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Introduction

The main purpose of this dissertation is to present outcomes related to some differential

structure’s results and two kinds of variational problems. The latter share similar geometric

analysis instruments, in spaces whose geometry is expressed in terms of a family of vector

fields. The first part focuses on Finsler type distances properties in structures defined in

terms of bracket generating vector fields, and in particular in Carnot groups. The second

part describes properties of local functionals in more general structures, defined in terms of

further degenerate families of vector fields.

The first chapter is devoted to the presentation and the analysis of some key results

achieved by Venturini in an unpublished preprint [94] and by De Cecco and Palmieri

in [44,46–48]. In [94], the author studied a particular class of geodesic distance functions lo-

cally equivalent to the Euclidean one. Afterwards, he investigated the relationships between

this class and the family of Borel measurable metrics locally equivalent to the Euclidean one,

on a subdomain Ω ⊂ Rn. In the literature, this is a subclass of the so-called Finsler metrics,

namely F : Ω × Rn → [0,+∞) such that F (x, ·) is convex and positively 1-homogeneous

on Rn. Alongside, De Cecco and Palmieri rephrased the previous analysis in the setting

of Lipschitz manifolds, which are a generalization of Riemannian manifolds and polyhedra,

since they can show vertices, edges, conical points, even not isolated.

Once we have introduced the state of the art, our first aim is to extend the aforementioned

analysis in the so-called Carnot groups, a particular class of Carnot–Carathéodory spaces

which have been facing an increasing interest in the last century. For extensive sources of
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this topic we refer the reader to [3, 12,16,52,69,76,79,84,85,87].

More in general, a sub-Finsler manifold is given by the triple (M,∆, ‖·‖) where M is a

n-dimensional smooth manifold and ∆ is a subbundle of the tangent bundle TM that sat-

isfy the so called Hörmander (or equivalently bracket-generating) condition. If we equip

∆ with a (possibly) continuously varying norm ‖·‖, it is natural to induce the so-called

Carnot–Carathéodory distance dcc, defined by minimizing only on those absolutely continu-

ous paths whose tangent vector belongs to the fibers of ∆: the horizontal curves. We refer to

(M,∆, ‖·‖ , dcc) as a Carnot–Carathéodory space and when the norm ‖·‖ comes from a scalar

product, the quadruple is usually called sub-Riemannian manifold.

Sub-Finsler geometry is a rather new research fields and sub-Finsler structures (∆, ‖·‖) have

been deeply studied in the recent years, observing that, when they are induced by smooth

norms, the theory is very similar to the sub-Riemannian case. On the other hand, the sub-

ject is wider when the norm is not supposed to be strictly convex nor smooth, even away

from the origin. Indeed, in order to analyze the behaviour of geodesics or the applications

in some optimal control problems, several works developed a sub-Finsler geometry on the

Heisenberg group (cf. [9, 58]) and on nilpotent Lie groups of step bigger than 2 as the Engel

and the Cartan groups, see e.g. [7, 8, 11, 19, 35, 76]. Moreover, sub-Finsler manifolds were

also object of analysis in order to approach the Bernstein problem and the regularity of

Lipschitz boundaries (see [67, 68]). Clearly, Riemannian and Finsler manifolds can be seen

respectively as a special example of sub-Riemannian and sub-Finsler ones, when one consid-

ers ∆ = TM . Actually, the tangent metric space of a sub-Riemannian manifold is a Carnot

group. This is a connected and simply connected Lie group whose associated Lie algebra

admits a finite-step stratification, see e.g. [16, 52, 85, 89]. It possesses a very rich geometry

and occupies a central position in the study of harmonic analysis and hypoelliptic partial

differential equations. Moreover, Carnot groups arises in the CR geometric function theory

(see [59]), quasiconformal mappings and recently in the applied sciences such as mechanical

engineering and neurophysiology of the brain (see for instance [34,75]).

The problem we want to introduce concerns the class of geodesic distances d : Ω × Ω → R
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locally equivalent to the Carnot–Carathéodory distance, where Ω is a subdomain of a Carnot

group G. We will say that they belong to Dcc(Ω) if there exist some α ≥ 1 such that

1

α
dcc(x, y) ≤ d(x, y) ≤ αdcc(x, y) ∀x, y ∈ Ω.

Setting the so-called horizontal bundle HG, namely, the subbundle of the tangent bundle

TG (see Section 2.1), it is quite natural to consider the family of maps ϕd : HG→ [0,+∞).

According to [46, 94], the latter is called the metric derivative associated to d ∈ Dcc(Ω) by

differentiation, in other words:

ϕd(x, v) := lim sup
t↘0

d
(
x, x · δt exp(dxτx−1 [v])

)
t

for every (x, v) ∈ HG.

Due to the notation introduced by Scott D. Pauls in [90], in the latter we denoted with

x · δt exp(dxτx−1 [v]) the dilation curve starting from x ∈ G with direction given by the left

translation at the identity of a horizontal vector on the fiber HxG (see Subsection 2.1.1 and

Definition 2.1.6). In particular, ϕd is the counterpart of the Finsler metric, with the difference

that, fixing a point x ∈ Ω, it is defined only on HxG, instead of all the tangent space at x.

It turns out that the metric derivative is a sub-Finsler convex metric, namely

• ϕ : HG→ R is Borel measurable, where HG is endowed with the product σ-algebra;

• ϕ(x, δ∗λv) = |λ|ϕ(x, v) for every (x, v) ∈ HG and λ ∈ R;

• 1
α
‖v‖x ≤ ϕ(x, v) ≤ α‖v‖x for every (x, v) ∈ HG;

• ϕ(x, v1 + v2) ≤ ϕ(x, v1) + ϕ(x, v2) for every x ∈ G and v1, v2 ∈ HxG.

By (δ∗λ)λ∈R we mean a family of dilations appropriately defined on HxG (see Subsection 2.1.2)

and by ‖ · ‖x we denote the norm induced by the sub-Riemannian structure (cf. Definition

2.1.3). Let us mention that, the assumption of convexity for ϕ involves only vectors on

the first stratum. In general, in Carnot groups there where several definitions involving

points, as the definition of horizontal convexity given by Danielli, Garofalo and Nhieu in [39]

and, independently, by Lu, Manfredi and Stroffolini [73]. This being said, in Theorem 2.3.8
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we will show that we can reconstruct the distance d by minimizing the length functional

induced by the metric derivative ϕd. Furthermore, inspired by the proof contained in [28],

in Section 4.4 we state the equivalence between the Γ-convergence of the so called length

and energy functionals Ln and Jn associated to a sequence of distances (dn)n∈N ⊂ Dcc(Ω).

Moreover, in Theorem 4.4.1 point (iv), we show an additional characterization when Ω is

bounded. Let us recall that these kind of variational problems have been already studied

in the literature, mostly for what concerns the homogenization of Riemannian and Finsler

metrics, see e.g. [1, 5, 18, 42,43].

The second purpose is to study a different application: the intrinsic analysis of sub-Finsler

metrics, contained in the paper [54]. More precisely, under suitable regularity assumptions

on the metric under consideration, we prove the following result (Theorem 2.7.1):

ϕ(x,∇Gf(x)) = Lipδϕ f(x) for a.e. x ∈ G, (0.0.1)

where f : Ω ⊂ G → R is a Pansu-differentiable function (cf. Definition 2.1.15), δϕ is the

distance defined in (0.0.2) below, ϕ is a sub-Finsler convex metric, and the pointwise Lipschitz

constant of f is given by

Lipδϕ f(x) = lim sup
y→x

|f(y)− f(x)|
δϕ(x, y)

for every x ∈ G.

The equality (0.0.1) may be regarded as a generalization of a result achieved in [93], and

further generalized by Chang Y. Guo in [70], to bounded Finsler metrics defined on open

subsets of Rn. Then, in order to prove (0.0.1), we crucially observe that the distance

δϕ(x, y) := sup
{
|f(x)− f(y)|

∣∣ f : G→ R Lipschitz, ‖ϕ(·,∇Gf(·))‖∞ ≤ 1
}
, (0.0.2)

introduced by De Cecco and Palmieri in [45, 46] for Finsler metrics, coincides with the

intrinsic distance dϕ? , induced by the dual metric (cf. Definition 2.2.2). This happens, for

instance, when we assume that the sub-Finsler metric ϕ is either lower semicontinuous or

upper semicontinuous on the horizontal bundle (see Theorem 2.6.4 and Corollary 2.2.5).

These results are obtained using methods of metric geometry and they are a generalization
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of the analogous statement in [48], due to De Cecco and Palmieri. The proof of Theorem

2.6.4 heavily relies on two results contained in [77] and appropriately specialized in our

setting. The first one allows us to approximate an upper semicontinuous sub-Finsler metric

with a family of Finsler metrics. The second result lets us approximate from below the

intrinsic distance, induced by the sub-Finsler convex metric, with a family of induced Finsler

distances. To conclude, we show that in many cases the distance δϕ, albeit defined as a

supremum among Lipschitz functions, is actually already determined by smooth functions

(cf. Proposition 2.7.3). An important step in proving this fact is to approximate uniformly

on compact sets any 1-Lipschitz function with a sequence of smooth 1-Lipschitz functions.

Here, the key point is that the Lipschitz constant is preserved. Since this approximation

result holds in much greater generality (for instance, on possibly rank-varying sub-Finsler

manifold) and might be of independent interest, we will treat it in Subsection 2.7.1.

In the second part of the present Ph.D. Thesis, we focus on the analysis of the represen-

tation of local functionals, as integral functionals, of the form

F (u) =

∫
Ω

f(x, u(x), Xu(x)) dx.

This point of view was recently introduced in the paper [60], where the authors started the

analysis of variational functionals driven by a family of Lipschitz vector fields. This is an

m−tuple X = (X1, . . . , Xm) of first-order differential operator Xj, with Lipschitz regular

coefficients cj,i defined on a bounded open set Ω ⊆ Rn, namely

Xj(x) =
n∑
i=1

cj,i(x)∂i j = 1, . . . ,m.

Moreover we assume that the family X satisfies the structure assumption (LIC), which

roughly means that X1(x), . . . , Xm(x) are linearly independent for a.e. x ∈ Ω (cf. Defi-

nition 3.1.1). This condition is pretty general and encompasses many interesting example

of sub-Riemannian manifolds, as the Carnot groups, when we consider the family of vector

fields given by X = ∇G, namely the horizontal gradient, properly defined in (2.1.7). This is
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the the main link between the analysis achieved in the first part of the Ph.D. Thesis and the

present arguments.

However, the integral representation problem has a very long history and it exhibits a natural

application when dealing with relaxed functionals and related Γ-limits in a suitable topology.

In the Euclidean setting it is now very well understood and we refer the interested reader to

the papers [4, 24–27] for a complete overview of the subject.

A crucial result concerning our analysis is given by [81, Theorem 3.12]. Denoting with A

the class of all open subsets of Ω, the authors found conditions such that a local functional

F : Lp(Ω)×A→ [0,∞] can be represented as

F (u,A) =

∫
A

f(x,Xu(x)) dx (0.0.3)

for a suitable Carathéodory function f : Ω×Rm → [0,∞), for any A ⊆ Ω open and u ∈ Lp(Ω)

s.t. u
∣∣
A
∈ W 1,p

X,loc(A) (cf. Definition 3.1.2 and [59]). We also point out that functional (0.0.3)

was studied in [60] as far as its relaxation and in connection with the well-known Meyers–

Serrin approximation theorem in W 1,p
X (Ω). Inspired also by the results proved in [25,26], the

aim of Chapter 3 is to extend the results achieved in [81], when one drops the assumption of

translations-invariance on the functional F .

More precisely, we will find some sufficient and necessary conditions under which a local

functional F : W 1,p
X,loc(Ω)×A −→ [0,+∞] admits an integral representation of the form

F (u,A) =

∫
A

f(x, u(x), Xu(x)) dx ∀u ∈ W 1,p
X,loc(Ω), ∀A ∈ A, (0.0.4)

for a suitable Carathéodory function f : Ω×R×Rm → [0,∞). Due to the lack of translations

invariance, in this new framework the dependence of the integrand with respect to the func-

tion u is expected. Moreover, if F is defined on Lploc(Ω)×A, under reasonable improvements

of some of the assumptions, it is easy to extend the integral representation obtaining that

F (u,A) =

∫
A

f(x, u(x), Xu(x)) dx ∀A ∈ A, ∀u ∈ Lploc(Ω) s.t. u|A ∈ W 1,p
X,loc(A).

The main goal of Chapter 3 is to present the representation formula, contained in the paper

[55], for the following three different classes of functionals:
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(a) convex functionals (Theorem 3.2.1);

(b) W 1,∞ weakly*- seq. l.s.c. functionals (Theorem 3.3.2);

(c) none of the above conditions (Theorem 3.4.1).

For dealing with the situation (c), we exploit some continuity condition introduced in [26],

known as weak and strong condition (ω) (see Definition 3.2.4). An obstacle is that, no

analogue of approximation results, by a reasonable notion of piecewise X-affine function,

holds in general (see [81, Section 2.3] and Remark 3.1.7). To overcome this difficulty we

rely on the method employed in [81]. This consists in firstly applying one of the classical

results for Sobolev spaces in [25, 26] to the functional, obtaining an integral representation

with respect to a ”Euclidean” Lagrangian fe of the form

F (u,A) =

∫
A

fe(x, u(x), Du(x))dx ∀u ∈ W 1,p
loc (Ω), ∀A ∈ A.

Then, it is necessary to find sufficient conditions on fe that guarantee the existence of a ”non

Euclidean” Lagrangian f such that∫
A

fe(x, u(x), Du(x))dx =

∫
A

f(x, u(x), Xu(x))dx ∀A ∈ A, ∀u ∈ C∞(A). (0.0.5)

Indeed, by Proposition 3.1.21 we can crucially exploits the convexity of fe(x, u, ·) in order to

guarantee (0.0.5). This result shown in [81] and the same ideas can be adapted to the cases (a)

and (b), for which the convexity of fe(x, u, ·) is granted. On the contrary, due to the weaker

assumptions on the class of functionals, case (c) is more demanding and requires a further

step. In other words, we have to extend the equality (0.0.5) to the whole space W 1,p
X,loc(Ω).

Neverthless, we will show that the convexity of fe(x, u, ·) is not a necessary assumption in

order to obtain (0.0.5). Hence, we need to find a more suitable notion of convexity that is less

demanding. For this reason, in Definition 3.3.7 we define the weaker concept of X-convexity,

which strongly depends on the chosen family of vector fields. In Proposition 3.3.8, we prove

that under a classical growth assumption on the functional, this new condition is equivalent

to (0.0.5). Finally, by slightly modifying a zig-zag argument contained in [26, Lemma 2.11],
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we show that X-convexity is a consequence of a reasonable lower semicontinuity assumption

(cf. Lemma 3.3.9). Finally, in order to give a complete characterization of the classes of

functionals studied, we will also exhibit that, in each of the theorems (a), (b) and (c), the

hypotheses are also necessary.

On the other hand, the previous representation results are crucial in order to move the focus

on a strongly related problem, the Γ-compactness analysis. Starting from the seminal works

by E. De Giorgi and T. Franzoni (see [49,50]), the study of Γ-convergence has pervaded the

evolution of modern calculus of variations, and has developed in several different directions,

exhibiting important applications to many branches of calculus of variations, such as homog-

enization, minimal surfaces and partial differential equations. For an exhaustive introduction

to this topic, we refer to the monographs [17,18,38].

Mostly, G. Buttazzo and G. Dal Maso have investigated Γ-convergence in the classical frame-

work of Lebesgue spaces, Sobolev spaces and BV spaces, see e.g. [25,27,37]. In the last years

the authors of [81,82] started the investigation of the Γ−convergence of translations-invariant

local functionals, depending on suitable families of Lipschitz vector fields. Their strategy

strongly relies on the representation of translations-invariant local functional as an integral

functional (0.0.3). This tool is clearly a generalization of the Euclidean result in [27] and it al-

lows the authors to achieve a Γ-compactness property. Let us notice that similar results have

been proved in [83], under stronger conditions on the family X. Moreover, Γ-convergence for

functionals in (0.0.3) has been also developed in the framework of Dirichlet forms (cf. [63,86]),

when the X-gradient satisfies the Hörmander condition (see, for instance [14] and references

therein). Since that and other important works (see for instance [64]), the possibility to

extend classical results to this new framework has been extensively studied in many papers.

Indeed, many homogenization problems have been solved firstly in the Heisenberg group

(cf. [51]) and then in Carnot groups (cf. [13, 62,83]).

The main purpose in Chapter 4 is to generalize the Γ-compactness result, presented in [81],

to three different classes J of integral functionals (see [56]). Clearly, these are not translations-

invariant functionals and they can be defined both on Lp(Ω) and on W 1,p
X (Ω). To be more
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precise, in Theorem 4.2.7 we show a Γ(Lp)-compactness result, under standard boundedness

and coercivity requirements, for a class of non-negative convex integral functionals. After

that, in Theorem 4.3.12 we exhibit a Γ(W 1,p
X )-compactness result under standard boundedness

assumption for the same class of non-negative convex integral functionals. To conclude, in

Theorem 4.3.15 we present a Γ(W 1,p
X )-compactness result for a class of possibly non-convex

integral functionals which uniformly satisfies a suitable condition, inspired by the classical

notion introduced in [26]: the strong condition (ωX) (see Definition 4.3.2). Differently from

Lp, we point out that in W 1,p
X setting, no coercivity assumption is required and we can also

treat the situation with the exponent p = 1. In order to achieve these three main results, the

general strategy we want to adopt is standard and consists of two main steps:

1. Given a sequence (Fh)h in an appropriate class of integral functional I, find a subse-

quence (Fhk)k and a local functional F such that

F (·, A) = Γ− lim
k→∞

Fhk(·, A) for any A ∈ A,

and moreover show that such an F satisfies some structural properties.

2. Choose a suitable subclass J ⊆ I and show that, whenever (Fh)h belongs to J, then F

belongs to J.

In the case of Γ(Lp)-convergence the approach is classic, since we can achieve the first step

exploiting some basic results contained in [38] and applying some properties of theX-gradient.

Moreover, the second step is based on the integral representation result (a) for convex local

functionals, introduced in Chapter 3. Actually, one has to verify that the abstract Γ(Lp)-limit

F satisfies all the assumptions relative to the class J.

The situation is more delicate when we perform the Γ-limit with respect to the strong topology

of W 1,p
X (Ω). In order to achieve the first step, we introduce a suitable notion of uniform

fundamental estimate, inspired by the classical one contained in [38] and modifying some

arguments (see Definition 4.3.4). The latter allows us to drop the hypothesis of coercivity,

and to mimicking the results performed in the Lp case, adapting them to this new framework.
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On the other hand, the second step relies on the possibility to exploit a slight variant of the

two integral representation results (a) and (c), performed respectively in Theorem 3.2.1 and

Theorem 3.4.1. Indeed, they allows us to represent the Γ(W 1,p
X )−limit in an integral form. To

this aim, we will show that the strong condition (ωX) is a necessary assumption in order to

get one of the hypothesis of the latter theorem. Furthermore, this new condition behaves well

with respect to the passage to the Γ-limit, provided we perform this operation with respect to

the strong topology of W 1,p
X (Ω). To conclude, we point out that some of the results achieved

in the non-Euclidean framework were unsolved, or untreated, even in the classical Sobolev

space. In particular, in Subsection 4.3.3 we list some remarks and problems that are still

opens.



Chapter 1

Metrics and Distances from Rn to

Lipschitz Manifolds

We begin by presenting the objects of main interest for our future analysis, that is Borel

measurable metrics and associated geodesic distances that satisfy reasonable bounds from

above and below. Moreover, we show the connection between the classical analysis in metric

spaces and the important tool of the metric derivative. Their properties are presented and

proved in the subsequent sections and most of them are essentially known in literature. The

main references used are the works by De Cecco and Palmieri [44, 46–48], an unpublished

preprint by Venturini [94] and some chapters of the Ph.D. Thesis of Davini [42]. All this

material has been reorganized and presented in convenient form for later use. We want

also to underline that some proofs have been slightly simplified or modified for an easier

understanding.

1.1 Notation and Metric spaces

Definition 1.1.1. Let X be a non-empty set. We say that d : X×X → [0,+∞) is a distance

if it satisfies the following conditions:

13
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• d(x, x) = 0 for every x ∈ X;

• d(x, y) = d(y, x) for every x, y ∈ X;

• d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ X.

The set X, endowed with the topology induced by d, will be called metric space, and will be

denoted by the couple (X, d).

If the second assumption is not satisfied, we say that d is a pseudodistance on X.

Notation. We denote by Lip([0, 1], X), or by Lip(X), the family of all Lipschitz curves

γ : [0, 1] → X joining two fixed points x and y in X. This means that there exists a finite

constant L such that d(γ(t), γ(s)) ≤ L|t− s|, for every s, t ∈ [0, 1]. To make it easier, in the

sequel we will not specify the end-points x and y. We equip Lip([0, 1], X) with the metric

given by the uniform convergence with respect to d, namely

γn → γ in Lip(X) whenever sup
t∈[0,1]

d(γn(t), γ(t))→ 0 as n→∞.

We denote by LIPd(X) the family of real-valued Lipschitz functions on X or Ω ⊂ X with

respect to d (we omit it when the ambient space is Rn). If f ∈ LIP(X) we denote by

Df the Euclidean gradient, meaning as a row vector. For any f ∈ LIPd(X), we write

Lipdf : X → [0,+∞) to mean the pointwise Lipschitz constant of f , which is defined by

Lipd f(x) = lim sup
y→x

|f(y)− f(x)|
d(x, y)

for every x ∈ X.

�

Definition 1.1.2. Let (X, d) be a metric space. Then we define the classical length functional

of a Lipschitz curve γ : [0, 1]→ X as:

Ld(γ) := sup
{k−1∑
i=1

d(γ(ti+1), γ(ti)) : 0 ≤ t1 < . . . < tk ≤ 1, k ∈ N
}
. (1.1.1)

We will say that d : X ×X → [0,+∞) is a geodesic distance on X if

d(x, y) = inf{Ld(γ) : γ ∈ Lip(X)} for every x, y ∈ X. (1.1.2)



15

In particular, a metric space (X, d) such that d is geodesic is called a length space. We

want to point out that the length Ld is lower semicontinuous with respect to the uniform

and pointwise convergence of curves.

Theorem 1.1.3 (Busemann). Let d be a pseudodistance and let us assume that every closed

ball in (X, d) is compact. Let x, y ∈ X, then the minimum problem

min
{
Ld(γ) : γ ∈ Lip([0, 1], X)

}
admits a solution, provided the family Lip([0, 1], X) 6= ∅. In particular, if d is a geodesic

distance, there exists a curve γ ∈ Lip([0, 1], X) such that Ld(γ) = d(x, y).

Remark 1.1.4. Moreover, if γ : [0, 1] → X is a Lipschitz curve, then the classical metric

derivative

|γ̇(t)|d := lim
s→0

d(γ(t+ s), γ(t))

|s|
exists for a.e. t ∈ [0, 1]. (1.1.3)

The existence of the limit is a general fact that holds in any metric space (see [6,22]). Indeed,

|γ̇(t)|d is a measurable function and it holds that

Ld(γ) =

∫ 1

0

|γ̇(t)|d dt. (1.1.4)

A proof of the previous result is showed, for instance, in [6]. Anyway, we want to present

a simpler proof for Ω ⊂ Rn (see Theorem 1.2.13) and for Carnot groups (see Theorem 2.3.8),

even if (1.1.4) clearly holds in both settings.

Notation. From now on, X = Ω will be an open and connected subset of Rn. For any

u, v ∈ Rn, we denote by 〈u, v〉 the Euclidean scalar product, and by |v| the induced norm.

Given x ∈ Rn and r > 0 we set the usual ball Br(x) := {y ∈ Rn : |x − y| < r} and

the n − 1-dimensional sphere Sn−1 := {v ∈ Rn : |v| = 1}. We denote by Ln the n-th

dimensional Lebesgue measure, and for any set E ⊆ Ω we write |E| := Ln(E). We usually

omit the variable of integration when writing an integral: for instance, given two functions

f : Ω × R → R and u : Ω → R such that x 7→ f(x, u(x)) is integrable over Ω, we write its
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integral as
∫

Ω
f(x, u) dx omitting the variable x. We denote with N ∈ N(Ω) a subset N ⊂ Ω

such that |N | = 0 and we say that γ ∈ Lip(Ω) is transversal to N , if

L1({t ∈ [0, 1] : γ(t) ∈ N}) = 0, (1.1.5)

denoting it with P(Ω, N). �

1.2 Metrics in the Euclidean space

Let us begin introducing a key concept in order to achieve the most important results: the

class of metrics M(Ω).

Definition 1.2.1. We denote with M(Ω) the class of maps ϕ : Ω × Rn −→ [0,+∞) that

satisfy the following conditions:

(1) ϕ(·, v) is measurable for all v ∈ Rn and ϕ(x, ·) is continuous for a.e. x ∈ Ω;

(2) ϕ(x, λv) = |λ|ϕ(x, v) for a.e. x ∈ Ω and for every v ∈ Rn, λ ∈ R;

(3) there exist c, C > 0 with c < C such that c|v| ≤ ϕ(x, v) ≤ C|v|.

We say that ϕ ∈ M(Ω) is convex if, for almost all x ∈ Ω, the function v 7→ ϕ(x, v) is

convex. This means that for almost all x ∈ Ω and all v1, v2 ∈ Rn:

ϕ(x, v1 + v2) ≤ ϕ(x, v1) + ϕ(x, v2). (1.2.1)

Classically, every ϕ ∈ M(Ω) and convex is called Finsler metric but, for the reader

convenience, we will omit the term Finsler, when it is clear that we refer to this definition. The

literature on the subject is wide and an introduction is supplied, for instance, by [10,22]. In

particular, it is shown in [40] that smooth Finsler metrics are dense in M(Ω). Moreover, since

weak regularity assumptions were of physical interest, measurable Finsler metrics have been

deeply studied in [41,42,46–48]. Now, we recall the notion of lower and upper semicontinuity

in the Euclidean space.
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Definition 1.2.2. Given a map ϕ : Ω × Rn → R, we say that ϕ is upper or lower semi-

continuous at the point (x, v) ∈ Ω×Rn if, for every sequence (xn)n converging to x in Ω, we

have that ϕ(x, v) ≥ lim supn→∞ ϕ(xn, v) or ϕ(x, v) ≤ lim infn→∞ ϕ(xn, v).

In this kind of analysis, in order to infer some properties about metrics, an auxiliary and

very important object is the dual metric (or sometimes called conjugate function).

Definition 1.2.3. Given a metric ϕ ∈ M(Ω) the dual metric ϕ? : Ω × Rn → [0,+∞) is

defined by

ϕ?(x, v) := sup

{
|〈v, w〉|
ϕ(x,w)

: w ∈ Rn \ {0}

}
. (1.2.2)

Theorem 1.2.4. Let ϕ ∈M(Ω). Then the following properties hold:

i) ϕ? ∈M(Ω) and it is convex;

ii) ϕ?(x, ·) is a Lipschitz function for a.e. x ∈ Ω;

iii) |〈w, v〉| ≤ ϕ??(x, v)ϕ?(x,w) ≤ ϕ?(x,w)ϕ(x, v) for every x ∈ Ω and v, w ∈ Rn;

iv) if ϕ is upper (lower) semicontinuous then ϕ? is lower (upper) semicontinuous;

v) ϕ?(x, v) = supw
{
〈w, v〉 : ϕ(x,w) ≤ 1

}
.

Proof. i) First, we want to prove that ϕ? ∈ M(Ω). Let us choose a dense sequence (wn)n in

Rn \ {0}. For every x ∈ Ω and thus for any v ∈ Rn we can write

ϕ?(x, v) = sup
n∈N

|〈v, wn〉|
ϕ(x,wn)

.

This proves that Ω 3 x 7→ ϕ?(x, v) is measurable. It is straightforward to show the 1-

homogeneity with respect to v ∈ Rn.

In order to prove the estimate (3) of Definition 1.2.1, let us fix w ∈ Rn. Then, it holds that

1

C

|〈v, w〉|
|w|

≤ |〈v, w〉|
ϕ(x,w)

≤ 1

c

|〈v, w〉|
|w|

,
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and we can take the supremum over all w ∈ Rn \ {0}, obtaining the desired estimate. The

convexity follows since, taking x ∈ Ω and v1, v2 ∈ Rn, we clearly have |〈v1 + v2, w〉| ≤

|〈v1, w〉|+ |〈v2, w〉|. Dividing both by ϕ(x,w) and passing to the supremum in both the sides,

we get the thesis.

Therefore, ϕ?(x, ·) is a norm, thus in particular it is continuous and hence ϕ? ∈M(Ω).

ii) From the latter we get that ϕ?(x, ·) is Lipschitz.

iii) The claim comes from the definition of ϕ? and the expression of the so-called bidual

metric ϕ??.

iv) We will prove the first claim since the opposite is very similar. Let (xn)n ⊂ Ω a sequence

of points converging to x ∈ Ω. We must check that

lim sup
n→+∞

ϕ?(xn, v) ≤ ϕ?(x, v) for every v ∈ Rn.

Without loss of generality, we may assume that the lim sup is in fact a limit. Let us consider

a sequence (wn)n∈N ⊂ Rn such that ϕ(xn, wn) = 1 and ϕ?(xn, v) = |〈v, wn〉|. Since ϕ satisfies

assumption (3) of Definition 1.2.1, then (wn)n is bounded and we may extract a subsequence

(wnk)k converging to some w ∈ Rn. Since ϕ is lower semicontinuous, we get that

lim
n→+∞

ϕ?(xn, v) = lim
n→+∞

|〈v, wn〉| = |〈v, w〉| ≤ ϕ(x, v)

which concludes the proof.

v) By the 1-homogeneity of the metric in M(Ω), the assertion easily follows.

Proposition 1.2.5. Let us consider ϕ ∈ M(Ω). Then ϕ is convex if and only if ϕ(x, v) =

ϕ??(x, v) for every (x, v) ∈ Ω× Rn.

Proof. ⇐ Since ϕ is 1-homogeneous in the second entry, in order to prove that ϕ(x, ·) is

convex, it is sufficient to prove that ϕ(x, v1 + v2) ≤ ϕ(x, v1) + ϕ(x, v2) for every x ∈ Ω

and v1, v2 ∈ Rn. By assumption ϕ(x, v) = ϕ??(x, v) for all (x, v) ∈ Ω × Rn, then for every
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v1, v2 ∈ Rn we can write

ϕ(x, v1 + v2) = ϕ??(x, v1 + v2)

≤ sup

{
|〈v1, w〉x|
ϕ?(x,w)

+
|〈v2, w〉x|
ϕ?(x,w)

: w ∈ Rn, w 6= 0

}
≤ ϕ??(x, v1) + ϕ??(x, v2)

= ϕ(x, v1) + ϕ(x, v2).

⇒ Given that ϕ(x, ·) is convex and 1-homogeneous, ϕ(x, ·) is a norm on Rn and ϕ??(x, ·)

represents its bidual norm. Since the space is finite-dimensional, the conclusion follows.

1.2.1 Class of distances D(Ω) and metric derivative

The forthcoming class is nothing but the set of geodesic distances locally equivalent to the

Euclidean one.

Definition 1.2.6. We say that a distance d : Ω×Ω→ [0,+∞) belongs to D(Ω) if it satisfies

the following assumptions:

i) d is geodesic, as in (1.1.2);

ii) there exist c, C > 0 with c < C such that

c|x− y| ≤ d(x, y) ≤ C|x− y| for every x, y ∈ Ω. (1.2.3)

We endow D(Ω) with the metric given by the uniform convergence of compact subsets of

Ω× Ω and we denote it with dn → d in Ω× Ω.

Remark 1.2.7. Notice that we may have D(Ω) = ∅ if the domain Ω is disconnected or it has

an irregular boundary. However, the bound c > 0 in (1.2.3) implies that d is non-degenerate

and, when Ω is closed, then D(Ω) is a metrizable compact space. (cf. [28, Theorem 3.1]).

Clearly, any distance in D(Ω) induces on Ω a topology which is equivalent to the Euclidean

one.
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Now we are ready to introduce a central object for our analysis, which plays the same

role of the classical metric derivative (1.1.3).

Definition 1.2.8 (Metric Derivative). Let d ∈ D(Ω). Then the metric derivative is the map

ϕd : Ω× Rn → [0,+∞) defined by

ϕd(x, v) := lim sup
t→0+

d(x, x+ tv)

t
.

Lemma 1.2.9. Let d ∈ D(Ω). Then the following properties hold:

(a) ϕd(·, v) is measurable for every v ∈ Rn and ϕd is 1-homogeneous;

(b) c|v| ≤ ϕd(x, v) ≤ C|v| for a.e. x ∈ Ω and for every v ∈ Rn;

(c) |ϕd(x, v1)− ϕd(x, v2)| ≤ C|v − w| for every x ∈ Ω and v1, v2 ∈ Rn.

Proof. (a) By definition, x 7→ ϕd(x, v) may be regarded as the limit of lower semicontinuous

functions and, as a consequence, a Borel measurable map with respect to x. Moreover, for

every fixed λ > 0 we have that:

ϕd(x, λv) = lim sup
t→0+

d(x, x+ tλv)

t
= λ lim sup

t→0+

d(x, x+ tλv)

tλ
= λϕd(x, v).

If λ < 0, the proof is similar performing a change of variable.

(b) We know that we can pass to the limsup as below

lim sup
t→0+

c|tv|
t
≤ lim sup

t→0+

d(x, x+ tv)

t
≤ lim sup

t→0+

C|tv|
t

,

and we obtain the thesis. Therefore, ϕd belongs to M(Ω).

(c) Since d ∈ D(Ω), for every v1, v2 ∈ Rn it holds that

d(x, x+ tv1) ≤ d(x, x+ tv2) + d(x+ tv2, x+ tv1) ≤ d(x, x+ tv2) + tC|v2 − v1|

whence ϕd(x, v1) ≤ ϕd(x, v2) + C|v2 − v1| and interchanging the role of v2 and v1 we get

|ϕd(x, v1)− ϕd(x, v2)| ≤ C|v2 − v1|.
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In the sequel, for any d ∈ D(Ω) and a ∈ Ω, we denote with da : Ω→ [0,∞) the fixed-point

distance map da(x) := d(a, x). Clearly, da is Lipschitz with respect to Euclidean distance

and then, by Rademacher’s Theorem, da is differentiable for a.e. x ∈ Ω.

Proposition 1.2.10. Let d ∈ D(Ω), and let a ∈ Ω be a fixed point. Then it holds that:

‖ϕ?d(x,Dda(x)‖∞ ≤ 1, for every x ∈ Ω.

Proof. For almost every x ∈ Ω and for all v ∈ Rn we have that da(x + tv) − da(x) =

t〈Dda(x), w〉+ o(|t|), from which we get

〈Dda(x), v〉+
o(|t|)
t

=
d(a, x+ tv)− d(a, x)

t
≤ d(x, x+ tv)

t
.

Therefore, passing to the limsup for t→ 0 we get that:

〈Dda(x), v〉 ≤ ϕd(x, v) ⇒ ϕ?d(x,Dda(x)) ≤ 1.

Definition 1.2.11. If ϕ ∈M(Ω) we denote the length functional Lϕ by the formula

Lϕ(γ) :=

∫ 1

0

ϕ(γ(t), γ̇(t))dt, γ ∈ Lip([0, 1],Ω). (1.2.4)

Since the map t 7→ (γ(t), γ̇(t)) is Borel measurable on Ω × Rn and ϕ satisfies (1) in

Definition 1.2.1, then Lϕ(γ) is well-defined.

Remark 1.2.12. By assumption (2) of Definition 1.2.1, Lϕ(γ) does not depend on the way

the Lipschitz curve γ is parametrized, namely, if η = γ ◦ ρ, where ρ : R → R is a Lipschitz

diffeomorphism, then Lϕ(γ) = Lϕ(η). For this reason, it is not restrictive to assume γ to be

defined on [0, 1]. Further, let us notice that Lϕ is lower semicontinuous on Lip([0, 1], Ω̄), where

Ω̄ is the topological closure of Ω. This happens, for instance, when ϕ is lower semicontinuous

on Ω× Rn and ϕ is convex for every x ∈ Ω̄ (cf. [24, Theorem 4.1.1]).

Now we present the length representation result and we give the proof in a simpler for-

mulation with respect to [46, Theorem 2.5]. Again, we recall that this is a particular case of

equality (1.1.4) and [40, Theorem 1.3], in the setting of metric spaces.
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Theorem 1.2.13. Let d ∈ D(Ω), then for every γ ∈ Lip(Ω) it holds that:

Ld(γ) = Lϕd(γ) =

∫ 1

0

ϕd(γ(t), γ̇(t))dt. (1.2.5)

In particular, d = dϕd.

Proof. We adapt the proof contained in [46, Theorem 2.5] in the Euclidean space. Pick a

partition of [0, 1] and, since γ is Lipschitz, we have that d(γ(ti), γ(t)) are differentiable a.e.

t ∈ [0, 1] and hence

d

dt
d(γ(ti), γ(t)) = lim

h→0

d(γ(ti), γ(t) + γ̇(ti)h+ o(h))− d(γ(ti), γ(t))

h

≤ lim inf
h→0

d(γ(t), γ(t) + γ̇(ti)h)

h
.

This implies that

d(γ(ti), γ(ti+1)) ≤
∫ ti+1

ti

lim inf
h→0

d(γ(t), γ(t) + γ̇(ti)h)

h
dt

for which

Ld(γ) ≤
∫ 1

0

lim inf
h→0

d(γ(t), γ(t+ h))

h
dt. (1.2.6)

Since the function Ld(γ(t)) = Ld(γ|[0,t]) is increasing, applying a corollary of Fatou Lemma,

in the differentiability points of Ld(γ(t)) and γ(t) we have

Ld(γ) ≥
∫ 1

0

d

dt
Ld(γ(t))dt =

∫ 1

0

lim
h→0

Ld(γ(t+ h))− Ld(γ(t))

h
dt

≥
∫ 1

0

lim sup
h→0

d(γ(t), γ(t+ h))

h
dt.

Now by (1.2.6) we have,∫ 1

0

lim sup
h→0

d(γ(t), γ(t+ h))

h
dt ≤ Ld(γ) ≤

∫ 1

0

lim inf
h→0

d(γ(t), γ(t+ h))

h
dt,

but this is false and then the assertion follows.

To get the second assertion, first we have to pass to the supremum over all the partitions on

the right hand side of (1.2.5). After that we compute the infimum over all γ ∈ Lip([0, 1],Ω)

on the left hand side of (1.2.5). Since d is a geodesic distance we obtain the thesis.
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1.2.2 Metric Derivative’s convexity in Rn

The main goal of this section is to prove that, given a distance in D(Ω) the induced metric

derivative is a convex metric in the sense of Definition 1.2.1. This means that ϕd(x, ·) is a

norm for every fixed x ∈ Ω and, in order to show it, we recall two results proved in [94, Lemma

3.1, Lemma 3.2].

Lemma 1.2.14. Let d ∈ D(Ω) and let ϕ ∈ M(Ω) be upper semicontinuous. Let N ∈ N(Ω)

and let us suppose that for every γ ∈ P(Ω, N) it holds

d(γ(0), γ(1)) ≤
∫ 1

0

ϕ(γ(t), γ̇(t))dt.

Then for every fixed a ∈ Ω, for a.e. x ∈ Ω and for every v ∈ Rn we have:

|〈Dda(x), v〉| ≤ lim inf
t→0

d(x, x+ tv)

t
≤ lim sup

t→0

d(x, x+ tv)

t
≤ ϕ(x, v).

Proof. Fix v ∈ Rn and for a ∈ Ω, let Ev
a be the full measure set where da is differentiable

and let γ(t) = x+ tv the curve belonging to P(Ω, N). If t is small enough, it holds that

ϕ(x, v) = lim
t→0

1

t

∫ t

0

ϕ(x+ sv, v)ds.

By Rademacher’s Theorem |Ω \ Ev
a | = 0 and, when x ∈ Ev

a , we have that

|〈Dda(x), v〉| = lim
t→0

∣∣∣∣d(a, x+ tv)− d(a, x)

t

∣∣∣∣ ≤ lim inf
t→0

d(x, x+ tv)

|t|

≤ lim sup
t→0

d(x, x+ tv)

|t|
≤ lim

t→0

1

t

∫ t

0

ϕ(x+ sv, v)ds = ϕ(x, v).

Pick a countable dense subset F ⊂ Rn and set E(a) = ∩y∈FEy
a . Then |Ω \E(a)| = 0 and for

every x ∈ E(a) and all v ∈ Rn we obtain the estimate

|〈Dda(x), v〉| ≤ lim inf
t→0

d(x, x+ tv)

|t|
≤ lim sup

t→0

d(x, x+ tv)

|t|
≤ ϕ(x, v).

By the upper semicontinuity of ϕ, the above inequalities hold for almost all x ∈ Ω and for

every v ∈ Rn.
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Theorem 1.2.15. Suppose d ∈ D(Ω). Then ϕd is a convex metric and for a.e. x ∈ Ω and

for every v ∈ Rn, it holds

ϕd(x, v) = lim
t→0

d(x, x+ tv)

|t|
.

Proof. We follow a slightly modified version of the proof in [42, Theorem 1.11].

Let G ⊂ Ω be a countable dense subset in Ω. For each x ∈ Ω, let Ea the negligible Borel

subset of Ω containing the points where da is not differentiable. For every (x, v) ∈ Ω × Rn

we set

ξ(x, v) =

supa∈G|〈Dda(x), v〉| if x ∈ Ω \ Ea

0 otherwise.

Clearly ξ ∈ M(Ω) it is convex and upper semicontinuous. Now, considering E := ∪a∈GEa,

since G is countable we have that |E| = 0. Hence for every γ ∈ P(Ω, E) we obtain:

d(γ(0), d(γ(1))) = sup
a∈G

(
da(γ(1))− da(γ(0))

)
= sup

a∈G

∫ 1

0

d

dt
da(γ(t))dt

= sup
a∈G

∫ 1

0

|〈Dda(γ(t)), γ̇(t)〉| dt ≤
∫ 1

0

ξ(γ(t), γ̇(t))dt.

Therefore we can apply Lemma 1.2.14 to obtain

|〈Dda(x), v〉| ≤ lim inf
t→0

d(x, x+ tv)

|t|
≤ lim sup

t→0

d(x, x+ tv)

|t|
≤ ξ(x, v),

for a.e. x ∈ Ω and for every v ∈ Rn. The claim then easily follows by taking the supremum

over a ∈ G on the left-hand side term.

1.3 A quick overview on Intrinsic Distances

Now, in order to develop the analytic study of the class of intrinsic distances, we introduced

the notion given by De Cecco and Palmieri in [47, Definition 1.4]. In particular, considering

only the infimum over Lipschitz curves connecting two points of Ω, the quantity we get is

only a pseudodistance. In order to obtain a distance we need further to compute a supremum

over all curves transversal to some negligible set.
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Definition 1.3.1. Given any ϕ ∈M(Ω), we define the induced intrinsic distance as

dϕ(x, y) := sup
N

inf
γ

∫ 1

0

ϕ(γ(t), γ̇(t)) dt for every x, y ∈ Ω, (1.3.1)

where the supremum is taken over all subsets N ⊂ Ω such that |N | = 0 and the infimum is

taken over all curves belonging to P(Ω, N) and joining x and y.

The quantity dϕ(x, y) is well-defined and (1.3.1) is invariant with respect to modifications

of the metric ϕ on negligible subsets of Ω̄.

Remark 1.3.2. It is well know that Ldϕ(γ) ≤ Lϕ(γ) for any γ ∈ Lip(Ω) (see for instance [42,

Theorem 1.18]). This yields to the inequality ϕdϕ(x, v) ≤ ϕ(x, v) for every (x, v) ∈ Ω × Rn,

but this can be strict when ϕ is not continuous, see e.g. [46, Example 5.1]. Moreover, if

ϕ ∈ M(Ω) and when c > 0 in (1.2.3), in [42, Proposition 2.7] the authors showed that

actually Ldϕ can be characterized as the relaxed functional of Lϕ on Lip([0, 1], Ω̄). In other

words it holds that

Ldϕ(γ) = inf
{

lim inf
n→+∞

Lϕ(γn) : (γn)n ⊂ Lip(Ω̄) γn → γ in Lip(Ω̄)
}
.

Lemma 1.3.3. If ϕ ∈M(Ω) is a convex metric, then dϕ ∈ D(Ω).

Proof. Thanks to [46, Theorem 3.7] we know that dϕ is geodesic, therefore we need to prove

that it is a distance. First of all, dϕ(x, y) ≥ 0 for every x, y ∈ Ω since the integral of

ϕ(γ(·), γ̇(·)) is non-negative. In order to prove the symmetry, let us consider γ ∈ Lip([0, 1],Ω)

such that γ(0) = x and γ(1) = y. Set ξ : [0, 1]→ Ω as ξ(t) = γ(1−t), hence this is a horizontal

curve in [0, 1]. By the 1-homogeneity of ϕ(x, ·), we get that∫ 1

0

ϕ(ξ(t), ξ̇(t)) dt =

∫ 1

0

ϕ(γ(1− t),−γ̇(1− t)) dt =

∫ 1

0

ϕ(γ(s),−γ̇(s)) ds

=

∫ 1

0

ϕ(γ(s), γ̇(s)) ds.

So now, passing to the infimum over γ ∈ Lip([0, 1],Ω) we get that dϕ(x, y) = dϕ(y, x).
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To prove the triangle inequality, let x, y, z ∈ Ω and γ1, γ2 ∈ Lip([0, 1],Ω) be such that

γ1(0) = x, γ1(1) = y = γ2(0), and γ2(1) = z. Let us define the following curve:

η : [0, 1]→ Ω, η(t) :=

γ1(2t) if t ∈ [0, 1
2
];

γ2(2t− 1) if t ∈ [1
2
, 1].

Then we obtain that

dϕ(x, z) ≤
∫ 1

0

ϕ(η(t), η̇(t)) dt =

∫ 1
2

0

ϕ(γ1(2t), 2γ̇1(2t)) dt+

∫ 1

1
2

ϕ(γ2(2t− 1), 2γ̇2(2t− 1)) dt

=

∫ 1

0

ϕ(γ1(s), γ̇1(s)) ds+

∫ 1

0

ϕ(γ2(s), γ̇2(s)) ds,

where in both integrals we applied a change of variable and the 1-homogeneity of ϕ. For i =

1, 2, passing firstly to the infimum respectively over all γi ∈ P(Ω, Ni), and to the supremum

with respect to Ni such that |Ni| = 0, we get the statement. We are left to prove property

(3) of Definition 1.2.4. Let x, y ∈ Ω and let γ : [0, 1]→ Ω be a Lipschitz curve joining x and

y. Pick a null set N maximizing (2.5.2) then, by (i) of Theorem 1.2.4, we get that∫ 1

0

ϕ(γ(t), γ̇(t)) dt ≤ C

∫ 1

0

|γ̇(t)| dt.

Thus, passing to the infimum in the right-hand side we obtain the conclusion and the converse

inequality can be achieved by arguing in a similar way.

The last theorem, proved in [21, Theorem 3.1], asserts that it is possible to drop the

condition of supremum in Definition 1.3.1. The idea is contained in the following lemma

which states that any Lipschitz curve can be approximated with a transversal one which

connects the same end-points (see [21, Lemma 3.2]).

Lemma 1.3.4. Let γ ∈ Lip(Ω) joining x, y ∈ Ω̄ and let N ∈ N(Ω). Then for every ε > 0

there exists γε ∈ P(Ω, N) joining x and y, and such that

sup
t∈[0,1]

|γ(t)− γε(t)|+ sup
t∈[0,1]

|γ̇(t)− γ̇ε(t)| < ε.
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Theorem 1.3.5. If ϕ ∈M(Ω), then there exists V ∈ N(Ω) such that

dϕ(x, y) = inf
γ∈P(Ω,V )

∫ 1

0

ϕ(γ(t), γ̇(t))dt.

The existence of the negligible set V is guaranteed by [31, Proposition 3.5]. Moreover,

Theorem 1.3.5 tells also that, if one sets the metric

ϕ̃(x, v) := ϕ(x, v)χΩ̄\V (x) + C|v|χV (x),

one gets dϕ = dϕ̃. This implies that the set of intrinsic distances is a proper subset of D(Ω).

1.3.1 Relation between ϕ and ϕdϕ

In [94, Theorem 4.3] we can find a simple property that links the norm of the metric derivative

and the bound between ϕ and ϕdϕ .

Remark 1.3.6. Let d ∈ D(Ω) and ϕ ∈M(Ω), then we have that

ϕd(x, v) ≤ ϕ(x, v) ⇐⇒ ϕ?d(x, v) ≥ ϕ?(x, v) for a.e. x ∈ Ω and for every v ∈ Rn.

Moreover, these are equivalent to ‖ϕ?(x,Dda(x))‖∞ ≤ 1, for every fixed a ∈ Ω.

Given a metric ϕ ∈ M(Ω), one could ask when the metric derivative induced by the

intrinsic distance dϕ coincides with the original metric. The following example shows that

it is possible to construct a distance dϕ in D(Ω) such that ϕdϕ does not come from a scalar

product. This is due to the possible lack of regularity of metrics in M(Ω).

Example 1.3.7. Let E := {(x1, x2) ∈ R2 : x1 ∈ Q or x2 ∈ Q} and define

ϕ(x, v) := a(x)|v|, with a(x) = χE(x) + βχR2\E(x).

If C > 0 is such that

C
√
|x1|2 + |x2|2 ≥ |x1|+ |x2| for every x ∈ R2,

the intrinsic distance is dϕ(x, y) = |x1 − y1| + |x2 − y2|. Hence, we obtain that ϕdϕ(x, v) =

|v1|+ |v2|, so that ϕdϕ(x, v) 6= ϕ(x, v) everywhere.
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Even if ϕdϕ need not be equal to ϕ, some relations between them were studied and now

we present some results in this direction. The first one, and the relative proof, are contained

in [21, Proposition 2.9].

Proposition 1.3.8. For every ϕ ∈M(Ω), it holds that

ϕdϕ(x, v) ≤ ϕ(x, v) for a.e. x ∈ Ω and for every v ∈ Rn. (1.3.2)

Moreover, if ϕ is upper semicontinuous, (1.3.2) holds for every x ∈ Ω and v ∈ Rn.

Proof. Let us fix v ∈ Sn−1 and, for every a ∈ Ω, let us set γa(s) := a + sv. For h > 0 small

enough we have

1

h

∫ t+h

t

ϕ(γa(s), v)ds =
1

h

∫ 1

0

ϕ(γa(t+ hr), hv)dr ≥ d(γa(t), γa(t) + hv)

h
,

where t is a Lebesgue point for the map s 7→ ϕ(γa(s), v). Hence, by taking the limsup as

h → 0+, we get that ϕd ≤ ϕ for all the points of γa. Since we choose arbitrarily the point

a ∈ Ω and the Lebesgue point t ∈ R, by Fubini’s Theorem we get that ϕd(x, v) ≤ ϕ(x, v)

for a.e. x ∈ Ω. Taking a dense sequence (vn)n∈N ∈ Sn−1, repeating the argument above, by

density ϕdϕ(x, v) ≤ ϕ(x, v) for a.e. x ∈ Ω and for every v ∈ Rn and hence the thesis.

Assuming that ϕ is upper semicontinuous, fixing (x, v) ∈ Ω×Sn−1 there exists r > 0 such that

Br(x) ⊂ Ω and ϕ(y, v) < ϕ(x, v)+ε for every y ∈ Br(x). For t small enough, γt(s) := x+s(tv)

stays in Br(x) and then we have

d(x, x+ tv) ≤
∫ 1

0

ϕ(x+ s(tv), tv)ds ≤
∫ 1

0

(ϕ(x, tv) + εt)ds = t(ϕ(x, v) + ε),

and hence
d(x, x+ tv)

t
≤ ϕ(x, v) + ε.

By taking the limsup, since ε > 0, x ∈ Ω and v ∈ Sn−1 are arbitrary, we obtain the claim.

On the other hand, when we consider a lower semicontinuous metric, the relation (1.3.2)

changes. We present here the result contained in [21, Proposition 2.9 (ii)]) because it will be

important in order to extend the claim in Chapter 2.
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Theorem 1.3.9. Let d ∈ D(Ω). Then for every convex and lower semicontinuous metric

ϕ ∈M(Ω), we have that:

ϕdϕ(x, v) ≥ ϕ(x, v) for every (x, v) ∈ Ω× Rn.

Proof. If (x, v) ∈ Ω×Sn−1, by lower semicontinuity, for every ε > 0 there exists r = r(ε, x) > 0

such that Br(x) ⊂ Ω and ϕ(y, v) > ϕ(x, v)−ε for every y ∈ Br(x). Since ϕ is convex, by (ii) of

Theorem 1.2.3 it is also Lipschitz and by possibly choosing a smaller r, the previous inequality

holds in Br(x)×Br(v). Since Sn−1 is compact, the same holds for every (y, v) ∈ Br(x)×Sn−1

as well. Choosing a d-minimizing sequence of paths (γn)n ⊂ Lip(Ω), connecting x and x+ tv,

we have that γn([0, t]) ⊂ Br(x) for t small enough. If n is big enough we get

Lϕ(γn) ≥
∫ 1

0

(ϕ(x, γ̇n(s))− ε|γ̇n(s)|)ds ≥ t
(
ϕ(x, v)− 2

C

c
ε
)
,

where in the last estimate we applied Jensen’s inequality applied to ϕ(x, ·) in combination

with c
∫ 1

0
|γ̇n(s)ds ≤ Lϕ(γn) ≤ 2d(x, x + tv) ≤ 2Ct, when n is large enough. Letting n goes

to +∞ in the above inequality we obtain that

d(x, x+ tv)

t
≥ ϕ(x, v)− 2

C

c
ε. (1.3.3)

By taking the liminf of (1.3.3) as t→ 0+ and since ε > 0, x ∈ Ω and v ∈ Sn−1 were arbitrary,

we get

ϕdϕ(x, v) ≥ lim inf
t→0+

d(x, x+ tv)

t
≥ ϕ(x, v) for every (x, v) ∈ Ω× Sn−1,

and the claim follows by 1-homogeneity in v.

1.4 Some results involving δϕ

Whenever ϕ is a convex metric, it is possible to state a relation between Lipschitz functions

f : Ω → R satisfying the bound ‖ϕ(x,Df(x))‖∞ ≤ 1 and the following family of distances

(cf. [45, 47]).
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Definition 1.4.1. If ϕ ∈M(Ω) is a convex metric, for every x, y ∈ Ω we define:

δϕ(x, y) := sup
{
|f(x)− f(y)| : f ∈ Lip(Ω), ‖ϕ(x,Df(x))‖∞ ≤ 1

}
. (1.4.1)

Recall that Rademacher’s Theorem grants that Df(x) exists at almost every x ∈ Ω and

thus the above definition makes sense. From now on, we will say that any Lipschitz function

satisfying the conditions in (1.4.1) is a competitor for δϕ. For instance, thanks to Proposition

1.2.10 it is easy to verify that the fixed-point distance da is a competitor for δϕd . This is a

direct consequence of Remark 1.3.6.

Lemma 1.4.2. For every convex ϕ ∈M(Ω), we have that δϕ : Ω×Ω→ [0,+∞) is a distance.

Proof. Clearly, we have that δϕ(x, y) ≥ 0 for every x, y ∈ Ω and δϕ(x, y) > 0 if x 6= y. The

symmetry comes from the fact that |f(x)−f(y)| = |f(y)−f(x)|. Also, δϕ satisfies the triangle

inequality since for every x, y, z ∈ Ω we have δϕ(x, y)+δϕ(y, z) ≥ |f(x)−f(y)|+|f(y)−f(z)| ≥

|f(x) − f(z)|. Passing to the supremum on the right-hand side for every f ∈ Lip(Ω) such

that ‖ϕ(x,Df(x))‖∞ ≤ 1, we get that δϕ(x, y) + δϕ(y, z) ≥ δϕ(x, z).

Albeit we already show the general inequality result in Proposition 1.3.8, we recall the

inequality involving the metric derivative with respect to δϕ. Indeed, in [65, Proposition

1.6] it is shown that ϕδϕ(x, v) ≤ ϕ(x, v) for a.e. x ∈ Ω and for every v ∈ Rn. The following

example (see [65, Example 1.8]) proves that there exist a geodesic distance contained in D(Ω)

which is not intrinsic, in the sense of Definition 1.3.1.

Example 1.4.3. Let Ω = (−1, 1)× (−1, 1) and consider the subset S = (−1, 1)×{0}. If we

define the following metric as

ϕ(x, v) =

β|v| if x ∈ Ω \ S

α|v| if x ∈ S,

with 0 < α < β, then the distance dϕ is clearly different from β|x − y|. In particular, for

many pairs of points (x, y) near S we have that d(x, y) < β|x − y|. However the metric
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derivative ϕdϕ coincides with β|v| in Ω \ S and thus δϕdϕ (x, y) = β|x− y|. This means that

the class of intrinsic distances is strictly contained in the set of distances D(Ω). Another

similar example of this phenomenon can be find in [21, Corollary 3.4].

Now, the forthcoming crucial theorem, proved in [47, Theorem 2.10], assures us that δϕ

coincides with the intrinsic distance, which is geodesic by Lemma 1.3.3. An alternative proof

of the fact that δϕ is a geodesic distance is given in [65, Theorem 3.9].

Theorem 1.4.4. Let ϕ ∈ M(Ω) be a convex and lower semicontinuous metric. Then we

have that

δϕ(x, y) = dϕ?(x, y) for every x, y ∈ Ω. (1.4.2)

Let us observe that the equality (1.4.2) can be stated in the dual way. Indeed, assuming

ϕ ∈ M(Ω) upper semicontinuous, then ϕ? will be lower semicontinuous by Theorem 1.2.4

(iv). Therefore, by Theorem 1.4.4, we obtain that δϕ?(x, y) = dϕ??(x, y) = dϕ(x, y) for every

x, y ∈ Ω. This is the reason why, in the literature, one can find the previous claims stated in

the two different perspectives.

1.4.1 Equality among metric and Lipschitz pointwise constant

In this section we will state two results regarding the intrinsic analysis of metrics ϕ ∈M(Ω).

Our purpose is to generalize them in the next Chapter, in the context of Carnot groups.

First, we show a basic result contained in [66, Lemma 2.1].

Lemma 1.4.5. Let d ∈ D(Ω). Then for any f ∈ Lipd(Ω) it holds that

‖Df‖L∞(Ω) = sup
x,y∈Ω,x 6=y

|f(x)− f(y)|
d(x, y)

.

The previous lemma inspired the forthcoming result contained in [70, Theorem 5.2]. It

states that the Lipschitz pointwise constant of a Lipschitz function f , with respect to the

distance δϕ, coincides with the metric evaluated in the direction of Df . It can be regarded

as an improved version of [65, Proposition 2.4] from L∞-norm to pointwise equality.
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Theorem 1.4.6. Let ϕ ∈M(Ω) be convex and upper semicontinuous on Ω. Then for every

function f ∈ Lipδϕ(Ω) we have that

Lipδϕ f(x) = ϕ(x,Df(x)) for a.e. x ∈ Ω.

Proof. ≤ Let f be an arbitrary Lipschitz function with respect to δϕ. Since both sides are

positively 1-homogeneous with respect to f , we only need to show that if ϕ(x,∇f(x)) ≤ 1

then Lipδϕ f(x) ≤ 1. By the definition of δϕ, if ϕ(x,∇f(x)) ≤ 1, then |f(x)−f(y)| ≤ δϕ(x, y)

for all x, y ∈ Ω, which implies that

sup
x∈Ω

Lipδϕ f(x) ≤ 1

and we obtain the first inequality.

≥ Thanks to the previous argument, we only need to show that for a.e. x ∈ Ω, if

Lipδϕ f(x) ≤ 1, then ϕ(x,∇f(x)) ≤ 1. Since ϕ is upper semicontinuous, we can ap-

ply Theorem 1.4.4 and we obtain that δϕ(y, z) = dϕ?(y, z), for every y, z ∈ Ω. Then

Lipδϕ f(x) = Lipdϕ? f(x) for a.e. x ∈ Ω. Then, fixing such a point x and for each v ∈ Rn, we

can infer that

〈∇f(x), v〉 = lim
t→0

f(x+ tv)− f(x)

t

≤ lim sup
t→0

dϕ?(x+ tv, x)

t
lim sup
t→0

f(x+ tv)− f(x)

dϕ?(x+ tv, x)

≤ ϕdϕ? (x, v) Lipdϕ? u(x) ≤ ϕ?(x, v).

Then, since ϕ is convex we get that ϕ(x,∇u(x)) = ϕ??(x,∇u(x)) ≤ 1 and hence the thesis.

Remark 1.4.7. We finally emphasize that the distance δϕ has been analyzed in several cases.

For instance, when ϕ(x, v) =
(∑

i,j aijvivj
) 1

2 with (aij) elliptic matrix in Ω, or when ϕ is

a Riemannian metric on a Lipschitz manifold (see the next section). In this case, it has

a relevant role in the study of the heat flow associated to Dirichlet forms on smooth and

Lipschitz manifold (cf. [88]). More recently, in the context of diffusion problem, the authors

of [74] establish when the intrinsic differential and the local intrinsic structures coincide.
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1.5 Lipschitz manifolds and Finsler Structures

Most of the previous results and main ideas originally were stated in the general context of

Riemannian and Lipschitz manifolds, by De Cecco and Palmieri (see [45,46]).

Indeed, setting the length of a regular curve, they constructed an intrinsic geodesic distance

(1.3.1) on a smooth Riemannian manifold (M, g). On the other hand, given a geodesic

distance d on M, they recovered the metric g by differentiation, since the directional derivative

along a vector coincides with the induced Riemannian norm evaluated on the same vector in

the corresponding point. Indeed

Remark 1.5.1. Let (U,Φ) be a chart at z ∈ M where x = Φ(z) and let v be a vector of

Φ(U) ⊂ Rn. Then, Definition 1.2.8 can be reformulated in the following:

ϕd(x, v) := lim
t→0

d(Φ−1(x),Φ−1(x+ tv))

t
=

√√√√ n∑
i,j=1

gij(z)vivj. (1.5.1)

Equality (1.5.1) still holds whenever gij are measurable but it is not longer true when

we consider only Borel measurable metrics. This phenomenon arises when we deal with the

Lipschitz manifolds because, differently from the case of smooth manifold equipped of an

irregular metric, one could also treat the case of singularities carried by the manifold.

Definition 1.5.2. Let M be a connected oriented and locally compact manifold of dimension

n and let Λ ⊂ N. A LIP atlas A on M is a family of charts
(
Uα,Φα

)
α∈Λ

where (Uα)α∈Λ is an

open cover of M and Φα : Uα → Vα ⊂ Rn is a diffeomorphism such that, for every α, β ∈ Λ

the following map defines a diffeomorphism

Φαβ := Φβ ◦ Φ−1
α : Φα(Uα ∩ Uβ)→ Φβ(Uα ∩ Uβ).

We say that M is a Lipschitz manifold if it is equipped of an equivalence class of LIP atlases.

Clearly, Φαβ is a Lipschitz map and therefore, by Rademacher’s theorem it is differentiable

a.e. x ∈ M.



34

Example 1.5.3. Any smooth, in particular differentiable and any piecewise-linear manifold

is a Lipschitz manifold.

Now we can introduce a reasonable generalization of the metric stated in Definition 1.2.1.

Definition 1.5.4. A Finsler structure F on M is a collection of maps Fα : Vα×Rn → [0,+∞)

such that Fα ∈ M(Vα) for every α ∈ Λ and, for every α, β ∈ Λ, the compatibility condition

holds:

Fα(x, v) = Fβ(Φαβ(x), DΦαβ(x)[v]) for a.e. x ∈ Vα, ∀ v ∈ Rn, (1.5.2)

where Φ−1
α (x) ∈ Uα ∩ Uβ.

In other words, a Finsler structure is the collection F = (Fα)α∈Λ defined on every open set

of any chart. This behaves well under the changes of chart and, by property (3) of Definition

1.2.1, for every α ∈ Λ there exist two positive constants cα and Cα such that

cα|v| ≤ Fα(x, v) ≤ Cα|v| a.e. x ∈ Vα and for every v ∈ Rn. (1.5.3)

Remark 1.5.5. We want to point out that the Definition 1.5.4 is not standard in the litera-

ture. Indeed, a Finsler structure, on a smooth manifoldM , is given by a function F : TM→ R

that is smooth on the complement of the zero section of TM and such that the restriction

of F to any tangent space TpM is a symmetric norm. Moreover, this norm is not necessarily

induced by a Riemannian scalar product product.

We denote with AC(M) the set of absolutely continuous curves γ : [0, 1]→ M joining two

points x, y ∈ M such that Φα ◦ γ ∈ AC(Vα) is also absolutely continuous, for every α ∈ Λ.

Finally, PAC(M, N) will denote the set of curves γ ∈ AC(M) transversal to N ∈ N(M), in the

sense of (1.1.5).

Definition 1.5.6. Let A be a LIP atlas of M and let N ∈ N(M). We define the length with

respect to a Finsler structure F by

LA(γ, F ) :=


∫ 1

0
F (γ(t), γ̇(t))dt if γ ∈ PAC(M, N),

+∞ otherwise;

(1.5.4)
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where the index A means that the integral and N depend on the chosen atlas.

Some facts have to be mentioned. Firstly, if we fix a null set N ⊂ M, by [47, Lemma 2.2]

we always have that PAC(M, N) 6= ∅. Moreover, despite the value of the length depends on

the chosen atlas, with a suitable choice of the negligible set N = N(A) it is possible to give

a meaning to (1.5.4), as we are going to show. Secondly, even if Fα is continuous on Vα×Rn,

this does not ensure that the changes of charts behave well, because Φαβ are Lipschitz but

DΦαβ are only measurables maps.

Remark 1.5.7. Thanks to a lemma contained in [47], we can avoid the problem above.

Indeed, if F = (Fα) is a Finsler structure on a Lipschitz manifold M, then there exists a

negligible set N1 such that, for every γ ∈ PAC(M, N1), the map

t 7→ Fα
(
Φα(γ(t)),

d

dt
Φα(γ(t))

)
is Borel measurable. Actually, let N2 be the set where the compatibility condition (1.5.2)

and (1.5.3) are not satisfied. By Rademacher’s Theorem, |N1 ∪N2| = 0 and picking a curve

γ ∈ PAC(M, N1 ∪ N2), then we can find a partition 0 = t0 < t1 < . . . tk = 1 such that

γ([th−1, th]) ⊂ Uh for h = 1, . . . , k. Then we can set

LA(γ, F ) =
k∑

h=1

∫ th

th−1

Fh

(
Φh(γ(t),

d

dt
Φh(γ(t)))

)
dt :=

∫ 1

0

F (γ(t), γ̇(t))dt.

1.5.1 Metric Derivative on Lipschitz Manifolds

In this section our aim is to transpose the Definition 1.2.8 in the context of Lipschitz mani-

folds. First of all, we set a class of distances on an open cover of M.

Definition 1.5.8. Let M be a Lipschitz manifold. A geodesic distance d : M×M→ [0,+∞)

belongs to D(M) if, for all α ∈ Λ, there exist cα, Cα > 0 such that:

cα|x− y| ≤ d(Φ−1
α (x),Φ−1

α (y)) ≤ Cα|x− y| for every x, y ∈ Vα ⊂ Rn.

In particular, we set σα(x, y) := d(Φ−1
α (x),Φ−1

α (y)) for every x, y ∈ Vα ⊂ Rn, which belongs

to D(Vα), for every α ∈ Λ.
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Definition 1.5.9. Let d ∈ D(M). Then we define the upper and lower metric derivative

ϕαd , ϕ
α
d

: Vα × Rn → [0,+∞) as:

ϕαd (x, v) := lim sup
t→0+

σα(x, x+ tv)

t
, ϕα

d
(x, v) := lim inf

t→0+

σα(x, x+ tv)

t
,

for every α ∈ Λ, x ∈ Vα and v ∈ Rn.

Clearly ϕαd and ϕα
d

are functions that depend on the charts. For the sake of brevity, we

omit the index α when there is no risk of ambiguity. The fact that σα belongs to D(Vα)

allows us to simplify computations in the next results.

Lemma 1.5.10. If d ∈ D(M), then ϕd = (ϕαd )α∈Λ is a Finsler structure on M.

Proof. The first assertion comes from Lemma 1.2.9. It actually shows that the upper deriva-

tive ϕαd and the lower derivative ϕα
d

define a collection of metrics which makes ϕ = (ϕαd )α∈Λ

a Finsler structure.

It remains to prove that ϕd satisfies the compatibility condition. If Φ−1
α (x) ∈ Uα ∩ Uβ then,

for t > 0 small enough, we have that Φ−1
α (x + tv) ∈ Uα ∩ Uβ. Since Φαβ is differentiable for

a.e. x ∈ Vα, we get that

σα(x, x+ tv) = d(Φ−1
α (x),Φ−1

α (x+ tv)) = σβ(Φαβ(x),Φαβ(x+ tv))

= σβ(Φαβ(x),Φαβ(x) + tDΦαβ(x)[v] + o(t)).

Then the compatibility condition holds, i.e. ϕαd (x, v) = ϕβd(Φαβ(x), DΦαβ(x)[v]).

Therefore, given a distance d ∈ D(M) one obtains that M inherits a Finsler structure

given by ϕd. Moreover, by [46, Corollary 4.2] and Theorem 1.2.15, ϕd(x, ·) is convex for all

x ∈ Ω and this lead to show the counterpart of Theorem 1.2.13, where now the length is

independent on the chosen atlas.

Corollary 1.5.11. Let d ∈ D(M) and let ϕd = (ϕαd ) be the metric derivative defined on the

chart (Uα,Φα), for every α ∈ Λ. Then for every γ ∈ PAC(M, N) we have that:

Ld(γ) =

∫ 1

0

ϕd(γ(t), γ̇(t))dt =

∫ 1

0

ϕ
d
(γ(t), γ̇(t))dt. (1.5.5)
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Moreover, ϕd(x, v) = ϕ
d
(x, v) for a.e. x ∈ M and for every v ∈ Rn and hence

ϕd(x, v) = lim
t→0

σ(x, x+ tv)

t
for a.e. x ∈ M, and for every v ∈ Rn.

Proof. Thanks to Lemma 1.5.10 it is sufficient to prove the thesis in a single chart (Uα, ϕ
α
d ).

By Theorem 1.2.13 and since in every chart (Uα,Φα) every curve γ belongs to P(Vα, N) where

N = {(x, v) ∈ Vα × Rn : ϕd(x, v) > ϕ
d
(x, v)} is a negligible set, we get the assertion. The

second claim comes from [46, Corollary 2.7].

In particular, (1.5.5) is equivalent to assert that Ld(γ) = Lϕd(γ) and this means that the

metric space (M, d) becomes a length space.

Corollary 1.5.12. Let d ∈ D(M) and let ϕd = (ϕαd ) be the metric derivative on the chart

(Uα,Φα), for every α ∈ Λ. Then we have that

d(x, y) = inf
{∫ 1

0

ϕd(γ(t), γ̇(t))dt : γ ∈ AC(M)
}

for every x, y ∈ M.

Moreover, the metric derivative is symmetric with respect to the second entry, namely,

ϕd(x, v) = ϕd(x,−v) for a.e. x ∈ M and for every v ∈ Rn.

Proof. The first assertion is a direct consequence of Corollary 1.5.11 while the second one is

proved in [46, Corollary 2.7].

Similarly to Definition 1.3.1, starting from the length functional 1.5.4 now we give the

concept of intrinsic distance in the context of Lipschitz manifold.

Proposition 1.5.13. Let F be a Finsler structure F on a Lipschitz manifold M. For every

x, y ∈ M, let us set

dF (x, y) := sup
N∈N(M)

inf

{∫ 1

0

F (γ(t), γ̇(t))dt : γ ∈ PAC(M, N)

}
. (1.5.6)

Then, dF is a geodesic distance on M and it is independent on the atlas A. Moreover, the

topology induced by dF coincides with the topology of the manifold.
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Proof. The proof of the previous facts can be found in [47, Theorem 2.10, Theorem 2.8].

Similarly to Proposition 1.3.8, if F is an upper semicontinuous Finsler structure on a

Lispchitz manifold M, then ϕdF (x, v) ≤ F (x, v) for every x ∈ M and v ∈ Rn. In the same

hypothesis, the transversality condition and the supremum on N can be left out in the right

hand side of (1.5.6).

Corollary 1.5.14. Let M be a smooth manifold equipped with a continuous Finsler structure

F , namely for every v ∈ Rn, F (·, v) is a norm. Then we obtain that:

ϕdF (x, v) = F (x, v) for a.e. x ∈ M and v ∈ Rn.

Proof. See [47, Theorem 7.2].

The next result is proved in [47, Theorem 4.7], where the authors consider the distance in

Definition 1.4.1 and the constraint is given by the dual metric, properly defined on M×Rn.

Theorem 1.5.15. Let F be a Finsler structure on a Lipschitz manifold M, then

δF ?(x, y) = dF ??(x, y) for every x, y ∈ M.

Inequality (≤) is the counterpart of Theorem 1.4.4 where we substitute the Finsler struc-

ture with the dual F ?, while inequality (≥) is based on the following classical approximation

result for intrinsic distances.

Lemma 1.5.16. Let F and (Fn)n∈N be a sequence of Finsler structures on a Lipschitz man-

ifold M such that, for every n ∈ N it holds that Fn(x, v) ≥ F (x, v) and

lim
n→+∞

Fn(x, v) = F (x, v) for a.e. x ∈ M, for every v ∈ Rn.

Then we have that: limn→+∞ dFn(x, y) = dF (x, y) for every x, y ∈ M.

To conclude, we can deduce some basic consequences from the previous facts. Thanks to

Theorem 1.2.4, point iii), we know that F ??(x, v) ≤ F (x, v), for a.e. x ∈ M and for every
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v ∈ Rn. By the monotonicity of the intrinsic distance we have that dF ??(x, y) ≤ dF (x, y) and

hence, applying Theorem 1.5.15, we infer that δF ?(x, y) ≤ dF (x, y) for every x, y ∈ M.

Moreover, if the Finsler structure F is convex, by Proposition 1.2.5, we know that F (x, v) =

F ??(x, v) for a.e. x ∈ M and for every v ∈ Rn and thus dF ??(x, y) = dF (x, y) for every

x, y ∈ M. Therefore, thanks to Theorem 1.5.15, we obtain that dF (x, y) = δF ?(x, y) and this

still holds when F is continuous but not necessarily convex (see [23]).
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Chapter 2

Sub-Finsler metrics in Carnot groups

In this chapter, our aim is to introduce the main concepts concerning the sub-Riemannian

geometry. The reader can find more detailed information in references [52, 69, 76, 84, 85].

Then, we will apply all the techniques developed in the first chapter in order to generalize

the main results in Carnot groups, a special class of Carnot–Carathéodory spaces associated

with a system of bracket-generating vector fields.

2.1 Carnot Groups and Sub-Riemannian structures

Let us recall that a Lie group (G, ·) is a smooth manifold endowed also with a group structure,

such that the multiplication and inversion are smooth. Given a point x ∈ G, we denote by

τx : G→ G the left translation by x, which is given by

τxz := x · z for every z ∈ G,

where · is the group law in G. Moreover, it holds that the map τx is a smooth diffeomorphism,

thus we can consider its differential dyτx : TyG → Tx·yG at any point y ∈ G. We will say

that a vector field X, section of the tangent bundle TG, is left invariant if

(Xf)(τz(x)) = X(f ◦ τz)(x) for all x, z ∈ G and f ∈ C∞(G).

41
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The Lie algebra g associated to a Lie group G can be characterized as the set of left invariant

vector fields. Indeed it is a vector space, it is closed under the Lie bracket [·, ·] defined on

smooth functions by

[X, Y ](f) = X(Y (f))− Y (X(f)),

and it is canonically isomorphic to the tangent space of G, at the origin, via the identification

of X and X(e), see e.g. [95].

Definition 2.1.1. A connected and simply connected Lie group G is said to be a Carnot

group of step k if its Lie algebra g admits a step k stratification, namely, there exist linear

subspaces g1, . . . , gk of g such that

g = g1 ⊕ . . .⊕ gk, [g1, gi] = gi+1, gk 6= {0}, [g1, gk] = {0}, (2.1.1)

where [g1, gi] is the subspace of g generated by [X, Y ] with X ∈ g1 and Y ∈ gi.

Let n := dim g = m1+. . .+mk be the topological dimension of G, where mj := dim gj. We

will denote with m := m1 < n the dimension of the so called first stratum of the stratification,

which generates the whole Lie algebra g. Choose a basis e1, . . . , en of g adapted to the

stratification, namely

ehj−1+1, . . . , ehj is a basis of gj for each j = 1, . . . , k.

Let X1, . . . , Xn be the family of left invariant vector fields such that, at the identity e of G,

they satisfy Xi(e) = ei for every i = 1, . . . , n. By (2.1.1), we will refer to X1, . . . , Xm as

generating horizontal vector fields. Indeed, they satisfy the Hörmander condition (see [72]),

that is each vector field Xj is smooth and

dim(L(X1, . . . , Xm))(x) = n for all x ∈ G,

where L(X1, . . . , Xm) is the linear span of the vector fields X1, . . . , Xm and their commutators

of any order. For this reason, they play a crucial role in the theory, as the following can

suggests.
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Definition 2.1.2. The subbundle of the tangent bundle TG that is spanned by X1, . . . , Xm

is called the horizontal bundle HG and the fibers are given by

HxG = span {X1(x), . . . , Xm(x)} for every x ∈ G.

Furthermore, in [3, Lemma 7.48]. it is stated that the tangent bundle TG of a Lie group

G is always trivializable. We then have an isomorphism between TG and G×TeG, acting in

the following way:

TG 3 (x, v) 7→ (x, dxτx−1 [v]) ∈ G× TeG.

A sub-Riemannian structure can be defined on G in the following way. Consider a scalar

product 〈·, ·〉e on g1 = HeG that makes {X1, . . . , Xm} an orthonormal basis. Moreover, by

left translating the horizontal fiber in the identity, we obtain that HxG = deτx(g1).

Definition 2.1.3. A sub-Riemannian structure on a Carnot group G is given by the scalar

product 〈·, ·〉x on HxG defined as

〈v, w〉x :=
〈
dxτx−1 [v], dxτx−1 [w]

〉
e

for every v, w ∈ HxG.

Moreover, we denote by ‖ · ‖x the norm induced by 〈·, ·〉x, namely ‖ · ‖x :=
√
〈v, v〉x for every

v ∈ HxG.

Since G is finite dimensional, every choice of the norm ‖ · ‖x would not change the

biLipschitz equivalence class of the sub-Riemannian structure. This is the reason why we

may assume that the norm ‖ · ‖x is coming from a scalar product (see [52]).

2.1.1 Exponential map

We want to recall the definition of the exponential map exp : g→ G in the context of Carnot

group. Given any vector v ∈ g = TeG and denoting by γ : [0, 1] → G the (unique) smooth

curve satisfying the ODE γ̇(t) = deτγ(t)[v] for every t ∈ [0, 1],

γ(0) = e,
(2.1.2)
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we define exp(v) = ev := γ(1), where deτγ(t)[v] is a left-invariant vector field. It holds that exp

is smooth and (d exp)0 = idg : g→ g is the identity map. Hence exp is a local diffeomorphism

of a small neighborhood of 0 in g onto a neighborhood of e in G. Then, any p ∈ G can be

written in a unique way as

p = exp(p1X1 + · · ·+ pnXn) = ep1X1+···+pnXn , where v =
n∑
i=1

piXi.

Proposition 2.1.4. Let X be an element of the Lie algebra g of a Lie group G. Then the

curve γ(t) := y · exp (tX) is the flow of X starting at y and we have that:

• exp (s+ t)X = exp (sX) · exp (tX), for s, t ∈ R;

• exp (−X) = (exp (X))−1.

The underlying manifold of a Carnot group can always be chosen to be Rn for some n ∈ N.

Indeed, we can identify p with the n-tuple (p1, . . . , pn) ∈ Rn and G with (Rn, ·) where the

group operation · satisfies (see [85, Section 7] and [15])

x · y = exp
(
exp−1(x) ? exp−1(y)

)
for every x, y ∈ G,

where ? denotes the group operation determined by the Campbell–Baker–Hausdorff formula,

see e.g. [16,79]. In other words, the latter links Lie groups to Lie algebras, by expressing the

inverse of exponential, i.e., the logarithm log (eXeY ) of the product of two Lie group elements

as a Lie algebra element.

Definition 2.1.5. If y = (y1, . . . , yn) ∈ G and x ∈ G, then we set the projection map as:

πx : G→ HxG as πx(y) =
m∑
j=1

yjXj(x).

The map y 7→ πx(y) is a smooth section of HxG and it is linear in y. Finally, if v ∈ g1,

by exponential coordinates it holds that v =
∑m

i=1 viXi and then

πx(e
v) = πx(v1, . . . , vm, 0 . . . , 0) =

m∑
i=1

viXi(x) = deτx[v]. for every x ∈ G. (2.1.3)
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2.1.2 Dilations and Carnot–Carathéodory distance

Definition 2.1.6 (Dilations). Let g = g1⊕ . . .⊕gk be a step k Lie algebra of a Carnot group

G. For any λ > 0, we denote by δ?λ : g→ g the unique linear map such that

δ?λX = λiX, ∀X ∈ gi.

The maps δ?λ are Lie algebra automorphisms, namely, δ∗λ([X, Y ]) = [δ∗λX, δ
∗
λY ] for all

X, Y ∈ g and they satisfy δ∗λ ◦ δ∗η = δ∗λη for all λ, η > 0 (see [76, Lemma 6.1.17]). Moreover,

for every λ > 0, the map δ∗λ naturally induces an automorphism δλ : G → G on the Carnot

group, by the identity

δλ(x) = (exp ◦ δ?λ ◦ log)(x). (2.1.4)

In the future we will both call δ∗λ and δλ dilations of factor λ.

Lemma 2.1.7. For all λ, η > 0 and for every v ∈ g1, the following properties hold:

(i) δλ+η exp(v) = δλ exp(v) · δη exp(v);

(ii) πx(δλ exp(v)) = λπx(exp(v)) for all x ∈ Ω;

(iii) δλ exp(v) = exp(λv).

Remark 2.1.8. According to [90], we can extend the dilations also to negative parameters

λ < 0, denoting δ?|λ|(X) = δ?λ(−X) = |λ|i(−X) for X ∈ gi. Note that we will exploit this

fact only on the fibers of the horizontal bundle. In the same way, it is possible to extend the

dilations on the entire TxG, for every x ∈ G. In particular, on HxG we have that δ∗λ(v) = λv

for every λ > 0 and x ∈ G.

Now we are ready to present the following crucial definition.

Definition 2.1.9. An absolutely continuous curve γ : [a, b] → G is said to be horizontal if

there exists a vector of measurable functions h = (h1(t), . . . hm(t)) : [a, b] → Rm called the

vector of canonical coordinates, such that
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• γ̇(t) =
∑m

i=1 hi(t)Xi(γ(t)) for a.e. t ∈ [a, b];

• |h| ∈ L∞(a, b).

The length of such a curve is given by LG(γ) :=
∫ b
a
‖γ̇(t)‖γ(t) dt.

In other words, the allowed curves are constrained to have their velocities in a lower

dimensional subspace of the tangent space of the manifold. However, the Chow-Rashevskii

Theorem, proved by L.W. Chow in [33] and independently by P.K. Rashevskii in [91] guar-

antees that any pair of points in a Carnot group can be connected by a horizontal curve

(see [16, Theorem 19.1.3] and [69] for a exhaustive discussion of this fact). Therefore, the

following definition is well-posed.

Definition 2.1.10. For every x, y ∈ G, the Carnot–Carathéodory distance is defined by

dcc(x, y) := inf {LG(γ) : γ is a horizontal curve joining x and y } .

We remark that, since the generating vector fields are bracket-generating, the Carnot–

Carathéodory distance is finite, and it is homogeneous with respect to dilations and left

translations. More precisely, for every λ > 0 and for every x, y, z ∈ G one has

dcc(δλx, δλy) = λdcc(x, y), dcc(τxy, τxz) = dcc(y, z).

The reader can be find a proof of the previous equality respectively in [76, Proposition 6.2.13]

and in [85, Proposition 1.7.3]. Moreover LG(δλ(γ)) = λLG(γ) and this immediately implies

that τx(Br(y)) = Br(τxy) and δλBr(y) = Bλr(δλy), where

Br(x) =
{
y ∈ G : dcc(y, x) < r

}
is the open ball centered at x ∈ G with radius r > 0. The following crucial estimate is proved

in [87, Proposition 1.1].

Theorem 2.1.11. Let G be a Carnot group of step k and let K ⊂ G be a compact set. Then

there exists CK = C(K) > 1 such that

C−1
K |x− y| ≤ dcc(x, y) ≤ CK |x− y|

1
k , ∀x, y ∈ K. (2.1.5)
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The following lemma shows the biLipschitz equivalence between the Carnot–Carathéodory

distance and the norm induced by the scalar product.

Lemma 2.1.12. There exists a constant c ≥ 1 such that

1

c
‖v‖e ≤ dcc(e, exp v) ≤ c ‖v‖e for every v ∈ g1. (2.1.6)

Proof. Denote by S the unit sphere of (HeG, ‖·‖e), namely S := {v ∈ HeG : ‖v‖e = 1}.

Define the function η : S → [0,+∞) as η(v) := dcc(e, exp v) for every v ∈ S. By Theorem

2.1.11, η is continuous on the compact set S. Then we can find c ≥ 1 such that 1/c ≤ η(v) ≤ c

holds for every v ∈ S. We can thus conclude by 1-homogeneity: since dcc(e, exp(λv)) =

λdcc(e, exp v) for every λ > 0 and v ∈ S, we deduce that η(v/‖v‖e) = dcc(e, exp v)/‖v‖e for

every v ∈ HeG \ {0} and thus

1

c
≤ dcc(e, exp v)

‖v‖e
≤ c for every v ∈ HeG \ {0},

which yields (2.1.6).

Finally, we introduce the simplest and most important example of Carnot group, i.e. the

Heisenberg group, one of the most privileged object of this study (see [32]).

Example 2.1.13. The Heisenberg group H1 is the connected and simply connected Lie group

given by the underlying manifold R3 with the non commutative group law

(x, y, z) · (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − yx′)

)
.

The unit element is e = (0, 0, 0), and the inverse of the point (x, y, z) is (−x,−y,−z) while

the dilations are given by δλ(x, y, z) = (λx, λy, λ2z). The differentiable structure on H1 is

determined by the left invariant vector fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z
, Z = [X, Y ] =

∂

∂z
,

which are the push-forward of the orthormal basis through the differential of the left trans-

lation. The Lie algebra of the Heisenberg group is the stratified algebra h = R3 = h1 ⊕ h2

where h1 = span{X, Y } and h2 = span{Z}.
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2.1.3 Pansu theorem and Lipschitz functions

We recall some basic definitions regarding differentiability in Carnot groups.

Definition 2.1.14. A map L : G→ R is called homogeneous homomorphism if

L(x · y) = L(x) + L(y) and L(δλ(x)) = λL(x) for every x, y ∈ G and λ > 0.

Now we are ready to introduce the following fundamental notion of intrinsic differentia-

bility, due to Pansu [89].

Definition 2.1.15. Let Ω ⊂ G be an open subset. A map f : Ω→ R is Pansu differentiable

at x ∈ Ω if there exists a homogeneous homomorphism Lx : G→ R, called Pansu differential

such that

lim
y→x

f(x)− f(y)− Lx[y−1 · x]

dcc(y, x)
= 0.

We notice that, in Carnot groups it only makes sense to consider derivatives in the

horizontal directions, since the composition of a Lipschitz function with a non-horizontal

curve may not be Lipschitz regular, and consequently may fail to be differentiable.

Remark 2.1.16. Notice that, if f : Ω → R is Pansu differentiable at x ∈ Ω, then Xjf(x)

exists for any j = 1, . . . ,m, and for any v ∈ G we have

dGf(x)[v] = 〈∇Gf(x), πx(v)〉x,

where the horizontal gradient ∇Gf(x) is defined as

∇Gf(x) :=
m∑
i=1

Xif(x)Xi(x). (2.1.7)

Moreover, a function f : G → R belongs to C1(G) if Xjf : G → R exists and is continuous

for all j = 1, . . . ,m.

We stress that the notion of the horizontal gradient only depends on the choice of the

horizontal frame (X1, . . . , Xm) and therefore it is uniquely determined by the sub-Riemannian

structure. Now, the notion of Pansu differentiability is motivated by the following result due

to Pansu [89] (see also [80] for a similar result in a more general setting).
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Theorem 2.1.17. Let Ω ⊂ G be an open subset. Then for every Lipschitz function f : Ω→ R

we have that f is Pansu differentiable at Ln-a.e. x ∈ Ω.

On the other hand, if we consider x ∈ G and v̄ ∈ g1, the map t 7→ x · δt exp(v̄) is Lipschitz

and hence, if f : G→ R is Lipschitz, then the composition t 7→ f(x · δt exp(v̄)) is a Lipschitz

mapping from R to itself. By Theorem 2.1.17, it is Pansu differentiable. Furthermore, the

next result allows us to represent the Pansu differential with respect to vectors in the first

stratum of the Lie algebra g.

Lemma 2.1.18. Let f : G→ R be a Lipschitz function. Then we have that

〈∇Gf(x), v〉 = lim
t→0

f(x · δtev̄)− f(x)

t
for every (x, v) ∈ HG, (2.1.8)

where v̄ = dxτx−1 [v].

Proof. We know that, if X1, . . . , Xm is a generating family of vector fields and f : G→ R is

Lipschitz, the (linear) action of Xj on f is given by the equation

Xjf(x) = lim
t→0

f(x · etXj)− f(x)

t
=

d

dt
f(x · etXj)|t=0, (2.1.9)

for every x ∈ G and j = 1, . . . ,m. Now, let us take v ∈ HxG and hence we can write

v =
∑m

i=1 viXi(x) where vi is constant for all i = 1, . . . ,m. Since, by definition, the vector

fields are left invariant, we have that

v̄ = dxτx−1 [v] = dxτx−1

[
m∑
i=1

viXi(x)

]
=

m∑
i=1

vidxτx−1 [Xi(x)] =
m∑
i=1

viXi.

Then, by Remark 2.1.16 and (2.1.9), we get

〈∇Gf(x), v〉x =
m∑
i=1

Xif(x)vi〈Xi(x), Xi(x)〉x

=
( m∑
i=1

viXi

)
f(x) := lim

t→0

f(x · e
∑m
i=1 vi(tXi))− f(x)

t

= lim
t→0

f(x · δte
∑m
i=1 viXi)− f(x)

t
= lim

t→0

f(x · δtev̄)− f(x)

t
.
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In particular, if not otherwise stated, for every v ∈ TxG and x ∈ G we will denote with

v̄ := dxτx−1 [v] the representative vector of v in the Lie algebra g.

2.2 Sub-Finsler Metrics and Duality

Now we want to present a central notion of the present chapter: the sub-Finsler metric.

Differently from the sub-Riemannian structure, a priori this does not arise from a scalar

product, even if it is defined only on on a subspace of the Lie algebra. Nevertheless, it

has to satisfy a sort of biLipschitz equivalence with respect to the norm induced by the

sub-Riemannian structure.

Definition 2.2.1. For α ≥ 1, we define Mα
cc(G) as the family of maps ϕ : HG → [0,+∞),

that we will call metrics on HG, verifying the following properties:

(1) ϕ : HG→ R is Borel measurable, where HG is endowed with the product σ-algebra;

(2) ϕ(x, δ∗λv) = |λ|ϕ(x, v) for every (x, v) ∈ HG and λ ∈ R;

(3) 1
α
‖v‖x ≤ ϕ(x, v) ≤ α‖v‖x for every (x, v) ∈ HG.

Moreover, we will say that ϕ ∈Mα
cc(G) is a sub-Finsler convex metric if

ϕ(x, v1 + v2) ≤ ϕ(x, v1) + ϕ(x, v2) (2.2.1)

for every x ∈ G and v1, v2 ∈ HxG (or equivalently if ϕ(x, ·) is a norm for every x ∈ G).

According to the preliminaries, conditions (2) and (3) are well-defined with respect to the

exponential and the dilation map (cf. Remark 2.1.8). Moreover, let us remark that condition

(1) is equivalent to the Borel measurability with respect to the product space G× g1.

Definition 2.2.2 (Dual Metric). Let us take ϕ ∈ Mα
cc(G). We define the dual metric

ϕ? : HG→ [0,+∞) of ϕ as

ϕ?(x, v) := sup

{
|〈v, w〉x|
ϕ(x,w)

: w ∈ HxG, w 6= 0

}
. (2.2.2)
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Compared to the classical Definition 1.2.3 and in order to adapt it on the sub-Riemannian

structure, we have some asymmetry. The reason is that, for every fixed point x ∈ G, the

domain of the dual metric is the m-dimensional vector space HxG. Notice that this notion,

known as Fenchel transform, was already developed in the Heisenberg group (see [30]). Now,

as in Section 1.2, we prove that the dual metric enjoys some useful properties.

Proposition 2.2.3. For any ϕ ∈ Mα
cc(G), it holds that ϕ? is a sub-Finsler convex metric,

and in particular

1

α
‖v‖x ≤ ϕ?(x, v) ≤ α‖v‖x for every (x, v) ∈ HG. (2.2.3)

Proof. It is straightforward to prove property (2) since for every v, w ∈ HxG and λ ∈ R we

have that 〈δ∗λv, w〉x = λ〈v, w〉x. Passing to the supremum over all w ∈ HxG \ {0}, we obtain

that ϕ?(x, δ∗λv) = |λ|ϕ?(x, v). The convexity on the horizontal bundle is a consequence of

property (i) of Theorem (1.2.4). Moreover, accordingly to property (3) of Definition 2.2.1,

taking w ∈ HxG \ {0} it holds that

1

α

|〈v, w〉x|
‖w‖x

≤ |〈v, w〉x|
ϕ(x,w)

≤ α
|〈v, w〉x|
‖w‖x

.

By taking the supremum over all w ∈ HxG \ {0}, we obtain (2.2.3). Therefore, ϕ?(x, ·) is a

norm, thus in particular it is continuous. Finally, chosen a dense sequence (wn)n in g1 \ {0},

we have that (deτx[wn])n is dense in HxG for every x ∈ G, thus for any v ∈ g1 we can write

ϕ?(x, deτx[v]) = sup
n∈N

|〈deτx[v], deτx[wn]〉x|
ϕ(x, deτx[wn])

= sup
n∈N

|〈v, wn〉e|
ϕ(x, deτx[wn])

for every x ∈ G, which shows that G 3 x 7→ ϕ?(x, deτx[v]) is measurable and accordingly

property (1) of Definition 2.2.1 is satisfied. All in all, ϕ? is a sub-Finsler convex metric.

Remark 2.2.4. In every Carnot groups G, when we move points, the fibers of the horizontal

bundle cannot be identify, even if they are isomorphic. Then we need to slightly modify

Definition 1.2.2 in the following way. We will say that ϕ : HG → R is lower (or upper)
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semicontinuous at (x, v) ∈ HG if, for every sequence (xn, vn) ∈ HG converging to (x, v), in

the sense that dcc(xn, x) +
∥∥dxnτx−1

n
[vn]− dxτx−1 [v]

∥∥
e
→ 0, we have that

ϕ(x, v) ≤ lim inf
n→∞

ϕ(xn, vn) or ϕ(x, v) ≥ lim sup
n→∞

ϕ(xn, vn).

Lemma 2.2.5. Let ϕ ∈Mα
cc(G) be a sub-Finsler convex metric. Then the following hold:

(a) If ϕ is lower semicontinuous, then ϕ? is upper semicontinuous.

b) If ϕ is upper semicontinuous, then ϕ? is lower semicontinuous.

In particular, if ϕ is continuous, then ϕ? is continuous.

Proof. To prove (a) suppose ϕ is lower semicontinuous. Fix (x, v) ∈ HG and (xn, vn) ∈

HG such that (xn, vn) → (x, v), in the sense of Remark 2.2.4. Possibly passing to a not

relabeled subsequence, we can assume that lim supn ϕ
?(xn, vn) is actually a limit. Given any

n ∈ N, there exists wn ∈ HxnG such that ϕ(xn, wn) = 1 and ϕ?(xn, vn) = |〈vn, wn〉xn|. By

compactness, there exists w ∈ HxG such that (up to a not relabeled subsequence) (xn, wn)→

(x,w). Being ϕ lower semicontinuous, we deduce that

ϕ(x,w) ≤ lim inf
n→∞

ϕ(xn, wn) ≤ 1.

Therefore, we conclude that

ϕ?(x, v) ≥ |〈v, w〉x|
ϕ(x,w)

≥ lim
n→∞
|〈vn, wn〉xn| = lim sup

n→∞
ϕ?(xn, vn),

which proves that ϕ? is upper semicontinuous.

Item (b) can be proved noticing that if ϕ is upper semicontinuous, then ϕ? is lower semicon-

tinuous as it can be expressed as a supremum of lower semicontinuous functions.

Finally, we can characterize sub-Finsler convex metrics ϕ ∈ Mα
cc(G) in terms of the

bidual metric ϕ??, exactly as in Proposition 1.2.5, substituting the real space Rn with the

m-dimensional vector space HxG.



53

2.3 Metric Derivative in Carnot groups

Inspired by [94] and Definition 1.2.6, now we introduce the following class of distances.

Definition 2.3.1. Let G be a Carnot group and let Ω ⊂ G be an open set. If α ≥ 1, we

introduce the family Dcc(Ω) of all geodesic distances d : Ω× Ω→ [0,+∞) verifying

1

α
dcc(x, y) ≤ d(x, y) ≤ αdcc(x, y) ∀x, y ∈ Ω. (2.3.1)

Remark 2.3.2. The set Dcc(Ω) depends on α and we omit such dependence for the sake of

brevity. Clearly Dcc(Ω) 6= ∅ for every Ω ⊂ G open, connected and provided that the boundary

is regular enough. We will endow Dcc(Ω) with the topology of the uniform convergence on

compact subsets of Ω × Ω and we will see in the proof of Theorem 4.4.1 that Dcc(Ω) is

compact with respect to such topology.

Now, given a geodesic distance d ∈ Dcc(G), it is natural to consider the associated metric

given by differentiation. This is inspired by the ones proposed in [90, 94] but we necessarily

have to define it on the horizontal bundle HG.

Definition 2.3.3. Given d ∈ Dcc(G), we define the metric derivative ϕd : HG → [0,+∞)

as the map

ϕd(x, v) := lim sup
t→0

d(x, x · δt exp dxτx−1 [v])

|t|
for every (x, v) ∈ HG.

Let us notice that we translate the vector v ∈ HxG to e via the differential of the left

traslation, because the exponential map is defined on the first stratum g1 = HeG. The next

lemma tells us that the metric derivative is actually a metric.

Lemma 2.3.4. For every d ∈ Dcc(G) we have that ϕd ∈Mcα
cc (G), for some c ≥ 1 independent

of d.

Proof. In order to prove (1) of Definition 2.2.1, let just observe that

ϕd(x, v) = lim
n→∞

sup
t∈Q:
|t|<1/n

d(x, x · δt exp dxτx−1 [v])

|t|
for every (x, v) ∈ HG.
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Let us verify (2). Pick x ∈ G, v ∈ HxG and t, λ ∈ R. Since the differential of the

left translation is a diffeomorphism and, by property (iii) of Lemma 2.1.7, we have that

δt exp
(
dxτx−1 [δ?λ(v)]

)
= δtδλ exp

(
dxτx−1 [v]

)
. Therefore

ϕd(x, δ
∗
λv) = lim sup

t→0

d(x, x · δtδλedxτx−1 [v])

|t|
= |λ| lim sup

t→0

d(x, x · δtλedxτx−1 [v]))

|tλ|
= |λ|ϕ(x, v).

In order to show (3), fix x ∈ G and v ∈ HxG. Since d ∈ Dcc(G) we can write

ϕd(x, v) ≤ α lim sup
t→0

dcc(x, x · δtedxτx−1 [v])

|t|
= α dcc(e, exp dxτx−1 [v]) ≤ c α‖dxτx−1 [v]‖e

where in the last inequality we applied Lemma 2.1.12. The estimate from below can be

proved similarly. Finally, using the left invariance of the norm, for every (x, v) ∈ HG, we get

that
1

cα
‖v‖x ≤ ϕd(x, v) ≤ c α‖v‖x

and the conclusion follows.

Notation. We denote with H([0, 1],Ω) the set of horizontal curves and, for every Lebesgue

null set N ⊂ Ω, we set P(Ω, N) the class of all horizontal curves such that (1.1.5) holds.

Clearly P(Ω, N) 6= ∅ and we denote with HΩ := {(x, v) ∈ HG : x ∈ Ω} the restriction

of the horizontal bundle HG to Ω. Finally, for any d ∈ Dcc(Ω) and a ∈ Ω, we denote

by da(x) := d(a, x) the fixed-point distance map that is a Lipschitz function and then, by

Theorem 2.1.17, is Pansu differentiable for a.e. x ∈ Ω. �

The following result asserts that Lipschitz curves and horizontal ones essentially coincide

when the L∞-norm of the canonical coordinates is finite.

Proposition 2.3.5. A curve γ : [a, b]→ G is Lipschitz, with constant L, if and only if it is

horizontal and ‖h‖L∞(a,b) ≤ L.

Proof. See [85, Proposition 1.3.3] for the precise statement and see [3, Proposition 3.50] for

a general proof.
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2.3.1 Length Representation result

Now, given any ϕ ∈Mα
cc(Ω), we define the length functional Lϕ through the formula

Lϕ(γ) :=

∫ 1

0

ϕ(γ(t), γ̇(t)) dt γ ∈ H
(
[0, 1],Ω

)
. (2.3.2)

The latter is well defined since t 7→ (γ(t), γ̇(t)) is Borel measurable on Hγ(t)G and ϕ satisfies

assumption (1) of Definition 2.2.1. Furthermore, let us observe that, thanks to property (2) of

Definition 2.2.1, Lϕ(γ) does not depend on the chosen parametrization for γ. For this reason,

it is not restrictive to assume γ to be defined on the closed unit interval and parametrized

with constant velocity.

Now, since Carnot groups are naturally endowed with Carnot–Carathéodory distances,

this make them interesting examples of geodesic metric spaces (G, dcc). In particular, the

metric derivative can be explicitly computed (see [85, Theorem 1.3.5]).

Lemma 2.3.6. Let γ : [0, 1]→ G be a Lipschitz curve and let h ∈ L∞(0, 1)m be its vector of

canonical coordinates. Then

|γ̇(t)|dcc = lim
s→0

dcc(γ(t+ s), γ(t))

|s|
= |h(t)| for a.e. t ∈ [0, 1]

and lim
s→0

δ 1
s

(
γ(t)−1 · γ(t+ s)

)
= (h1(t), . . . , hm(t), 0, . . . , 0) for a.e. t ∈ [0, 1].

The second claim is proved in [85, Lemma 2.1.4] and it gives a characterization of hori-

zontal curves in terms of canonical coordinates. Therefore, by Proposition 2.3.5, a Lipschitz

curve is horizontal and, with abuse of notation, we set the following quantity:

exp γ̇(t) := exp dγ(t)τγ(t)−1 [γ̇(t)] =
(
h1(t), . . . , hm(t), 0 . . . , 0

)
, for a.e. t ∈ [0, 1].

Thanks to the previous argument and to Lemma 2.3.6, it holds that γ(t + s) = γ(t) ·

(sh1(t), . . . , shm(t), 0, . . . , 0) · o(s) = γ(t) · δseγ̇(t) · o(s) where δ 1
s
o(s) → 0 as s → 0. This

allows us to show that the metric derivative and the classical one coincide almost everywhere

on the sets of horizontal curves.
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Lemma 2.3.7. If γ : [0, 1]→ G is a horizontal curve and d ∈ Dcc(G), then

|γ̇(t)|d = ϕd(γ(t), γ̇(t)) for a.e. t ∈ [0, 1]. (2.3.3)

Proof. Let t ∈ [0, 1] be such that |γ̇(t)|d exists. By the triangle inequality we have that

|γ̇(t)|d = lim sup
h→0

d(γ(t), γ(t+ h))

h

≤ lim sup
h→0

d(γ(t), γ(t) · δheγ̇(t))

h
+ lim sup

h→0

d(γ(t) · δheγ̇(t), γ(t+ h))

h

= ϕd(γ(t), γ̇(t)) + lim sup
h→0

d(γ(t) · δheγ̇(t), γ(t+ h))

h
.

We want to show that

lim sup
h→0

d(γ(t) · δheγ̇(t), γ(t+ h))

h
= 0.

Since γ(t+ h) = γ(t) · δheγ̇(t) · o(h), where δ 1
h
o(h)→ 0 as h→ 0, we get

lim sup
h→0

d(γ(t) · δheγ̇(t), γ(t) · δheγ̇(t) · o(h))

h
≤ α lim sup

h→0

dcc(γ(t) · δheγ̇(t), γ(t) · δheγ̇(t) · o(h))

h

= α lim sup
h→0

dcc(e, o(h))

h

≤ α lim sup
h→0

|δ 1
h
o(h)|

1
k = 0.

This proves that

|γ̇(t)|d ≤ ϕd(γ(t), γ̇(t)).

In order to get the opposite inequality, we can estimate

|γ̇(t)|d ≥ lim sup
h→0

d(γ(t), γ(t) · δheγ̇(t))

h
− lim sup

h→0

d(γ(t) · δheγ̇(t), γ(t+ h))

h

= ϕd(γ(t), γ̇(t))− lim sup
h→0

d(γ(t) · δheγ̇(t), γ(t+ h))

h

and the conclusion follows as before.

Theorem 2.3.8. Let d ∈ Dcc(G). Then, for every horizontal curve γ : [0, 1]→ G we have

Ld(γ) =

∫ 1

0

ϕd(γ(t), γ̇(t)) dt. (2.3.4)
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Moreover, for every x, y ∈ G we have that d = dϕd, namely,

d(x, y) = inf

{∫ 1

0

ϕd(γ(t), γ̇(t)) dt : γ ∈ Lip([0, 1],G), γ(0) = x, γ(1) = y

}
.

Proof. Pick a curve γ : [0, 1] → G in Lip(G), then, by Proposition 2.3.5 we have that

γ ∈ H([0, 1],G). Arguing as in [6], it is easy to verify that ϕd(γ(t), γ̇(t)) = |γ̇(t)|d, thanks to

(1.1.4) and applying Lemma 2.3.7. On the other hand, the second claim holds because d is

a geodesic distance.

2.4 Metric Derivative’s convexity in HxG

The aim of the present section is to prove that if d ∈ Dcc(G), then ϕd is also a sub-Finsler

convex metric. In order to make this, first we have to show some technical results.

Lemma 2.4.1. Let ψ : G→ R be a locally bounded, Borel function and v ∈ HxG\{0}. Then

ψ(x) = lim
t↘0

1

t

∫ t

0

ψ(x · δsev̄) ds, for Ln-a.e. x ∈ G. (2.4.1)

Proof. Given any fixed y ∈ G, we have that R 3 t 7→ ψ(y · δtev̄) ∈ R is a locally bounded and

Borel function, thus an application of Lebesgue’s differentiation theorem guarantees that for

L1-a.e. r ∈ R

ψ(y · δrev̄) = lim
t↘0

1

t

∫ t

0

ψ(y · δr+sev̄) ds. (2.4.2)

In particular, an application of Fubini’s theorem ensures that the set

Γ :=
{

(y, r) ∈ G× R
∣∣ (2.4.2) holds

}
has Ln+1 zero measure, thus for L1-a.e. r ∈ R we have that (2.4.2) holds for Ln-a.e. y ∈ G.

Fix any such r ∈ R and a Ln-negligible set N ⊂ G satisfying (2.4.2) for every y ∈ G \N .

Calling σz : G → G the right-translation map σzw := w · z for every z, w ∈ G and defining

N ′ := σδrev̄(N), we thus have that ψ(x) = limt↘0
1
t

∫ t
0
ψ(x ·δsev̄) ds holds for every x ∈ G\N ′.

Here, we also used the fact that δr+se
v̄ = δre

v̄ · δsev̄, which is in turn guaranteed by the fact



58

that v̄ belongs to the first layer (see [90, Lemma 2.2] or property (ii) of Lemma 2.1.7).

Therefore, in order to prove (2.4.1) it is only left to check that N ′ is Ln-negligible. This can

be achieved by exploiting the right-invariance of the measure Ln (see e.g. [85, Proposition

1.7.7]), namely the fact that Ln(E · z) = Ln(E) holds whenever E ⊂ G is a Borel set and

z ∈ G. Indeed, this implies that (σδrev̄)#L
n = Ln, because for any Borel set E ⊂ G it holds

that

(σδrev̄)#L
n(E) = Ln(σ−1

δrev̄
(E)) = Ln(σδ−rev̄(E)) = Ln(E · δ−rev̄) = Ln(E).

In particular, we conclude that Ln(N ′) = (σδrev̄)#L
n(N ′) = Ln(N) = 0, as required.

Lemma 2.4.2. Let d ∈ Dcc(Ω), ϕ ∈Mα
cc(Ω), and N ⊂ Ω be such that |N | = 0. Suppose that

for every γ ∈ P(Ω, N) we have that

d(γ(0), γ(1)) ≤
∫ 1

0

ϕ(γ(t), γ̇(t)) dt.

Then for every fixed a ∈ Ω and a.e. (x, v) ∈ HΩ we have:

|〈∇Gda(x), v〉x| ≤ lim inf
t→0

d(x, x · δtev̄)
t

≤ lim sup
t→0

d(x, x · δtev̄)
t

≤ ϕ(x, v).

Proof. Let N be as in the hypothesis and v ∈ HxG. For a ∈ Ω, let E(a, v) be the set of all

x ∈ Ω for which da is Pansu differentiable for a.e. x ∈ Ω and the map [0, 1] 3 t 7→ x · δtev̄

belongs to P(Ω, N), with t small enough. Moreover, thanks to Lemma 2.4.1, we can assume

that

lim
t↘0

1

t

∫ t

0

ϕ(x · δsev̄, v) ds = ϕ(x, v).

By Pansu–Rademacher Theorem |Ω \ E(a, v)| = 0 and, by (2.1.8) if x ∈ E(a, v), we have

that

lim
t→0

da(x)− da(x · δtev̄)− 〈∇Gda(x), πx(δte
−v̄)〉x

|t|
= 0.

Hence, by the reverse triangle inequality we can assert that

|〈∇Gda(x), v〉x| ≤
∣∣∣∣lim inf

t→0

da(x · δtev̄)− da(x)

t

∣∣∣∣ ≤ lim inf
t→0

d(x, x · δtev̄)
t

≤ lim sup
t→0

d(x, x · δtev̄)
t

≤ lim
t↘0

1

t

∫ t

0

ϕ(x · δsev̄, v) ds = ϕ(x, v).
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Pick a countable dense subset F ⊂ HxG and put E(a) = ∩y∈FE(a, y). Then |Ω \ E(a)| = 0

and for all x ∈ E(a) and all v ∈ HxG we obtain the same estimate above.

We observe that the previous Lemma could be proved under more general conditions.

Indeed, the distance needs only to be geodesic in its domain.

Lemma 2.4.3. Let ϕ ∈ Mα
cc(Ω) be a sub-Finsler convex metric, let d ∈ Dcc(Ω) and Θ ⊂ Ω

be a countable dense set of Ω. If

‖ϕ(x,∇Gda(x))‖∞ ≤ 1 ∀a ∈ Θ,

then there exists N ∈ N(Ω) and for every γ ∈ P(Ω, N)

d(γ(0), γ(1)) ≤
∫ 1

0

ϕ?(γ(t), γ̇(t)) dt.

Proof. The proof is the same as in [94, Lemma 3.2].

Theorem 2.4.4. Let d ∈ Dcc(Ω). Then ϕd is a sub-Finsler convex metric. In particular, for

almost all x ∈ Ω and all v ∈ HxG

ϕd(x, v) = lim
t→0

d(x, x · δtev̄)
|t|

. (2.4.3)

Proof. Take a countable dense subset Θ of Ω and, for each a ∈ Θ, we consider Σa a negligible

Borel subset of Ω which contains all points where da is not Pansu-differentiable. For every

(x, v) ∈ HΩ we define

ξ(x, v) :=

supa∈Θ

∣∣〈∇Gda(x), v〉x
∣∣ if x ∈ Ω \

⋃
a∈Θ Σa;

0 otherwise.

For ε > 0 we define ξε : HΩ → [0,+∞) as ξε(x, v) := ξ(x, v) + ε‖v‖x, that is a Borel

measurable function in HΩ and it is a sub-Finsler convex metric. Indeed, if we take v1, v2 ∈

HxG we can estimate in this way

ξε(x, v1 + v2) = sup
a∈Θ

∣∣〈∇Gda(x), v1 + v2〉x
∣∣+ ε‖v1 + v2‖x

≤ ξ(x, v1) + ξ(x, v2) + ε‖v1 + v2‖x ≤ ξε(x, v1) + ξε(x, v2).
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The homogeneity w.r.t. the second variable comes from the equality deτx[δ
?
λv̄] = λdeτx[v̄]

where v̄ = dxτx−1 [v]. Moreover, if a ∈ Θ we get that∣∣〈∇Gda(x), v〉x
∣∣ ≤ ξ(x, v) ≤ ξε(x, v) for a.e. x ∈ Ω and v ∈ HxG.

Thus, by definition of dual metric, we have∣∣〈∇Gda(x), v〉x
∣∣

ξε(x, v)
≤ 1 ⇒

∥∥ξ?ε (x,∇Gda(x))
∥∥
∞ ≤ 1. (2.4.4)

Being Θ countable, by Lemma 2.4.3, there exists a Lebesgue null set N ⊂ Ω such that, the

horizontal curve γ(t) = x · δtev̄ belongs to P(Ω, N), and for every small t > 0 we can infer

that

d(x, x · δtev̄) = d(γ(0), γ(t)) ≤
∫ t

0

ξε(γ(s), γ̇(s)) ds.

Now, we are in position to apply Lemma 2.4.2 to the metric ξε: for every fixed a ∈ Ω, a.e.

x ∈ Ω and all v ∈ HxG∣∣〈∇Gda(x), v〉x
∣∣ ≤ lim inf

t→0

d(x, x · δtev̄)
t

≤ lim sup
t→0

d(x, x · δtev̄)
t

≤ ξε(x, v).

Taking the least upper bound w.r.t. a ∈ Θ and letting ε→ 0, we obtain

ξ(x, v) ≤ lim inf
t→0

d(x, x · δtev̄)
|t|

≤ lim sup
t→0

d(x, x · δtev̄)
|t|

≤ ξ(x, v).

This proves the convexity of the limit, i.e. of the metric derivative on the horizontal bundle.

2.5 Definitions of δϕ and Intrinsic Distance

The present section is devoted to the generalization of the metric results contained in [70].

To this aim, we set two distances introduced respectively in Definition 1.4.1 and Definition

1.3.1 which involve the structure of the sub-Finsler metric.

Definition 2.5.1. If ϕ ∈Mα
cc(G) is a sub-Finsler convex metric, for every x, y ∈ G we define

the following quantity:

δϕ(x, y) := sup
{
|f(x)− f(y)|

∣∣ f : G→ R Lipschitz, ‖ϕ(x,∇Gf(x))‖∞ ≤ 1
}
. (2.5.1)
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Recall that Pansu’s Theorem assures that ∇Gf(x) exists at almost every x ∈ G and thus

the above definition makes sense. Indeed, we have that δϕ is a distance on G and the proof

is similar to Lemma 1.4.2.

Definition 2.5.2. Given any ϕ ∈Mα
cc(G), we define its induced intrinsic distance dϕ as

dϕ(x, y) := inf
γ

∫ 1

0

ϕ(γ(t), γ̇(t)) dt for every x, y ∈ G, (2.5.2)

where the infimum is taken over all curves γ ∈ H
(
[0, 1],G

)
joining x and y.

The intrinsic distance (2.5.2) shows some differences with respect to Definition 1.3.1.

Indeed, the latter is computed over Lipschitz curves and, mostly, on the entire tangent

bundle, avoiding transversal curves on null sets. In the light of Theorem 1.3.5 and the results

in Chapter 1, we will give some semicontinuity assumptions on the sub-Finsler metric, in

order to avoid computations on null and very bad sets.

Lemma 2.5.3. If ϕ ∈Mα
cc(G) is a sub-Finsler convex metric, then dϕ is a geodesic distance

belonging to Dcc(G).

Proof. Since (G, dϕ) is a complete and a locally compact length space, then dϕ is a geodesic

distance, thanks to the general result contained in [22, Theorem 2.5.23].

To prove the last assertion it is enough to slightly modify the proof of Lemma 1.3.3 and we

are done.

A further key notion for our treatment is the notion of Finsler metrics on Carnot groups.

Definition 2.5.4. Given a Carnot group G, we say that a map F : TG → [0,+∞) is a

Finsler metric if

• F is continuous on TG and smooth on TG \ {0},

• the Hessian of F 2 is positive definite at any vector v ∈ TxG \ {0} for every x ∈ G.

Moreover, we denote by dF the length distance on G induced by F , as in Definition 2.5.2,

where the infimum is taken among all curves γ ∈ Lip([0, 1],G) joining x and y.
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Now we want to recall a very important approximation result contained in [77] and due to

E. Le Donne, D. Lučić and E. Pasqualetto. They introduce the concept of generalised metric,

which is a lower semicontinuous function on the horizontal bundle and a norm on the fibers

of the latter. The original statements are produced in the setting of sub-Finsler manifold,

that allows the distribution X1, . . . , Xm to be rank-varying. Clearly, since Carnot groups

have a stratification so that every layers have constant dimension, then we can simplify their

claims without difficulties.

Proposition 2.5.5. Let G be a Carnot group and let d be any distance on G that induces

the manifold topology. Let us assume that ϕ is a lower semicontinuous sub-Finsler convex

metric. Then there exists a sequence (Fn)n of Finsler metrics over HG such that

Fn−1(x, v) < Fn(x, v) < ϕ(x, v) for every n ∈ N, x ∈ G and v ∈ Rm \ {0}.

Moreover, it holds that Fn(x, v)↘ ϕ(x, v) for every x ∈ G and v ∈ Rm.

In particular, they show in [77, Theorem 3.11] that it is possible to approximate a lower

semicontinuous metric which is defined on the entire tangent bundle TG.

The last result of this subsection states that any Carnot–Carathéodory distance can

be monotonically approximated by distances associated to suitable Finsler metrics. More

precisely, the theorems are proved in [77, Theorem 5.1, Corollary 5.2] respectively in the

setting of sub-Finsler and sub-Riemannian manifolds.

Theorem 2.5.6. Let G be a Carnot group. Then there exists a sequence (Fn)n of Finsler

metrics on G such that dFn(x, y)↘ dcc(x, y) holds for every x, y ∈ G.

2.6 Inequality results on G

Before proving one of the main theorems, we recall some basic terminology. Given two

Banach spaces B1 and B2, and denoting with L(B1,B2) the space of all linear and continuous
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operators T : B1 → B2, it holds that L(B1,B2) is a Banach space if endowed with the usual

pointwise operations and the operator norm, namely

‖T‖L(B1,B2) := sup
v∈B1\{0}

‖T (v)‖B2

‖v‖B1

for every T ∈ L(B1,B2).

Remark 2.6.1. Given a smooth map ϕ : M → N between two smooth manifolds M , N and

a point x ∈ M , we denote by dxϕ : TxM → Tϕ(x)N the differential of ϕ at x. We recall that

if γ : [0, 1] → M is an absolutely continuous curve in M , then σ := ϕ ◦ γ is an absolutely

continuous curve in N and it holds that

σ̇(t) = dγ(t)ϕ[γ̇(t)] for a.e. t ∈ [0, 1]. (2.6.1)

We also point out that

d

dt
δte

v = deτδtev [v] for every v ∈ HeG and t ∈ (0, 1). (2.6.2)

Indeed, calling γ the unique curve satisfying (2.1.2) and defining γt(s) := γ(ts) for all t ∈ (0, 1)

and s ∈ [0, 1], we may compute

d

ds
γt(s) = tγ̇(ts) = t deτγ(ts)[v] = deτγt(s)[tv] for every s ∈ (0, 1).

The latter shows that γt fulfills the ODE defining tv, so that property (iii) of Lemma 2.1.7

yields γ(t) = γt(1) = etv = δte
v for every t ∈ (0, 1) and accordingly the identity claimed in

(2.6.2) is proved.

As we already said, if ψ is a Finsler or sub-Finsler metric, the metric derivative ϕδψ ,

could be very different from ψ (cf. [65, Example 1.5]). Our purpose is to show that, given a

sub-Finsler convex metric ψ, the metric derivative with respect to dψ is bounded above by

ψ almost everywhere. Moreover, we will show that the equality holds, for instance, when

ψ is lower semicontinuous. Finally, let us mention that all the results we will present are

contained in the work [54, Section 5].

Theorem 2.6.2. Let ψ ∈Mα
cc(G) be a sub-Finsler convex metric. Then the following prop-

erties are verified:
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i) It holds that

for a.e. x ∈ G, ϕdψ(x, v) ≤ ψ(x, v) for every v ∈ HxG.

ii) If ψ is upper semicontinuous, then

ϕdψ(x, v) ≤ ψ(x, v) for every (x, v) ∈ HG.

iii) If ψ is lower semicontinuous, then

ϕdψ(x, v) ≥ ψ(x, v) for every (x, v) ∈ HG.

In particular, for a.e. x ∈ G it holds that ϕdψ(x, v) = ψ(x, v) for every v ∈ HxG.

Proof.

i) Given x ∈ G, v ∈ HeG, and t > 0, we define the curve γ = γx,v,t : [0, 1]→ G as

γ(s) := x · δtsev for every s ∈ [0, 1].

Notice that γ is horizontal and joins x to x · δtev. We can compute

γ̇(s) =
d

ds
τx
(
δtse

v
) (2.6.1)

= dδtsevτx

[ d

ds
δtse

v
]

(2.6.2)
= deτx·δtsev [tv] for every s ∈ (0, 1).

Therefore, we may estimate

dψ(x, x · δtev) ≤
∫ 1

0

ψ(γ(s), γ̇(s)) ds = t

∫ 1

0

ψ
(
x · δtsev, deτx·δtsev [v]

)
ds

=

∫ t

0

ψ
(
x · δsev, deτx·δsev [v]

)
ds.

(2.6.3)

The next argument closely follows along the lines of Lemma 2.4.1. Fix a dense sequence (vi)i

in the unit sphere of HeG (w.r.t. the norm ‖ · ‖e). Define vi(x) := deτx[vi] for every i ∈ N

and x ∈ G, so that (vi(x))i is a dense sequence in the unit sphere of HxG (w.r.t. the norm

‖ · ‖x). By using Lebesgue’s differentiation theorem and Fubini’s theorem, we see that the

set Γi of all couples (y, r) ∈ G× R such that

ψ
(
y · δrevi , deτy·δrevi [vi]

)
= lim

t↘0

1

t

∫ t

0

ψ
(
y · δr+sevi , deτy·δr+sevi [vi]

)
ds (2.6.4)
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has zero Ln+1-measure. By using Fubini’s theorem again, we can find r ∈ R such that for any

i ∈ N there exists a Ln-full set Ni ⊂ G such that (2.6.4) holds for every point y ∈ G\Ni. Let

us consider the set N :=
⋃
i∈N σδrevi (Ni), where σz : G → G stands for the right-translation

map σzw := w · z. The right-invariance of Ln grants that N is Ln-negligible. Given that

ψ(x, vi(x)) = lim
t↘0

1

t

∫ t

0

ψ
(
x · δsevi , deτx·δsevi [vi]

)
ds for every i ∈ N and x ∈ G \N, (2.6.5)

we can conclude that

ϕdψ(x, vi(x)) = lim
t↘0

dψ(x, x · δtevi)
t

(2.6.3)

≤ lim
t↘0

1

t

∫ t

0

ψ
(
x · δsevi , deτx·δsevi [vi]

)
ds

(2.6.5)
= ψ(x, vi(x)) for every i ∈ N and x ∈ G \N.

Since ψ(x, ·) is continuous and positively 1-homogeneous, and (vi(x))i is dense in the unit

‖ · ‖x-sphere of HxG, we deduce that ϕdψ(x,w) ≤ ψ(x,w) for every x ∈ G \N and w ∈ HxG.

ii) Suppose ψ is upper semicontinuous. Let (x, v) ∈ HG be fixed. Given any ε > 0, we can

thus find tε > 0 such that, setting v̄ := dxτx−1 [v] for brevity, it holds that

ψ
(
x · δtev̄, deτx·δtev̄ [v̄]

)
≤ ψ(x, v) + ε for every t ∈ (0, tε). (2.6.6)

In particular, we may estimate

ϕdψ(x, v) = lim
t↘0

dψ(x, x · δtev̄)
t

(2.6.3)

≤ lim
t↘0

1

t

∫ t

0

ψ
(
x · δsev̄, deτx·δsev̄ [v̄]

)
ds

(2.6.6)

≤ ψ(x, v) + ε.

Thanks to the arbitrariness of ε, we can conclude that ϕdψ(x, v) ≤ ψ(x, v), as desired.

iii) Suppose ψ is lower semicontinuous. First of all, let us extend ‖ · ‖e to a Hilbert norm

(still denoted by ‖ · ‖e) on the whole TeG = g, then by left-invariance we obtain a Hilbert

norm ‖·‖x on each tangent space TxG. Throughout the rest of the proof, we assume that TxG

is considered with respect to such norm ‖ · ‖x. Moreover, choose any norm n : g → [0,+∞)

on the Lie algebra which extends ψ(e, ·), so that n ≤ λ‖ · ‖e for some λ > 0.

Without loss of generality, up to replacing ψ with the translated metric ψx, defined as

ψx(y, v) := ψ
(
x · y, dyτx[v]

)
for every (y, v) ∈ HG, it is sufficient to prove the statement
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only for x = e. Then let v ∈ HeG be fixed. For any t > 0 we have that the horizontal curve

[0, 1] 3 s 7→ δste
v ∈ G is a competitor for dψ(e, δte

v), thus we may estimate

dψ(e, δte
v) ≤

∫ 1

0

ψ(δste
v, t deτδstev [v]) ds = t

∫ 1

0

ψ(δste
v, deτδstev [v]) ds

≤ αt

∫ 1

0

‖deτδstev [v]‖δstev ds = αt‖v‖e,

where the last equality comes from the left invariance of the norm. This means that, in

order to compute dψ(e, δte
v), it is sufficient to consider those horizontal curves γs : [0, 1]→ G

joining e to δte
v and satisfying

∫ 1

0
‖γ̇s‖γs ds ≤ α

∫ 1

0
ψ(γs, γ̇s) ds ≤ α2t‖v‖e. We can also

assume without loss of generality that any such curve γ is parametrized by constant speed

with respect to the metric ‖ · ‖x. All in all, we have shown that

dψ(e, δte
v) = inf

γ∈Ct

∫ 1

0

ψ(γs, γ̇s) ds for every t > 0, (2.6.7)

where the family Ct of curves is defined as

Ct :=

{
γ : [0, 1]→ G horizontal

∣∣∣∣ γ0 = e, γ1 = δte
v, ‖γ̇s‖γs ≡

∫ 1

0

‖γ̇s‖γs ds ≤ α2t‖v‖e
}
.

Now fix any ε > 0. Since the map exp−1 : G → g is a diffeomorphism, we can consider its

differential dxexp−1 : TxG→ Texp−1(x)g ∼= g at any point x ∈ G. Let us observe that exp−1 is

smooth, and deexp−1 = deτe−1 = idg.

Since ψ is lower semicontinuous and by the previous argument, we can find r > 0 such

that

ψ(x, v) ≥ ψ(e, dxτx−1 [v])− ε for every x ∈ B(e, r) and v ∈ HxG, ‖v‖x ≤ 1, (2.6.8a)∥∥dxexp−1 − dxτx−1

∥∥
L(TxG,g)

≤ ε for every x ∈ B(e, r), (2.6.8b)

where B(e, r) ≡ Bdcc(e, r). In particular, given any t > 0 with α2t‖v‖e < r and γ ∈ Ct, we

have that dcc(e, γs) ≤ sα2t‖v‖e < r for every s ∈ [0, 1] and ‖γ̇s‖γs ≤ α2t‖v‖e for a.e. s ∈ [0, 1],

thus accordingly (2.6.8a) and (2.6.8b) yield

ψ(γs, γ̇s) ≥ ψ(e, dγsτγ−1
s

[γ̇s])− α2t‖v‖eε for a.e. s ∈ [0, 1], (2.6.9a)∥∥dγsexp−1 − dγsτγ−1
s

∥∥
L(TγsG,g)

≤ ε for a.e. s ∈ [0, 1], (2.6.9b)
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respectively. Therefore, for any t > 0 with α2t‖v‖e < r and γ ∈ Ct, we may estimate∣∣∣∣ψ(e,∫ 1

0

dγsτγ−1
s

[γ̇s] ds

)
− n

(∫ 1

0

dγsexp−1[γ̇s] ds

)∣∣∣∣
≤ n

(∫ 1

0

dγsτγ−1
s

[γ̇s] ds−
∫ 1

0

dγsexp−1[γ̇s] ds

)
≤ λ

∥∥∥∥∫ 1

0

dγsτγ−1
s

[γ̇s]− dγsexp−1[γ̇s] ds

∥∥∥∥
e

≤ λ

∫ 1

0

∥∥(dγsτγ−1
s
− dγsexp−1)[γ̇s]

∥∥
e
ds ≤ λ

∫ 1

0

∥∥dγsexp−1 − dγsτγ−1
s

∥∥
L(TγsG,g)

‖γ̇s‖γs ds

(2.6.9b)

≤ λε

∫ 1

0

‖γ̇s‖γs ds ≤ λεα2t‖v‖e,

whence it follows that∫ 1

0

ψ(γs, γ̇s) ds
(2.6.9a)

≥
∫ 1

0

ψ(e, dγsτγ−1
s

[γ̇s]) ds− α2t‖v‖eε

≥ ψ

(
e,

∫ 1

0

dγsτγ−1
s

[γ̇s] ds

)
− α2t‖v‖eε

≥ n

(∫ 1

0

dγsexp−1[γ̇s] ds

)
− (λ+ 1)α2t‖v‖eε.

(2.6.10)

where in the second inequality we applied Jensen’s inequality to ψ(e, ·). Now consider the

curve σ in the Hilbert space (g, n), which is given by σs := exp−1(γs) for every s ∈ [0, 1]. It

holds that σ is absolutely continuous and satisfies σ̇s = dγsexp−1[γ̇s] for a.e. s ∈ [0, 1], thus

tv = tv − 0g = exp−1(δte
v)− exp−1(e) = exp−1(γ1)− exp−1(γ0) = σ1 − σ0

=

∫ 1

0

σ̇s ds =

∫ 1

0

dγsexp−1[γ̇s] ds.
(2.6.11)

By combining (2.6.10) and (2.6.11), we obtain for any t > 0 with α2t‖v‖e < r and γ ∈ Ct

that ∫ 1

0

ψ(γs, γ̇s) ds ≥ n(tv)− (λ+ 1)α2t‖v‖eε =
[
ψ(e, v)− (λ+ 1)α2‖v‖e ε

]
t. (2.6.12)

We are now in a position to conclude the proof of the statement: given t > 0 with α2t‖v‖e < r,

one has that

dψ(e, δte
v)

t

(2.6.7)
= inf

γ∈Ct

1

t

∫ 1

0

ψ(γs, γ̇s) ds
(2.6.12)

≥ ψ(e, v)− (λ+ 1)α2‖v‖e ε. (2.6.13)
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By letting t↘ 0, we thus deduce that

ϕdψ(e, v) = lim sup
t↘0

dψ(e, δte
v)

t

(2.6.13)

≥ ψ(e, v)− (λ+ 1)α2‖v‖eε. (2.6.14)

Finally, by letting ε↘ 0 in (2.6.14) we conclude that ϕdψ(e, v) ≥ ψ(e, v), as desired.

Corollary 2.6.3. If ψ is a continuous sub-Finsler convex metric, then

ϕdψ(x, v) = ψ(x, v) for every (x, v) ∈ HG.

Proof. It is an immediate consequence of assertions ii) and iii) of Theorem 2.6.2.

The crucial observation below states that δϕ coincides with the intrinsic distance dϕ? when

we assume that the sub-Finsler metric is lower semicontinuous. This will allow us to show

the same result when ϕ is upper semicontinuous, thanks to an approximation argument given

in Theorem 2.5.6.

Theorem 2.6.4. Let ϕ ∈ Mα
cc(G) be a sub-Finsler convex metric. Then it holds that

δϕ(x, y) ≤ dϕ?(x, y). Moreover, if ϕ is lower semicontinuous, then

δϕ(x, y) = dϕ?(x, y) for every x, y ∈ G.

Proof. Let x, y ∈ G be fixed. To prove the first part of the statement, pick any Lipschitz

function f with ‖ϕ(z,∇Gf(z))‖∞ ≤ 1 and any horizontal curve γ : [0, 1]→ G joining x and

y such that

H1
(
γ ∩ {z ∈ G : ϕ(z,∇Gf(z)) > 1}

)
= 0.

These are competitors for δϕ(x, y) and dϕ?(x, y), respectively. Then we can estimate

∣∣f(x)− f(y)
∣∣ =

∣∣∣∣ ∫ 1

0

d

dt
(f(γ(t))) dt

∣∣∣∣ =

∣∣∣∣ ∫ 1

0

〈∇Gf(γ(t)), γ̇(t)〉γ(t) dt

∣∣∣∣
≤
∫ 1

0

∣∣〈∇Gf(γ(t)), γ̇(t)〉γ(t)

∣∣ dt ≤ ∫ 1

0

ϕ(γ(t),∇Gf(γ(t)))ϕ?(γ(t), γ̇(t)) dt

≤
∥∥ϕ(·,∇Gf(·))

∥∥
∞

∫ 1

0

ϕ?(γ(t), γ̇(t)) dt ≤
∫ 1

0

ϕ?(γ(t), γ̇(t)) dt,
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whence it follows that δϕ(x, y) ≤ dϕ?(x, y).

Now suppose ϕ is lower semicontinuous. Define the function f : G→ R as f(·) := dϕ?(x, ·)

and since dϕ?(x, y) ≤ α−1dcc(x, y) everywhere, we have that f is Lipschitz. Fix any point

z ∈ G such that ∇Gf(z) exists and a horizontal vector v ∈ HzG. Pick a horizontal curve

γ : [0, ε] → G of class C1 such that γ(0) = z and γ̇(0) = v. Thanks to the continuity of

t 7→ (γ(t), γ̇(t)) and the upper semicontinuity of ϕ?, granted by Lemma 2.2.5, we obtain that

lim supt↘0

∫ t
0
ϕ?(γ(s), γ̇(s)) ds ≤ ϕ?(γ(0), γ̇(0)) = ϕ?(z, v), whence, by (2.1.3), it follows

that

〈∇Gf(z), v〉z = lim
t↘0

f(γ(t))− f(γ(0))

t
≤ lim sup

t↘0

f(γ(t))− f(γ(0))

dϕ?(γ(t), γ(0))
lim sup
t↘0

dϕ?(γ(t), γ(0))

t

≤ lim sup
t↘0

∣∣dϕ?(x, γ(t))− dϕ?(x, γ(0))
∣∣

dϕ?(γ(t), γ(0))
lim sup
t↘0

∫ t

0

ϕ?(γ(s), γ̇(s)) ds ≤ ϕ?(z, v).

By arbitrariness of v ∈ HzG, we deduce that ϕ(z,∇Gf(z)) ≤ 1. Therefore, f is a competitor

for δϕ(x, y). This implies that δϕ(x, y) ≥ |f(x)− f(y)| = dϕ?(x, y).

In particular, the last part of the proof shows that the supremum appearing in the defi-

nition of δϕ(x, y) is actually a maximum.

The upper semicontinuity of the sub-Finsler metric ϕ is crucial for our proof, because it

allows us to approximate the dual metric ϕ? through a family of continuous Finsler metrics

as in Proposition 2.5.5. This leads to the approximation of induced intrinsic distances, in the

sense of Theorem 2.5.6.

Corollary 2.6.5. Let ϕ ∈ Mα
cc(G) be a sub-Finsler convex metric. Suppose ϕ is upper

semicontinuous. Then, for every x, y ∈ G it holds that δϕ(x, y) = dϕ?(x, y).

Proof. Lemma 2.2.5 ensures that ϕ? is lower semicontinuous. We set ϕ̃? : TG→ [0,+∞) as

ϕ̃?(x, v) :=

 ϕ?(x, v),

+∞,

if (x, v) ∈ HG,

if (x, v) ∈ TG \HG.

Observe that HG is closed in TG and thus ϕ̃? is lower semicontinuous. Thanks to [77,

Theorem 3.11], there exists a sequence Fn : TG→ [0,+∞) of Finsler metrics on G such that
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Fn(x, v)↗ ϕ̃?(x, v) for every (x, v) ∈ TG. Setting

ϕn : HG→ [0 +∞) as ϕn := (Fn|HG)?,

we obtain that ϕn ∈ Mα
cc(G) and ϕ?n(x, v) ↗ ϕ?(x, v) for every (x, v) ∈ HG. Therefore

ϕn(x, v) ↘ ϕ(x, v) for every (x, v) ∈ HG. In particular, the inequality ϕn ≥ ϕ holds for all

n ∈ N. This implies that any competitor f for δϕn is a competitor for δϕ, so that accordingly

δϕn(x, y) ≤ δϕ(x, y), for every n ∈ N and x, y ∈ G. (2.6.15)

Moreover, since the infimum in the definition of dFn is computed with respect to all Lipschitz

curves, while the infimum in the definition of dϕ?n is just over horizontal curves, for every

x, y ∈ G we get that

dFn(x, y) ≤ dϕ?n(x, y) ≤ dϕ?(x, y) for every n ∈ N. (2.6.16)

From the convergence of Fn to ϕ̃? we deduce that dFn(x, y) → dϕ?(x, y) for every x, y ∈ G

(cf. the proof of [77, Theorem 5.1]), and thus

dϕ?(x, y) = lim
n→∞

dϕ?n(x, y) for every x, y ∈ G. (2.6.17)

Finally, since ϕn is lower semicontinuous (actually, continuous) by Lemma 2.2.5, we know

from the second part of Theorem 2.6.4 that

δϕn(x, y) = dϕ?n(x, y) for every n ∈ N. (2.6.18)

All in all, we obtain that

dϕ?(x, y)
(2.6.17)

= lim
n→∞

dϕ?n(x, y)
(2.6.18)

= lim
n→∞

δϕn(x, y)
(2.6.15)

≤ δϕ(x, y) for every x, y ∈ G.

Since the converse inequality dϕ? ≥ δϕ is granted by the first part of Theorem 2.6.4, we

conclude that δϕ = dϕ? , as required.
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2.7 Main results and consequences on G

Now we are ready to present the generalization of Theorem 1.4.6 in Carnot groups.

Theorem 2.7.1. Let ϕ ∈ Mα
cc(G) be an upper semicontinuous sub-Finsler convex metric.

Then for any locally Lipschitz function f : G→ R we have that

ϕ(x,∇Gf(x)) = Lipδϕ f(x) for a.e. x ∈ G.

Proof.

≤ Since both sides are positively 1-homogeneous with respect to f , we only need to

show that, if Lipδϕ f(x) = 1, then ϕ(x,∇Gf(x)) ≤ 1 for a.e. x ∈ G. By Corollary 2.6.5,

Lipδϕ f(x) = Lipdϕ? f(x), hence if we fix (x, v) ∈ HG, thanks to the equalities (2.1.3) and

(2.1.8), we obtain:

〈∇Gf(x), v〉x = lim
t→0

f(x · δtev̄)− f(x)

t
≤ lim sup

t→0

dϕ?(x, x · δtev̄)
t

· lim sup
t→0

|f(x · δtev̄)− f(x)|
dϕ?(x, x · δtev̄)

≤ ϕdϕ? (x, v) Lipdϕ? f(x) ≤ ϕ?(x, v),

where in the last inequality we used item i) of Theorem 2.6.2. By arbitrariness of v ∈ HxG

and the fact that

ϕ(x,∇Gf(x)) = ϕ??(x,∇Gf(x)) ≤ 1,

we get the conclusion.

≥ Thanks to a convolution argument, we can find a sequence (fn)n ⊂ C1(G) such that

fn → f uniformly on compact sets and ∇Gfn → ∇Gf in the almost everywhere sense. Recall

that any C1-function is locally Lipschitz. Fix any x ∈ G such that ∇Gfn(x) exists for all

n ∈ N and ∇Gfn(x) → ∇Gf(x) as n → ∞. Now let ε > 0 be fixed. Then we can choose

r′ > 0 and n̄ ∈ N so that

sup
B(x,2r′)

|fn̄ − f | ≤ ε and ϕ(x,∇Gfn̄(x)−∇Gf(x)) ≤ ε,

where the ball is with respect to the distance d?ϕ. Calling g := fn̄ and being z 7→ ∇Gg(z)

continuous, we deduce that z 7→ ϕ(z,∇Gg(z)) is upper semicontinuous, thus there exists
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r < r′ such that

ϕ(y,∇Gg(y)) ≤ ϕ(x,∇Gg(x)) + ε for every y ∈ B2r(x).

Fix any point y ∈ Br(x) and consider a horizontal curve γ : [0, 1] → G such that γ(0) = x,

γ(1) = y with γ([0, 1]) ⊂ B2r(x). We can estimate in this way:

|f(x)− f(y)| ≤ |g(x)− g(y)|+ 2ε ≤
∫ 1

0

d

dt
g(γ(t)) dt+ 2ε

≤
∫ 1

0

ϕ(γ(t),∇Gg(γ(t)))ϕ?(γ(t), γ̇(t)) dt+ 2ε

≤
(
ϕ(x,∇Gg(x)) + ε

)∫ 1

0

ϕ?(γ(t), γ̇(t)) dt+ 2ε

≤
(
ϕ(x,∇Gf(x)) + 2ε

)∫ 1

0

ϕ?(γ(t), γ̇(t)) dt+ 2ε.

By taking the infimum over all γ ∈ H
(
[0, 1], B2r(x)

)
, we obtain that

|f(x)− f(y)| ≤
(
ϕ(x,∇Gf(x)) + 2ε

)
dϕ?(x, y) + 2ε,

whence by letting ε→ 0 we obtain that

|f(x)− f(y)|
dϕ?(x, y)

≤ ϕ(x,∇Gf(x)).

Finally, by letting y → x we conclude that

Lipδϕ f(x) = Lipdϕ? f(x) ≤ ϕ(x,∇Gf(x)),

as required.

To conclude, in Proposition 2.7.3 we prove that in the definition (2.5.1) of the distance

δϕ it is sufficient to consider smooth functions. Before passing to the proof of this claim, we

prove the following technical result.

Lemma 2.7.2. Let ϕ ∈Mα
cc(G) be a sub-Finsler convex metric. Then it holds that

LIPdϕ? (f) = ess sup
x∈G

Lipdϕ?f(x) for every f ∈ LIPdϕ? (G), (2.7.1)

where LIPd?ϕ(f) ∈ [0,+∞) is the (global) Lipschitz constant of f ∈ LIPd?ϕ(G).
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Proof. The inequality (≥) is trivial. To prove the converse inequality, we argue by contra-

diction: suppose there exist x, y ∈ G with x 6= y, a negligible Borel set N ⊆ G and δ > 0

such that ∣∣f(x)− f(y)
∣∣

dϕ?(x, y)
≥ sup

z∈G\N
Lipdϕ?f(z) + δ.

Given any ε > 0, we can find γ ∈ H([0, 1],G) such that γ(0) = x, γ(1) = y, and∫ 1

0

ϕ∗(γ(t), γ̇(t)) dt ≤ dϕ?(x, y) + ε.

Since f ◦ γ : R → R is Lipschitz, hence Pansu-differentiable almost everywhere, we deduce

that∣∣f(x)− f(y)
∣∣ ≤ ∫ 1

0

∣∣(f ◦ γ)′(t)
∣∣ dt ≤ ∫ 1

0

ϕ(γ(t),∇Gf(γ(t)))ϕ∗(γ(t), γ̇(t)) dt

=

∫ 1

0

Lipdϕ?f(γ(t))ϕ?(γ(t), γ̇(t)) dt ≤ sup
z∈G\N

Lipdϕ?f(z)

∫ 1

0

ϕ?(γ(t), γ̇(t)) dt

≤
[∣∣f(x)− f(y)

∣∣
dϕ?(x, y)

− δ
](
dϕ?(x, y) + ε

)
.

By letting ε ↘ 0 in the above estimate, we get 0 ≤ −δ dϕ?(x, y), which leads to a con-

tradiction. Therefore, also the inequality (≤) in (2.7.1) is proved, whence the statement

follows.

Proposition 2.7.3. Let ϕ ∈ Mα
cc(G) be a sub-Finsler convex metric. Suppose ϕ is upper

semicontinuous. Then for any x, y ∈ G it holds that

δϕ(x, y) = sup
{∣∣f(x)− f(y)

∣∣ ∣∣∣ f ∈ C∞(G),
∥∥ϕ(·,∇Gf(·)

∥∥
∞ ≤ 1

}
. (2.7.2)

Proof. Denote by δ̃ϕ(x, y) the quantity in the right-hand side of (2.7.2). Since any competitor

for δ̃ϕ(x, y) is a competitor for δϕ(x, y), we have that δϕ(x, y) ≥ δ̃ϕ(x, y). To prove the

converse inequality, fix any Lipschitz function f : G → R such that
∥∥ϕ(·,∇Gf(·))

∥∥
∞ ≤

1. Corollary 2.6.5 and Theorem 2.7.1 grant that ess sup Lipdϕ?f ≤ 1, thus Lemma 2.7.2

yields LIPdϕ? (f) ≤ 1. Given that dϕ? is an increasing, pointwise limit of Finsler distances

by [77, Theorem 3.11], we are in a position to apply Theorem 2.7.4. Thus we obtain a
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sequence (fn)n ⊆ C∞(G) ∩ LIPdϕ? (G) such that LIPdϕ? (fn) ≤ 1 for all n ∈ N and fn → f

uniformly on compact sets. Corollary 2.6.5 and Theorem 2.7.1 imply that
∥∥ϕ(·,∇Gfn(·))

∥∥
∞ =

sup Lipdϕ?fn ≤ 1, thus fn is a competitor for δ̃ϕ(x, y). Then we conclude that
∣∣f(x)−f(y)

∣∣ =

limn

∣∣fn(x)− fn(y)
∣∣ ≤ δ̃ϕ(x, y), whence it follows that δϕ(x, y) ≤ δ̃ϕ(x, y) by arbitrariness of

f .

2.7.1 Smooth approximation of Lipschitz functions on generalized

sub-Finsler manifolds

The purpose is to prove an approximation result for real-valued Lipschitz functions defined

on some very weak kind of sub-Finsler manifold. More precisely, we consider a distance

d on a smooth manifold that can be obtained as the monotone increasing limit of Finsler

distances; this notion covers the case of possibly rank-varying sub-Finsler manifolds, thanks

to [77, Theorem 3.11]. In this framework, we prove (see Theorem 2.7.4 below) that any

Lipschitz function can be approximated (uniformly on compact sets) by smooth functions

having the same Lipschitz constant. This generalizes previous results that were known on

sub-Riemannian manifolds, see e.g. [71] and the references therein.

In a metric space (X, d), if f ∈ LIPd(X), we denote by LIPd(f) ∈ [0,+∞) the (global)

Lipschitz constant. Moreover, given a smooth manifold M equipped of a Finsler metric F ,

we denote by dF the usual length distance on M induced by F , as in Definition 2.5.2.

Theorem 2.7.4. Let M be a smooth manifold. Let d be a distance on M having the following

property: there exists a sequence (Fi)i of Finsler metrics on M such that

dFi(x, y)↗ d(x, y) for every x, y ∈M.

Then for any f ∈ LIPd(M) there exists a sequence (fn)n ⊆ C∞(M) ∩ LIPd(M) such that

sup
n∈N

LIPd(fn) ≤ LIPd(f), fn → f uniformly on compact sets.
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Proof. Denote L := LIPd(f) and di := dFi for every i ∈ N. Choose any countable, dense

subset (xj)j of (M,d). Given any n ∈ N, we define the function hn ∈ LIPd(M) as

hn(x) :=
(
− Ld(x, x1) + f(x1)

)
∨ · · · ∨

(
− Ld(x, xn) + f(xn)

)
− 1

n
for every x ∈M.

Observe that LIPd(hn) ≤ L and that hn(x) < hn+1(x) < f(x) for every n ∈ N and x ∈ M .

We claim that hn(x) ↗ f(x) for all x ∈ M . In order to prove it, fix any x ∈ M and ε > 0.

Pick some n̄ ∈ N such that 1/n̄ < ε and d(x, xn̄) < ε. Then for every n ≥ n̄ it holds that

hn(x) ≥ −Ld(x, xn̄) + f(xn̄)− 1

n
≥ −Lε+

(
f(x)− Ld(x, xn̄)

)
− 1

n̄
≥ f(x)− (2L+ 1)ε,

thus proving the claim. Fix an increasing sequence (Kn)n of compact sets in M satisfying the

following property: given any compact set K ⊆ M , there exists n ∈ N such that K ⊆ Kn.

In particular, one has that
⋃
nKn = M . Notice that hn + 1

n(n+1)
≤ hn+1 on Kn for all n ∈ N.

Since dFi ↗ d, there exists in ∈ N such that the function gn : M → R, given by

gn(x) :=
(
− Ldin(x, x1) + f(x1)

)
∨ · · · ∨

(
− Ldin(x, xn) + f(xn)

)
− 1

n
for every x ∈M,

satisfies hn < gn < hn+ 1
n(n+1)

on Kn. Note that gn ∈ LIPdin
(M) and LIPdin

(gn) = L. Thanks

to a mollification argument, it is possible to build a function fn ∈ C∞(M)∩LIPdin
(M) such

that LIPdin
(fn) ≤ L and gn < fn < gn+1 on Kn. Therefore, for any n ∈ N and x ∈ Kn it

holds that the sequence
(
fj(x)

)
j≥n is strictly increasing and converging to f(x). This grants

that fj → f uniformly on Kn for any given n ∈ N. Hence, our specific choice of (Kn)n implies

that fn → f uniformly on compact sets. Finally, the inequality din ≤ d yields fn ∈ LIPd(M)

and LIPd(fn) ≤ LIPdin
(fn) ≤ L for all n ∈ N, whence the statement follows.
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Chapter 3

Integral Representation of three

classes of functionals

3.1 Background and Preliminaries

The second part of this Ph.D. dissertation is devoted to the analysis of general Carathéodory

integrand f , with the aim to obtain an integral representation for integral functionals which

are not translation-invariant. For this purpose, we need to introduce a further generalization

of the ambient space which is given by a general family of linear vector fields with Lipschitz

regularity. This class embraces many relevant families studied in literature, among the others,

the already developed Carnot groups and Carnot–Carathéodory spaces.

Notation. We let 1 ≤ p < +∞ and m,n ∈ N \ {0} with m ≤ n, we denote by Ω an open

and bounded subset of Rn and by A the family of all open subsets of Ω. Given two open

sets A and B, we write A b B whenever A ⊆ B. We set A0 to be the subfamily of A of

all the open subsets A of Ω such that A b Ω and by B the family of all Borel subsets of Ω.

Given x ∈ Rn, r > 0 we let Br(x) := {y ∈ Rn : |x− y| < r} and given an integrable function

f : Br(x)→ R we denote its integral average by
∫
Br(x)

f dx := 1
|Br(x)|

∫
Br(x)

f dx. Finally, for

77
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x ∈ Rn, u ∈ R and ξ ∈ Rn we set the linear affine function

ϕx,u,ξ(y) := u+ 〈ξ, y − x〉. (3.1.1)

�

3.1.1 Basic Definitions and X-Sobolev Spaces

We will identify a first order differential operator X :=
∑n

i=1 ci
∂
∂xi

with the map X(x) :=

(c1(x), . . . , cn(x)) : Ω→ Rn and let m ≤ n.

Definition 3.1.1. We say that X := (X1, . . . , Xm) is a family of Lipschitz vector fields on

Ω if for any j = 1, . . . ,m and for any i = 1, . . . , n there exists a function cj,i ∈ Lip(Ω) such

that Xj(x) = (cj,1(x), . . . , cj,n(x)). We denote by C(x) the m× n matrix defined as

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

.

We say that X satisfies the linear independence condition (LIC) on Ω if the set

NX := {x ∈ Ω : X1(x), . . . , Xm(x) are linearly dependent }

is such that |NX | = 0. In this case we set ΩX := Ω \NX .

As we already said, (LIC) is a very general request and many relevant families of vector

fields embraces this condition as, for instance, the Euclidean space, the Heisenberg group and

the Grushin space. Furthermore, (LIC) is a weaker assumption with respect to the request

that the X-gradient induces a Carnot–Carathéodory distance in Ω (see for instance [16]).

Definition 3.1.2. Let m ≤ n, u ∈ L1
loc(Ω) and v ∈ L1

loc(Ω,Rm), and let X be a family of

Lipschitz vector fields. We say that v is the X-gradient of u if for any ϕ ∈ C∞c (Ω,Rm) it

holds that

−
∫

Ω

u
m∑
j=1

n∑
i=1

∂

∂xi
(cj,iϕj) dx =

∫
Ω

ϕ · vdx.
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Whenever it exists, the X-gradient is shown to be unique a.e. and we set Xu := v. Moreover,

if p ∈ [1,+∞] we define the vector spaces

W 1,p
X (Ω) := {u ∈ Lp(Ω) : Xu ∈ Lp(Ω)}

and

W 1,p
X,loc(Ω) := {u ∈ Lploc(Ω) : u|A′ ∈ W 1,p

X (A′), ∀A′ ∈ A0}.

We refer to them as X-Sobolev spaces, and to their elements as X-Sobolev functions.

Remark 3.1.3. If u ∈ L1
loc(Ω), the previous definition is equivalent to set the distributional

X-gradient as

〈Xu,ϕ〉 := −
∫

Ω

u div(ϕ(x) · C(x))dx for any ϕ ∈ C∞c (Ω,Rm).

In the particular case in which X is the family of generating horizontal vector fields of a

Carnot group, then the X-gradient reduces to the classical horizontal gradient in (2.1.7).

The next proposition can be found in [59].

Proposition 3.1.4. Let p ∈ [1,+∞]. Then the vector space W 1,p
X (Ω), endowed with the

norm

‖u‖W 1,p
X (Ω)

:= ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,Rm),

is a Banach space. Moreover, if 1 < p < +∞ it is a reflexive Banach space.

The following simple proposition tells us that X-Sobolev spaces are actually a generaliza-

tion of the classical ones. The first reason is because each Sobolev function is in particular

an X-Sobolev one, whatever X is the standard family of vector fields (∂1, . . . , ∂n) which gives

rise to the classical Sobolev spaces. The second is that the X-gradient can be computed

starting from the Euclidean gradient in a very simple way, whenever the function is regular

enough.

Proposition 3.1.5. The following facts hold:
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(i) if n = m and cj,i(x) = δj,i for every i, j = 1, . . . , n, then W 1,p(Ω) = W 1,p
X (Ω);

(ii) W 1,p(Ω) ⊆ W 1,p
X (Ω), the inclusion is continuous and

Xu(x) = C(x)Du(x) for every u ∈ W 1,p(Ω) and a.e. x ∈ Ω.

Let us notice that, being Ω bounded, we have that

W 1,∞(Ω) ⊆ W 1,p(Ω) ⊆ W 1,p
X (Ω)

for any family X of Lipschitz vector fields. The following proposition tells us that the weak

convergence in W 1,p
X is weaker than the weak*- convergence in W 1,∞.

Proposition 3.1.6. Let X be a family of Lipschitz vector fields. Then, for any sequence

(uh)h ⊆ W 1,∞(Ω) and any u ∈ W 1,∞(Ω), it follows that

uh ⇀
∗ u in W 1,∞(Ω) =⇒ uh ⇀ u in W 1,p

X (Ω).

Proof. Follows easily from [20, Theorem 3.10].

Remark 3.1.7. In the classical Sobolev spaces, a typical strategy to get an integral repre-

sentation of the form

F (u,A) =

∫
A

fe(x, u(x), Du(x))dx

for linear or affine functions, is to exploit classical differentiation theorems for measures.

Then one can combine some semicontinuity properties of the functional together with ap-

proximation results by means of piecewise affine functions (see for instance [53, Chapter X,

Proposition 2.9]), in order to extend the integral representation to all Sobolev functions.

However, one of the main difficulties is that an analogue of [53, Chapter X, Proposition 2.9])

does not hold in our setting. Indeed, if we call X-affine a C∞ function such that Xu is con-

stant, then there are choices of X for which not all X-Sobolev functions can be approximated

in W 1,p
X by piecewiese X-affine functions [81, Section 2.3].
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Hence, we have to adopt a different strategy but we present some useful Meyers-Serrin type

results that are still true in this non Euclidean framework and that allow us to approximate

X-Sobolev functions with smooth ones. Finally, similarly to the Euclidean case, a Meyers–

Serrin approximation result holds (cf. [61, Theorem 1.2]).

Theorem 3.1.8. Let Ω be an open subset of Rn. For any u ∈ W 1,p
X (Ω) there exists a sequence

uε ∈ W 1,p
X (Ω) ∩ C∞(Ω) such that

uε → u in W 1,p
X (Ω) as ε→ 0.

In other words, we have that

W 1,p
X (Ω) ∩ C∞(Ω) = W 1,p

X (Ω),

where the closure is with respect to the metric topology of (W 1,p
X (Ω), ‖ · ‖W 1,p

X (Ω)).

Proposition 3.1.9. Let u ∈ W 1,p
X,loc(Ω) and A′ b Ω, then there exists v ∈ W 1,p

X (Ω) which

coincides with u on A′.

Proof. Let ϕ be a smooth cut-off function between A′ and Ω. It is straightforward to verify

that the function v(x) := ϕ(x)u(x) satisfies the desired requirements.

Proposition 3.1.9, together with Theorem 3.1.8, allows to prove the following result.

Proposition 3.1.10. Let u ∈ W 1,p
X,loc(Ω) and let A′ b Ω. Then there exists a sequence

(uε)ε ⊆ W 1,p
X (Ω) such that

uε|A′ ∈ W 1,p
X (A′) ∩ C∞(A′) and uε|A′ −→ u|A′ in W 1,p

X (A′).

Proof. Let us fix u ∈ W 1,p
X,loc(Ω) and A′ ∈ A0. By Proposition 3.1.9 we can find a function

ũ ∈ W 1,p
X (Ω) such that u|A′ = ũ|A′ , and by Theorem 3.1.8 there exists a sequence (uε)ε ⊆

W 1,p
X (Ω) ∩ C∞(Ω) converging to ũ in W 1,p

X (Ω). It is easy to see that (uε|A′)ε ⊆ W 1,p
X (A′) ∩

C∞(A′); moreover, since u|A′ = ũ|A′ , we conclude that uε|A′ −→ u|A′ in W 1,p
X (A′).
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When dealing with integral representation in classical Sobolev spaces one might exploit

the following Lusin-type result (cf. [29, Theorem 13]):

Proposition 3.1.11. Let Ω ⊆ Rn be open and bounded, 1 ≤ p ≤ +∞ and u ∈ W 1,p(Ω).

Then, for any ε > 0, there exists Aε ∈ A and v ∈ C1(Ω) such that |Aε| ≤ ε and u|Ω\Aε =

v|Ω\Aε.

Under reasonable assumptions (cf. [26, Lemma 2.7]) this result allows to extend an integral

representation result from C1(Ω)×A to W 1,p(Ω)×A. The following counterexample shows

that an analogue of Proposition 3.1.11 does not hold in a general X-Sobolev space. In

the following example we speak about approximate differentiability and approximate partial

derivatives according to [57, Section 3.1.2].

Example 3.1.12. Let us take Ω = (0, 1)×(0, 1) and X = X1 = ∂
∂x

which clearly satisfies the

(LIC). Let us consider a function w : (0, 1) → R which is bounded, continuous but which is

not approximately differentiable for a.e. x ∈ (0, 1) (see for instance [92, p. 297]), and define

the function u : Ω→ R as

u(x, y) := w(y).

We have that u ∈ L∞(Ω) and it is constant with respect to x. Thus, for any ϕ ∈ C∞c (Ω), we

have that

−
∫

Ω

u
∂ϕ

∂x
dx = −

∫ 1

0

w(y)dy

∫ 1

0

∂ϕ

∂x
dx = 0,

and hence Xu = 0. Then u ∈ W 1,∞
X (Ω) and, in particular, we have that u ∈ W 1,p

X (Ω) for

any p ∈ [1,+∞]. If it was the case that u satisfies the desired property, then we would have

that, for a.e. (x, y) in Ω, u is approximately differentiable at (x, y) (see [78, Theorem 1]).

Thus, according to [92, Theorem 12.2] and to the fact that u is constant w.r.t. x, we would

have that for any x ∈ (0, 1) and for a.e. y ∈ (0, 1), the function z 7→ u(x, z) = w(z) is

approximately differentiable at y, but this claim is in contradiction with our choice of w.

We conclude this section with a Leibniz-type property for the X-gradient, which is a

direct consequence of the previous result and which will be very useful in the sequel.
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Proposition 3.1.13. For any u, v ∈ W 1,p
X (Ω), it holds that

X(uv) = (Xu)v + u(Xv) a.e. on Ω.

Proof. Assume first that u, v ∈ W 1,p
X (Ω) ∩ C∞(Ω). Then it follows that

X(uv) = D(uv) · CT = [(Du)v + u(Dv)] · CT

= Du · CTv + uDv · CT = (Xu)v + u(Xv)
(3.1.2)

everywhere on Ω. Let now A′ b Ω, u ∈ W 1,p
X (Ω) and v ∈ W 1,p

X (Ω) ∩ C∞(Ω). From Theorem

3.1.8 we know in particular that there exists a sequence (uh)h ⊆ W 1,p
X (Ω)∩C∞(Ω) converging

to u in the strong topology of W 1,p
X (A′), and clearly v ∈ C∞(A′). It is easy to see that the

sequence (vuh)h belongs to W 1,p
X (A′) ∩ C∞(A′) and converges to uv in the strong topology

of W 1,p
X (A′). This fact, together with (3.1.2) and recalling that supA′ |Xv| < +∞ since

supA′ |Dv| < +∞, yields that

‖X(uv)− (Xu)v − u(Xv)‖Lp(A′,Rm)

≤ ‖X(uv)−X(uhv)‖Lp(A′,Rm) + ‖(Xv)uh + vX(uh)− (Xu)v − u(Xv)‖Lp(A′,Rm),

and so, passing to the limit as h→∞, we conclude that

X(uv) = (Xu)v + u(Xv) a.e. on A′.

Since Ω can be approximated by a countable family of open sets A′ b Ω, we conclude that

X(uv) = (Xu)v + u(Xv) a.e. on Ω

for any u ∈ W 1,p
X (Ω) and v ∈ W 1,p

X (Ω) ∩ C∞(Ω). Repeating once more the same procedure,

the thesis follows.

3.1.2 Algebraic Properties of X

Here we present some algebraic properties of the coefficient matrix C : Ω → Rm×n. The

following results have been achieved in [81, Section 3.2].
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Definition 3.1.14. Let X be a family of Lipschitz vector fields. For any x ∈ Ω we define

the linear map

Lx : Rn → Rm by Lx(v) := C(x)v if v ∈ Rn

and

Nx := ker(Lx), Vx := {C(x)T z : z ∈ Rm}.

By easy arguments from linear algebra, we know that Rn = Nx⊕Vx, and then, for any x ∈ Ω

and ξ ∈ Rn, there is a unique choice of ξNx ∈ Nx and ξVx ∈ Vx such that

ξ = ξNx + ξVx .

Finally we define Πx : Rn → Vx ⊂ Rn as the projection Πx(ξ) := ξVx.

These definitions make sense for a generic family of Lipschitz vector fields, but the fol-

lowing two propositions list some very useful invertibility and continuity properties that are

typical of those families of vector fields satisfying the (LIC).

Proposition 3.1.15. Let X be a family of Lipschitz vector fields satisfying the (LIC) on Ω.

Then the following facts hold:

(i) dimVx = m for each x ∈ ΩX and Lx(Vx) = Rm, in particular Lx : Vx → Rm is an

isomorphism.

(ii) For every x ∈ Ω, let us set B(x) := C(x)CT (x). Then, for each x ∈ ΩX , B(x) is a

symmetric invertible matrix of order m. Moreover the map B−1 : ΩX → L(Rm,Rm),

defined as

B−1(x)(z) := B(x)−1z if z ∈ Rm ,

is continuous.

(iii) For each x ∈ ΩX , the projection Πx can be represented as

Πx(ξ) = ξVx = C(x)TB(x)−1C(x) ξ, ∀ ξ ∈ Rn .
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It is easy to verify that NX = {x ∈ Ω : detB(x) = 0}. Therefore NX is closed in Ω.

Proposition 3.1.16. Let X be a family of Lipschitz vector fields satisfying the (LIC) on Ω.

Then Lx : Vx → Rm is invertible and the map L−1 : ΩX → L(Rm,Rn) defined by

L−1(x) := L−1
x if x ∈ ΩX

belongs to C0(ΩX ,L(Rm,Rn)).

3.1.3 Local Functionals

We conclude this section by giving some definitions about increasing set functions, for which

we refer to [38, Chapter 14]. From now on we assume that X is a family of Lipschitz vector

fields satisfying the (LIC) on Ω.

Definition 3.1.17. Let α : A→ [0,+∞] be a function. We say that α is

(i) increasing if it holds that α(A) ≤ α(B) for any A,B ∈ A s.t. A ⊆ B;

(ii) inner regular if it is increasing and α(A) = sup{α(A′) : A′ b A} for any A ∈ A;

(iii) subadditive if it is increasing and, for any A,B,C ∈ A with A ⊆ B ∪ C,

α(A) ≤ α(B) + α(C);

(iv) superadditive if it is increasing and, for any A,B,C ∈ A with A∩B = ∅ and A∪B ⊆ C,

α(C) ≥ α(A) + α(B);

(v) a measure if it is increasing and the restriction to A of a non-negative Borel measure.

Before introducing the main assumptions for local functionals, we have to mention some

facts. In the integral representation theorems we will handle with functionals defined on

W 1,p
X,loc(Ω) while, in the Γ-convergence analysis, we will use mostly the functionals defined on
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Lp(Ω) or W 1,p
X (Ω). As a consequence, even if in the following notations we consider functionals

defined on Lp(Ω), the only assumptions that changes when F is defined on W 1,p
X (Ω) or

W 1,p
X,loc(Ω) are the assumptions (a) and (b).

Definition 3.1.18. Let 1 ≤ p < +∞ and let Ω ⊆ Rn be an open and bounded subset. Let X

be a family of Lipschitz vector fields and let us consider the functional

F : Lp(Ω)×A −→ [0,∞].

We say that F is:

(a) a measure if F (u, ·) is a measure for any u ∈ Lp(Ω);

(b) local if, for any A ∈ A and u, v ∈ Lp(Ω), then

u|A = v|A =⇒ F (u,A) = F (v,A).

(c) convex if, for any A′ ∈ A0, the function F (·, A′) : W 1,p
X (Ω) −→ [0,+∞] is convex;

(d) p-bounded if there exist a ∈ L1
loc(Ω) and b, c > 0 such that, for any A ∈ A0 and for any

u ∈ W 1,p
X (Ω), it holds that

F (u,A) ≤
∫
A

a(x) + b|Xu|p + c|u|pdx;

(e) Lp-lower semicontinuous (resp. W 1,p
X -lower semicontinuous) if F (·, A) is Lp-lower semi-

continuous (resp. W 1,p
X -lower semicontinuous) for any A ∈ A, i.e. for any A ∈ A0,

(uh)h ⊆ Lp(Ω) and u ∈ Lp(Ω) it holds that

uh → u in Lp(Ω) =⇒ F (u,A′) ≤ lim inf
h→+∞

F (uh, A
′),

and the same holds in the W 1,p
X -case;

(f) weakly sequentially lower semicontinuous if for any A′ ∈ A0, (uh)h ⊆ W 1,p
X (Ω) and

u ∈ W 1,p
X (Ω) it holds that

uh ⇀ u in W 1,p
X (Ω) =⇒ F (u,A′) ≤ lim inf

h→+∞
F (uh, A

′);
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(g) weakly*- sequentially lower semicontinuous if, for any A′ ∈ A0, (uh)h ⊆ W 1,∞(Ω) and

u ∈ W 1,∞(Ω) it holds that

uh ⇀
∗ u in W 1,∞(Ω) =⇒ F (u,A′) ≤ lim inf

h→+∞
F (uh, A

′).

In the following proposition we prove that the notion of lower semicontinuity is actually

equivalent to a more useful condition.

Proposition 3.1.19. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be a measure and a local functional.

Then the following conditions are equivalent:

(a) F is lower semicontinuous;

(b) ∀A′ ∈ A0, FA′ : ({u|A′ : u ∈ W 1,p
X (Ω)}, ‖ · ‖W 1,p

X (A′))→ [0,+∞] defined as

FA′(u|A′) := F (u,A′) is lower semicontinuous.

Proof. (b) =⇒ (a). It is straightforward.

(a) =⇒ (b). Fix an open set A′ ∈ A0 and take (uh)h, u in W 1,p
X (Ω) such that ‖uh|A′ −

u|A′‖W 1,p(A′) → 0. Now, for any k ∈ N, take an open set Ak such that Ak b Ak+1 b A′

and
⋃+∞
k=0 Ak = A′, and a smooth cut-off function ϕk between Ak and A′. For any h, k ∈ N,

define the functions vk := ϕku and vkh := ϕkuh. We have that, for any h, k ∈ N, vkh, v
k belong

to W 1,p
X (Ω), vkh|Ak = uh|Ak , vk|Ak = u|Ak and moreover limh→∞ ‖vkh − vk‖W 1,p

X (Ω) = 0 for any

k ∈ N. Applying assumptions (i) and (ii) we get

F (u,A′) = lim
k→∞

F (u,Ak) = lim
k→∞

F (vk, Ak)

≤ lim
k→∞

lim inf
h→∞

F (vkh, Ak) = lim
k→∞

lim inf
h→∞

F (uh, Ak)

≤ lim
k→∞

lim inf
h→∞

F (uh, A
′) = lim inf

h→∞
F (uh, A

′).
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3.1.4 From Euclidean to non Euclidean Lagrangian

In order to characterize the class of convex local functionals defined on W 1,p
X , our aim is to

exploit [25, Lemma 4.1] to get an integral representation of the form

F (u,A) =

∫
A

fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p(Ω). (3.1.3)

For this purpose, we need the forthcoming Propositions 3.1.20 and 3.1.21 which guarantee

the existence of a non Euclidean Lagrangian f such that∫
A

f(x, u,Xu)dx =

∫
A

fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ C∞(A). (3.1.4)

The following propositions, which are almost totally inspired by [81, Theorem 3.5] and [81,

Lemma 3.13], allow us to pass from an Euclidean to a non Euclidean integral representation.

Proposition 3.1.20. Let fe : Ω × R × Rn → [0,∞] be a Carathéodory function and let us

define f : Ω× R× Rm → [0,∞] as

f(x, u, η) :=

 fe(x, u, L
−1(x)(η)) if (x, u, η) ∈ ΩX × R× Rm

0 otherwise.

(3.1.5)

Then the following facts hold:

(i) f is a Carathéodory function;

(ii) if fe(x, ·, ·) is convex for a.e. x ∈ Ω, then f(x, ·, ·) is convex for a.e. x ∈ Ω;

(iii) if fe(x, u, ·) is convex for a.e. x ∈ Ω and for any u ∈ R, then f(x, u, ·) is convex for

a.e. x ∈ Ω and for any u ∈ R;

(iv) If we assume that

fe(x, u, ξ) = fe(x, u,Πx(ξ)) for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn, (3.1.6)

then it follows that∫
A

fe(x, u,Du) dx =

∫
A

f(x, u,Xu) dx ∀A ∈ A, ∀u ∈ C∞(A). (3.1.7)
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Proof. (i) First we want to show that, for any (u, η) ∈ R × Rm, the function x 7→ f(x, u, η)

is measurable. Let us fix then (u, η) ∈ R × Rm, define the function Φ : ΩX → R × Rn as

Φ(x) := (u, L−1(x)(η)) and extend it to be zero on Ω \ ΩX . By Proposition 3.1.16, Φ|ΩX is

continuous, and so in particular Φ is measurable. Noticing that

f(x, u, η) = fe(x,Φ(x)) ∀x ∈ ΩX ,

being fe a Carathéodory function and recalling [36, Proposition 3.7] we conclude that x 7→

f(x, u, η) is measurable. Let us define now the function Ψ : ΩX × R× Rm → ΩX × R× Rn

as Ψ(x, u, η) := (x, u, L−1(x)(η)). Since on ΩX we have that f = fe ◦ Ψ, then, for any fixed

x ∈ ΩX such that fe(x, ·, ·) is continuous, f(x, ·, ·) is the composition of a continuous function

and a linear function, and so it is continuous.

(ii) If x ∈ ΩX is such that fe(x, ·, ·) is convex, then f = fe ◦Ψ is the composition of a convex

function and a linear function, and so it is convex.

(iii) Follows as (ii).

(iv) Assume that (3.1.6) holds. Let us fix A ∈ A and u ∈ C∞(A). From the regularity of u

we have that Xu(x) = C(x)Du(x). By Proposition 3.1.15 we get

Lx(Πx(Du)) = Lx(C(x)TB(x)−1C(x)Du) = C(x)C(x)TB(x)−1C(x)Du

= B(x)B(x)−1C(x)Du = C(x)Du = Lx(Du),

and

f(x, u,Xu) = f(x, u, C(x)Du) = f(x, u, Lx(Du)) = f(x, u, Lx(Πx(Du)))

= fe(x, u, L
−1
x (Lx(Πx(Du)))) = fe(x, u,Πx(Du)) = fe(x, u,Du).

Now (3.1.7) follows by integrating over A.

In the following result we provide some sufficient conditions to guarantee (3.1.6).

Proposition 3.1.21. Let fe : Ω× R× Rn → [0,+∞] be a Carathéodory function such that

(i) fe(x, u, ·) is convex for a.e x ∈ Ω, for any u ∈ R;
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(ii) there exist a ∈ L1
loc(Ω) and b, c > 0 such that

fe(x, u, ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p (3.1.8)

for a.e. x ∈ Ω, for any (u, ξ) ∈ R× Rn.

Then fe satisfies (3.1.6).

Proof. Follows with some trivial modifications as in [81, Lemma 3.13].

3.2 Integral Representation of convex functionals

Let us now state and prove the main theorem of this section. Thanks to the previous results,

it is possible to extend the integral representation to the whole W 1,p
X,loc(Ω).

Theorem 3.2.1. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be such that:

(i) F is a measure;

(ii) F is local;

(iii) F is convex;

(iv) F is p-bounded.

Then there exists a Carathéodory function f : Ω× R× Rm −→ [0,+∞) such that

(u, ξ) 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, (3.2.1)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀ (u, ξ) ∈ R× Rm (3.2.2)

and the following representation formula holds:

F (u,A) =

∫
A

f(x, u,Xu)dx ∀u ∈ W 1,p
X,loc(Ω), ∀A ∈ A. (3.2.3)

Moreover, if f1, f2 : Ω × R × Rm −→ [0,+∞) are two Carathéodory functions satisfying

(3.2.1), (3.2.2) and (3.2.3), then there exists Ω̃ ⊆ Ω such that |Ω̃| = |Ω| and

f1(x, u, ξ) = f2(x, u, ξ) ∀x ∈ Ω̃, ∀(u, ξ) ∈ R× Rm. (3.2.4)
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Proof. First Step. Let

C := max{sup{|cj,i(x)| : x ∈ Ω} : i = 1, . . . , n, j = 1, . . . ,m}.

Then from our assumptions on X it follows that 0 < C < +∞. Let b̃ := Cpb. Using (iv) and

recalling that for all u ∈ W 1,p(Ω) we have that Xu(x) = C(x)Du(x) it follows that

F (u,A′) ≤
∫
A′
a(x) + c|u|p + b̃|Du|pdx ∀A′ ∈ A0, ∀u ∈ W 1,p(Ω). (3.2.5)

Thus we can apply [25, Lemma 4.1] to get a Carathéodory function fe : Ω×R×Rn → [0,+∞]

such that

F (u,A) =

∫
A

fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p
loc (Ω), (3.2.6)

fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn (3.2.7)

and

fe(x, ·, ·) : R× Rn → [0,∞] is convex for a.e. x ∈ Ω.

Second Step. We want to prove that fe satisfies (3.1.6). By Proposition 3.1.21 and the

convexity of fe we only need to prove (3.1.8). Let us take then Ω′ ⊆ Ω such that |Ω′| = |Ω|

and

(u, ξ) 7→ fe(x, u, ξ) is convex and finite ∀x ∈ Ω′, (3.2.8)

and fix x ∈ Ω′, u ∈ Q and ξ ∈ Qn. By (3.2.6), for any R > 0 small enough to ensure that

BR(x) b Ω, we have that

F (ϕx,u,ξ, BR(x)) =

∫
BR(x)

fe(y, u+ 〈ξ, y − x〉, ξ) dy

and from (iv) we have that

F (ϕx,u,ξ, BR(x)) ≤
∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|p dy,

where ϕx,u,ξ is as in (3.1.1). Combining these two facts and dividing by |BR(x)| we obtain

that∫
BR(x)

fe(y, u+ 〈ξ, x− y〉, ξ)dy ≤
∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|pdy. (3.2.9)
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Since the right integrand is in L1
loc(Ω), and (3.2.9) holds indeed for all A′ ∈ A0, the left one is

in L1
loc(Ω) as well. Therefore, thanks to Lebesgue Theorem we can find Ωu,ξ ⊆ Ω′ such that

|Ωu,ξ| = |Ω| and

fe(x, u, ξ) ≤ a(x) + c|u|p + b|C(x)ξ|p ∀x ∈ Ωu,ξ.

Setting Ω̃ :=
⋂

(u,ξ)∈Q×Qn Ωu,ξ, it holds that |Ω̃| = |Ω| and

fe(x, u, ξ) ≤ a(x) + c|u|p + b|C(x)ξ|p ∀x ∈ Ω̃, ∀(u, ξ) ∈ Q×Qn.

Since the map (u, ξ) 7→ fe(x, u, ξ) is continuous for any x ∈ Ω̃ and Q×Qn is dense in R×Rn

then (3.1.8) holds and the conclusion follows.

Third Step. Thanks to the previous step we can apply (iv) of Proposition 3.1.20. Hence

we get ∫
A

fe(x, u,Du)dx =

∫
A

f(x, u,Xu)dx ∀A ∈ A, u ∈ C∞(A), (3.2.10)

where f : Ω×R×Rm → [0,+∞] is the function defined in (3.1.5). First of all we can assume

that f is finite up to modifying it on a set of measure zero. Moreover, thanks to the convexity

of fe and (ii) of Proposition 3.1.20 we have that f satisfies (3.2.1). Now we want to prove

that f satisfies (3.2.2). Let us fix x ∈ Ω, u ∈ Q and ξ ∈ Qn: by (iv), (3.2.6) and (3.2.10) we

have that∫
BR(x)

f(y, ϕx,u,ξ, Xϕx,u,ξ) dy ≤
∫
BR(x)

a(y) + c|ϕx,u,ξ|p + b|Xϕx,u,ξ|pdy

=

∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|p dy,

and so, dividing by |BR(x)|, we get that∫
BR(x)

f(y, u+ 〈ξ, y − x〉, C(y)ξ)dy ≤
∫
BR(x)

a(y) + c|u+ 〈ξ, y − x〉|p + b|C(y)ξ|pdy.

Arguing as in the second step we can conclude that

f(x, u, C(x)ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn.
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Finally, recalling that for x ∈ ΩX the map Lx : Vx → Rm is surjective, (3.2.2) follows.

Fourth Step. Let us show that (3.2.3) holds. Let us fix u ∈ W 1,p
X (Ω) and A′ ∈ A0, and

consider the two functionals

FA′ , GA′ : ({v|A′ : v ∈ W 1,p
X (Ω)}, ‖ · ‖W 1,p

X (A′)) −→ [0,+∞]

defined as FA′(v|A′) := F (v, A′) and GA′(v|A′) :=
∫
A′
f(x, v,Xv)dx respectively. Thanks to

(iii), (iv), (3.2.1) and (3.2.2), they are convex and bounded on bounded sets on {v|A′ : v ∈

W 1,p
X (Ω)}. Hence, they are continuous (cf. [53, Lemma 2.1]). Moreover, from Proposition

3.1.10 we can find a sequence (uε)ε ⊆ W 1,p
X (Ω) such that

(uε|A′)ε ⊆ W 1,p
X (A′) ∩ C∞(A′) and uε|A′ −→ u|A′ in W 1,p

X (A′).

From (3.2.6) and (3.2.10) we get that

F (u,A′) = lim
ε→0

F (uε, A
′) = lim

ε→0

∫
A′
fe(x, uε, Duε)dx

= lim
ε→0

∫
A′
f(x, uε, Xuε)dx =

∫
A′
f(x, u,Xu)dx,

and so we assert that

F (u,A′) =

∫
A

f(x, u,Xu)dx ∀u ∈ W 1,p
X (Ω), ∀A′ ∈ A0. (3.2.11)

Let us take now u ∈ W 1,p
X,loc(Ω), A ∈ A and A′ b A, and, thanks to Proposition 3.1.9, take

a function v ∈ W 1,p
X (Ω) such that u|A′ = v|A′ . Thus, from hypothesis (ii) and from (3.2.11),

we have that

F (u,A′) = F (v,A′) =

∫
A′
f(x, v,Xv)dx =

∫
A′
f(x, u,Xu)dx. (3.2.12)

Since by hypothesis the function B 7→ F (u,B) is inner regular (cf. [38, Theorem 14.23]), and

noticing that the function B 7→
∫
B
f(x, u,Xu)dx is inner regular, thanks to (3.2.12) we have

that

F (u,A) = sup{F (u,A′) : A′ b A}

= sup

{∫
A′
f(x, u,Xu)dx : A′ b A

}
=

∫
A

f(x, u,Xu)dx,
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and so we can conclude that (3.2.3) holds.

Fifth Step. Let us show the uniqueness of the Lagrangian. Fix then x ∈ Ω, u ∈ Q and

ξ ∈ Qn: since (3.2.3) holds both for f1 and f2, for any R > 0 small enough we have that∫
BR(x)

f1(y, u+ 〈ξ, y − x〉, C(y)ξ)dy =

∫
BR(x)

f2(y, u+ 〈ξ, y − x〉, C(y)ξ)dy.

Since both integrand functions satisfy (3.2.2), then they are both in L1
loc(Ω). Again, thanks

to Lebesgue theorem, there exists Ωu,ξ ⊆ Ω such that |Ωu,ξ| = |Ω| and

f1(x, u, C(x)ξ) = f2(x, u, C(x)ξ) ∀x ∈ Ωu,ξ.

If we set

Ω̃ :=
⋂

(u,ξ)∈Q×Qn
Ωu,ξ ∩ {x ∈ Ω : (3.2.1) and (3.2.2) hold for f1 and f2} ∩ ΩX ,

clearly we have |Ω̃| = |Ω| and it holds that

f1(x, u, C(x)ξ) = f2(x, u, C(x)ξ) ∀x ∈ Ω̃, ∀(u, ξ) ∈ Q×Qn. (3.2.13)

Since (u, ξ) 7→ f1(x, u, ξ) and (u, ξ) 7→ f2(x, u, ξ) are continuous for any x ∈ Ω̃, and recalling

again that for any x ∈ ΩX Lx is surjective, then (3.2.4) follows.

The following theorem tells us that all the hypotheses of Theorem 3.2.1 are also necessary.

Theorem 3.2.2. Let f : Ω× R× Rm → [0,+∞) be a Carathéodory function such that

(u, ξ) 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, (3.2.14)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀ (u, ξ) ∈ R× Rm (3.2.15)

for some b, c > 0 and a ∈ L1
loc(Ω). Let F : W 1,p

X,loc(Ω) × A −→ [0,+∞] be the functional

defined by

F (u,A) :=

∫
A

f(x, u(x), Xu(x))dx ∀u ∈ W 1,p
X,loc(Ω), ∀A ∈ A,

then F satisfies hypotheses (i)− (iv) of Theorem 3.2.1.
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Proof. Let us fix u ∈ W 1,p
X,loc(Ω): our aim is to prove that α(A) := F (u,A) is a measure. Notice

that, being f ≥ 0, α is increasing, and of course α(∅) = 0. Then, according to [38, Theorem

14.23], it suffices to show that α is subadditive, superadditive and inner regular. The first

two properties are trivial, so let us focus on the third one. Let us fix A ∈ A and define the

sequence of sets (Ah)h as Ah := {x ∈ A : dist(x, ∂A) > 1
h
}. We have that (Ah)h ⊆ A0,

Ah b Ah+1 b A and
⋃
h∈N+

Ah = A. Thus by the Monotone Convergence Theorem we

conclude that∫
A

f(x, u,Xu)dx =

∫
A

lim
h→+∞

χAhf(x, u,Xu)dx = lim
h→+∞

∫
Ah

f(x, u,Xu)dx,

and so α is a measure. Property (ii) is straightforward, noticing that the X-gradients of two

a.e. equal functions coincide a.e. Finally, (iii) and (iv) follow from (3.2.14) and (3.2.15).

3.2.1 Strong and Weak condition (ω)

Definition 3.2.3. We say that ω : Ω× [0,+∞) −→ [0,+∞) is a locally integrable modulus

of continuity if and only if

r 7→ ω(x, r) is increasing, continuous and ω(x, 0) = 0 for a.e. x ∈ Ω

and

x 7→ ω(x, r) ∈ L1
loc(Ω) ∀r ≥ 0.

Definition 3.2.4. Let us consider a functional F : F×A −→ [0,+∞], where F is a functional

space such that C1(Ω) ⊆ F. We say that:

(i) F satisfies the strong condition (ω) if there exists a sequence (ωk)k of locally integrable

moduli of continuity such that

|F (v, A′)− F (u,A′)| ≤
∫
A′
ωk(x, r) dx (3.2.16)

for any k ∈ N, A′ ∈ A0, r ∈ [0,∞), u, v ∈ C1(Ω) such that

|u(x)|, |v(x)|, |Du(x)|, |Dv(x)| ≤ k

|u(x)− v(x)|, |Du(x)−Dv(x)| ≤ r;
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for all x ∈ A′.

(ii) F satisfies the weak condition (ω) if there exists a sequence (ωk)k of locally integrable

moduli of continuity such that

|F (u+ s, A′)− F (u,A′)| ≤
∫
A′
ωk(x, |s|)dx

for any k ∈ N, A′ ∈ A0, s ∈ R, u ∈ C1(Ω) such that

|u(x)|, |u(x) + s|, |s| ≤ k ∀x ∈ A′.

Remark 3.2.5. The classical strong and weak condition (ω) were introduced in [26] in order

to guarantee the continuity of the Lagrangian f when proving an integral representation

result. In particular, the strong condition (ω) guarantees that f(x, ·, ·) is continuous, while

the weak condition (ω) implies the continuity of f(x, ·, ξ). Though, the strong condition (ω)

implies the weak condition (ω), it is difficult to verify the strong condition (ω), whereas the

weak condition (ω) is easier. On the other hand, if we require only the weak condition (ω),

we have to add an extra hypothesis in order to get the equivalence, i.e. the weak*-sequential

lower semicontinuity of the functional. Indeed, it is well known that (see [2]) for an integral

functional of the form

F (u,A) :=

∫
A

fe(x, u(x), Du(x))dx,

the weak*- lower semicontinuity is equivalent to the convexity in the third entry of fe.

3.3 Integral Representation of w*-sequentially lower

semicontinuous functionals

Now, our aim is to characterize a class of local functionals defined on W 1,p
X for which we do

not require neither translations-invariance nor convexity, but which are weakly*- sequentially

lower semicontinuous in W 1,∞. We exploit the ideas contained in [55] adopting the same
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strategy employed in the previous section and using [26, Theorem 1.10] to get an Euclidean

integral representation of the form (3.1.3). In the same way, Propositions 3.1.20 and 3.1.21

guarantee the existence of a non Euclidean Lagrangian f such that (3.1.4) holds. We start

by proving the usually known Carathéodory continuity theorem adapted to the case of W 1,p
X .

Theorem 3.3.1. Let f : Ω×R×Rm → [0,+∞] be a Carathéodory function such that there

exist a ∈ L1
loc(Ω) and b, c > 0 such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm.

Then it holds that, for any A′ ∈ A0, the functional F : W 1,p
X (A′) −→ [0,+∞) defined as

F (u) :=

∫
A′
f(x, u,Xu)dx

is continuous with respect to the strong topology of W 1,p
X (A′).

Proof. First Step. Let us prove that F is lower semicontinuous. Fix u ∈ W 1,p
X (A′) and let

(uh)h ⊆ W 1,p
X (A′) be a sequence converging to u and such that

∃ lim
h→+∞

F (uh) < +∞.

Up to a subsequence we can assume that (uh(x))h converges to u(x) and (Xuh(x))h con-

verges to Xu(x) for a.e. x ∈ A′. Being f a Carathéodory function, it follows that

limh→∞ f(x, uh(x), Xuh(x)) = f(x, u(x), Xu(x)) for a.e. x ∈ Ω. Thanks to Fatou’s Lemma

we conclude that

F (u) =

∫
A′
f(x, u,Xu)dx =

∫
A′

lim inf
h→+∞

f(x, uh, Xuh)dx

≤ lim inf
h→+∞

∫
A′
f(x, uh, Xuh)dx = lim

h→+∞
F (uh).

Second Step. Let us show that F is upper semicontinuous. Let us fix u ∈ W 1,p
X (A′) and let

us take a sequence (uh)h ⊆ W 1,p
X (A′) converging to u and such that

∃ lim
h→+∞

F (uh) > −∞.
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Up to a subsequence, we can assume that (uh(x))h converges to u(x) and (Xuh(x))h converges

to Xu(x) for almost every x ∈ A′. Let us define the sequence of functions

gh(x) := −f(x, uh, Xuh) + C(|Xuh|p + |uh|p)

where C := max{b, c} > 0. Using the p-boundness of f we get

gh(x) ≥ −a(x) for a.e. x ∈ A′,

and so, since the right side belongs to L1(A′), we can apply Fatou’s Lemma and get that∫
A′
−f(x, u,Xu)dx+‖u‖W 1,p

X (A′) =

∫
A′

lim inf
h→+∞

gh(x, u,Xu)dx

=

∫
A′

lim inf
h→+∞

(−f(x, uh, Xuh) + C(|Xuh|p + |uh|p))dx

≤ lim inf
h→+∞

∫
A′
−f(x, uh, Xuh) + C(|Xuh|p + |uh|p))dx

= lim
h→+∞

∫
A′
−f(x, uh, Xuh) + C lim

h→+∞
‖uh‖W 1,p

X (A′)

= lim
h→+∞

∫
A′
−f(x, uh, Xuh) + ‖u‖W 1,p

X (A′).

We are ready to state the main result of this section.

Theorem 3.3.2. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be such that:

(i) F is a measure;

(ii) F is local;

(iii) F satisfies the weak condition (ω);

(iv) F is p-bounded;

(v) F is weakly*- sequentially lower semicontinuous;

(vi) F is lower semicontinuous.
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Then there exists a unique Carathéodory function f : Ω× R× Rm −→ [0,+∞) such that

ξ 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, ∀u ∈ R, (3.3.1)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (3.3.2)

and the following representation formula holds:

F (u,A) =

∫
A

f(x, u,Xu)dx ∀u ∈ W 1,p
X,loc(Ω), ∀A ∈ A. (3.3.3)

Remark 3.3.3. If we substitute hypotheses (v) and (vi) with

(v′) F is weakly sequentially lower semicontinuous,

then the conclusions of Theorem 3.3.2 still hold. Indeed, thanks to Proposition 3.1.6 the

latter is stronger than both (v) and (vi), even if not equivalent in general.

Proof. First Step. Arguing as in the first step of the proof of Theorem 3.2.1, the restriction

of F to W 1,p
loc (Ω)×A satisfies all the hypotheses of [26, Theorem 1.10]. Thus there exist b̃ > 0

and a Carathéodory function fe : Ω× R× Rn −→ [0,+∞] such that

F (u,A) =

∫
A

fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p
loc (Ω), (3.3.4)

fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn (3.3.5)

and

fe(x, u, ·) : Rn → [0,∞] is convex for a.e. x ∈ Ω, ∀u ∈ R. (3.3.6)

Now, arguing as in the second step of the proof of Theorem 3.2.1, from (3.3.5) and (3.3.6)

and recalling Propositions 3.1.20 and 3.1.21, we obtain that∫
A

fe(x, u,Du)dx =

∫
A

f(x, u,Xu)dx ∀A ∈ A, u ∈ C∞(A), (3.3.7)

where f : Ω × R × Rm → [0,+∞] is the Carathéodory function defined in (3.1.5). Up to

modifying f on a set of measure zero, we can assume that it is finite. Moreover, arguing as
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in the third step of the proof of Theorem 3.2.1, f satisfies (3.3.1) and (3.3.2).

Second Step. Here we prove that (3.3.3) holds. Let us start by fixing u ∈ W 1,p
X (Ω) and

A′ ∈ A0. Thanks to Proposition 3.1.10 we can find a sequence (uh)h ⊆ W 1,p
X (Ω) such that

(uh|A′)h ⊆ W 1,p
X (A′) ∩ C∞(A′) and uh|A′ −→ u|A′ in W 1,p

X (A′).

From this, (vi), (3.3.4), (3.3.7), Theorem 3.3.1 and Proposition 3.1.19 it follows that

F (u,A′) ≤ lim inf
h→+∞

F (uh, A
′) = lim inf

h→+∞

∫
A′
fe(x, uh, Duh)dx

= lim
h→+∞

∫
A′
f(x, uh, Xuh)dx =

∫
A′
f(x, u,Xu)dx,

and hence we obtain that

F (u,A′) ≤
∫
A′
f(x, u,Xu)dx ∀A′ ∈ A0, ∀u ∈ W 1,p

X (Ω). (3.3.8)

To prove the converse inequality, fix u0 ∈ W 1,p
X (Ω) and set H : W 1,p

X,loc(Ω)×A −→ [0,+∞] as

H(u,A) := F (u + u0, A). It is straightforward to check that H satisfies all the hypotheses

of the theorem. Hence there exist a Carathéodory function h : Ω × R × Rm −→ [0,+∞),

aH ∈ L1
loc(Ω) and bH , cH > 0 such that

h(x, u, ξ) ≤ aH(x) + bH |ξ|p + cH |u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm.

Moreover, it holds that

H(u,A) =

∫
A

h(x, u,Xu)dx ∀A ∈ A, ∀u ∈ C∞(A) (3.3.9)

and

H(u,A′) ≤
∫
A′
h(x, u,Xu)dx ∀A′ ∈ A0, ∀u ∈ W 1,p

X (Ω). (3.3.10)

Fix then A′ ∈ A0. Arguing as before we can find a sequence (uh)h ⊆ W 1,p
X (Ω) such that

(uh|A′)h ⊆ W 1,p
X (A′) ∩ C∞(A′) and uh|A′ → u0|A′ in W 1,p

X (A′).
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Thus, thanks to Theorem 3.3.1, and the following chain of inequalities we get that∫
A′
h(x, 0, 0)

(3.3.9)
= H(0, A′) = F (u0, A

′)
(3.3.8)

≤
∫
A′
f(x, u0, Xu0)dx

= lim
h→+∞

∫
A′
f(x, uh, Xuh)dx = lim

h→+∞
F (uh, A

′) = lim
h→+∞

H(uh − u0, A
′)

(3.3.10)

≤ lim
h→+∞

∫
A′
h(x, uh − u0, Xuh −Xu0)dx =

∫
A′
h(x, 0, 0)dx,

and all inequalities are indeed equalities. Being u0 arbitrarily chosen, we conclude that

F (u,A′) =

∫
A′
f(x, u,Xu)dx ∀u ∈ W 1,p

X (Ω), ∀A′ ∈ A0. (3.3.11)

The rest of the proof follows as in the proof of Theorem 3.2.1.

The following theorem shows that the hypotheses of Theorem 3.3.2 are also necessary.

Theorem 3.3.4. Let f : Ω× R× Rm −→ [0,+∞) be a Carathéodory function such that

ξ 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω, ∀u ∈ R, (3.3.12)

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (3.3.13)

for b, c > 0 and a ∈ L1
loc(Ω), and define the functional F : W 1,p

X,loc(Ω)×A −→ [0,+∞] as

F (u,A) :=

∫
A

f(x, u,Xu)dx ∀u ∈ W 1,p
X,loc(Ω), ∀A ∈ A.

Then F satisfies hypotheses (i)− (vi) of Theorem 3.3.2.

Proof. (i) Follows as in the proof of Theorem 3.2.2, while (ii) is trivial. In order to prove (iii)

let us show that F satisfies the strong property (ω). This suffices, according to [26]. Since

f is Carathéodory, then the set Ω′ := {x ∈ Ω : (u, ξ) 7→ f(x, u, ξ) is continuous} satisfies

|Ω′| = |Ω|. For any k ∈ N and ε > 0 set Ek
ε ⊆ R× R× Rm × Rm as

Ek
ε := {(u, v, ξ, η) : |u|, |v|, |ξ|, |η| ≤ k, |u− v|, |ξ − η| ≤ ε}

and the function

ωk(x, ε) :=

 sup{|f(x, u, ξ)− f(x, v, η)| : (u, v, ξ, η) ∈ Ek
ε } if x ∈ Ω′,

0 otherwise.
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We show that, for any k, ωk is a locally integrable modulus of continuity. Let us fix then

ε ≥ 0: since (u, ξ) 7→ f(x, u, ξ) is continuous for almost every x ∈ Ω, then the supremum

in the definition of ωk can be taken over a countable subset of Ek
ε . Since for any (u, v, ξ, η)

the function x 7→ |f(x, u, ξ) − f(x, v, η)| is measurable, then ωk(·, ε) is measurable. We are

left to show that it belongs to L1
loc(Ω). Observe that by (3.3.13) it follows that, for any

(u, v, ξ, η) ∈ Ek
ε ,

|f(x, u, ξ)− f(x, v, η)| ≤ 2|a(x)|+ b|ξ|p + b|η|p + c|u|p + c|v|p

≤ 2|a(x)|+ 4k(b+ c).

Since the right side does not depend on (u, v, ξ, η) ∈ Ek
ε , we conclude that

ωk(x, ε) ≤ 2|a(x)|+ 4k(b+ c).

Hence ωk(·, ε) ∈ L1
loc(Ω). Fix now x ∈ Ω′. Since Ek

ε ⊆ Ek
δ for any ε ≤ δ, then ωk(x, ·) is

increasing, and ωk(x, 0) = 0. Finally its continuity follows from the continuity of f(·, u, ξ).

Then (ωk)k is a sequence of locally integrable moduli of continuity. Let us recall that, if

we define C := max{sup{|cj,i(x)| : x ∈ Ω} i = 1, . . . , n, j = 1, . . . ,m}, it holds that

0 < C < +∞. Let us define now, for any k ∈ N, the function

ω̃k(x, ε) := ω(bCc+1)k(x,Cε) ∀x ∈ Ω, ∀ε ≥ 0.

Of course we have that (ω̃k)k is still a sequence of locally integrable moduli of continuity: we

show that such a sequence satisfies (3.2.16). Take A′ ∈ A0, k ∈ N, ε ≥ 0, u, v ∈ C1(Ω) such

that

|u(x)|, |v(x)|, |Du(x)|, |Dv(x)| ≤ k, |u(x)− v(x)|, |Du(x)−Dv(x)| ≤ ε ∀x ∈ A′.

Then it follows that

|Xu(x)| = |C(x)Du(x)| ≤ C|Du(x)| ≤ Ck ≤ (bCc+ 1)k,

|Xv(x)| = |C(x)Dv(x)| ≤ C|Dv(x)| ≤ Ck ≤ (bCc+ 1)k
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and

|Xu(x)−Xv(x)| = |C(x)(Du(x)−Dv(x))| ≤ C|Du(x)−Dv(x)| ≤ Cε.

Thus we conclude that

|F (u,A′)− F (v,A′)| ≤
∫
A′
|f(x, u,Xu)− f(x, v,Xv)|dx ≤

∫
A′
ω̃k(x, ε)dx,

and so also (iii) is proved. (iv) follows easily from (3.3.13), while (vi) is a direct consequence

of Theorem 3.3.1. Let us now define H : W 1,∞(Ω) × A −→ [0,+∞] as the restriction to

W 1,∞(Ω) × A of F . Then, since for every u ∈ W 1,∞(Ω) it holds that Xu(x) = C(x)Du(x),

if we define fe : Ω× R× Rn → [0,+∞) as

fe(x, u, ξ) := f(x, u, C(x)ξ)

we can easily notice that fe is a Carathéodory function, convex in the third argument and

such that

H(u,A) =

∫
A

fe(x, u,Du)dx.

Applying [2, Theorem 2.1], condition (v) holds for H and hence for F .

3.3.1 X-convexity

Let us mention that, in Proposition 3.1.21, the convexity of f is a crucial assumption in

order to guarantee the identity (3.1.6). Indeed, the latter is not verified when we drop that

condition, as showed in [55, Example 5.1].

Example 3.3.5. Let us take Ω = B1(0) ⊆ R2, m = 1 and

X1 := x
∂

∂y
.

Then X1 is a Lipschitz vector field satisfying the (LIC) on Ω, with NX := {(x, y) ∈ Ω : x =

0}. Clearly, for all (x, y) ∈ ΩX we have

C((x, y))T ·B−1((x, y)) · C((x, y)) =

0

x

 · [ 1

x2

]
·
[
0 x

]
=

0 0

0 1

 ,
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thus by Proposition 3.1.15 it follows that

Π(x,y)(ξ1, ξ2) = (0, ξ2) ∀(ξ1, ξ2) ∈ R2, ∀(x, y) ∈ ΩX . (3.3.14)

Let us define the map fe : Ω× R× R2 −→ [0,+∞) as

fe((x, y), u, (ξ1, ξ2)) :=

 1− ξ2
1 − ξ2

2 if ξ2
1 + ξ2

2 ≤ 1

0 otherwise

.

Clearly, fe is a bounded Carathéodory function not convex in the third entry. Moreover, for

any (x, y) ∈ ΩX and (ξ1, ξ2) ∈ R2 with ξ2
1 + ξ2

2 ≤ 1, thanks to (3.3.14) it holds that

fe((x, y), u,Π(x,y)(ξ1, ξ2)) = 1− ξ2
2 .

We conclude that (3.1.6) does not hold.

On the other hand, it is easy to see that there are cases when Proposition 3.1.21 still

holds even if the Lagrangian is not convex in the third argument, as the following example

shows.

Example 3.3.6. Let us take n,m,X and Ω as in the previous example, and define the

function fe : Ω× R× R2 → [0,+∞) as

fe((x, y), u, (ξ1, ξ2)) :=

 1− ξ2
2 if |ξ2| ≤ 1

0 otherwise

.

Then fe is again a bounded Carathéodory function which is not convex in the third entry.

Anyway we can easily see that fe satisfies (3.1.6).

At this point we may ask if there is a way to weaken the convexity of fe in the third entry

which is still able to guarantee the validity of (3.1.6). In the previous example we see that,

despite fe is not globally convex in the third entry, however it is convex along the direction

given by Nx (see Definition 3.1.14). This leads us to the following crucial new notion.
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Definition 3.3.7. Let fe : Ω× R× Rn → [0,+∞] be a Carathéodory function. We say that

fe is X-convex if, for a.e. x ∈ Ω and for any u ∈ R, t ∈ (0, 1) and ξ1, ξ2 ∈ Rn such that

ξ2 − ξ1 ∈ Nx, it holds that

fe(x, u, tξ1 + (1− t)ξ2) ≤ tfe(x, u, ξ1) + (1− t)fe(x, u, ξ2).

The next proposition tells us that X-convexity is the proper requirement that we have to

assume on the Euclidean Lagrangian.

Proposition 3.3.8. Let fe : Ω × R × Rn → [0,+∞] be a Carathéodory function such that

there exist a ∈ L1
loc(Ω) and b, c > 0 such that

fe(x, u, ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn. (3.3.15)

Then the following facts are equivalent:

(i) fe is X-convex;

(ii) for a.e. x ∈ Ω and for any (u, ξ) ∈ R × Rn, the function g : Nx → [0,+∞] defined as

g(η) := fe(x, u, ξ + η) is constant;

(iii) fe(x, u, ξ) = fe(x, u,Πx(ξ)) for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rn;

Proof. (ii)⇔ (iii) Fix x ∈ Ω such that (ii) holds. For any (u, ξ) ∈ R× Rn, we have that

fe(x, u, ξ) = fe(x, u, ξNx + Πx(ξ)) = fe(x, u,Πx(ξ)).

Conversely, take x ∈ Ω such that (iii) holds. For any (u, ξ) ∈ R × Rn and η ∈ Nx, it holds

that

fe(x, u, ξ + η) = fe(x, u,Πx(ξ + η)) = fe(x, u,Πx(ξ)) = fe(x, u, ξ).

(i)⇔ (ii) The right implication is trivial. Conversely, assume (i) and fix x ∈ Ω such that (i)

holds and a(x) < +∞. Thanks to (3.3.15) we have that, for any fixed u ∈ R, ξ ∈ Rn and

η ∈ Nx,

g(η) = fe(x, u, ξ + η) ≤ a(x) + b|C(x)ξ + C(x)η|p + c|u|p

= a(x) + b|C(x)ξ|p + c|u|p < +∞.



106

Since the right side does not depend on η, then g is bounded on Nx. Since by assumption it

is also convex on Nx, then g is constant.

In order to guarantee the X-convexity of the Euclidean Lagrangian we exploit the zig-zag

argument employed in [26, Lemma 2.11].

Lemma 3.3.9. Let F : W 1,p
loc (Ω)×A −→ [0,+∞] be such that

(i) For every u ∈ W 1,p
loc (Ω), the map A 7→ F (u,A) is a measure;

(ii) For every u, v ∈ W 1,p
loc (Ω),∀A′ ∈ A0, u|A′ = v|A′ =⇒ F (u,A′) = F (v, A′);

(iii) F satisfies the weak condition (ω);

(iv) For any A′ ∈ A0 and (uh)h ⊆ W 1,p(Ω), u ∈ W 1,p(Ω) such that limh→∞ ‖uh−u‖W 1,p
X (Ω) =

0, then F (u,A′) ≤ lim infh→∞ F (uh, A
′);

Then, if for any x ∈ Ω, u ∈ R and ξ ∈ Rn we define

fe(x, u, ξ) := lim sup
R→0

F (ϕx,u,ξ, BR(x))

|BR(x)|
(3.3.16)

it holds that fe is X-convex.

Proof. A slight modification of [26, Lemma 2.10] ensures the existence of a sequence (ωk)k

of locally integrable moduli of continuity and a set Ω′ ⊆ Ω such that |Ω′| = |Ω| and all the

points in Ω′ are Lebesgue points of x 7→ ωk(x, r) for any k ∈ N and for any r ≥ 0. Moreover

|fe(x, u, ξ)− fe(x, v, ξ)| ≤ ωk(x, |u− v|) (3.3.17)

for any x ∈ Ω′, k ∈ N, u, v ∈ R and ξ ∈ Rn such that

|ξ|, |u|, |v| ≤ k.

Pick x ∈ Ω′, z ∈ R, t ∈ (0, 1), ξ1 6= ξ2 in Rn such that ξ2−ξ1 ∈ Nx, and set ξ := tξ1 +(1−t)ξ2.

We want to prove that

fe(x, z, ξ) ≤ tfe(x, z, ξ1) + (1− t)fe(x, z, ξ2). (3.3.18)
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Let us define

ξ0 :=
ξ2 − ξ1

|ξ2 − ξ1|
,

and, for any h ∈ N, k ∈ Z and i = 1, 2, let us set

Ω1
h,k :=

{
y ∈ Ω :

k − 1

h
≤ (ξ0, y) <

k − 1 + t

h

}
;

Ω2
h,k :=

{
y ∈ Ω :

k − 1 + t

h
≤ (ξ0, y) <

k

h

}
;

Ωi
h :=

⋃
k∈Z

Ωi
h,k;

u(y) := z + (ξ, y − x) ∀y ∈ Ω;

vh(y) :=

(1− t)k−1
h
|ξ2 − ξ1|+ z + 〈ξ1, y − x〉 if y ∈ Ω1

h,k

−t k
h
|ξ2 − ξ1|+ z + 〈ξ2, y − x〉 if y ∈ Ω2

h,k

.

Arguing as in the proof of [25, Lemma 2.11] we have that vh → u uniformly on Ω. Hence,

in particular, vh → u strongly in Lp(Ω). Moreover, since ξ2 − ξ1 belongs to Nx and ξ is a

convex combination of ξ1 and ξ2, then both ξ− ξ1 and ξ− ξ2 belong to Nx. Thus for i = 1, 2

and for any y ∈ Ωi
h,k we have that

|Xu(y)−Xvh(y)| = |C(x)ξ − C(x)ξi| = |C(x)(ξ − ξi)| = 0.

Therefore vh converges to u strongly in W 1,p
X (Ω). Take now k ∈ N+ such that, for any y ∈ Ω

and for any h ∈ N+,

|ξ1|, |ξ2|, |u1(y)|, |u2(y)|, |vh(y)| ≤ k.

Then, thanks to (3.3.17) and thanks to (see [26, Lemma 2.4])

F (u,A) =

∫
A

fe(x, u,Du)dx ∀u affine on Ω, ∀A ∈ A;

we can argue as in [25, Lemma 2.11] and we set Bi
h,R(x) := BR(x) ∩ Ωi

h for i = 1, 2 and for

any R > 0 such that BR(x) b Ω. Then, it holds that

F (vh, BR(x)) ≤
∫
B1
h,R(x)

fe(y, u1, Du1)dy +

∫
B2
h,R(x)

fe(y, u2, Du2)dy +

∫
Ω

wk(y, aR +
b

h
),
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with a := |ξ2− ξ1| and b := at(1− t). Since vh converges to u strongly in W 1,p
X (Ω) and thanks

to hypothesis (iv) it is easy to see that

F (u,BR(x)) ≤ tF (u1, BR(x)) + (1− t)F (u2, BR(x)) +

∫
Ω

wk(y, ε),

where this inequality holds for any ε > 0 and for any R ∈ (0, ε
a
]. Dividing both sides by

|BR(x)|, passing to the limsup and recalling that x is a Lebesgue point of y 7→ wk(y, ε), we

have that

fe(x, z, ξ) ≤ tfe(x, z, ξ1) + (1− t)fe(x, z, ξ2) + wk(x, ε).

Letting ε go to zero, the thesis is proved.

3.4 Integral Representation of Non-convex functionals

To resume, we developed all the tools to exploit [26, Theorem 1.8]. This allows us to charac-

terize the class of local functionals for which we do not require neither translations-invariance

nor convexity, and for which we want to weaken the assumption of weak*- sequential lower

semicontinuity in Theorem 3.3.2. Thanks to the previous results, we are now ready to show

and prove the main result of this section.

Theorem 3.4.1. Let F : W 1,p
X,loc(Ω)×A −→ [0,+∞] be such that:

(i) F is a measure;

(ii) F is local;

(iii) F satisfies the strong condition (ω);

(iv) F is p-bounded;

(v) F is lower semicontinuous.

Then there exists a unique Carathéodory function f : Ω× R× Rm → [0,+∞) such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm (3.4.1)
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and the following representation formula holds:

F (u,A) =

∫
A

f(x, u,Xu)dx ∀u ∈ W 1,p
X,loc(Ω), ∀A ∈ A. (3.4.2)

Proof. Let us consider the restriction of F to W 1,p
loc (Ω)×A. Arguing as in the first step of the

proof of Theorem 3.2.1, it is easy to see that it satisfies all the hypotheses of [26, Theorem

1.8]. Thus, if fe is defined as in (3.3.16), it is a Carathéodory function and moreover there

exists b̃ > 0 such that

F (u,A) =

∫
A

fe(x, u,Du)dx ∀A ∈ A, ∀u ∈ W 1,p
loc (Ω)

and

fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm.

Moreover, thanks to Lemma 3.3.9, fe is X-convex. Therefore, recalling the thesis of Propo-

sition 3.3.8 and (iv) of Proposition 3.1.20, we obtain that∫
A

fe(x, u,Du)dx =

∫
A

f(x, u,Xu)dx ∀A ∈ A, u ∈ C∞(A),

where f : Ω×R×Rm → [0,+∞] is the function defined in (3.1.5). Such an f can be supposed

to be finite up to modifying it on a set of measure zero. Arguing as in the third step of the

proof of Theorem 3.2.1, (3.4.1) holds, while (3.4.2) follows exactly as in the last step of the

proof or Theorem 3.3.2. Finally, uniqueness follows as usual.

Corollary 3.4.2. Let f : Ω× R× Rm → [0,+∞) be a Carathéodory function such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω, ∀(u, ξ) ∈ R× Rm,

for b, c > 0 and a ∈ L1
loc(Ω). Setting the functional F : W 1,p

X,loc(Ω)×A −→ [0,+∞] by

F (u,A) :=

∫
A

f(x, u,Xu)dx ∀u ∈ W 1,p
X,loc(Ω), ∀A ∈ A,

then F satisfies hypotheses (i)− (v) of Theorem 3.4.1.

Proof. Arguing exactly as in Theorem 3.3.4 we obtain the thesis.
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Chapter 4

Γ-compactness of Integral Functionals

in Lp and W
1,p
X

The aim of the present chapter is to generalize the Γ-compactness result presented in [81] to

the previous classes of integral functionals which are not assumed to be translations-invariant.

Let us mention that the main results are contained in the work [56].

4.1 Basic Notions of Γ-convergence

First of all, we collect some basic notions and results concerning Γ-convergence’s theory, which

are contained in the fundamental monograph [38] and to which we will refer through this

section. We also recommend monograph [17] as exhaustive account on this topic, containing

also interesting applications of Γ-convergence.

Definition 4.1.1. If (X, τ) is a first-countable topological space and (Fh)h is a sequence of

functions defined on (X, τ) with values in R, we define the Γ-lower limit and Γ-upper limit

respectively as

Γ− lim inf
h→∞

Fh(u) := inf
{

lim inf
h→∞

Fh(uh) : uh
τ−→ u

}

111



112

and

Γ− lim sup
h→∞

Fh(u) := inf

{
lim sup
h→∞

Fh(uh) : uh
τ−→ u

}
,

and we say that (Fh)h Γ-converges to F : (X, τ) −→ R if it holds that

Γ− lim inf
h→∞

Fh(u) = Γ− lim sup
h→∞

Fh(u) for any u ∈ X.

In this case we say that F is the Γ−limit of (Fh)h and we write F = Γ− limh→∞ Fh.

The next results give an idea of some basic properties involving Γ-limits.

Theorem 4.1.2. Let Fh and F be functionals from space (X, τ) to [−∞,+∞], h ∈ N.

• [38, Proposition 6.1] If (Fh)h Γ(τ)-converges to F , then each of its subsequences still

Γ(τ)- converges to F .

• [38, Proposition 6.3] Let τ1 and τ2 be two topologies on X such that τ1 is weaker than

τ2. If (Fh)h Γ(τ1)-converges to F1 and (Fh)h Γ(τ2)-converges to F2, then F1 ≤ F2.

• [38, Theorem 7.8] (Fundamental Theorem of Γ- convergence) Assume that (Fh)h is

equicoercive (on X), that is, for each t ∈ R there exists a closed countably compact set

Kt ⊂ X such that

{x ∈ X : Fh(x) ≤ t} ⊂ Kt for each h ∈ N.

Let us also assume that (Fh)h Γ(τ)-converges to F . Then, F is coercive and

min
x∈X

F (x) = lim
h→∞

inf
x∈X

Fh(x).

Proposition 4.1.3. Let Fh and F be functionals from space (X, τ) to [−∞,+∞], h ∈ N,

then the following facts hold.

· For any u ∈ X and for any sequence (uh)h converging to u in X, it holds that

Γ− lim inf
h→∞

Fh(u) ≤ lim inf
h→∞

Fh(uh) and Γ− lim sup
h→∞

Fh(u) ≤ lim sup
h→∞

Fh(uh).
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· For any u ∈ X there exist two sequences (uh)h and (vh)h, converging to u in X, which

we call recovery sequences, such that

Γ− lim inf
h→∞

Fh(u) = lim inf
h→∞

Fh(uh) and Γ− lim sup
h→∞

Fh(u) = lim sup
h→∞

Fh(vh).

· For any u ∈ X and for any sequence (uh)h converging to u in X, it holds that

Γ− lim
h→∞

Fh(u) ≤ lim inf
h→∞

Fh(uh);

· For any u ∈ X there exists a sequence (uh)h converging to u in X, which we call

recovery sequence, such that

Γ− lim
h→∞

Fh(u) = lim
h→∞

Fh(uh).

Beside the notion of Γ-convergence there is a related one, which is more suitable to deal

with sequences of local functionals, usually known as Γ-convergence.

Definition 4.1.4. Let Fh : X × A −→ R be an increasing sequence of functionals. If we

define

F ′(·, A) := Γ− lim inf
h→∞

Fh(·, A) and F ′′(·, A) := Γ− lim sup
h→∞

Fh(·, A)

for any A ∈ A, we say that Fh Γ̄-converges to a functional F : X ×A −→ R̄ if it holds that

F (·, A) = sup{F ′(·, A′) : A′ ∈ A, A′ b A} = sup{F ′′(·, A′) : A′ ∈ A, A′ b A}.

In other words, we say that (Fh)h Γ̄−converges to F whenever the inner regular envelopes

of F ′ and F ′′ coincide and are equal to F . It is easy to check (cf. [38, Remark 16.3]) that

any Γ̄−limit is increasing, inner regular and lower semicontinuous.

In the sequel, when we will deal with Γ-convergence with respect to the strong topology of Lp

or with respect to the strong topology ofW 1,p
X , we will refer respectively to Γ(Lp)−convergence

or Γ(W 1,p
X )−convergence.
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4.1.1 Uniform Fundamental Estimate

As one could expect, the notions of Γ−convergence and Γ̄-convergence are strongly related.

Indeed, let us assume for instance that a sequence of increasing functionals Fh : Lp(Ω)×A −→

[0,∞] is such that

F (·, A) = Γ(Lp)− lim
k→∞

Fh(·, A) (4.1.1)

for any A ∈ A and for a suitable measure functional F : Lp(Ω) × A −→ [0,∞]. Then F is

Lp-lower semicontinuous, since it is a Γ-limit (cf. [38, Proposition 6.8]), and also increasing

and inner regular, since it is a non-negative measure (cf. [38, Theorem 14.23]). Therefore,

thanks to [38, Proposition 16.4], we can conclude that

F = Γ̄(Lp)− lim
h→∞

Fh. (4.1.2)

The converse implication is usually more delicate because, in general, the Γ̄(Lp)−limit is

not a measure. Indeed, despite the Γ̄−limit is always increasing, inner regular and, even if

superadditivity behaves usually well, there are examples (cf. [38, Example 16.13]) in which F

fails to be subadditive. For this reason, when dealing with this issues, it is practise to work

within milder classes of local functionals. To this aim, the so-called uniform fundamental

estimates are introduced. These estimates, although depending in their definition on the

chosen topological space, are usually sufficient conditions for the subadditivity of the Γ̄−limit.

To give an instance, we introduce here the standard notion of uniform fundamental estimate

(cf. [38, Definition 18.2]) for functional defined on Lp(Ω)×A.

Definition 4.1.5. Let F be a class of non-negative local functionals defined on Lp(Ω) × A.

We say that F satisfies the uniform fundamental estimate on Lp(Ω) if, for any ε > 0 and

for any A′, A′′, B ∈ A, with A′ b A′′, there exists a constant M > 0 such that for any

u, v ∈ Lp(Ω) and for any F ∈ F, there exists a smooth cut-off function ϕ between A′′ and

A′, such that

F
(
ϕu+ (1− ϕ)v, A′ ∪B

)
≤ (1 + ε)

(
F (u,A′′) + F (v,B)

)
+

+ ε
(
‖u‖pLp(S) + ‖v‖pLp(S) + 1

)
+M‖u− v‖Lp(S),

(4.1.3)
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where S = (A′′ \ A′) ∩B.

The following result, which can be found in [38, Theorem 18.7], tells us that (4.1.2) is

sufficient to guarantee (4.1.1), provided that our sequence satisfies the uniform fundamental

estimate and that some reasonable boundedness properties hold.

Theorem 4.1.6. Let Fh : Lp(Ω)×A −→ [0,∞] be a sequence of functionals for which there

exists a functional F : Lp(Ω)×A −→ [0,∞] such that (4.1.2) holds. Assume in addition that

(Fh)h satisfies the uniform fundamental estimate and that there exist constants e1 ≥ 1 and

e2 ≥ 0, a non-negative increasing functional G : Lp(Ω)×A −→ [0,+∞] and a finite measure

µ on Ω such that

G(u,A) ≤ Fh(u,A) ≤ e1G(u,A) + e2‖u‖pLp(A) + µ(A) (4.1.4)

for any u ∈ Lp(Ω), A ∈ A and h ∈ N. Then (4.1.1) holds.

4.2 Γ-compactness in the strong topology of Lp

We are interested to prove a Γ-compactness result for a class of convex integral functionals

defined on Lp(Ω) with respect to the strong topology of Lp. First of all, we introduce a large

class of integral functionals for which some important properties are satisfied, for instance

the uniform fundamental estimate introduced in Definition 4.1.5.

Definition 4.2.1. Consider 1 < p < ∞, a ∈ L1(Ω) and constants 0 < c0 ≤ c1 and c2 ≥ 0.

We say that a functional F : Lp(Ω)×A −→ [0,∞] belongs to Im,p(a, c0, c1, c2) if there exists

a Carathéodory function f : Ω× R× Rm → [0,∞] such that

c0|η|p ≤ f(x, u, η) ≤ a(x) + c1|η|p + c2|u|p (4.2.1)

for any (u, η) ∈ R× Rm, for a.e. x ∈ Ω, and it holds that

F (u,A) =


∫
A
f(x, u(x), Xu(x)) dx if A ∈ A, u ∈ W 1,p

X (A)

+∞ otherwise

. (4.2.2)
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In particular, we say that F ∈ Km,p(a, c0, c1, c2) whenever F ∈ Im,p(a, c0, c1, c2) and it holds

that

f(x, ·, ·) is convex for a.e. x ∈ Ω. (4.2.3)

Now, we want to describe some properties of Γ(Lp)-limits within the class previously

defined.

Proposition 4.2.2. If F ∈ Im,p(a, c0, c1, c2), then F is lower semicontinuous on Lp(Ω).

Proof. Let us fix A ∈ A, u ∈ Lp(Ω) and a sequence (uh)h converging to u w.r.t. the strong

topology of Lp(Ω) and such that

∃ lim
h→∞

F (uh, A) < +∞.

Since f ∈ Jm,p(a, c0, c1, c2), we have that

c0 lim sup
h→∞

‖Xu‖pp ≤ lim sup
h→∞

F (uh, A) < +∞,

hence (uh)h is bounded in W 1,p
X (A). By reflexivity there exists v ∈ W 1,p

X (A) such that uh ⇀ u

in W 1,p
X (A). Since uh ⇀ u in Lp(A), we conclude that u|A = v|A, and so in particular u ∈

W 1,p
X (A). Since under our assumptions on f the functional (u, v) 7→

∫
A
f(x, u, v)dx defined

on Lp(A)× Lp(A,Rm) satisfies the hypotheses of [24, Theorem 2.3.1], then it is sequentially

lower semicontinuous on Lp(A)×Lp(A,Rm) with respect to the strong convergence of Lp(A)

and the weak convergence of Lp(A,Rm). Since uh → u in Lp and Xuh ⇀ Xu in Lp(A,Rm),

we conclude that

F (u,A) ≤ lim
h→∞

F (uh, A).

We recall the following result, which can be found in [81, Lemma 4.15].

Proposition 4.2.3. Let us define the functional Ψp : Lp(Ω)×A −→ [0,∞] as

Ψp(u,A) :=

‖Xu‖
p
Lp(A) if A ∈ A, u ∈ W 1,p

X (A)

+∞ otherwise

.
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Then Ψp is a Lp-lower semicontinuous measure.

Our aim now is to introduce a suitable and bigger class with respect to Im,p(a, c0, c1, c2).

Thanks to general results in [38], in Proposition 4.2.5 below we show that Im,p(a, c0, c1, c2) is

closed under Γ-convergence.

Definition 4.2.4. We say that a functional F : Lp(Ω) × A −→ [0,∞] belongs to

Mp(d1, d2, d3, d4, µ) if F is a measure and if there exist d1 ≥ 1, d2, d3, d4 ≥ 0, a finite measure

µ, independent of F , and a measure G : Lp(Ω)×A −→ [0,∞], which may depend on F , such

that

G(u,A) ≤ F (u,A) ≤ d1G(u,A) + d2‖u‖Lp(A) + µ(A) (4.2.4)

and

G(ϕu+ (1−ϕ)v,A) ≤ d4(G(u,A) +G(v, A)) +d3d4(max |Dϕ|p)‖u− v‖Lp(A) +µ(A), (4.2.5)

for any u, v ∈ Lp(Ω), A ∈ A and ϕ ∈ C∞c (Ω) such that 0 ≤ ϕ ≤ 1.

Proposition 4.2.5. For any sequence (Fh)h ⊆ Im,p(a, c0, c1, c2) there exists a subsequence

(Fhk)k and a functional F : Lp(Ω)×A −→ [0,∞] such that

(a) F is a measure;

(b) F is local;

(c) F is Lp-lower semicontinuous;

(d) For any u ∈ W 1,p
X (Ω) and A ∈ A it holds that∫

A

c0|Xu(x)|pdx ≤ F (u,A) ≤
∫
A

a(x) + c1|Xu(x)|p + c2|u(x)|pdx, (4.2.6)

and moreover it holds that

F (·, A) = Γ(Lp)− lim
k→+∞

Fhk(·, A) for any A ∈ A. (4.2.7)
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Proof. First of all, according to [38, Theorem 19.4], we are going to show that

Im,p(a, c0, c1, c2) ⊆ Mp(d1, d2, d3, d4, µ). For this purpose, let us define µ : B → [0,+∞]

by

µ(B) :=

∫
B

|a(x)| dx.

Then µ is a finite measure on Ω. Moreover, thanks to Proposition 4.2.3, the non-negative

local functional G : Lp(Ω)×A −→ [0,+∞] defined as

G(u,A) := c0Ψp(u,A) for any u ∈ Lp(Ω), A ∈ A

is a measure. Let us show (4.2.4). Let us set d1 := c1
c0

and d2 := c2. If A ∈ A and u /∈ W 1,p
X (A),

the estimate is trivial, while if u ∈ W 1,p
X (A), it follows from the definition of Im,p(a, c0, c1, c2).

Hence, we are left to show (4.2.5). Fix then A ∈ A. If either u /∈ W 1,p
X (A) or v /∈ W 1,p

X (A)

the estimate is trivial. Hence assume that u, v ∈ W 1,p
X (A) and take ϕ ∈ C∞c (Ω) such that

0 ≤ ϕ ≤ 1. Then, recalling Proposition 3.1.5, Proposition 3.1.13, the fact that η 7→ |η|p is

convex on Rm, and setting

C := max{‖cj,i‖∞ : j = 1, . . . ,m, i = 1, . . . , n}

it follows that 0 < C <∞ and

G(ϕu+ (1− ϕ)v,A) = c0

∫
A

|Xϕ(u− v) + ϕXu+ (1− ϕ)Xv|p dx

= c02p
∫
A

∣∣∣∣Xϕ(u− v)

2
+
ϕXu+ (1− ϕ)Xv

2

∣∣∣∣p dx

≤ c02p−1

∫
A

|Xϕ(u− v)|p dx+ c02p−1

∫
A

|ϕXu+ (1− ϕ)Xv|p dx

≤ c02p−1

∫
A

|Xϕ(u− v)|p dx+ 2p−1(G(u,A) +G(v,A))

≤ c02p−1(C
√
m)p(max |Du|p)‖u− v‖Lp(A) + 2p−1(G(u,A) +G(v,A)).

Thus (4.2.5) follows and hence Im,p(a, c0, c1, c2) ⊆ Mp(d1, d2, d3, d4, µ). Therefore, thanks

to [38, Theorem 19.5], there exists a subsequence of (Fh)h, still denoted by (Fh)h, and a

Lp-lower semicontinuous functional F ∈Mp(d1, d2, d3, d4, µ) such that (Fh)h Γ(Lp)-converges
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to F . In particular F is a measure. By [38, Proposition 16.4] and [38, Proposition 16.15], F

is also local. Furthermore, by Proposition 4.2.3 G is a Lp-lower semicontinuous measure and,

since (Fh)h satisfies the uniform fundamental estimate on Lp(Ω) according to [38, Theorem

19.4], we can apply Theorem 4.1.6 to conclude that (4.2.7) holds. Finally, we show that F

satisfies (4.2.6). Let us fix A ∈ A and u ∈ W 1,p
X (Ω), and a sequence (uh)h such that

F (u,A) = lim
h→+∞

Fh(uh, A). (4.2.8)

Arguing as above we can assume that (uh)h ⊂ W 1,p
X (A). Therefore, thanks to (4.2.8) and

Proposition 4.2.3, it follows that

c0

∫
A

|Xu|p dx ≤ lim inf
h→+∞

∫
A

|Xuh|p dx ≤ lim inf
h→+∞

Fh(uh, A) = F (u,A), (4.2.9)

and so the first inequality follows. Finally we have that

F (u,A) ≤ lim inf
h→+∞

Fh(u,A) ≤ lim inf
h→+∞

∫
A

a(x) + c1|Xu|p + c2|u|p dx

=

∫
A

a(x) + c1|Xu|p + c2|u|p dx.

The latter is equivalent to the thesis.

In order to represent the Γ-limit given by (4.2.7), in an integral form, we need to apply a

slight variant of Theorem 3.2.1. Following a remark presented in the introduction of [55], we

clearly have to reply the p-boundness (3.2.2) with the new one (4.2.1). Even if the authors

did not consider the equivalence between the bound from below of the Lagrangian and the

bound from below of the functional, it is clear from their proofs that such an equivalence is

trivial, and so we take it for granted.

Theorem 4.2.6. Let F : Lp(Ω)×A −→ [0,∞] be such that:

(i) F is a measure;

(ii) F is local;

(iii) F is convex;
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(iv) F satisfies (4.2.6).

Then there exists a Carathéodory function f : Ω × R × Rm → [0,∞] which satisfies (4.2.1)

and (4.2.3), and such that

F (u,A) =

∫
A

f(x, u(x), Xu(x))dx (4.2.10)

for any A ∈ A and for any u ∈ W 1,p
X (A).

Proof. By Theorem 3.2.1, we know that there exists a Carathéodory function f : Ω × R ×

Rm → [0,∞] which satisfies (4.2.1) and (4.2.3), and such that

F (u,A) =

∫
A

f(x, u(x), Xu(x))dx for any A ∈ A, u ∈ W 1,p
X (Ω).

Fix now A ∈ A, A′ ∈ A0 with A′ b A and u ∈ Lp(Ω) ∩W 1,p
X (A), and let v := ϕu, where ϕ is

a smooth cut-off function between A′ and A. Then clearly v ∈ W 1,p
X (Ω) and v|A′ = u. Since

F is local, it follows that

F (u,A′) = F (v, A′) =

∫
A′
f(x, v(x), Xv(x))dx =

∫
A′
f(x, u(x), Xu(x))dx.

Since F is a measure, it is in particular inner regular, and so we conclude that (4.2.10)

holds.

As announced, the main result of this section is the Γ-compactness for the class of convex

integral functionals.

Theorem 4.2.7. For any sequence (Fh)h ⊆ Km,p(a, c0, c1, c2) there exists a subsequence

(Fhk)k and a local functional F ∈ Km,p(a, c0, c1, c2) such that

F (·, A) = Γ(Lp)− lim
k→+∞

Fhk(·, A) for any A ∈ A.

Proof. As F ∈ Km,p(a, c0, c1, c2), thanks to Proposition 4.2.5 there exists a functional F :

Lp(Ω) × A −→ [0,+∞] which is a measure, local, satisfies (4.2.6) and such that (4.2.7)

holds. Let us show that F is convex on W 1,p
X (Ω). Fix then A ∈ A and take t ∈ (0, 1) and
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u, v ∈ W 1,p
X (Ω). Let (uh)h and (vh)h be two sequences converging respectively to u and v in

Lp(Ω) and such that

F (u,A) = lim
h→+∞

Fh(uh, A), F (v,A) = lim
h→+∞

Fh(vh, A). (4.2.11)

Since F (u,A) and F (v,A) are finite we can assume that the sequences (uh)h, (vh)h belong to

W 1,p
X (A). Therefore, since each Fh(·, A) is convex on W 1,p

X (A), recalling (4.2.11) and the fact

that (tuh + (1− t)vh)h converges to tu+ (1− t)v in Lp(Ω), it follows that

F (tu+ (1− t)v, A) ≤ lim inf
h→+∞

Fh(tuh + (1− t)vh, A)

≤ lim inf
h→+∞

(tFh(uh, A) + (1− t)Fh(vh, A))

= t lim
h→+∞

Fh(uh, A) + (1− t) lim
h→+∞

Fh(vh, A)

= tF (u,A) + (1− t)F (v, A).

Therefore we are in position to apply Theorem 4.2.6. Finally, we notice that if A ∈ A and

u ∈ Lp(Ω) \W 1,p
X (A), arguing as in (4.2.9) we conclude that +∞ = c0Ψp(u,A) ≤ F (u,A),

which implies that

{u ∈ Lp(Ω) : F (u,A) < +∞} = W 1,p
X (A),

and so the thesis follows.

4.3 Γ-compactness in the strong topology of W 1,p
X

In this section we show two Γ-compactness results for two family of integral functionals with

respect to the strong topology of W 1,p
X . As aforementioned, working in this framework has

the advantages to do not have to assume coercivity on the sequence of Lagrangians and to

allow the case p = 1. Here we introduce another suitable family of integral functionals.

Definition 4.3.1. Let 1 ≤ p < +∞ and let us fix a ∈ L1(Ω) and c1, c2 ≥ 0. We say that a

functional F : W 1,p
X (Ω)×A −→ [0,∞] belongs to Um,p(a, c1, c2) if there exists a Carathéodory
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function f : Ω× R× Rm → [0,∞] such that

f(x, u, η) ≤ a(x) + c1|η|p + c2|u|p (4.3.1)

for any (u, η) ∈ R× Rm and for a.e. x ∈ Ω, and it holds that

F (u,A) =

∫
A

f(x, u(x), Xu(x))dx for any A ∈ A, u ∈ W 1,p
X (Ω).

Before presenting the main theorems above we want to present a key notion, strongly

inspired by Definition 3.2.3.

Definition 4.3.2. We say that ω = (ωs)s≥0 is a family of locally integrable moduli of

continuity if ωs : Ω× [0,+∞) −→ [0,+∞) and

r 7→ ω(x, r) is increasing, continuous and ω(x, 0) = 0 (4.3.2)

for a.e. x ∈ Ω and for any s ≥ 0,

s 7→ ωs(x, r) is increasing and continuous (4.3.3)

for a.e. x ∈ Ω and for any r ≥ 0, and

x 7→ ωs(x, r) ∈ L1
loc(Ω) for any r, s ≥ 0.

Moreover we say that a functional F : W 1,p
X (Ω)×A −→ [0,∞] satisfies the strong condition

(ωX) with respect to ω if there exists a family ω = (ωs)s≥0 of locally integrable moduli of

continuity such that

|F (v, A′)− F (u,A′)| ≤
∫
A′
ωs(x, r) dx (4.3.4)

for any s ≥ 0, A′ ∈ A0, r ≥ 0, u, v ∈ W 1,p
X (Ω) such that

|u(x)|, |v(x)|, |Xu(x)|, |Xv(x)| ≤ s

|u(x)− v(x)|, |Xu(x)−Xv(x)| ≤ r

for a.e. x ∈ A′.
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This new notion is more flexible, it fits better with the non-Euclidean setting and allows

to deal with more general classes of functions. On the other hand, it is quite easy to verify

that the previous condition is stronger than Definition 3.2.3, and hence all the integral rep-

resentation results proved in [26, 55] remain valid. Moreover, differently from [26], we point

out that the previous family of moduli of continuity is indexed over a continuous set, and

the assumption on the behaviour of s 7→ ωs(x, r) is completely new. Nevertheless we will see

below that, when dealing with integral functionals, this original requirement is quite natural.

Proposition 4.3.3. Let F ∈ Um,p(a, c1, c2). Then F satisfies the strong condition (ωX).

Proof. This proof is based on the proof of [26, Lemma 2.5]. Since f is Carathéodory, then

the set Ω′ := {x ∈ Ω : (u, ξ) 7→ f(x, u, ξ) is continuous} satisfies |Ω′| = |Ω|. For any s, r ≥ 0,

set Es
r ⊆ R× R× Rm × Rm as

Es
r := {(u, v, ξ, η) : |u|, |v|, |ξ|, |η| ≤ s, |u− v|, |ξ − η| ≤ r}

and the function

ωs(x, r) :=

 sup{|f(x, u, ξ)− f(x, v, η)| : (u, v, ξ, η) ∈ Es
r} if x ∈ Ω′,

0 otherwise.

We show that (ωs)s≥0 is a family of locally integrable moduli of continuity. Let us fix then

s, r ≥ 0: since (u, ξ) 7→ f(x, u, ξ) is continuous for almost every x ∈ Ω, then the supremum in

the definition of ωs can be taken over a countable subset of Ek
ε . Since for any (u, v, ξ, η) the

function x 7→ |f(x, u, ξ)−f(x, v, η)| is measurable, then ωs(·, r) is also measurable. Moreover,

thanks to (4.3.1), it follows that, for any (u, v, ξ, η) ∈ Ek
ε ,

|f(x, u, ξ)− f(x, v, η)| ≤ 2|a(x)|+ c1|ξ|p + c1|η|p + c2|u|p + c2|v|p

≤ 2|a(x)|+ 4s(c1 + c2).

Since the right hand side does not depend on (u, v, ξ, η) ∈ Es
r , we conclude that

ωs(x, r) ≤ 2|a(x)|+ 4s(c1 + c2).
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Hence ωk(·, ε) ∈ L1
loc(Ω). Fix now x ∈ Ω′ and s ≥ 0. Since Es

r ⊆ Es
t for any r ≤ t,

then ωs(x, ·) is increasing, ωk(x, 0) = 0 and the continuity follows from the continuity of

f(·, u, ξ). Finally, taking x ∈ Ω′ and r ≥ 0 we have again that Es
r ⊆ Et

r for any r ≤ t, hence

s 7→ ωs(x, r) is increasing. Once more, from the continuity of f(·, u, ξ) we conclude that

s 7→ ωs(x, r) is continuous. Then (ωs)s is a family of locally integrable moduli of continuity.

It is straightforward to check that F satisfies the strong condition (ωX) with respect to

(ωs)s≥0.

4.3.1 Uniform Fundamental Estimate on W 1,p
X (Ω)

A further key step in order to prove the main results is presenting a suitable notion of uniform

fundamental estimate. In order to guarantee a better compatibility with the non-Euclidean

setting, we present above a slight modification with respect to the one introduced in [38].

Definition 4.3.4. Let F be a class of non-negative local functionals defined on W 1,p
X (Ω)×A.

We say that F satisfies the uniform fundamental estimate on W 1,p
X (Ω) if, for any ε > 0 and

for any A′, A′′, B ∈ A, with A′ b A′′, there exists a constant M > 0 and a finite family

{ϕ1, . . . , ϕk} of smooth cut-off functions between A′ and A′′ such that for any u, v ∈ W 1,p
X (Ω)

and for any F ∈ F, we can choose ϕ ∈ {ϕ1, . . . , ϕk} such that

F
(
ϕu+ (1− ϕ)v,A′ ∪B

)
≤
(
F (u,A′′) + F (v,B)

)
+

+ ε
(
‖u‖p

W 1,p
X (S)

+ ‖v‖p
W 1,p
X (S)

+ 1
)

+M‖u− v‖Lp(S),

where S = (A′′ \ A′) ∩B.

Remark 4.3.5. From one hand, Definition 4.3.4 is stronger than Definition 4.1.5. since

the first requires to choose in a finite family of cut-off functions, which depends only on

ε, A′, A′′ and B. This new requirement is crucial to guarantee a uniform estimate for the

X-gradients of the test functions. However, in order to avoid the coercivity assumptions on

the Lagrangians, we replace some of the Lp norms on the right hand side of (4.1.3) with W 1,p
X

norms.
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The following propositions and the relative proofs are respectively the counterparts of [38,

Proposition 19.1] and [38, Proposition 18.3].

Proposition 4.3.6. Um,p(a, c1, c2) satisfies the uniform fundamental estimate on W 1,p
X (Ω).

Proof. Let us set d1 := c1, d2 := c2 and d4 := 2p−1 and σ(C) :=
∫
C
|a(x)|dx for any C ∈ B.

Fix ε > 0, B ∈ A and A′, A′′ ∈ A with A′ b A′′. Choose A ∈ A with A′ b A b A′′ and

k ∈ N with

max

{
d1 + d2d4

k
,
σ(A \ A′)

k

}
< ε.

Moreover, choose open sets A1, . . . , Ak+1 such that A′ b A1 b . . . b Ak+1 b A, and, for any

i = 1, . . . , k take a smooth cut-off function ϕi between Ai and Ai+1. Finally, set

M :=
d1d4

k
max
1≤i≤k

max
x∈Ω
|Xϕi(x)|p.

Let F ∈ Um,p(a, c1, c2) and u, v ∈ W 1,p
X (Ω). Then, for any i = 1, . . . , k, from the choice of ϕi

it follows that

F (ϕiu+(1−ϕi)v, A′∪B) ≤ F (u, (A′∪B)∩Ai)+F (v,B\Ai+1)+F (ϕiu+(1−ϕi)v, Si), (4.3.5)

where Si := B ∩ (Ai+1 \ Ai). Setting Ii := F (ϕiu + (1 − ϕi)v, Si), from the bound on the

Lagrangian and arguing as in the proof of Proposition 4.2.5, we get that

Ii ≤ d1

∫
Si

|X(ϕiu+ (1− ϕi)v)|pdx+ d2

∫
Si

|ϕiu+ (1− ϕi)v|pdx+ σ(Si)

= d1

∫
Si

|uXϕi + ϕiXu− vXϕi + (1− ϕi)Xv)|pdx+ d2

∫
Si

|u|pdx+ d2

∫
Si

|v|pdx+ σ(Si)

= d1

∫
Si

|(ϕiXu+ (1− ϕi)Xv) +Xϕi(u− v)|pdx+ d2

∫
Si

(|u|p + |v|p)dx+ σ(Si)

≤ d1d4

[∫
Si

|ϕiXu+ (1− ϕi)Xv|p +

∫
Si

|Xϕi|p|u− v|pdx
]

+ d2

∫
Si

(|u|p + |v|p)dx+ σ(Si)

≤ d1d4

[∫
Si

|Xu|pdx+

∫
Si

|Xv|pdx
]

+ kM

∫
Si

|u− v|pdx+ d2

∫
Si

(|u|p + |v|p)dx+ σ(Si)

≤ (d2 + d1d4)
(
‖u‖p

W 1,p
X (Si)

+ ‖v‖p
W 1,p
X (Si)

)
+ kM‖u− v‖pLp(Si)

+ σ(Si).
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Noticing that σ is a measure and that

S1 ∪ . . . ∪ Sk ⊆ (A \ A′) ∩B ⊆ S,

and recalling the choice of k, it follows that

min
1≤i≤k

Ii ≤
1

k

k∑
i=1

Ik ≤
d2 + d1d4

k

(
‖u‖p

W 1,p
X (S)

+ ‖v‖p
W 1,p
X (S)

)
+M‖u− v‖pLp(S) +

σ(A \ A′)
k

≤ ε
(
‖u‖p

W 1,p
X (S)

+ ‖v‖p
W 1,p
X (S)

+ 1
)

+M‖u− v‖pLp(S).

(4.3.6)

Therefore, if ϕi ∈ {ϕ1, . . . , ϕk} is chosen to realize the minimum, observing that F is a

measure, (A′ ∪ B) ∩ Ai ⊆ A′′ and B \ Ai+1 ⊆ B, thanks to (4.3.5) and (4.3.6) the thesis

follows.

Proposition 4.3.7. Let (Fh)h ∈ Um,p(a, c1, c2) and let F ′′ be as in Definition 4.1.4. Then it

holds that

F ′′(u,A′ ∪B) ≤ F ′′(u,A′′) + F ′′(u,B) (4.3.7)

for any u ∈ W 1,p
X (Ω), B ∈ A and A′, A′′ ∈ A with A′ b A′′.

Proof. Choose u,A′, A′′, B as above and fix ε > 0. Moreover, let (uh)h, (vh)h ⊆ W 1,p
X (Ω)

be two recovery sequences for u with respect to F ′′(·, A′′) and F ′′(·, B) respectively. From

Proposition 4.3.6 we know that (Fh)h satisfies the uniform fundamental estimate on W 1,p
X (Ω).

Therefore there exists M > 0 and a finite family {ϕ1, . . . , ϕk} of smooth cut-off functions

between A′ and A′′, depending only on ε, A′, A′′ and B, and a sequence (ϕh)h ⊆ {ϕ1, . . . , ϕk},

such that

Fh

(
ϕhuh + (1− ϕh)vh, A′ ∪B

)
≤
(
Fh(uh, A

′′) + Fh(vh, B)
)

+

+ ε
(
‖uh‖pW 1,p

X (S)
+ ‖vh‖pW 1,p

X (S)
+ 1
)

+M‖uh − vh‖Lp(S),

(4.3.8)

where S = (A′′ \ A′) ∩B. Let us define wh := ϕhuh + (1− ϕh)vh. Then it follows that

‖wh − u‖Lp(Ω) = ‖ϕh(uh − vh)‖Lp(Ω) + ‖vh − u‖Lp(Ω) ≤ ‖uh − vh‖Lp(Ω) + ‖vh − u‖Lp(Ω),
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and moreover

‖Xwh −Xu‖Lp(Ω) = ‖Xϕh · uh + ϕhXuh −Xϕh · vh + (1− ϕh)Xvh −Xu‖Lp(Ω)

≤ ‖Xϕh(uh − vh)‖Lp(Ω) + ‖ϕh(Xuh −Xvh)‖Lp(Ω) + ‖Xvh −Xu‖Lp(Ω)

≤ max
1≤i≤k

‖|Xϕk|p‖∞ · ‖uh − vh‖Lp(Ω) + ‖Xuh −Xvh‖Lp(Ω) + ‖Xvh −Xu‖Lp(Ω).

Therefore we conclude that wh converges to u ∈ W 1,p
X (Ω). This fact, the choices of uh and vh

and (4.3.8) allow to conclude that

F ′′(u,A′ ∪B) ≤ lim sup
h→∞

F ′′(wh, A
′ ∪B)

≤ lim sup
h→∞

F ′′(uh, A
′′) + lim sup

h→∞
F ′′(vh, B)

+ ε
(
‖u‖p

W 1,p
X (S)

+ ‖v‖p
W 1,p
X (S)

+ 1
)

= F ′′(u,A′′) + F ′′(u,B) + ε
(
‖u‖p

W 1,p
X (S)

+ ‖v‖p
W 1,p
X (S)

+ 1
)
.

Being ε arbitrary, the thesis follows.

4.3.2 Main results

To resume, we showed that Um,p(a, c1, c2) satisfies some nice properties but, it is too general to

hope to achieve Γ-compactness. Therefore we introduce two subfamilies that are Γ-compact

with respect to the strong topology of W 1,p
X (Ω). The first one is given by the sub-class of

convex functionals belonging to Um,p(a, c1, c2). In other words

Definition 4.3.8. We say that F ∈ Vm,p(a, c1, c2) whenever

F ∈ Um,p(a, c1, c2) and f(x, ·, ·) is convex for a.e. x ∈ Ω.

In the second subfamily of Um,p(a, c1, c2) we want to drop the convexity assumption and

to obtain uniformity in the choice of the family of moduli of continuity. This is due to the

fact that, if (Fh)h ⊆ Um,p(a, c1, c2) and every Fh satisfies the strong condition (ωX), still the

family of moduli of continuity strongly depends on h.
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Definition 4.3.9. Let ω = (ωs)s≥0 be a family as in Definition 4.3.2. We say that a func-

tional F : W 1,p
X (Ω) × A −→ [0,∞] belongs to Wm,p(a, c1, c2, ω) if F ∈ Um,p(a, c1, c2) and it

satisfies the strong condition (ωX) with respect to ω.

Remark 4.3.10. Let (Fh)h ⊆ Um,p(a, c1, c2) be such that there exists K ∈ L1
loc(Ω) such that

|fh(x, u, ξ)− fh(x, v, η)| ≤ |K(x)|(|u− v|+ |ξ − η|) (4.3.9)

for any u, v ∈ R, ξ, η ∈ Rm and h ∈ N. If for any s, r ≥ 0 we define Es
r as in Proposition

4.3.3 and

ω̃s(x, r) := |K(x)| sup{(|u− v|+ |ξ − η|) : (u, v, ξ, η) ∈ Es
r},

then it is easy to see that (Fh)h belongs to Wm,p(a, c0, c1, c2, ω̃).

As presented in the Introduction, we are now ready to complete the first step of the

general scheme, presenting the Γ-compactness result in the strong topology of W 1,p
X (Ω).

Proposition 4.3.11. For any sequence (Fh)h ⊆ Um,p(a, c1, c2) there exists a subsequence

(Fhk)k and a functional F : W 1,p
X (Ω)×A −→ [0,∞] such that

(a) F is a measure;

(b) F is local;

(c) F is W 1,p
X −lower semicontinuous;

(d) for any u ∈ W 1,p
X (Ω) and A ∈ A it holds that

F (u,A) ≤
∫
A

a(x) + c1|Xu(x)|p + c2|u(x)|pdx (4.3.10)

and moreover we have that

F (·, A) = Γ(W 1,p
X )− lim

k→+∞
Fhk(·, A) (4.3.11)

for any A ∈ A.
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Proof. Since (W 1,p
X (Ω), ‖ · ‖W 1,p

X (Ω)) is a metric space, by [38, Theorem 16.9] we know that,

up to a subsequence, (Fh)h Γ̄(W 1,p
X )-converges to a functional F : W 1,p

X (Ω) × A −→ R.

Being F a Γ̄-limit, we know from [38, Remark 16.3] that F is increasing, inner regular and

W 1,p
X − lower semicontinuous. Moreover, thanks to [38, Proposition 16.12], we know that F

is superadditive. Let us show that F is non-negative. Indeed, fix A ∈ A and u ∈ W 1,p
X (Ω),

then we know that

F (u,A) = sup
{

inf{lim inf
h→∞

Fh(uh, A
′) : uh → u in W 1,p

X (Ω)} : A′ ∈ A, A′ b A
}
.

Since every Fh(uh, A
′) is non-negative, then F (u,A) ≥ 0. Moreover, in the same way we can

see that F (u, ∅) = 0 for any u ∈ W 1,p
X (Ω). Now, adapting the proof of [38, Proposition 16.15],

we show that F is local. Let us fix A ∈ A and u, v ∈ W 1,p
X (Ω) coinciding a.e. on A. Fix

A′ b A, take a smooth cut-off function ϕ between A′ and A and let (uh)h ⊆ W 1,p
X (Ω) be a

recovery sequence for u with respect to F ′(·, A′). We define a new sequence (vh)h requiring

that

vh := ϕuh + (1− ϕ)v.

It is clear that

‖vh − v‖Lp(Ω) = ‖ϕ(uh − v)‖Lp(Ω) = ‖ϕ(uh − v)‖Lp(A) ≤ ‖uh − u‖Lp(A),

and moreover

‖Xvh −Xv‖Lp(Ω) = ‖Xϕ(uh − v) + ϕ(Xuh −Xv)‖Lp(Ω)

≤ ‖Xϕ(uh − v)‖Lp(A) + ‖ϕ(Xuh −Xv)‖Lp(A)

≤ ‖|Xϕ|p‖∞‖uh − u‖Lp(A) + ‖Xuh −Xu‖Lp(A).

Therefore we have that vh converges to v in W 1,p
X (Ω). As each Fh is local and uh = vh on A′,

we conclude that

F ′(v,A′) ≤ lim inf
h→∞

Fh(vh, A
′) = lim inf

h→∞
Fh(uh, A

′) = F ′(u,A′).

As the converse inequality can be proved exchanging the roles of u and v, we conclude

that F ′(u,A′) = F ′(v, A′). Finally, being A′ b A arbitrary and recalling the definition
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of a Γ̄−limit, we conclude that F is local. Moreover, thanks to Proposition 4.3.7, we can

repeat essentially the same steps of the proof of [38, Proposition 18.4] and achieve that F is

subadditive. Notice that, thanks to [38, Theorem 14.23] and the previous steps, this suffices

to conclude that F is a measure. If we define now G : W 1,p
X (Ω)×A −→ [0,+∞] by

G(u,A) :=

∫
A

(a(x) + c2|u|p + c1|Xu|p)dx

for any u ∈ W 1,p
X (Ω) and for any A ∈ A, it is clear that G is a measure and that, thanks to

the hypotheses, Fh ≤ G for any h ∈ N. Therefore, if u ∈ W 1,p
X (Ω) and A ∈ A, it follows that

F (u,A) ≤ lim inf
h

Fh(u,A) ≤ G(u,A).

Finally, thanks again to Proposition 4.3.7 and repeating the proof of [38, Theorem 18.7], we

conclude that

F (·, A) = Γ(W 1,p
X )− lim

h→+∞
Fh(·, A), (4.3.12)

for any A ∈ A.

We have developed all the tools that we need to state and prove the two main theorems

of this Chapter.

Theorem 4.3.12. For any sequence (Fh)h ⊆ Vm,p(a, c1, c2) there exists a subsequence (Fhk)k

and a functional F ∈ Vm,p(a, c1, c2) such that

F (·, A) = Γ(W 1,p
X )− lim

k→+∞
Fhk(·, A) for any A ∈ A.

Proof. Since (Fh)h ⊆ Vm,p(a, c1, c2), from Proposition 4.3.11 we know that there exists a

functional F : W 1,p
X (Ω) × A −→ [0,+∞] which is a measure, local, satisfies (4.3.10) and

such that (4.3.11) holds. Moreover, arguing as in the proof of Theorem 4.2.7, F is convex.

Therefore F satisfies all the hypotheses of [55, Theorem 2.3], and so we conclude that F ∈

Vm,p(a, c1, c2).

In order to prove the counterpart of the Γ-compactness result in Wm,p(a, c1, c2, ω), we

wish to apply Theorem 3.4.1 for a suitable functional F . Then, we need to guarantee that

the strong condition (ωX) with respect to ω is preserved by the operation of Γ(W 1,p
X )-limit.
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Proposition 4.3.13. If a functional F : W 1,p
X (Ω)×A −→ [0,+∞] is a measure, it is W 1,p

X -

continuous, it satisfies (4.3.10) for any u ∈ W 1,p
X (Ω) and for any B ∈ B and it satisfies the

strong condition (ωX) with respect to ω, then it holds that

|F (v,B′)− F (u,B′)| ≤
∫
B′
ωs(x, r)dx (4.3.13)

for any s ≥ 0, B′ ∈ B0, r ≥ 0, u, v ∈ W 1,p
X (Ω) such that

|u(x)|, |v(x)|, |Xu(x)|, |Xv(x)| ≤ s

|u(x)− v(x)|, |Xu(x)−Xv(x)| ≤ r
(4.3.14)

for a.e. x ∈ B′.

Proof. It is not restrictive to assume that c1 = c2 = 1. First we show the thesis for regular

functions u, v ∈ W 1,p
X (Ω)∩C∞(Ω). Let us fix B′ ∈ B0, and s, r, such that (4.3.14) holds, and

let us take m,M > 0. Since F (u, ·) and F (v, ·) are Borel measures, there exists a decreasing

sequence of open sets (An)n ⊆ A such that B′ =
⋂∞
n=1 An and moreover

F (u,B′) = lim
n→∞

F (u,An) and F (v,B′) = lim
n→∞

F (v,An).

Furthermore, asB′ b Ω, we can assume that An b Ω for each n ∈ N. Finally, as u, v ∈ C1(A0)

we can assume that

|u(x)|, |v(x)|, |Xu(x)|, |Xv(x)| ≤ s+
1

M

|u(x)− v(x)|, |Xu(x)−Xv(x)| ≤ r +
1

m

for any x ∈ An and for any n ≥ 0. We obtain that

|F (u,B′)− F (v,B′)| = lim
n→∞
|F (u,An)− F (v, An)|

≤ lim
n→∞

∫
An

ws+ 1
M

(
x, r +

1

m

)
dx

=

∫
B′
ws+ 1

M

(
x, r +

1

m

)
dx.
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Therefore, thanks to (4.3.2), (4.3.3) and the Monotone Convergence Theorem we conclude

that

|F (u,B′)− F (v,B′)| ≤ lim
m→∞

lim
M→∞

∫
B′
ws+ 1

M

(
x, r +

1

m

)
dx

= lim
m→∞

∫
B′
ws

(
x, r +

1

m

)
dx

=

∫
B′
ws(x, r)dx.

Let now B′ ∈ B0, u, v ∈ W 1,p
X (Ω) and s, r, such that (4.3.14) holds, and fix again m,M >

0. By Theorem 3.1.8 there are two sequences (uh)h, (vh)h ⊆ W 1,p
X (Ω) ∩ C∞(Ω) converging

respectively to u and v in the strong topology of W 1,p
X (Ω). Therefore, thanks to the previous

step and the continuity of the functional, we get that

|F (u,B′)− F (v,B′)| = lim
h→∞
|F (uh, B

′)− F (vh, B
′)|.

Now we want to estimate the right term. For doing this let us define, for any h ≥ 0,

Ah :=

{
x ∈ B′ : |uh(x)| > s+

1

M

}
Bh :=

{
x ∈ B′ : |vh(x)| > s+

1

M

}
Ch :=

{
x ∈ B′ : |Xuh(x)| > s+

1

M

}
Dh :=

{
x ∈ B′ : |Xvh(x)| > s+

1

M

}
Eh :=

{
x ∈ B′ : |uh(x)− vh(x)| > r +

1

m

}
Fh :=

{
x ∈ B′ : |Xuh(x)−Xvh(x)| > r +

1

m

}
,

and let

Zh := Ah ∪Bh ∪ Ch ∪Dh ∪ Eh ∪ Fh. (4.3.15)

We claim that

lim
h→∞
|Zh| = 0.

Here we only show that limh→∞ |Ah| = 0, being the other parts of the proof similar. Assume

that x ∈ Ah and assume that (4.3.14) holds in x. Then it follows that

|uh(x)− u(x)| ≥ |uh(x)| − |u(x)| > 1

M
.
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and hence

x ∈
{
z ∈ Ω : |u(z)− uh(z)| > 1

M

}
.

Since uh converges to u in W 1,p
X (Ω), then in particular uh converges to u in measure, and so

the measure of the right set goes to zero as h goes to infinity. We can now estimate in this

way:

lim
h→∞
|F (uh, B

′)− F (vh, B
′)| ≤ lim inf

h→∞
|F (uh, B

′ \ Zh)− F (vh, B
′ \ Zh)|+ |F (uh, Zh)− F (vh, Zh)|

≤
∫
B′
ws+ 1

M

(
x, r +

1

m

)
+ lim inf

h→∞
|F (uh, Zh)|+ |F (vh, Zh)|

≤
∫
B′
ws+ 1

M

(
x, r +

1

m

)
dx+ lim inf

h→∞
2

∫
Zh

|a(x)|dx

+ lim inf
h→∞

∫
Zh

|uh|pdx+

∫
Zh

|vh|pdx+

∫
Zh

|Xuh|pdx+

∫
Zh

|Xvh|pdx

≤
∫
B′
ws+ 1

M

(
x, r +

1

m

)
dx+ lim inf

h→∞
2

∫
Zh

|a(x)|dx

+ lim inf
h→∞

2p−1

(∫
Zh

|uh − u|pdx+

∫
Zh

|u|pdx+

∫
Zh

|Xuh −Xu|pdx+

∫
Zh

|Xu|pdx
)

+ lim inf
h→∞

2p−1

(∫
Zh

|vh − v|pdx+

∫
Zh

|v|pdx+

∫
Zh

|Xvh −Xv|pdx+

∫
Zh

|Xv|pdx
)

≤
∫
B′
ws+ 1

M

(
x, r +

1

m

)
dx+K lim

h→∞

(
‖u− uh‖W 1,p

X (Ω) + ‖v − vh‖W 1,p
X (Ω)

)
+ lim inf

h→∞

∫
B′
χZhb(x)dx,

for a constant K > 0 and a suitable function b ∈ L1(B′). Therefore, thanks to the Dominated

Convergence Theorem, we conclude that

|F (u,B′)− F (v,B′)| ≤
∫
B′
ws+ 1

M

(
x, r +

1

m

)
dx.

Arguing as in the first step and letting M,m go to infinity, the thesis follows.

Proposition 4.3.14. Let (Fh)h be a sequence in Wm,p(a, c1, c2, ω) and let us assume that

there exists a functional F : W 1,p
X (Ω)×A −→ [0,∞] such that

F (·, A′) = Γ(W 1,p
X )− lim

h→∞
Fh(·, A′) for any A′ ∈ A0.
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Then F satisfies the strong condition (ωX) with respect to ω.

Proof. Let A′ ∈ A0, u, v ∈ W 1,p
X (Ω) and s, r ≥ 0 such that (4.3.14) holds, and fix m,M > 0.

Let (uh)h and (vh)h be recovery sequences respectively for u and v. Then it follows that

|F (u,A′)− F (v, A′)| = lim
h→∞
|Fh(uh, A′)− Fh(vh, A′)|.

Notice that, since Fh ∈Wm,p(a, c1, c2, ω) then it is a measure, it satisfies the strong condition

(ωX) with respect to (ωs)s≥0, and thanks to a slight variant of [55, Theorem 3.1], it is W 1,p
X -

continuous. Moreover, thanks to (4.3.1), it satisfies (4.3.10) for any u ∈ W 1,p
X (Ω) and for any

B ∈ B. Therefore it satisfies the hypotheses of Proposition 4.3.13. Hence, repeating exactly

the same estimates performed in the proof of Proposition 4.3.13, we conclude that

lim
h→∞
|Fh(uh, A′)− Fh(vh, A′)| ≤

∫
A′
ωs(x, r)dx,

and so the thesis follows.

Now, we can state and show the proof of the last main Γ-compactness result.

Theorem 4.3.15. For any sequence (Fh)h ⊆ Wm,p(a, c1, c2, ω) there exists a subsequence

(Fhk)k and a functional F ∈Wm,p(a, c1, c2, ω) such that

F (·, A) = Γ(W 1,p
X )− lim

k→+∞
Fhk(·, A) for any A ∈ A.

Proof. Since (Fh)h ⊆ Wm,p(a, c1, c2, ω), from Proposition 4.3.11 we know that there exists a

functional F : W 1,p
X (Ω)×A −→ [0,∞] which is a measure, local, W 1,p

X -lower semicontinuous

and satisfies (4.3.10), and such that (4.3.11) holds. Moreover, thanks to Proposition 4.3.14, F

satisfies the strong condition (ωX) with respect to ω. Therefore F satisfies all the hypotheses

of [55, Theorem 4.4], and so we conclude that F ∈Wm,p(a, c1, c2, ω).

4.3.3 Further Remarks and Open Problems

In Section 4.2, we obtained a Γ(Lp)−compactness result for a class of convex integral func-

tionals defined on Lp(Ω). Nevertheless, we did not generalize the result when the convexity
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assumption is dropped. On the other hand, in the last section we took into account the non-

convex case, working in a suitable class of integral functionals where the strong condition

(ωX) is required uniformly on the class. In the light of these considerations, there are still

some questions unsolved. However, we have to introduce the following notion, which is the

reasonable counterpart of Definition 4.3.2.

Definition 4.3.16. If ω = (ωs)s≥0 is a family of locally integrable moduli of continuity in

the sense of Definition 4.3.2. Then, we say that a functional F : Lp(Ω) × A −→ [0,+∞]

satisfies the weak condition (ωX) with respect to ω if

|F (u+ r, A′)− F (u,A′)| ≤
∫
A′
ωs(x, |r|) dx (4.3.16)

for any s ≥ 0, A′ ∈ A0, r ∈ R, u ∈ W 1,p
X (Ω) such that

|u(x)|, |v(x) + r|, |r| ≤ s

for a.e. x ∈ A′.

Indeed, if ω is a fixed family of moduli of continuity it is reasonable to ask the following.

Question 1. Let (Fh)h ⊂ Im,p(a, c0, c1, c2) be a sequence of functionals satisfying the strong

condition (ωX) with respect to ω. Does it exists a subsequence (Fhk)k and a functional

F ∈ Im,p(a, c0, c1, c2), such that

F (·, A) = Γ(Lp)− lim
k→+∞

Fhk(·, A) for any A ∈ A,

and F satisfies the strong condition (ωX)?

It is reasonable to demand the same question above when, the sequence of functionals

(Fh)h ⊂ Im,p(a, c0, c1, c2) is supposed to be weakly*-seq. l.s.c. and satisfying the weak

condition (ωX) with respect to ω. Moreover we have

Question 2. Let (Fh)h ⊂ Um,p(a, c1, c2) be a sequence of functionals satisfying the weak con-

dition (ωX) with respect to ω and which are weakly*-seq. l.s.c. Does it exists a subsequence
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(Fhk)k and a functional F ∈ Um,p(a, c1, c2), such that

F (·, A) = Γ(W 1,p
X )− lim

k→+∞
Fhk(·, A) for any A ∈ A,

where F is weakly*-seq. l.s.c. and satisfies the weak condition (ωX)?

Unfortunately, in view of Proposition 4.2.5, Proposition 4.3.11 and the integral represen-

tation results in [55], the only questions we did not answer are the following.

Open Problem 1. Let (Fh)h ⊂ Im,p(a, c0, c1, c2) be a sequence of functionals that satisfy

the weak (resp. strong) condition (ωX). Let F : Lp(Ω)×A −→ [0,∞] be the functional such

that

F (·, A′) = Γ(Lp)− lim
h→∞

Fh(·, A′) for any A′ ∈ A0.

Then F satisfies the weak (resp. strong) condition (ωX) with respect to ω.

Open Problem 2. Let (Fh)h ⊂ Um,p(a, c1, c2) be a sequence of (possibly not weakly*-seq.

l.s.c.) functionals and assume that there exists F : W 1,p
X (Ω)×A −→ [0,∞] such that

F (·, A′) = Γ(W 1,p
X )− lim

h→∞
Fh(·, A′) for any A′ ∈ A0.

Then F is a weakly*-seq. l.s.c functional.

However we are going to show that the following results are verified.

Proposition 4.3.17. Let ω be a family of locally integrable moduli of continuity. Let (Fh)h be

a sequence in Um,p(a, c1, c2) and assume that each Fh satisfies the weak condition (ωX) with

respect to ω. Assume in addition that there exists a functional F : W 1,p
X (Ω)×A −→ [0,+∞]

such that

F (·, A′) = Γ(W 1,p
X )− lim

h→+∞
Fh(·, A′) for any A′ ∈ A0.

Then F satisfies the weak condition (ωX) with respect to ω.

Proof. The proof of this result is totally similar to the proofs of Proposition 4.3.13 and

Proposition 4.3.14, and so we take it for granted.
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Proposition 4.3.18. Let Fh : Lp(Ω) × A −→ [0,+∞] be a sequence of (not necessary

integral) functionals, and assume that there exists a functional F : Lp(Ω) × A −→ [0,∞]

which is a measure and such that

F (·, A′) = Γ(Lp)− lim
h→+∞

Fh(·, A′) for any A′ ∈ A0.

Then F is weakly*-seq. lower semicontinuous.

Proof. Let A ∈ A, A′ ∈ A with A′ b A, u ∈ W 1,∞(Ω) and take a sequence (uh)h ⊆ W 1,∞(Ω)

which is weakly*-convergent to u. Then, since A′ b A, it is well known that uh converges to

u strongly in L∞(A′), and so in particular strongly in Lp(A′). Being F (·, A′) a Γ(Lp)−limit,

it is Lp−lower semicontinuous. Moreover, being F a measure, it is also increasing. These

facts imply that

F (u,A′) ≤ lim inf
h→∞

F (uh, A
′) ≤ lim inf

h→∞
F (uh, A).

Since F is inner regular and since A′ b A is arbitrary, the conclusion follows.

4.4 A Γ-convergence result on Carnot groups

Strongly inspired by [28, Theorem 3.1], in the last section we want to present a particular

Γ-convergence result in a Carnot group of step k. For this purpose, to any distance d in

Dcc(Ω) of Definition 2.3.1, we are going to associate the functionals defined respectively on

the class B(Ω) of all positive and finite Borel measures µ on Ω× Ω and on Lip([0, 1],Ω). In

other words, we set

Jd(µ) =

∫
d(x, y) dµ(x, y), µ ∈ B(Ω);

Ld(γ) =

∫ 1

0

ϕd(γ(t), γ̇(t)) dt, γ ∈ Lip([0, 1],Ω).

As already mentioned in Subsection 2.2, we equip Dcc(Ω) with the topology of the uniform

convergence on compact subsets of Ω×Ω. Moreover, we endow B(Ω) and Lip([0, 1],Ω) with

the topology of weak∗ convergence and of the uniform convergence, respectively.
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Theorem 4.4.1. Let Ω ⊂ G be an open set in a Carnot group of step k and let (dn)n and d

belong to Dcc(Ω). If Jn, Ln and J, L are the functionals associated respectively to dn and d,

defined as before, then the following conditions are equivalent:

(i) dn → d in Dcc(Ω);

(ii) J = Γ(B(Ω))− limn→∞ Jn;

(iii) L = Γ(Lip(Ω))− limn→∞ Ln;

Moreover, if Ω is bounded, then (i), (ii) and (iii) are equivalent to the following condition:

(iv) Jn continuously converges to J , meaning that J(µ) = limn Jn(µn) holds whenever the

sequence (µn)n ⊂ B(Ω) weakly∗ converges to µ ∈ B(Ω).

Proof. (i) ⇒ (ii). In order to prove the Γ-lim inf inequality, fix µ ∈ B(Ω) and (µn)n ⊂ B(Ω)

such that µn weakly∗ converges to µ. Fix a sequence (ηk)k of compactly-supported continuous

functions ηk : Ω× Ω→ [0, 1] such that ηk(x)↗ 1 for every x ∈ Ω. Since dn → d in Dcc(Ω),

we deduce that for any k ∈ N we have that ηkdn → ηkd uniformly as n → ∞, thus there

exists a sequence (εkn)n ⊂ (0,+∞) such that εkn ↘ 0 as n → ∞ and |ηkdn − ηkd| ≤ εkn on

Ω× Ω. Moreover, since µn weakly∗ converges to µ, by using Banach–Steinhaus Theorem we

deduce that supn µn(Ω× Ω) < +∞. Therefore, since ηkd is continuous and bounded, we get

that∣∣∣∣ ∫ ηk(x, y)dn(x, y) dµn(x, y)−
∫
ηk(x, y)d(x, y) dµ(x, y)

∣∣∣∣
≤ εkn µn(Ω× Ω) +

∣∣∣∣ ∫ ηk(x, y)d(x, y) dµn(x, y)−
∫
ηk(x, y)d(x, y) dµ(x, y)

∣∣∣∣→ 0 as n→∞,

for every k ∈ N. In particular, for any k ∈ N we have that∫
ηk(x, y)d(x, y) dµ(x, y) = lim

n→∞

∫
ηk(x, y)dn(x, y) dµn(x, y) ≤ lim inf

n→∞
Jn(µn).

By monotone convergence theorem, we conclude that J(µ) ≤ lim infn Jn(µn), as desired.
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Let us pass to the verification of the Γ-lim sup inequality. Fix any µ ∈ B(Ω). We aim

to show that the sequence constantly equal to µ is a recovery sequence, namely J(µ) ≥

lim supn Jn(µ). If J(µ) = +∞, then there is nothing to prove. Thus suppose that J(µ) <

+∞.

Since (1/α)dcc ≤ d, we deduce that dcc ∈ L1(µ). By combining this information with the

fact that dn ≤ αdcc for all n ∈ N and dn → d pointwise on Ω × Ω, we are in a position

to apply the dominated convergence theorem, obtaining that J(µ) =
∫
d(x, y) dµ(x, y) =

limn

∫
dn(x, y) dµ(x, y) = limn Jn(µ).

(i) ⇒ (iii). For every γ ∈ Lip(Ω), we have to prove the following two claims:

∀ γn → γ in Lip(Ω) : Ld(γ) ≤ lim inf
n→∞

Ldn(γn), (4.4.1)

∃ γn → γ in Lip(Ω) : Ld(γ) ≥ lim sup
n→∞

Ldn(γn). (4.4.2)

We begin proving (4.4.1). Let γn → γ in Lip(Ω). By definition of Ld(γ), for any δ ≥ 0 we

can find a partition of [0, 1], indexed over a finite set Iδ, such that

Ld(γ) ≤ δ +
∑
i∈Iδ

d(γ(ti), γ(ti+1)). (4.4.3)

Since {γn}n∈N converges uniformly on [0, 1], we may assume that

∃ n̄ ∈ N : (γn(s), γn(t)) ∈ K ⊂ Ω× Ω, ∀s, t ∈ [0, 1], ∀n ≥ n̄,

where K is compact. Then, for every i ∈ Iδ,

|dn(γn(ti), γn(ti+1))− d(γ(ti), γ(ti+1))|

≤ |dn(γn(ti), γn(ti+1))− d(γn(ti), γn(ti+1))|+ |d(γn(ti), γn(ti+1))− d(γ(ti), γ(ti+1))|

≤ sup
K
|dn − d|+ d(γ(ti), γn(ti)) + d(γ(ti+1), γn(ti+1))

≤ sup
K
|dn − d|+ α

(
dcc(γ(ti), γn(ti)) + dcc(γ(ti+1), γn(ti+1))

)
≤ sup

K
|dn − d|+ αCK′

(
|γ(ti)− γn(ti)|

1
k + |γ(ti+1)− γn(ti+1)|

1
k

)
≤ sup

K
|dn − d|+ 2αCK′ sup

[0,1]

|γ − γn|
1
k =: ξn,
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where K ′ ⊂ Ω is any compact set such that K ⊂ K ′ ×K ′ and CK′ is the constant provided

by Theorem 2.1.11. Note that ξn → 0. We infer from (4.4.3) and from the definition of Ldn

that

Ld(γ) ≤ δ +
∑
i∈Iδ

[dn(γn(ti), γn(ti+1)) + ξn] ≤ δ + Ldn(γn) + ξn card(Iδ).

Passing to the lim inf as n→ +∞, we get

Ld(γ) ≤ lim inf
n→∞

Ldn(γn) + δ.

This yields (4.4.1) by the arbitrariness of δ > 0.

We prove now (4.4.2). Let γ ∈ Lip(Ω), let K ⊂ Ω× Ω compact be chosen as above, and

let r(n)→∞ be a sequence such that

lim
n→∞

r(n) sup
K
|dn − d| = 0.

For every n ∈ N, let In be the partition of [0, 1] into r(n) intervals of equal length, and

denote by {tin}, i = 1, . . . , r(n) + 1, the endpoints of such intervals. Let γn be a curve whose

restriction γin to the interval [tin, t
i+1
n ] is defined by

γin(tin) = γ(tin), γin(ti+1
n ) = γ(ti+1

n ), Ldn(γin) ≤ dn(γ(tin), γ(ti+1
n )) +

1

2r(n)
. (4.4.4)

Claim: The sequence (γn)n∈N converges to γ in Lip(Ω).

Let us prove the claim. Fix a compact set K ⊂ Ω such that γ(t), γn(t) ∈ K for every

n ∈ N and t ∈ [0, 1]. Given any n ∈ N and t ∈ (0, 1], we denote by (t−n , t
+
n ] the interval of In

containing t. Consider the constant CK given by Theorem 2.1.11. Then it holds that

1

CK
|γn(t)− γ(t)| ≤ dcc(γn(t), γ(t)) ≤ dcc(γn(t), γn(t+n )) + dcc(γ(t+n ), γ(t)) =: An +Bn.

Now, by the uniform continuity of γ on [0, 1], the term Bn tends to zero as n→ +∞ uniformly
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with respect to t. The same holds for An, since Theorem 2.1.11 implies that

1

αCK
|γn(t)− γn(t+n )| ≤ 1

α
dcc(γn(t), γn(t+n )) ≤ dn(γn(t), γn(t+n )) ≤ Ldn(γn|[t,t+n ])

≤ Ldn(γn|[t−n ,t+n ]) ≤ αdcc(γn(t−n ), γn(t+n )) +
1

2r(n)

= αdcc(γ(t−n ), γ(t+n )) +
1

2r(n)
≤ α · CK |γ(t−n )− γ(t+n )|

1
k +

1

2r(n)
,

where we applied (4.4.4) and the fact that dn ∈ Dcc(Ω). Now, by definition of Ld(γ) and the

construction (4.4.4), similarly to [28, Theorem 3.1], we infer that

Ld(γ) ≥ Ldn(γn)− r(n)

2r(n)
+

r(n)∑
i=1

[d(γ(tin), γ(ti+1
n ))− dn(γ(tin), γ(ti+1

n ))].

To get the required inequality, it is enough to pass to the lim sup in the above inequality,

noticing that, by the choice of the sequence r(n), we have

lim
n→+∞

r(n)∑
i=1

[d(γ(tin), γ(ti+1
n ))− dn(γ(tin), γ(ti+1

n ))] ≤ lim
n→+∞

r(n) sup
K
|dn − d| = 0,

and then we get the desired conclusion (4.4.2).

(iii) ⇒ (i). This implication follows from the following fact:

Claim: The class Dcc(Ω) is compact.

As we are going to show, the above claim is obtained as a consequence of the Ascoli–

Arzelá Theorem and the implication (i) ⇒ (iii) already proved. Let (dn)n ⊂ Dcc(Ω) be a

given sequence. First of all, for any (x, y) ∈ Ω × Ω we have that (dn(x, y))n is a bounded

sequence, as granted by the following estimate:

dn(x, y) ≤ αdcc(x, y) for every x, y ∈ Ω and n ∈ N. (4.4.5)

Moreover, we have to prove that the sequence (dn)n ∈ Dcc(Ω) is equi-continuous, in other

words, that for every x, x′, y, y′ ∈ Ω ⊂ G it holds

∀ε > 0 ∃ δ > 0 :

|x
′ − x| < δ

|y′ − y| < δ

⇒ |dn(x, x′)− dn(y, y′)| < ε, ∀n ∈ N.
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By using the triangle inequality and Theorem 2.1.11, we obtain that

|dn(x, y)− dn(x′, y′)| ≤ dn(x, x′) + dn(y, y′) ≤ α
(
dcc(x, x

′) + dcc(y, y
′)
)

≤ αCK
(
|x′ − x|

1
k + |y′ − y|

1
k

)
.

Choosing δ = 2 εk

CKβ
, we obtain

|dn(x, y)− dn(x′, y′)| ≤ ε.

Hence, we may extract a subsequence converging to some element d in Dcc(Ω).

To prove that d is geodesic, we use the implication (i) ⇒ (iii), which ensures that L =

Γ(Lip(Ω))− limn→∞ Ln. Fix x, y ∈ Ω. We will prove that we have the Γ-convergence for the

modified functionals:

L̃n(γ) :=

Ln(γ), if γ(0) = x and γ(1) = y;

+∞, otherwise;

L̃(γ) :=

L(γ), if γ(0) = x and γ(1) = y;

+∞, otherwise.

Arguing as in [28, Theorem 3.1], we can show that lim infn→∞ L̃n(γn) ≥ L̃(γ) whenever

γn → γ in Lip(Ω). To conclude we need to prove that, for every γ ∈ Lip(Ω), there exists

an approximating sequence {γ̃n} satisfying lim supn L̃n(γ̃n) ≤ L̃(γ). We can assume without

loss of generality that L̃(γ) = L(γ). Take a sequence (γn)n∈N with γn → γ in Lip(Ω) and

limn Ln(γn) = L(γ), whose existence follows from the fact that L = Γ− limn→∞ Ln. Now we

construct the optimal sequence (γ̃n) modifying (γn) as follows:

γ̃n(t) :=


an almost dn-geodesic connecting x and γn( 1

n
), if t ∈ [0, 1

n
];

γn(t), if t ∈ [ 1
n
, 1− 1

n
];

an almost dn-geodesic connecting γn(1− 1
n
) and y, if t ∈ [1− 1

n
, 1
n
].
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Let us now prove that γ̃n still converges to γ in Lip(Ω). Let ε > 0 be fixed. If t ∈ [ 1
n
, 1− 1

n
],

then the convergence of γn to γ in Lip(Ω) yields, for n large enough,

dcc(γ̃n(t), γ(t)) = dcc(γn(t), γ(t)) ≤ αCK |γn(t)− γ(t)|
1
k ≤ ε.

If t ∈ [0, 1
n
]
(
the case t ∈ [1− 1

n
, 1
n
] is similar

)
, then

dcc(γ̃n(t), γ(t)) ≤ dcc(γ̃n(t), x) + dcc(x, γ(t)).

For n large enough, the second term at the right side is less than ε because γ is a continuous

curve; for the first term, we have that

1

α
dcc (γ̃n(t), x) ≤ dn(γ̃n(t), x) ≤ dn(γ̃n

(
1
n

)
, x) + εn ≤ αdcc(γ̃n

(
1
n

)
, x) + εn

= αdcc(γn
(

1
n

)
, x) + εn ≤ α

[
dcc(γn

(
1
n

)
, γ
(

1
n

)
) + dcc(γ

(
1
n

)
, x)
]

+ εn

≤ α · CK
[∣∣γn ( 1

n

)
− γ

(
1
n

)∣∣+
∣∣γ ( 1

n

)
− x
∣∣] 1

k + εn, (4.4.6)

and the last term tends to zero as n → ∞, since γn → γ in Lip(Ω), and γ is a continuous

horizontal curve. Thus we have obtained that γ̃n → γ in Lip(Ω). It remains to show the

inequality lim supn L̃n(γ̃n) ≤ L̃(γ). We have that

L̃n(γ̃n) ≤ dn(x, γn
(

1
n

)
) + Ln(γn) + dn(γn

(
1− 1

n

)
, y) + 2εn. (4.4.7)

Notice now that, from (4.4.6), it follows in particular that limn dn(x, γn
(

1
n

)
) = 0. Similarly,

one obtains that limn dn(γn
(
1− 1

n

)
, y) = 0, hence passing to the lim sup as n→∞ in (4.4.7)

gives

lim sup
n→∞

L̃n(γ̃) ≤ lim sup
n→∞

L(γn) = L(γ) = L̃(γ).

Thus, by the Γ-convergence of Ln to L, we deduce that

inf
γ
{L̃(γ)} = lim

n→∞
inf
γ
{L̃n(γ)}. (4.4.8)

Since dn are geodesic distances in Dcc(Ω), the right-hand side is equal to the limit of dn(x, y),

that is d(x, y). Thus equation (4.4.8) means exactly that d is a geodesic distance, as desired.
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Finally, assume in addition that Ω is bounded. On the one hand, (iv) trivially implies

(ii). On the other hand, we can prove that (i) implies (iv). To this aim, fix any µ ∈ B(Ω)

and (µn)n ⊂ B(Ω) such that µn weakly∗ converges to µ. Let ε > 0 be fixed. We have that

supn µn(Ω × Ω) < +∞ by Banach–Steinhaus Theorem. Moreover, we have that {µn}n is

weakly∗ relatively compact by assumption, thus Prokhorov’s Theorem yields the existence

of a compact set K ⊂ Ω × Ω such that µn((Ω × Ω) \ K) ≤ ε for every n ∈ N. Call D the

diameter of Ω with respect to dcc. Since d : Ω → Ω → R is bounded and continuous, we

deduce that∣∣Jn(µn)− J(µ)
∣∣ ≤ ∫

K

|dn − d| dµn +

∫
(Ω×Ω)\K

|dn − d| dµn +
∣∣J(µn)− J(µ)

∣∣
≤ µn(Ω× Ω) max

K
|dn − d|+ 2βDε+

∣∣∣∣ ∫ d dµn −
∫
d dµ

∣∣∣∣,
whence by letting n→∞ we get lim supn|Jn(µn)− J(µ)| ≤ 2βDε. By arbitrariness of ε, we

finally conclude that J(µ) = limn Jn(µn), so that (iv) is proved.
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Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math.,

49 (1996), p. 1081–1144.

[65] A. Garroni, M. Ponsiglione, and F. Prinari, From 1-homogeneous supremal

functionals to difference quotients: relaxation and Γ–convergence, Calc. Var., 27 (2006),

pp. 397–420.

[66] M. Gelli and F. Prinari, The role of intrinsic distances in the relaxation of L∞-

functionals, Nonlinear Analysis, 204 (2021), p. 25.
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