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12 ABSTRACT

13 Google Earth provides potential for exploiting an enormous reservoir of freely-

14 available remotely sensed data to support river science and management. In this 

15 paper, we consider how the platform can support investigation of river physical forms 

16 and processes by developing an empirically-based reach-scale classification of semi-

17 natural European single thread to transitional rivers. Using strict reach and image 

18 selection criteria, we identified 194 reaches of 68 rivers for analysis. Measurements of 

19 channel dimensions and counts of in-channel and floodplain features, standardised 

20 for reach length and channel width where necessary, were used to derive a series of 

21 geomorphologically-relevant process indicators. A suite of multivariate analyses were 

22 then applied to this data set, resulting in the discrimination of five river types: laterally 

23 stable, laterally active sinuous-meandering; transitional (near-braided); bedrock; and 

24 cascade/step dominated. The results of the classification were tested by examining 

25 the characteristics and distribution of the river classes in relation to known independent 
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1 controls of river form including reach-scale energy and valley confinement conditions. 

2 Our results show that if methods of data extraction are carefully developed, physically 

3 meaningful river reach discrimination can be achieved using Google Earth. Although 

4 there are limits to the types of information that can be extracted such that field 

5 investigations cannot always be avoided, there is enormous potential to mine Google 

6 Earth across different space and time scales, supporting the assembly of large, 

7 reliable data sets relevant to river forms and processes in a very cost-effective way. 

8

9 KEYWORDS

10 Google Earth, form, process, geomorphic units, river classification
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1 INTRODUCTION

2 Google Earth as a potential information source for investigating river forms and 

3 processes

4 Bizzi et al. (2015) and Marcus and Fonstad (2010) reviewed the many possibilities for 

5 supporting research relevant to river science and management that are offered by 

6 advances in remote sensing technologies and data analysis techniques, and the 

7 increasing availability of remotely sensed data sets. They concluded that data 

8 acquisition costs remain relatively high and data processing usually requires 

9 significant expertise, with the result that the use of remote sensing data in river science 

10 continues to be focused on resolving specific questions and developing sophisticated 

11 modelling methodologies (e.g. Alber and Piégay, 2011; Schmitt et al., 2014), usually 

12 in relation to particular geographical areas of interest. However, Google Earth is 

13 highlighted as a freely available global information system that provides a range of 

14 remotely-sensed data sets in a format that can be easily used by river scientists and 

15 practitioners who have little background in remote sensing. Thus, Google Earth 

16 provides some potential for exploiting remotely sensed data more widely within river 

17 science and management (e.g. Large and Gilvear, 2015). 

18

19 Google Earth incorporates a virtual globe based on the World Geodetic System 1984 

20 (WGS 1984) onto which geographical information is projected. Data layers include 

21 satellite and aerial images which are georeferenced to the same virtual globe. The 

22 typical baseline resolution of Google Earth data varies across the Earth’s surface 

23 according to the imagery incorporated within the information system. Across Europe, 

24 the study area for the research reported herein, recent images are often of high spatial 

25 resolution because of the wide availability of airborne imagery with resolutions of 0.15-

Page 3 of 54

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

1 0.30 m. Where imagery is acquired by satellite, the resolution varies from 

2 approximately 0.3-0.5 m (Digital Globe’s WorldView platform) to 10-30 m (ESA’s 

3 Sentinel 2 and NASA’s Landsat 8). Historical imagery (usually extending back to ca. 

4 2000, but sometimes to the mid-twentieth century) is also available for most locations. 

5 In addition, digital elevation data from NASA’s Shuttle Radar Topography Mission 

6 (SRTM, Farr et al., 2007) are incorporated into Google Earth and the data can be 

7 extracted as point elevations. Google Earth therefore represents a potentially 

8 significant source of information to support many environmental investigations 

9 because it is freely available, it integrates a vast selection of images as well as digital 

10 elevation data, and it provides tools to extract elevation and distance measurements. 

11

12 Morphological classification of rivers

13 The physical attributes (i.e. size, shape, bed and bank materials, constituent 

14 geomorphic/habitat features) and behavioural characteristics (i.e. magnitude, 

15 frequency and style of adjustment, sensitivity) of rivers are determined by controls that 

16 operate over a range of spatial and temporal scales (Brierley and Fryirs, 2005). For 

17 example, lithology and tectonic setting influence both the potential energy available to 

18 a river to perform geomorphic work (via their effect on elevation, slope and valley 

19 width) and the amount and type of sediment available for transport. Likewise, climate 

20 (both directly and indirectly through its control on vegetation) influences the 

21 magnitude, frequency and sequencing of flow and sediment transport. Spatial variation 

22 in these boundary conditions along and between rivers gives rise to different process 

23 interactions that combine to produce remarkable reach-scale diversity in terms of river 

24 appearance and responses to individual flood events. 

25
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1 This fundamental link between form and process has provided the theoretical basis 

2 upon which numerous river classification schemes have been developed (e.g. 

3 Schumm, 1977; Montgomery and Buffington, 1997; Brierley and Fryirs, 2005; Beechie 

4 et al., 2006; Gurnell et al., 2016). Such classifications share a common goal of seeking 

5 to simplify the complexity of natural landscapes by identifying locations that function 

6 in similar ways (Tadaki et al., 2014; Kondolf et al., 2016), thereby providing a spatial 

7 framework under which, for example, links between physical and ecological processes 

8 can be investigated (Frissell et al., 1986; Naiman, 1998), hypotheses regarding the 

9 impacts of landscape disturbance can be developed and tested (Buffington and 

10 Montgomery, 2013), reaches suitable for rehabilitation can be identified (Brierley and 

11 Fryirs, 2000), and river restoration designs can be developed and implemented 

12 (Rosgen, 1994). This is achieved through the measurement of a variety of physical 

13 properties (increasingly quantified across different scales), selected on the basis that 

14 they are somehow reflective of the underlying processes that determine the 

15 appearance and behaviour of the river at a given point.

16

17 There has been considerable debate over the appropriateness of certain river 

18 classification schemes for applications in river management (Simon et al., 2007; Lave, 

19 2009), with criticism centred on their lack of direct measurement of process rates, 

20 together with insufficient recognition of the importance of catchment and historical 

21 context (Montgomery and Buffington, 2013). Nevertheless, recent analysis by Kasprak 

22 et al. (2016) has shown that there can be widespread agreement between the outputs 

23 of different classification frameworks that have varying degrees of sophistication and 

24 data requirements when applied in the same catchment, suggesting some of these 

25 concerns may be overstated and that meaningful inference of fluvial processes can be 
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1 achieved through relatively straightforward quantification of form-based parameters. 

2 While this is encouraging, the vast majority of existing classification schemes are 

3 difficult to apply in situations where field measurement is dangerous and/or 

4 impractical, secondary data on channel morphology, grain size, etc. are either not 

5 available or spatially limited, and/or a large number of rivers need to be classified. 

6 They also fail to take full advantage of the improved variety and coverage of 

7 geomorphologically-relevant data that emerging technologies are generating. Google 

8 Earth provides an enormous, freely available data source that could be exploited for 

9 investigating many aspects of river environments; this research specifically explores 

10 whether it can support discrimination of river types through the extraction of form-

11 based process indicators.

12

13 Research aims

14 In this paper, we explore the degree to which data sets describing process-relevant 

15 dimensional and morphological characteristics of rivers can be extracted from Google 

16 Earth via its Google Earth Pro software application. We test the utility of this 

17 information by investigating whether it can be used to develop a geomorphologically-

18 meaningful, empirically-based classification of European semi-natural rivers, 

19 focussing mainly on single thread and transitional river planform styles. Our 

20 empirically-based analysis is bottom-up, allowing observed form-based process 

21 indicators to drive the classification rather than applying any a priori discrimination 

22 rules (for example, differentiating between river reaches on the basis of a 

23 predetermined sinuosity threshold). We then test the outcomes of the classification by 

24 examining the characteristics and distribution of the river classes identified through 

25 our analysis in relation to known independent controls of river form including reach-
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1 scale energy and valley confinement conditions, thereby exploring the extent to which 

2 process can be inferred from form. 

3

4 METHODS

5 Reach selection

6 In order to test the degree to which meaningful morphological features and dimensions 

7 can be extracted from Google Earth, sites displaying single thread or transitional 

8 planform styles (the planform types that dominate in Europe, Tockner et al., 2009) 

9 were selected for analysis which were also:

10

11 (i) as morphologically intact and free to adjust as possible. This was achieved by 

12 identifying river sites that appeared to be unconfined by buildings, infrastructure and 

13 channel training works such as embankments. Because of the widespread 

14 modification of European rivers, sites where up to 10 % of the channel length was 

15 affected by engineering structures were permitted, although virtually all selected sites 

16 showed a negligible extent of such interventions. However, it is important to note that 

17 not all modifications are apparent from a planview image and thus some selected sites 

18 may have greater modification than was anticipated;

19

20 (ii) located at sites with unregulated flow regimes. All sites displayed little evidence of 

21 large dams upstream, although one was located downstream of what appeared to be 

22 a large natural lake and another was close to an upstream weir. However, evidence 

23 of considerable flow and sediment dynamics in the sequence of available images 

24 suggested that this structure was probably quite low and/or imposed minimal flow and 

25 sediment regulation on downstream reaches. Most sites were located within 30 km of 
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1 a river flow gauging station that had been deemed to have a near-natural flow regime 

2 (Stahl et al., 2010). The list of gauging stations emanated from a European research 

3 programme (FRIEND) that did not include all countries within Europe. As a result, not 

4 all European countries were represented among the selected sites and only a few sites 

5 were included from countries that were not part of the FRIEND programme;

6

7 (iii) represented by at least one cloud free, high resolution image since 2000, which 

8 appeared to show the river under baseflow conditions to maximise the potential to 

9 identify in-channel features. 

10

11 These reach selection criteria were designed to ensure that, as far as practically 

12 possible, morphological features and dimensions could a) be easily identified and b) 

13 would be reflective of a process regime not significantly affected by anthropogenic 

14 activity. 68 suitable sites were identified (Figure 1) on different European rivers and up 

15 to three reaches (each with a length exceeding 70 active widths) were selected for 

16 analysis within each site, giving a total of 194 reaches from which dimensional and 

17 morphological information could be extracted. A minimum reach length of 70 active 

18 widths was used to maximise opportunities for feature identification and reduce the 

19 effect of any vertical inaccuracy in elevation data on derived slope values. The mean 

20 reach length was 7.2 km. 

21

22 Feature extraction and processing 

23 A list of channel dimensions and associated indices (Table 1) and morphological 

24 features (Table 2) was assembled that had both process relevance and the potential 

25 to be extracted from Google Earth imagery and digital elevation data. Rules for feature 
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1 identification were developed iteratively by inspecting images of many river reaches 

2 until a stable set of features and identification rules was established. This set of 

3 features was then extracted for each of the 194 reaches.

4

5 Morphological feature frequency is affected by the dimensions of the river reach in 

6 which the features are located, including the reach length (the longer the length, the 

7 greater the expected number of any particular feature) and also river width (the wider 

8 the river, the smaller the expected number of any particular feature within a particular 

9 length of reach). Therefore, morphological feature frequency measurements were 

10 standardised to allow for the size of each sampled reach by multiplying each feature 

11 frequency by the ratio of active channel width to active reach length.

12

13 When extracting river dimensions and features at each site, the available images were 

14 inspected and the image that appeared to represent the lowest flow was typically used 

15 for the feature count. However, in some cases other criteria had to be considered. 

16 Cloud cover or heavy shading sometimes obscured significant lengths of river, in 

17 which case an alternative image or both images were used for feature extraction. In 

18 addition, a few reaches had been recently affected by engineering interventions and 

19 so earlier, pre-intervention images were used for feature extraction.

20

21 Classification of river reaches

22 Principal Components Analysis (PCA) was used to investigate the nature of any 

23 channel dimensional and morphological gradients present in the 194 reach data set. 

24 PCA was performed on a Spearman’s ρ correlation matrix and a varimax rotation with 

25 Kaiser normalisation was applied to the set of PCs with eigenvalues greater than one, 

Page 9 of 54

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

10

1 to align them as closely as possible to the original variables and thus aid interpretation 

2 of the environmental gradients that the PCs described. Correlation coefficients for 

3 pairs of input variables and the results of Kaiser-Meyer-Olkin and Bartlett's sphericity 

4 tests were examined prior to PCA to ensure the selection of variables was robust and 

5 sampling was adequate.

6

7 Agglomerative hierarchical clustering (AHC) using Ward’s algorithm was then applied 

8 to the reach scores on the varimax-rotated PCs. Reaches were assigned to different 

9 classes according to a natural break in the dendrogram based on the entropy level. 

10 The distinctiveness of the resultant reach class clusters was then validated statistically 

11 using Kruskal-Wallis (KW) tests followed by multiple pairwise comparisons, based on 

12 Dunn’s procedure with Bonferroni correction. Qualitative descriptions of each class of 

13 river were then developed through examination of trends in bi-plots of reach PC scores 

14 and the results of the pairwise comparisons. All analyses were conducted using the 

15 2018 version of XLSTAT Pro (http://www.addinsoft.com).  

16

17 Geomorphological ‘realism’ of the classification

18 The degree to which the classification enabled discrimination of reaches subject to 

19 different process regimes was evaluated through examination of the distribution of 

20 reaches in each class in relation to variables describing known independent controls 

21 of river morphology and behaviour. Local energy conditions (as a proxy for sediment 

22 transport capacity and potential for morphological adjustment) were represented using 

23 a combination of valley slope (calculated using reach elevation data and valley length 

24 measurements from Google Earth) and a representative flood discharge. Valley slope 

25 was used instead of a measure of channel slope (e.g. Leopold and Wolman, 1957) as 
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1 it is independent of channel sinuosity and, thus, river class (Ferguson, 1984; 1987). 

2 For the majority of reaches (145), long flow gauging station records (>19 years in most 

3 cases) were available to estimate the two-year return period flood discharge (Q2). This 

4 hydrological parameter was selected on the basis that it is also independent of channel 

5 morphology (van den Berg, 1995). Bankfull discharge has been commonly used as an 

6 explanatory variable in studies of river pattern (e.g. Leopold and Wolman, 1957) as it 

7 is considered to approximate the dominant (or effective) discharge that is theoretically 

8 representative of the full range of flows that determine sediment transport and 

9 morphological configuration in a given channel (Hey and Thorne, 1986). However, it 

10 is sensitive to changes in width:depth ratio (and, therefore, river class), is routinely 

11 estimated in a number of different ways and is not readily available at many locations 

12 (van den Berg, 1995). For a small number of reaches where flow data were not 

13 available, a literature-sourced estimate of the bankfull discharge was used as a 

14 substitute on the basis that it is comparable in magnitude to Q2 for many rivers 

15 (Knighton, 1998). 

16

17 Following Kleinhans and van den Berg (2011), these variables were combined to 

18 compute a potential specific stream power (W m-2), ωpv, designed to represent the 

19 energy available to perform geomorphic work in a given reach (Ferguson, 1987):

20  

21  (1)𝜔𝑝𝑣 =
𝜌𝑔𝑄𝑆𝑣

𝑊𝑟

22

23 where ρ = water density (kg m-3), g = acceleration due to gravity (m s-2), Q = reference 

24 discharge (m3 s-1) (two year return period flood or bankfull discharge), Sv = valley slope 

25 (m m-1) and Wr = reference channel width (m). A reference, rather than actual, width 
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1 is used in the calculation so as to remain independent of channel type (see van den 

2 Berg, 1995, and Kleinhans and van den Berg, 2011, for detailed discussion of the 

3 merits of this approach). It is calculated using a regime equation:

4

5  (2)𝑊𝑟 = 𝛼 𝑄

6

7 with a coefficient of α = 3.0  used in this application (Kleinhans and van den 𝑠 𝑚 ―1

8 Berg, 2011). 

9

10 The computation of ωpv allowed the relationship between local energy conditions and 

11 descriptors of channel morphology (e.g. active channel width, sinuosity, etc.) derived 

12 from Google Earth to be explored. Previous research (Antropovskiy, 1972, cited in 

13 Alabyan and Chalov, 1998; van den Berg, 1995; Bledsoe and Watson, 2001; 

14 Kleinhans and van den Berg, 2011) has demonstrated that channel-independent 

15 measures of stream power can prove effective in discriminating between, and 

16 supporting interpretation of, different types of meandering and braided channels when 

17 bed material grain size is accounted for. The distribution of a subset of river reaches 

18 classified in this study (for which grain size data were available) was evaluated in 

19 relation to the following channel type discriminators from this published work: 

20

21 (3)𝜔𝑏𝑚 = 900 𝐷50
0.42

22

23 where D50 = median bed material grain size (m) and bm refers to a threshold between 

24 highly braided and meandering channels (van den Berg, 1995);

25
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1 (4)𝜔𝑠𝑐 = 285 𝐷50
0.42

2

3 where sc refers to a threshold between active meandering channels that exhibit scroll 

4 bars and those which exhibit chute (and scroll) bars (Kleinhans and van den Berg, 

5 2011); and

6

7 (5)𝜔𝑖𝑎 = 90 𝐷50
0.42

8

9 where ia refers to a threshold between laterally inactive channels and active 

10 meandering channels with scroll bars (Makaske et al., 2009).

11

12 Elevation and valley confinement conditions (as proxies for the potential significance 

13 of colluvial processes and restrictions on lateral mobility) were also quantified. Reach 

14 elevation was measured directly from Google Earth at the upstream boundary. Level 

15 of confinement was approximated by the proportion of the bank length that appeared 

16 to be in contact with valley side slopes and any high (ancient) terraces: reaches were 

17 deemed to be confined when more than 90% of the river bank length was in contact; 

18 unconfined when less than 10% of their river bank length was in contact; and partly 

19 confined where an intermediate level of bank contact was evident (Brierley and Fryirs, 

20 2005). 

21

22 RESULTS

23 Classification and characteristics of river reaches

24 Principal Components Analysis was performed on a Spearman’s rank correlation 

25 matrix for 13 variables (Tables 1 and 2). Four variables represented river channel 
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1 dimensions: active channel sinuosity, the ratio of baseflow to active channel sinuosity, 

2 the ratio of median active to median baseflow channel width, the coefficient of variation 

3 of active channel width. These variables were selected to illustrate the planform 

4 character of the river reaches independently from their size. The remaining nine 

5 variables were counts of the physical features listed in Table 2 once they had been 

6 standardised for the length and width of the active channel. 

7

8 The first four PCs all had eigenvalues greater than 1, indicating that they explained 

9 more of the variance in the data set than the original variables (Table 3). A varimax 

10 rotation of these four PCs simplified the structure of the loadings matrix and supported 

11 interpretation of the environmental gradients that they described. Focussing mainly on 

12 those variables with loadings > 0.7 (Table 3), PC1 describes a gradient from reaches 

13 with little variation in width or sinuosity with increasing flow stage (positive loadings of 

14 0.827 on Active:Baseflow channel width and 0.816 on Baseflow:Active channel 

15 sinuosity, respectively) and also limited longitudinal variability in their width (positive 

16 loading of 0.692 on Coefficient of variation of active channel width), to those with active 

17 channels that are distinctly wider and less sinuous than their baseflow channels, 

18 containing increasing numbers of active lateral and mid channel bars (positive 

19 loadings of 0.910 on Active lateral bar and 0.800 on Active mid-channel bar, 

20 respectively). The remaining three PCs describe gradients of increasing frequency of 

21 Active point bars and Channel cutoffs (PC2), increasing frequency of Bedrock and 

22 Rapids (PC3), and increasing frequency of Cascades and Steps (PC4). Finally, 

23 although the loading is relatively weak (-0.614), Riffles show a negative loading on 

24 PC4.

25
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1 Agglomerative hierarchical clustering on the reach PC scores using Ward’s algorithm 

2 and an entropy-based solution resulted in the identification of five clusters, each 

3 representing a different class of river reach (Figure 2). Classes A and B were found to 

4 be most similar in terms of their characteristics and, together with class C reaches, 

5 formed a higher level grouping that was dissimilar from classes D and E. Kruskal-

6 Wallis tests followed by multiple pairwise comparisons, based on Dunn’s procedure 

7 with Bonferroni correction, were used to establish which clusters showed significant 

8 differences in their scores on each of the PCs (Table 4). All five clusters were found 

9 to be fully discriminated by these analyses, with each cluster showing a significant 

10 difference from the others in relation to the scores on at least one PC. The distribution 

11 of the five classes with respect to the four PCs is illustrated in Figure 3. There is 

12 separation of classes B, C and E from class A along PC1 (Figure 3A) and class D from 

13 the other classes along PC 3 (Figure 3B). Furthermore, class B is discriminated from 

14 the other classes by PC2 (Figure 3C) and, apart from a group of outliers in class D, 

15 class E is distinguished from the other classes by PC4 (Figure 3D).

16

17 Based on the variables with high loadings on each PC (Table 3) and significant 

18 differences identified between the scores of reaches within the five classes on each 

19 PC (Table 4), Table 5 provides a summary interpretation of the five classes, along with 

20 an example reach from the centre of each cluster for visualisation purposes. In more 

21 detail, the classes are interpreted as follows:

22

23 Class A: Laterally stable channels with an absence of visible instream depositional 

24 features, and very limited variability in either width or sinuosity with increasing flow 

25 stage, or in width along their length. 
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1

2 Class B: Laterally active sinuous-meandering channels with visible point bars and 

3 cutoffs that become wider and less sinuous with increasing flow stage, and which vary 

4 in active width along their length. 

5

6 Class C: Transitional (near-braided) channels with visible lateral and/or mid-channel 

7 bars with intervening riffles, which become wider and less sinuous with increasing flow 

8 stage, and which vary in width along their length.

9

10 Class D: Bedrock channels with visible rapids and, in some cases, cascade and/or 

11 step features. Low to intermediate variation in channel width or sinuosity with flow 

12 stage and the presence of occasional bars.

13

14 Class E: Cascade/step dominated channels with occasional lateral and/or mid-

15 channel bars and an absence of visible point bars, riffles and exposed bedrock. 

16 Intermediate to strong variation in width both longitudinally and with increasing flow 

17 stage.

18

19 Relationships between channel morphology and independent control variables

20 The relative frequencies of fully, partly and unconfined reaches in each of the five river 

21 classes are shown in Figure 4. The majority of laterally stable and laterally active 

22 sinuous-meandering reaches (classes A and B) are unconfined (85% and 97%, 

23 respectively), with the remainder being partly confined. The valley confinement 

24 settings of transitional channel (class C) reaches are more varied, with 51% being 

25 unconfined, 38% partly confined and 10% fully confined. Bedrock channels (class D) 
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1 and, particularly, cascade/step dominated (class E) reaches are typically located in 

2 fully confined valley settings, accounting for 55% and 73%, respectively, of each class. 

3 Amongst bedrock channel (class D) reaches, 20% are in partly confined valley settings 

4 and 25% are unconfined. In comparison, only 7% of cascade/step dominated (class 

5 E) reaches are unconfined, with the remainder (20%) located in partly confined valley 

6 settings. 

7

8 Cascade/step dominated (class E) reaches are situated at significantly higher 

9 elevations (all greater than 500 m and the majority above 1000 m) than reaches in the 

10 other four classes (Figure 5). Laterally stable (class A) and laterally active sinuous 

11 meandering (class B) reaches tend to be found at much lower elevations (median = 

12 92 m and 133 m, respectively). The average height of transitional (class C) and 

13 bedrock (class D) channel reaches is similar (median = 277 m and 124 m, respectively) 

14 but reaches in these classes occupy a wider range of elevations from near sea-level 

15 up to approximately 1000 m and 2300 m, respectively.

16  

17 The distribution of reaches in the five river classes with respect to Q2 and valley slope 

18 is illustrated in Figure 6. There is notable overlap between some of the classes, 

19 particularly for transitional (class C) and bedrock (class D) channels, but others occupy 

20 relatively discrete areas of the plot. Cascade/step dominated (class E) reaches are 

21 grouped in the upper left region of the plot, with contrasting high valley slopes but 

22 relatively low discharges. Bedrock channel (class D) reaches tend to occupy the centre 

23 and right of the plot, with relatively high slopes or high discharges, in a similar zone to 

24 most of the transitional channel (class C) reaches. The bottom left region of the plot is 

25 exclusively occupied by laterally stable (class A) reaches, which persist with increasing 
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1 slope and/or discharge towards the centre. Laterally active sinuous-meandering (class 

2 B) reaches occupy a zone that combines intermediate slope and discharge.

3

4 Figure 7 illustrates the range of potential specific stream power values of reaches of 

5 different classes for which an estimate of bed material grain size was available and 

6 shows their distribution relative to empirically-derived thresholds between alluvial 

7 channels types derived using Equations 3-5. Laterally stable (class A) reaches occur 

8 at a wide range of potential specific stream powers, existing under conditions where 

9 no lateral movement or bar formation would be expected but also those potentially 

10 capable of instigating scroll and chute bar development and even active braiding. 

11 Transitional (class C) channels are almost exclusively restricted to a range of potential 

12 specific stream power values above the threshold required for meandering with scroll 

13 and chute bar development and moderate braiding but below that required for 

14 significant levels of braiding. Laterally active sinuous-meandering (class B) reaches 

15 span a domain above the potential specific stream power threshold required for scroll 

16 bar development but below that above which highly braided rivers occur. 

17

18 Figures 8a and 8b highlight the existence of complex associations, at class level, 

19 between potential specific stream power and morphological parameters (channel 

20 width and sinuosity) typically used in other classifications but which did not explicitly 

21 inform the groupings identified above. The active widths of laterally stable (class A) 

22 channels tend to be narrower than those of laterally active sinuous meandering (class 

23 B) and transitional (class C) reaches for a given potential specific stream power. The 

24 active channels of cascade/step dominated (class E) reaches are relatively narrow in 

25 comparison to reaches from other classes apart from laterally stable (class A) 
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1 channels, albeit at much greater potential specific stream powers, while the active 

2 widths of bedrock (class D) channels are more variable. A general trend of declining 

3 active channel sinuosity with increasing potential specific stream power is evident from 

4 laterally active sinuous-meandering (class B), through transitional (class C) and 

5 bedrock (class D), to cascade/step dominated (class E) channel reaches. However, 

6 laterally stable (class A) channels exhibit a wide range of sinuosity values that appear 

7 to be unrelated to local energy conditions.

8

9 DISCUSSION

10 Extraction of geomorphologically-relevant information from Google Earth 

11 images

12 Our analysis of information extracted from Google Earth Pro has yielded a 

13 classification of river types that not only appears geomorphologically-intuitive but 

14 confirms previously hypothesised associations with independent data sets that 

15 describe a set of controlling variables. Nevertheless, there are a number of issues that 

16 constrain how far and at what resolutions geomorphologically-relevant data can be 

17 extracted from Google Earth.

18

19 The level of detail achieved by the geomorphological classification of European rivers 

20 presented herein is largely determined by the types of process indicators that can be 

21 resolved from Google Earth images and the accuracy with which they can be 

22 measured or counted. The potential significance of these factors is a function of the 

23 number, timing and resolution of the available images in the Google Earth database 

24 for a given reach. An expanded list of potential process indicators was originally 

25 considered for the study, including a more comprehensive suite of bar types, 

Page 19 of 54

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

20

1 vegetation types and associated morphological units including benches, and instream 

2 assemblages of large wood. This could, in theory, have led to the isolation of further 

3 groupings or sub-types of reaches but these features proved difficult to reliably identify 

4 as a result of the lack of control on flow stage and/or season at the time of image 

5 capture, water clarity issues and/or obscuration by riparian trees. Wherever possible, 

6 we worked on images that appeared to represent baseflow conditions, but of course 

7 we cannot be sure that we had acceptably comparable flow levels in all of the images 

8 we analysed. This was a particular issue where the number of clear images was small, 

9 since this prevented comparisons to confirm differences in stage. This issue 

10 underpinned our decision to rely more heavily on active channel dimensions in our 

11 analysis, since these were more consistently identified using the edge of continuous 

12 vegetation cover as the criterion. In addition, where only summer images could be 

13 analysed or where image resolution was low, riparian vegetation could have adversely 

14 affected all data extraction, but particularly the identification of smaller or more 

15 nuanced in-channel physical features. 

16

17 The procedures for identifying and measuring or counting the process indicators 

18 utilised in this study were completed manually. The pan, zoom and path measurement 

19 tools available in Google Earth Pro make this a relatively straightforward task but it is 

20 time-consuming to complete for a large sample of river reaches and introduces the 

21 potential for human error. Recent developments in image processing technology and 

22 increasing provision of freely-available remotely sensed data products could facilitate 

23 the semi- or complete automation of the geomorphological classification approach 

24 proposed in this paper. The release of Google’s Earth Engine cloud computing 

25 platform in 2010 has provided the research community with both access to remotely 
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1 sensed imagery and the computational power required to process such data at the 

2 global scale (Gorelick et al., 2017). It has enabled analyses with a spatial and temporal 

3 richness that would previously have been considered unachievable, including tracking 

4 surface water dynamics (Pekel et al., 2016), quantifying the status and distribution of 

5 sensitive habitats (Giri et al., 2010) and monitoring urban development (Patel et al., 

6 2015). To date, this research has largely been centred on the use of data from NASA’s 

7 Landsat and ESA’s Copernicus programmes but neither platform offers the spatial 

8 resolution necessary to resolve the types of features used in this study. However, this 

9 situation is changing with the emergence of increasingly high resolution geospatial 

10 data products. The recent release of Planet’s SkySat imagery via Google Earth 

11 Engine, offering true colour imagery at sub-metre resolution and multispectral imagery 

12 at 2 m resolution, could enable the accurate automated delineation of channel 

13 boundaries and geomorphic units. The process of identifying and extracting 

14 geomorphologically-relevant information from this high resolution imagery would not 

15 be an insignificant task but comprehensive taxonomic frameworks for the identification 

16 of a huge range of fluvial landforms already exist (e.g. Wheaton et al., 2015), image 

17 processing workflows capable of extracting channel networks and their geometric 

18 properties have been developed (e.g. Isikdogan et al., 2017; Monegaglia et al., 2018), 

19 and object-based image analysis techniques have great potential for identifying 

20 spatially-distinctive features (e.g. Demarchi et al., 2016; Demarchi et al., 2017). We 

21 encourage further research towards the goal of operationalising such methods for 

22 global application in the field of river classification. 

23

24 Geomorphological ‘realism’ of the classification
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1 We have explored the utility of Google Earth as a source of geomorphologically-

2 relevant information by developing a classification of transitional to single thread near-

3 natural European rivers. The apparent ‘realism’ of this classification is one test of the 

4 utility of the extracted data on which it is based, but the classification is also dependent 

5 upon a number of other factors.

6

7 In addition to being influenced by the nature of data available through Google Earth, 

8 the reach types identified in this study were also determined to a certain degree by the 

9 sampling strategy employed. Our focus was on river reaches whose morphology was 

10 considered to be “in tune” with a natural process regime (i.e. not visibly affected by 

11 dams or other engineering activities). This immediately precluded many lowland 

12 systems from our analysis given their long history of management in Europe and, as 

13 a result, prevented the inclusion of a number of possible additional process indicators 

14 such as stable (vegetated) islands as they would have been present in such low 

15 quantities across the sample of 194 reaches that their inclusion would have 

16 compromised the PCA undertaken. The same is true of natural large braided rivers, 

17 which were once common across the Alps and other mountainous regions of Europe 

18 but have been heavily impacted by flow regulation, gravel extraction and erosion 

19 control measures (Tockner et al., 2003). Together, this accounts for the absence of 

20 several “classic” river types (e.g. anastomosing, fully braided, etc.) that would 

21 potentially have emerged from the classification procedure had it been undertaken on 

22 rivers in other parts of the world. 

23

24 It is also important to acknowledge that, despite our best efforts to only sample river 

25 reaches that did not have any obvious artificial constraints on their adjustment for 
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1 analysis, this is not straightforward when working with planview aerial imagery. In 

2 particular, bank reinforcement is rarely visible in these data products. Therefore, we 

3 cannot be sure that significant reinforcement was not in place, and on the larger, 

4 lowland rivers it is likely to have been present to some extent. In addition, in the few 

5 reaches where cross-channel structures were present, we ensured that they were 

6 limited in number but their vertical extent and thus potential impact on upstream and 

7 downstream dynamics could not be assessed. The presence of engineered structures 

8 in invidual reaches may have influenced the recorded process indicator values through 

9 their impacts on hydraulic and sediment transport processes and, thus, may have 

10 affected the allocation of reaches to particular classes. 

11

12 Despite these caveats, the classification procedure resulted in the definition of five 

13 river reach types with distinctive geomorphological identities whose internal 

14 characteristics and distribution can be explained in relation to known independent 

15 controls on river form. Under low energy conditions in unconfined valley settings, 

16 laterally stable channels lacking visible instream depositional features and longitudinal 

17 variation in width, and which do not experience signficant changes in width or sinuosity 

18 with increasing flow stage, were found to dominate. These reaches tended to be 

19 relatively narrow in comparison to the other reach types found in unconfined settings. 

20 Such characteristics are consistent with those of suspended load-dominated channels 

21 with relatively low width-depth ratios and banks formed of highly resistant cohesive 

22 sediments. Under increasingly energetic conditions (but remaining in unconfined 

23 settings), reaches with those characteristics were still observed but became less 

24 common relative, firstly, to laterally active sinuous-meandering channels and then, at 

25 even greater values of ωvp, transitional (near-braided) channels. The fact that laterally 
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1 stable channels are able to persist under high energy conditions is perhaps initially 

2 surprising but it is important to remember that it is the strength of the erosive force 

3 relative to the resistive strength of the boundary that ultimately determines channel 

4 mobility (Huang et al., 2004). Closer visual inspection of a sample of laterally stable 

5 reaches at the upper end of the energy gradient revealed the presence of mature 

6 riparian trees along their banks. Riparian vegetation can be highly effective in 

7 increasing the stability of river banks through both its effect on near-bank hydraulic 

8 roughness (Tooth and McCarthy, 2004) and by binding sediments together (Holloway 

9 et al., 2017). These processes or, potentially, the presence of undetected bank erosion 

10 control structures may explain the occurrence of this type of reach under high energy 

11 conditions. 

12

13 The occurrence of laterally active sinuous-meandering reaches with visible point bars 

14 and cutoff features that vary longitudinally in width and become wider and less sinuous 

15 with increasing flow stage was found to be consistent with situations where local 

16 hydraulic conditions are sufficiently energetic to mobilise bedload material and 

17 overcome the resistive strength of the channel boundary. When bed material grain 

18 size was taken into account, these reaches were found to occur at ωvp values between 

19 empirically defined thresholds for the onset of meandering with scroll bar development 

20 (Makaske et al., 2009; Equation 5, Figure 5) and below those required to instigate high 

21 levels of braiding (van den Berg, 1995; Equation 3, Figure 5). They were found in 

22 unconfined settings and were generally significantly wider than laterally stable 

23 reaches. It is important to note that these reaches could not have been isolated on the 

24 basis of their sinuosity alone (c.f. early classification schemes such as that of Leopold 

25 and Wolman, 1957). A large number of laterally stable reaches had similar, and 
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1 occasionally greater, sinuosity values than those of the laterally active sinuous-

2 meandering reaches identified in this study. However, as discussed above, river 

3 energy is not the only determinant of meandering and this is evident from the lack of 

4 any clear, systematic correlation between ωvp and sinuosity. Inactive meandering 

5 channels have been shown to exist as a product of antecedent relief (e.g. Kleinhans 

6 et al., 2009) or as relic features formed under different process regimes (e.g. 

7 Ferguson, 1987).  This highlights the danger of classifying reaches based on simple, 

8 individual measures of channel form. Without the inclusion of visual observations of 

9 point bar features, longitudinal width measurements and consideration of channel form 

10 under baseflow and active conditions as part of the classification procedure, process-

11 based distinction between different types of “meandering” rivers would not have been 

12 possible.  

13

14 Transitional (near-braided) channels exhibiting lateral and/or mid-channel bars that 

15 become signficantly wider and less sinous with increasing flow stage were found to 

16 occur almost exclusively under high energy conditions and above an empirically-

17 derived threshold for the onset of meandering with scroll and chute bar development 

18 and moderate braiding (Kleinhans and van den Berg, 2011; Equation 4, Figure 5). The 

19 average active width of reaches in this class was found to be significantly greater than 

20 that of laterally stable reaches. This is consistent with channel development in 

21 situations were local hydraulic forces significantly exceed the resistive strength of the 

22 channel boundary. The strong contrast between the morphological configuration of 

23 these two reach classes is shown in Figure 9. It compares the measured width of 

24 reaches in each class with their expected width based on Equation 2. The equation 

25 (originally derived from a data set of largely single-thread gravel bed rivers) 
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1 systematically predicts much greater width values for laterally stable reaches than 

2 were measured, pointing to the likely highly resistive nature of their bank materials. 

3 However, transitional channels are predicted to be narrower than measured, indicating 

4 a highly erodible boundary. Closer inspection of a sample of our study reaches 

5 confirmed the presence of non-cohesive bed and bank materials. While the majority 

6 of the transitional reaches identified through the classification procedure were found 

7 in unconfined situations, they also occurred in confined and partially confined valleys. 

8 This is not unusual, with many gravel bed rivers in mountain environments adopting a 

9 “string-of-pearls” morphology, with intensely braided sections where valleys have 

10 infilled with coarse sediment and intervening single-thread or wandering sections 

11 where bedrock constraints restrict the valley width (Gurnell et al., 2000). This may 

12 partially account for the high longitudinal width variation evident in this reach class. 

13

14 The remaining two reach types identified by the classification, bedrock and 

15 cascade/step dominated channels, were both predominantly found in confined valley 

16 situations and under very high energy conditions (primarily driven by steep valley 

17 slopes). This natural lateral constraint acts as a major control on channel width and 

18 sinuosity in both of these types of channels (Brierley and Fryirs, 2005) but their 

19 distinction here is enabled by contrasting scores for particular process indicators which 

20 are reflective of differences in sediment supply conditions. The presence of cascades 

21 and step features, coupled with occasional lateral and/or middle channel bars and 

22 strong longitudinal variation in width is consistent with situations in which channel 

23 morphology is strongly influenced by sediment supply via hillslope processes and 

24 relatively infrequent but high magntiude flood events (Montgomery and Buffington, 

25 1997). Cascade/step dominated reaches tended to occur at sigificantly higher 
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1 elevations than bedrock reaches, where the exposure of visible bedrock and the 

2 presence of rapid features is indicative of very high transport capacity relative to the 

3 level of sediment supply (Montgomery et al., 1996). Resistant bedrock and 

4 consequently low bedload transport rates would account for the low to intermediate 

5 variation in width or sinuosity with flow stage and only occasional presence of bar 

6 features. 

7

8 Further applications of the use of form-based process indicators from Google 

9 Earth in river classification

10 The interpretability of the reach types derived in this study in relation to known controls 

11 of river morphology and behaviour suggests that form-based process indicators 

12 derived from Google Earth can provide a sound basis for river classification. While we 

13 acknowledge the importance of sources of error and limitations with the method 

14 presented, the results suggest that there are sufficiently strong links between river 

15 form and process to enable remote definition of geomorphologically-meaningful reach 

16 categories. The bottom-up nature of the method means reach types are not fixed but, 

17 instead, are determined by the data themselves. Repeating the classification on a 

18 completely different sample of rivers would not necessarily result in definition of the 

19 same five reach types and, in doing so, the approach respects the fact that river 

20 channels span a continuum without definitive, fixed thresholds between types 

21 (Ferguson, 1987; Church, 2006). It is also important to note that the resulting 

22 classfication does not have to represent an “end-point”. If available, supplementary 

23 information that is not attainable from Google Earth (e.g. field measurements of grain 

24 size, depth, etc.) could be used to further categorise reaches.  

25
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1 A key aim of this paper was to attempt to link channel reach types to potential 

2 underlying physical controls that were relatively simple to define using a combination 

3 of published data and Google Earth. However, there is a need to further validate the 

4 findings using field surveys of boundary materials in different reach types. Likewise, 

5 although beyond the scope of our study, the existence of an ever-expanding database 

6 of historical imagery in Google Earth offers great potential for developing dynamic 

7 form-based process indicators and tracking the temporal trajectories of individual 

8 reaches as a way of characterising their geomorphological sensitivity (Fryirs, 2017). 

9 Finally, the approach could be used to help prioritise reaches for conservation and 

10 restoration efforts by characterising the nature and distribution in relation to physical 

11 controls of heavily managed river reaches. They could be expected to display different 

12 process-indicator values when compared to near-natural reaches in similar 

13 physiographic settings. It raises the prospect that, as higher resolution data sets 

14 become available and semi-automation is enabled via platforms such as Google Earth 

15 Engine, reaches in disequilibrium could be quickly identified throughout catchments 

16 and at national scales. 

17

18 CONCLUSION

19 In this paper, we have explored whether process-relevant dimensional and 

20 morphological characteristics of rivers can be extracted from Google Earth via its 

21 Google Earth Pro software application by developing a classification of transitional to 

22 single thread river types. A geomorphologically-meaningful, empirically-based 

23 classification of European semi-natural rivers was achieved, but it is important to 

24 stress that its results were dependent on several factors that influenced site selection, 

25 image selection and data extraction:
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1

2 (i) Careful selection of river reaches that were as free as possible of direct 

3 geomorphological or hydrological interventions. For testing the classification using 

4 independent process data, we confined our search to reaches where a nearby flow 

5 gauging station had been deemed to monitor near-natural flows or where the reach 

6 could be seen to be unaffected by major river regulation structures;

7  

8 (ii) Careful selection of images to maximise the consistency, quality and accuracy of 

9 any measurements. In particular, we selected images that represented baseflow 

10 conditions, displayed good water clarity and, where there was overhanging riparian 

11 vegetation, were captured on a date where leaf cover would not obscure the features 

12 that are to be identified or measured;

13

14 (iii) Selection of process- and form-relevant properties that could be extracted reliably 

15 from images. This involved iterative development of measurement approaches and 

16 the eventual rejection of several properties that proved too difficult to identify or to 

17 measure consistently.

18

19 Within the constraints of focussing on the single thread to transitional planforms that 

20 are characteristic of most of European river systems, five broad river types were 

21 identified which showed expected relationships with controlling variables. This 

22 demonstrates that if used carefully, the Google Earth information system provides a 

23 source of identifiable and measurable process-relevant dimensional and 

24 morphological characteristics of rivers, at least across the range of river sizes 

25 investigated (6 m to 210 m channel width). This suggests that this freely-available 
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1 information source has enormous potential for supporting geomorphological 

2 investigations across large and inaccessible areas and, by analysing multi-temporal 

3 images of the same sites, investigating river changes over time. 

4

5 As we have shown, there are limits to the types of information that can be extracted 

6 such that field investigations cannot always be avoided. However, there is enormous 

7 potential to undertake valuable preliminary and complementary analyses to those 

8 conducted in the field. Understanding river form, function and dynamics and 

9 developing and monitoring management interventions all require investigations across 

10 a range of space and time scales. Google Earth provides an enormous free data 

11 source that can be mined easily from the geomorphologist’s desk top across many 

12 such scales, supporting the assembly of large, reliable data sets in a very cost-

13 effective way. 
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1 Figure Captions

2 Figure 1: Locations of the 68 rivers from which data for 194 reaches were extracted.

3

4 Figure 2: Dendrogram showing truncation (dashed line) of study reaches into five 

5 classes by AHC using Ward’s algorithm and an entropy-based solution.

6

7 Figure 3: Scatter plots showing the distribution of the 194 reaches and their class 

8 membership with respect to PCs 1 to 4.

9

10 Figure 4: Frequency of fully (C), partly (P) and unconfined (U) reaches in each river 

11 class.

12

13 Figure 5: Distribution of reaches in each river class in relation to elevation.

14

15 Figure 6: Distribution of reaches in each river class in relation to the two year return 

16 period flood discharge, Q2, and valley slope, Sv.

17

18 Figure 7: Distribution of reaches of different classes in relation to bed material grain 

19 size and potential specific stream power. Lines represent empirically-derived 

20 discriminators of channels types from van den Berg (1995), Kleinhans and van den 

21 Berg (2011) and Maskaske et al. (2009), respectively. Bed material grain size 

22 estimates were not available for any rivers in classes D and E.

23
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1 Figure 8:  Relationships between potential specific stream power and a) active 

2 channel width; and b) active channel sinuosity.

3

4 Figure 9: Comparison between measured active width and predicted width according 

5 to Equation 2 (from Kleinhans and van den Berg, 2011).
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1 Tables

2

Dimension (units) Description Relationship to fluvial 
processes

Extracted from Google 
Earth
Upstream elevation (m) Elevation of the lower bank top at the 

upstream end of the reach.

Downstream elevation 
(m)

Elevation of the lower bank top at the 
downstream end of the reach.

Valley length (m) Sum of straight line lengths between channel 
bend inflection points.

Active reach length (m) Mid-line length of channel whose edges are 
defined by continuous vegetation cover 
(unvegetated bars are part of channel width).

Baseflow reach length 
(m)

Mid-line length of inundated channel at 
baseflow.

Active channel width (m) Width of the channel within the reach whose 
edges are defined by continuous vegetation 
cover (10 measurements taken at equally 
spaced intervals along the active channel 
mid-line).

Baseflow channel width 
(m)

Water width (excluding exposed bars) at 
baseflow (2 measurements taken at locations 
where water width is at a minimum and 
maximum within the reach).

Derived variables
Active channel sinuosity Active reach length / Valley length
Baseflow channel 
sinuosity

Baseflow reach length / Valley length

Active slope (m/m) (Upstream elevation – Downstream 
elevation) / Active reach length

Baseflow slope (m/m) (Upstream elevation – Downstream 
elevation) / Baseflow reach length

Valley slope (m/m) (Upstream elevation – Downstream 
elevation) / Valley length

Derived variables used in Principal Components Analysis
Active channel sinuosity See above Capacity for lateral 

adjustment in 
meandering rivers 
(Janes et al., 2017) 

Baseflow: Active 
channel sinuosity

(Baseflow reach length / Valley length) / 
(Active reach length / Valley length)

Indicative of bank 
erodibility relative to 
stream power and/or 
bed material supply rate 
(Carson, 1984; 
Ferguson, 1987).

Active: Baseflow 
channel width

(Median active channel width) / (Median 
baseflow channel width)

Proxy for width:depth 
ratio, indicates bank 
resistance relative to 
stream power (Eaton 
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and Millar, 2004); 
response to changes in 
sediment load 
(Schumm, 1977); active 
(transporting) width 
(Garcia Lugo et al., 
2015)

Coefficient of variation 
of active channel width

(Standard deviation of active channel width) / 
(Mean active channel width)

Strong longitudinal 
variation in channel 
width associated with 
increased 
morphological activity in 
meandering rivers that 
reflects variability in 
flow and sediment 
transport and bank 
material properties 
(Lagasse et al. 2004; 
Zolezzi et al., 2012) 

1 Table 1: Channel dimensions extracted from Google Earth images and dimension 

2 indices used in Principal Components Analysis.

3
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Feature Description Relationship to fluvial processes
Active lateral bar Depositional feature attached to the 

river bank but not on the inside of a 
river bend with no significant 
vegetation cover and extending into 
the channel for at least 20% of the 
bankfull width.

Correlation between increasing 
frequency of bars and sediment 
supply rate (Brierley and Fryirs, 
2005)

Active point bar Depositional feature attached to the 
river bank on the inside of a river 
bend with no significant vegetation 
cover and extending into the channel 
for at least 20% of the bankfull width

Correlation between increasing 
frequency of bars and sediment 
supply rate (Brierley and Fryirs, 
2005)

Active mid-channel 
bar

Mid-channel depositional feature with 
no significant vegetation cover that is 
not attached to the banks at normal 
flow and occupies a minimum of 20 
% channel width  

Presence indicates high rates of 
sediment supply and morphological 
activity (Brierley and Fryirs, 2005) 

Channel cutoff Recent or historic channel cutoff (can 
be wet or dry but is clearly visible on 
floodplain)

Presence indicates high rates of 
recent or historical morphological 
activity (Kleinhans and van den 
Berg, 2011)

Bedrock Area of exposed bedrock forming a 
semi-continuous surface close to or 
exposed through the water surface.

Indicative of high energy, supply-
limited transport conditions (Brierley 
and Fryirs, 2005)

Cascade Area of highly disturbed water 
tumbling over and around 
disorganised boulders

Presence indicates supply-limited 
transport regime and strong 
influence of non-fluvial (e.g. hillslope,  
glacial, etc.) processes (Montgomery 
and Buffington, 1997)

Step Flow falls near vertically over single 
channel-spanning line of large clasts 
causing disturbance to water surface.

Presence indicates supply-limited 
transport regime but greater 
influence of fluvial processes than 
cascade-dominated reaches 
(Montgomery and Buffington, 1997)

Rapids Sequences of partially or fully 
channel-spanning, organised ribs 
with fewer exposed boulders than 
cascades but greater areal proportion 
of disturbed water surface than riffles

Presence indicative of transport-
limited conditions but greater 
transport capacity than riffle-
dominated reaches (Brierley and 
Fryirs, 2005)

Riffle Area of disturbed water surface with 
negligible bed material exposure

Presence indicative of transport-
limited conditions (Brierley and 
Fryirs, 2005)

1 Table 2: Definitions of features identified and counted from Google Earth images. 
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PC1 PC2 PC3 PC4
BEFORE ROTATION 
Eigenvalue 4.209 2.709 1.524 1.157

Variability (%) 32.380 20.840 11.723 8.898

Cumulative % 32.380 53.221 64.944 73.841

AFTER ROTATION 
Variability (%) 31.199 15.638 11.491 15.513

Cumulative % 31.199 46.838 58.328 73.841

LOADINGS
Active channel sinuosity -0.596 0.589 -0.099 -0.201
Baseflow:Active channel sinuosity 0.816 0.392 -0.021 0.043
Active:Baseflow channel width 0.827 -0.112 0.145 0.169
Coefficient of variation of active 
channel width

0.692 -0.004 -0.215 0.199

Active lateral bars 0.910 -0.033 0.140 -0.053
Active mid-channel bars 0.800 -0.054 0.110 -0.125
Active point bars 0.098 0.853 0.048 -0.187
Channel cutoffs 0.006 0.736 -0.241 -0.138
Bedrock -0.069 -0.017 0.859 0.259
Cascades 0.167 -0.284 0.071 0.857
Steps 0.211 -0.314 -0.085 0.767
Rapids 0.249 -0.224 0.746 -0.260
Riffles 0.504 -0.127 -0.138 -0.614

1 Table 3: Eigenvalues, percentage variability explained (before and after a varimax 

2 rotation), and variable loadings on the first four PCs of a Principal Components 

3 Analysis of channel dimension and physical feature variables. (Note that loadings > 

4 0.7 are emboldened and loadings > 0.6 and <0.7 are in italics and underlined).
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Variable K DF p Significant differences 
between classes

Bonferroni 
corrected 
significance level

PC1 123.8 4 <0.0001 C, E > A, D      B > A 0.005
PC2 91.1 4 <0.0001 B > A, C, D, E      A > C, E 0.005
PC3 75.3 4 <0.0001 D > A, B, C, E      B, C, D > E 0.005
PC4 112.3 4 <0.0001 E > A, B, C     A, B, D > C 0.005

1 Table 4: Results of Kruskal-Wallis tests (followed by multiple pairwise comparisons, 

2 based on Dunn’s procedure with Bonferroni correction), applied to PC scores on each 

3 of the 5 clusters identified using agglomerative hierarchical clustering.
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Class PC1 PC2 PC3 PC4 Description Example Google Earth image
A - Laterally 

stable
Abhainn an t-
Strath 
Chuileannach 
(UK)

B + + Active 
sinuous-
meandering

Allier (France)

C + - - Transitional 
(near-braided) 

Feshie (UK)

D + + Bedrock Ardèche 
(France)

E + - - + Cascade/step 
dominated

Bregenzer Ach 
(Austria)

1 Table 5: Summary of the range (+ = positive, - = negative, blank = intermediate) of 

2 significantly different PC scores for reaches in each class in relation to each PC, and 

3 a brief description of each class based on interpretation of the environmental gradients 

4 described by each PC. (All images obtained from Google Earth. Additional copyright 

5 attributions: Allier - Image © 2018 CNES/Airbus, Image © 2018 DigitalGlobe; Feshie 

6 – Image © Getmapping plc; Abhainn an t-Strath Chuileannach – Image © 2018 

7 Getmapping plc; Ardèche – Image © 2018 Google; Bregenzer Ach – Image © 2009 

8 Geobasis-DE/BKG, Image © 2018 DigitalGlobe, Image © 2018 Google).

9

Page 45 of 54

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

46

Class PC1 PC2 PC3 PC4 Description Example Google Earth image
A - Laterally 

stable
Abhainn an t-
Strath 
Chuileannach 
(UK)

B + + Active 
sinuous-
meandering

Allier (France)

C + - - Transitional 
(near-braided) 

Feshie (UK)

D + + Bedrock Ardèche 
(France)

E + - - + Cascade/step 
dominated

Bregenzer Ach 
(Austria)

1 Table 5: GREYSCALE VERSION FOR PRINT VERSION Summary of the range (+ = 

2 positive, - = negative, blank = intermediate) of significantly different PC scores for 

3 reaches in each class in relation to each PC, and a brief description of each class 

4 based on interpretation of the environmental gradients described by each PC. (All 

5 images obtained from Google Earth. Additional copyright attributions: Allier - Image © 

6 2018 CNES/Airbus, Image © 2018 DigitalGlobe; Feshie – Image © Getmapping plc; 

7 Abhainn an t-Strath Chuileannach – Image © 2018 Getmapping plc; Ardèche – Image 

8 © 2018 Google; Bregenzer Ach – Image © 2009 Geobasis-DE/BKG, Image © 2018 

9 DigitalGlobe, Image © 2018 Google).

Page 46 of 54

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 2: Dendrogram showing truncation (dashed line) of study reaches into five classes by AHC using 
Ward’s algorithm and an entropy-based solution. 

504x464mm (150 x 150 DPI) 

Page 47 of 54

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 3: Scatter plots showing the distribution of the 194 reaches and their class membership with respect 
to PCs 1 to 4. 
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Figure 4: Frequency of fully (C), partly (P) and unconfined (U) reaches in each river class. 
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Figure 5: Distribution of reaches in each river class in relation to elevation. 
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Figure 6: Distribution of reaches in each river class in relation to the two year return period flood discharge, 
Q2, and valley slope, Sv. 
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Figure 7: Distribution of reaches of different classes in relation to bed material grain size and potential 
specific stream power. Lines represent empirically-derived discriminators of channels types from van den 
Berg (1995), Kleinhans and van den Berg (2011) and Maskaske et al. (2009), respectively. Bed material 

grain size estimates were not available for any rivers in classes D and E. 
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Figure 8:  Relationships between potential specific stream power and a) active channel width; and b) active 
channel sinuosity. 
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Figure 9: Comparison between measured active width and predicted width according to Equation 2 (from 
Kleinhans and van den Berg, 2011). 
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