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LUDOVICO COLETTA 

Fine-grained descriptions of brain connectivity are required to understand how neural information is 
processed and relayed across spatial scales. Prior investigations of the mouse brain connectome have 
employed discrete anatomical parcellations, limiting spatial resolution and potentially concealing 
network attributes critical to connectome organization.  

In this work, we provide a voxel-level description of the network and hierarchical structure of the 
directed mouse connectome, unconstrained by regional partitioning. We found that hub regions and core 
network components of the voxel-wise mouse connectome exhibit a rich topography encompassing key 
cortical and subcortical relay regions. We also typified regional substrates based on their directional 
topology into sink or source regions, and reported a previously unappreciated role of modulatory nuclei 
as critical effectors of inter-modular and network communicability. Finally, we demonstrated a close 
spatial correspondence between the mesoscale topography of the mouse connectome and its functional 
macroscale organization, showing that, like in primates and humans, the mouse cortical connectome is 
organized along two major topographical axes that can be linked to hierarchical patterns of laminar 
connectivity, and shape the topography of fMRI dynamic states, respectively. 

This investigation was paralleled by further studies aimed to more closely relate structural connectome 
features to the corresponding large scale functional networks of the mouse brain. We first focused on the 
mouse default mode network (DMN), describing its axonal substrates with sublaminar precision and cell-
type specificity. We found that regions of the mouse DMN are predominantly located within the isocortex 
and exhibit preferential connectivity. Dedicated tract tracing experiments carried out by the Allen Brain 
Institute revealed that layer 2/3 DMN neurons projected mostly in the DMN, whereas layer 5 neurons 
project both in and out. Further analyses revealed the presence of separate in-DMN and out-DMN-
projecting cell types with distinct genetic profiles.  

Lastly, we carried out a fine-grained comparison of functional topography and dynamic organization 
of large-scale fMRI networks in wakeful and anesthetized mice, relating the corresponding functional 
networks to the underlying architecture of structural connectivity. Recapitulating prior observations in 
conscious primates, we found that the awake mouse brain is subjected to a profound topological 
reconfiguration such to maximize cross-talk between cortical and subcortical neural systems, departing 
from the underlying structure of the axonal connectome. 

Taken together, these results advance our understanding of the foundational wiring principles of the 
mammalian connectome, and create opportunities for identifying targets of interventions to modulate 
brain function and its network structure in a physiologically-accessible species. 
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 General Introduction 

1.1 Brain Connectomics 

The term “connectome” refers to the complete description of the wiring diagram of the brain 

(Sporns et al., 2005). This word is now largely used to describe datasets or resources providing whole-

brain, comprehensive descriptions of the axonal or “structural” (white-matter) connectivity of a given 

individual or organism (SC, van den Heuvel et al., 2016). Owing to the growing number of 

connectomes of different species reconstructed in the recent years, a great effort has been put into 

the search of both species-invariant and species-specific wiring principles, with the hypothesis that 

cross-species commonalities may be a reliable indicator of evolutionary preserved architectural 

features of the brain, whereas differences may reflect specific adaptations in cognition and behavior 

across evolution (van den Heuvel, Bullmore, et al., 2016). Besides the interest in comparative biology, 

connectome research (i.e. “connectomics”) can be instrumental in probing the elusive relationship 

between brain structure and function (Suárez et al., 2020). While empirical and theoretical work 

suggests that SC poses strong constraints on the possible repertoire of neuronal configurations 

detectable with functional brain mapping (Cabral et al., 2017; Khambhati et al., 2018; Suárez et al., 

2020),  the exact nature of this relationship remains obscure.  

Disentangling the exact relationship between functional and structural brain organization has so 

far proven to be difficult for a number of experimental and conceptual limitations. First and foremost, 
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most connectomic research to date has been carried out in human, where SC is measured by means 

of Magnet Resonance Imaging (MRI). This approach, however, only provides a very coarse, large-

scale estimate of SC, and does not provide information about the directionality of the connections 

(van den Heuvel, Bullmore, et al., 2016; Suárez et al., 2020). These issues may lead to largely 

approximated descriptions (or even  misrepresentations of SC in human (Kale et al., 2018), hence 

limiting the inferences that can be made from these datasets. Moreover, comprehensive descriptions 

of the specific relationship between brain function and structure can only be obtained via the 

integrating connectomics  investigations across multiple levels of spatial resolution, i.e. from cellular 

(micro-) to areal level (macroscale)  (Khambhati et al., 2018).  

While in humans ethical and methodological constraints prevent the systematic analysis of SC 

beyond the macroscale, both micro- and the meso-scale connectomes are experimentally accessible 

in model organism such as primates, rodents and the larval zebrafish (Oh et al., 2014; Kunst et al., 

2019; Lin et al., 2019). Owing to efforts of the Allen Brain Institute (ABI), structural connectivity of 

the mouse brain has been mapped at the cellular level via the use of viral tracers, representing one 

of the best characterized mammalian connectome ever described to date (Oh et al., 2014; Harris et 

al., 2019; Knox et al., 2019). At the same time, recent advances in functional Magnetic Resonance 

Imaging (fMRI) have also made it possible to describe macroscale functional network organization in 

a plethora of mammalian organisms, including multiple primate species (Milham et al., 2018), rats 

and mice (Sforazzini et al., 2014; Gozzi & Schwarz, 2016). The combined use of these brain mapping 

approaches may help unveil how anatomical structure sculpts the transition from local synaptic 

circuits to form macroscale functional networks, an area of investigation of critical importance 

towards the goal of understanding of the principles of brain function and dysfunction.   
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Recent progress in cross-species fMRI has also shown remarkable correspondences in the 

macroscale functional organization of rodent and primate brain, supporting the use of rodent species 

to investigate the foundational wiring principles of the mammalian brain  (Lu et al., 2012; Liska et al., 

2015; Gozzi & Schwarz, 2016; Bertero et al., 2018; Tsai et al., 2020). Thereby, the combined use of 

structural and functional connectome mapping in rodents represents a valuable platform where 

state-of-the-art manipulation techniques and computational models may converge, offering the 

opportunity to advance our understanding of brain function in health and disease (Gozzi & Schwarz, 

2016).  

In this introductory chapter I will provide a brief critical overview of the main computational 

approaches, key findings, open questions (e.g. structure-function mapping), and recent technical 

advancement in the field of cross-species connectomics. Owing to prevalent use graph theoretical 

approaches to investigate network properties of the human brain (see for example the Human 

Connectome Project, Van Essen et al., 2012), in the next section, I will first introduce this analytical 

framework and some of the most relevant findings in this field of research. I will then briefly introduce 

the methodological limitations inherent to the analysis of human connectome data, with the purpose 

of discussing the technical advantages and the biological insights gained with the advent of whole 

brain non-human connectome research. 

1.2  Graph-based properties of human connectomes 

A theoretical and analytical approach that has gained a lot of interest in human connectome 

analysis is grounded in graph theory, a mathematical discipline that deals with the study of graphs, 

i.e. discrete representations of a finite set of objects (nodes), the interaction between them (edges), 

and the resulting network arising from the interaction (van den Heuvel & Sporns, 2013). Graph theory 
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has proved fruitful for connectomics; its abstractness allows to model SC (in this case representing 

the edges of the network) between synapse, neurons, and whole brain regions (nodes), thus making 

possible the discovery of invariant network properties across species and scales (van den Heuvel, 

Bullmore, et al., 2016; Betzel & Bassett, 2017) 

Graph theory has been fruitfully used to map central nodes – so called “hubs” – in brain networks 

(see Figure 1 for basic network attributes). The most intuitive approach for hub definition relies on 

the characterization of the number of connections per node – a graph metric called “degree” 

(Rubinov & Sporns, 2010; van den Heuvel & Sporns, 2013). When the degree distribution follows a 

power law, the network is said to be scale free (or scale invariant, meaning that its structure does not 

change with its size), and under such circumstances the network contains hubs, i.e. very few nodes 

with a disproportionally high degree (Rubinov & Sporns, 2010; van den Heuvel & Sporns, 2013). 

Interestingly, it has been consistently shown that the degree distribution of the human connectome 

follows a heavy-tailed distribution, and hub-like regions have been mapped in integrative areas of the 

brain, such as the prefrontal cortex, the insula, and the parietal cortex (van den Heuvel & Sporns, 

2013). Of note, the notion of hub does not appear to be purely statistical, as central nodes have been 

found to have higher metabolic requirements (Bullmore & Sporns, 2012). Moreover, van den Heuvel 

et al., 2012 showed that hubs are characterized by a high number of connections and tend to be 

densely interconnected constituting an exclusive “rich club” or “structural core”. These authors also 

showed that rich club connections span long distances and participate in a large proportion of 

network shortcuts, leading to the hypothesis – under the assumption that the brain relies on the shortest 

path for communication – that this special set of nodes and connections acts as backbone for global 

brain communication. It should be noted, however, that the degree metric relies on the use of “binary 

matrices”, which encode only the existence of a given edge, and as such implicitly assuming that all 
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connections are equally important. This simplification collides with biology, since SC strength and/or 

density between two synapses/neurons/brain regions may vary across the brain (Oh et al., 2014). For 

this reason, the computation of its weighted counterpart – node strength – has become increasingly 

frequent (Rubinov & Sporns, 2010), even though it should be noted that the two measures are not 

simply analogues of one another. Indeed, it may be possible to find nodes with many weak 

connections but low total strength (high degree, low strength), and nodes with a single but strong 

connection (low degree, high strength). 

Centrality measures are often complemented by metrics sensitive to the network segregation, 

such as clustering coefficient and the modularity index, two indices that measure the degree of 

segregation at the local (i.e. nodal) and global level (Rubinov & Sporns, 2010; van den Heuvel & 

Sporns, 2019). The former metric measures the tendency of network nodes to form “locally 

connected triangles”, whereas the latter is an indicator of the network propensity to form 

clusters/communities of densely interconnected nodes. A high modularity value is interpreted as 

an index of information segregation, a principle that in case of the (human) connectome may be 

interpreted as a proxy for specialized neural processing and the existence of distinct functional 

systems (van den Heuvel & Sporns, 2019). Building on the concept of modularity, it is possible to 

quantify for each node the diversity of its inter-modular connections, a graph metric called 

“participation coefficient” (Rubinov & Sporns, 2010; Bertolero et al., 2017), and nodes that have 

a disproportionally high participation coefficient are called “connector hubs” (see Figure 1), with 

the assumption that they facilitate between-modules communication (Rubinov & Sporns, 2010; 

van den Heuvel & Sporns, 2013). Recent investigations (Meunier et al., 2010; Betzel et al., 2017) 

have shown that the human connectome has indeed a prominent modular structure. Importantly, 

structural modules appeared to be associated with specific functional networks, corroborating the 
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hypothesis that human connectome supports specialized neural processing via interaction 

between specialized modular units. Connector hubs play therefore an important integrative role, 

and are  as such embedded in integrative brain regions – overlapping to some extent with high 

degree hubs – as well as in the somatomotor systems (Gordon et al., 2018; Wang et al., 2018). 

 

 

 

Besides the obvious interest in analyzing the degree of information segregation in the brain, a 

significant research effort has been invested in mapping its integration capacity, with the assumption 

that the brain needs to combine the specialized information coming from distributed systems in a 

rapid and efficient manner (Rubinov & Sporns, 2010; van den Heuvel & Sporns, 2019). In graph theory 

terms, the ease of communication relies on the concept of path, here intended as the sequence of 

Figure 1. Basic network attributes. (A) Graph theory allows to study the brain as finite set of elements (called nodes, ranging from 

synapses to whole brain regions), the pairwise interaction between them (called edges, modeling structural connectivity or functional 

interactions), and the resulting network arising from all the pairwise interactions. (B) Nodes differ with respect to their number of 

connections (a metric called degree); high degree nodes are also called hubs. (C) Brain networks tend to segregate into sparsely 

interconnected functional units called communities/modules; connector hubs link different communities within the network (van den 

Heuvel & Sporns, 2013). 
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nodes and links that must be traversed for two nodes to communicate. In the case of structural 

networks, paths represent potential routes of information flow (Rubinov & Sporns, 2010; Avena-

Koenigsberger et al., 2018). One of the most common used metric of integration is the characteristic 

path length, computed as the mean of all shortest paths in the network, which in combination with 

the clustering coefficient, it is used to compute the so-called small word index (Rubinov & Sporns, 

2010; Bassett & Bullmore, 2017). Small world networks are characterized by a high clustering 

coefficient, i.e. the propensity to form local clusters, and by a small characteristic path length, 

meaning that the topological distance between any two given nodes is on average low, therefore 

facilitating communication. It has been consistently shown that the human connectome is a small 

world network (Rubinov & Sporns, 2010; Bassett & Bullmore, 2017), i.e. a network that combines 

segregation and integration in the most optimal manner. It should be noted, however, that the 

concept of small world applied to brain networks has also been accompanied by technical 

controversy, especially with respect to widespread use of binary connectivity matrices to map 

relevant network parameters such as characteristic path length (Rubinov & Sporns, 2010; Bassett & 

Bullmore, 2017; Avena-Koenigsberger et al., 2018). As discussed above for degree-based metrics, 

binary connectivity matrices encode only the existence of a given edge, implicitly assuming that all 

connections are equally important. This simplification is indeed problematic, since SC strength and/or 

density between two synapses/neurons/brain regions may vary across the brain (Oh et al., 2014). 

Weighted counterparts for the computation of the characteristic path length have been introduced 

(Bassett & Bullmore, 2017), but these are the object of debate as well, owing to the difficulty of 

relating connection weights to topological distances (see (Betzel & Bassett, 2018) for a possible 

solution). The second controversial aspect related to the notion of characteristic path length 

concerns the biological plausibility of the communication model it assumes. Indeed, in order to 
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propagate the communication along the most efficient pathway (routing), each node is thought to 

possess global knowledge about network topology, an assumption that appears to collide with 

biology (see Avena-Koenigsberger et al., 2018 for a critical discussion and possible alternatives).  

An interesting property of small world networks is their optimal resilience against random 

node/edge deletion, meaning that network topology is not significantly changed after random 

network attacks (Wang & Chen, 2003). Conversely, these properties make these networks particularly 

vulnerable  to targeted hub removal  (Wang & Chen, 2003). This latter characteristics – together with 

the initial evidence that many psychiatric and neurologic conditions are indeed characterized by 

structural abnormalities in hub regions (van den Heuvel & Sporns, 2013, 2019)  – has fueled research 

into pathoconnectomics (Rubinov & Bullmore, 2013), i.e. the investigation of the contribution of 

(structural) connectivity defects to human brain pathology and dysfunction (Griffa et al., 2013; de 

Lange et al., 2019) .  This nascent field is now moving beyond the phenomenological characterization 

of single psychiatric disorders, looking for a theoretical framework to link connectome aberrancies 

across clinical conditions, and computational approaches able to disentangle their complexity. A 

notable example of this is given by the recent study from Gollo et al., (2018), who showed that hub 

nodes located in the prefrontal cortex are the first to break down when the connectome is randomly 

rewired.  

In keeping with this, van den Heuvel & Sporns (2019) proposed a new theoretical framework to 

study pattern of connectivity across individuals, whereby psychiatric disorders are the result of a sub-

optimal design of global topological features. Specifically, in this novel perspective, minimization of 

wiring costs is one of the main driving forces of connectome organization, resulting in the formation 

of densely connected communities. According to these authors, a second fundamental wiring 

principle is global integration, an attribute maintained by the formation of costly – in terms of 
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metabolism – long-range connections. The search of an equilibrium point between these two non-

compatible driving forces is hypothesized to shape resource allocation, and the resulting network 

topology. Interestingly, the authors linked the multiplicity of possible optimal trade off points to the 

empirical variability observed in healthy human connectomes. Within this theoretical framework, 

psychiatric disorders would thus be the consequence of sub-optimal resource allocation, defining a 

novel connectome landscape in which it is possible to order and link connectome aberrancies across 

disorders, with the potential of disentangling their complexity.  

Most connectomics research to date has been carried out in humans via non-invasive assessments 

of macroscale SC obtained from diffusion weighted MRI (dMRI), a MRI-based technique  sensitive to 

the orientation of random diffusion of water molecules in the tissues (Maier-Hein et al., 2017; 

Jeurissen et al., 2019). Based on the observation that myelin hinders the cross-fiber movement of the 

water, dMRI allows to infer white matter fiber orientation by measuring diffusion along several non-

collinear directions, (Maier-Hein et al., 2017; Jeurissen et al., 2019). Fiber tracking algorithms are 

then used to reconstruct the white matter bundles connecting distant regions of the brain (Maier-

Hein et al., 2017; Jeurissen et al., 2019). Although promising in revealing the relationship between 

structural and functional organization of the human brain and its alterations in brain pathology, a 

number of key technical shortcomings are associated with dMRI/fiber tracking (Maier-Hein et al., 

2017; Jeurissen et al., 2019). First, this approach is only sensitive to the largest white matter tracts, 

and as such it cannot measure meso- and microscale properties of the brain. Second, due to the 

theoretical and mathematical assumptions behind the diffusion model, it does not allow to infer the 

directionality of the connections, thus preventing the discovery of potential connectional 

asymmetries. This theoretical problem appears to be of non-negligible impact, as it may potentially 

lead to inaccurate hub estimation (Kale et al., 2018).   
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To overcome limitations of dMRI-based human SC mapping and better understand the 

connectional organization of the mammalian brain across scales and species, a large amount of 

resources has been invested into the mapping of animal connectomes, an approach that permits to 

sample brain connectivity with much higher spatial resolutions, owing to the use of invasive viral 

tracers, while full retaining the directional nature of axonal connections (van den Heuvel, Bullmore, 

et al., 2016; Harris et al., 2019; Kunst et al., 2019; Lin et al., 2019). Not surprisingly, the initial 

comparison of dMRI-based and “ground truth” mammalian connectomes has corroborated the 

notion that diffusion tensor imaging provides only a rough estimate of large-scale connectivity. For 

example, Shen et al., (2019) recently compared several graph theoretical properties of the macaque 

connectome, revealing that, due to the high number of false positive connections, dMRI leads to 

inaccurate hub estimation. 

 Similar to Kale et al., (2018), the authors found the dMRI is however sufficient to detect the coarse 

core-periphery division of SC networks. In keeping with this, by using tracing data obtained in the 

mouse, Calabrese et al., (2015) reported that a correspondence between dMRI and neuronal tracing 

data exists only at the coarsest anatomical level, whereas the two modalities consistently diverge at 

finer spatial resolution, suggesting a view in which dMRI and neuronal tracing are fundamentally 

distinct modalities that are sensitive to distinct properties of SC networks. This observation suggests 

that multiscale investigations of SC in model organisms can optimally complement dMRI-based 

studies by providing access to levels of inquiry that are currently off limits in human connectome 

research.   
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1.3 The mouse brain meso-scale connectome 

Weighted and directed SC networks have recently been mapped for several vertebrate and 

invertebrate species including the macaque, the rat, the pigeon, the cat, the marmoset, the 

Drosphila, the nematode C. Elegans, and the larval zebrafish (van den Heuvel, Bullmore, et al., 2016; 

Hildebrand et al., 2017; Lin et al., 2019). However, due to its brain whole coverage, single-site 

acquisition, high-resolution light-microscopy imaging, and voxel resolution, the mouse connectome 

is considered to represent the gold standard for mammalian organisms so far (Rubinov, 2016). 

Owing to efforts of the Allen Brain Institute, the structural connectivity of the mouse brain has 

been mapped at the cellular level via the use of anterograde viral tracers (Oh et al., 2014), based on 

469 viral microinjection experiments performed in the right hemisphere of adult C57BL/6J male mice. 

For each experiment (see Figure 2 for set of representative injections experiments), 2D images were 

derived from imaging EGFP-labeled axonal projections at high resolution (0.35 μm) across 140 

coronal sections using serial two-photon tomography, automatically segmented to extract the 

fluorescent signal, and registered to the 3D Allen Mouse Brain Atlas (ABA, isotropic spatial resolution 

of 100 μm3). After segmentation and registration, each experiment maps SC from the injection site 

to the rest of the ca. 500,000 voxels of the mouse brain. Oh et al., (2014) extracted SC strength 

between 213 regions of the ABA via constrained multivariate regression analysis, obtaining structural 

connectivity matrices for the ipsi- (i.e. within the right hemisphere) and contra-lateral (i.e. between 

the right and the left hemisphere) structural connectivity. The use of a constrained multivariate 

regression procedure resulted in a sparse connectome, where only 6.9% of the ipsi- and 5.4% of the 

contralateral connections were retained for further analysis. Of note, the definition of SC strength 

was based on the notion of projection volume, defined as the sum of the segmented pixel counts 

(and scaled to a mm3 volume), a read-out that was found to less variable and more stable than 



12 

 

projection fluorescence intensity. According to the authors, each entry of the weighted and directed 

structural connectivity matrix describes the amount of segmented signal activated in the target 

region by infecting one voxel in the source region, a SC notion labeled as normalized connectivity 

strength (NCS). Scaling by the size of the source or target regions offers alternative connectivity 

strength definitions (Oh et al., 2014). 

Oh et al., (2014) reported that the strength of the weights spans a 105 - fold range across the brain, 

with ipsilateral connectivity being significantly stronger than contralateral connectivity. These result 

underscore the inadequacy of binary network measures in capturing the most salient architectural 

features of the brain, and are consistent with the hypothesis that long range connections (e.g. 

contralateral connections) are costly, and as such, relatively scarce. Importantly, the topological 

analysis performed by the authors revealed that the mouse brain presents network features 

compatible with scale-free and small-world architectures. In keeping with this, hierarchical clustering 

performed on patterns of cortico-thalamic connectivity revealed the presence of six distinct clusters: 

visual, auditory, somatosensory, motor, limbic, and prefrontal. 
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Recently, the mouse connectome described by Oh et al., (2014) has been recomputed to produce 

a SC map with voxel-resolution (Knox et al., 2019) . Specifically, under the assumption that SC varies 

smoothly across the major ABA anatomical divisions – also called parental structures, such as 

olfactory areas, isocortex, cortical subplate, hippocampal formation, striatum, pallidum, 

hypothalamus, pons, midbrain, medulla, cerebellum, and thalamus –  Knox and colleagues modeled 

the connectivity of each voxel as the weighted average of the projections patterns of nearby 

injections. The authors showed that a regional model built from the voxel scale model outperforms 

the multivariate regression previously employed by Oh et al., (2014) in predicting held-out 

experiments. At the same time, further work from the ABI employed new and de-novo acquired 

Figure 2. Representative injection experiments of the mouse brain connectome. Whole brain (second row, sagittal view) and 

structure specific (row 3 to 8, coronal view) projection patterns for seven representative injection experiments across the mouse 

isocortex (top row, coronal view, Oh et al., 2014). 
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dataset to obtain a layer specific description of the mouse brain connectome encompassing more 

than 1,000 injections experiments and 13 genetically modified animal lines selectively targeting 

distinct layer-specific projection neuron classes (Harris et al., 2019). Besides elucidating the 

differential contribution of each cortical layer to the overall intracortical connectivity patterns, this 

work provides the first description of the hierarchical relationships between cortical areas in the 

mouse brain, showing that prefrontal and somatomotor brain regions rank at the top and the bottom 

of hierarchy, respectively. However, at the global cortical level the authors did not find a pronounced 

hierarchical organization, suggesting a more complex organization of the intracortical connections 

than previously thought. 

1.4  Network properties of the mouse connectome 

Recent work has provided a first in-depth characterization of the graph theoretical properties of 

the mouse connectome (Rubinov et al., 2015). Using a novel parcellation scheme, Rubinov et al., 

(2015) demonstrated a small world organization of the mouse brain connectome. A hierarchical 

modular decomposition led to the identification of four different communities, encompassing a 

somatosensory-motor, a brainstem-cerebellar, an auditory-visual module and an olfactory-

hypothalamic-hippocampal module, respectively. Interestingly, eight nodes located in the prefrontal 

cortex, striatum, thalamus, and midbrain were found to have a significantly higher participation 

coefficient compared to rest of the network, and as such could not be reliably assigned to any of the 

four modules. Moreover, the core-periphery bipartition of the connectome revealed the presence of 

seven high strength nodes, all localized in the auditory-visual module. Owing to a custom fiber 

tracking algorithm, the authors were also able to reconstruct white matter tracts, to estimate the 

wiring costs of the axonal projections – defined as the product of axonal length and axonal bandwidth 
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– and to compute a measure of distance that could incorporate the curvature of the brain. The mouse 

connectome showed significantly lower wiring costs than a randomly rewired network but higher 

wiring costs than a spatial lattice (i.e. a network with a regular geometrical structure, also called grid 

graph, mimicking a wiring cost minimized network) with a matched number of nodes and edges. The 

authors also reported that the relationship between SC weights and distance was best fit by a power 

law distribution, and the participation coefficient was found to positively correlate with both wiring 

costs and the weight-distance power law exponents, meaning that nodes with a high participation 

coefficient are characterized by high wiring costs and their connections weights decayed slower as a 

function of distance. This latter aspect is of relevance: the authors were indeed able to simulate all 

the above-mentioned connectome features only when nodes with a high participation coefficient 

were also allowed to span longer distances. A model that exclusively sought for global wiring costs 

minimization could only reproduce the community structure of the network, suggesting the 

segregation – but not integration – in the mouse brain may be driven by the pressure in cost 

minimization. 

Two other studies tried to uncover the mechanisms underlying the wiring of the mouse 

connectome by using network simulations. Henriksen et al., (2016) proposed a generative model 

where a node generates a new connection with a probability proportional to the number of its 

outgoing connections (source growth, SG), whereas the target node is chosen with a probability that 

decreases as to the distance between source and target increases (proximal attachment, PA). The 

authors showed that a network grown with this model – termed “Source-Growth-Proximal-

Attachment” (SGPA) – can closely approximate the empirical distribution of both outgoing and 

incoming connections and the joint clustering coefficient degree distribution in the mouse 

connectome, outperforming a model where target selection was based on in-degree, and source 
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selection was based on spatial proximity. Of note, the SGPA model outperformed random, scale-free, 

and small world networks with matched number of nodes and connection density in modeling the 

joint clustering coefficient degree distribution, thus highlighting the uniqueness and special character 

of mammalian brain networks (Figure 3). 

 

 

Henriksen et al., (2016) proposed that the SGPA model could be a mechanism rooted in brain 

development and driven by the action of neurotrophins, a family of proteins that promotes the 

survival of innervating neurons and promotes the growth and branching of their axons. The scarcity 

of neurotrophins is supposed to cause competitive interactions between growing neuronal 

populations, with the available amount of proteins preferentially allocated to populations that are 

maintaining important functional – and hence potentially more connected – pathways. Rubinov 

(2016) tried instead to disentangle the intricate relationship existing between hubs, rich-club, and 

Figure 3. Canonical network models do not adequately capture the uniqueness of the mouse connectome. Standard graphs 

models provide a moderate fit when modeling both the degree distribution (a-b) and the joint clustering coefficient-degree distribution 

of the mouse connectome, highlighting unique network properties of the mouse brain (c-f, Henriksen et al., 2016). 
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the hierarchical modular organization of the mouse connectome, under the hypothesis that 

hierarchies and rich club are the byproducts (spandrels) of hubs and modules (basic hallmarks). Of 

note, the author did not use a generative model, i.e. he did not start with an empty network whose 

edges were drawn according to a priori specified rule, but he rather sampled from a set of networks 

that were constrained to possess some specific features, and were otherwise totally randomized. 

Notably, his result showed that the presence of strength hubs and a pronounced modular structure 

result in a network characterized by the presence of a rich club and module hierarchies. As in Rubinov 

et al., (2015), wiring cost minimization alone was found to be insufficient in reproducing the 

empirically observed connectome architecture.  

More recently, Fulcher & Fornito (2016) combined network and transcriptome analyses with the 

aim of identifying a genetic signature of the rich-club. The authors found that rich-club nodes exhibit 

a higher transcriptional coupling than the rest of the network, implying that hub nodes are 

characterized by higher genetic similarity than non-hub nodes. Interestingly, transcriptional coupling 

in the rich-club connectome of the mouse brain was found to be driven by genes regulating oxidative 

metabolism, contrasting with the more general association between SC and genes involved in the 

regulation of neuronal and synaptic pathways. This result is in line with human studies, where high 

central nodes have been found to have higher metabolic requirements (Bullmore & Sporns, 2012).  

1.5 Comparative connectomics 

The availability of connectomes in multiple species characterized by increasing degree of 

complexity has made it possible to probe a number of long-standing questions related to the 

evolutionary organization of SC across species. Specifically, comparative connectomics (i.e. the 

comparison of connectional features across species) has enabled the identification of species 
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invariant wiring principles that describe the architectural organization of the brain. For instance, the 

mouse connectome is characterized by an optimal trade-off between integration and segregation, it 

has a rich-club consisting of hub nodes whose connections are particularly strong and span long 

distances, and it is characterized by a prominent hierarchical organization. A similar set of general 

network properties have been also been observed in the rat, the macaque, the human as well as in 

invertebrate connectomes (van den Heuvel, Bullmore, et al., 2016).  

More recently, the focus of comparative connectomics, has shifted towards the comparison of 

specific network attributes across species. For example, Betzel & Bassett (2018) questioned the role 

of long-range connections as topological shortcuts that allow information integration in a rapid and 

efficient manner, and showed that in the drosophila, mouse, macaque, and human brain, long range 

connections provide little contribution to weighted shortest path. Moreover, removing short-range 

connections had a much greater impact on small-world related statistics than removing long range 

connections, suggesting that the efficient exchange of information across areas may be guaranteed 

by short-range connection. Within this framework, long-range connections would therefore enhance 

the dissimilarity in the connectivity profiles between brain areas. Notably, the authors also showed 

that for a given brain region, long-range connections tend to connect to other brain regions with a 

similar connectivity profile (a sign of degeneracy), thus potentially ensuring similar input/outputs in 

the case of damages to this special set of connections. In a subsequent study, the same authors 

probed the degree of segregation – assortative mixing in graph theoretical terms – of connectome 

communities in the drosophila, mouse, macaque, and human brain, questioning the consolidated 

view according to which the brain is composed of well segregated domains with minimized cross-talk 

(Betzel et al., 2018). According to the authors, this classification should be attributed to the special 

class of algorithms traditionally used for recovering the community structure of connectomes, which 
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seeks and forces an assortative network structure but cannot account for other type of interactions. 

By using a recently developed family of algorithms, the authors showed that communities are indeed 

assortative, but less than previously reported, revealing a between-community core-periphery 

structure (not to be confounded with the core periphery structure at the nodal level). These results 

suggest than communities are less segregated and more integrated than previously thought, a result 

that was consistently replicated across all the species tested. 

Even though species invariant topological features have been repeatedly reported, it should be 

mentioned that important differences in the overall structural brain organization do exist across 

different species. For example, in small mammals such as the mouse, 11% of the total brain volume 

is represented by white matter, a proportion that increases up to 27% in the macaque and to 41% in 

human (van den Heuvel, Bullmore, et al., 2016). This non-linear relationship between brain and body 

size has been described via allometric scaling, and is thought to subtend topological differences 

across species, which in turn may reflect specific adaptations in cognition and behavior across species 

(van den Heuvel, Bullmore, et al., 2016). 

 A recent study by Goulas et al., (2019) tried to incorporate such macro-anatomical features into 

network analyses of brain connectomes across species . The authors compared physical, cytological, 

and graph theoretical dimensions of brain architecture in the mouse, the cat, marmoset, and 

macaque monkeys, with the aim to extrapolate a general blueprint of mammalian cortical 

connectomes. With the exception of the marmoset monkey, the authors found that connections tend 

to span short distances and link brain regions with a similar cytoarchitectonic structure. Moreover, 

the same study reported notable species-specific differences in the organization of core-periphery 

topology, with the core of the cat and the macaque monkey exhibiting a lower neuronal density and 

a reduced degree of cytoarchitectonic differentiation than the mouse and marmoset monkey, 
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suggesting an evolutionary displacement of network core in mammals. In summary, while graph 

theory alone revealed the existence of species invariant network properties, the inclusion of 

complementary data analysis techniques may shed light into species-specific organizational 

principles. Additional species-specific wiring features appear to present in the organization of 

functional circuits. For instance, a comparison of bonobos, chimpanzees, and human connectomes 

showed an evolutionary gradient of complexity in the anatomical organization of the arcuate 

fasciculus, a large white fronto-temporal matter tract involved in development of language and 

speech processing (van den Heuvel, Bullmore, et al., 2016). 

1.6 Linking structural and functional connectivity 

The availability of high precision connectomes has also made it possible to relate structural 

features to large-scale functional network organization as assessed with multiple neuroimaging 

methods. By using task-free resting state functional MRI (rsfMRI), a non-invasive neuroimaging 

methods that exploits the blood oxygen level dependent (BOLD) signal as an indirect measure of 

neural activity, it is now possible to define an index of synchronization between fluctuating signals 

across brain regions which is commonly used as proxy for functional connectivity (FC, Raichle et al., 

(2001) but see Mohanty et al., (2020) for a critical discussion and alternatives to the use of correlation 

for FC definition). rsfMRI-based FC studies have reliably shown that the bran is organized in 

synchronous network that recapitulate functional systems of the brain engaged in task-based activity 

(Smith et al., 2009). In humans, numerous investigations have attempted to disentangle the 

relationship between SC as measured with dMRI and FC (Figure 4), both from a graph-theoretical and 

bio-physical modeling perspectives, reporting weak to moderate overlap between FC and SC 
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(Abdelnour et al., 2014; Goni et al., 2014; Mišić et al., 2015; Cabral et al., 2017; Lim et al., 2019; 

Suárez et al., 2020). 

 

 

 

Non-human connectomes, together with advent of rsfMRI in animals, have made it possible to 

probe how mesoscale SC relate to macroscale FC expanding the comparison of these phenomena 

across levels of inquiry (Gozzi & Schwarz, 2016). A study by Díaz-Parra et al., (2017) found high 

correspondence between SC obtained with viral tracing and rsfMRI in rats, as well as high 

correspondence between empirical and modeled FC, suggesting that the structural connectome may 

indeed shape the functional architecture of the brain. In keeping with these findings, Grayson et al., 

(2016) were able to predict the widespread functional disruptions caused by the pharmacogenetic 

inactivation of the amygdala from the virtual deletion of the corresponding white matter tracts in the 

Figure 4. Structural connectivity does not fully recapitulate functional connectivity. In humans, the vast majority of the functional 

connections represent higher order interactions and as such are not supported by direct structural connectivity (A). Even in the presence 

of an underlying structural connection, the overall correlation between structural and functional connectivity remains moderate, both 

at the local level and when comparing the spatial topography of modules/community (B-C, Suárez et al., 2020). 
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structural connectome of rhesus macaque monkey, suggesting a causal role of SC in generating FC. 

Of note, the relationship between SC and FC was best predicted by communicability, a graph-

theoretical metric sensitive to polysynaptic connections, being the weighted sum of direct and 

indirect SC (Benzi & Klymko, 2013; Avena-Koenigsberger et al., 2018). These results suggest that 

monosynaptic connectivity may not be able to fully and reliably account for FC. In keeping with this, 

chemogenetic inhibition of mouse medial prefrontal cortex has been recently shown to produce 

increased fMRI connectivity between the silenced areas and its structurally connected cortical and 

subcortical targets, an effect that driven by increased entrainment of hyperconnected areas with 

underlying slow brain rhythms (Rocchi et al., 2022, in press). This result provides causal evidence that 

cortical inactivation does not necessarily lead to reduced inter-areal coupling, but can 

counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes. 

According to this model, SC critically constrains FC under resting conditions, but structural 

connections serve as poor predictors of functional interactions in the cognitively active brain, or when 

brain activity is perturbed by pathological or neuromodulatory input.  

Stafford et al., (2014) provided the first description of the relationship between FC and SC in the 

mouse brain. The authors reported a moderate whole brain FC-SC correspondence, but the authors 

found a strong overlap between SC and FC for a specific functional circuit supposed to represent the 

mouse homologue of the human default mode network (DMN, see also (Sforazzini et al., 2014)). The 

DMN comprises a set of brain regions that were shown to decrease their activity during externally 

induced task. These regions have been found to be functionally connected, and DMN aberrancies 

seems to be ubiquitous across psychiatric and neurological conditions (Buckner & DiNicola, 2019; van 

den Heuvel & Sporns, 2019). Anatomically, the human DMN encompasses a midline component, 

centered on the anterior cingulate cortex and precuneus, and lateral component that includes the 
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parietal cortices (Buckner & DiNicola, 2019). The rodent DMN has a similar spatial configuration, and 

with the exception of the precuneus that has no clear anatomical correlate in mice, it encompasses  

evolutionarily similar  brain areas  (Sforazzini et al., 2014; Vogt & Paxinos, 2014; Whitesell et al., 

2021). By replicating and extending the results of Sforazzini et al., (2014), the study of Stafford et al., 

(2014) has important translational implications, as it shows that the one the most studied neural 

circuits in humans may be present in rodent. 

Grandjean et al., (2017) recently provided a comprehensive comparison of FC and SC in the mouse. 

In first set of analyses, the authors compared viral injections experiments with volume matched seed- 

based mapping of rsfMRI connectivity. By using this method, the authors found that SC-FC 

concordance was highest in the isocortex, followed by the hippocampal formation. By contrast, 

experiments performed in subcortical structures exhibited weak correlations with FC. The authors 

then specifically probed the FC-SC correspondence for cortico-cortico, cortico-striatal, and cortico-

thalamic circuits using SC obtained from the work from Oh et al., (2014). The results of these analyses 

showed a strong degree of similarity between FC and SC for cortico-cortico and cortico-striatal 

circuits, but low correspondence in cortico-thalamic connections. Lastly, the authors compared FC 

and SC in terms of path lengths (number of edges between nodes, a graph-theoretical measure of 

distance), trying to disentangle the contribution to mono- and polysynaptic connections to FC. The 

results highlighted how the majority of intra- and interhemispheric functional cortico-cortico circuitry 

seems to be driven by monosynaptic structural connections, whereas homotopic functional 

connectivity of subcortical structures was more frequently associated with polysynaptic SC, with the 

isocortex acting as a possible relay-station. 

Recent analyses have also explored whether and how the connectome supports rsfMRI brain 

dynamics. By investigating the relationship between the mouse connectome and time-series 
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properties extracted from the rsfMRI BOLD signal, Sethi et al., (2017) reported a positive association 

between the strength of the incoming projections and the autocorrelation of the BOLD signal, 

suggesting that brain regions characterized by strong incoming connectivity tend to display longer 

timescales of activity fluctuations. Again using the mouse connectome,  Choi & Mihalas, (2019) took 

a simulation approach to dissect how specific spatial patterns of structural connections may 

potentially shape brain dynamics. The authors replicated prior evidence for a power law distribution 

of connections weights as a function of distance, with spatially close brain regions more strongly 

connected than distal regions. They next focused on the connections that were stronger than 

predicted by the power-law relationship, reporting that these connections spanned multiple spatial 

scales of the network, were localized in deep subcortical regions and the hippocampus, and were 

shown to promote rapid transitions between local and global synchronization, revealing a specific 

subset of brain regions that allow to switch between brain states depending on the context. Together, 

these results suggest that mesoscale topological properties of the structural connectome affect both 

the “statistic” functional structure of the brain at macroscale level and may shape brain dynamics in 

a very specific manner.  

1.7 Principal axis of connectome organization: diffusion embedding & 

connectivity gradients  

A number of advanced connectomic analyses techniques have been proposed over the last few 

years to expand the methodological repertoire provided by graph theory and advance our 

understanding of the structural (and functional) organization of the mammalian brain. One of such 

advancements of great potential entails a decomposition of  whole-brain connectivity data into a 

sparse set of hierarchically – on the basis on variance explained – components via diffusion 
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embedding, commonly labeled as gradients (Margulies et al., 2016). From a methodological 

standpoint, diffusion embedding consists in deriving from SC (and/or FC) a metric of spatial affinity, 

which encodes – for each brain regions or voxel under analysis – the similarity of the connectivity 

profiles over space. Instead of delineating discrete network parcellations, the network is than 

decomposed into regions characterized by gradients of higher (or lower) similarity reflecting the 

similarity in the spatial arrangement of cortical connectivity. The advantages of this method are 

twofold (Margulies et al., 2016). First, it does not require a discrete brain parcellation, and as such it 

potentially allows to discover large scale networks without a priori spatial constrains. Second, it allows 

to study large scale networks in a continuous space, hence reflecting a more fine-graded view of brain 

organization. Margulies et al., (2016) first applied diffusion embedding to human rsfMRI data, 

showing a principal gradient that was anchored on one end in the DMN, and on its other extreme in 

unimodal primary sensory regions, and a second gradient exhibiting an axis of differentiation 

between primary sensory cortices (Figure 5). The authors also showed that local peaks in the gradient 

expression within the DMN were maximally distant from the unimodal sensory regions, thus 

suggesting that the functional decoupling between transmodal and unimodal brain regions is 

reflected in the geometrical organization of spontaneous brain activity. Lastly, the authors also found 

a similar gradient of connectivity in the macaque structural connectome, suggesting that the 

functional decoupling between trans- and unimodal brain regions may be anchored in the structural 

organization of the brain and be already present in lower primate species. Intriguingly, this 

fundamental axis of organization is not limited to the spatial arrangement of cortical connectivity, 

but it has also been showed to reflect the spatial variation of several biological properties, ranging 

from neuron density to synaptic excitation, and it is thought to reflect the hierarchical integration 
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across distinct modalities (Mesulam, 1998; Margulies et al., 2016; Hilgetag & Goulas, 2020; Wang, 

2020).  

 

 

Importantly, it has been recently shown that diffusion embedding can capture imbalances in 

network hierarchy in autism, it can be used to probe gradients of connectivity variations during 

development and it can reveal new insights into the FC-SC relationship (Hong et al., 2019; Larivière 

et al., 2019; Vázquez-Rodríguez et al., 2019; Benkarim, Paquola, Park, Hong, et al., 2021; Benkarim, 

Paquola, Park, Royer, et al., 2021). Mimicking the first principal axis of connectivity variation, it has 

been shown that the correspondence between FC and SC is high in primary sensory cortices, while 

FC gradually diverges from SC in polymodal brain regions (Vázquez-Rodríguez et al., 2019; Benkarim, 

Paquola, Park, Royer, et al., 2021). Furthermore, a new family of bio-physical models in which local 

Figure 5. The organization of cortical connectivity can be described by smooth spatial transitions. In both humans (A) and 

macaque monkey (B), the principal gradient describing the spatial arrangement of cortical connectivity is anchored at the one end in 

associative brain regions, and at the other end in primary sensory cortices, in line with previous models postulating a hierarchy of 

increasing functional integration propagating from the unimodal end to transmodal regions (C). The first gradient is accompanied by 

a differentiation within the primary sensory cortices, separating the somatomotor and auditory cortex from the visual cortex (D-E, 

Margulies et al., 2016).  
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parameters were let free to vary across brain regions revealed the existence of a hierarchical cortical 

gradient, a feature that significantly increased the fitting between simulated and empirical FC (Wang 

et al., 2019). 

An extension of this approach to cross-species mapping has been recently provided by Fulcher et 

al., (2019), who provided the first evidence for the existence of human-alike hierarchical gradients in 

the mouse brain. The authors mapped cortical gradients in the mouse by using the ratio of T1-

weighted to T2-weighted images (T1w:T2w), a MRI measurement that is commonly interpreted as a 

marker of grey matter myelin content and recently used by Burt et al., (2018) in both humans and 

macaque monkey to replicate and extend the results of Margulies et al., (2016). Using this approach, 

the authors showed that a decreasing T1w:T2w ratio along an antero-posterior gradient in the mouse 

brain, reminiscent of the trans- to unimodal gradient reported by Margulies et al., (2016) using 

rsfMRI, and by Burt et al., (2018) using T1w:T2w ratio. The antero-posterior gradient was found to be 

predictive for a range of microstructural properties of the mouse brain, including cytoarchitecture, 

gene expression, interneuron density, and structural connectivity. Collectively, these investigations 

show how the use of dimensionality reduction techniques can enhance our understanding of the 

fundamental organizational principles of the brain, and help relate these to underlying architectural 

and biological properties of developmental or translational relevance. 

1.8 General perspective and open questions 

Owing to the growing number of high-quality connectomes of different species reconstructed in 

the recent years, the field of connectomics has gained considerable momentum.  Two main research 

streams within this field are focused on mapping species specific and species invariant features of 

brain organization, as well as finding a mapping between structure and function. In both cases, graph 
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theory has proven fruitful, revealing the presence of hubs, clusters/communities, and a small world 

structure across species, scales, and different imaging modalities.  

However, while these approaches have advanced our understanding the organizational principles 

of the brain, a few outstanding technical and interpretational limitations remain to be addressed, 

preventing a steadfast interpretation of the results obtain in human and animal connectome 

mapping. For one, to reduce the computational complexity, network metrics are typically extracted 

and computed within given brain parcellations. However, macroscopic parcellations limit spatial 

resolution by definition, imposing sharp, arbitrary boundaries in a system that is continuous, thus 

potentially leading to inaccurate localization of network features. Moreover, the weakest 

connections – supposed to represent spurious connectivity – are typically removed using arbitrarily 

defined thresholds. Both these steps need to be accurately controlled for and motivated, as they can 

remarkably affect network properties  (Garrison et al., 2015; van den Heuvel et al., 2017; Hallquist & 

Hillary, 2018). The use of parcellation-free topological analyses represents an interesting extension 

in the field of connectomics. An example of this approach has been recently shown in functional 

imaging of the mouse brain, in which hub-like properties have been mapped with voxel resolution 

using rsfMRI (Liska et al., 2015). However, no such analyses have been reported for the mouse 

structural connectome.   

Another set of issues related to current brain network analyses concerns the choice of network 

metrics to extract, as it is not always possible to translate network properties into meaningful brain 

features. For example, the biological plausibility of communication processes unfolding on the 

network shortest paths has been questioned, because it implicitly assumes that each nodes has 

global knowledge about network topology (see (Avena-Koenigsberger et al., 2018) for a critical 

overview and possible alternatives). It should also be noted that some algorithms are intrinsically 
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limited with regards to the network feature that they can extract. As shown by Betzel et al., (2018), 

community detection algorithms based on modularity maximization can recover only assortative and 

non-overlapping communities, but the brain –in both health and disease – may significantly deviate 

from this organizational scheme.  

Specifically to the mouse connectome, great effort has been put in trying to elucidate plausible 

bio-physical and universal wiring mechanisms, but more relevant biological questions have been 

neglected. For example, a precise characterization of both degree/strength and connector hubs 

accounting for the directionality of the mouse connectome, and trascending regional parcellation is 

lacking. The issue of biological plausibility and interpretability applies also to advanced computational 

modeling and diffusion embedding (Cabral et al., 2017; Huntenburg et al., 2018). 

Overall, it is becoming more and more apparent the many network models of SC and brain 

structure and their related computational assumptions lack empirical probing using causal or 

experimental manipulations aimed to test their validity. Toward an empirical validation of the 

assumptions underlying modern connectomics analyses, and the relationship between SC and FC, the 

implementation of connectomics in physiologically accessible model organisms such as the mouse 

represents a key milestone that is posed to advance our understanding of these phenomena across 

multiple scales.  

1.9 Aim of this research and structure of my thesis 

My research has been prompted by the observation that most connectome research in the mouse 

has been carried out using an anatomically parcellated version of the mouse mesoscale brain 

connectome originally described by Oh et al., (2014). My hypothesis was that the use of predefined 

anatomical might have biased prior network analyses of the mouse connectome, possibly concealing 
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important network properties critical to the network organization of the mammalian brain. 

Leveraging a recently released voxel-wise connectome model of the mouse brain (Knox et al., 2019), 

I thereby undertook a series of network analyses aimed to provide a voxel-level description of the 

network and hierarchical structure of the directed mouse connectome, unconstrained by regional 

partitioning. As part of these investigations, I provide a spatially unbiased mapping of a number of 

key network attribute of the mouse connectome as inferred from graph analyses and gradient 

mapping, and related them to the corresponding macroscale functional organization of the mouse 

brain as assessed with rsfMRI.  I describe the results of this investigation in Chapter 2. As predicted, 

these investigations revealed a number of previously unappreciated organizational principles in the 

mammalian brain, including a directional segregation of hub regions into neural sink and sources, and 

a strategic wiring of neuromodulatory nuclei as connector hubs and critical orchestrators of network 

communication. We also found that the mouse cortical connectome is hierarchically organized along 

two superimposed cortical gradients reflecting unimodal-transmodal functional processing and a 

modality-specific sensorimotor axis, recapitulating a phylogenetically conserved feature of higher 

mammals.  

The observed spatial correspondence between structural and functional modules, as well as 

between structural and functional gradients, prompted me to next focus on the investigation of 

structure-function relationship in the mouse brain. Chapter 3 briefly summarizes some of the results 

of two collaborative studies in which we compared the mouse functional and structural connectomes 

across different levels of brain organization, and brain states, respectively. I would like to point out 

here that Chapter 3 only provides a high-level, and limited summary of these otherwise much larger 

studies, which I have decided to omit from my thesis to keep this document compact. 
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In the first of these investigations, I took part in a fine-grained characterization of the structural 

basis of an evolutionarily important FC network of the mouse brain, i.e. the default mode network 

(DMN). In collaboration with the Allen Brain Institute, we described the axonal substrates of this 

network with sublaminar precision and cell-type specificity. We found that regions of the mouse DMN 

are predominantly located within the isocortex and exhibit preferential connectivity, and that layer 

2/3 DMN neurons projected mostly in the DMN, whereas layer 5 neurons project both in and out. 

Further analyses revealed the presence of separate in-DMN and out-DMN-projecting cell types with 

distinct genetic profiles. 

In a second study I compared network structure of functional and axonal connectome in awake 

and anaesthetized mice. This research showed that, like previously observed in in conscious primates, 

functional networks in the awake mouse brain undergo a profound topological reconfiguration such 

to maximize cross-talk between cortical and subcortical neural systems, departing from the 

underlying structure of the axonal connectome. By contrast, under anesthesia, the spatial 

correspondence between structural and functional networks is robust and prominent. Finally, in 

chapter 4 I briefly summarize the findings of this thesis and discuss some of limitations of my work, 

as well as a number of future directions. 

During my PhD, the voxel-wise connectome model I have developed has been used in a number 

of additional collaborative studies that are however not reported here. A full list of the published or 

submitted papers I have contributed to is reported at the beginning of this document (Page viii).  
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  Network structure of the mouse brain 

connectome with voxel resolution 

This chapter has been published as:  Coletta, L., Pagani, M., Whitesell, J. D., Harris, J. A., Bernhardt, 

B., & Gozzi, A. (2020). Network structure of the mouse brain connectome with voxel resolution. Science 

Advances, 6(51), eabb7187. DOI: 10.1126/sciadv.abb7187 

2.1 Introduction 

Studies examining the structural architecture of the brain have advanced our knowledge of how 

information is processed and integrated across distributed and specialized neural circuits. Current 

network theory applied to brain connectomes has greatly contributed to this process, highlighting a 

series of common organizational principles underlying brain connectivity, many of which appear to 

be species and scale invariant (van den Heuvel & Sporns, 2019). These include the presence of 

discrete regional sub-systems (termed communities) critically interlinked by a small number of highly-

connected hub nodes, a configuration optimally suited for effective information processing and 

integration of neural signals across sensory and cognitive domains (van den Heuvel & Sporns, 2013). 

Brain communities and hub regions have been observed at different investigational scales and using 

multiple connectivity readouts in several species, from the nematode C. Elegans to humans (Towlson 

et al., 2013; Rubinov et al., 2015; Wang et al., 2018). 

Recently, the mesoscale connectome of the mouse brain has been mapped via the use of 

directional viral tracers, representing one of the best characterized directed mammalian connectome 

ever described to date (Oh et al., 2014; Rubinov, 2016; Harris et al., 2019). The integration of this 
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dataset with gene expression maps and layer-specific viral tracing have advanced our understanding 

of the wiring principles of the mammalian brain, revealing a network core of highly interconnected 

and metabolically costly hub nodes (Fulcher & Fornito, 2016), and a phylogenetically conserved 

feedforward-feedback laminar hierarchy in intracortical structure (Harris et al., 2019). However, most 

investigations of the mouse connectome to date have been limited by the use of pre-defined 

anatomical parcellations in which connectional parameters, from which network attributes are 

computed, are quantified under the assumption of regional homogeneity (Oh et al., 2014). This has 

typically entailed the interrogation of subsets of anatomically aggregated meta-regions (for example, 

213 x 213 regions in (Fulcher & Fornito, 2016), or 130 x 130 in (Rubinov et al., 2015)), an option that 

greatly increases the computational tractability of the mouse connectome. The use of predefined 

meta-areas is however non ideal, as the sharp inter-areal boundaries that characterize most neuro-

anatomical parcellations reflect a discretization of otherwise regionally continuous cytoarchitectural 

or anatomical parameters that may straddle cross-regional network features. Moreover, the use of 

meta-regions might limit the resolution of topological mapping in the mouse connectome, biasing 

the ensuing network metrics towards areas that are anatomically larger or more prominent, and 

potentially obscuring fine-grained or sub-regional attributes that could be critical to the network 

organization of the mammalian connectome. The recent release of a voxel-level data-driven model 

of the mouse connectome (Knox et al., 2019) offers the possibility of overcoming the limitations or 

regional-aggregated investigations in this species. This resource entails an improved interpolation 

model for single tracer injection maps and provides whole-brain coverage, encompassing subcortical 

districts not covered by state-of-the-art parcellations (Oh et al., 2014; Knox et al., 2019). Moreover, 

the voxel-wise mouse connectome is characterized by a sampling resolution that is unprecedented 
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for mammalian species, offering the opportunity to probe the topological structure of the 

mammalian connectome at a regional-scale never investigated so far.  

Here we leverage the voxel-level mouse connectome by Knox et al. (Knox et al., 2019) to provide 

a brain-wide, high-resolution description of the network structure and hierarchical organization of 

the directed mouse connectome, unconstrained by regional partitioning (15,314 x 15,314 matrix, 

Voronoi voxel volume 0.027 mm3 non isotropic, mean spatial extension of Voronoi voxels: 242 µm x 

323 µm x 336 µm, see Materials and Methods). Our results show that the mouse connectome is 

characterized by a finer network topography than previously reported, uncovering some previously 

underappreciated network features of the mammalian connectome. These include a segregation of 

hub regions into source and sink nodes, pointing at an organizational hierarchy in which higher order 

cortical areas serve as primary sources of neural output to the rest of the brain, and basal ganglia are 

configured as pivotal recipients of incoming projections. Using in silico network attacks, we also 

uncovered a strategic role of ascending modulatory nuclei as essential orchestrators of network 

communicability, a connectional property that makes these systems points of vulnerability for 

network function. We also found a tight inter-dependence between functional and structural brain 

organization, entailing the spatial arrangement of mouse cortical areas according to a hierarchy 

reflecting unimodal-transmodal and modality-specific functional processing, hence broadly 

reconstituting basic organizational principles of the primate brain. Our findings define a high-

resolution structural scaffold linking mesoscale connectome topography to its macroscale functional 

organization, and create opportunities for identifying targets of interventions to modulate brain 

function in a physiologically-accessible species. 
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2.2 Materials and Methods 

Construction of the structural connectome 

Our work leverages a high-resolution models of the mouse brain connectome (100 µm3) previously 

released by Knox and colleagues (Knox et al., 2019). The Knox connectome is based on 428 viral 

microinjection experiments in C57BL/6J male mice obtained from the Allen Mouse Brain Connectivity 

Atlas (http://connectivity.brain-map.org/). The connectome data were derived from imaging eGFP-

labeled axonal projections which were then registered to the Allen Mouse Brain Atlas, and aggregated 

according to a voxel-wise interpolation model (Knox et al., 2019). All the additional computational 

steps detailed below were implemented to make this resource computationally tractable and suited 

to the topological analyses we described in our manuscript. Before constructing the structural 

connectivity (SC) matrix, we ensured symmetry along the right-left axis for all the major 

macrostructures of the mouse brain. This step was required because the computation of most graph-

based metrics require the use of a square connectivity matrix as input. To this purpose, we flipped 

each macrostructure (isocortex, hippocampal formation, sub-cortical plate, pallidum, striatum, pons, 

medulla, midbrain, thalamus, hypothalamus, cerebellum, and olfactory bulb) along the sagittal 

midline (once for the right hemisphere and once for the left hemisphere) and we took the 

intersection with the respective non flipped macrostructure This procedure resulted in the removal 

of a set of non-symmetric voxel (total fraction, 8.6%), the vast majority of which residing in fringe 

white/gray matter or CSF/gray matter interfaces. Importantly, the removal of these non-symmetric 

voxels did not substantially affect the network structure of the resampled connectome, as assessed 

with a spatial correlation analysis between the symmetrized and non-symmetrized right ipsilateral 

(i.e. squared) connectome (spatial correlation 0.98, 0.93, and 0.97 Spearman Rho, for global, 

incoming and outgoing connectivity strength, respectively). We then filtered out fiber tracts and 
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ventricular spaces, and estimated SC using a resampled version of the recently published voxel scale 

model of the mouse structural connectome (Knox et al., 2019), to make the original matrix 

computationally tractable. Resampling of the Knox et al. connectome was carried out by aggregating 

neighboring voxels according to a Voronoi diagram based on Euclidean distance between neighboring 

voxels (Fig. 6). Voronoi-based resampling allowed us to spatially weight voxels with respect to 

neighboring areas, preserving the intrinsic architectural foundation of the connectome (Knox et al., 

2019). Moreover, this procedure allowed us to minimize spatial blurring and boundary effects 

between ontogenically distinct neuroanatomical divisions of the mouse brain, or white/grey matter, 

and parenchymal/ventricular interfaces. Finally, by averaging the connectivity profile of neighboring 

voxels based on their relative spatial arrangement, this strategy has also the advantage of mitigating 

limitations related to the enforced smoothness of source space employed by the original kernel 

interpolation employed by Knox et al., (2019).  

The employed Voronoi-based aggregation strategy entails the identification, for each voxel of the 

mouse connectome, of its 27 closest neighbors as per Euclidean distance (Figure 6), and the 

subsequent averaging of their connectivity profiles into a single value. We also made sure not to 

include the same 27 voxels in the computation of a new down-sampled voxel, to avoid spatial 

redundancy and oversampling. As a trade-off between spatial resolution and computational 

tractability, we decided to reduce spatial resolution by a factor of three, therefore aggregating the 

connectivity profile of 27 voxels into a single one. To keep the estimation of structural connectivity 

consistent with the procedure of Knox et al., (2019) and minimize mixing or cross-regional anatomical 

features, a Voronoi diagram was computed for each of the 12 same major brain divisions of the Allen 

Institute atlas separately and for one hemisphere only, flipping the resulting diagram across the 

sagittal midline to ensure Voronoi grid symmetry across the two hemispheres. Given that 
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connectome resampling was carried out on the original 100 µm-resolution connectome from Knox 

et al., (2019) the resulting averaged Voronoi voxels are characterized by a total volume of 0.027 mm3 

but are not necessarily isotropic or regular. The average spatial extension of the obtained Voronoi 

voxels in each plane corresponds to 242 µm x 323 µm x 336 µm in the x (sagittal), y (horizontal) and 

z (coronal) planes, respectively.  

 

 

Figure 6. Voronoi resampling scheme of the mouse brain connectome. Top row: Two-dimensional representation 

of the employed Voronoi-sampling procedure. For each voxel of the mouse brain in the CCFv3 space, we identify its 27 

closest neighbors as per Euclidean distance, averaging their connectivity profiles into a single value. Bottom row: 

Resulting Voronoi tessellation of the mouse cerebellum. 

   

To probe whether the employed Voronoi re-sampling procedure (and the resulting anisotropic 

Voronoi voxels) would affect the connectional and spatial properties of the mouse connectome, we 

computed for each Voronoi voxel, the average spatial correlation between the connectivity profile of 

each of its 27 original constituting 100 µm3 voxels across 12 macrostructures. This computation 
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yielded an average Spearman rho correlation of 0.98, 0.96, 0.99, 0.99, 0.99, 0.99, 0.99, 0.998, 0.97, 

0.98, 0.98, and 0.99 for the cerebellum, subcortical plate, hippocampal formation, isocortex, medulla, 

midbrain, olfactory areas, pallidum, pons, striatum, and thalamus, respectively, corroborating the 

specificity of the employed resampling strategy and suggesting that the resampled connectome 

offers a reliable fine-grained representation of the most salient connectional features of the original 

Knox et al connectome.   

 A whole brain connectome was then built under the assumption of brain symmetry (Rubinov et 

al., 2015). Forty-four dangling nodes (i.e. nodes with no outgoing connectivity) were next removed 

from the resulting matrix, resulting in a final weighted and directed 15,314 x 15,314 matrix composed 

of 0.027 mm3 aggregate Voronoi voxels. The obtained Voronoi diagram allowed us to map the results 

back into the original 100 µm three-dimensional coordinate system of the Allen Institute mouse brain 

connectome (CCFv3 (Wang et al., 2020)).  

Both the original voxel-wise connectome from Knox et al., (2019) and our resampled version were 

almost 100% dense, raising the issue of how to account for and remove weak or irrelevant 

connections. To address this problem we employed a recently developed method based on graph 

percolation (Bordier et al., 2017). Briefly, this procedure consists in iteratively removing the weakest 

connections until the giant component of the graph starts breaking apart. The threshold that 

maximizes sparsity without breaking the giant component (i.e. the largest integral graph within the 

matrix) is the one that should be selected for the analysis. Bordier et al., (2017) showed that the 

threshold obtained through percolation analysis maximizes information on the network community 

structure. This sparsification procedure resulted in a network density of 22%. Importantly, a 

comparison of multiple topological attributes and metrics (i.e. global, sink, source hubs, in/out ratio, 

modules and gradients) at different thresholds (percolation threshold, 30% and 40%, respectively) 
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revealed that all the probed parameters are highly robust to thresholding (Dice coefficient > 0.97 for 

all modules and hubs at all thresholds; Spearman rank correlation > 0.99 for Out/in ratio and > 0.97 

for all gradients, at all thresholds). 

Regional quantifications of network properties and correlations between structural and functional 

attributes were carried out using three main sets of predefined anatomical parcellations of the mouse 

connectome. To quantify the subregional localization of network attributes (Figure 11), we employed 

one of the finest parcellation available of the mouse connectome (i.e. the lowest hierarchical level in 

the Allen Mouse Brain Atlas, excluding layer-encoding, (Wang et al., 2020)). This parcellation was 

volumetrically matched to the sampling dimension of our voxels by discarding small nuclei whose 

spatial extension was – for either hemisphere – lower than the resolution of our voxel-wise 

connectome (45 regions out of 323, Table 1). Regional quantifications of sub-regional localizations 

were then limited to the remaining set of 278 areas. Correlation between functional and structural 

connectivity was carried out on a set of meta-regions to reduce spatial resolution and maximize the 

contrast with corresponding correlations at the voxel-level. The list of the 89 regions used for such 

comparisons is reported in Table 2. Meta-regions were selected such to cover the anatomical 

distribution of the functional modules described in (Liska et al., 2015)). Regional quantification of 

structural gradient features and cortical hierarchy were carried out using the original cortical 

parcellation described in (Harris et al., 2019), corresponding to the isocortical subset in Table 1. 

Finally, to probe the robustness and resolution dependence of the topological properties we 

described in the present work, we re-computed all the network attributes and metrics using the 

state-of-the-art parcellated mouse connectome described in Oh et al., (2014) (426 x 426 connectivity 

matrix). 
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Hub and rich club mapping 

Normalized out-strength (source), in-strength (sink), and in+out strength (global) hub regions of 

the voxel-wise connectome were computed at the percolation threshold. To map the anatomical 

extension of hub-like areas and obtain an “hubness” index for individual voxels, for each metric we 

first iteratively identified and labelled the highest-ranking voxels at increasing percentile threshold 

(50th to 99th). The obtained information was then combined into a single frequency (%) map by 

plotting the number of times a voxel was labelled as hub across varying percentile thresholds. We 

limited the visualization to the nodes that were classified as hubs at least 90% of the times, with the 

aim to capture top strength nodes and produce heatmaps where hotter colors indicate hub-like 

voxels corresponding to highest percentile ranking. This approach ultimately led to the final 

representation of nodes exceeding the 94% strength percentile for all hub categories. Importantly, 

no correlation between global connectivity strength (total, incoming, outgoing) and injection density 

or distance inferred from Knox et al., (2019) was observed (p > 0.6, r < 0.17, all six correlation pairs, 

Figure 7), arguing against a confounding contribution of regional injection inhomogeneity in our sub-

regional hub mapping.  

 



41 

 

 

Figure 7. Hub mapping is distance and injection density independent. We plotted the number of voxels labelled 

as global strength hubs, source or sinks hubs as a function of mean injection distance (inferred from (Knox et al., 2019)) 

for each of the 12 major anatomical divisions of the mouse brain employed in our study and used by (Knox et al., 2019). 

Hub identification in our voxel-wise connectome did not appear to be affected by regional injection density or distance. 

 

The network core or “rich club” of the mouse connectome was mapped using with the weighted 

variant described in Fulcher & Fornito (2016), limiting the analysis to the weighted ipsilateral 

connectome to ensure the computational tractability of the corresponding null models (Fulcher & 

Fornito, 2016). Specifically, we first obtained a percolation threshold specific for the ipsilateral 

connectome, and we then computed the normalized rich club coefficient, defined as the ratio 

between the empirical rich club coefficient and the rich club coefficient obtained from an ensemble 

of 1,000 rewired networks where each network maintained the empirical in and out degree, together 

with the total wiring length of each node (as assessed by Euclidean distance, (Maslov & Sneppen, 

2002; Samu et al., 2014)). Due to the high computational demands of the rewiring procedure, we left 

a margin of 5% error on nodal wiring length constraint. Instead of testing all possible degree 

Injection Density

Injection Distance



42 

 

configurations, which usually range from 1 to k with k being the highest degree found in the network, 

we restricted the mapping between 6’720 and 8’143, corresponding to the 90th and 99th percentile, 

respectively, of the total degree distribution. This choice was motivated to both reduce the influence 

of low degree nodes, unlikely to represent hubs of the network, and to reduce the computational 

demands associated with rich club mapping with our high-resolution matrix.  Statistical significance 

(P < 0.05) was assessed by obtaining a P value directly from this null distribution. Across all normalized 

rich club coefficients, we next computed for each node the fraction of times it was included in the 

rich club to produce a frequency map, similarly to the procedure described for the definition of 

source, sinks, and global hubs. Given the more restricted percentile range explored for the rich club 

with respect to global hubs, the rich club (Fig. 9B) was mapped over a wider frequency range (0.2-1) 

than the other metrics. We observed that all rich club coefficients tested in the above-mentioned 

range yielded statistically significant results (p < 0.001). 

Multiscale modular decomposition and participation coefficient 

We analyzed the network structure of the weighted and directed mouse structural connectome 

using the Louvain algorithm as implemented in the Brain Connectivity Toolbox (Rubinov & Sporns, 

2010). Similarly to the procedure outlined in Rubinov et al., (2015), we systematically varied (from 

0.3 to 3.0 in 0.1 step, 100 repetitions at each step) the resolution parameters controlling the size of 

the modules, performing consensus clustering (Lancichinetti & Fortunato, 2012) and thus obtaining 

a representative community subdivision for each of the tested resolution setting. As in Rubinov et al., 

(2015), we next sought to identify a range of gamma yielding topographically stable partitions (Figure 

8). To this purpose, we computed adjusted mutual information to assess the spatial similarity 

between the modular partitions obtained at different gamma values, producing a γ x γ matrix.  
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We next computed, for increasing mutual information thresholds (ranging from 0.9 to 1.0 - 0.005 

step), a modular partition of the corresponding γ x γ matrix via a consensus clustering (Lancichinetti 

& Fortunato, 2012). The identified modules in these γ x γ matrices define a discrete γ interval within 

which modular partitions of the connectome are topographically comparable. We finally obtained a 

single agreement matrix by computing the binarized fraction of times each pair of nodes (i.e. gamma 

values) would be classified as part of the same  module, for each modular partition of the thresholded 

γ x γ matrices. The resulting final γ x γ matrix (Figure S8) is assumed to provide an optimized 

representation of the discrete gamma intervals yielding stable modular partitions across spatial 

resolution hierarchies. Given the focus of this work on brain-wide network organization and its 

relationship with previous community partitioning of large-scale functional connectivity, for all 

subsequent analyses, we focused on the first stable hierarchy level (0.6 < Ƴ <1.1).  Using normalized 

mutual information index (as in (Rubinov et al., 2015)) instead of the adjusted mutual information 

yielded similar results, with highest hierarchy level being identical across the two measures. Within 

the chosen 0.6 < Ƴ <1.1 interval, we selected γ =1 as representative resolution parameter, and at the 

selected spatial scale, we run 500 independent iterations of the Louvain algorithm, followed again by 

consensus clustering. Importantly, a computation of the Dice coefficient for all the structural 

community across all the 0.6 < Ƴ <1.1 interval (0.1 step) produced mean values of 0.98, 0.98, 0.98. 

0.93, and 0.94 for the cerebellar-pontine, basal-olfactory, hippocampal, default-mode, and latero-

cortical modules, respectively supporting the validity of our gamma selection, and corroborating the 

notion of a stable partition topography within the selected 0.6 < γ <1.1 range. We finally probed the 

statistical significance of the final partition against 1,000 randomly rewired networks characterized 

by the same empirical in and out degree distribution, and by maintaining the total wiring length of 

each node (Samu et al., 2014; Fulcher & Fornito, 2016).  Specifically, we used the total connectivity 
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strength within each module as significant variable, reasoning that the internal cohesion of a given 

partition should be higher than expected by chance.  We found that the total connectivity strength 

of each module always exceeded the total connectivity strength of the 1,000 rewired networks, 

suggesting that the degree sequences as well as the total wiring length of each node cannot 

adequately account for the spatial organization of the communities of the mouse structural 

connectome.  

 

 

Figure 8. Multiscale modular decomposition of the structural connectome. We systematically varied the 

resolution parameter controlling the size of the modules, performing a consensus clustering and thus obtaining a 
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representative community subdivision for each of the tested resolution setting as originally described by (Rubinov et al., 

2015), (top row). We then computed similarity between all the consensus partitions using the adjusted mutual information 

(AMI) score (bottom left). We next iteratively applied a mutual information (AMI) threshold to the similarity matrix, 

employing consensus clustering to obtain, for each AMI threshold, a community subdivision of the resolution landscape. 

We finally computed an agreement matrix to obtain a binarized gamma x gamma matrix grouping the original voxel-wise 

modules based on the similarity of their spatial topography as a function of gamma (bottom right – note this is the actual 

gamma x gamma matrix pertaining our analyses). The identification of discernible gamma x gamma clusters in this matrix 

is indicative of the presence of discrete gamma intervals within which the corresponding voxel-wise communities are 

topographically stable and similar. We based all subsequent analyses on the partition obtained at the first stable highest 

hierarchical level (i.e. lower gamma range), testing its statistical significance against a set 1,000 rewired networks with 

preserved degree and strength sequences, and where we additionally controlled for nodal wiring length, as assessed by 

Euclidean distance. 

 

Module topography in the structural connectome was further corroborated using an 

agglomerative hierarchical clustering procedure of a matrix obtained by computing between-nodes 

similarity (as by Spearman Rank correlation) based on the connectivity profile of each node. A 

comparison of the obtained clusters using the dice coefficient revealed an overall high concordance 

between the results obtained with these two procedures. We found a dice coefficient of 0.7 for the 

DMN, 0.82 for the LCN, 0.91 for the hippocampal module, and 0.92 for the olfactory-basal forebrain 

community. Finally, we found that the pontine-cerebellar module was almost equally represented by 

two clusters, one encompassing the cerebellum, and the other covering pons and medulla (dice 

coefficient of 0.66 and 0.56, respectively). 

Our module detection procedure led to the identification of N = 7 modules, including two 

symmetric monohemispheric DMN and two olfactory-basal forebrain components, which we have 

joined into a single module for consistency with functional mapping and before computing their 

significance. The functional (rsfMRI) modules described in Figure 14 were obtained from (Liska et al., 

2015). The procedure for functional module detection has been extensively described in the original 

work (Liska et al., 2015). To better match SC and FC modules, the basal forebrain and ventral midbrain 
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modules identified in Liska et al., (2015) were merged together to constitute a single ventral brain 

community. Finally, to map the anatomical extension of global (in+out), in-, and out-connector hubs, 

we carried out a voxel-wise computation of participation coefficient (i.e. a network measure of 

connection diversity, (Guimerà & Nunes Amaral, 2005)), and iteratively identified and labelled the 

highest ranking voxels at increasing percentile threshold (50th to 99th). The obtained information was 

then combined into a single frequency (%) map by plotting the number of times a voxel was labelled 

as hub across varying percentile thresholds. We limited the visualization to the nodes that were 

classified as hubs at least 90% of the times. 

Virtual lesion mapping 

The role of hubs for the network global functioning was probed by means of targeted virtual 

attacks. For each of the metrics of interest (in- and out strength, and global participation coefficient), 

we removed a given fraction of the highest ranking nodes (from 5 to 40%, in 5% step by zeroing all 

the incoming and outgoing connections), comparing the size of the giant component, global 

efficiency (measured as the average inverse shortest path length), and total network 

communicability, here limited to map path length ≤ 3 corresponding to a polysynaptic connectome 

(Benzi & Klymko, 2013). Metrics were computed pre- and post-attack, and changes with respect to 

these indices were expressed as a percentage of the intact network’s value. For each fraction of 

removed nodes, we compared targeted hubs deletion to 1000 random attacks, assessing statistical 

significance (P < 0.05) by obtaining a P value directly from the null distribution. To limit inferences of 

virtual lesions to a nodal range that is biologically meaningful, we restricted the illustration of in silico 

lesions to the 5-20% range (Figure 16). 
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Functional and structural gradients 

Gradient computations were explicitly aimed at probing the presence of evolutionarily relevant 

mouse cortical topographies capturing the polymodal-unimodal and modality specific organization 

of cortical connectivity previously reported for the human and primate brain (Margulies et al., 2016; 

Oligschläger et al., 2019). To this aim, we applied diffusion map embedding on SC and functional 

connectivity (FC) as previously described (Margulies et al., 2016; Vos de Wael et al., 2020). Briefly, 

this nonlinear dimensionality reduction technique seeks to project high dimensional connectivity 

data into a lower dimensional Euclidean space, identifying spatial gradients in connectivity patterns. 

The cortical SC (FC) matrix is first mapped into an affinity matrix that represent the similarity of 

connectivity profiles across nodes. The eigenvectors describing the diffusion operator formed on the 

normalized graph Laplacian of the affinity matrix identify gradients in connectivity patterns over 

space.  

To compute SC gradients, we first extracted from the non-thresholded whole brain connectome 

the nodes belonging the isocortex, and we next computed a new threshold via percolation analysis 

resulting in a density of 7%. The structural affinity matrix was then built based on the connectional 

profile of each node, i.e. by incorporating the information provided by both incoming and outgoing 

connections. The functional affinity matrix was built using the same steps described by Margulies et 

(al., 2016). In reporting the results, we explicitly looked for gradients capturing polymodal-unimodal 

sensory-fugal differentiation as well as a modality specific organization of cortical connectivity as 

described in recent human and primate work (Margulies et al., 2016; Oligschläger et al., 2019). To 

this purpose, we first ranked SC and FC gradients based on explained variance (Fig. 19). We next 

visually inspected the top three ranking SC and FC gradients and found that the SC and FC gradient 

#1 were characterized by a clear unimodal‐polymodal differentiation (Gradient A in Figure 18A and 
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18B), whereas the second ranked functional and the third ranked structural gradients delineated a 

comparable modality specific spatial configuration of cortical connectivity (Gradient B). In keeping 

with this observation, these pairs of FC and SC gradients exhibited highly concordant topographies 

(Fig. 19, Spearman Rho 0.83 and 0.78, respectively).  

We additionally computed the correlation between SC gradients spatial maps and a dominant 

rsfMRI co-activation patterns (CAPS) published by Gutierrez-Barragan et al., (2019), in an attempt to 

establish a link between the organization of the structural connectome and FC dynamics. In their 

work, Gutierrez-Barragan et al., (2019) described three pairs of recurring oscillatory states account 

for the more than 60% of rsfMRI variance. Notably, two of these oscillating patterns are characterized 

by a conserved cortical topography entailing the opposing engagement of latero-cortical and DMN 

regions reminiscent of the mapped cortical gradients, the main difference between them being a 

differential involvement of subcortical structures (i.e. hippocampus). To correlate the topography of 

these dominant co-activation patterns with that of the structural gradients, we therefore generated 

a mean cortical CAP out of these two fluctuating states, using the mean value across the hemispheres. 

We did not consider the third pair of states (CAPs 3 and 4 in (Gutierrez-Barragan et al., 2019)) owing 

to its more widespread cortical topography and strong coherence with fMRI global signal, implicating 

the involvement of a possible global external input to the emergence of this meta-state. Finally, we 

also computed the correlation between SC gradients and cortical hierarchy scores computed on the 

basis of feedforward-feedback laminar connectivity patterns of the mouse brain as described and 

computed in Harris et al., (2019), using the same set of cortical brain regions described by the 

authors.  For all the spatial correlational analyses involving gradients, we accounted for the spatial 

autocorrelation using Moran spectral randomization as implemented in the BrainSpace toolbox, 
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using Euclidean distance between nodes as input for computing the Moran eigenvector maps (Vos 

de Wael et al., 2020). 

rsfMRI data 

The rsfMRI dataset used in this work consists of N = 15 scans in adult male C57Bl6/J mice which 

are publicly available (Gutierrez-Barragan et al., 2019; Grandjean et al., 2020). All in vivo experiments 

were conducted in accordance with the Italian law (DL 26/214, EU 63/2010, Ministero della Sanita`, 

Roma) and the recommendations in the Guide for the Care and Use of Laboratory Animals of the NIH. 

Animal research protocols were reviewed and consented by the animal care committee of the Italian 

Institute of Technology, and Italian Ministry of Health. Animal preparation, image data acquisition, 

and image data preprocessing for rsfMRI data have been recently described in greater detail 

elsewhere (Liska et al., 2015; Gutierrez-Barragan et al., 2019; Pagani et al., 2019). Briefly, rsMRI data 

were acquired with a 7.0 Tesla scanner (Bruker Biospin, Ettlingen) equipped with BGA-9 gradient set, 

using a 72 mm birdcage transmit coil, and a four-channel solenoid coil for signal reception. Single-

shot blood-oxygen level dependent (BOLD) EPI time series were acquired using an echo planar 

imaging sequence with the following parameters: TR/TE 1000/15 ms, flip angle 30°, matrix 100 × 100, 

field of view 2 × 2 cm2, 18 coronal slices, slice thickness 0.50 mm, 500 (n = 21) or 1500 (n = 19) 

volumes and a total rsfMRI acquisition time of 30 minutes, respectively. 

2.3 Results 

Global hubs and rich-club core of the voxel-wise mouse connectome 

A defining characteristic of brain connectomes is the presence of spatially localized set of 

integrative hub regions, characterized by high connectivity density (van den Heuvel & Sporns, 2013). 



50 

 

Hub regions serve as focal points of network interaction and exert a tight influence on the structure 

and dynamics of brain networks (van den Heuvel & Sporns, 2013). To identify regional features 

exhibiting hub-like properties at the voxel scale, we first mapped voxels exhibiting high connectivity 

strength using a spatially-resampled (15,314 x 15,314) version of the Allen Institute mouse 

connectome (Knox et al., 2019), irrespective of the directionality of the connections. We termed the 

identified regions as global hubs to distinguish them from further hub identification carried out using 

the directed connectome (described below). This analysis revealed several focal areas exhibiting 

global hub-like properties (Figure 9A). Consistent with the high centrality of hub regions, the 

identified foci were prominently located in associative cortical areas such as the prefrontal, anterior 

cingulate, posterior parietal and retrosplenial cortices (Figure 9A).  An additional large cluster of hub 

voxels was apparent in dorsal portions of the hippocampus. Finally, our fine-grained mapping also 

allowed the recognition of a small set of hub nodes in sub-regional portions of the basolateral and 

central amygdala.  
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Figure 9. Global hubs and rich club of the mouse connectome. (A) Anatomical distribution of global hubs of the voxel-wise 

mouse connectome. Global hubs (yellow nodes on the left panel) were defined on the basis of nodal total strength. A frequency map 

was obtained by computing the fraction of times a node scored among the highest-ranking strength nodes, limiting the visualization to 

the nodes that were classified as hubs at least 90% of the time. (B) Anatomical distribution of the rich club (red nodes on the left panel) 

of the voxel-wise mouse connectome. The frequency map indicates fraction of times high-degree nodes were retained as significant 

with respect to a set of random networks. ACA, anterior cingulate area; ACAd, anterior cingulate area, dorsal part; AI, agranular insular 

area; Amy, Amygdala; dHP, dorsal hippocampal area; ENT, entorhinal area; GP, globus pallidus; IL, infralimbic area; MOs, secondary 

motor area; PL, prelimbic area; PPC, posterior parietal cortex; RE, nucleus reuniens; RSP, retrosplenial area; TEa, temporal association 

areas. 

 

In brain networks, highly connected central hub nodes have a tendency to be tightly interlinked 

with each other, defining a core network structure, often referred to as rich club, which supports the 

efficient integration of otherwise segregated neural systems (Towlson et al., 2013; Fulcher & Fornito, 

2016). To obtain a description of the mouse brain rich-club unconstrained by pre-existing anatomical 

partitioning, we employed the procedure described by (Fulcher & Fornito, 2016) on the ipsilateral 

voxel-wise connectome, benchmarking our mapping against 1,000 weighted rewired networks 
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characterized by the same empirical in and out degree distribution (Maslov & Sneppen, 2002). The 

obtained map revealed a more extended spatial topography than observed with global hub mapping, 

encompassing two major antero-posterior integrative axes (Figure 9B and 10). The first of these 

included transmodal cortical integrators of sensory input (i.e. insula and temporal association cortex 

(Zingg et al., 2014)). The second axis encompassed infralimbic and mid-thalamic components of the 

fronto-hippocampal gateway (Vertes, 2004). Nodal mapping also revealed the participation of 

midbrain nuclei such as the ventral tegmental area, pointing at a previously unappreciated 

involvement of ascending dopaminergic nuclei as integral components of the rich club of the mouse 

connectome.  

 

 

Figure 10. The rich club of the mouse connectome encompasses two major integrative axes of the mouse brain. 

The first axis (Left panel) is centered on transmodal cortical integrators of sensory input (i.e. insula and temporal 

association cortex, (Zingg et al., 2014). 

 

Importantly, the spatial extension of global hubs and rich-club voxels in most cases encompassed 

only a marginal portion of the corresponding anatomical structure as defined in the Allen Brain Atlas, 

significantly deviating from corresponding voxel-level distributions at the regional level (Figure 11). 

In keeping with this notion, a qualitative comparison of voxel-wise mapping with that obtained with 

a state-of-the-art anatomical parcellation (Oh et al., 2014) revealed substantial differences in the 

anatomical distribution of hub-like and rich-club regions (Fig. 13). This result corroborates the 
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specificity of our findings, suggesting that prior mapping of hub-like properties in the parcellated 

connectome might have been resolution-limited. 

 

 

Figure 11. Subregional localization of hub-like regions. (A) Anatomical distribution of hub-like voxels with respect 

to a super-imposed cortical parcellation derived from the Allen Mouse Brain Atlas (CCFv3. Hubs-labelled voxels are 

often localized within sub-portions of cortical areas. No representation of connector hubs was generated given the 

negligible cortical location of this hub family (cf. Fig. 14). (B) Regional maps showing, for each anatomical district of 
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the mouse brain, how the distribution of hub-like voxels therein contained statistically deviate from the distribution of all 

the remaining (non-hub) voxels (Student t test).  

 

Hub regions can be directionally segregated into neural sinks and sources 

Our initial analyses were aimed at mapping global network features, and as such were carried out 

on a non-directed version of the mouse connectome. However, directionality is a fundamental 

feature of brain connectomes, and most structural brain networks are intrinsically directed because 

of the monodirectional nature of axonal projections. Thus, directional encoding can critically add key 

information to the topological organization of brain networks (Kale et al., 2018), revealing 

organizational motifs that can be predictive of the information flow and hierarchical organization of 

the mammalian brain. To probe how the direction of structural connections affect network attributes, 

we parsed high connectivity strength regions based on their directional profile, resulting in the 

identification of a set of segregable nodes which we termed source and sink, characterized by high-

strength outgoing or incoming connections, respectively (Figure 12A).  
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Figure 12. Source and sink hubs of the mouse connectome are spatially segregable. (A) Network schematic 

illustrating our topological classification of high strength regions into neural sources (red) and sinks (light blue). Source (B) and sink 

(C) hubs were defined on the basis of the voxel-wise strength of outgoing and incoming connectivity, respectively. Frequency maps 

were obtained by computing the fraction of times a node scored among the highest-ranking strength nodes, limiting the visualization 

to the nodes that were classified as hubs at least 90% of the time. (D) Out/in ratio mapping. For each node, we computed the ratio 

between the strength of the outgoing and incoming connectivity. Frequency maps were obtained by computing the fraction of times a 

node scored among the highest (red/yellow) or lowest ranking (light blue/blue) nodes as in (C) and (D). ACA, anterior cingulate area; 

Amy, Amygdala; CEREB, cerebellum; dHP, dorsal hippocampal area; ENT, entorhinal area; HP, hippocampus; MOp, primary motor 

areas; MOs, secondary motor area; PPC, posterior parietal cortex; RSP, retrosplenial area; SN, substantia nigra; SSp, primary 

somatosensory area; STR, striatum. 

 

Source node distribution broadly recapitulated the location of global hubs, encompassing higher 

order areas such as the anterior cingulate and posterior parietal cortices, amygdala, dorsal 

hippocampus, together with posterior entorhinal areas (Figure 12B). Interestingly, mapping of sink 

nodes revealed the involvement of dorsal hippocampal areas along with a new set of substrates, 

which comprised the basal ganglia throughout their antero-posterior extent (Figure 12C). 



56 

 

Participation of nuclei within the substantia nigra was also apparent. These results show that high 

connection strength regions can be segregated based on their directional profile, and point at an 

organizational hierarchy in which higher order areas, such as the prefrontal cortex, serve as primary 

sources of neural output to the rest of the brain, while basal ganglia are pivotal recipients of incoming 

projections. In keeping with what we observed with hub and rich-club regions, the identified sink and 

source voxel clusters showed prominent sub-regional distribution with respect to pre-existing 

anatomical subdivision (Figure 11) and a remarkably different spatial organization when computed 

using an anatomical parcellation (Figure 13), corroborating the specificity of our fine-grained 

mapping with respect to canonical parcellation-based approaches.  
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Figure 13. Parcellations conceal critical network attributes of the mouse connectome. We re-computed all the 

network attributes and metrics described in the present work using the parcellated connectome presented in Oh et al., 

2014 (426x426 connectivity matrix). (A-G) Qualitative comparison of the topological properties at the voxel and regional 
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level. Global hubs (A) were defined on the basis on total node strength, whereas the parcellated rich club map in (B) was 

derived from (Fulcher & Fornito, 2016). We computed source (C) and sink (D) hubs by computing separately the strength 

of the outgoing and incoming connectivity, respectively. We obtained a multiscale modular decomposition of the 

parcellated connectome (E) with the same procedure outlined for the connectome with voxel resolution (see “Material 

and methods section), and we computed connector hubs (F) at the highest stable hierarchical level. Across all network 

metrics, hubs were defined with the same iterative procedure used for the connectome with voxel resolution. Similarly, 

we computed gradients (G) using the procedure described for the connectome with voxel resolution, comparing regional 

gradient scores across the most important functional circuits of the mouse brain (DMN, somatosensory, motor, auditory, 

and visual in red, dark green, orange, light green, and blue respectively). 

 

The observation of segregable sink and source high-connection strength areas prompted us to 

investigate whether such a hierarchy could be expanded to non-hub areas (i.e. to all brain regions, 

independent of their connection strength), by computing the voxel-wise ratio between outgoing and 

incoming connection strength, a metric which we term “out/in ratio” (van den Heuvel, Scholtens, et 

al., 2016). This analysis might allow us to differentiate regions characterized by a net connectional 

imbalance from those exhibiting both high input and output density (e.g. dorsal hippocampus). The 

resulting out/in ratio map (Figure 12D) revealed a prominent configuration of basal ganglia as regions 

characterized by a low ratio of outgoing/incoming connections, corroborating a configuration of 

these substrates as connectivity sinks. Conversely, foci exhibiting a high out/in connection ratio were 

identifiable in higher order cortical areas, such as the anterior cingulate and entorhinal cortices, but 

also prominently encompassed some non-hub substrates, such as the cerebellum, and primary 

motor-sensory regions. Taken together, these results show that the directed connectome is 

topologically rich and configured according to a global hierarchy that can be used to segregate 

regions in primary sources or receivers of axonal connections. Furthermore, they provide a fine-

grained description of hub-like topography that may guide further targeted manipulations of salient 

network attributes in this species.  
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Structural communities of the voxel-wise connectome recapitulate large-scale fMRI networks 

of the mouse brain 

The presence of distinct sub-networks or “communities” of tightly interlinked nodes is a hallmark 

of all mammalian connectomes mapped to date (Rubinov, 2016). Structural communities are 

composed of topologically-related neural elements reflecting regularities in wiring diagram, typically 

delineating groups of brain areas with shared functionality (Betzel & Bassett, 2017). Prior 

investigations of the community structure of the mouse connectome have been either anatomically 

biased by the use of metaregions (Rubinov et al., 2015) or limited to the sole cortical mantle (Harris 

et al., 2019), preventing a fine-grained description of the community structure of the entire mouse 

connectome. To identify stable brain-wide communities in the directed connectome with voxel-

resolution, we used a multiscale modular decomposition approach (Rubinov et al., 2015) (Figure 8). 

This approach revealed five prominent communities, encompassing different combinations of 

cortical and subcortical regions (Figures 14). Corroborating the robust structural foundations of 

rsfMRI network architecture (Margulies et al., 2016; Buckner & DiNicola, 2019), the identified 

structural communities exhibited a spatial distribution closely recapitulating previously described 

resting state fMRI (rsfMRI) connectivity communities of the mouse brain (Sforazzini et al., 2014; Liska 

et al., 2015). The first of such communities comprised transmodal cortico-limbic areas as well as the 

dorsal striatum and antero-medial thalamus, spatially reconstituting key components of the mouse 

default-mode network (DMN, (Gozzi & Schwarz, 2016)). A second community encompassed latero-

cortical motor-sensory areas, striatal and thalamic nuclei which have been previously characterized 

as component of the mouse latero-cortical network (LCN). This network is considered to be a possible 

evolutionarily precursor of the human “task-positive” network, as it appears to be tightly 

anticorrelated to DMN activity (Sforazzini et al., 2014). A third module encompassed septo-
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hippocampal areas, while the fourth comprised olfactory areas and basal forebrain regions, once 

again recapitulating corresponding rsfMRI functional communities (Liska et al., 2015). Of note, 

anatomically similar structural connectivity partitions were also obtained using an agglomerative 

hierarchical clustering procedure (Dice coefficient 0.7, 0.8, 0.9, and 0.9 for the DMN, LCN, 

hippocampal system, and olfactory/basal forebrain moduli, respectively), corroborating the validity 

of the nodal partitioning reported here. By contrast, community detection in the parcellated 

connectome revealed three macro-modules (Figure 13) whose spatial topography was not directly 

relatable to corresponding rsfMRI communities, underscoring a closer structural-functional 

correspondence of the voxel-wise connectome with respect to parcellated connectome. 
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The close topographical overlap between voxel-wise structural communities and corresponding 

rsfMRI functional networks prompted us to probe the relationship between structural and functional 

connectivity (SC and FC, respectively) at the level of individual co-registered voxels. To this purpose, 

we carried out a correlation analysis between SC and FC for the DMN, LCN and hippocampal networks 

three well-characterized distributed mouse rsfMRI networks (Grandjean et al., 2020) for which we 

Figure 14. Connector hubs encompass key ascending neuromodulatory nuclei. (A) Network schematic illustrating a graph-

based definition of communities and connector hubs. (B) Structural communities anatomically recapitulate functional (rsfMRI) 

networks of the mouse brain. Structural communities (SC; top row; see Materials and Methods) were matched to corresponding 

functional communities [FC; bottom row; Liska et al. (19)]. (C) Neuromodulatory nuclei are configured as connector hubs. Global 

(left), out-connector (middle), and in-connector (right) hubs were computed on the basis of the participation coefficient metric, 

accounting for outgoing or incoming connections only. ACA, anterior cingulate area; Acb, nucleus accumbens; AI, agranular insular 

area; Amy, amygdala; CS, superior central nucleus raphe; DRN, dorsal nucleus raphe; ENT, entorhinal area; HP, hippocampus; Ha, 

habenula; Hy, hypothalamus; LC, locus coeruleus; LHb, lateral habenula; MD, mediodorsal nucleus of the thalamus; MOp, primary

motor areas; MOs, secondary motor area; OLF, olfactory areas; ORB, orbital areas; PG, pontine gray; PIR, piriform area; RE, nucleus 

reuniens; RSP, retrosplenial area; SEP, septal complex; STRd, striatum dorsal region; STRv, striatum ventral region; TEa, temporal 

association areas; vHP, ventral hippocampal area; VIS, visual areas; VTA, ventral tegmental area; ZI, zona incerta. 
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identified unambiguous structural correlates. In keeping with recent investigations in primates (Hori 

et al., 2020), we found that voxel-wise correlation between FC and SC was non-linear, reflecting 

connection length dependent contributions (Figure 15). Specifically, functional-structural correlation 

was moderate to high (Spearman’s rho 0.35, 0.45, and 0.34 for DMN, LCN, and the hippocampal 

network, respectively) for relatively short connections (<1 mm, e.g. the scale of mouse cortical width), 

but lower for longer-range links (> 2mm, Spearman’s rho 0.26, 0.38, and 0.17 for DMN, LCN and  

hippocampal network, respectively). Consistent with the neural-mass nature of rsfMRI fluctuations, 

the correlation between FC and SC was robustly linear when both quantities were resampled at a 

lower spatial resolution using an anatomical parcellation (Pearson’s r, 0.59, 0.55, 0.54, p< 0.0001 for 

the DMN, LCN, and hippocampal network, respectively). Taken together, these findings underscore 

the robust structural foundations of functional network activity as inferred from rsfMRI and suggest 

that spontaneous fMRI signal fluctuations underscoring macroscale rsfMRI coupling reflect the 

pooled activity of large ensembles of neurons, exceeding the finer spatial scale of the voxel-wise 

mouse connectome (Deco et al., 2008; Breakspear, 2017; Gutierrez-Barragan et al., 2019). 
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Figure 15. SC-FC correlation is distance dependent. (A) SC-FC correlation for the Default Mode network module 

obtained by (Liska et al., 2015). The correlation was computed at both the voxel level (left panel) and after aggregation 

in regions of interest (right panel). (B) SC-FC correlation for the Latero cortical network module obtained by (Liska et 

al., 2015). The correlation was computed at both the voxel level (left panel) and after aggregation in regions of interest 

(right panel). (C) SC-FC correlation for the hippocampal module obtained by (Liska et al., 2015). The correlation was 

computed at both the voxel level (left panel) and after aggregation in regions of interest (right panel). Red dots: distance 

< 1mm, Blue: distance >= 1mm and < 2mm, Black dots: distance >=2mm. 
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Ascending modulatory nuclei are configured as between-network connector hubs 

The observation of tightly overlapping structural and functional communities prompted us to 

investigate the topological structure and anatomical location of network nodes configured as 

connector hubs. These are nodal components critically configured as key orchestrators of inter-

modular communication, enabling the dynamic interaction of lower and higher order networks to 

control complex behavioral and cognitive functions (Gratton et al., 2018).  

We first located connector hubs irrespective of the directionality of the connections, and termed 

the identified connector nodes global connectors (Figure 14). We found global connector hubs to be 

mainly localized in midbrain, hypothalamic and medio-dorsal thalamic regions, with only a marginal 

cortical involvement limited to orbitofrontal and temporal association areas. Remarkably, midbrain 

connector hubs focally encompassed three major set of ascending neuromodulatory nuclei, namely 

the ventral tegmental area and substantia nigra (dopamine), dorsal raphe nuclei (serotonin) and a 

set of voxels encircling the locus coeruleus (norepinephrine). Accounting for the directionality of the 

connections revealed evidence of a negligible topological segregation for most of the identified 

connector nodes (Figure 14C). As observed with other hub subtypes, most connector hub nodes 

exhibited a significant sub-regional distribution with respect to a predefined high-resolution 

anatomical parcellation (Figure 11B). Moreover, anatomical mapping of connector hubs using a 

parcellated connectome failed to reveal the involvement of key neurotransmitter nuclei (e.g. VTA, 

raphe areas, and locus coeruleus), hence concealing a key topological attribute of the mouse 

connectome. Collectively, these results reveal that ascending modulatory system are strategically 

wired as connector regions. The robust topographical correspondence between functional and 

structural modules support a role for the identified connector hubs as strategic orchestrators of 

brain-wide network activity (Gordon et al., 2018), a notion consistent with emerging evidence 



65 

 

pointing at a pivotal contribution of cathecolaminergic neurotransmission in modulating functional 

network activity and dynamics (Van den Brink et al., 2016; van den Brink et al., 2018).  

Connector hubs are critical mediators of network communicability   

Graph theory postulates a critical contribution of hub regions to network integrity and stability, a 

notion supported by computational modelling of the human brain connectome (Aerts et al., 2016). 

These properties support a theoretical framework in which hub regions serve as putative points of 

vulnerability for network disruption in the mammalian connectome (van den Heuvel & Sporns, 2013). 

To test whether these assumptions hold for the voxel-wise mouse connectome, we performed a 

series of targeted in silico nodal attacks and assessed how these virtual lesions affect the ensuing 

network properties (Figure 16). The effect of hub (or random node) removal was assessed using two 

well-characterized global network attributes: (i) the size of the giant component, i.e. the largest 

subgraph in the network, a proxy for the network’s integrity (Aerts et al., 2016) and  (ii) global network 

efficiency, a measure of the ability of a network to efficiently route information (Rubinov & Sporns, 

2010). This latter attribute is a measure of integration closely related to characteristic path length, 

based on the intuition that short path lengths in a network will facilitate rapid and efficient 

communication. A globally efficient network is therefore a network in which information can be 

efficiently routed in a cost-effective way. Interestingly, targeted removal of sources and out-

connector hub nodes did not produce appreciably larger network fragmentation than observed with 

random nodal attacks (Figure 16). Similarly, the removal of central nodes had an overall marginal 

impact in decreasing network efficiency, producing a fragmentation that was on average only ~1.5% 

greater than random node removal (p<0.01, Figure 16). These results are line with previous 

observations suggesting that, independent of its sampling resolution (Figure 17A), the topological 
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structure of the mouse connectome does not recapitulate a canonical scale-free organization (Oh et 

al., 2014; Henriksen et al., 2016). They also support the notion that, irrespective of their classification 

and directionality, hub nodes of the voxel-wise connectome are not critical for the integrity and 

efficiency of brain network, making the mouse connectome highly resilient to targeted perturbations.  

 

We therefore next probed whether hub regions could be key to a different communication 

mechanism other than the routing of information through shortest paths (i.e. as measured by 

network efficiency). To this purpose, we measured the effect of virtual hub lesioning using total 

network communicability (Benzi & Klymko, 2013; Avena-Koenigsberger et al., 2018). This graph 

attribute measures the network’s capacity for parallel information transfer, i.e. by taking into account 

the ability of information to disperse equally across all paths and walks in the network, i.e. not 

Figure 16. Connector hubs are critical effectors of network communicability. (A) Schematic illustration of targeted node 

removal and its effect on network integrity. (B to D) Effect of targeted hub removal on different network properties. 
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necessarily and exclusively through the shortest paths. This property has therefore been equated to 

a measure of “bandwith” or “broadcasting capacity” (Benzi & Klymko, 2013) for information transfer 

within a network. Notably, we found that removal of connector hubs dramatically reduced network 

communicability with respect to random node deletion (p<0.001, Figure 16). Interestingly, a 

replication of virtual lesioning using a state-of-the-art parcellation (Oh et al., 2014) produced similar 

results (Figure 17B), suggesting that the resiliency of the mouse connectome in terms of network 

integrity and efficiency, as well as its vulnerability in terms of network communicability, are 

resolution-invariant properties.  

 

 

Figure 17. The mouse connectome does not exhibit a canonical scale-free architecture. (A) Clustering coefficient-

degree joint distribution of the parcellated (left, modified from (Henriksen et al., 2016), with permission) and voxel-wise 

mouse connectomes (right). These graphs suggest that both connectomes are similarly departing from a canonical scale 
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free topological organization. (B) Effect of targeted hub removal on different network properties using the parcellated 

connectome described in Oh et al., 2014. 

 

Taken together, these findings suggest that connector hubs, and the neurotransmitter nuclei 

therein contained, besides acting as pivotal orchestrators or inter-modular communication, are also 

configured as key effectors of network communicability, enabling effective routing of information 

across regions via multiple parallel pathways.  

The voxel-wise mouse connectome is organized along two superimposed cortical gradients 

Recent functional and structural investigations in humans and primates have shown that the 

spatial arrangement of cortical connectivity reflects two superimposed gradients along which cortical 

locations are ordered according to their similarity in connections to the rest of the cortex (Margulies 

et al., 2016). A first dominant cortical gradient is anchored in sensorimotor regions and radiates 

toward higher-order transmodal areas; a second gradient exhibits instead an axis of differentiation 

between sensorimotor modalities (Margulies et al., 2016). Importantly, the organization of the 

unimodal-transmodal gradient is thought to define a hierarchy of increasing functional integration 

which guides the propagation of sensory inputs along multiple cortical relays into transmodal regions 

(Mesulam, 1998).  

The fine-grained sampling of the voxel-wise connectome is ideally suited to probe the structural 

foundations of these organizational axes at an unprecedented spatial resolution. To this aim, we first 

probed whether a similar organization is phylogenetically conserved in rodents. We therefore applied 

diffusion map embedding (Margulies et al., 2016) to the directed cortical connectome (Figure 18). To 

account for the directional encoding of the connectome, the procedure was applied to a matrix 

mapping the connectional profile of each node, i.e. incorporating the information provided by both 
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incoming and outgoing connections. Notably, we found that the structural connectome exhibits two 

spatial gradients of connectivity broadly recapitulating organizational principles observed in 

primates. Specifically, a dominant gradient (gradient A) involved a sensory-fugal transition between 

unimodal motor-sensory regions of the mouse LCN and transmodal components of the mouse DMN 

(Figure 18A). A second gradient (Gradient B) extended across unimodal visual and auditory cortices 

up to primary motor sensory regions, hence providing a regional differentiation between 

sensorimotor modalities. The spatial topography of cortical gradients appeared to be seemingly 

preserved when computed using a state-of-the-art parcellation (Figure 13G). However, resolution-

dependent discrepancies in the topology of gradient B were apparent when a parcellation scheme 

was used, encompassing an atypical involvement of associative areas that departs from the modality-

specific structure of analogous cortical gradients in higher mammals (Figure 13).  

 

Figure 18.  Gradients of SC and FC in the mouse cortex exhibit comparable topology. Structural (A) and functional 

(B) gradients of cortical organization in the mouse connectome. Gradient A encompasses a unimodal-polymodal spectrum of cortical 

regions extending from motor-sensory LCN (light blue/blue) to the DMN (yellow/red). Gradient B extends antero-posteriorly across 

primary sensorimotor (yellow) and transmodal associative regions (blue). (C and D) Regional scatter plots of gradient organization for 
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SC (C) and FC (D). ACA, anterior cingulate area; Au, auditory area; DMN, default mode network; LCN, latero-cortical network; SSp, 

primary somatosensory area; Vis, Visual areas. 

 

Gradients of structural and functional connectivity in the mouse cortex exhibit comparable 

topology 

The close topographical overlap between structural and functional communities observed in our 

modular analyses prompted us to probe the presence of a similarly tight relationship between 

anatomical and rsfMRI gradient organization in the mouse brain (Figure 18B and 19). To this aim, we 

mapped cortical gradients with voxel resolution in the mouse functional connectome. This analysis 

revealed that the functional connectome is organized into a unimodal-transmodal gradient (DMN-

LCN, Gradient A) and a modality-specific gradient (Gradient B, Figure 18B) closely recapitulating key 

topographical features of the structural voxel-wise connectome (spatial correlation, Spearman’s rho 

= 0.83, p < 0.01 for gradient A and rho = 0.60, p < 0.05 for gradient B, corrected for spatial 

autocorrelation). An anatomical classification of the regional constituents of the identified gradients 

revealed that the topographical organization of trans-modal and unimodal areas was broadly 

comparable across modalities (Figure 18C-D), although a small rearrangement in the spatial 

organization of modality-specific areas in functional gradient B was apparent, peaking in auditory-

somatosensory regions as opposed to auditory-visual areas (Figure 18B and 19B).  
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Figure 19. Identification and characterization of evolutionary-relevant structural and functional gradients. (A) 

Top left panel:  Scree plot of explained variance for all the identified structural and functional gradients Red dots indicate 

the selected gradients. Top right panel: spatial correlation between first three functional and structural gradients 

(Spearman Rho – SC: structural gradients; FC: functional gradients).  Bottom panels: anatomical representation of 

structural gradient #2 (SC #2) and functional gradient #3 (FC #3). (B) Cortical arrangement in the identified structural 

and functional gradients (see Table 2 for anatomical abbreviations). 
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Notwithstanding these modality-specific differences, unimodal vs. polymodal cortical 

arrangement in the functional and axonal connectomes appeared to be largely similar, pointing at a 

common hierarchical organization for the functional and structural mouse connectome. Taken 

together, these results reveal a robust structural foundation for cortical gradient organization in the 

mammalian cortex and show that the mouse brain connectome recapitulates phylogenetically 

conserved architectural principles observed in higher mammalian species. 

Gradients of structural connectivity reflect cortico-cortical laminar hierarchy, and constrain 

fMRI network dynamics 

Human studies have linked the organization of cortical gradients to hierarchical structure inferred 

from patterns of laminar cortical connectivity (Burt et al., 2018). The recent description of a 

feedforward-feedback laminar hierarchy in cortical regions of the mouse brain (Harris et al., 2019) 

allowed us to probe whether a similar organizational principle could explain the architectural 

organization of some of the gradients identified in the  connectome. By computing the correlation 

between laminar hierarchy from Harris et al., (2019) and structural gradient topography in a set of 

corresponding cortical regions, we found that the regional organization of the modality-specific 

gradient (Gradient B) was robustly correlated with intracortical laminar hierarchy (Figure 20A, 

Spearman’s rho = 0.49, p<0.01 corrected for spatial autocorrelation), hence linking mouse cortical 

gradient (B) organization to patterns of laminar connectivity. Intralaminar cortical hierarchy was 

instead not predictive of unimodal-polymodal gradient (Gradient A) topography (Figure 20A, 

Spearman’s rho = 0.17, p=0.33, corrected for spatial autocorrelation).  
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We finally noted that the anatomical organization of the unimodal-polymodal gradient A was 

anatomically consistent with the topography of dominant patterns of BOLD fMRI co-activation 

patterns  (co-activation patterns - CAPs) recently described in the mouse (Gutierrez-Barragan et al., 

2019). CAPs serve as recurring “building-blocks” of spontaneous fMRI network dynamics, and are 

characterized by a distinct anatomical topography involving infraslow oscillatory transitions 

differentially affecting unimodal latero-cortical areas and midline poly-modal regions (Yousefi et al., 

2018; Gutierrez-Barragan et al., 2019). The observation of a possible anatomical overlap between 

cortical gradient organization and dominant CAP topography may therefore explain the so far 

Figure 20. Gradients of SC reflect cortico-cortical laminar hierarchy and constrain fMRI network dynamics. (A) Modality-

specific gradient B (right), but not polymodal-unimodal gradient A (left), reflects hierarchical intra-laminar organization of the mouse 

cortex. (B) Unimodal-polymodal DMN-LCN gradient A, but not modality-specific gradient B, closely recapitulates the spatial 

topography of dominant cortical CAPs governing fMRI dynamics in the mouse. ACA, anterior cingulate area; RSP, retrosplenial area; 

SSp, primary somatosensory area; Vis, Visual areas. 
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unaccounted specific anatomical organization of these large-scale dynamic fluctuations (Gutierrez-

Barragan et al., 2019). In keeping with this notion, we found a strong spatial correspondence (Figure 

20B, Spearman’s rho=0.60 and p<0.05, corrected for spatial autocorrelation) between gradient A and 

dominant CAP topography. Conversely, the modal-specific gradient B did not show a significant 

relationship with the spatiotemporal structure of this dominant CAP (Figure 20B, right panel, 

Spearman’s rho = 0.09 and p = 0.35, corrected for spatial autocorrelation). These results suggest that 

the hierarchical organisation of the cortical connectome may critically shape and constrain 

spontaneous patterns of fMRI network dynamics.  

2.4 Discussion 

Here we provide a fine-grained description of salient architectural motifs of the mouse 

connectome, without the imposed limits of discrete regional parcellations. Departing from regional-

constrained studies, we find that hub regions and core network components of the voxel-wise mouse 

connectome exhibit a rich topography encompassing key cortical and subcortical relay regions. We 

also typify regional substrates based on their directional topology into sink or source regions, and 

report a previously unappreciated role of modulatory nuclei as critical effectors of inter-modular and 

network communicability. Finally, we demonstrate a close spatial correspondence between the 

mesoscale topography of the mouse connectome and its functional macroscale organization, and 

show that, like in primates and humans, the mouse cortical connectome is organized along two major 

topographical axes that can be linked to hierarchical patterns of laminar connectivity, and shape the 

topography of fMRI dynamic states, respectively. 

Our regionally-unconstrained mapping of hub-like regions complements and expands prior 

investigation of the mouse connectome, providing a spatially precise identification of network 
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features and hierarchical motifs that may guide future manipulations of nodal properties in this 

species (Rubinov et al., 2015). These include a fine-grained localization of hub-like properties in sub-

regional components of large integrative areas, such as the dorso-lateral hippocampus or the central 

and basolateral amygdala, which were previously been considered as regionally homogeneous 

(Rubinov et al., 2015). Similarly, our rich club mapping revealed a more detailed spatial topography 

than previously reported (Fulcher & Fornito, 2016), revealing two major organizational axes of high 

relevance for sensory-integration and higher cognitive functions, and which recapitulate 

organizational features observed also in non-mammalian species (Kunst et al., 2019). Of note, 

perturbational studies support the biological relevance of our findings, as chemogenetic inactivation 

of the nucleus reuniens of the thalamus – a pivotal component of the mouse rich club – has been 

recently shown to impair hippocampal-dependent cognitive function in mice (Vetere et al., 2017). 

These results suggest that subcortical relay stations are core components of nodal rich clubs across 

evolution, serving as critical integrators between top-down and bottom-up functional processing. 

Importantly, our analyses also show that hub-like network attributes in the voxel-wise mouse 

connectome are neuroanatomically segregable. This finding suggests that the network structure of 

the mammalian connectome is the result of converging evolutionary pressure, resulting in a regional 

organization in which spatially distinct hub-like regions delineate a hierarchy between higher order 

highly-interconnected associative regions, and bottom-up input from neuromodulatory areas 

configured as critical effectors of interregional communication.  

Importantly, our results also revealed previously unappreciated organizational features of the 

mouse connectome that advance our understanding of the fundamental wiring principles of the 

mammalian brain in three main directions. First, the use of a high-resolution and directed 

connectome enabled us to segregate hub regions into source and sink areas. The ensuing 
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classification revealed the emergence of a global hierarchy in which higher order cortical areas and 

hippocampal regions serve as primary sources of neural input to the rest of the brain, and basal 

ganglia (plus focal mesencephalic nuclei) are wired as major receivers of distributed neural input. This 

hierarchical configuration follows a phylogenetic gradient in the arrangement of structural 

connectivity, and is optimally designed for the execution of rapid motor responses in response to 

salient external stimuli (Baldassarre et al., 2013). Such a hierarchical configuration could also be 

expanded to non-hub regions via a brain-wide computation of the ratio of outgoing and incoming 

connectivity strength, defining a related organizational axis with motor-related nuclei, such as the 

cerebellum and basal ganglia, being located at its extremes. Of note, most of the network and 

topological attributes we describe in the present work appear to be resolution-specific (Figure 13), 

suggesting that prior topological mapping of the mouse connectome may have been biased by the 

coarser resolution of existing regional parcellations.     

A second notable feature is our observation of a strategic configuration of ascending modulatory 

systems as connector hubs and essential effectors of network communicability. Previous 

investigations of the regionally-segregated mouse connectome have produced a largely cortico-

centric description of connector hubs, involving cingulate, orbitofrontal and posterior association 

cortices, together with the basal ganglia and regionally undifferentiated midbrain regions (Rubinov 

et al., 2015). Our results shift the focus from the cortex to subcortical relay stations, and document 

that ascending neurotransmitter systems are central to the mouse connectome and are configured 

as inter-modular connector hubs. Importantly, the observed spatial correspondences between the 

structural and functional topography of the mouse connectome argue for a critical role for these 

neuromodulatory nuclei in shaping large-scale neural activity. This notion is consistent with the 

observation that catecholaminergic and serotonergic activity critically control functional network 
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topography and dynamics (Giorgi et al., 2017; van den Brink et al., 2018). Together with the 

observation that connector hub removal critically diminishes network communicability, these results 

suggest that that ascending modulatory systems are strategically wired as central orchestrators of 

large-scale inter-modular communication, enabling the parallel routing of large chunks of 

information across the network. This network property might be key in ensuring the effective and 

finely-tuned control of complex behavioral and physiological states exerted by these systems. At the 

same time these properties might render these nodes key points of vulnerability for functional 

network disruption in brain disorder, a notion consistent with emerging evidence linking 

neuromodulatory dysfunction to neurodegenerative pathologies (Weinshenker, 2018). Interestingly, 

targeted removal of global hubs did only negligibly affect measurements of network integrity and 

efficiency when compared to random node deletion. This finding suggests that the mammalian 

connectome is structurally highly resilient, and argues against a role for this class of hub regions as 

critical mediators of network integrity in the mouse connectome. This result is partly supported by 

analogous investigations of the human connectome. For example, Crossley et al., (2014) reported a 

linear decrease in global efficiency in a targeted attack for human structural networks, analogously 

to what we observed for the mouse connectome. Similarly, Alstott et al., (2009) found functional 

network fragmentation to occur only when about 75% of the high strength nodes were removed. It 

should however be noted that other reports seem to be at odds with these results, suggesting a 

significant vulnerability of the human connectome against targeted attacks in human networks (see 

(Aerts et al., 2016) for a recent overview on the topic). Whether these discrepancies reflect modality- 

and resolution-related discrepancies, or a lower proportion of long-range integrative fibers in rodents 

owing to evolutionary scaling of white/grey matter ratio (Mota et al., 2019), remains to be 

established.  
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  Finally, our voxel-wise description of two principal axes of cortical organization in the mouse 

connectome, and their topological linking with cortico-laminar organization and patterns of 

spontaneous fMRI dynamics, establishes a direct link between the mesoscale topography of the 

mouse connectome and its functional macroscale organization. These results suggest that the spatial 

arrangement of cortical areas along unimodal-polymodal and modality-specific gradients represents 

a general evolutionarily conserved principle governing the hierarchical organization of the 

mammalian cortex across evolution, and one that might intimately constrain the emergence and 

topology of spontaneous brain activity. This notion is consistent with a recent description of a cortical 

hierarchy in the parcellated mouse brain, as assessed by using an imaging marker of intracortical 

myelin content (Fulcher et al., 2019). Our findings expand these prior observations by providing cross-

modal and voxel-wise evidence of two superimposing functional and structural cortical gradients 

broadly recapitulating organizational principles observed in the human and primate brain. These 

include a hierarchical organization reflecting a well-characterized feedforward-feedback laminar 

hierarchy (Harris et al., 2019), and a spectrum between unimodal regions and transmodal areas. It 

should be noted however that in the mouse the latter are known to exhibit a much lower degree of 

regional specialization than in primates, an observation that explains a categorization of latero-

posterior visual and auditory territories as polymodal components of the posterior parietal cortex  

(Iurilli et al., 2012; Meijer et al., 2019). Importantly, our results also revealed that a dominant cortical 

gradient spatially shapes the emergence of prevailing patterns of cortical co-activation governing 

spontaneous fMRI dynamics, further relating the topography of the connectome with the structure 

and temporal evolution of spontaneous cortical activity (Gutierrez-Barragan et al., 2019). The notion 

of a tight constraining effect of the structural connectome on functional network topography was 

further corroborated by evidence of largely overlapping functional and structural communities. This 
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finding expands prior investigations of the mouse functional connectome (Stafford et al., 2014; 

Grandjean et al., 2017), by highlighting a robust structural basis for distributed fMRI networks of the 

mouse brain such as the DMN and LCN. Such a close spatial overlap, however, does not appear to 

comprise hub topography, as previous voxel-wise mapping of functional hubs in the mouse only 

partly recapitulated the rich connectional features reported here (Liska et al., 2015). Such incongruity 

might reflect the fact that the spontaneous fMRI signal is a neural mass phenomenon, reflecting local 

and remote contributions that are negligibly constrained by more fine-grained topological features 

of the structural connectome.   

Multiple lines of future research that expand and complement our work can be envisaged. Rich 

club mapping was carried out here and in previous studies (Fulcher & Fornito, 2016) on the ipsilateral 

connectome to enable computational tractability. Further testing of rich club topography using a 

whole brain connectome may be warranted to corroborate the validity of these findings. Similarly, 

future network investigations using the full resolution, non-symmetrized connectome from (Knox et 

al., 2019), may complement our work by revealing attributes especially sensitive to the microscale 

properties of the mouse connectome. Finally, future differentiations of the excitatory or inhibitory 

connectional output for each of the mapped network features via cell-type specific tracing could 

greatly expand the scope of our findings, especially for cerebellar and striatal areas characterized by 

high density of inhibitory populations. 

In summary, here we provide a precise characterization of the network structure of the mouse 

connectome, with voxel resolution. Our results reveal a high-resolution structural scaffold linking 

mesoscale connectome topography to its macroscale functional organization, and create 

opportunities for identifying targets of interventions to modulate brain function and its network 

structure in a physiologically-accessible species. 
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 Probing the structure-function relationship in the 

mouse brain across scales and states 

In the previous chapter we showed that the structural communities of the voxel-wise connectome 

recapitulate large-scale fMRI networks of the mouse brain. Moreover, we also showed that the spatial 

embedding of SC is tightly related to the spatial organization of both FC and CAPs, providing strong 

evidence for a close spatial correspondence between the mesoscale topography of the mouse 

connectome and its functional macroscale organization. However, how the structure-function 

relationship varies across different levels of brain organization and brain states, remains unclear. As 

discussed in the general introduction, human connectome research heavily relies on MRI derived 

connectome, measuring the mapping between brain structure and functions at the coarsest level, 

hence preventing fine-grained investigations of the relationship between these entities. These 

problems can be tackled in physiologically accessible species like the mouse, where state-of-the-art 

manipulations and computational models may converge, bearing great potential to advance our 

understanding of brain functioning, both theoretically and translationally (Gozzi & Schwarz, 2016). In 

the remainder of this chapter, I will briefly introduce the results of some ongoing and/or published 

collaborations, restricting the scope of the discussion to the analysis of the structure function 

relationship in the mouse brain. In the first section (Chapter 3.1) I will briefly describe the results of 

a recent study in collaboration with the Allen Brain Institute where we used layer specific tracing to 

uncover the wiring diagram of the mouse default network. In the second section (Chapter 3.2) we 

used our voxelwise connectome to probe how the functional reorganization of brain networks in 

awake mice leads to a configuration that departs from that of the underlying SC.   
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3.1 Cell-type-specific connectivity of the mouse default mode network 

An extended version of the results depicted in this chapter has been published in: Whitesell, J. D., 

Liska, A., Coletta, L., Hirokawa, K. E., Bohn, P., Williford, A., ... & Harris, J. A. (2021). Regional, Layer, and 

Cell-Type-Specific Connectivity of the Mouse Default Mode Network. Neuron, 109(3), 545-559. 

 

Since its serendipitous discovery, the DMN has been one of most investigated large-scale networks 

of the mammalian brain (Gozzi & Schwarz, 2016; Buckner & DiNicola, 2019). Of note, the DMN seems 

to be a fundamental “building block” of the brain’s intrinsic architecture, whose salience in capturing 

essential features of brain (dys)organization seems to be preserved across animal species and 

modalities (Sforazzini et al., 2014; Liska et al., 2015; Margulies et al., 2016; Bertero et al., 2018; 

Buckner & DiNicola, 2019; Hong et al., 2019; Coletta et al., 2020). However, the coarse mapping 

provided by MRI-derived connectomes, and the correlational nature of the studies examining the 

structure-function relationship are limiting factors that prevent a fine-grained description of the 

structural basis of the DMN. A characterization of the DMN spanning multiple levels of brain 

organization is therefore of fundamental importance, given the translational relevance of this 

functional network. In Whitesell et al., (2021) we set out to fill this gap, mapping the anatomical bases 

of the DMN with sublaminar precision (see Figure 21 for a simplified graphical representation of the 

experimental procedure). 
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Figure 21. Schematic representation of the experimental procedure used for our multiscale default mode network 

characterization. Default mode network (DMN) definition was based on resting state fMRI functional connectivity (top left). Viral 

tracing experiments performed on an independent cohort of mice allowed to track structural connectivity at the level of single neurons 

(top right). Integrating both functional and structural connectivity maps into the common coordinate framework (version 3, CCFv3) of 

the Allen Brain Institute enabled to probe the multiscale organization of the DMN within the same reference system (middle box). 

Connectivity maps were analyzed at the voxel and regional levels (bottom left), revealing the existence of distinct structural cortical 

connectivity patterns with unique cell type specific signatures (bottom left). 

 

To identify the DMN, we mapped mouse rsfMRI networks (recorded under light anesthesia, 

(Gutierrez-Barragan et al., 2019)) via a low-dimensional group Independent Component Analysis (5 

components estimated on 40 mice), corroborating the DMN definition with seed-based probing of 

the anterior cingulate cortex, a key cortical region of the mouse DMN. The independent component 

corresponding to the DMN was scaled to z scores, thresholded at Z = 1 and Z = 1.7 as per Sforazzini 

et al., (2014) to obtain a DMN and a DMN-core mask (respectively), registered to the CCFv3 space, 

and finally overlaid with CCFv3 region boundaries to define the anatomical structures of the DMN. 

We used the core mask exclusively to define “in-DMN” and “out-DMN” brain regions, all subsequent 

analysis were performed with the Z=1 mask. Within this framework, a brain region was said to belong 
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to the DMN if more than 50% of its voxel were in the core mask. As expected, and in line with previous 

findings, the quantification revealed that most (77.6 and 89.6 % for Z=1 and Z=1.7, respectively) of 

the voxels in the DMN belonged to the prefrontal and medial regions of isocortex. A focal involvement 

of the mediodorsal thalamus and the dorsal striatum was also apparent. However, regions outside 

the isocortex did not survive the strict criterion for DMN inclusion at the regional level and were 

therefore labelled as not belonging to the DMN.  

A quantitative analysis performed on a dedicated set of 300 viral injections experiments across 

the isocortex (Figure 22A) revealed that DMN regions preferentially project to other DMN regions 

(Figure 22B), even after accounting for distance. These findings provide empirical evidence that the 

DMN is indeed a prominent structural community of the mouse brain, experimentally corroborating 

the results of Coletta et al., (2020), who showed its existence with a pure data driven procedure. 

Intriguingly, we also found that DMN exhibited a higher fraction of outgoing connections than the 

networks, once again highlighting its integrative role. 

 

 

Figure 22. DMN Regions Preferentially Project to Other DMN Regions. (A) Top-down view of the cortical surface showing 

the spatial distribution of the 300 tracing experiments used to quantify fraction of DMN projections (shown by colormap). Gray, DMN 

mask; black, region boundaries. (B) Projection DMN fraction as a function of the injection DMN fraction for the experiments in (A). 
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r, Pearson correlation. (C and D) Cortical projection images showing axons arising from an experiment inside (C, dorsal anterior 

cingulate cortex) and outside of (D, primary visual cortex, VISp) the DMN mask. Asterisks indicate the approximate injection centroid. 

Cyan, in-DMN projections; green, out-DMN projections. (E–H) Virtual sections of the CCFv3 template overlaid with aligned 

experiment data at (E and F) the center of each injection site (green pixels with asterisks; E, ACAd; F, VISp) and (G and H) target 

areas with high axon projection densities (green pixels). Arrows, in-DMN projections; arrowheads, cortical projections outside of the 

DMN; green edges, isocortex boundary; white overlay, DMN mask; portions overlapping the striatum (STR) and thalamus (TH) are 

also labeled. [DMN: default mode network]. 

 

Prompted by the observation that a non-negligible fraction of “in-DMN” regions project outside 

the DMN, we next examined the structural connectivity of the DMN at the laminar level (350 viral 

injections experiments, 14 different cre lines). Of note, we found that layer 2/3 DMN neurons project 

mostly in the DMN, whereas layer 5 neurons project both in and out. Further analysis (and dedicated 

tracing experiments) revealed the presence of separate in-DMN and out-DMN-projecting cell types 

in postero-medial regions of the DMN, especially in the ventral retrosplenial cortex, where we 

identified a midline DMN projecting pattern and a visual projecting pattern. The two clusters also 

exhibited significant differences in their genetic profile; we found midline-projecting cells having 

higher expression of the Arc and Gne genes. A cross-comparison with the in situ hybridization (ISH) 

data of the Allen Mouse Brain Atlas revealed that Arc expression appears to be stronger in the 

superficial part of L5, where the midline-projecting cells are found, further corroborating the 

robustness of the finding. This result is important as it paves the way to the genetic targeting of DMN-

specific neurons for future manipulation studies.  

Taken together, our results provide one of the most advanced characterizations of a mammal 

functional network to date. In good agreement with previous investigations (Stafford et al., 2014; 

Coletta et al., 2020), we found that the mouse DMN is predominantly composed of preferentially-

interconnected isocortical regions. The (sub)laminar specificity of viral tracing experiments allowed 

us to disentangle layer-specific patterns of DMN connectivity, and to link them to specific genetic 
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profiles defining a novel class of network-specific cells. Our results also highlight the translational 

potential of structural and functional connectomics in the mouse along two main directions. First, 

the establishment of layer specific connectivity patters allows to generate new testable predictions 

about the anatomical basis of a phylogenetically conserved functional network. Second, the 

differential gene analyses revealed two potential marker genes for the midline-projection types, 

namely Arc and Gne, whose combination can define a genetically targetable subclass of neurons. Of 

note, both genes have recently associated with neurodevelopmental conditions (schizophrenia and 

autism spectrum disorders, respectively (Managò & Papaleo, 2017; Yang et al., 2020)), endowing our 

findings of potential translational relevance for the study of brain functional connectopathy.  

3.2 Functional network organization departs form underlying axonal structure 

in the awake mouse brain  

An extended version of this chapter has been accepted for publication in Current Biology, and is 

currently available as: Singh, N. A., Gutierrez-Barragan, D., Alvino, F., Coletta, L., Rocchi, F., De Guzman, 

E. A., ... & Gozzi, A. (2022). Unique spatiotemporal fMRI dynamics in the awake mouse brain. Current 

Biology, in press 

 

Besides the multiscale characterization of functional circuits, understanding the brain’s 

organization across different physiological states and how these relate to the underlying structural 

scaffold is of primary interest. In humans and primates, great effort has been dedicated to 

understanding how macroscale functional networks reconfigure during the transition from deep 

anesthesia to wakeful conditions, as the ensuing reconfiguration can be used as a putative signatures 

of consciousness (Barttfeld et al., 2015; Demertzi et al., 2019; Huang et al., 2020). Specifically, 
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influential primate and human studies have reported that loss of consciousness in these species 

results in a partial reorganization of long-range functional connectivity, disappearance of 

anticorrelated cortical states and a repertoire of dynamic states dominated by rigid functional 

configurations tied to the underlying anatomical connectivity (Barttfeld et al., 2015; Demertzi et al., 

2019; Huang et al., 2020). By contrast, conscious wakefulness has been associated with greater global 

integration and inter-areal cross-talk, anticorrelation between the activity of different brain regions, 

and a more flexible repertoire of functional brain configurations departing from anatomical 

constraints (Barttfeld et al., 2015; Demertzi et al., 2019; Huang et al., 2020). Whether similar 

spatiotemporal organizational principles apply to the mouse brain is still unknow, as awake imaging 

is notoriously difficult to perform in this species (Grandjean et al., 2020).  

Leveraging a novel, robust protocol for rsfMRI in awake head-fixed mice, we recently provided a 

fine-grained comparison of the functional topography and dynamic structure of rsfMRI networks 

between wakeful and anesthetized animals, relating the two conditions to the underlying structural 

connectivity.  

To map the functional organization of rsfMRI networks in awake conditions, we systematically 

probed rsfMRI connectivity networks via seed-based correlation mapping (Figure 23A, left panel). 

This analysis revealed robust interhemispheric and antero-posterior rsfMRI synchronization, 

including the presence of distributed networks anatomically recapitulating rsfMRI systems previously 

described in lightly anesthetized mice, such as the DMN, LCN, a salience (insular-cingulate) network, 

a visual-auditory latero-posterior network (LPN), plus a number of subcortical sub-systems, including 

dorsal (caudate-putamen) and ventrostriatal networks (mesolimbic pathway); a dorsal hippocampal 

network and a widely-distributed olfactory and amygdaloid network. A comparison with age-matched 

anesthetized mice (two different anesthetic regimens, halothane and isoflurane-medetomidine, 
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respectively) revealed a set of focal state-dependent differences in the extension and anatomical 

organization of rsfMRI connectivity networks (Figure 23A, right panel and 23B). First, we found that 

rsfMRI networks in awake animals exhibited robust functional anti-coordination between some of 

the probed regions and their long-range substrates. Anti-coordination was especially prominent 

between medial prefrontal cortex (PFC) and olfactory regions, as well as between visual-auditory 

areas and midline regions of the DMN. The observed anti-correlation was accompanied by a reduced 

spatial extension of the DMN in awake mice, where a clear segregation of midline corticolimbic and 

visuo-auditory postero-lateral portions of the DMN was apparent. Moreover, in awake mice ventral 

forebrain area (e.g. diagonal band, hypothalamus, nucleus accumbens) were part of an extended 

highly-synchronous network that exhibited only marginal functional coupling in anesthetized 

subjects. More nuanced network-specific differences in rsfMRI connectivity strength were also 

apparent, with evidence of reduced cortico-cortical coupling in the DMN and LCN, and stronger 

connectivity in visual-auditory and basal forebrain areas in awake versus anesthetized animals. 

 

 

Figure 23. rsfMRI network topography in the awake and anesthetized mouse brain.  A) Group averaged seed-based correlation 

maps in awake (N = 10, left) and halothane anesthetized (N = 19, right) mice, thresholded to voxels with significant connectivity (one 

sample T-test, p < 0.01, cluster corrected with defining threshold T = 2.8). B) Between group connectivity differences (two-sample T-
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test, p < 0.01, FWER corrected with defining threshold T=2.8). [DMN: Default mode network, LCN: Latero-cortical network, HC: 

Hippocampal network, OF-BF: olfactory-Basal forebrain network, PFC: Prefrontal cortex, Cg: Cingulate cortex, Rs: Retrosplenial 

cortex, TH: thalamus, CPu: Caudate putamen, Ins: Insula, dHC: dorsal Hippocampus, Ent: Entorhinal cortex, Au: Auditory cortex, 

M1: Primary Motor, SS: Somatosensory cortex, V1: Visual, BF: Basal forebrain, Amy; Amygdala, NAc: Nucleus Accumbens, HT: 

Hypothalamus]. 

 

The observation of areas of negative correlation in the awake mouse brain is of great interest, as 

similar findings have been suggested to serve as a putative signature of fMRI network activity in 

conscious states in other mammalian species such as marmosets, macaques, and human (Barttfeld 

et al., 2015; Demertzi et al., 2019; Esfahlani et al., 2020; Hori et al., 2020). Importantly, these reports 

also showed that network configuration in anesthetized and wakeful animals may be characterized 

by different anatomical organization, with the unconscious state being more tied to the anatomical 

map, and awake brain networks exhibiting a topographical departure from their underlying 

anatomical architecture. To investigate whether similar principles would apply to the mouse brain, 

we used a graph theoretical approach to probe the relationship between the structural and functional 

connectome in wakeful and anesthetized animals. To this aim, we leveraged the anatomical partition 

of the voxel-wise mouse axonal connectome into four macro-communities that spatially reconstitute 

macroscopic network systems of the mouse brain, i.e. the DMN, the LCN, the hippocampus and 

olfactory-basal forebrain areas ((Coletta et al., 2020), chapter 2). A graphic representation of the 

functional connectome with respect to these axonal communities (Figure 24A) revealed that, 

departing from the modular partitioning of the axonal connectome, fMRI networks in awake subjects 

exhibit greater inter-areal communication than corresponding anesthetized state. In keeping with 

this notion, structure-function correspondence was significantly lower in awake animals compared 

to anesthetized subjects (p<0.01, Mann-Whitney test, Figure 24B). Formal quantifications of rsfMRI 

network connectivity strength corroborated these qualitative observations (Figure 24C), revealing 
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dramatically increased between-network connectivity in awake mice, a finding that was especially 

prominent between basal forebrain and cortico-hippocampal areas (p< 0.01, Mann-Whitney test, 

FDR corrected). Furthermore, and corroborating seed based correlational mapping, arousal-related 

basal forebrain regions also showed significant increased within-network connectivity strength. 

Importantly, analogous features were observed when we contrasted awake rsfMRI data with those 

obtained in isoflurane-medetomidine anesthetized animals, hence supporting a possible 

generalization of this finding to other anesthetic regimens. These findings recapitulate prior 

observations in conscious primates, suggesting that, departing from the underlying structure of the 

axonal connectome, rsfMRI network activity in conscious mice topologically reconfigures to maximize 

cross-talk between cortical and arousal-related subcortical systems. 

 

 

Figure 24. Structure-function relationship in awake and anesthetized states. A) Graphic representation of rsfMRI connectivity 

within and between previously described axonal modules of the mouse brain (DMN, LCN, HC, OF-BF, from Coletta et al., 2020). Each 
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cluster of nodes represents a subset of anatomically-defined ROIs within the corresponding module. Nodes have been empirically 

arranged to maximize figure legibility. B) Structure-function correspondence in awake (N = 10) and halothane anesthetized mice (N = 

19). Between-group differences were assessed with a Mann-Whitney test (p < 0.05). C) Quantification of within (diagonal) and 

between (off-diagonal) network functional connectivity (*p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, Mann-Whitney test, FDR 

corrected). [DMN: Default mode network, HC: Hippocampus, OF-BF: Olfactory and basal forebrain, LCN: latero-cortical 

network].   

 

Prompted by the identification of dynamic connectivity signatures of consciousness in primates 

and human, we hypothesized that the observed time-averaged network changes could similarly 

reflect state-dependent differences in the underlying dynamic structure of rsfMRI. In keeping with 

our observations using “static”, steady-state measurements of connectivity, a decomposition of 

rsfMRI activity into recurring CAPs revealed a largely dominant occurrence of brain states 

encompassing arousal-related forebrain nuclei in wakeful animals. Modelling CAPs timeseries as a 

Markov process highlighted the engagement of basal forebrain areas and the presence of anti-

coordination between DMN and visual regions as a distinctive trait differentiating between awake 

and anesthesia, further recapitulating dynamic fMRI features recently described to be predictive of 

consciousness in higher mammalian species (Barttfeld et al., 2015; Demertzi et al., 2019). Taken 

together, these results suggest that the spatiotemporal structure of rsfMRI activity in the awake 

rodent brain recapitulates evolutionarily-relevant principles predictive of conscious states in higher 

mammalian species. We speculate these dynamics features represent a species-invariant signature 

of consciousness in the mammalian brain. 



91 

 

 Conclusions  

The research presented in this thesis focused on providing a precise characterization of the 

network structure of the mouse structural connectome, unconstrained by regional partitioning 

(chapter 2). Our results show that the mouse connectome is characterized by a finer network 

topography than previously reported. Going beyond a canonical network characterization in terms of 

hubs and communities, we showed that the topological rules governing the network’s architecture 

broadly recapitulates basic organizational principles of the human and non-human primate brain, 

creating opportunities for identifying targets of interventions to modulate brain function and its 

network structure in a physiologically-accessible species Of note, we also found a tight inter-

dependence between functional and structural brain organization, linking mesoscale connectome 

topography to its macroscale functional organization. Macroscale structure-function correspondence 

was analyzed more in-depth for the mouse DMN, providing one of the most advanced 

characterizations of a mammalian macroscale network available to date, and to characterize the 

transition from anesthesia to wakeful states. We found that awake fMRI networks in the mouse 

exhibit a topographical departure from their underlying anatomical architecture, recapitulating a 

dominant functional configuration that has been associated with conscious conditions in other 

species. This finding is also consistent with the postulates of prevailing theories of consciousness, 

according to which functional networks that support awake, conscious states exhibit global 

integration.  
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4.1 Limitations & Future Directions 

Some technical limitations in the approach employed here should be mentioned. These pertain 

both the use of rsfMRI and the axonal connectome. Regarding the latter resource, despite being the 

current gold standard for measuring SC, tract tracing derived monosynaptic connectomes do not 

allow a direct and whole brain modeling of polysynaptic connectivity, posing hard constraints on the 

modeling and interpretability of the structure-function relationship (Avena-Koenigsberger et al., 

2018). Several network models describing how communication unfolds on the structural connectome 

have been proposed, and yet determining which one is best suited to describe the dynamics of large-

scale brain networks remains an open and central question (Avena-Koenigsberger et al., 2018; 

Graham et al., 2020). Recent investigations have begun to tackle this aspect (Seguin et al., 2019, 

2020).  For example, Seguin et al., (2019) were able to infer the directionality of communication flow 

from an undirected structural connectome by exploiting asymmetries in the pairwise interactions 

across brain regions, while Seguin et al., (2020) probed the efficacy of different communication 

models in predicting behavior and FC. Although the results of these preliminary investigation are 

promising, more work addressing these limitations is needed, for example by comparing different 

communication models across species, and by generating testable hypothesis about brain function, 

e.g. via perturbational approaches. 

Despite its non-invasiveness, whole-brain coverage, and the translatability from rodents to 

human, the use of (rs)fMRI to map brain function is associated with at least three notable drawbacks 

(Lake et al., 2020). First and foremost, fMRI is an indirect measure of neural activity, as it critically 

relies on the BOLD contrast mechanism. Furthermore, the hemodynamic response at the basis of the 

BOLD contrast unfolds on the scale of seconds, severely limiting the temporal resolution offered by 

this imaging method. Lastly, rsfMRI cannot resolve the (indirect) measurement of neural activity with 



93 

 

cellular resolution, limiting its mapping at macroscale level. The use of rsfMRI as a proxy for neural 

activity should therefore exercised with caution, as the resulting macroscale reorganization maught 

not be reflective of direct neural interactions. This notion is epitomized by manipulation studies 

showing that the sign and extension of rsfMRI coupling does not monotonically reflect underlying 

neural activity (Rocchi et al., 2022, in press).  Simultaneous fMRI and wide-field mesoscopic calcium 

imaging  recordings in animal models (Lake et al., 2020) may help disambiguate the cascade linking 

neural activity to hemodynamic signals. One key strength of this experimental approach is the 

opportunity to measure the relative contributions of different cell types to the BOLD signal, paving 

the way toward a better understanding of its physiological basis and significance (Cardin et al., 2020; 

Lake et al., 2020). Similarly, measuring neural activity across a range of spatiotemporal scales via 

increasingly available multielectrode recordings may allow for a more nuanced modeling of the 

structure-function relationship. An example of the power of this approach has been recently 

demonstrated by Vezoli et al., (2021) by means of invasive electrocorticography in macaque monkeys 

(Vezoli et al., 2021). These authors showed that different brain rhythms are differentially associated 

to the underlying axonal connectivity, with the gamma rhythm exhibiting the strongest correlation, 

and beta rhythm the weakest. Based on these results, the authors proposed that subcortical 

structures may mediate the emergence of the beta rhythm in cortico-cortical circuits, via a 

polysynaptic circuit.  The extension of these measurements to model organism and their combined 

used with manipulation techniques may help further disambiguate the complex relationship between 

functional and structural macroscale organization across evolution, ultimately advancing our 

understanding of the structural basis of brain activity.   
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Tables 

Table 1. Regional parcellation  

ABBR. NAME                  Macro # voxels bilateral # voxel right # voxel left 

FRP Frontal Pole Isocortex 966 483 483 

MOp Primary motor area Isocortex 11376 5718 5658 

MOs Secondary motor area Isocortex 13096 6552 6544 

SSp-n Primary somatosensory area, 

nose 

Isocortex 3032 1520 1512 

SSp-bfd Primary somatosensory area, 

barrel field 

Isocortex 6281 3137 3144 

SSp-ll Primary somatosensory area, 

lower limb 

Isocortex 2361 1178 1183 

SSp-m Primary somatosensory area, 

mouth 

Isocortex 6224 3115 3109 

SSp-ul Primary somatosensory area, 

upper limb 

Isocortex 3764 1878 1886 

SSp-tr Primary somatosensory area, 

trunk 

Isocortex 1399 703 696 

SSp-un Primary somatosensory area, 

unassigned 

Isocortex 1263 633 630 

SSs Supplemental somatosensory 

area 

Isocortex 8993 4504 4489 

GU Gustatory areas Isocortex 1760 883 877 

VISC Visceral area Isocortex 2370 1184 1186 

AUDd Dorsal auditory area Isocortex 1213 609 604 

AUDp Primary auditory area Isocortex 2152 1079 1073 

AUDpo Posterior auditory area Isocortex 598 300 298 

AUDv Ventral auditory area Isocortex 1807 904 903 

VISal Anterolateral visual area Isocortex 768 391 377 

VISam Anteromedial visual area Isocortex 775 386 389 
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VISl Lateral visual area Isocortex 1237 618 619 

VISp Primary visual area Isocortex 7113 3565 3548 

VISpl Posterolateral visual area Isocortex 792 399 393 

VISpm posteromedial visual area Isocortex 1043 520 523 

VISli Laterointermediate area Isocortex 492 243 249 

VISpor Postrhinal area Isocortex 1269 638 631 

ACAd Anterior cingulate area, dorsal 

part 

Isocortex 3114 1479 1635 

ACAv Anterior cingulate area, ventral 

part 

Isocortex 2387 1128 1259 

PL Prelimbic area Isocortex 2433 1159 1274 

ILA Infralimbic area Isocortex 849 403 446 

ORB Orbital area Isocortex 5886 2907 2979 

AId Agranular insular area, dorsal part Isocortex 3726 1867 1859 

AIp Agranular insular area, posterior 

part 

Isocortex 2429 1211 1218 

AIv Agranular insular area, ventral 

part 

Isocortex 1737 873 864 

RSPagl Retrosplenial area, lateral 

agranular part 

Isocortex 2308 1162 1146 

RSPd Retrosplenial area, dorsal part Isocortex 3816 1899 1917 

RSPv Retrosplenial area, ventral part Isocortex 4331 2090 2241 

PTLp Posterior parietal association 

areas 

Isocortex 2454 1232 1222 

TEa Temporal association areas Isocortex 3106 1549 1557 

PERI Perirhinal area Isocortex 797 398 399 

ECT Ectorhinal area Isocortex 1728 870 858 

MOB Main olfactory bulb Olfactory Areas 16406 8218 8188 

AOB Accessory olfactory bulb Olfactory Areas 650 325 325 

AON Anterior olfactory nucleus Olfactory Areas 4880 2437 2443 

TT Taenia tecta Olfactory Areas 1431 690 741 

DP Dorsal peduncular area Olfactory Areas 482 232 250 

PIR Piriform area Olfactory Areas 11591 5793 5798 
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NLOT Nucleus of the lateral olfactory 

tract 

Olfactory Areas 311 153 158 

COAa Cortical amygdalar area, anterior 

part 

Olfactory Areas 763 387 376 

COAp Cortical amygdalar area, posterior 

part 

Olfactory Areas 2495 1251 1244 

PAA Piriform-amygdalar area Olfactory Areas 1235 619 616 

TR Postpiriform transition area Olfactory Areas 1323 658 665 

CA1 Field CA1 Hippocampal formation 10278 5145 5133 

CA2 Field CA2 Hippocampal formation 451 226 225 

CA3 Field CA3 Hippocampal formation 6289 3143 3146 

DG Dentate gyrus Hippocampal formation 6571 3275 3296 

FC Fasciola cinerea Hippocampal formation 57 29 28 

IG Induseum griseum Hippocampal formation 108 40 68 

ENT Entorhinal area Hippocampal formation 11476 5741 5735 

PAR Parasubiculum Hippocampal formation 930 467 463 

POST Postsubiculum Hippocampal formation 1074 535 539 

PRE Presubiculum Hippocampal formation 906 454 452 

SUB Subiculum Hippocampal formation 2146 1070 1076 

Pros Prosubiculum Hippocampal formation 1185 594 591 

HATA Hippocampo-amygdalar transition 

area 

Hippocampal formation 420 213 207 

APr Area prostriata Hippocampal formation 361 179 182 

CLA Claustrum Cortical subplate 545 271 274 

Epd Endopiriform nucleus, dorsal part Cortical subplate 1796 899 897 

Epv Endopiriform nucleus, ventral 

part 

Cortical subplate 961 476 485 

LA Lateral amygdalar nucleus Cortical subplate 843 424 419 

BLAa Basolateral amygdalar nucleus, 

anterior part 

Cortical subplate 764 379 385 

BLAp Basolateral amygdalar nucleus, 

posterior part 

Cortical subplate 710 361 349 

BLAv Basolateral amygdalar nucleus, 

ventral part 

Cortical subplate 414 210 204 
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BMAa Basomedial amygdalar nucleus, 

anterior part 

Cortical subplate 777 387 390 

BMAp Basomedial amygdalar nucleus, 

posterior part 

Cortical subplate 708 352 356 

PA Posterior amygdalar nucleus Cortical subplate 966 481 485 

CP Caudoputamen Striatum 26040 13031 13009 

ACB Nucleus accumbens Striatum 4446 2224 2222 

FS Fundus of striatum Striatum 424 212 212 

OT Olfactory tubercle Striatum 3829 1913 1916 

LSc Lateral septal nucleus, caudal 

(caudodorsal) part 

Striatum 572 288 284 

LSr Lateral septal nucleus, rostral 

(rostroventral) part 

Striatum 1896 939 957 

LSv Lateral septal nucleus, ventral 

part 

Striatum 601 300 301 

SF Septofimbrial nucleus Striatum 482 215 267 

SH Septohippocampal nucleus Striatum 33 16 17 

AAA Anterior amygdalar area Striatum 504 250 254 

BA Bed nucleus of the accessory 

olfactory tract 

Striatum 25 12 13 

CEAc Central amygdalar nucleus, 

capsular part 

Striatum 308 155 153 

CEAl Central amygdalar nucleus, lateral 

part 

Striatum 267 130 137 

CEAm Central amygdalar nucleus, 

medial part 

Striatum 750 378 372 

IA Intercalated amygdalar nucleus Striatum 179 89 90 

MEA Medial amygdalar nucleus Striatum 2024 1014 1010 

GPe Globus pallidus, external segment Pallidum 1560 784 776 

GPi Globus pallidus, internal segment Pallidum 427 214 213 

SI Substantia innominata Pallidum 3000 1489 1511 

MA Magnocellular nucleus Pallidum 367 185 182 

MS Medial septal nucleus Pallidum 405 147 258 

NDB Diagonal band nucleus Pallidum 723 333 390 
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BST Bed nuclei of the stria terminalis Pallidum 1341 672 669 

BAC Bed nucleus of the anterior 

commissure 

Pallidum 8 4 4 

VAL Ventral anterior-lateral complex 

of the thalamus 

Thalamus 801 405 396 

VM Ventral medial nucleus of the 

thalamus 

Thalamus 946 469 477 

VP Ventral posterior complex of the 

thalamus 

Thalamus 2852 1423 1429 

PoT Posterior triangular thalamic 

nucleus 

Thalamus 281 141 140 

SPFm Subparafascicular nucleus, 

magnocellular part 

Thalamus 66 33 33 

SPFp Subparafascicular nucleus, 

parvicellular part 

Thalamus 144 72 72 

SPA Subparafascicular area Thalamus 139 57 82 

PP Peripeduncular nucleus Thalamus 58 28 30 

MGd Medial geniculate complex, dorsal 

part 

Thalamus 166 84 82 

MGv Medial geniculate complex, 

ventral part 

Thalamus 276 138 138 

MGm Medial geniculate complex, 

medial part 

Thalamus 255 127 128 

LGd-sh Dorsal part of the lateral 

geniculate complex, shell 

Thalamus 205 103 102 

LGd-co Dorsal part of the lateral 

geniculate complex, core 

Thalamus 420 209 211 

LGd-ip Dorsal part of the lateral 

geniculate complex, ipsilateral zone 

Thalamus 88 44 44 

LP Lateral posterior nucleus of the 

thalamus 

Thalamus 1221 609 612 

PO Posterior complex of the 

thalamus 

Thalamus 1268 630 638 
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POL Posterior limiting nucleus of the 

thalamus 

Thalamus 204 103 101 

SGN Suprageniculate nucleus Thalamus 184 93 91 

Eth Ethmoid nucleus of the thalamus Thalamus 240 117 123 

AV Anteroventral nucleus of 

thalamus 

Thalamus 415 208 207 

AMd Anteromedial nucleus, dorsal part Thalamus 247 124 123 

AMv Anteromedial nucleus,ventral part Thalamus 172 86 86 

AD Anterodorsal nucleus Thalamus 164 83 81 

IAM Interanteromedial nucleus of the 

thalamus 

Thalamus 47 20 27 

IAD Interanterodorsal nucleus of the 

thalamus 

Thalamus 120 59 61 

LD Lateral dorsal nucleus of thalamus Thalamus 1006 503 503 

IMD Intermediodorsal nucleus of the 

thalamus 

Thalamus 186 74 112 

MD Mediodorsal nucleus of thalamus Thalamus 1373 678 695 

SMT Submedial nucleus of the 

thalamus 

Thalamus 297 150 147 

PR Perireunensis nucleus Thalamus 150 75 75 

PVT Paraventricular nucleus of the 

thalamus 

Thalamus 444 178 266 

PT Parataenial nucleus Thalamus 230 113 117 

RE Nucleus of reuniens Thalamus 436 203 233 

Xi Xiphoid thalamic nucleus Thalamus 74 14 60 

RH Rhomboid nucleus Thalamus 93 38 55 

CM Central medial nucleus of the 

thalamus 

Thalamus 256 108 148 

PCN Paracentral nucleus Thalamus 231 118 113 

CL Central lateral nucleus of the 

thalamus 

Thalamus 351 180 171 

PF Parafascicular nucleus Thalamus 507 258 249 

PIL Posterior intralaminar thalamic 

nucleus 

Thalamus 168 84 84 
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RT Reticular nucleus of the thalamus Thalamus 1432 718 714 

IGL Intergeniculate leaflet of the 

lateral geniculate complex 

Thalamus 67 34 33 

IntG Intermediate geniculate nucleus Thalamus   22 11 11 

Lgv Ventral part of the lateral 

geniculate complex 

Thalamus 408 205 203 

SubG Subgeniculate nucleus Thalamus 27 13 14 

MH Medial habenula Thalamus 315 157 158 

LH Lateral habenula Thalamus 343 169 174 

SO Supraoptic nucleus Hypothalamus 40 21 19 

ASO Accessory supraoptic group Hypothalamus 3 2 1 

PVH Paraventricular hypothalamic 

nucleus 

Hypothalamus 179 89 90 

Pva Periventricular hypothalamic 

nucleus, anterior part 

Hypothalamus 30 28 2 

Pvi Periventricular hypothalamic 

nucleus, intermediate part 

Hypothalamus 151 118 33 

ARH Arcuate hypothalamic nucleus Hypothalamus 277 134 143 

ADP Anterodorsal preoptic nucleus Hypothalamus 91 46 45 

AVP Anteroventral preoptic nucleus Hypothalamus 89 47 42 

AVPV Anteroventral periventricular 

nucleus 

Hypothalamus 184 89 95 

DMH Dorsomedial nucleus of the 

hypothalamus 

Hypothalamus 386 177 209 

MEPO Median preoptic nucleus Hypothalamus 35 2 33 

MPO Medial preoptic area Hypothalamus 566 282 284 

OV Vascular organ of the lamina 

terminalis 

Hypothalamus 6 0 6 

PD Posterodorsal preoptic nucleus Hypothalamus 10 5 5 

PS Parastrial nucleus Hypothalamus 102 50 52 

PVp Periventricular hypothalamic 

nucleus, posterior part 

Hypothalamus 117 56 61 

PVpo Periventricular hypothalamic 

nucleus, preoptic part 

Hypothalamus 112 55 57 
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SBPV Subparaventricular zone Hypothalamus 120 47 73 

SCH Suprachiasmatic nucleus Hypothalamus 69 35 34 

SFO Subfornical organ Hypothalamus 22 7 15 

VMPO Ventromedial preoptic nucleus Hypothalamus 44 22 22 

VLPO Ventrolateral preoptic nucleus Hypothalamus 63 30 33 

AHN Anterior hypothalamic nucleus Hypothalamus 723 363 360 

MBO Mammillary body Hypothalamus 1017 478 539 

MPN Medial preoptic nucleus Hypothalamus 401 191 210 

PMd Dorsal premammillary nucleus Hypothalamus 138 70 68 

Pmv Ventral premammillary nucleus Hypothalamus 194 97 97 

PVHd Paraventricular hypothalamic 

nucleus, descending division 

Hypothalamus 126 62 64 

VMH Ventromedial hypothalamic 

nucleus 

Hypothalamus 543 270 273 

PH Posterior hypothalamic nucleus Hypothalamus 701 338 363 

LHA Lateral hypothalamic area Hypothalamus 2117 1062 1055 

LPO Lateral preoptic area Hypothalamus 511 257 254 

PST Preparasubthalamic nucleus Hypothalamus 15 8 7 

PSTN Parasubthalamic nucleus Hypothalamus 161 79 82 

PeF Perifornical nucleus Hypothalamus 211 106 105 

RCH Retrochiasmatic area Hypothalamus 137 69 68 

STN Subthalamic nucleus Hypothalamus 200 100 100 

TU Tuberal nucleus Hypothalamus 530 268 262 

ZI Zona incerta Hypothalamus 1815 910 905 

ME Median eminence Hypothalamus 85 34 51 

SCs Superior colliculus, sensory 

related 

Midbrain 2124 1042 1082 

ICc Inferior colliculus, central nucleus Midbrain 1120 558 562 

Icd Inferior colliculus,dorsal nucleus Midbrain 1311 651 660 

Ice Inferior colliculus, external Midbrain 2012 1010 1002 

NB Nucleus of the brachium of the 

inferior colliculus 

Midbrain 89 46 43 

SAG Nucleus sagulum Midbrain 107 52 55 

PBG Parabigeminal nucleus Midbrain 49 25 24 
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MEV Midbrain trigeminal nucleus Midbrain 13 7 6 

SCO Subcommissural organ Midbrain 13 2 11 

SNr Substantia nigra, reticular part Midbrain 1564 787 777 

VTA Ventral tegmental area Midbrain 427 211 216 

PN Paranigral nucleus Midbrain 23 11 12 

RR Midbrain reticular nucleus, 

retrorubral area 

Midbrain 131 66 65 

MRN Midbrain reticular nucleus Midbrain 5174 2588 2586 

SCm Superior colliculus, motor related Midbrain 5662 2789 2873 

PRC Precommissural nucleus Midbrain 174 87 87 

INC Interstitial nucleus of Cajal Midbrain 80 40 40 

ND Nucleus of Darkschewitsch Midbrain 97 50 47 

SU3 Supraoculomotor periaqueductal 

gray 

Midbrain 42 21 21 

APN Anterior pretectal nucleus Midbrain 1277 639 638 

MPT Medial pretectal area Midbrain 47 23 24 

NOT Nucleus of the optic tract Midbrain 214 108 106 

NPC Nucleus of the posterior 

commissure 

Midbrain 286 144 142 

OP Olivary pretectal nucleus Midbrain 60 30 30 

PPT Posterior pretectal nucleus Midbrain 143 72 71 

RPF Retroparafascicular nucleus Midbrain 64 31 33 

CUN Cuneiform nucleus Midbrain 564 284 280 

RN Red nucleus Midbrain 792 396 396 

III Oculomotor nucleus Midbrain 32 17 15 

MA3 Medial accesory oculomotor 

nucleus 

Midbrain 20 10 10 

EW Edinger-Westphal nucleus Midbrain 19 0 19 

IV Trochlear nucleus Midbrain 6 3 3 

VTN Ventral tegmental nucleus Midbrain 34 17 17 

AT Anterior tegmental nucleus Midbrain 43 21 22 

LT Lateral terminal nucleus of the 

accessory optic tract 

Midbrain 17 9 8 
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DT Dorsal terminal nucleus of the 

accessory optic tract 

Midbrain 12 6 6 

MT Medial terminal nucleus of the 

accessory optic tract 

Midbrain 51 25 26 

SNc Substantia nigra, compact part Midbrain 203 101 102 

PPN Pedunculopontine nucleus Midbrain 888 442 446 

IF Interfascicular nucleus raphe Midbrain 84 34 50 

IPN Interpeduncular nucleus Midbrain 348 147 201 

RL Rostral linear nucleus raphe Midbrain 57 17 40 

CLI Central linear nucleus raphe Midbrain 82 35 47 

DR Dorsal nucleus raphe Midbrain 151 37 114 

NLL Nucleus of the lateral lemniscus Pons 739 369 370 

PSV Principal sensory nucleus of the 

trigeminal 

Pons 1108 550 558 

PB Parabrachial nucleus Pons 1136 565 570 

POR Superior olivary complex, 

periolivary region 

Pons 372 185 187 

SOCm Superior olivary complex, medial 

part 

Pons 198 98 100 

SOCl Superior olivary complex, lateral 

part 

Pons 340 170 170 

B Barrington's nucleus Pons 15 8 7 

DTN Dorsal tegmental nucleus Pons 105 55 50 

PDTg Posterodorsal tegmental nucleus Pons 47 23 24 

PCG Pontine central gray Pons 521 251 270 

PRNc Pontine reticular nucleus, caudal 

part 

Pons 2374 1191 1183 

SG Supragenual nucleus Pons 16 9 7 

SUT Supratrigeminal nucleus Pons 264 132 132 

TRN Tegmental reticular nucleus Pons 674 338 336 

V Motor nucleus of trigeminal Pons 350 176 174 

P5 Peritrigeminal zone Pons 327 163 164 

Acs5 Accessory trigeminal nucleus Pons 14 7 7 

PC5 Parvicellular motor 5 nucleus Pons 66 33 33 
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I5 Intertrigeminal nucleus Pons 47 25 22 

CS Superior central nucleus raphe Pons 591 276 315 

LC Locus ceruleus Pons 13 6 7 

LDT Laterodorsal tegmental nucleus Pons 204 102 102 

NI Nucleus incertus Pons 124 52 72 

PRNr Pontine reticular nucleus Pons 2334 1165 1169 

RPO Nucleus raphe pontis Pons 83 36 47 

SLC Subceruleus nucleus Pons 29 15 14 

SLD Sublaterodorsal nucleus Pons 49 24 25 

AP Area Postrema Medulla 53 18 35 

DCO Dorsal cochlear nucleus Medulla 610 302 308 

VCO Ventral cochlear nucleus Medulla 1031 514 517 

CU Cuneate nucleus Medulla 328 164 164 

GR Gracile nucleus Medulla 81 40 41 

ECU External cuneate nucleus Medulla 209 104 105 

NTB Nucleus of the trapezoid body Medulla 153 77 76 

NTS Nucleus of the solitary tract Medulla 838 406 432 

SPVc Spinal nucleus of the trigeminal, 

caudal part 

Medulla 1658 826 832 

SPVI Spinal nucleus of the trigeminal, 

interpolar part 

Medulla 1808 904 904 

SPVO Spinal nucleus of the trigeminal, 

oral part 

Medulla 1021 514 507 

Pa5 Paratrigeminal nucleus Medulla 101 51 50 

VI Abducens nucleus Medulla 33 16 17 

VII Facial motor nucleus Medulla 931 467 464 

ACVII Accessory facial motor nucleus Medulla 4 2 2 

AMBd Nucleus ambiguus, dorsal division Medulla 27 14 13 

AMBv Nucleus ambiguus, ventral 

division 

Medulla 16 8 8 

DMX Dorsal motor nucleus of the vagus 

nerve 

Medulla 168 87 81 

GRN Gigantocellular reticular nucleus Medulla 2606 1274 1332 

ICB Infracerebellar nucleus Medulla 52 25 27 
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IO Inferior olivary complex Medulla 486 243 243 

IRN Intermediate reticular nucleus Medulla 2766 1379 1387 

ISN Inferior salivatory nucleus Medulla 10 5 5 

LIN Linear nucleus of the medulla Medulla 65 34 31 

LRNm Lateral reticular nucleus, 

magnocellular part 

Medulla 517 258 259 

LRNp Lateral reticular nucleus, 

parvicellular part 

Medulla 59 29 30 

MARN Magnocellular reticular nucleus Medulla 539 265 274 

MDRNd Medullary reticular nucleus, 

dorsal part 

Medulla 1021 511 510 

MDRNv Medullary reticular nucleus, 

ventral part 

Medulla 897 450 447 

PARN Parvicellular reticular nucleus Medulla 2331 1165 1166 

PAS Parasolitary nucleus Medulla 29 14 15 

PGRNd Paragigantocellular reticular 

nucleus, dorsal part 

Medulla 247 125 122 

PGRNl Paragigantocellular reticular 

nucleus, lateral part 

Medulla 713 359 354 

NR Nucleus of Roller Medulla 35 18 17 

PRP Nucleus prepositus Medulla 237 115 122 

PPY Parapyramidal nucleus Medulla 99 48 51 

LAV Lateral vestibular nucleus Medulla 283 139 144 

MV Medial vestibular nucleus Medulla 1840 922 918 

SPIV Spinal vestibular nucleus Medulla 761 379 382 

SUV Superior vestibular nucleus Medulla 350 177 173 

x Nucleus x Medulla 56 27 29 

XII Hypoglossal nucleus Medulla 265 132 133 

y Nucleus y Medulla 28 14 14 

RM Nucleus raphe magnus Medulla 113 0 113 

RPA Nucleus raphe pallidus Medulla 67 0 67 

RO Nucleus raphe obscurus Medulla 69 0 69 

LING Lingula (I) Cerebellum 126 55 71 

CENT2 Lobule II Cerebellum 1336 630 706 
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CENT3 Lobule III Cerebellum 2742 1320 1422 

CUL Culmen Cerebellum 6777 3298 3479 

DEC Declive (VI) Cerebellum 3334 1612 1722 

FOTU Folium-tuber vermis (VII) Cerebellum 1030 498 532 

PYR Pyramus (VIII) Cerebellum 1233 590 643 

UVU Uvula (IX) Cerebellum 2162 1036 1126 

NOD Nodulus (X) Cerebellum 1503 721 782 

SIM Simple lobule Cerebellum 5709 2853 2856 

ANcr1 Crus 1 Cerebellum 5660 2830 2830 

ANcr2 Crus 2 Cerebellum 5118 2560 2558 

PRM Paramedian lobule Cerebellum 4866 2435 2431 

COPY Copula pyramidis Cerebellum 2490 1246 1244 

PFL Paraflocculus Cerebellum 5742 2869 2873 

FL Flocculus Cerebellum 1310 658 652 

FN Fastigial nucleus Cerebellum 501 249 252 

IP Interposed nucleus Cerebellum 348 147 201 

DN Dentate nucleus Cerebellum 331 167 164 

VeCB Vestibulocerebellar nucleus Cerebellum 87 46 41 
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Table 2. Anatomical Metaregions 

ABBREVIATION NAME MACRO 

MOp Primary motor area Isocortex 

MOs Secondary motor area Isocortex 

SSp-n Primary somatosensory area, nose Isocortex 

SSp-bfd Primary somatosensory area, barrel field Isocortex 

SSp-ll Primary somatosensory area, lower limb Isocortex 

SSp-m Primary somatosensory area, mouth Isocortex 

SSp-ul Primary somatosensory area, upper limb Isocortex 

SSp-tr Primary somatosensory area, trunk Isocortex 

SSp-un Primary somatosensory area, unassigned Isocortex 

SSs Supplemental somatosensory area Isocortex 

GU Gustatory areas Isocortex 

VISC Visceral area Isocortex 

AUDd Dorsal auditory area Isocortex 

AUDp Primary auditory area Isocortex 

AUDpo Posterior auditory area Isocortex 

AUDv Ventral auditory area Isocortex 
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VISal Anterolateral visual area Isocortex 

VISam Anteromedial visual area Isocortex 

VISl Lateral visual area Isocortex 

VISp Primary visual area Isocortex 

VISpl Posterolateral visual area Isocortex 

VISpm posteromedial visual area Isocortex 

VISli Laterointermediate area Isocortex 

VISpor Postrhinal area Isocortex 

ACAd Anterior cingulate area, dorsal part Isocortex 

ACAv Anterior cingulate area, ventral part Isocortex 

PL Prelimbic area Isocortex 

ILA Infralimbic area Isocortex 

ORB Orbital area Isocortex 

AId Agranular insular area, dorsal part Isocortex 

AIp Agranular insular area, posterior part Isocortex 

AIv Agranular insular area, ventral part Isocortex 

RSPagl Retrosplenial area, lateral agranular part Isocortex 

RSPd Retrosplenial area, dorsal part Isocortex 

RSPv Retrosplenial area, ventral part Isocortex 

PTLp Posterior parietal association areas Isocortex 

TEa Temporal association areas Isocortex 

PERI Perirhinal area Isocortex 

ECT Ectorhinal area Isocortex 

MOB Main olfactory bulb Olfactory Areas 
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AOB Accessory olfactory bulb Olfactory Areas 

AON Anterior olfactory nucleus Olfactory Areas 

TT Taenia tecta Olfactory Areas 

DP Dorsal peduncular area Olfactory Areas 

PIR Piriform area Olfactory Areas 

NLOT Nucleus of the lateral olfactory tract Olfactory Areas 

COA Cortical amygdalar area Olfactory Areas 

PAA Piriform-amygdalar area Olfactory Areas 

CA Ammon's horn 

Hippocampal 

formation 

DG Dentate gyrus 

Hippocampal 

formation 

ENT Entorhinal area 

Hippocampal 

formation 

PAR Parasubiculum 

Hippocampal 

formation 

POST Postsubiculum 

Hippocampal 

formation 

PRE Presubiculum 

Hippocampal 

formation 

SUB Subiculum 

Hippocampal 

formation 

ProS Prosubiculum 

Hippocampal 

formation 

HATA Hippocampo-amygdalar transition area 

Hippocampal 

formation 

APr Area prostriata 

Hippocampal 

formation 

CLA Claustrum Cortical subplate 
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EP Endopiriform nucleus Cortical subplate 

LA Lateral amygdalar nucleus Cortical subplate 

BLA Basolateral amygdalar nucleus Cortical subplate 

BMA Basomedial amygdalar nucleus Cortical subplate 

PA Posterior amygdalar nucleus Cortical subplate 

STRd Striatum dorsal region Striatum 

STRv Striatum ventral region Striatum 

LSX Lateral septal complex Striatum 

sAMY Striatum-like amygdalar nuclei Striatum 

PALd Pallidum, dorsal region Pallidum 

PALv Pallidum, ventral region Pallidum 

PALm Pallidum, medial region Pallidum 

PALc Pallidum, caudal region Pallidum 

DORsm Thalamus, sensory-motor cortex related Thalamus 

DORpm Thalamus, polymodal association cortex related Thalamus 

PVZ Periventricular zone Hypothalamus 

PVR Periventricular region Hypothalamus 

MEZ Hypothalamic medial zone Hypothalamus 

LZ Hypothalamic lateral zone Hypothalamus 

MBsen Midbrain, sensory related Midbrain 
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MBmot Midbrain, motor related Midbrain 

MBsta Midbrain, behavioral state related Midbrain 

P-sen Pons, sensory related Pons 

P-mot Pons, motor related Pons 

P-sat Pons, behavioral state related Pons 

MY-sen Medulla, sensory related Medulla 

MY-mot Medulla, motor related Medulla 

CBX Cerebellar cortex Cerebellum 

CBN Cerebellar nuclei Cerebellum 
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