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Abstract: Metal oxides are ideal for the fabrication of gas
sensors: they are sensitive to many gases while allowing the
device to be simple, tiny, and inexpensive. Nonetheless,
their lack of selectivity remains a limitation. In order to
achieve good selectivity in applications with many possible
interfering gases, the sensors are inserted into an electronic
nose that combines the signals from nonselective sensors
and analyzes them with multivariate statistical algorithms
in order to obtain selectivity. This review analyzes the
scientific articles published in the last decade regarding
electronic noses based on metal oxide nanowires. After a
general introduction,Section 2discusses the issues related to

poor intrinsic selectivity. Section 3 briefly reviews the
main algorithms that have hitherto been used and the
results they can provide. Section 4 classifies the recent
literature into fundamental research, agrifood, health,
security. In Section 5, the literature is analyzed regarding
the metal oxides, the surface decoration nanoparticles, the
features that differentiate the sensors in a given array, the
application for which the device was developed, the algo-
rithm used, and the type of information obtained. Section 6
concludes by discussing the present state and points out the
requirements for their use in real-world applications.

Keywords: electronic nose, metal oxide, nanowire, sensor
array, gas sensor, machine learning

1 Introduction

Recently, gas sensors are increasingly needed in many
areas of human life, from monitoring indoor and outdoor
air quality, industrial processes, food quality, and even to
carry out noninvasive diagnostic screening. The importance
of the gaseous component in human life is confirmed by the
scientific interest, which has increased a lot over the years
from the beginning of the 1970s to date. A search for “gas
sensors” in Scopus (Figure 1a) shows that the first article on
this topic was published in 1969, while 12,420 were pub-
lished last year. The plot shows that the growth is remark-
able and constant [1]. Interest gradually increased from the
1970s to the mid-2000s and then escalated more rapidly.
The advent of nanotubes and nanowires, with the concur-
rent increase in performance, could be the driving force of
this growing attention. In fact, the scientific articles that
study nanowire-based gas sensors are more than a quarter
of the total, and as can be seen in Figure 1b, they too are
constantly growing [1].

This review focuses on electronic noses based on metal
oxide nanowires since metal oxide semiconductors are the
most used materials for solid-state gas sensors and nano-
wires, with their very high surface/volume ratio reaching
unthinkable performance for previous generations (thick
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and thin films). Resistive sensors based on metal oxide
nanowires are indeed ideal in many respects, as they are
tiny and light, cheap to manufacture and operate, and sen-
sitive to most gases and volatiles. The latter property is
double-edged since sensitivity to almost any gas means at
the same time a lack of selectivity. Overcoming the lack of
selectivity of semiconductor chemoresistors, inherent in any
device with a one-dimensional output signal, is the main
challenge to make these devices ideal for widespread use in
many fields of application. In practice, any sensor that has a
single value as its output (usually a ratio between a physical
quantity in the presence and absence of the target gas) is
inherently nonselective. In the case of resistive sensors, the
response is usually defined as the ratio between the resis-
tance of the sensor in the presence of a target gas (RG) and
its resistance in air (RA): RG/RA.

The selectivity of these sensors is limited to distin-
guishing the two large families of gases: oxidizing and
reducing gases since in one case the resistance increases
and in the other it decreases, and therefore, the response
will be higher or lower than 1.

For this reason, the most common approach to obtain
selective devices is to combine different resistive sensors
in an array and study their responses together, in order to
recognize the typical trends of the various gases. These
instruments have taken the name of electronic noses
because they replicate the pattern of operation inside
the nose of mammals. Also in the case of animals, the
responses of nonselective or partially selective receptors
are combined and processed in order to associate typical
patterns to different volatile compounds. In a similar
fashion, an electronic nose achieves a certain capability
to recognize different gases and estimate their concentra-
tion (usually after a calibration or “training” phase)

combining the response of sensors with a much poorer
selectivity). As can be seen in Figure 1c, the interest in
electronic noses started in the 1990s and continues to
grow, almost exponentially [1]. Although the interest is
extensive, both scientific and economic, these devices
still have limited applications, and the advancement of
machine learning will certainly support their success.

Despite the strong interest in both nanowire-based gas
sensors and electronic noses, scientific papers studying
nanowire-based electronic noses are still very few. This
can be explained by the fact that nanowires have better
performance than previous generations (thin films) but
also lower stability and reliability over time, and are there-
fore less mature for practical applications. Alternatively,
the reason can be the multidisciplinarity necessary for this
type of tool, which combines the latest developments in
nanoscience and nanotechnology, and machine learning.
This requires strong collaboration between groups with
very different expertise and can initially slow down the
growth of the sector.

In this review, we analyze the recent relevant scien-
tific literature, trying to understand how mature the field
is and what are the bottlenecks that limit its develop-
ment. The analysis of the published articles shows that
the development obtained by nanosciences in controlling
the structural, morphological, and compositional proper-
ties of nanomaterials is not matched by the computer
processing counterpart. For this reason, the review focuses
on the “brains” used so far for electronic noses based on
metal oxide nanowires, and on the type of information
obtained from them. In fact, the “brain” of the electronic
noses, or rather the approach to data mining or data
visualization, is the key component that determines its
performance.

Figure 1: Trend in the number of scientific articles per year found searching for (a) “gas sensor”, (b) “gas sensor AND nanowire”, and
(c) “electronic nose” on Scopus [1].
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As will become clear in the following sections, case
studies from the literature use very different approaches
to the evaluation of sensor performances, from simple
visual inspection of the data to advanced data mining
methods, with their merits and drawbacks. A critical
review of these studies with a focus on misconception
and real application needs seems important to support
a better comparison of the reported performances and
more efficient in the development of electronic noses
based on nanowires. We think that such an analysis
can support groups working on chemosensors on their
way for the realization of successful electronic noses by
indicating possible strategies and achievable results.

2 Intrinsic selectivity

Metal oxides have been shown to be excellent gas detec-
tion materials since the 1960s [2]. Technological develop-
ment has made it possible to move from thick films to thin
films and then to nanostructured materials. Nanostruc-
tures, including nanowires, are characterized by having
an enormous surface/volume ratio, and therefore, the effect
of the depletion that occurs at the surface is much more
intense. Unfortunately, together with many advantages,
these materials also carry two major defects: high working
temperature and low selectivity. Working temperature is a
minor problem that was initially solved with integrated
microheaters and recently addressedwith surface decoration.
The surface of MOs nanostructures is decorated with metal
nanoparticles or other MOs in order to exploit the spillover
effect, the catalysis, and the additional junctions created at
the interfaces between the two materials. Surface decoration
is commonly used to increase the response and lower the
working temperature of sensors [3]. The increase in the
response and the lowering of the working temperature are
reproducible effects, but the influence on the other perfor-
mance parameters, including selectivity, is still not yet clear
because the contradictory indications of the literaturemake it
difficult to identify clear trends [4]. Tshabalala et al. investi-
gated how the sensingmechanisms changewith temperature
[5] by photoluminescence and X-ray photoelectron spectro-
scopy. They were able to demonstrate that the selective
response of the TiO2 nanowire-based sensor to C7H10 at
23°C is defect-dependent, while the selective response to
C8H10 at 150°C was not defect-dependent. This demonstrates
that among the many reactions that take place at the gas–
solid interface, the main sensing mechanism can vary sig-
nificantly also as a function of temperature, leading to
selectivity toward different gases as the temperature

varies. Similar behaviors (selectivity varying by changing
the working temperature) were also observed by Kim et al.
[6] toward C7H10 and C7H8 using NiO at 350 and 400°C,
and by Motsoeneng et al. [7] toward C3H7OH and C2H5OH
using SnO2 at 75 and 150°C. Kim et al. explained that the
tuning of selectivity to p-xylene at 350°C or to toluene at
400°C was achieved by controlling the balance between
the catalytic promotion of the gas in more active species
and the oxidation in less reactive species depending on the
temperature of exercise [6]. Motsoeneng et al. showed that
the selectivity toward different gases depends both on the
morphology of the nanostructures and on the working
temperature. Also, in this case, PL and XPS confirmed
that the density of defects in nanostructures depends on
their morphology, and influences the response of the
sensor [7]. As can be seen, there are various detection
mechanisms that often act simultaneously and, although
they are being studied, unfortunately, the results obtained
do not yet paint a homogeneous picture. The importance
of the dimensions of the nanomaterial is well established
since the response of the sensor depends on the thickness
of the depletion layer (which is fixed) in relation to the
thickness of the nanostructure. For this reason, thin films
perform much better than thick films and the new 2D
materials promise further improvement [8]. The modula-
tion mechanism of the depletion layer is accepted as the
source of the electrical response of the sensor and studied
extensively. By approximating the bending of the bands
with a simple step function, it can be seen that as the
thickness of the nanowire decreases closer to the depth
of the depletion layer, the more the sensor response
increases [9].

Figure 2a shows the section of a semiconductor metal
oxide nanowire in air (left column) and in the presence of
gas (right column). Since the depth of the depletion layer
is constant (red arrow), as the radius of the nanowire
(green arrow) decreases, the sensor response (ratio
between the purple circle on the left and the one on the
right) increases. Liu et al. demonstrated that the sensor
response reaches its maximum peak when the thickness of
the nanostructure equals the depletion layer [10]. Figure 2b
illustrates how the effect of the modulation mechanism of
the depletion layer differs as the dimensionality of the
nanostructures varies. The mechanism acts in a non-neg-
ligible way only on the nanometric dimensions of the
material, and therefore, a 2D structure (a thin plate) will
be depleted only in one dimension, while a 1D nanowire
will be depleted in two dimensions and a 0D nanoparticle
in all three dimensions [11]. The main problem with metal
oxides therefore remains selectivity. Many groups work on
resistive gas sensors based on different metal oxides, both
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n-type and p-type, but the results in the literature regarding
selectivity are rarely in agreement. In order to assess
whether there is agreement about the selectivity of the
main metal oxides toward specific gases, we have carried
out a survey of the recent scientific literature, which is
shown in Figure 3.

As can be seen in Figure 3, there is no agreement in
the literature for any metal oxides. The maximum agree-
ment reached by the various scientific articles examined
is 50% in the case of SnO2, TiO2, and In2O3, while the
minimum agreement is 25% for Co3O4 and CuO. This
demonstrates that the selectivity of metal oxides depends
on many parameters, and it is currently impossible to
consider a certain selective metal oxide for a certain gas.

3 The brain of the electronic nose:
visualization methods and
algorithms

A key component of an electronic nose is its “brain”: an
array of nonselective or low-selective sensors cannot achieve
true selectivity if the responses are not intelligently pro-
cessed and combined. The data processing carried out on
the data matrix extracted from a sensor array is fundamental
to obtain good performance but it is also a rather distant
topic from materials science. For this reason, research
groups that were working on traditional gas sensors based

on nanowires had to undertake interdisciplinary collaborations
or develop their own expertise in this field. However, both
processes (developing interdisciplinary collaborations and
building your own skills) are complex and time-con-
suming. This explains why the “brain” of the electronic
nose is to date its least developed element despite being
the most important. For this reason, together with the dif-
ferent machine learning algorithms, Section 2.1 has been
inserted to describe themost basic methods that have been
used in recent years to demonstrate the capacity for selec-
tivity. These systems have in common the fact that they are
visual methods, in which it is necessary for the reader to
observe a graph and reason. In this way, the human eye
and brain (which is still the best pattern recognition
system, at least in two dimensions) are exploited as part
of the sensing system. In the next subsections, the methods
used in the articles studied have been listed according to the
objectives they achieve: mere feasibility, qualitative classi-
fication, qualitative quantification, real classification, and
real quantification. This distinction will serve to discuss the
current state of development of nanowire-based electronic
noses, as the level of ability to achieve real-world classifi-
cation and possibly quantification is a strictly necessary
requirement for real-world applications.

3.1 Proof of concept

Some publications focus only on the feasibility of an elec-
tronic nose by showing how the responses of the sensors

Figure 2: (a) Section of a nanowire in air and in the presence of gas. The white annular section is the depletion layer, while the purple-
colored part contributes to the signal. (b) The modulation of the depletion layer acts on the number of nanometric dimensions.
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that form the array vary as the tested gas or gas mixture
varies. This can be done by visual inspection of the trend
of a bar plot or a box plot, and how this trend (finger-
print) is different for each gas. Similarly, the different
shapes that sensor responses show in a radar plot for
different gases can be used to distinguish them. These
methods are not based on algorithms of any kind but
on the ability of the human eye and brain to distinguish
differences and similarities, so they can only be consid-
ered proof of concept.

3.2 Principal component analysis (PCA)

This very old technique, which is gaining more and more
interest in the field of sensors, is a data reduction method
used in multivariate statistics. The aim of this technique
is to reduce the number of variables describing a data set
to a smaller number of latent variables, with a limited
loss of information. In practice, it is a linear transforma-
tion that projects the N original variables into a new
coordinate system (still of dimension N) in which the

Figure 3: Selectivity of the main metal oxides toward the studied gases. The response in each reference was normalized (the highest
response was set to 100). The references from which the data are taken are given in the Supplementary Information.
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new variable with the greatest variance is projected onto
the first axis, the new variable, second by variance, onto
the second axis and so on. In this way, it is possible to
reduce the number of variables (from N to M < N) while
keeping as much information as possible contained in the
original variables. The original purpose (to reduce a too
large data set) is usually not what it is used for in the case
of e-noses: as we shall see, here it is often used to reduce a
small number of variables (6–12) down to two or three in a
graph so that the reader can visualize the data and the
relationships between them. Many authors consider these
graphs (two-dimensional or three-dimensional, relative to
the first 2 or 3 principal components) an easy way to obtain
a sort of qualitative classification. When it is possible to
distinguish clusters of separate points, each relating to a
gas, it is easy to think that a new unknownmeasure (a new
point) can be classified by observing near to which cluster
it will be positioned. Unfortunately, in addition to being
very qualitative, this method assumes the presence of a
human operator and the exploitation of his/her eyes and
brain, which are powerful analysis tools but prone to sub-
jectivity and biases. To overcome the qualitative nature of
the visual inspection of PCA analysis, several classification
methods have been developed that use autonomous algo-
rithms, the output of which is not a graph but a label with
the class in which the system classifies the new point.

3.3 RGB encoding

This is not a standard method in the literature but it is
described in this section because it achieves divergent
results from other studies: superior to mere classification
but inferior to true quantification.

Furthermore, this method well explains an important
concept for electronic noses: the information in a sensor’s
response signal lies in its dimensionality. In Section 1, it
has already been explained that a single resistive sensor,
with a dimensionless response, is almost completely
devoid of selectivity. In this case, combining three
responses of this type makes it evident that the selectivity
of the system is sufficient for a perfect classification (at
least in the case of the eight gases analyzed in this article)
and even for an approximate quantification, similar to that
of a litmus test.

It should be emphasized that there is no algorithm
behind this method, no PCA or other variance optimiza-
tion technique. The responses are simply normalized and
then interpreted as the red, green, and blue channels
composing a color.

3.4 Linear discriminant analysis (LDA)

A slightly more powerful tool that works in a similar way
is LDA. This technique is used for dimensionality reduc-
tion and visualization, as is PCA, but it is also a reliable
classification method. It is a linear transformation from
the space of N-dimensions to a space with lower dimen-
sionality M < N, trying to keep as much information as
possible, and leaving out the noise instead. In this case,
the transformation tries to minimize the variance of dif-
ferent groups and maximize their distance, that is, to
optimize the separation. This makes it easier to divide
the space into regions labeled with a given class (a gas,
in our case). Unlike PCA, this algorithm can be consid-
ered a supervised method (a method in which the first set
of data is used to build the model and then new data are
compared to the model) and used as a classifier. In this
case, the algorithm compares each new data with the
model created starting from a data set used to “train”
the system and classifies it by proximity (similarity) to a
certain group (a gas, in our case). This method returns a
label as output without the need for any interpretation,
and thus, operates a true classification. As in all super-
vised methods, models must be tested on data sets that
are completely independent of the training datasets.

3.5 Partial least-squares discriminant
analysis (PLS-DA)

The most recent interpretation of the acronym PLS stands
for “Projection to Latent Structures by means of Partial
Least Squares” [12]. This technique is similar to the prin-
cipal component regression (PCR, based on the PCA seen
above); however, instead of finding hyperplanes of
maximum variance between the response and the inde-
pendent variables, it finds a linear regression model by
projecting the latent variables and the observable vari-
ables into a new space [13]. Also, in this case, the new
space has the same dimensionality N as the original
space, and therefore keeps all the information, even if it
distributes it in a different (decreasing) way, trying to
maximize the separation between different classes. The
response variable is a numerical variable that measures
the degree of belonging to a class in the 0–1 range (total
diversity–total belonging).

An advantage of PLS-DA is that it allows the trans-
formation (similar to PCA) even on a matrix missing some
elements, while previous methods could process an incom-
plete matrix only by eliminating individuals with missing
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variables, or by replacing the missing data with estimates.
The PLS-DA, on the other hand, is able to work only on
known data, even with incomplete matrices.

3.6 Artificial neural network (ANN)

ANNs (or just neural networks) are based on the concept
of artificial neurons proposed in 1943 by McCulloch and
Pitts [14]. The first electronic noses were developed using
these [15,16], trying to replicate the nature of a mamma-
lian nose insofar as possible. Artificial neural networks
are structures of nodes organized in layers that receive N
external signals on a layer of nodes, each connected to
various internal nodes of the network (typically orga-
nized on several levels)with every single node processing
the received signals and transmitting the result of its
elaborations to subsequent levels.

Usually, neural networks comprise three layers:
1) the input (I) layer receives and processes the input

signals, adapting them to the demands of the neurons
of the network;

2) the hidden (H) layer is in charge of the actual proces-
sing (and can also be structured with multiple levels
of neurons);

3) the output (O) layer collects the results of the proces-
sing of the H layer and checks them with the expected
ones.

In the case of electronic noses, a supervised learning
method is used, where the system is initially “taught”
through a series of labeled data. The most used learning
algorithm is the vanish gradient method, which allows
finding a local minimum of a function in an N-dimen-
sional space. The weights associated with the links between
the neuronal layers are initialized to random values and the
ANN is made to work with a labeled dataset.

The training of a neural network then takes place in
two phases. In the first phase (forward-pass), the input
data are given to the input nodes with a forward propa-
gation of the signals through each layer of the network,
with the values of the synaptic weights all fixed. In the
second phase (backward-pass), the response of the net-
work is compared with the desired output obtaining the
error signal. The calculated error is propagated in the
reverse direction to that of the synaptic connections.
Finally, the synaptic weights are modified in order to
minimize the difference between the actual output and
the desired output.

3.7 Support vector machine (SVM)

An SVM is a supervised learning model used to analyze
data both for classification and for regression. An SVM
maps measurements from a first labeled data set to points
in an N-dimensional space so as to maximize the width of
the gap between the categories. New measurements are
then mapped into that same space and predicted to
belong to a category based on the area in the space
they fall into.

The algorithmworks with two classes at a time, looking
for a linearly separable hyperplane between them. If there is
more than a hyperplane, it looks for the one that maximizes
the distance between the points of the two classes it is
considering (using support vectors). If there are none, it
uses nonlinear mapping to bring the training data into a
higher dimensionality so that two classes can always be
separated by a hyperplane. This is done using a nonlinear
kernel in order to obtain a nonlinear classifier without
transforming the data too much.

When used for regression, it uses the same principles
as for classification, with only a few minor differences.
However, the main idea is similar: to minimize error,
individualizing the hyperplane (a space of N − 1 dimen-
sion) that maximizes the margin, keeping in mind that
part of the error can be tolerated.

Using the SVM first as a classifier and then as a
regressor (a different and independent regressor for each
identified class), excellent results can be obtained both in
terms of classification and quantification.

4 Fields of application

Unlike a single gas sensor based on metal oxide nano-
wires, an electronic nose is capable of detecting and dis-
tinguishing many different gases and volatile compounds.
This makes it a very transversal tool, suitable for all appli-
cations where it is important to quickly understand what
an atmosphere is made of, usually produced by not only a
solid product or an organism but also by industrial pro-
cesses and complex chains of events. An electronic nose
can, for example, be used to assess the freshness of an
agrifood product, carry out a prescreening by analyzing
a patient’s breath, or monitor the air quality in different
environments (city, home, office, factory.). In this section,
we will divide the articles published in the literature
according to the field in which the authors tested the elec-
tronic nose, considering the most important and common
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fields: generic tests without specific application, agrifood,
health, and safety fields.

4.1 Generic application

The group of Kolmakov proposed a “nanoscopic elec-
tronic nose” using an array of four single nanostructures
[17]. Four n-type semiconducting nanostructures (SnO2

and Ni-decorated SnO2 nanowires, TiO2 and In2O3 thicker
nanowires) were tested toward H2 and CO under condi-
tions of low pressure. The response values of three sen-
sors (SnO2, Ni–SnO2, and TiO2) were plotted as radial
plots for a qualitative classification of the two target
gases.

The KAMINA platform (a linear microarray of 38 seg-
ments contacted singularly) was used with SnO2 nano-
wires in order to fabricate an electronic nose [18]. The
microarray was tested toward ethanol, isopropanol, and
CO using two modalities: in the first, only the density of
nanowires was varied along the array, while in the second
also the working temperature. The discrimination ability
(obtained qualitatively through 3D LDA graphs) increases
when both parameters are varied.

The same microarray architecture was used with a
constant density of pristine SnO2 nanowires, with only
the temperature gradient created by four heaters on the
back side of the substrate [19]. The sensors were able to
detect 1 part per million (ppm) of CO, ethanol, isopro-
panol, and toluene. The system was able to classify the
four gases at their lower concentration through a 3D
LDA plot.

Four resistive sensors based on single nanowires
(In2O3, SnO2, and ZnO) and single-walled carbon nano-
tubes were integrated on separate hotplates, so that their
temperature could be controlled individually. Using the
responses from the four sensors working at two different
temperatures, the electronic nose was able to qualita-
tively distinguish NO2, H2, and ethanol and their concen-
trations [20]. Figure 4 shows the SEM images of the four
sensors and the PCA plot obtained using only the three
sensors based on metal oxide single nanowires.

The group of Moskovits described an electronic nose
strategy on an array of a single SnO2 nanowire whose
sensing properties were modified by surface decoration
with different metal nanoparticles and different operating
temperatures [21]. The sensor's selectivity was tested
toward three reducing gases: H2, CO, and ethylene, which
were classified qualitatively through LDA plots. The dis-
criminating ability of the e-nose was not affected by the
length or diameter of the nanowires composing it.

A different system was proposed, composed of two
sensors based on vertical ZnO nanowires with different
metal oxide coatings on top of them: CuO and SnO2 [22].
Different response values of the two sensors toward dif-
ferent concentrations of NO2 and H2S gases were plotted
in radial graphs, showing different slopes, which could
be used to discriminate the gases in a qualitative way.

The same architecture with vertical ZnO nanowires
with different coatings was used also in another work of
the same group [23]. In this case, the structural template
consisted of vertical ZnO NWs coated with SnO2 on top.
Different sensors were obtained sputtering very thin layers
of different metals (Pt, Pd, and Au) on top of three samples,
as active materials for gas sensing. The large area given by

Figure 4: (a) Sensor array chip composed of four individual chemical sensors, including individual In2O3 nanowire, SnO2 nanowire, ZnO
nanowire, and SWNT chemical sensor chips. (b) PCA scores and loading plots of the chemical sensor array composed of only the three metal
oxide single nanowires. Edited with permission from ref. [20].
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the vertical nanowires and the catalytic effect due to the
noble metals make the sensors able to detect NO2 and H2S
at room temperature. An array composed of three sensors
with different decorations (Pd, Pt, and Au) was able to dis-
criminate five different gases (H2S, NO2, NH3, H2, and CO) in
a qualitative way (using 2D and 3D PCA plots).

As an alternative to using different materials, different
surface decorations, or different working temperatures for
the realization of the electronic nose, it was also proposed
to take advantage of UV lighting of different wavelengths
[24]. This theoretical work showed that employing a tun-
able UV source, the reaction on the surface of the nanowire
can be tuned, achieving selectivity toward different gases.
The theory behind the UV-activated gas sensing is shortly
presented in terms of the energy balance when the light
interacts with the surface of the nanowires.

A more traditional approach, using different nano-
materials assembled via dielectrophoresis between gold
electrodes, was presented [25]. The active materials used
are graphene oxide, carbon nanotubes, and CuO nano-
wires, in an array of 40 sensors. The matrix was exposed
to methanol, toluene, and ammonia, and the evidence for
discrimination is that the dynamic resistance of the sen-
sors is different for different gases.

A single SnO2 nanowire was used in a KAMINA
design, exploiting the decreasing diameter of the nano-
structure and Pt decoration of its surface [26]. The change
in resistance along the segments mirrors the change in
the concentration of charge carriers and is used as a vari-
able parameter to build the electronic nose. The micro-
array was able to recognize acetone and hydrogen, while
it was difficult to discriminate isopropanol and CO in the
LDA plot because of their overlap.

An array of four heterostructures made of vertical
ZnO nanowires with different surface decorations (pris-
tine, SnO2, In2O3, and WO3) was used as an electronic
nose [27]. The electronic nose was able to detect NO2,
H2S, H2, NH3, and CO at room temperature. The discrimi-
nation of the gases was obtained through a 2D PCA plot in
which the only isolated cluster was that of H2S. The clus-
ters relative to the other gases overlapped significantly,
not allowing any classification.

A sensor based on SnO2 nanowires was integrated into
an array to compare its performance with that of the thin-
film counterparts, testing it toward water, ethanol, and a
mixture [28]. The nanowire-based sensor demonstrated per-
formance equal to that of thin-film-based sensors, with the
advantage of greater surface area/volume and flexibility.

An array of three single Mg-doped In2O3 nanowires,
doped with different metal (Au, Ag, Pt) nanoparticles,
was used to demonstrate the feasibility of an integrated

electronic nose [29]. In this case, the sensors were not
chemoresistors but back-gated field-effect transistors (FETs).
The parameters of the transistors in the array can be used
as features to obtain selectivity at room temperature, as
the authors did for CO, ethanol, and hydrogen.

A different design of electronic nose with ZnO nanorods
was realized by Ko et al. using electrodeless quartz crystal
microbalances [30]. Different patterns of ZnO nanorods
were grown on eachmicrobalance, working as independent
resonators with different frequencies. Longer nanostruc-
tures increased the quality factor of the resonators, enhan-
cing the sensing performance of the sensor. Coating the
ZnO nanorods with different polymers (PMMA, PVP, and
PVAc), a certain selectivity was achieved, allowing for qua-
litatively discriminating ethanol, toluene, and gasoline in a
2D PCA plot.

Another vertical design was used to fabricate an elec-
tronic nose using different nanostructures of different
materials. Six different sensors were used with different
shapes (helices, rods, and zig-zags) made of different
metal oxides (TiO2, ITO, SnO2, and WO3) [31]. The array
of vertical sensors was used to qualitatively distinguish
hydrogen, CO, and NO2 using radar plots.

Hu et al. built an array composed of four single nano-
wires, trying to exploit the different selectivities of the
most diverse materials, namely a metal (Pd), two poly-
mers (PPy and PANI), and a semiconductor (ZnO) [32].
Four target gases were selected to test the performance of
the array: hydrogen, methanol, CO, and NO2. The authors
were able to qualitatively discriminate the four gases,
also using blinded experiments where new measure-
ments were compared in the PCA plot with the calibration
points, thus also providing a quantitative estimation of
the gas concentration. As can be seen in Figure 5, the four
sensors were quite selective toward the four tested gases
and this was reflected in the three-dimensional PCA plot.
Figure 5c compares the real composition of the tested
gases with that estimated by the sensing system.

An array of three different on-chip grown ZnO and
CuO nanowires was used as a prototypal electronic nose
[33]. In practice, by growing ZnO and CuO nanowires
directly from the electrodes, three sensors were made
that exploit different junctions: ZnO–ZnO, ZnO–CuO, and
CuO–CuO, as shown in Figure 6a. Using three sensors of
the pristine metal oxides, three decorated with Pd nano-
particles and three with Ag nanoparticles, nine sensors
were combined (3 junctions × 3 surface decorations). The
sensors were able to qualitatively distinguish H2, CO, and
NO2 in an LDA plot.

A more traditional approach, using different metal
oxides (VOx, MnOx, WOx, and NiOx) deposited on finger
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electrodes [34]. The semiconducting nanostructures were
assembled via dielectrophoresis onto electrode arrays
and then packaged for easy testing. Looking at the frac-
tional resistance that was affected by the presence of
ethanol, acetone, methanol, and ammonia, the authors
were able to discriminate between ethanol and ammonia.
They are confident that with the help of a machine
learning algorithm, this setup would be able to achieve
real selectivity.

Thicker surface decoration was implemented on ZnO
nanowires, realizing almost a core–shell situation [35].
After atomic layer deposition of thin layers (5 nm) of
Al2O3 and TiO2, two types of core–shell nanostructures

were obtained: ZnO–ZnAl2O4 and ZnO–Zn2TiO4 nano-
wires, used as sensing elements at room temperature
under UV illumination. Using an array comprising pris-
tine ZnO nanowires also, the authors were able to quali-
tatively discriminate O2, O3, CO, and NO2 using bar plots
and a 3D PCA plot.

A network of potassium titanate nanowires was used
as a chemiresistor to detect acetone and ethanol at room
temperature [36]. The network was segmented into 11
different sensors, which are different because of the
intrinsic variation of the density of the nanowires. Com-
bining the response values of the 11 sensors and proces-
sing them with LDA, different clusters were found for

Figure 5: Real-time sensing signals and the corresponding PCA plot. (a) Dynamic percentage response (change in resistance divided by the
base resistance) collected from the four sensors during four response–recovery cycles. (b) 3D PCA plot including training points (colored
points connected by lines) and test points (four teal octagons labeled G1–G4); (c) comparison between the real gases injected and the
estimates from the sensing system. Modified with permission from ref. [32].

Figure 6: (a) Schematic representation of the crossed-nanowire junction array and corresponding SEM images. (b) LDA analysis classifying
the points corresponding to the various gases at a 95% confidence level. Reprinted with permission from ref. [33].
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acetone and ethanol, proving a certain qualitative classi-
fication from the system.

The role of metal oxides is different in the work of
Song and Choi, who use polymeric nanowires surface
decorated with three different catalysts as sensors: Ag,
CuO, and Mn2O3 [37]. Four sensors (including pristine
PANI nanowires)were used to obtain an array and achieve
a qualitative selectivity. The sensing system was tested
with ascorbic acid, dopamine, and H2O2 in liquid as an
electronic tongue but could also be operated with gases,
as an electronic nose. The different analytes and their mix-
tures were discriminated qualitatively and semiquantita-
tively through two-dimensional PCA plots.

Polycrystalline NiO nanowires were used as a che-
miresistor to demonstrate that selectivity can be tuned
toward different target gas by changing the working tem-
perature of the sensor [38]. The sensor response to
hydrogen is larger at 200°C and decreases as the tempera-
ture increases, while the response to ethanol increases
with temperature and reaches its maximum at 400°C. In
this way, by varying the temperature of the sensor, it is
possible to set its selectivity toward one of the target gases.

An electronic nose based on different materials and
different shapes was proposed as very sensitive system to
detect gases and volatiles [39]. The sensing system was
formed by three metal oxides (WO3, SnO2, and In2O3) in
three versions: pristine thin films, Au-decorated thin films,
and vertical nanowires, thus obtaining a 3 × 3 array. The
classification is shown qualitatively by means of 2D PCA
plots. Using only the thin films, the electronic nose is able
to discriminate NH3 and H2S, while adding the nanowires
it can also distinguish NO. On the other hand, it cannot
distinguish acetone, benzene, CO, and ethanol.

A different approach consisted of using a single SnO2

nanobelt suspended between two electrodes, acting as a FET
[40]. Different FET parameters were extracted (ION, mobility,
threshold voltage, subthreshold swing) and used as features
to be processed by LDA. The two-dimensional LDA plot
shows a qualitative classification of NO, NO2, and H2S. After
this classification, a possible quantification is proposed,
comparing the measurement with the calibration ones.

The on-chip growth of SnO2 NWs was used to manu-
facture an array of self-heated gas sensors in order to
simplify the fabrication process and avoid the need for
an external heater, reducing the power consumption [41].
Tuning the sensor power, different response values can
be obtained, which vary for each gas, and can therefore
be considered as fingerprints.

In addition to the intrinsic selectivity of the sensor
toward NO2, the self-heated system could qualitatively
discriminate H2, NH3, H2S, and C2H5OH.

A chemoresistive electronic nose based on pristine
and Au-decorated SnO2 and WO3 nanowires was fabri-
cated by electron-beam evaporation at a glancing angle
[42]. The back-heated 2× 2 array (2 materials × 2 surface
decorations) has a sub-ppm detection limit for NO and
NH3 in 80% relative humidity (RH). A two-dimensional
PCA plot demonstrated that the electronic nose is able to
well distinguish NO and NH3, while the other gases
(C2H5OH, CO, C7H8, C6H6, and CH3COCH3) are too over-
lapped. The position in the PCA graph of the points rela-
tive to NO and NH3 shows that a quantitative analysis of
these two gases would probably also be possible.

Nanowires of different materials have been grown on
the same chip exploiting the presence of different mem-
branes with integrated heaters [43]. The ability to locally
heat the chip allowed to grow SnO2, WO3, and Ge nano-
wires on different sensors of the same chip and later to
optimize the working temperature of each sensor. The
electronic nose was able to qualitatively distinguish CO,
NO2, and RH in a 2D PCA plot.

A sensor made of NiO nanowires was made working
at different temperatures in order to simulate a tempera-
ture gradient and a virtual electronic nose [44]. The fin-
gerprints of seven reducing gases (H2S, ethanol, H2, CO,
NH3, CO2, and LPG)were each combined in a 5D point and
processed by machine learning. The shape of the finger-
prints is very similar even after changing the gas con-
centration. Using SVMs, the system was able to achieve
perfect classification and very good quantification (<15%
average error).

An array of four sensors based on vertical polycrys-
talline SnO2 nanotubes decorated with Pt was proposed
as an ultra-lower power electronic nose [45]. The four
sensors were top-coated with different materials (Au,
Pt, Ni, ITO) in order to change their intrinsic selectivities.
The sensor array was tested with RH, NO2, benzene, and
H2. The 3D LQV plots, similar to PCA plots, showed that
the points are well dispersed, allowing to classify the
gases and probably even to estimate the concentrations.

Three sensors based on SnO2, WO3, and Ge nanowires
were integrated on the same chip, thanks to localized
growth driven by local heating [46]. Using different mem-
branes with integrated heaters (Figure 7a), the nanowires
were grown directly on the patterned electrodes by che-
mical vapor deposition (CVD). The responses from the
three materials were combined and analyzed through
PCA. Figure 7b shows a clear qualitative classification
of humidity, CO, and NO2 with well-isolated clusters of
points for each gas.

A visual sensor (a kind of electronic nose that works
like a litmus paper) was manufactured with very simple
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processing of signals from sensors based on NiO nano-
wires [47]. The response at each working temperature
was just normalized to a 0–255 range in order to be
encoded as one of the three channels in the color space.
The combination of the three channels allowed us to
easily recognize any of the eight tested gases (NH3,
LPG, H2S, ethanol, H2, NO2, CO, and CO2). A renormaliza-
tion of every single gas also allowed us to reach a quali-
tative estimate of the gas concentration.

Similar to Sysoev’s work [26], but using a temporal
rather than spatial thermal gradient, an electronic nose
wasmade using a single SnO2 nanowire [48]. The responses
of the sensor at five different temperatures were combined
to greatly increase the intrinsic poor selectivity of the resis-
tive sensor. Using an SVM, the nanometric electronic nose
achieved a classification of 94.3% and a good estimate of
the concentrations (18.4%) for ethanol, H2, CO, acetone,
NH3, and toluene. There was sometimes confusion with
NO2 at low concentrations.

An electronic nose was built that exploits the intrinsic
inhomogeneity of a network of ZnO nanorods deposited on
a multielectrode chip [49]. The system was able to detect
isopropanol, ethanol, and butanol at sub-ppm concentra-
tions, and separate them well in a 2D LDA plot, as shown
in Figure 8. Using the Mahalanobis distance, the authors
demonstrated that the separation of points at higher con-
centrations is greater.

A sensor based on SnO2 nanowires grown directly
from the metal electrodes and then decorated with Pt
nanoparticles by radiolysis was used as an electronic
nose by using it at different working temperatures [50].
The thermal fingerprints for each gas (benzene, acetone,
H2, toluene, and ethanol) were shown as a function of the
gas concentration, and a 3D PCA plot showed that the gas
clusters are well separated. Using an SVM, it was possible

to obtain a good estimate of the concentration of each gas
(approximately 14%).

A sensor based on carbon-doped SnO2 nanowires was
operated in a low range of temperatures in order to use it as
an electronic nose [51]. At each temperature, the sensor
showed a different intrinsic traditional selectivity, while the
combination of the five response values resulted in well-
separated clusters in a uniform manifold approximation
and projection (UMAP) for the gas tested (ethanol, H2, CO,
acetone, NH3, and toluene). Several classification methods
were tested, most of which gave a perfect accuracy of
100%. The use of an SVM gave good estimates for all the
gas concentrations, with an error decreasing as the concen-
tration increased.

In a similar approach, a self-heating sensor made of
Ag-decorated SnO2 nanowires was heated at three

Figure 7: (a) Optical images of the blue tungsten oxide WO3−x NWs, the white SnO2 NW deposit, and brown coating of Ge. (b) PCA from SnO2,
WO3, and Ge NW-based gas sensors showing clustered CO, NO2, and RH points. Reprinted with permission from ref. [46].

Figure 8: LDA plot showing that the electronic nose can recognize
the different gases at different concentrations, from sub-ppm to
5 ppm. Reprinted with permission from ref. [49].
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different levels of power, and the responses obtained
were combined to be used as an electronic nose [52].
The nanowires were grown directly from the side of the
sensor electrodes and then decorated with Ag nanoparti-
cles by sputtering. The sensor was able to detect H2S, H2,
NH3, ethanol, and acetone at sub-ppm concentrations
and well separated in a 3D PCA plot. Using an SVM, a
good quantification of the gas concentration was achieved.
Such an approach could transform a single resistive sensor
into a miniaturized electronic nose.

A similar approach using edge-grown SnO2 nano-
wires was used to fabricate four sensors to be used in
parallel, in a spatial thermal gradient instead of temporal
[53]. The four on-chip sensors are patterned at an increasing
distance (decreasing temperature) from a heater, in the
same lithography. The four response signals are collected
simultaneously and processed together. A series of radar
plots showed different shapes for methanol, IPA, ethanol,
NH3, H2S, and H2.

In a similar way, two chips with SnO2 nanowires, one
decorated with Ag and one with Pt nanoparticles, were
used together to build up a more sensitive electronic nose
[54]. The responses from the eight sensors were com-
bined and processed with machine learning algorithms.
In a first step, a t-distributed stochastic neighbor embed-
ding (t-SNE) was used to show the relationships between
the gas clusters, showing a good separation of the tested
gases (acetone, ethanol, H2, H2S, and NH3). In a succes-
sive step, the gas concentration was estimated by an
SVM, obtaining an average error of 18.3%.

An electronic nose based on ZnO nanowire chemor-
esistors was realized decorating different sensors with
different sensitizers, namely Ni, Co, Mg, and Fe [55].
Showing the response of the different sensors (pristine
ZnO and sensitized ones) toward H2S, NO2, NH3, and
CO, the authors showed that the array has the potential
to act as an electronic nose.

Two electronic noses each based on a forest of nano-
wires of a single material (SnO2 and ZnO, respectively)
working at different temperatures were compared by mea-
suring different gases (acetone, ammonia, ethanol, hydrogen,
nitrogen dioxide). Under the same conditions (similar
nanowire morphology, same working temperatures, and
gas concentrations), the SnO2-based device proved to be
better, perfectly classifying all gases and quantifying them
with an error of less than 10 ppm [56].

Kanaparthi and Singh tested a single sensor based on
ZnO nanostructures, operating it at 250°C, to detect NH3,
CO2, and H2S. When the sensor detected the presence of
gas, it was also tested at 300 and 350°C. The three
responses were used, together with simple ternary logic,

to classify the measured gas by random forest with an
accuracy of 99.8% [57]. Some characteristics and para-
meters of the electronic noses analyzed in this section are
compared in Table 1.

4.2 Agrifood

An individual SnO2 nanobelt was contacted by multiple
electrodes in order to obtain ten segments acting as an
array of resistive sensors, some of which were decorated
with Pd nanoparticles [58]. Due to the decreasing width
and the localized Pd decoration, the sensors had different
sensitivities and acted as an electronic nose. In a first step,
the system proved to be able to distinguish toluene, isopro-
panol, ethanol, and CO. Then, as can be seen in Figure 9,
radar charts and an LDA plot showed that the electronic
nose was able to qualitatively distinguish the aroma of
different alcoholic beverages: glühwein, champagne, ver-
mouth, and brandy, all diluted up to 10% ethanol content.

SnO2 nanowires were integrated into a commercial
electronic nose (EOS835 from SACMI, Imola, Italy) in order
to enhance its performance [59]. In the first phase, the elec-
tronic nose was tested on individual gases, namely CO,
ethanol, NH3, and H2S, and the results are shown in a radar
plot. Subsequently, the electronic nose was used to assess
the quality of green coffee beans, distinguishing mold-
contaminated samples from uncontaminated ones.

The same commercial electronic nose was equipped
with two (on six) sensors based on SnO2 nanowires in
order to investigate coffee from different origins (India,
Indonesia, Santos, Honduras, Nicaragua) roasted fol-
lowing four different programs and ground [60,61]. A
two-dimensional PCA chart showed that the origin of
the coffee is more important than the roasting method
in generating the aroma of the coffee.

A commercial electronic nose (EOS507, SACMI, Imola,
Italy) was equipped also with SnO2 nanowires and then
used for a rapid assessment of tomato paste and vegetable
soups, in some cases artificially contaminated with yeasts
and bacteria [62]. After 24 h of inoculation, the electronic
nose was able to correctly classify tomato samples spoiled
with C. milleri yeast and vegetable soup samples contami-
nated with E. hormaechei and E. coli in 98.9 and 100% of
cases, respectively.

An α-FOX electronic nose (Alpha MOS, Toulouse,
France) using tin oxide, chromium titanium oxide, and
tungsten oxide sensors with different geometries were
used to distinguish five different cultivars of garlic. The
odor profiles of the fresh garlic scapes (Sureño, Castaño,
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Gostoso, Fuego, and Morado) were expected to be dif-
ferent because of different amounts of allicins and sulfide
compounds. LDA was used to analyze the garlic scapes,
proving that the electronic nose is able to distinguish
the different cultivars with a correct classification of
53.3% [63].

An e-nose system using eight metal oxide sensors by
Parallax Engineering Inc. (Long Beach, CA, USA) was
used to measure different climacteric fruits and assess
their ripeness. The results were first visually inspected
in the form of radar graphs, showing a significant differ-
ence between the odor prints of guava, banana, and
orange samples. The responses of the sensors were then
combined and analyzed with the PCA, managing to qua-
litatively distinguish the three fruits [64].

Three sensors (on six) of a commercial electronic
nose EOS835 were replaced with resistive devices based
on SnO2 and ZnO nanowires, and the instrument was
used to assess the quality of grated Parmigiano Reggiano
(PR) cheese [65]. Different kinds of crust and pulp were
mixed with different ratios, and the electronic nose was
able to qualitatively classify the pure-pulp samples from
those with 5 and 10% of the crust, through a two-dimen-
sional PCA plot.

The results from a commercial electronic nose, a
panel of nine expert panelists, and a gas chromatograph
were compared analyzing 25 samples of PR [66].

The EN, based on an array of six metal oxides gas
sensors (three of which in the form of nanowires), was
used to evaluate the quality of grated PR samples. It was
able to qualitatively discriminate between degraded and
nondegraded samples (Figure 10a) and recognize the
degree of seasoning (Figure 10b), demonstrating that
such a fast and sensitive tool would help in the quality
control of food products.

Two conductometric gas sensors, based on ZnO and
SnO2 nanowires grown on alumina substrates, were fab-
ricated and used together to investigate samples of grated
PR with different crust contents (from 0 to 100%) [67].
The sensing system was able to qualitatively distinguish
three groups of points in a PCA plot, relating to samples
with 20, 50, and 100% crust content.

The S3 device from the SENSOR laboratory in Brescia
was tested by assessing the quality of grated PR and
comparing it with the opinions of a panel of experts [68].
The instrument isolated the samples evaluated as “bad” by
the panelist from those evaluated as “good” or “flat”,
proving capable of performing a quality prescreening.

The same instrument was tested, in parallel with a
spectrocolorimeter, to investigate the ripening (from 11 to
36 months) of grated PR [69]. A PCA plot shows that theTa
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Figure 9: (a) Polar plots with the responses of the sensors in the array to the aroma of various alcoholic beverages. (b) Corresponding LDA
plot of the sensor array to the beverages aromas. Reprinted with permission from ref. [58].

Figure 10: (a) PCA plot of degraded and undegraded cheese samples in black and blue, respectively. (b) PCA of cheese samples with
different ripening times (in months). Edited with permission from ref. [66].
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different ripening categories are quite separate, except
the 24 and 30 month ones, which are overlapping.

An electronic nose that also uses MO nanowires was
used to identify possible counterfeits of PR around the
world [70]. Several samples of PR from different producers
and several samples from European and US competitors
were tested. Gas chromatography showed that six volatile
compounds were sufficient to discriminate against USA or
European competitors (EC) of PR. Using the response and
response time of selected sensors as features for PLS, the
electronic nose was able to distinguish the original PR
from competitors with an 80% correct classification. A
PLS score plot is shown in Figure 11, demonstrating the
classification of PR, European, and USA competitors.

Three nanowire-based gas sensors were used in an
electronic nose composed of six sensors in order to recog-
nize different characteristics of grated PR [71]. The clas-
sification from PLS-DA and ANNs was evaluated and
compared. The electronic nose was used to estimate
both the seasoning (12 or 24 months), the rind working
process, and the percentage of rind present in the grated
product. The classification of the seasoning was perfect
for ANN and correct in 94.7% of cases for PLS-DA. The
classification of the rind working process was perfect in
all cases but the 24-month samples with PLS-DA gave a

79% correct label. The classification of the rind percen-
tage ranged from 58.8 and 100%.

An electronic nose with three sensors based on MO
nanowires (out of a total of eight MO sensors)was used to
detect the presence of Campylobacter jejuni, for a poten-
tial application in the agrifood field [72]. Since the bac-
teria consume some molecules and their metabolism
produces other molecules, their presence can be detected
by the headspace. The electronic nose was able to qualita-
tively follow the bacteria growth and concentration increase
in a PCA plot.

A low-power electronic nose using SnO2, CuO, and
WO3 nanowires was used to detect different food preser-
vatives (ethanol, nitrogen dioxide, and ozone) [73]. The
three gases overlap on the PCA plot, showing a poor
qualitative classification. The integration of the nano-
wires on micro hotplates allows one to foresee the use
of pulsed temperature operation.

The S3 electronic nose developed by the group of
Brescia was used to assess some characteristics of PR
[74]. This work is meant to generalize the results obtained
in ref. [71]. Using an array of different sensors, the
authors identified several different features from each
sensor signal, then verified which were the most informa-
tive and used them to train an ANN. This process in three

Figure 11: PLS score plot showing different cheeses. PR is represented by blue circles, EC by red squares, and US competitors (USA) by green
triangles. Reprinted with permission from ref. [70].
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steps was repeated for each classification (seasoning,
rind working process, rind percentage) in order to opti-
mize it. By choosing the best materials and features, a
classification accuracy between 88 and 100% was found.
Figure 12 shows four of the many features selected to
train the ANN and then to test the electronic nose.

A single SnO2 nanowire was used at three different
temperatures in order to mimic an electronic nose. The
responses of the single-nanowire chemiresistor at 200,
250, and 300°C were combined and analyzed with prin-
cipal component analysis. The system proved capable of
assessing the freshness of rainbow trout fish according to
their total viable count measurement [75]. The PCA graph
in Figure 13 where the freshness of the fish is indicated by
the color of the points shows a curve indicating the
degradation of the fish.

An electronic nose consisting of a single SnO2 semicon-
ductor nanowire, used at different temperatures (200–360°C),
was used to recognize the degradation state of pig and
marble trout samples. Using as features the response of
the resistive sensor at five different working temperatures,
the device was able to recognize the type of sample (meat
or fish) in 95.2% of cases and to evaluate its freshness in
90.5% of cases [76].

An electronic nose composed of four commercial
sensors (MQ-138, MQ-135, MQ-3, and TGS 2602) based
on SnO2 was used to recognize whitefly infestation in
tomato plants. The electronic nose was able to distinguish
healthy plants from stressed ones bymeans of HCA and PCA
[77]. Using gas chromatography-mass spectrometry, the
authors found that only infested plants produced 2-non-
anol and n-hexadecanoic acid, which have known anti-
parasitic properties against nematodes. This suggests that
they are emitted by plants in response to the attack of the
whitefly and that the sensors can detect this effect.

An array of six commercial SnO2-based gas sensors
were used to detect the presence of E. coli in chicken
samples [78]. Six statistical features (mean, kurtosis,
median, standard derivation, skewness, and variance)
were extracted from the measurement of each sensor.
Using a random forest, the electronic nose was able to
identify fresh and contaminated samples with an accu-
racy of 99.2 and 98.4%, respectively.

Six composite sensors, based on SiO2 nanofibers: In2O3,
SiO2: ZnO and SiO2 modified with polyaniline and poly
(styrene sulfonate) were used by electrical impedance
measurements on analytes related to fish meat degrada-
tion (ammonia, methylamine, and trimethylamine) [79].

Figure 12: Four features extracted from the normalized signal of nanowire SnO2 sensor: (a) variation of resistance from the baseline (DR/R0);
(b) area under the signal up to the minimum (in green); (c) total area under the signal (in green); and (d) fall time between 10 and 90% of the
signal drop. Reprinted with permission from ref. [74].
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The relative electrical resistance response as a function of
frequency was used for multivariate data analysis. The
electronic nose was tested in the range 5–15 ppm with
ammonia, methylamine, and trimethylamine. Using non-
linear interactive document mapping, the device was
able to qualitatively distinguish fish samples stored at
0, 24, 30, and 48 h. Some characteristics and parameters
of the electronic noses analyzed in this section are com-
pared in Table 2.

4.3 Health

Carmona et al. used an electronic nose to monitor the
growth of E. coli in water, in order to assess whether it
can detect traces of the bacterium in drinking water and
thus prevent water-borne diseases [80]. The pH and
optical density measurements are very well correlated,
while the plot made with the measurements of the elec-
tronic nose shows a drift of the points over time that

Figure 13: PCA plot of random samples of rainbow trout. The color of
the points indicates the log(TVC) according to the scale on the right.
Reprinted with permission from ref. [75].

Table 2: List of scientific papers on electronic noses based on metal oxide nanowires applied to agrifood products

Metal oxides Decoration Target gas Temperature (°C) Array difference Brain Ref.

SnO2 Pd Isopropyl alcohol, ethanol, toluene,
CO, diluted beverages

290 Width + surface
decoration

Radial
plot, LDA

[58]

SnO2 — NH3, H2S, CO, ethanol, coffee 450 Materials Radar
plot, PCA

[59]

SnO2 — Coffee roasting 350–400 Materials PCA [60]
SnO2 — Coffee roasting 350–400 Materials PCA [61]
SnO2 — Tomato paste + vegetable soup Not available Materials PCA, LDA [62]
SnO2, Cr2TiO5, WO3 — Different garlic cultivars Not available Materials LDA [63]
SnO2 — Banana, guava, orange Not available Materials PCA [64]
ZnO, SnO2 — Parmigiano cheese Not available Materials PCA [65]
ZnO, SnO2 — Parmigiano cheese 280–500 Materials PCA [66]
ZnO, SnO2 — Parmigiano cheese 350–500 Materials PCA [67]
ZnO, SnO2 — Grated parmigiano cheese Not available Materials PCA [68]
ZnO, SnO2 — Parmigiano cheese 245–500 Materials PCA [69]
ZnO, TiO2,
SnO2, CuO

Au Parmigiano and other cheeses 400 Materials, signal
features

PLS-DA [70]

SnO2, CuO Au Grated parmigiano cheese 350–400 Materials PLS-
DA, ANNs

[71]

SnO2, CuO Au Campylobacter jejuni 350–400 Materials PCA [72]
SnO2, CuO, WO3 — Ethanol, acetone, nitrogen dioxide,

ozone
200–400 Materials radial

plot, PCA
[73]

SnO2, CuO Au Parmigiano cheese 350–400 Materials, signal
features

ANN [74]

SnO2 — Rainbow trout fish 200–300 Temperature PCA [75]
SnO2 — Pork, marble trout fish 200–360 Temperature PCA, SVM [76]
SnO2 — Healthy and infested tomato plants Not available Materials PCA, HCA [77]
SnO2 — E. coli on chicken meat Not available Materials SVM, RF [78]
SiO2:In2O3, SiO2,
SiO2:ZnO

PANI, PSS NH3, MA, TMA, fish, degraded fish 25 Materials IDMAP [79]
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reflects the change in the headspace due to the growth of
bacteria.

The same EN, using two nanowire-based sensors,
was used to detect the presence of E. coli and L. mono-
cytogenes in potable water [81]. The system was capable
of detecting the presence of bacteria, and the lines that
the dots follow in the PCA plots indicate the potential to
track bacterial growth over time in a qualitative way. The
lack of a comparison with a technique that measured the
concentration of bacteria does not allow us to have an
estimate, even qualitative, of the limit of detection.

The microbiotic contamination detection performance
of an electronic nose was tested against mold, spoilage
lactic acid bacteria (LAB), and coliform bacteria [82]. The
system was able to follow the growth of mold in coffee
beans over time and detect the presence of different types
of LAB bacteria compared to an uncontaminated sample. It
was also able to detect the presence and growth over time
of coliform bacteria in the water of a toilet and well.

An electronic nose consisting of six sensors based on
differently decorated WO3 nanowires was compared with
an electronic nose based on six commercial SnO2 sensors,
testing them on the breath of smokers from that of non-
smokers [83]. The PCA plots show qualitative classifica-
tion with both ENs but the confusion matrix obtained
with SVM showed a success rate of 99.09 and 94.59%
for WO3 and SnO2 sensor array, respectively.

An electronic nose based on six sensors, three of which
of ZnO and SnO2 nanowires, was used to analyze the growth
of skin microbiota in an artificial sweat solution [84]. Three
different microbial blends (each composed of a bacterium, a
yeast, and a fungus) were inoculated at concentrations of
3.75 and 1.25 × 106 CFU/mL for prokaryotes and eukaryotes,

respectively. A 2D PCA plot is shown in Figure 14 demon-
strates that the system was able to qualitatively distinguish
mixture B (E. coli, Rhodotorula, and FGO3) and detect its
development over time. The achieved results show that the
electronic nose can discriminate the microorganism blends
from the VOCs emitted by the microbial metabolism.

A similar device was used by the same group to detect
the presence of microbiological pollution in water [85].
The electronic nose was able to qualitatively distinguish
potable water from water contaminated with pathogenic
microorganisms such as Escherichia coli, Salmonella typhi-
murium, Vibrio cholerae, and Pseudomonas aeruginosa,
detecting the volatiles they emit (like indole, a volatile
typically emitted by E. coli).

Five different metal oxides, one p-type (NiO) and four
n-type (WO3, SnO2, ZnO, and Nb2O5) were assembled into
an electronic nose and used to discriminate between pure
and contaminated water [86]. After a first phase in which
the performance of each sensor was assessed in detail,
the electronic nose was tested on drinking and contami-
nated water samples and was able to distinguish them
without any training (through a PCA plot). Using a gas
chromatograph, the volatiles that most distinguish the
samples were found during microbiotic growth over the
course of a week.

Six sensors based on MO nanowires, some of which
superficially decorated, were used in an electronic nose
to discriminate potable water, wastewater, and waste-
water containing cyanide [87]. An ANN was trained and
then used to classify the water samples, achieving a clas-
sification rate equal to 97.62%. The main volatiles present
in different water samples were found using gas chroma-
tography –mass spectrometry.

Figure 14: A PCA plot of different microbial blends along the 20 h analysis. Modified with permission from ref. [84].

916  Matteo Tonezzer et al.



Five commercial sensors (Figaro Engineering Inc.,
Osaka, Japan) each based on a single metal oxide were
used to investigate the breath of patients with chronic
obstructive pulmonary disease and lung cancer. For each
of the 200 participants, fasting for 2 h, a measurement of
120 s was acquired and then was analyzed using different
ensemble learning methods. Using the XGBoost algorithm,
the system gave an accuracy, sensitivity, and specificity of
79.3, 70.0, and 84.2%, respectively, for lung cancer detec-
tion, and 76.7, 66.7, and 83.3% for chronic obstructive
pulmonary disease detection [88]. Some characteristics
and parameters of the electronic noses analyzed in this
section are compared in Table 3

4.4 Security

In order to demonstrate the feasibility of an electronic
nose based on 1D nanomaterials, Chen et al. fabricated
trinitrotoluene (TNT) sensors based on single-wall carbon
nanotubes (SWCNTs) and ZnO nanowires [89]. The sen-
sors were able to detect the presence of TNT down to a few
parts per billion (8 and 60 ppb for SWCNTs and ZnO nano-
wires, respectively) at room temperature. The responses of
the two materials are different (responses of SWCNTs are
linear up to 1 ppm, while those of nanowires tends to satu-
rate) and therefore prove to be suitable for use in an elec-
tronic nose.

An electronic nose using SnO2 nanowires and other
metal oxides in a thin film form was tested with simulants
of chemical warfare agents: acetonitrile as a simulant for
cyanide compounds and dimethyl methylphosphonate as
a simulant for the nerve agent [90]. The specific response

intensities of the different materials to the tested gases
resulted in a sort of “fingerprint” of the gases, demon-
strating the potential as an electronic nose.

An integrated sensor array fabricated in the “print
and fry” technique and consisting of 16 segments with
different densities of SnO2 nanowires (like the KAMINA
approach) was tested to detect explosive materials and
the smell of burning from several common materials [91].
During various tests, the sensor was shown to distinguish
the smell of burning polypropane, polyethane, beech,
polychlorinated biphenyl, cotton, and paper, using LDA,
with a separation quality of 74.5%. Furthermore, the elec-
tronic nose distinguished ammonium nitrate, nitro ben-
zene, nitrotoluene, and dinitrotoluene with a separation
quality of 53.3% working at 25°C (activated under UV illu-
mination) and 70% RH.

An electronic nose based on a 4 × 3 array of sensors
based on different metal oxides (SnO2, WO3, ZnO, and
TiO2) with different surface decorations (Al, Ti, and Au)
was used to detect toxic gases (NO2, NO, H2S) [92]. Using
a bar plot of the responses of the 12 sensors as a finger-
print of each gas, the authors demonstrated the feasibility
of an electronic nose capable of qualitatively distin-
guishing the three target gases.

An array of 16 resistive sensors based on random
densities of SnO2 nanowires was used to distinguish the
preburning smell of different substances [93]. The elec-
tronic nose was working at room temperature in 50% RH,
illuminated by ultraviolet light. After a first phase of mea-
suring single gases (isopropanol, CO, benzene), the elec-
tronic nose was tested with different substances heated
up to 200°C. At this temperature, the system was able to
distinguish cotton, beech, and polychlorinated biphenyl.
The dynamic resistance of the sensors was used as input

Table 3: List of scientific papers on electronic noses based on metal oxide nanowires applied to the health field

Metal
oxides

Decoration Target gas Temperature (°C) Array
difference

Brain Ref.

SnO2 — VOCs from E. coli Not available Materials PCA [80]
ZnO, SnO2 — VOCs from bacteria Not available Materials PCA [81]
SnO2 — Coffee, water Not available Materials PCA [82]
SnO2, WO3 Au, Pt, Pt–Au,

Ni, Fe
Smokers/nonsmokers breath air Not available Materials radar plot,

PCA, SVM
[83]

ZnO, SnO2 — Skin microbiota 280–500 Materials PCA [84]
ZnO, SnO2 — Indole (2,3-benzopyrrole) from E. coli 400 Materials PCA [85]
NiO, WO3,
ZnO, SnO2

Au Water + E. coli 200–400 Materials PCA [86]

SnO2 Au Water, wastewater + cyanide Not available Materials PCA, ANN [87]
SnO2 — Breath from healthy people and patients

diagnosed with chronic obstructive
pulmonary disease and lung cancer

Not available Materials XGBoost,
AdaBoost, RF

[88]
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features for LDA. The electronic nose successfully discri-
minated all the substances at preburning temperature
with a separation quality of 88%. A real field scenario
was set up, with the electronic nose inside a real room,
far from the heated materials. Also, in this case, the
system was able to distinguish the materials heated,
with a separation quality of 86%. In this way, an alarm
can be set to also indicate the type of material that could
trigger the fire.

An array of six commercial SnO2-based gas sensors
were used to study wood samples from two types of plants:
sugi (Cryptomeria japonica) and karamatsu (Larix kaemp-
feri) and detect the presence of fungi (F. palustris and
T. versicolor). The electronic nose was able to discriminate
in a qualitative way (PCA) the wooden samples infested by
fungi [94].

Nanostructures of Mn3O4 were grown by vapor deposi-
tion in different atmospheres (O2 and O2 + H2O) in order to
study how the growth conditions varied their characteristics
and sensing performance [95]. The sensorswere tested toward
acetonitrile (CH3CN) and dimethyl methyl phosphonate
(DMMP), both used as simulants for cyanide warfare agents.
Increasing the working temperature from 200 to 300°C, the
sensors were able to detect CH3CN with good selectivity.

Nanostructured composite materials based on Mn3O4

have been used as conductometric sensors to detect low
concentrations of chemical warfare agents [96]. Pristine
Mn3O4, Ag/Mn3O4, and Au/Mn3O4 were tested for di(pro-
pylene glycol) monomethyl ether (DPGME), acetonitrile
(CH3CN), and DMMP, as well as acetone and ethanol. The
sensors proved to be selective toward chemical warfare
agent simulants, especially working at 300°C. In particular,
Au/Mn3O4 showed high selectivity for DPGME

Composite nanostructures of Fe2O3/Mn3O4 and ZnO/
Mn3O4 have been used as selective sensors towards ammonia
with respect to nitrogen dioxide and acetonitrile (CH3CN), a
toxic gas used as a simulant of cyanide warfare agents [97].
Composite nanomaterials are selective toward ammonia and
NO2, while pristine Mn3O4 shows a marked selectivity toward
CH3CN between 200 and 300°C.

Composite sensors based on almost one-dimensional
CuO/MnO2 and SnO2/MnO2 nanostructures were used to
detect di(propyleneglycol) monomethyl ether and DMMP
(used as simulants for chemical warfare agents) and
hydrogen. Working at 250°C, the metal oxide hetero-
nanostructures showed a remarkable selectivity toward
the gas chemical warfare agents [98]. The use at three
different temperatures (150–250°C) could increase the
selectivity even more. Some characteristics and para-
meters of the electronic noses analyzed in this section
are compared in Table 4. Ta
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5 Discussion

Some conclusions can be drawn from the collection of
articles discussed. First, despite the large number of
scientific articles on gas sensors, nanowires, and elec-
tronic noses, in the last decade, there have been a few
articles on electronic noses using metal oxide nanowires.
It is reasonable to think that this is due to the different
technological maturity of the two topics: electronic noses
have been studied since the 1980s, while only in the last
15 years has it been possible to integrate nanowires into
functional devices.

Metal oxide nanowires are a widely used material for
gas sensors. Initially, the focus was on n-type semicon-
ductors, which perform better, but recently p-type semi-
conductors are also gaining momentum as they are useful
for increasing selectivity.

As seen in the left part of Figure 15, this different
interest in metal oxides is confirmed by the articles stu-
died here: SnO2 is by far the most used, followed by ZnO.
The other oxides are used in about one-third of cases.

Recently, the performance of gas sensors based on
MO nanowires has been greatly improved by decorating
their surface with nanoparticles. At first, the decoration
was carried out with precious metals (Ag, Au, Pt), then it
was extended to metal oxides and finally to a wide range
of materials. This technological evolution is visible in the
right part of Figure 13, in which most of the articles dis-
cussed here are not superficially decorated, and the most
used nanoparticles are those of Au and Pt. The decoration
with metal oxides is receiving great attention also for the
possibility of creating p–n junctions and it is growing
strongly in recent times.

Using different metal oxides or surface decoration
with different materials is the most common way to

make a sensor array that is the basis for an electronic
nose. Since an electronic nose tries to mimic the olfactory
system of mammals, made up of many receptors with
different properties, the first devices were born using sen-
sors made of different materials. Even when nanowires
began to be used, this approach remained the most
common, whether different sensors were used or inte-
grated on a single platform. As can be seen in the left
part of Figure 16, the material and the surface decoration
(another aspect of the material) are the basis of almost
three-quarters of the devices analyzed.

However, as can be seen in the figure, the use of nano-
wires has broadened the range of parameters that can be
used to differentiate the sensors in the array and generate
selectivity. Different materials and different signal para-
meters were already used for macroscopic sensors, but using
nanowires it is also possible to vary their density and make
them work in a temperature gradient, for example.

Another aspect to consider, which has been used as a
framework for this review, is the application for which
the electronic noses were used. Section 3 has been divided
into subsections relating to the pure scientific-technolo-
gical aspect and use in the agrifood, health, and safety
fields. The proportions of these uses are shown in the right
part of Figure 16. It can be clearly seen that in the vast
majority of cases the electronic noses are used in the
laboratory and tested with pure gases, for purely scientific
tests. The lack of real applications may indicate that tech-
nological maturity has not yet been reached.

This fact is confirmed by the graphs in Figure 17. The
left side shows the method used to illustrate the final
results obtained by the electronic nose.

In some cases, these are real machine learning algo-
rithms, often a simple visualization of the points, and
sometimes a simple graph of the raw responses. As can

Figure 15: Frequency of use of different metal oxides in the fabrication of electronic noses based on nanowires (left); frequency of use of
different materials as superficial decoration for MO nanowires (right).
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be seen, PCA is used in almost half of the cases, which is
a method of reducing dimensionality in order to visualize
the data, and in this case, the electronic nose does not
autonomously give any response. The maximum achiev-
able result is the comparison of new measurements with
those used for training (qualitative classification), but it
is done by the operator with human eyes and brain, and
not by the electronic nose. The real algorithms that give
an output (classification or even quantification) are LDA,
PLS-DA, SVM, and ANN, and together they add up to
about one-third of the cases studied. In 20% of cases,
the authors simply indicated the response of the various
sensors that make up the electronic nose giving the
values or graphing them in box plots, bar plots, or radar
plots. The case of RGB encoding is similar to a litmus test,
which gives an approximate quantification but needs a
human operator (like PCA).

The right part of Figure 17 shows the type of final
information that the electronic nose provides. In 20% of
cases, there is only a proof of concept, which usually
consists of the raw responses from the sensors (a sort of
fingerprints). In most cases, the device only gives a

qualitative classification, i.e., a visual comparison (which
needs a human operator, as the system is not capable of
it) between the calibration data and any new measure-
ment. Only 9.1% of the ENs provide a real classification
obtained autonomously. Although it is the final goal of an
electronic nose, only a small part of the systems analyzed
is able to give a quantitative estimate autonomously.
Depending on the application, this can be an important
defect: in certain contexts, it is sufficient to distinguish dif-
ferent cases (for example, patients with a certain pathology
from healthy individuals), but in others it is necessary to
understand which gas is present and in what concentration
(for example, a fire sensor that must not misinterpret
cooking smells).

6 Conclusions and outlook

The scenario depicted by the articles analyzed in this
review indicates a recent and not yet fully developed
combination of MO nanowires and machine learning

Figure 16: Features that differentiate the sensors in the array that makes up the electronic nose (left); application for which the electronic
nose was tested (right).

Figure 17: Features that differentiate the sensors in the array that makes up the electronic nose (left); application for which the electronic
nose was tested (right).
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algorithms for fabricating electronic noses. There is cer-
tainly a lot of potential in this synergy (as demonstrated
by the flourishing of innovative approaches), but the
results are still limited in most cases. This is likely due
to the inherently interdisciplinary nature of this subject,
which combines materials science and nanotechnology
(growth of nanowires), micromachining (electrodes and
device), electronics (signal acquisition and processing),
and machine learning (statistical analysis of responses).

The scientific literature shows a much greater develop-
ment in the aspects related to materials science and nano-
technologies, while the implementation of data mining and
artificial intelligence methods is still limited, both for the
extraction of features and their analysis. This is probably
because the authors are largely experts in resistive gas sensors
based on nanostructured metal oxides, who have indepen-
dently acquired basic knowledge about machine learning,
while the opposite situation is not common. This imbalance
is demonstrated by the attention given to the growth and
characterization of nanomaterials or to the improvement of
individual sensors (response intensity, response and recovery
time, limit of detection), while little attention is given to fea-
tures extraction and their processing (in many cases, these
passages are not even present), which are equally important
for the final performance of an electronic nose.

Another weakness of nanowire-based electronic noses
is that they are almost always tested under laboratory con-
ditions, with exact concentrations from pure gas cylinders.
The few applications with real samples are also carried out
under simplified laboratory conditions, without all the
possible adversities of field measurements (including the
wide variability of real samples). This type of experiment
works for single selective sensors to be applied under spe-
cific conditions (no or few interfering gases, narrow tem-
perature, and humidity range) but not for electronic noses.
This type of device has been designed precisely to identify
gases and volatile organic compounds in the presence of
many interfering molecules, and therefore, field measure-
ments under realistic conditions are needed. The absence
of real-world applications in the reviewed literature indi-
cates that research on electronic noses based on metal
oxide nanowires is still in its infancy: better funda-
mental research and wider real-world applications are
still needed.

It should be emphasized that several new approaches
have recently been developed, both regarding the differ-
entiation of sensors in the array and the choice of features
to extract and process. In this sense, the new approaches
shown in this excursus, even very different from each
other, demonstrate the interest of the scientific commu-
nity in the topic. Traditional electronic noses, composed

of single macroscopic gas sensors, continue to provide
interesting results, but the new integrated architectures
based on nanowires offer very important advantages in
the era internet of things. Given the very wide diffusion
and rapid innovation of personal technological tools
(smartphones, smartwatches) and the need for sensors
to collect information about the world around us, this
new generation of electronic noses will surely attract
more and more interest also through the synergy of
nanoscience and artificial intelligence.
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