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ABSTRACT
Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electron-
ically excited states. These dynamics are hard to treat numerically as the system’s complexity increases, and it is thus desirable to
have accurate yet affordable methods for their simulation. Here, we introduce a linearized semiclassical method, the generalized dis-
crete truncated Wigner approximation (GDTWA), which is well-established in the context of quantum spin lattice systems, into the
arena of chemical nonadiabatic systems. In contrast to traditional continuous mapping approaches, e.g., the Meyer–Miller–Stock–Thoss
and the spin mappings, GDTWA samples the electron degrees of freedom in a discrete phase space and thus forbids an unphysical
unbounded growth of electronic state populations. The discrete sampling also accounts for an effective reduced but non-vanishing zero-
point energy without an explicit parameter, which makes it possible to treat the identity operator and other operators on an equal
footing. As numerical benchmarks on two linear vibronic coupling models and Tully’s models show, GDTWA has a satisfactory accu-
racy in a wide parameter regime, independent of whether the dynamics is dominated by relaxation or by coherent interactions. Our
results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related
fields.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054696

I. INTRODUCTION

The phase space representation is a powerful tool for com-
puting quantum dynamics, with various linearized approximation
methods having been developed by diverse communities over the
years, from quantum chemists to physicists.1–38 Physicists often
subsume those methods under the name of Truncated Wigner
Approximations (TWAs) with many family members,1–11 whereas
chemists usually call them mapping approaches, including the
Meyer–Miller–Stock–Thoss (MMST) mapping12–32 and spin map-
ping (SM).33–38 The key idea of these methods is to sample the
quantum distribution of the initial states as the Wigner quasiprob-
ability distribution and neglect higher-order quantum corrections

of the Moyal bracket, thus rendering the evolution equations
classical. One of the most important reasons that researchers are
interested in these approaches is that the simulations using the clas-
sical dynamics are computationally cheap and the Monte Carlo sam-
pling is trivially parallelizable. Hence, they can be applied to large
systems, which is usually impossible for the numerically exact full
quantum dynamics.4,6 Higher-order quantum corrections can also
be introduced systematically.4,9,27,29 These approaches are exact in
the classical limit and the noninteracting limit. They can also provide
reliable qualitatively correct results for short time dynamics when
the system is not far away from the classical limit, and it is possible to
capture the long-time detailed-balance behavior39 or hydrodynamic
phenomena6,8,40 for specific models. Typical interesting systems that
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are suitable for these approaches include models from quantum
optics,41,42 cold atoms,43–45 quantum spin chains,5,6,8,10 spin-boson
models,10,13,35–38 and non-adiabatic molecular dynamics46 where the
Born–Oppenheimer approximation breaks down.12,13,15,33,34,47,48

In essence, TWA approaches treat bosons in the same way as
mapping approaches treat the nuclei degrees of freedom (DoFs),
examples being the phonons in trapped-ion experiments and
bosonic ultracold atoms for TWA and the nuclei in chemical reac-
tion and photo-chemical experiments for mapping approaches. In
contrast, there are several choices for the spin DoF (the electron sub-
system). Consider an electron subsystem with N electronic states,
∣1⟩, ∣2⟩, . . . , ∣N⟩. The symmetry group of the electron DoF is SU(N).
MMST mapping approaches and Schwinger boson cluster TWA
(CTWA)8 map the electron DoF to a single excitation of N cou-
pled Schwinger bosons, b1, b2, . . . , bN , or equivalently N coupled
harmonic oscillators, X1, P1, X2, P2, . . . , XN , PN . A severe problem
for MMST mapping approaches in the non-adiabatic dynamics is
the physical phase space leakage problem, i.e., Schwinger bosons
can escape from the single excitation phase space under the classi-
cal dynamics due to the uncontrolled zero-point energy (ZPE) flow
between different DoFs.49,64,65 This problem is partially solved by
introducing a ZPE parameter that modifies the interaction between
electronic and nuclei DoFs12,31,32,34 or by a projection back to the
single excitation Schwinger boson phase space.13,15,22,29 Instead, SM
approaches, TWA, and operator CTWA sample the spin DoF in the
natural phase space of the SU(2)33,34 or SU(N) group.35–38 All of
the above methods use continuous DoFs to describe the electron
subsystem. Recently, however, a novel TWA-related method based
on Wootters’s discrete phase space50,51 for spins, the Discrete Trun-
cated Wigner Approximation (DTWA),5 has been proposed and
successfully generalized to higher spin systems (GDTWA).6 Physi-
cally, the discreteness of Wootters’s phase space is motivated by the
discreteness of possible measurement results for spin degrees of free-
dom. DTWA can capture the revivals and entanglement dynamics
in quantum spin lattice systems up to an astoundingly long time.
Motivated by trapped-ion experiments, it has also been shown that
DTWA is applicable to spin-boson models under the rotating wave
approximation.10

Although GDTWA is very successful in the description of
quantum spin lattice systems5,6 and spins coupled to condensed
boson baths,10 the analysis and benchmarks of GDTWA for typ-
ical relevant chemical systems, for instance, the nuclei in scatter-
ing potentials52 and one spin coupled to few nuclei with non-
trivial conical intersection,46 are still absent. The goal of this work
is to extend the scope of GDTWA to chemical systems, includ-
ing a detailed theoretical analysis and numerical benchmarks. Our
theoretical analysis shows that the discrete phase space used in
GDTWA is tailor-made to treat the discrete space of electronic
states in molecules. Additional modifications often required to
improve the accuracy of the existing mapping approaches, includ-
ing a ZPE parameter,31,32 the projection back to the physical
phase space,13,15,22,29 and the different treatment of identity and
traceless operators,20,21 are unnecessary in GDTWA. The discrete
phase space itself implicitly solves these mentioned issues. As
our numerical results illustrate, GDTWA achieves an accuracy at
least as good as existing state-of-the-art mapping approaches and
outperforms them in some of the selected applications in this
article.

This work is organized as follows: In Sec. II, we introduce
the GDTWA, first in its original formulation. By rewriting it in
a language similar to the formulation of mapping approaches in
chemistry, we show how to implement the simulations of GDTWA
practically. This reformulation makes it manifest that the elec-
tronic system can be represented with 4N degrees of freedom
instead of the N2 scaling of the existing formulation. In Sec. III,
we compare the GDTWA in the rewritten form with existing fully
linearized methods to illustrate how GDTWA accounts for an
effective ZPE without ZPE parameters, and we show how GDTWA
differs from the partially linearized methods. In Sec. IV, we bench-
mark the GDTWA against the Partially Linear Density Matrix
(PLDM), spin-PLDM, and Ehrenfest method using two Linear
Vibronic Coupling (LVC) models featuring non-adiabatic dynam-
ics at a conical intersection. Two Tully’s models are also dis-
played, and they show that GDTWA also has a fair accuracy on
the long time population in the scattering problem. Section V con-
tains our conclusions, and several Appendices complement the main
text.

II. THEORY
We first give the original form of the GDTWA. We then

derive an equivalent form analogous to traditional mapping meth-
ods and the Ehrenfest method. This pedagogical rewriting allows
us not only to implement the simulations with a lower compu-
tational cost, but as further discussed in Sec. III, it also permits
us to reveal special advantages of GDTWA, including the effec-
tive non-zero reduced ZPE and the mitigation of physical space
leakage.

A. Basics of GDTWA
Consider a non-adiabatic Hamiltonian Ĥ describing N elec-

tronic states, ∣1⟩, ∣2⟩, . . . , ∣N⟩, coupled to a nuclear DoF (the gener-
alization to several nuclear DoFs is straightforward). In the diabatic
representation, we can write

Ĥ = p̂2

2m
+ V̂(x̂)

= p̂2

2m
+

N

∑
kl
∣k⟩Vkl(x̂)⟨l∣, (1)

where m is the mass of nuclei and x̂ and p̂ are the nuclear coordinate
and momentum operators. In this paper, we focus on initial prod-
uct states of the form ρ(0) = ρnuc(0)⊗ ρel(0). These can appear,
e.g., in molecular systems with only one populated electronic state,
such as the ground electronic state, or electronically excited sys-
tems prepared by a laser pulse shorter than the timescale for nuclear
displacements.

The density matrix of the electronic DoFs and the
nucleus–electron interaction V̂(x̂) are matrices with D = N ×N
elements. We can define D Hermitian operators Λ̂μ using
the Generalized Gell–Mann Matrices (GGMs) for SU(N)53

and the identity matrix Î as a complete basis for the electron
DoF,
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Λ̂μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2
(∣k⟩⟨l∣ + ∣l⟩⟨k∣) for 1 ≤ μ ≤ N(N − 1)/2, 1 ≤ l < k ≤ N,

1√
2i
(∣l⟩⟨k∣ − ∣k⟩⟨l∣) for N(N − 1)/2 < μ ≤ N(N − 1), 1 ≤ l < k ≤ N,

1√
k(k + 1)

(−k∣k + 1⟩⟨k + 1∣ +
k

∑
l=1
∣l⟩⟨l∣) for N(N − 1) < μ ≤ N2 − 1, 1 ≤ k < N,

√
1
N

Î for μ = D.

(2)

The explicit form of the Λ̂μ for N = 2 and N = 3 is listed in the
supplementary material. The basis elements are orthonormal,
tr Λ̂μΛ̂ν = δμν, with the commutation relation [Λ̂μ, Λ̂ν] = i f μνξΛ̂ξ ,
where f μνξ are the structure constants,

i f μνξ = tr(Λ̂ξ[Λ̂μ, Λ̂ν]), (3)

and the Einstein notation has been used. We are going to use these
basis elements to derive a semiclassical description.

Any operator Ôel acting on the electron DoF can be expanded
as ∑μcμΛ̂μ, with cμ = trÔelΛ̂μ. Then, the Hamiltonian in Eq. (1) can
be expressed as

Ĥ = p̂2

2m
√

NΛ̂D + vμ(x̂)Λ̂μ, (4)

with vμ(x̂) = trV̂(x̂)Λ̂μ. The Heisenberg equations of motion
(EOMs) of the operators are

˙̂xt = p̂t/m,
˙̂pt = −∂x̂tvμ(x̂t)Λ̂μ(t),

˙̂Λμ(t) = f μνξvν(x̂t)Λ̂ξ(t).

(5)

As in the usual linearized semiclassical methods, GDTWA
approximates the observables as statistical averages over trajectories
of the phase space variables whose equations of motion are classical
and formally identical to the quantum Heisenberg EOMs. Define xt ,
pt , and λμ(t) as the time-dependent classical phase variables for x̂, p̂,
and Λ̂μ, respectively. Then, their EOMs are

ẋt = pt/m,
ṗt = −∂xtvμ(xt)λμ(t),

λ̇μ(t) = f μνξvν(xt)λξ(t)
(6)

with initial condition xt=0 = x0 and pt=0 = p0. At this stage, the cor-
relators between nuclei and electrons are taken as classical, which
amounts to taking the mean-field form of the Heisenberg EOMs in
each single trajectory. This approach effectively truncates the order
of the EOMs. Although the EOMs of GDTWA in each single tra-
jectory are formally identical to the mean-field method, GDTWA is
still a method beyond the mean-field theory because the quantum
fluctuations are partially accounted for in the initial statistical distri-
butions of the phase space variables, which is similar to traditional
TWA and mapping approaches.1–38

The sampling of GDTWA for the initial nuclear phase variables
are identical to the ordinary linearized semiclassical methods,

Wnuc(x0, p0) =
1

2π ∫ dη⟨x0 −
η
2
∣ρnuc(0)∣x0 +

η
2
⟩eip0η. (7)

The novelty of GDTWA is to sample the initial λμ as a discrete
distribution. The details are as follows: First, Λ̂μ can be decomposed
as Λ̂μ = ∑aμ

aμ∣aμ⟩⟨aμ∣, where ∣aμ⟩ are the eigenvectors of Λ̂μ. Then,
the initial distribution of λμ(0) is λμ(0) ∈ {aμ} with probabilities

p(λμ(0) = aμ) = tr[ρ̂el(0)∣aμ⟩⟨aμ∣]. (8)

This distribution can represent arbitrary quantum expectation val-
ues exactly as a statistical average,

⟨Ôel⟩ =∑
μ

cμ⟨Λ̂μ⟩ =∑
μ,aμ

cμp(λμ(0) = aμ)aμ. (9)

We are now in a position to give the formula to evaluate arbi-
trary observables Ô = Ônuc⊗ Ôel under the GDTWA framework,

⟨Ô(t)⟩ ≈∑
μ,aμ

∫ dx0dp0Wnuc(x0, p0)Ow,nuc(xt , pt)

× cμp(λμ(0) = aμ)λμ(t), (10)

where Ow,nuc is the Wigner transformation of the operator Ônuc,

Ow,nuc(x, p) = ∫ dη⟨x − η
2
∣Ônuc∣x +

η
2
⟩eipη. (11)

The above sampling can be applied to arbitrary electronic initial
states with the accuracy O(t2). However, some specific initial elec-
tronic states result in a higher accuracy O(t3) than others. Namely,
an increased accuracy is achieved for initial states for which the
statistical sampling reproduces the initial intra-correlation6 of the
electron states, i.e., for the observables

⟨ Λ̂μΛ̂ν + Λ̂νΛ̂μ

2
⟩ = ∑

aμ ,aν

p(λμ(0) = aμ)p(λν(0) = aν)aμaν for μ ≠ ν,

(12)

⟨Λ̂2
μ⟩ =∑

aμ

p(λμ(0) = aμ)a2
μ.

A detailed analysis of the sampling of initial conditions can be found
in Appendix B.
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Generally, it has been proven that the GDTWA sampling distri-
bution can reproduce the intra-electron correlation for the diagonal
states6 ∣m⟩⟨m∣, 1 ≤ m ≤ N. For convenience, we only consider the
initial state ∣1⟩⟨1∣ in this article. All the other initial pure states can
be converted to this state by unitary transformations, and all expec-
tation values of observables of mixed states can be expressed as the
summation over the expectation value of pure states.

B. Reformulation of GDTWA in the language
of mapping approaches

In the following, we re-write the GDTWA in a completely
equivalent form that not only reduces the computational cost by
reducing the classical DoFs used to describe the electronic sub-
system8 from N2 − 1 to 4N but also reveals important concepts
such as ZPE (see Sec. III A), thus enabling a direct compar-
ison to the formalism of linearized semiclassical methods (see
Secs. III A and III B).

At the core of GDTWA lies a sampling over trajectories. In
the original formulation of GDTWA, this is achieved via sampling
over the continuous initial phase space of the nuclear degree of free-
dom as well as the discrete electronic initial phase space variables
λ(α)μ (0), where we used the index α to label the diverse electronic
initial conditions in the discrete phase space. In the formulation we
develop here, the role of λ(α)μ (0) is assumed by the so-called discrete
quasi-phase point operators Aα(0), which are used to describe the
electronic DoFs using the transformation

Aα(t) =∑
μ

λ(α)μ (t)Λ̂μ,

λ(α)μ (t) = trAα(t)Λ̂μ.
(13)

For convenience, we will use the notation Aα to express Aα(t) in this
article when there is no ambiguity.

The sampling of the initial condition Aα(0) is achieved via
a sampling of the initial λ(α)(0) as in Eq. (8), which using the
transformation [Eq. (13)] translates into

Aα(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
δ2 − iσ2

2
⋅ ⋅ ⋅ δN − iσN

2
δ2 + iσ2

2
0 ⋅ ⋅ ⋅ 0

⋮ ⋮
. . . ⋮

δN + iσN

2
0 ⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (14)

with δi, σi = ±1 being independent and identically distributed dis-
crete uniform variables on the integers ±1. The initial density
matrix of the electron subsystem is expanded as ρel(0) = ∣1⟩⟨1∣
= ∑α wαAα(0), where wα = 2−2(N−1) for all α. The GDTWA sam-
pling strategy for the electron subsystem is converted to gen-
erating the initial discrete phase points by sampling δi and σi
accordingly. In fact, Aα(0) is nothing but the quasi-phase point
operator in Wootters’s discrete phase space representation.50,51,54

Physically, the discrete sampling of the electronic DoFs is motivated
by the fact that a measurement of the observable Λ̂μ will yield only
discrete results. This property is faithfully represented by the dis-
crete phase space and is fundamentally different from the mapping

approaches where electronic DoFs are described by the continu-
ous phase variables of harmonic oscillators. It is also different from
focused-sampling approaches where sampling of a continuous phase
space is restricted to some parameter regions for computational
convenience.27 Instead, GDTWA faithfully samples a discrete phase
space that is physically motivated from the discreteness of possible
eigenvalues of spin degrees of freedom.

The ansatz of GDTWA in this form is that the Wigner function
is evolved along the classical stationary trajectories

W(x, p, A, t) ≈∑
α
∫ dx0dp0wαWnuc(x0, p0)

× δ(x − xt)δ(p − pt)⊗ Aα(t), (15)

where the EOMs of the variables are

ẋt = pt/m,

ṗt = −∂xt Tr{Aα(t)V̂(xt)},
Ȧα(t) = i[Aα(t), V̂(xt)],

(16)

with initial condition xt=0 = x0 and pt=0 = p0. Any observable Ô
= Ônuc⊗ Ôel can be evaluated as

⟨Ô(t)⟩ ≈ tr∫ dxdpW(x, p, A, t)Ow,nuc(x, p)⊗ Ôel

=∑
α
∫ dx0dp0wαWnuc(x0, p0)Ow,nuc(xt , pt)Tr{Aα(t)Ôel}.

(17)
Again, we point out that the product structure in the ansatz only
appears in each single trajectory. The summation over index α
already accounts for nontrivial quantum fluctuations beyond Ehren-
fest theory.

The GDTWA in this form, with the EOMs given by Eq. (16)
and the expectation values in Eq. (17), has some formal resemblances
to the Ehrenfest method. In both approaches, each trajectory of the
nucleus evolves in the mean potential resulting from the populated
electronic states. However, there are two main differences between
these two methods. First, GDTWA trajectories start from a discrete
sampling in the space of the quasi-phase point operators rather than
from a uniquely defined electron state. Second, GDTWA trajecto-
ries evolve the quasi-phase point operator Aα(t) rather than ρel(t)
in each individual trajectory.

To implement the simulation, we require the spectral decom-
position for the quasi-phase point operator Aα. It is easy to
check that the spectral decomposition of Eq. (14) is Aα(0)
= λ+∣Ψα

+(0)⟩⟨Ψα
+(0)∣ + λ−∣Ψα

−(0)⟩⟨Ψα
−(0)∣, where the eigenvalues

are

λ± =
1 ±
√

2N − 1
2

, (18)

with the amplitudes of the associated eigenvectors

⟨1∣Ψα
±(0)⟩ =

¿
ÁÁÀ λ2

±

λ2
±
+ (N − 1)/2 ,

⟨ j∣Ψα
±(0)⟩ =

¿
ÁÁÀ λ2

±

λ2
±
+ (N − 1)/2

δj + iσj

2λ±
, ∀j > 1.

(19)
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The eigenvalues of the quasi-phase point operator can be inter-
preted as quasi-probabilities since λ+ + λ− = 1, λ+ > 0, and λ− < 0.
Such quasi-probabilities constitute the spectrum of Aα and are con-
served during the propagation. We can propagate ∣Ψα

±(t)⟩ rather
than Aα(t) using the EOMs

i
d
dt
∣Ψα
±(t)⟩ = V̂(xt)∣Ψα

±(t)⟩ (20)

and Aα(t) = λ+∣Ψα
+(t)⟩⟨Ψα

+(t)∣ + λ−∣Ψα
−(t)⟩⟨Ψα

−(t)∣. This com-
pletely equivalent reformulation reduces the number of electronic
subsystem DoFs from N2 − 1 to 4N.

III. DISCUSSION
In this section, we compare the GDTWA with established

fully and partially linearized semiclassical methods. The form of the
EOMs of GDTWA is similar to fully linearized methods but with
a computational cost close to partially linearized methods. Readers
who are only interested in the numerical performance of GDTWA
may skip this section.

A. Zero-point energy treatment within the GDTWA
approach and mitigation of physical space leakage

Because of the discrete sampling, GDTWA accounts for a
non-zero effective reduced ZPE without introducing an explicit
ZPE parameter. It is well known that both full ZPE (approaches
based on MMST mapping without empirical ZPE parameters) and
zero ZPE (Ehrenfest method) are harmful for numerical accu-
racy.31,32 One possible solution to this problem is to introduce
an adjusted ZPE parameter to make the classical dynamics and
phase space of the mapping variables of the harmonic oscilla-
tors of the electronic DoFs mimic the spin as much as possi-
ble.31,32,37,38 GDTWA solves this problem with a fundamentally dif-
ferent logic, i.e., GDTWA never introduces such a parameter but
tames the ZPE only through a judiciously designed initial sampling
procedure.

To illustrate how GDTWA accounts for an effective non-zero
reduced ZPE, it is convenient to first review how existing methods,
including symmetrical quasi-classical windowing13,15 and general-
ized spin mapping,37,38 account for the ZPE. The EOMs of fully
linearized mapping approaches12–24,27,30–32,37,38 can also be written in
the form of Eq. (16),

ẋt = pt/m,

ṗt = −∂xt Tr{Bα(t)V̂(xt)},
Ḃα(t) = i[Bα(t), V̂(xt)],

(21)

where
Bα(t) = R2

α∣Ψα(t)⟩⟨Ψα(t)∣ −
γ
2

Î, (22)

with γ being the ZPE parameter, usually chosen from 0 (zero ZPE
treatment) to 1 (full ZPE treatment), and ∣Ψα(t)⟩ being the normal-
ized electronic wave function. Furthermore, Rα is the square root
of the radius of the mapping variables, which in the ordinary har-
monic oscillator MMST mapping notation, with position Xn and
momentum Pn for state n, is defined by

Xn(t) + iPn(t) =
√

2Rα⟨n∣Ψα(t)⟩, (23)

∑
n

Xn(t)2 + Pn(t)2 = 2R2
α. (24)

Rα and γ are conserved during the evolution, and the EOM of
∣Ψα(t)⟩ is

i
d
dt
∣Ψα(t)⟩ = V̂(xt)∣Ψα(t)⟩. (25)

Different mapping approaches use different sampling strate-
gies for Rα and ∣Ψα(0)⟩ and evaluate the expectation values of the
observables in different manners. For each single trajectory, Bα(t)
has one non-degenerate eigenvalue R2

α − γ/2 and N − 1 degenerate
eigenvalues −γ/2, as can be seen immediately from the definition
of Bα(t) in Eq. (22). In this sense, the ZPE parameter in the tradi-
tional fully linearized method is a negative diagonal energy correc-
tion term for the nucleus–electron interactions. The nuclei always
see a modified average potential energy during the evolution in
each single trajectory, whence mapping approaches with a non-
zero ZPE parameter already account for some quantum effects in
their EOMs.

Although Eqs. (16) and (21) are formally identical, it is impos-
sible to express Aα in the form R2

α∣Ψα(t)⟩⟨Ψα(t)∣ − γ
2 Î and thus to

construct the ZPE parameter, except for the case of N = 2, in which
case γ =

√
3 − 1. We can nevertheless identify an effective ZPE para-

meter governing the evolution of Aα. Namely, the ZPE parameter
in the traditional fully linearized methods can also be constructed
by the following strategy. Note that tr(Bα) = R2

α − γ
2 N and tr(B2

α)
= R4

α − γR2
α + γ2

4 N only depend on Rα and γ. Hence, the ZPE
parameter in the traditional fully linearized methods can be
expressed as

γ = 2
√

N tr(B2
α) − (trBα)2

N
√

N − 1
− 2 tr Bα

N
. (26)

By formally replacing Aα with Bα in Eq. (26), we obtain an effective
ZPE parameter for the GDTWA,

γeff =
2
√

N + 1 − 2
N

. (27)

Interestingly, this reduced effective ZPE coincides with the ZPE in
recent works using the SM approach.35–38 The reason of such iden-
tical ZPE is that both GDTWA and SM start from the phase space
of the electronic DoFs, rather than the phase space of Schwinger
bosons. The ZPE of SM and GDTWA can however be different
when the Hamiltonian is block diagonal; see the discussions in
Appendix B.

A further feature of the implicit ZPE treatment is that GDTWA
treats the traceless and identity operators of electronic states in a
unified way. No other trick20,21 or a specific implementation for the
identity operator35,36 is required. In this sense, GDTWA seems a
more natural approach to obtain the observables of the electronic
DoF.

Another advantage related to the spin phase space of GDTWA
is that the method does not suffer from the severe physical space
leakage problem of the electronic subsystem31,32 and thus eliminates
the additional projection that is necessary in the linearized semi-
classical initial value representation and Poisson bracket mapping
equation approaches.13,15,22,29 The EOMs and initial sampling con-
structions ensure that the Aα(t) trajectories are almost trapped in
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this tailor-made electronic phase space, similar to what is achieved
for Bα(t) in the recently proposed SM approach,35–38 although they
do not fully exclude an unphysical negative population in general.

B. Comparison with partially linearized methods
The nuclei in both GDTWA and partially linearized methods

move on a mean-field potential, which is the average potential of
two effective electronic states, in each single trajectory. Nevertheless,
GDTWA has a significantly different logic from that of traditional
partially linearized methods, such as the Forward-Backward Tra-
jectory solution (FBTS),28,29 PLDM,25,26 and spin-PLDM,35,36 as we
illustrate now.

The EOMs of the family of partially linearized methods can be
written as25,26,28,29,35,36

ẋt = pt/m,

ṗt = −
R2

1,α

2
∂xt ⟨Ψ1,α(t)∣V̂(xt)∣Ψ1,α(t)⟩

− R2
2,α

2
∂xt ⟨Ψ2,α(t)∣V̂(xt)∣Ψ2,α(t)⟩, (28)

i
d
dt
∣Ψ1,α(t)⟩ = V̂(xt)∣Ψ1,α(t)⟩,

i
d
dt
∣Ψ2,α(t)⟩ = V̂(xt)∣Ψ2,α(t)⟩,

where ∣Ψ1,α(t)⟩ and ∣Ψ2,α(t)⟩ are the forward and backward nor-
malized electronic wavefunctions (or electronic trajectories), respec-
tively, and R1,α and R2,α are the square root of the radius of the cor-
responding mapping variables. In the ordinary harmonic oscillator
MMST mapping notation,

Xj,n(t) + iPj,n(t) =
√

2Rj,α⟨n∣Ψj,α(t)⟩, (29)

∑
n

Xj,n(t)2 + Pj,n(t)2 = 2R2
j,α for j = 1, 2. (30)

Different partially linearized methods have different formu-
las to evaluate expectation values and different sampling strate-
gies for the initial radius and electronic trajectories. The electronic
subsystem in each single trajectory of different partially linearized
methods is also different. A typical electronic subsystem in par-
tially linearized methods takes the form ∣Ψ1,α(t)⟩⟨Ψ2,α(t)∣, which,
unlike Aα(t) and Bα(t), is not Hermitian. Specifically, the sampling
of ∣Ψ1,α(0)⟩ and ∣Ψ2,α(0)⟩ must be uncorrelated. As a comparison,
there is no forward and backward electronic trajectory concept in
GDTWA. Hence, the two electronic wavefunctions for GDTWA
are the spectral decomposition of the quasi-phase point operator.
The initial conditions for two electronic states in GDTWA in a sin-
gle trajectory are necessarily correlated. In this sense, GDTWA is a
method with hybrid features of fully linearized methods and par-
tially linearized methods, i.e., GDTWA has the same form of EOMs
as the fully linearized methods but two electronic wavefunctions in
each single trajectory. In conjunction with the inclusion of an effec-
tive ZPE as well as two electronic states in each single trajectory,
this makes GDTWA an extremely efficient and surprisingly reliable
numerical method, as we will see in the numerical computations of
Sec. IV.

IV. NUMERICAL RESULTS
In this section, we perform numerical benchmarks on the

GDTWA for prototypical non-adiabatic dynamics problems in
chemistry. Since each GDTWA trajectory evolves the classi-
cal nuclei and two coupled electronic time-dependent states,
its numerical complexity is close to the partially linearized
approach and slightly larger than the fully linearized mapping
approach. We may thus expect that GDTWA should be con-
sidered as an alternative approach to partially linearized meth-
ods, which is indeed confirmed by the numerics reported in this
section.

A. Tully’s models
The standard scattering benchmarks for the semi-classical

methods are Tully’s models.52 It is well known that all the popular
mapping approaches55 can capture the final populations of Tully’s
single avoided crossing model 1 and Tully’s dual avoided crossing
model 2 quantitatively in the high momentum region and qualita-
tively in the low momentum region but fail for the Tully’s extended
coupling model 3. GDTWA, as a linearized mapping approach,
also fails when the quantum tunneling and interference are crucial.
Therefore, we present the transmission probabilities of Tully’s single
avoided crossing model 1 and Tully’s dual avoided crossing model
2. GDTWA results in this subsection are obtained by the statistical
average of 104 trajectories. Tully’s single avoided crossing model 1
is a one-dimensional nucleus with mass 2000 coupled to two-state
electronic Hamiltonian,

H11(x) =
⎧⎪⎪⎨⎪⎪⎩

A(1 − e−Bx), x > 0,

−A(1 − eBx), x < 0,

H22(x) = −H11(x),

H12(x) = H21(x) = Ce−Dx2

,

where A = 0.01, B = 1.6, C = 0.005, and D = 1. All the units in this
subsection are in atomic units. Tully’s dual avoided crossing model
2 is also a one-dimensional nucleus with mass 2000 coupled to two-
state electronic Hamiltonian,

H11(x) = 0,

H22(x) = E0 − Ae−Bx2

,

H12(x) = H21(x) = Ce−Dx2

,

where A = 0.1, B = 0.28, C = 0.015, D = 0.06, and E0 = 0.05.
Both initial states for the two models are prepared as
exp(iP0x) exp[−(x − x0)2/σ2]∣1⟩, with x0 = −20 and σ = 20/P0,
where P0 is the initial nuclear momentum.

Figure 1 represents the transmission probabilities to the upper
surface T11 (dashed line) and the lower surface T12 (solid line)
of Tully’s model 1, calculated by GDTWA (blue) and quantum
results52 (black), respectively. It becomes apparent that GDTWA
is accurate in the high momentum region P0 > 10 and has a
fair performance in the low momentum region P0 < 10, which
coincides with the previous observations on the other mapping
approaches.55
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FIG. 1. Transmission probabilities to the upper surface T11 (dashed line) and the
lower surface T12 (solid line) for Tully’s single avoided crossing model 1. GDTWA
(blue) fits the quantum results (black) nearly perfect in the high momentum region
(P0 > 10) and is qualitatively correct in the low momentum region.

Figure 2 displays the transmission probabilities to the lower
surface T11 (dashed line) and the upper surface T12 (solid line)
of Tully’s model 2, calculated by GDTWA (blue) and quantum
results52 (black), respectively. This model is more challenging than
Tully’s model 1 because of Stückelberg oscillations. GDTWA can
describe such a phenomenon quite well, at least qualitatively.
There is only a slight mismatch in the low energy region log E
= log P2

0/2m < −1. Again, it is not a surprising result since all the
popular mapping approaches can achieve such accuracy.55 GDTWA
has a fair accuracy for these two scattering benchmarks. Finally,
we point out that there are unphysical negative populations in
the extremely low energy region, although the violations are very
small.

B. Linear vibronic coupling models
The selected mapping approaches to which we compare in

this subsection are PLDM,25 spin-PLDM,35,36 and the Ehrenfest46

method. Specifically, we consider PLDM and spin-PLDM without
focused sampling since they are at least as accurate as the focused
sampling variants27,35,36 and thus provide better benchmarks for

FIG. 2. Transmission probabilities to the lower surface T11 (dashed line) and the
upper surface T12 (solid line) for Tully’s dual avoided crossing model 1. GDTWA
(blue) fits the quantum results (black) nearly perfect in the high energy region and
is qualitatively correct in the low energy region.

GDTWA. For all the methods, we run 106 trajectories to ensure con-
vergence, although GDTWA starts to converge already with 104 tra-
jectories, a number comparable with the Ehrenfest method. We will
show numerical benchmarks for two LVC models,46,56–58 compar-
ing the selected linearized semiclassical methods with numerically
converged multi-configuration time-dependent Hartree (MCTDH)
calculations.59–61

The LVC Hamiltonian62,63 in the diabatic basis is given by

H = 1
2∑j

ωjp2
j +∑

k,l
∣k⟩Wkl⟨l∣, (31)

where Wkl is obtained by the Taylor expansion with respect to the
electronic ground state equilibrium geometry,

Wkk = Ek +
1
2∑j

ωjx2
j +∑

j
κ(k)j xj, (32)

Wkl =∑
j

λ(kl)
j xj, k ≠ l, (33)

where xj and pj are the dimensionless position and momentum for
the vibronic mode j and ωj is the corresponding frequency. Further-
more, Ek is the vertical transition energy of the diabatic state ∣k⟩ and
λ(kl)

j and κ(k)j are the gradients of Wkl and Wkk, respectively.
In this article, we focus on the time dependence of observ-

ables for the initial product state of the vibrational ground state
Ψ =∏j

1
π1/4 exp−x2

j /2 and the excited electronic state, which is a typ-
ical setup of femtochemistry experiments. We consider two typical
benchmark models,46,56–58 as given in Tables I and II. Model I is a
three-mode two-state model based on pyrazine. It includes two tun-
ing coordinates x1 and x6a and one coupling coordinate x10a, and
the initial electron wave function is prepared in the second diabatic
state ∣2⟩,46 which is the experimentally most relevant initial state
(though the method can capture also other initial conditions; see the
discussion in Sec. II A). Model II is a five-mode three-state model
based on the benzene radical cation. It includes three tuning coor-
dinates x2, x16, and x18 and two coupling coordinates x8 and x19,
and the electron wave function is initialized in the third diabatic
state ∣3⟩.46

Due to symmetry, all the off-diagonal elements of the electron
density matrix of the two models vanish. In Fig. 3, we show the
population of the second diabatic state of model I. The GDTWA
result compares fairly well to the exact quantum dynamics. It seems
to underestimate the amplitude of oscillations around the mean
and reaches a long-time average that lies slightly below the exact
value. The functional form seems to be better reproduced than with
the Ehrenfest method, and the curve lies closer to the exact result
than the curve computed using the spin-PLDM method. Finally, the

TABLE I. Parameters of model I that is based on pyrazine. All quantities are given
in eV.

Ek ω1 κ(k)1 ω6a κ(k)6a ω10a λ

∣1⟩ 3.94 0.126 0.037 0.074 −0.105 0.118 0.262∣2⟩ 4.84 0.126 −0.254 0.074 0.149 0.118
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TABLE II. Parameters of model II based on the benzene radical cation. All quantities are given in eV.

Ek ω2 κ(k)2 ω16 κ(k)16 ω18 κ(k)18 ω8 λ(12)
8 ω19 λ(23)

19

∣1⟩ 9.75 0.123 −0.042 0.198 −0.246 0.075 −0.125 0.088 0.164 0.12
∣2⟩ 11.84 0.123 −0.042 0.198 0.242 0.075 0.1 0.088 0.12 0.154∣3⟩ 12.44 0.123 −0.301 0.198 0 0.075 0 0.088 0.12

PLDM methods produce the best estimate of the long-time aver-
age but considerably overestimate the damping of the oscillations.
GDTWA fits the quantum result rather well at short times and has
a fair performance at longer times, although it does not outperform
the other approaches in this regime. Figure 4 shows the dynamics
of the two tuning coordinates, ⟨x1⟩ and ⟨x6a⟩. Although GDTWA

FIG. 3. Second diabatic state population of a three-mode two-state model based
on pyrazine (see Table I), computed using different methods. The GDTWA result
(blue solid line) compares fairly well to the exact quantum dynamics (black solid
line). While GDTWA and, even more so, the spin-PLDM method (red dashed
line) underestimate the mean value reached at long times, the Ehrenfest method
(green dashed line) overestimates it. The PLDM methods (yellow dashed line)
considerably overestimate the damping of the oscillations.

FIG. 4. Populations of the tuning coordinates ⟨x1⟩ and ⟨x6a⟩ of the pyrazine-based
model I. The color notations are identical to those in Fig. 3. The GDTWA (blue solid
line) and spin-PLDM (red dashed line) results fail to capture the oscillation ampli-
tudes but still give a qualitatively fair description on the frequency. In contrast, the
Ehrenfest (green dashed line) and PLDM (yellow dashed line) methods mismatch
the oscillation pattern of the exact quantum results (black solid line) after a few
periods.

does not entirely capture the correct amplitude, it does match very
well the frequency of the occurring oscillation. This behavior is sim-
ilar to the spin-PLDM method, while PLDM significantly underesti-
mates the oscillation amplitude and the Ehrenfest method loses half
a period within about five to ten oscillations. We have also com-
puted the propagation of ⟨x2

1⟩, ⟨x2
6a⟩, and ⟨x2

10a⟩; see the figures in the
supplementary material. In general, we should not expect the lin-
earized semi-classical methods to work reliably for such higher-
order correlations. As the numerical results suggest, spin-PLDM
and GDTWA nevertheless still give qualitatively satisfactory results,
while PLDM and the Ehrenfest method rather quickly accumulate
uncontrolled errors.

The relaxation dynamics of the more complex model II is con-
siderably more challenging for the linearized semi-classical meth-
ods because several states are involved simultaneously in the relax-
ation dynamics. GDTWA is the only one among the selected
semi-classical methods to qualitatively correctly capture the relax-
ation dynamics, as seen in the diabatic populations in Fig. 5. In
Fig. 6, we show the populations of the tuning coordinates. The
results of diagonal second-order correlations of the tuning coordi-
nates and the coupling coordinates are listed in the supplementary
material. For nuclear observables including first- and second-order
correlations, PLDM and the Ehrenfest method with zero ZPE dis-
play significant deviations from the exact dynamics. In contrast,
GDTWA yields surprisingly accurate predictions for some observ-
ables, even slightly but noticeably better than spin-PLDM. In sum-
mary, GDTWA has a good performance on both electronic popu-
lations and nuclear populations and correlations in this challenging
model.

FIG. 5. Populations of all three diabatic states of a five-mode three-state model
based on the benzene radical cation (see Table II), computed using different semi-
classical techniques. The GDTWA result (blue solid line) compares fairly well to the
exact quantum dynamics (black solid line) for all three diabatic state populations,
while all the other methods considered fail to describe the long time populations.
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FIG. 6. Populations of tuning coordinates ⟨x2⟩, ⟨x16⟩, and ⟨x18⟩ of model II that is
based on the benzene radical cation. The GDTWA result (blue solid line) matches
the exact quantum dynamics (black solid line) best and slightly outperforms the
spin-PLDM result (red dashed line).

V. CONCLUSIONS
In this paper, we have introduced a recently developed method

from the TWA family, GDTWA, to chemical non-adiabatic sys-
tems. The novelty and strength of GDTWA are to sample the
electron DoF in a discrete phase space. GDTWA with the faith-
ful sampling of the initial electronic conditions can yield a higher
accuracy and can be applied to any initial states, including pure
and mixed states. We have also rewritten the GDTWA in a form
similar to the Ehrenfest method, with the aim of showcasing sim-
ilarities and differences to more conventional methods. Formally,
the EOMs of GDTWA are identical to fully linearized mapping
approaches. By the spectral decomposition of the electron EOM, we
demonstrate that the fundamental difference between GDTWA and
traditional approaches is that GDTWA has two coupled correlated
electron states in each single classical trajectory and hence can be
regarded as a partially linearized approach. GDTWA also accounts
for an effective ZPE without an explicit ZPE parameter. Numer-
ical benchmarks show the validity of GDTWA for non-adiabatic
systems. For the two Tully’s models, GDTWA shows reasonable
accuracy, in line with other mapping approaches. For the two bench-
mark LVC models considered, GDTWA displays qualitative and
quantitative accuracy compared to the fully quantum description.
For one of the considered models, it even outperforms the spin-
PLDM, which is the only other of the considered methods to dis-
play an at least qualitative agreement for most of the considered
situations.

Various extensions of the GDTWA are in progress, namely, the
coupling of the system to time-dependent electromagnetic fields and
the extension of GDTWA to simulations in the adiabatic represen-
tation, which will enable, e.g., on-the-fly simulations in conjunction
with usual electronic structure packages for the electronic structure.
The performance of the method in such scenarios will be reported in
future works.

SUPPLEMENTARY MATERIAL

See the supplementary material for the explicit matrix form
of the discrete phase space operators Λ̂μ for N = 2 and 3, fol-
lowed by additional numerical results for second-order correlation
populations.
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APPENDIX A: SAMPLING OF THE INTRA-ELECTRONIC
CORRELATION

The faithful sampling for the intra-electronic correlation is cru-
cial for the accuracy of GDTWA for non-adiabatic dynamics. The
reason is that once there is a non-zero nucleus–electron coupling,
the intra-electron correlation terms appear in the higher-order time
derivatives of the EOMs. We report the detailed analysis for the dia-
batic basis in this appendix to show how the intra-electronic corre-
lations affect the accuracy of GDTWA. After a lengthy but straight-
forward calculation, we obtain the second- and the third-order time
derivative of λα and Λ̂α,

d2λμ(t)
dt2 = f μνξ[∂xtvν(xt)

pt

m
λξ + vν(xt)

pt

m
f ξδϵvδ(xt)λϵ], (A1)

d2Λ̂μ(t)
dt2 = f μνξ[

∂xvν(x̂t)p̂t

2m
Λ̂ξ +

vδ(x̂t)vν(x̂t)p̂t

2m
f ξδϵΛ̂ϵ] + h.c.,

(A2)

d3λμ(t)
dt3 = f μνξ[∂2

xtvν(xt)
p2

t

m2 λξ − ∂xtvν(xt)
1
m
∂xtvζ(xt)λζ λξ

+ ∂xtvν(xt)
pt

m
f ξδϵvδ(xt)λϵ], (A3)

d3Λ̂μ(t)
dt3 = f μνξ[

∂4
x̂t
vν(x̂t) + 4∂2

x̂t
vν(x̂t)p̂2

t

8m2 Λ̂ξ − ∂x̂tvν(x̂t)

× 1
2m

∂x̂tvζ(x̂t)Λ̂ζ Λ̂ξ +
vδ(x̂t)∂x̂tvν(x̂t)p̂t

2m
f ξδϵΛ̂ϵ] + h.c.,

(A4)

where h.c. is the Hermitian conjugate. We focus on the short time
t ∼ 0 accuracy. As for the separable initial state ρ(0), the statistical
average of Eq. (A1) is identical to the quantum expectation value of
Eq. (A2), and the GDTWA is at least accurate up to O(t2). Mean-
while, the statistical average of Eq. (A3) equals the quantum expec-
tation value of Eq. (A4) if Eq. (12), the condition of faithful statistical
sampling of the initial intra-electron correlations, is fulfilled. Thus,
in this case, the accuracy of GDTWA is improved for the short time
dynamics, as it is ensured to be exact at least up to and including
O(t3).

We stress that “intra-electron correlation” here denotes only
a feature of statistical sampling, to be distinguished from the
correlation between nuclear and electronic DoFs or the static
correlation and dynamical correlation in the electronic structure
theory. We illustrate how the discrete sampling fails to repre-
sent the intra-electronic correlation at the example of an explicit
state without the nucleus–electron correlation. Consider the state
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∣Ψ⟩ = (∣1⟩ + eiχ ∣2⟩)/
√

2 for a two-level system, where the discrete
sampling gives the probability distribution

p(λ1 = ±
1√
2
) = 1 ± cos χ

2
,

p(λ2 = ±
1√
2
) = 1 ± sin χ

2
,

p(λ3 = ±
1√
2
) = 1

2
.

(A5)

With an explicit calculation, we obtain Λ̂1Λ̂2+Λ̂2Λ̂1
2 = 0, while

∑
a1 ,a2

p(λ1 = a1)p(λ2 = a2)a1a2 =
sin 2 χ

4
, (A6)

which means the discrete sampling of this state is faithful for the
intra-electron correlation only if χ = 0, π, or ±π/2.

APPENDIX B: DIFFERENT ZPE BETWEEN
SM AND GDTWA FOR BLOCK DIAGONAL
HAMILTONIANS

Although SM and GDTWA have an identical dimension
dependency of the ZPE, they may behave differently when the
Hamiltonian is block diagonal. Consider a simple N ×N Hamil-
tonian with the elements Hkl = 0 for M < k ≤ N, 1 ≤ l ≤M and
1 ≤ k ≤M, M < l ≤ N. The first M diabatic states are decoupled from
the other N −M states. Again, we only consider the initial state
∣1⟩⟨1∣. As before, we denote the electron phase space variable of
the N ×N full electron system as Aα(t) and Bα(t) while the sub-
matrix Aα(t)[1, 2, . . . , M; 1, 2, . . . , M] is indicated as AM

α (t) (and
analogously for Bα).

Since the first M diabatic states are decoupled from the oth-
ers, it is also possible to sample the M ×M subsystem directly. We
use ÃM

α (t) and B̃M
α (t) to represent the electron phase space vari-

ables obtained by sampling from the M ×M subsystem. It is easy to
check that the initial distributions of AM

α (0) and ÃM
α (0) are identi-

cal. Moreover, the classical trajectories satisfy AM
α (t) = ÃM

α (t) if their
initial conditions are the same. Thanks to the implicit ZPE parame-
ter of GDTWA, all the physical quantities are invariant independent
of whether we use the N ×N full electron system or the M ×M
subsystem.

The above arguments become much more subtle for the SM
approach with the dimension dependent ZPE parameter. The initial
distribution of BM

α (0) and B̃M
α (0) becomes different, as do the clas-

sical trajectories, even when the same initial conditions are applied.
This difference may affect the observables, though it is difficult to
give a general statement under which circumstances this is the case.
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