except for the user email that we store for technical
purposes. In fact, the email is used to authenticate all the requests coming from the
front-end applications. In the i-Log application the user is required to login with Google
Identity4 anywhere in the world except for China (where Baidu Login5 is used instead.).
At every request, a token is sent and the server uses it to extract the user email, that is
then used to understand under which user to store the data in the main database. To
comply with the regulations, we split the email identifier from the main storage system
through an intermediate table in MySQL. This table has only two columns, personal
identifier (email) and a uuid. Whenever a user registers in the system, a random uuid is

4https://developers.google.com/identity
5https://login.bce.baidu.com/
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Table 7.3: Answers stored in StreamBase.

Day Answer Payload Question
Timestamp

Notification
Timestamp ...

20200118 {”a”: ”Eating”} {} 20200118100500 20200118100509
20200119 {”a”: ”Sport”} {} 20200119200500 20200119200505
20200120 {”a”: ”Yes”} {} 20200120125603 20200120125612
20200120 {”a”: ”TV”} {} 20200120120500 20200120120601
20200120 {”a”: ”No”} {} 20200120131836 20200120132834
Answer
Timestamp Question Id Delta Duration

20200118101009 aDFQivswqA 300 65
20200119201505 ELYs/3HeJY 600 5
20200120131612 pmQXTjxrLA 1200 98
20200120120701 tLN6iIQpdz 60 23
20200120132849 Yw6q7KXw3c 15 304

generated and a row is added to this table. All the data in the StreamBase system based
on Cassandra is then stored according to that uuid. Whenever the need to link the data to
the email address expires, the corresponding line in the intermediate table is removed
and the data in Cassandra immediately becomes anonymous and cannot be linked back
to the user who generated it.

7.6 Summary

In this chapter we introduced a general mobile crowd sensing system platform that,
together with the i-Log application, can be used to collect sensor data and user’s annota-
tions. On top of the platform it runs SKEL, a machine learning algorithm introduced in
Chapter 6 to deals with the unreliability of non-expert users when providing labels. And
The main goal of this work is to build a MCS platform with skeptical learning algorithm
running on the system to solve the mislabeling issues in mobile crowd sensing area.
In this chapter, we detailed the architecture of our proposed platform, described each
components of front-end and back-end, and introduced how the StreamBase part works
as a storage.
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Chapter 8

Conclusion

8.1 Main Conclusion

Automatically personal context recognition is the main step to achieve context-aware
application implementation. We firstly identified three main problems or challenges, i.e.,
1) an appropriate context model is needed for the recognition of personal context; 2)
normal user involvement brings challenge on controlling the quality of collected data,
and high-quality data is fundamental for the subsequent machine learning algorithms;
3) a system or a platform is needed to collect high-quality data by interacting with the
users in real time. To solve these problem that we identified, 1) we proposed to use a
multi-modality personal context model, and we evaluate our model by analysing the
data sets generated in the SmartUnitn Projects; 2) we proposed the Skeptical Learning
algorithm to deal with the mislabeling issues caused by normal users; 3) we also proposed
an general architecture of a MCS platform which runs the SKEL algorithm on the top of
it to improve the quality of data collected. These main contributions were then introduced
and described in details in the next chapters.

Therefore, we firstly introduced the personal context model that we chose and applied
in our work in Chapter 3. This context model has multiple modalities, i.e., time, location,
activity, and social relations. We also introduced the concepts of objective, subjective
context. We apply the subjective context when design the annotation list given to the
users, which is from human perception and allows users to give annotations of their
subjective point of view. It was later proven in the next chapter that subjectivity is
necessary for framing behavior from the subject’s perspective, and it has a substantial
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effect on predictability and regularity of behavior in practice.

In Chapter 4 we have studied the predictability of human behavior through the notion
of personal context. Our study captures a rich, multi-faceted picture of individual behavior
by looking at four orthogonal but interrelated dimensions – namely time, location, activity,
and social ties – viewed from the subject’s own perspective. An empirical analysis on a
large data set of daily behaviors shows the benefit of this choice: the different contextual
modalities and their subjective description are shown to provide important cues about the
predictability of individual behavior. Motivated by this, we also applied our contextual
modalities to study behavioral diversity. The obtained results highlight that individuals
are more easily identified from rarer, rather than more frequent, subjective context
annotations.

This work also highlights an interesting problem. Our results suggest that subjective
annotations are very useful for predicting certain contextual modalities. However, these
subjective annotations, obtained by filling questionnaires, have some degree of error due
to different reasons. This also proves that the noise-label issue is hardly to avoid.

Then, in Chapter 5 we proposed a methodology to evaluate the quality of annotations
collected from the users by checking their consistence in giving labels. We applied the
methodology to a data set generated in SmartUnitn One Project, and analysed user’s
annotations of movement and locations. The result showed that the students involved
in this project were fairly consistent, and the results can be improved by using semantic
knowledge.

In Chapter 6 we introduced Skeptical Learning as a paradigm for dealing with the
unreliability of users when providing labels that describe their personal context. The
fundamental idea is to use the available knowledge when deciding what is more reliable
between the output of the machine learning algorithms and the user input, and to engage
in a conflict resolution phase when a controversy arises. Experimental results show the
pervasiveness of mislabelling when dealing with feedback from non-expert users, and the
effectiveness of Skeptical Learning in addressing the problem as compared to existing
approaches to deal with noisy labels.

To solve the last problem we identified, we proposed a general MCS platform in
Chapter 7. On the top of the platform, it runs the Skeptical Learning algorithm that we
proposed in Chapter 6. The main goal is to build a platform that could collect sensor
data from the devices and the label data from the users, and meanwhile, it could detect
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the correctness of user’s label and interact with the user if the label conflict arise. There
are three main components of this platform, i.e., the front-end, the back-end and the
StreamBase. We introduced the details of each component in this chapter.

8.2 Prospects for Future Work

In this final section of our final chapter we would like to discuss prospects for the future
research. There are some directions to extend the scope of this thesis. Firstly, the
implementation of the proposed Skeptical Learning platform shall be done to interact
with users in real time. Though in the experiments that were carried out in this thesis,
we manage to simulate the interaction with the user if the Skeptical Learning algorithm
detect the possible incorrect label, but when we ran the SmartUnitn Projects using i-Log
to collect users’ labels, it could not actually interact with the user immediately. We
proposed the Skeptical Learning platform architecture in Chapter 7, but the platform and
system needs to be implemented to be used in real world This is an ongoing work that
we have been doing.

As we introduced in Chapter 6, the machine has access to the knowledge component.
However, currently the knowledge that can be used by the machine is general knowledge
of the world and is pre-given. Therefore, the second potential direction is that the machine
could use information or knowledge from other sources. For example, allowing for the
possibility to ask third parties (e.g., a friend or the crowd) whenever a conflict arises,
allowing for multiple machine learning algorithms and for various inputs from the crowd
while providing a uniform way to measure their truthfulness, dealing with adversarial
learning [17, 64] and adversarial label contamination [105]. These dimensions will
enable a much more powerful role of semantics in the future work, leading to building
evolvable knowledge, contrary to its static nature in this work, that adapts and evolves

in order to accommodate for the ever coming new knowledge, as it is the case in our
everyday lives.

The last direction is to apply Skeptical learning in other domains or scenarios. In
our work, we have been focus on studying the students’ behaviours and recognizing
their personal context. Thus in all of our experiments, we applied the Skeptical Learning
algorithms on the context recognition task. However, the idea of keeping the machine
skeptical about users’ input and enabling the machine to challenge the user when conflict
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happens can be used in many other tasks, other domains and other scenarios. The
difference is we need to design new predictors and conflict management algorithms for
different tasks.
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