
University of Trento University of Verona

Doctoral Thesis

From optimization to listing:
theoretical advances in some

enumeration problems

Author:
Alice Raffaele

Supervisor:
Prof. Romeo Rizzi

Academic Year 2021/2022

https://www.unitn.it/en
https://www.univr.it/en/home
https://www.researchgate.net/profile/Alice-Raffaele
https://profs.sci.univr.it/~rrizzi/

From optimization to listing:
theoretical advances in some enumeration problems

by Alice Raffaele

A doctoral thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Joint Doctoral Programme in Mathematics – Cycle XXXIII

University of Trento, Department of Mathematics
University of Verona, Department of Computer Science

Assessment Committee

Prof. Romeo Rizzi University of Verona Supervisor
Prof. David Avis McGill University and Kyoto University Referee
Prof. Stefano Benati University of Trento Examiner
Prof. Roberto Grossi University of Pisa Examiner
Prof. Lhouari Nourine Université Clermont Auvergne Referee and examiner

Trento, Italy

March 2022

https://www.researchgate.net/profile/Alice-Raffaele
https://www.unitn.it/drmath/
https://www.maths.unitn.it/en
https://www.di.univr.it/?lang=en
https://profs.sci.univr.it/~rrizzi/
http://cgm.cs.mcgill.ca/~avis/
https://webapps.unitn.it/du/it/Persona/PER0004309/Curriculum
http://pages.di.unipi.it/grossi/
https://perso.isima.fr/~lhnourin/

Abstract

The main aim of this thesis is to investigate some problems relevant in enumer-

ation and optimization, for which I present new theoretical results.

First, I focus on a classical enumeration problem in graph theory with several

applications, such as network reliability. Given an undirected graph, the objective

is to list all its bonds, i.e., its minimal cuts. I provide two new algorithms, the for-

mer having the same time complexity as the state of the art by [Tsukiyama et al.,

1980], whereas the latter offers an improvement. Indeed, by refining the branching

strategy of [Tsukiyama et al., 1980] and relying on some dynamic data structures

by [Holm et al., 2001], it is possible to define an Õ(n)-delay algorithm to output

each bond of the graph as a bipartition of the n vertices. Disregarding the polylog-

arithmic factors hidden in the Õ notation, this is the first algorithm to list bonds in

a time linear in the number of vertices.

Then, I move to studying two well-known problems in theoretical computer sci-

ence, that are checking the duality of two monotone Boolean functions, and com-

puting the dual of a monotone Boolean function. Also these are relevant in many

fields, such as linear programming. [Fredman and Khachiyan, 1996] developed the

first quasi-polynomial time algorithm to solve the decision problem, thus proving

that it is not coNP-complete. However, no polynomial-time algorithm has been

discovered yet. Here, by focusing on the symmetry of the two input objects and ex-

ploiting full covers introduced by [Boros and Makino, 2009], I define an alternative

decomposition approach. This offers a strong bound which, however, in the worst

case, is still the same as [Fredman and Khachiyan, 1996]. Anyway, I also show how

to adapt it to obtain a polynomial-space algorithm to solve the dualization problem.

Finally, as extra content, this thesis contains an appendix about the topic of com-

municating operations research. By starting from two side projects not related to

enumeration, and by comparing some relevant considerations and opinions by re-

searchers and practitioners, I discuss the problem of properly promoting, fostering,

and communicating findings in this research area to laypeople.

Declaration of Authorship

I, Alice Raffaele, hereby declare that this thesis, titled “From optimization to listing:

theoretical advances in some enumeration problems”, was carried out by me for the de-

gree of Doctor of Philosophy in Mathematics under the guidance and supervision

of Prof. Romeo Rizzi, Department of Computer Science, University of Verona.

I certify that this thesis has not been accepted for the award of any other degree or

diploma in my name, in any university or other tertiary institution and, to the best

of my knowledge and belief, contains original material not previously published or

written by other people, except where the due reference was clearly pointed out in

the text. In addition, I certify that no part of this work will, in the future, be used

in a submission in my name, for any other degree or diploma in any university or

other tertiary institution without the prior approval of the University of Trento, the

University of Verona, and, where applicable, any partner institution responsible for

the joint-award of this degree. Also, I certify that, where I have consulted the pub-

lished work of others, this is always clearly attributed. Where I have quoted from

the work of others, the source is always given. With the exception of such quota-

tions, this thesis is entirely my own work. I have acknowledged all main sources of

help.

Signed: Alice Raffaele

Date: March 18, 2022

“My vocation is to write, and I have known this for a long time.

I hope I won’t be misunderstood; I know nothing about the value of the things

that I am able to write. I know that writing is my vocation.”

Natalia Ginzburg, “My vocation”, in “The Little Virtues”

“When life gives you lemons,

make your best lemonade,

and plant lemon seeds.”

ix

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Preface 1

Outline of the thesis . 2

Summary of contributions . 6

1 Introduction to enumeration 7

1.1 Enumeration problems and algorithms 7

1.2 Applications . 9

1.3 Complexity classes of enumeration problems 12

1.4 Designing enumeration algorithms . 13

1.4.1 Backtracking . 13

1.4.2 Binary partition . 14

1.4.3 Reverse search . 15

1.4.4 A note on parallel computing . 16

1.5 Analysing enumeration algorithms . 17

2 Listing the bonds of a graph in Õ(n)–delay 21

2.1 Introduction . 21

2.2 Applications . 23

2.3 Preliminaries . 24

2.4 Related work . 29

2.5 Yet another O(m)–delay algorithm . 30

2.5.1 From bonds to S, T-bonds . 30

2.5.2 Main idea, invariants, and base cases 34

2.5.3 Algorithm . 36

2.6 The dynamic data structures employed 40

2.6.1 Dynamic graph problems . 40

2.6.2 Maintaining connectivity . 41

2.6.3 Maintaining biconnectivity . 42

2.6.4 Checking cut-vertices . 43

2.6.5 Summary . 44

2.7 An Õ(n)–delay algorithm . 45

2.8 Further developments . 47

3 A new decomposition for the Monotone Boolean Duality problem 49

3.1 Introduction . 50

3.2 Applications . 52

3.2.1 The Vertex (Facet) Enumeration problem 53

3.3 Related work . 56

3.4 Preliminaries . 58

3.4.1 Set families . 58

3.4.2 Clutters, blockers, and duality 59

3.4.3 Clean pairs and a first naive approach 60

3.4.4 Filter and Projection . 62

3.4.5 Fredman and Khachiyan’s result and frequency 64

3.5 Pursuing symmetry . 65

3.5.1 The role of certificates . 65

3.5.2 Bipartitions as certificates . 66

3.5.3 Bipartitions and frequency . 67

3.6 Full covers . 67

3.6.1 Full covers and duality testing 68

3.6.2 Full covers and bipartitions . 70

3.7 A new decomposition algorithm . 71

3.7.1 Algorithm . 71

3.7.2 Summary . 74

3.7.3 Time complexity . 74

3.8 The space issues in dualization . 78

3.8.1 A naive procedure to dualize . 78

3.8.2 Reporting transversals one by one by using processes 79

3.8.3 Reformulating decomposition rules 80

3.8.4 A polynomial-space algorithm for dualization 81

3.8.5 Space complexity . 82

3.9 Further developments . 86

3.9.1 Generalizations and extensions of full-covers methods 86

3.9.2 Investigating other measures and techniques 88

4 Conclusions 91

A On communicating operations research 95

A.1 The industrial case study of Province of Brescia 96

A.1.1 Problem definition . 98

A.1.2 Mathematical formulation . 99

A.1.3 Experimental evaluation . 101

A.2 Mathematics education and OR . 103

A.2.1 A literature review . 103

A.2.2 The ROAR project . 105

A.3 On communicating operations research 106

A.3.1 The issue of visibility of operations research 106

A.3.2 Different contexts, different purposes, and different actions . . 108

A.4 Conclusions . 111

References 113

xiii

List of Figures

2.1 Difference between a generic cut and a minimal cut (i.e., a bond). . . . 26

2.2 The connected graph of Figure 2.1, its three cut-vertices ({2, 3, 5}),

and its four biconnected components ({1, 2, 3, 4, 5, 8, 9, 10, 13}, {2, 11, 14},

{3, 12, 15}, and {5, 6, 7}). 27

2.3 The graph G corresponding to ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x5) ∧
(x4 ∨ x5 ∨ x6) in Example 2.1. The vertices in green (in red) belong to

S (to T). 32

2.4 Example of a subproblem (S, T), where S = {1, 2, 4, 9, 11} (filled-

green vertices), T = {5, 10} (filled-orange vertices), W = {3, 5, 6, 7, 8,

10, 12, 13}, and (N(S) ∩ W) \ T = {3, 8, 13} (orange circles). The

bond-shore S, or its corresponding bond δG (S, W) (red edges), is

the incumbent solution. 35

2.5 Possible choices of the pivot vertex v (filled-grey vertex) in the exam-

ple subproblem (S, T) shown in Figure 2.4. 37

3.1 The clutters F1 := {{vi, v′i} | i = 1, . . . , n} and F2 := {{vi, v′j} | i, j

= 1, . . . , n} in Example 3.3. 62

3.2 Trends of 1− logχ(π,2) 2 and k = max
{

ln 2, 1 − logχ(π,2) 2
}

as χ(π, 2)

and π increase, respectively. 77

A.1 Public libraries located in the provinces of Brescia and Cremona (©

OpenStreetMap contributors). 97

A.2 Organization of the public libraries in the province of Brescia into

a set of lines, each one represented with a different colour (Google

map: https://shorturl.at/axEFR). 98

A.3 Comparison between an estimate of the actual costs and the optimal

solutions of the instances in lines_calendar. 102

A.4 Some comparisons among the OR educational initiatives collected in

[Raffaele and Gobbi, 2021]. 104

https://shorturl.at/axEFR

xiv

A.5 Interest over time of the search terms “operations research”, “data

science”, “machine learning”, and “big data”, in the period [Decem-

ber 27, 2020 – December 23, 2021]. 107

xv

List of Tables

2.1 Dynamic data structures exploited. 44

3.1 Comparison among state-of-the-art algorithms to solve the Monotone

Boolean Duality problem. 74

A.1 Sets of instances derived from the data on the interlibrary loans in

the province of Brescia in 2019. 101

xvii

List of Algorithms

2.1 DFS(G, u, lowpoint, discovery, time) – [Hopcroft and Tarjan, 1973]. . . . 28

2.2 Computing the cut-vertices of a connected graph G – [Hopcroft and

Tarjan, 1973]. 28

2.3 Listing all bonds of a graph G . 33

2.4 Listing S, T-bonds(S, T, W) . 38

3.1 SimpleDuality(E ,D) . 72

3.2 MissingPair(E , D, Ω) . 72

3.3 NaiveDualize(E , Ω) . 79

3.4 Dualize(E) . 82

To William

1

Preface

“Until the moment preceding that in which we begin to write, we have the world at our

disposal – the one that for each of us constitutes the world, a sum of information,

experiences, values – the world given as a whole; [...], and we want to extract a discourse, a

story, a feeling from this world: or perhaps more exactly we want to carry out an operation

that allows us to place ourselves in this world.”

Italo Calvino, On beginning and ending, in Six Memos for the Next Millennium

Operations research is a branch of applied mathematics. Given its interdisci-

plinary nature, it can be related to other several disciplines, such as algorithms,

graph theory, and combinatorics. Also, it can be exploited to tackle many sit-

uations arising from reality, such as logistics, production and facilities planning,

marketing and finance, and so on. Thus, the problems studied in operations re-

search are disparate, spanning from more theoretical questions to very practical

applications. Usually, what all these problems share is the goal to minimize (or

maximize) a given objective, by deciding the values of some objects called variables,

and taking into account some constraints to be satisfied. Here we talk about opti-

mization problems. Since the years of World War II, operations research has been

developing different paradigms and approaches to study such problems, formulate

them as models, and solve them. Generally, exact methods are preferred because

they allow for obtaining an optimal solution with certainty. However, sometimes

these methods can struggle in their computation, e.g., when the size of the input

instance is too big or when the problem itself is hard to be solved (in the computa-

tional complexity sense). To compute a solution at least “good”, one can then rely

on other methods, such as approximations algorithms or heuristics. By using an

algorithm of the former kind, the solution obtained would also come with a proved

bound on the distance from the optimum, whereas the latter would not provide any

information on the quality of the solution. Another approach considers to compute

a set of feasible solutions, choose the best one found, and maybe starting from this

to launch an algorithm of the previous kinds. Sometimes it may also be useful to

2 Preface

compute and output all feasible solutions, for instance when the objective function

of the problem is not clear or when it is dynamic and subject to changes. In this

case, we move from the context of optimization to the one of listing, by introducing

enumeration problems and algorithms.

Outline of the thesis

The main aim of this thesis is to investigate some relevant problems in enumeration

and optimization, for which I present new theoretical results.

In Chapter 1, I provide a short introduction on the research area of enumeration,

by highlighting some differences with optimization problems and algorithms, in

terms of computational complexity and techniques.

The two core chapters of the thesis have a similar structure. First, I briefly intro-

duce the problem studied and the main results obtained. I also summarize the state

of the art both in terms of the attempts done to solve the problem and in terms of

the applications it is relevant to. Then, I provide basic notions and definitions in

order to formally define the problem. Successively, I fully describe and explain my

contribution. Finally, I conclude by discussing current and further work, as well as

other possible research directions.

Chapter 2 is based on the following manuscript, submitted for publication:

• [Raffaele et al., 2021]. Raffaele, A., Rizzi, R., and Uno, T., Listing the bonds of a

graph in Õ(n)-delay. June 2021. Submitted.

Here I work on some fundamental concepts of graph theory, that are, connec-

tivity and cuts. Given an undirected and connected graph, a cut is a set of edges

that, if removed, would disconnect the graph. A cut can also be represented as a

bipartition of the vertices of the graph. Usually, in linear programming, we look

for a minimum cut, i.e., a cut having the minimum number of edges or the smallest

capacity. To compute one, all possible bipartitions of vertices can be examined, by

checking the corresponding set of edges connecting the two partitions. However,

this approach is not efficient, given the exponential number of bipartitions to ex-

amine. Rather than doing this, we apply the famous max flow-min cut theorem

by [Ford and Fulkerson, 2015] and we rely on polynomial-time algorithms for the

maximum-flow problem. What if we want to obtain, instead, all the cuts? To rep-

resent them, we can compute only those that are minimal under inclusion. When a

Outline of the thesis 3

cut is minimal, none of its subsets is also a cut, and the corresponding bipartition

of vertices leads to two connected induced subgraphs.

The problem of listing all minimal cuts, or bonds, of a graph, has been quite

studied in enumeration. The state of the art corresponds to the polynomial-delay

algorithm by [Tsukiyama et al., 1980], that allows outputting a new bond in a time

linear in the number of edges of the given graph. In this part of the thesis, I propose

two algorithms, the former having the same time complexity as [Tsukiyama et al.,

1980], whereas the latter improving this by relying on dynamic-graph algorithms

[Holm et al., 2001]. In this way, it is possible to obtain the first polylogarithmic-

delay listing algorithm for bonds, linear in the number of vertices of the given

graph.

Chapter 3 is based on the following manuscript, submitted for publication:

• [Raffaele and Rizzi, 2021]. Raffaele, A. and Rizzi, R., A new decomposition for

the Monotone Boolean Duality problem. July 2021. Submitted.

Here I study the Monotone Boolean Duality problem and the Monotone Boolean

Dualization problem. The former is the following well-known decision problem:

given two Monotone Boolean functions, one described by a disjunctive normal form

and the other by a conjunctive normal form, the goal is to determine whether

they are dual of each other, i.e., whether they represent the exact same function.

The latter is similar but it is instead a listing problem: given a Monotone Boolean

function, expressed through a disjunctive normal form, the goal is to compute its

dual, expressed through a conjunctive normal form.

What brought me to these problems is a fundamental question in linear pro-

gramming. A polyhedron can be described either as the intersection of a set of

some closed halfspaces or as the Minkowski sum of the convex hull of a finite set

of points plus a conical combination of vectors ([Ziegler, 2012]). How can we move

from one representation to the other, possibly in an efficient way? This question,

known as the Vertex (Facet) Enumeration problem, is still open, though some posi-

tive and negative results have been obtained in the last twenty years (e.g., [Bussieck

and Lübbecke, 1998], [Khachiyan et al., 2006]). There is a connection between the

Vertex (Facet) Enumeration problem and another problem denoted by Joint Genera-

tion, which also can be related to the Monotone Boolean duality problem and to the

Monotone Boolean dualization problem (e.g., [Boros et al., 2002]). Thus, I decided

to put my focus on these.

4 Preface

Despite the remarkable result of [Fredman and Khachiyan, 1996], who proved

that the Monotone Boolean Duality problem is not coNP-complete by providing

a quasi-polynomial time algorithm, the exact complexity of the problem has not

been discovered yet. Several attempts and approaches have been proposed in the

last twenty-five years, the most relevant being [Elbassioni, 2008] and [Boros and

Makino, 2009]. By starting from these, first I propose a new decomposition scheme

for the Monotone Boolean Duality problem. This approach better highlights the

inherent symmetry of the problem and offers a strong bound, even if, in the worst

case, it still has the same time complexity as [Fredman and Khachiyan, 1996]. Then,

I show how to reduce the Monotone Boolean Dualization problem to the Monotone

Boolean Duality problem. Being this a decision problem, there is no need to worry

about the memory needed to solve it. Instead, when dealing with dualization, more

attention should be paid in trying not to occupy an exponential space. By adapting

this approach introducing some changes, I am able to present a polynomial-space

algorithm to compute the dual of a given monotone Boolean function.

In Chapter 4, I draw some general conclusions on the two core topics discussed,

before moving on to some extra contents. Working in operations research can offer

several and disparate problems to investigate and explore. Indeed, my doctorate

had quite a manifold nature, by including many other projects not limited to enu-

meration, some more connected to the so-called third mission of universities, that is,

exploiting knowledge and research for the benefit of the social, cultural, and eco-

nomic development ([Compagnucci and Spigarelli, 2020]). This is the reason why

this thesis contains an appendix which, I hope, will be as attractive as the main

contributions.

Appendix A is an extra essay about the communication of operations research

to laypeople. It is mainly based on the following manuscript, already published.

• [Raffaele, 2021]. Raffaele, A., Becoming Visible: Why We Should be Better Commu-

nicators Now. Springer Nature Operations Research Forum 2, 7 (2021). https:

//doi.org/10.1007/s43069-020-00051-y. Adapted by permission from Copy-

right Clearance Center.

In order to introduce the topic and the relevance of communicating operations

research, I start by providing an overview on two side projects I worked on during

my doctorate. The former side project is an industrial case study, about the analysis

of the current implementation of the interlibrary loan service provided by the public

company Province of Brescia. In particular, I focus on the evaluation of the routing

https://www.springer.com/journal/43069
https://doi.org/10.1007/s43069-020-00051-y
https://doi.org/10.1007/s43069-020-00051-y

Outline of the thesis 5

aspects, which I tackle by using mixed-integer linear programming. This part is

based on the following manuscript, still a working paper:

• [Raffaele et al., 2022] Raffaele, A., Gussago, M., Zavatteri, M., Bazzoli, F., and

Rizzi, R., Analysis, evaluation, and improvement of the routing of an interlibrary

loan service: the case study of Province of Brescia (2022). Working paper.

The latter side project is instead related to mathematics education and the im-

pact that operations research can have to increase motivation and interest towards

mathematics, especially in secondary-school students. This led me to develop, to-

gether with three other young researchers and a high-school teacher, an educational

initiative based on operations research addressed to Grades 10–12, as described in

[Raffaele and Gobbi, 2021], [Colajanni et al., 2022], and [Taranto et al., 2022].

What these two side projects share is the higher purpose to make operations re-

search more known, exploited, and appreciated. They represent just two examples

of the various fields, outside the academic environment, where operations research

can be promoted and applied by using terminology appropriate to the context. By

starting from these, I reflect on the problem of properly communicating research

findings to laypeople, as well as the issue of visibility of operations research. First, I

collect and compare some relevant considerations and opinions by researchers and

practitioners on the topic. Then, I bring some food for thought, in order to refuel

the discussion and to encourage researchers to take action, to make operations re-

search more visible.

Finally, in the References, I report all scientific papers, books, and other kinds

of resources consulted and cited throughout the whole document.

6 Preface

Summary of contributions

In the main body of the thesis:

• I provide two new enumeration algorithms to solve the problem of listing

all bonds in an undirected graph. The former has the same time complexity

as the state of the art, whereas the latter improves it, by offering the first

polylogarithmic-delay algorithm for bonds, linear in the number of vertices.

• I propose another decomposition for the Monotone Boolean Duality problem,

where I highlight the symmetric nature of the problem. In the worst case, this

has the same complexity as the state of the art.

• I propose a polynomial-space enumeration algorithm to solve the Monotone

Boolean Dualization problem.

In the appendix:

• I discuss the problem of promoting and communicating operations research

to laypeople in different contexts, from mathematics education to industry.

7

Chapter 1

Introduction to enumeration

“Whenever humanity seems condemned to heaviness, I think I should fly like Perseus into

a different space. I don’t mean escaping into dreams or into the irrational. I mean that I

have to change my approach, look at the world from a different perspective,

with a different logic and with fresh methods of cognition and verification.”

Italo Calvino, Lightness, in Six Memos for the Next Millennium

In this first chapter, I give a brief overview on the research area of enumeration.

In particular, I provide some basic definitions and notions, needed in the following

chapters of the thesis.

1.1 Enumeration problems and algorithms

In theoretical computer science, a decision problem asks to answer the following

question: “Given a problem, does it admit a feasible solution?”. In operations research,

we typically study optimization problems, i.e., problems where we would like to min-

imize (or maximize) an objective function by deciding the values of some variables

and, at the same time, satisfying a set of constraints. The question to answer be-

comes: “Given a problem, what is an optimal solution, among all the feasible ones?”. To

manage this, first we can use mathematical modelling to formulate the problem

according to a certain paradigm (e.g., linear programming). Then, we can exploit

existing solvers to get the solution we are interested in. We can rely on exact

methods, approximation algorithms, or heuristics. However, there may be several

issues making the task more difficult to achieve. For instance, sometimes solvers

can struggle in finding optimal solutions when dealing with big instances having

8 Chapter 1. Introduction to enumeration

a huge number of variables and/or constraints. In this case, heuristics and meta-

heuristics are usually preferred to get good sub-optimal solutions, even if they can-

not offer a guarantee in terms of distance from the optimum, unlike approximation

algorithms.

Other times, the available data describing a problem may not be sufficient to

find a proper criterion to identify the characteristics of an optimal solution. Conse-

quently, also the objective function may be unclear to be defined and stated.

A possible way to deal with this is not to limit the search to an optimal solu-

tion only, but to list other (or all) possible solutions, thus relying to enumeration.

This term comes from the latin word “enumeratio, -tionis”1, that indicates the action

of listing all objects in a collection, in a specific or random order. This concept

has been studied in several disciplines, for instance in philosophy and logic. In

mathematics and computer science, an enumeration (or listing) problem consists in

listing all elements in a given set, according to some specific conditions. It thus

asks the following question: “Given a problem, what are all its feasible solutions?”. A

procedure that solves an enumeration problem is called an enumeration (or listing)

algorithm. Consider, for example, the well-known Travelling Salesman Problem (TSP).

Given a list of cities and the distances between each pair of them, the optimization

version of the TSP asks to compute the shortest tour to visit each city exactly once

and return to the origin city ([Applegate et al., 2006]). The decision version of the

TSP asks only to determine whether a tour of a given length exists. In the listing

version of the TSP, we want to return all possible tours satisfying the constraints,

no matter their length. A nice way to link optimization and enumeration is listing

all near-optimal solutions, i.e., all feasible solutions such that their objective function

values are within a certain range from the optimal value (see, e.g., [Shmoys, 1995]).

In our example about the TSP, we might be interested in computing all tours of a

length within k% of the optimum.

What are the main features we require to an enumeration algorithm? First, we

want it to be correct, i.e., all its outputs must be feasible solutions of the input in-

stance of the given problem. Then, we ask an enumeration algorithm to output all

the solutions of the input instance, i.e., it has to be complete. Also, an enumeration

algorithm has to avoid duplication, i.e., there are no repetitions and each solution of

the given input instance is output exactly once. There are several ways to guaran-

tee this. For instance, we could store in memory all solutions already computed

1http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059:
entry=enumero

http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059:entry=enumero
http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059:entry=enumero

1.2. Applications 9

and checking, whenever a new solution is found, whether it has been already out-

put or not, by including a sub-procedure to decide it, or by defining a canonical

form of encoding solutions in order to avoid isomorphic solutions ([Marino, 2015]).

Finally, we would like to enumerate quickly. Indeed, a desirable attribute of an

enumeration algorithm is efficiency. We may be able to compute a feasible solu-

tion in polynomial time, but we can also consider how to efficiently derive other

solutions from that ([Uno, 2016]). When a problem is small and the variables are

few, or when the number of solutions can be controlled by some parameters (e.g.,

solution size), then enumerating all the solutions may not be a huge task. When

an enumeration problem admits an exponential number of solutions, one can try

to unify similar solutions into others. For instance, some problems allow defin-

ing maximal (or minimal) under-inclusion solutions, that subsume the information

contained in others. These may be exponentially fewer, and thus an enumeration

algorithm could focus on just outputting these ([Uno, 2016], [Conte and Uno, 2019]).

This chapter is organized as follows. In Section 1.2, I present some applica-

tions of enumeration in different disciplines. In Section 1.3, I briefly describe the

main complexity classes used to classify enumeration problems. Successively, in

Sections 1.4 and 1.5, I summarize the most common techniques used to design and

to analyse, respectively, enumeration algorithms.

1.2 Applications

Enumeration algorithms are often used to list objects in graph theory, a discipline

that studies graphs, i.e., mathematical structures representing pairwise relations

between sets of entities. For instance, one can be interested in finding all paths (e.g.,

[Danielson, 1968], [Eppstein, 1998], and [Birmelé et al., 2012]), cliques (e.g., [Bron

and Kerbosch, 1973]), cycles (e.g., [Johnson, 1975] and [Ferreira et al., 2014]), trees

(e.g., [Gabow and Myers, 1978], [Shioura et al., 1997], and [Ferreira et al., 2011]),

cuts (e.g., [Tsukiyama et al., 1980] and [Abel and Bicker, 1982]), or independent sets

(e.g., [Johnson et al., 1988]).

The strong interest in graphs and their related structures also comes from the

fact that these are often exploited in practice, to tackle other problems arising from

contexts that are only apparently far from mathematics. Indeed, real networks

are often modelled as graphs, in order to be studied. One of the most intuitive

examples is road transportation, where streets are represented as edges (or arcs) of

an undirected (directed) graph, whereas their intersection points are the vertices.

10 Chapter 1. Introduction to enumeration

Among the measures of interest, there is network reliability, that is, the capacity of

a network to offer certain services even during a failure. Reliability has an impact

on the design, implementation, and evaluation of a network. For instance, it is

useful to detect possible points of failure or to identify minimal cuts that would

disconnect the network into several components (e.g., [Tsukiyama et al., 1980] and

[Rausand, 2014]). This last application is the motivation of the work presented

in Chapter 2 (see, in particular, Section 2.2). Also electrical networks have been

studied in the literature, for instance to compute electrical-circuit parameters by

using spanning trees, or to examine program flow by using cycles in a program-flow

graph ([Read and Tarjan, 1975]). Nowadays, other kinds of networks, that are being

more and more studied, are social networks. Here, some entities (individuals and/or

organizations) are connected and interact with each other, according to some kind

of relationships established. Particular communities can be composed that relate

to specific structures in graphs. For instance, when every member is connected

to all the others in a community, a clique can be used to model and study the

phenomenon. Indeed, maximal-clique enumeration has often been applied (e.g.,

[Pan and Santos, 2008], [Modani and Dey, 2009], and [Conte et al., 2016]).

Other possible applications in combinatorial optimization involve listing interest-

ing objects in matroids, such as bases, hyperplanes, flats of given rank, circuits

through a given element, generalized Steiner trees, and multiway cuts in graphs

([Khachiyan et al., 2005]). In operations research, there have been some relevant re-

sults in linear programming about the generation of all the vertices of a polyhedron

([Khachiyan et al., 2009]), whereas, in case of polytopes, the problem is still open

([Khachiyan et al., 2005]). These applications are part of the motivation of the study

of the problems investigated in Chapter 3 (in particular, see Section 3.2 for more

details).

Enumeration is also very efficient in data mining, e.g., to find all densely con-

nected structures, to perform similarity analysis, or to identify patterns ([Uno,

2016]). Patterns and motifs are quite important in computational biology too. Maximal-

clique enumeration algorithms have also been used to find cis-regulatory motivs

([Baldwin et al., 2004]), in particular to observe the actions of a large number of

genes in response to any experimental stimulus ([Abu-khzam et al., 2005]). In this

case, enumeration was preferred to clustering because it allowed a better represen-

tation of the genes behaviour, letting transcript membership in multiple cliques, not

forcing genes to belong to one cluster only, and avoiding to determine the number

of clusters in advance, losing critical information. Another interesting application

in biology concerns metabolic networks and the enumeration of all pathways to

1.2. Applications 11

reach a set of desired targets by converting a set of source molecules ([Liu et al.,

2015] and [Ravikrishnan et al., 2018]).

In chemistry, enumeration algorithms have been utilized to represent structures

in a given family, such as the alkane molecular family. Indeed, alkanes can be rep-

resented as trees whose nodes, corresponding to carbonium atoms, have degree

less than or equal to 4; edges are instead the primary links of the molecules. The

problem of enumerating all isomeric acyclic structures in alkanes was already tack-

led in 1875 by Cayley, who manually listed the alkane isomers and alkyl radicals

with up to 13 carbonium atoms ([Rains and Sloane, 1999]). More recently, it was

addressed again by [Aringhieri et al., 2003].

Enumeration algorithms have been widely exploited in databases, especially when

the goal is to efficiently list the results of a query, considering the input and out-

put size of the data. [Bagan et al., 2007] were interested in finding the class of

queries that can be computed with linear pre-processing time and constant delay

in enumerating the results. An analogous goal was pursued by [Carmeli and Kröll,

2019], in order to identify the structures in conjunctive queries that can be an-

swered with near-optimal time guarantees. Database management is not the only

area of informatics where one can find enumeration algorithms. In coding theory,

[Tomita et al., 2019] listed single-deletion correcting codes by means of maximum

cliques. Speaking about cryptography, [Veyrat-Charvillon et al., 2013] investigated

the impact of key enumeration in cryptanalytic contexts to analyse the complexity

of attacks when partial information of key bytes is available. In system and pro-

cess modelling, [Cordone et al., 2005] proposed a partitioning algorithm to enumer-

ate in a Petri net all minimal siphons, i.e., special substructures useful to identify

deadlock-prevention policies.

To consult an evergoing list of enumeration algorithms, as well as their several

possible applications, that go beyond the few examples proposed here, I refer the

interested reader to [Wasa, 2019], who has been collecting enumeration algorithms

since 2016. Up to now (December 2021), the list contains 517 enumeration problems,

discussed and studied in 349 different scientific papers.

In general, for more details about enumeration algorithms, I suggest the inter-

ested reader to look at [Marino, 2015], [Grossi, 2016], [Kiyomi, 2016], and [Uno,

2016] (the last three all contained in the book entitled “Encyclopedia of Algorithms”,

edited by [Kao, 2016]).

12 Chapter 1. Introduction to enumeration

1.3 Complexity classes of enumeration problems

Since the number of solutions of an enumeration problem could be exponential in

the size of the input instance, performances of enumeration algorithms are mea-

sured differently than procedures for decision and optimization problems. Ad hoc

complexity classes have been introduced to take into account both the input and

the output sizes ([Johnson et al., 1988]). In particular, a parameter used in the eval-

uation is the total number of solutions, considered as an invariant ([Uno, 2016]).

When this number is small, we can expect an efficient algorithm to terminate in a

short time. Otherwise, we can allow the algorithm to spend more time ([Marino,

2015]). In what follows, I summarize the main classes described by [Capelli and

Strozecki, 2017]. I restrict to problems with a finite total number of solutions.

EnumP is the class of all enumeration problems for which there exists an algo-

rithm that, given an input instance and a possible output, decides the correctness of

the output in polynomial time in the input and the output sizes. The class EnumP-

complete contains those problems in EnumP to which any problem in EnumP

reduces.

When the time required to compute and output all the possible solutions is

polynomial in the size of the input and in the total number of solutions, we talk

about output-polynomial algorithms ([Johnson et al., 1988]). The class of enumeration

problems that admit such procedures is denoted by OutputP. EnumP and OutputP

are analogous to NP and P, respectively. Also, OutputP = EnumP if and only if P

= NP ([Capelli and Strozecki, 2017]).

One could be also interested in evaluating the time needed to output the first

k solutions. We talk about incremental-polynomial time if the k-th output can be ob-

tained in polynomial time in k itself and in the size of the input instance. The

corresponding class is denoted by IncP, which is also defined as the class of prob-

lems solvable by an algorithm with a delay polynomial in the number of the already

computed solutions and in the size of the input.

A subclass of IncP is DelayP, whose problems admit polynomial-delay algo-

rithms, i.e., the delay between two consecutive outputs is polynomial in the size

of the input instance and it is independent from the output. In other words, the

delay when outputting two solutions is regular, at most polynomial. This implies

an output-polynomial algorithm. Indeed, in a polynomial total-time algorithm, the

delay between two consecutive solutions has to be polynomial on average ([Marino,

2015]). This case would also allow efficiently outputting all solutions in a specified

order, such as lexicographic. When the delay is invariable and independent both

1.4. Designing enumeration algorithms 13

from the input and the output, then it is constant. Finally, an enumeration algo-

rithm is said to be output-linear if it terminates in linear time in the size of the input

instance and the total number of solutions.

In terms of space complexity, the goal is to design enumeration algorithms that

need polynomial space.

For a more comprehensive catalogue of known complexity classes for enumer-

ation problems, their classification and hierarchy, I refer the interested reader to

[Capelli and Strozecki, 2017].

1.4 Designing enumeration algorithms

To list all feasible solutions of an enumeration problem, we need to decide how to

move in its search space. When efficiency is not compromised, for instance when

dealing with small-size instances, a brute-force method can be appropriate to use.

Through such an algorithm, we can guess every possible choice, list all candidate

solutions, and output the feasible ones only. Another approach could be to en-

large already computed solutions and remove the isomorphic ones ([Marino, 2015],

[Uno, 2016]). However, some conditions may be imposed by the problems them-

selves, such as having an exponential number of choices to be considered, without

any guarantees to get a feasible solution. Thus, there may be the risk of perform-

ing a huge number of useless operations. That is why enumeration algorithms are

usually designed to aim at efficiency, in order not to explore the whole search space

([Conte, 2018]). How can we smartly visit the search space? A possible way, given a

computed solution, is to define a solution neighbourhood, in order to reach all the

close solutions by moving iteratively through the neighbourhoods. Other methods

are developed to avoid duplication or to define the canonical form of a solution

([Uno, 2016]).

In the following subsections, I recall some high-quality techniques for enumer-

ation used (and also combined) to design more complex algorithms.

1.4.1 Backtracking

The backtracking technique derives straightly from backtracking programming. Ini-

tially, it has been proposed to solve problems such as finding all solutions to the

eight queens problem on a chessboard or computing all simple cycles in a net-

work ([Floyd, 1967]). It is a systematic procedure that relies on a depth-first search

14 Chapter 1. Introduction to enumeration

approach. Backtracking is usually applied to problems where the goal is to list

minimal (or maximal) elements of a given set, according to some criteria. First, we

define an ordering (e.g., lexicographic) of the elements of the set. Then, starting

from an empty solution, we examine each element to decide whether to include

it or not in the partial solution we are building. When we have made a decision

for every element, we evaluate the solution obtained and, if feasible, we output

it. Then, we “backtrack”, by changing the decision about the last element in the

ordering and checking the new obtained solution. “Whenever we have tried both

including and excluding an element, we back up to the previous element, change our de-

cision, and move forward again” ([Read and Tarjan, 1975], page 237). The procedure

can also backtrack when a partial solution does not satisfy the conditions of the

problem. In this way, useless operations that would not lead to any output are

skipped. More generally, the backtracking move consists in first restoring the par-

tial feasible solution computed in a given point, and then trying other alternatives

not already considered ([Floyd, 1967]). To avoid duplication, elements are usually

indexed. Whenever it is possible to apply the backtracking schema, we obtain a

polynomial-delay algorithm, whose space complexity is also polynomial ([Marino,

2015]).

Examples of recent applications of backtracking are [Wang et al., 2021] and

[Gianinazzi et al., 2021], to enumerate distributed subgraphs in static and dynamic

data graphs, and to list k-cliques in sparse graphs using parallelism, respectively.

1.4.2 Binary partition

Binary partition is a recursive partition algorithm, similar to branch-and-bound

methods ([Uno, 2016]). Consider a subset of the set of solutions, composed of all

solutions satisfying a given property. This subset is output only if it is a singleton,

otherwise it is split in two non-empty sets, whose solutions are characterized by

two disjoint properties ([Marino, 2015]). The partition process requires a polyno-

mial time and the number of iterations is bounded by twice the number of possible

solutions. Thus, an algorithm based on binary partition is output-polynomial time.

If the height of the recursion tree is polynomial in the size of the input, then the

partition process is polynomial-delay. This technique is usually used to design al-

gorithms that are fast in practice, or where the number of solutions can be bound

in the worst-case scenario ([Conte and Uno, 2019]).

Binary partition has been recently applied by [Conte et al., 2020] to enumerate

s-d separators in directed acyclic graphs (also with applications to temporal graphs),

1.4. Designing enumeration algorithms 15

and by [Kurita et al., 2021b] to list independent sets in graphs with bounded clique

number.

1.4.3 Reverse search

When there exists a natural neighbourhood relation between the solutions to be

output, or a natural partial order, one way to design an efficient enumeration algo-

rithm is by applying reverse search by [Avis and Fukuda, 1996]. Given an enumer-

ation problem, we can think about its possible solutions as the vertices of a graph.

Two solutions are adjacent if one belongs to the neighbourhood of the other. To

iteratively move from one solution to another, we apply a local-search method. We

define the trace of this local search as the directed graph derived from the graph of

solutions by applying the local search itself. In other words, the trace contains all

the edges of the original graph used in the local search. The length of the longest

directed path in the trace is called the height of the trace. When the local search

is finite, the trace is a directed spanning forest of the graph of solutions. More

specifically, we need to define a parent operation, in order to reduce a node in the

tree to its unique parent node. A child operation, defined by inverting the parent

operation, determines if an object is a valid child of a given parent object. It is

this parent-children relationship that induces a forest. Each component (i.e., a tree)

contains exactly one solution as root. Starting from this solution, we can traverse

the component by applying depth-first search and the child operation, in order to

generate the children nodes and output the feasible solutions. The traversal de-

pends on how the local search is defined. Thus, the most crucial part to design a

reverse-search-based algorithm is specifying how to obtain a suitable parent-child

relationship between the solutions. We do not need to know the whole graph of

solutions, but we can rely on an adjacency oracle that, given a vertex, returns an

adjacent vertex only once. In this way, the number of iterations is equal to the

number of solutions, that is, the cost per iteration also corresponds to the cost to

output a solution. If finding the next adjacent vertex, by applying the local search

method and calling the adjacency oracle, is polynomial in the input size, then also

the resulting computation time per iteration is polynomial. This would imply an

output-polynomial-time algorithm. When the local search and the adjacency ora-

cle are independent from the input size, then the time complexity is linear in the

output size (i.e., the number of possible solutions). Since the backtracking opera-

tion is performed by computing the parent node not by using a stack, the space

complexity needed is polynomial in the input size.

16 Chapter 1. Introduction to enumeration

Some examples of recent applications of reverse search are an efficient enumera-

tion of dominating sets for sparse graphs by [Kurita et al., 2021a], and the listing of

all maximal strongly-connected cliques in a directed graph by [Conte et al., 2021].

1.4.4 A note on parallel computing

Given their goal of listing all feasible solutions, possibly in an exponential number,

enumeration problems can become computationally intractable very quickly. Thus,

parallel computing becomes necessary when scaling to large input instances. In this

computing architecture, several processors are exploited to simultaneously perform

operations or processes. An input large problem is usually divided into smaller

parts or subproblems, assigned each to a different processor. The main reason to

rely on parallel computing is thus to improve efficiency and speed.

When designing parallel algorithms, one has to consider including a dynamic

load-balancing mechanism, i.e., how to dynamically assign subproblems to proces-

sors when they are free and run out of work. Also, a checkpointing procedure may

be needed, to save the state of a computation in an external memory, in order to be

able to interrupt and resume computation when required. Dynamic load balanc-

ing and checkpointing support a dynamically changing number of processors, e.g.,

when machines need to be turned off or if new processors are available ([Marzetta,

1998], [Brüngger et al., 1999]). Another function common to parallel programs is

a termination detection. One of the simplest paradigms to implement parallel com-

puting is called master-slave. A master processor is usually in charge of managing

sequential tasks, such as reading the input problem, initializing the other proces-

sors, and distributing the initial work. It also receives results of computation from

slaves and passes them needed information. Processors can be independent from

each other (in this case, we say they are embarrassingly parallel), or they may need to

communicate, in order to exchange data or results.

In the context of enumeration, parallelization can be directly integrated in the

structure of an enumeration algorithm by taking care of communication between

processors, load balancing, data sharing, and synchronization (see, e.g., [Weibel,

2010]), or it can be achieved by adding a separate wrapper layer (see, e.g., [Marzetta,

1998]). The latter method is usually preferred, since it enhances the reuse of exist-

ing sequential algorithms with minimal changes ([Avis and Jordan, 2018]), and it

allows for a simpler maintenance of both the parallel techniques adopted and the

underlying enumeration algorithms implemented ([Avis and Roumanis, 2013]).

1.5. Analysing enumeration algorithms 17

According to the heaviness of the wrapper and the amount of programming

effort, some enumeration techniques can be more suitable for efficient paralleliza-

tion. Search algorithms are easily parallelized when, for instance, any node is

expanded by generating some neighbors. If each neighbor defines a new search

problem of the same type, then it can be processed almost independently from the

others ([Brüngger et al., 1999]). A branching operation, as in binary partition, can

offer a very natural division of work between processes ([Weibel, 2010]). However,

we must consider whether the generated subproblems must exchange data among

them (as in branch-and-bound, when bounds have to be updated and shared among

different processors).

Among the techniques we have just described in this subsection, the one really

suitable for parallelization is reverse search, for the following reasons. First, it offers

a lack-of-memory property. Indeed, it is not required to store more than one node of

the tree at any given time, and no database is required for visited nodes ([Avis and

Roumanis, 2013], [Avis and Jordan, 2018]). This allows the method to be restarted

from any node in the reverse search tree, by relying only on a description of this

node. After a restart, all remaining nodes of the tree are generated. This is typically

not achievable with backtracking techniques, where restart is possible only with a

complete database of visited nodes and the backtrack stack to the root of the search

tree ([Avis and Jordan, 2018]). With reverse search, instead, checkpointing is easily

obtained through small and simple files, with potentially different parameters or

number of processes. Then, processors do not need to interact with each other, thus

the communication overhead is minimal, to collect the computed output. It is thus

enough to design a load-balancing method to parallelize reverse search.

Several implementations of parallel reverse search have been proposed in the

last twenty-five years (see, e.g., [Marzetta, 1998], [Brüngger et al., 1999], [Weibel,

2010], [Avis and Roumanis, 2013], [Jordan et al., 2017], and [Avis and Jordan, 2018]).

They all share the fact that their efficiency depends on the structure of the under-

lying enumeration problem and the balancing of the reverse search tree. [Avis and

Jordan, 2021] showed how to abstract and generalize these ideas for other tree-

search programs, such as backtracking and branch-and-bound, supporting sharing

information between processes.

1.5 Analysing enumeration algorithms

To evaluate the efficiency of an algorithm, two techniques we can rely on are asymp-

totic analysis and amortized analysis ([Cormen et al., 2009]). In the former, first we

18 Chapter 1. Introduction to enumeration

provide an upper bound to the time required by each operation; then, to obtain the

overall complexity, we sum up the individual contributions. In other words, asymp-

totic analysis concerns how the performance of a given operation scales when the

input size increases. In the latter, instead, we evaluate the time required by a se-

quence of operations ([Tarjan, 1985]). We consider the average performance of each

operation in the worst case, without saying anything about the cost of a specific op-

eration in that sequence. In this case, we are interested in understanding how the

average of the performance of all the operations considered would change when

the input size increases. Since the former technique can be too pessimistic in the

worst-case scenario, the latter is usually preferred to get a more precise analysis at

micro level.

There are three main approaches to perform amortized analysis. In the aggregate

method, to obtain the amortized cost, we divide the overall time needed to perform a

sequence of operations by the number of operations itself. In the accounting method,

we maintain an account with the underlying data structure used by the algorithm.

Initially, the account contains no credits (or charges). Each operation is charged

with an amount of credits that may not correspond to the actual cost of the op-

eration. If we overcharge it, the excess charge will be deposited to the account as

credit. For some operations, we may charge nothing: in such a case, we will use

some charges available as credit. Analysis ensures that the account is never at debit.

The amortized cost for each type of operation corresponds to the amount charged

for that type, and it is an upper bound on the actual cost for any sequence of op-

erations. Finally, in the potential function method, a potential measure is assigned

to the data structure, according to its current configuration in terms of structural

parameters (e.g., the number of elements). The amortized cost of an operation is

equal to its actual cost, plus the difference between the potential before and after

the operation.

Since enumeration algorithms are often quite efficient in practice, with respect

to their theoretical bounds ([Uno, 2016]), amortized analysis is commonly used to

provide a more realistic evaluation. As seen in Section 1.4, enumeration algorithms

are usually based on recursive approaches. Starting from a problem, an iteration

of an enumeration algorithm can generate several subproblems of smaller size. To

evaluate the efficiency of an enumeration algorithm, we can consider the time spent

by the procedure to solve all the subproblems. We assume a tree-shaped recursive

algorithm, where the root node corresponds to the original problem and the inter-

nal nodes and the leaves are smaller subproblems. We know that the number of

iterations exponentially increases as we go deep into the recursion. It is difficult to

1.5. Analysing enumeration algorithms 19

know or even estimate this total number of iterations and the overall computational

time. Usually, we observe that subproblems generated by a node are smaller than

their input problems, and that at the bottom of the recursion there are many iter-

ations taking very short time. Instead, near the root of the recursion, the number

of iterations is small but the time spent is greater. This implies that the amortized

computation time per iteration, or even per solution, is short. This characteristic is

called “bottom-wideness” and, when present, makes basic amortization suitable to

be used, even if it is not enough to obtain good amortized bounds ([Marino, 2015]).

Anyway, when the structure of the recursion tree is regular (i.e., when every inter-

nal node has two children, every leaf has the same depth, and the cost of each node

is proportional to the height of the node), then the computation time constantly de-

creases and the amortized cost is reduced. When the recursion tree is more biased,

we focus more on analysing local structures. For instance, the cost of a node can

be charged to it and its children. In this case, we talk about children amortization.

In the push-out amortization by [Uno, 2016], the computation of a node is directly

charged to its children. When this technique can be applied and the amortized cost

per iteration is low, it means that there are nodes with many descendants. On the

contrary, the average computation time will be long with only a few descendants.

21

Chapter 2

Listing the bonds of a graph in

Õ(n)–delay

“In practical life, time is a form of wealth with which we are stingy [...]

Saving time is a good thing because the more time we save, the more we can afford to lose.

Quickness of style and thought means above all agility, mobility, and ease, all qualities that

go with writing where it is natural to digress, to jump from one subject to another, to lose

the thread a hundred times and find it again after a hundred more twists and turns.”

Italo Calvino, Quickness, in Six Memos for the Next Millennium

In this chapter, I investigate the problem of listing the bonds of an undirected

graph. By starting from the state of the art, I propose two new algorithms.

2.1 Introduction

Consider a connected graph G = (V, E) with n := |V| vertices and m := |E| edges.

When S is a subset of V such that neither S nor S := V \ S is empty, then {S, S} is

called a bipartition of V. The set of those edges in E having one endpoint in S and

the other in S, denoted by δG(S, S), is called a cut of G. Since G is connected, δG(S, S)

is nonempty. Moreover, for every cut E′ ⊆ E there exists a unique bipartition {S, S}
such that E′ = δG(S, S), in which case S and S are called the shores of the cut E′.

The cuts of G are precisely those sets of edges having even intersection with

every cycle of G. A cycle of G is any F ⊆ E such that the graph (V, F) is Eulerian,

i.e., every vertex in V is incident to an even number of edges in F. This number is

either 2 or 0 for every node when F is a minimal nonempty cycle. Cycles and cuts

are two orthogonal subspaces of GF(2)E that, together with minimal cycles and

22 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

bonds, have been studied since the birth of graph theory, also in connection with

Kirchhoff’s laws, planar graphs, binary matroids and clutters.

A minimal cut, or bond, is a cut E′ ⊂ E such that no proper subset E′′ ⊊ E′

is itself a cut of G. Equivalently, δG(S, S) is a bond if and only if the two induced

subgraphs G[S] and G[S] are both connected, i.e., G \ E′ has precisely two connected

components. We denote by µ = µ(G) the number of different bonds in G. When G
is a path, then µ = n − 1; when G is a clique, then µ = 2n − 2. A set S ⊊ V is called

a bond-shore when δG(S, S) is a bond. When s and t are two vertices with s ∈ S and

t ∈ S, then δG(S, S) is called an s, t-bond and S is called an s, t-bond-shore.

In optimization, we may be interested in finding a bond where, for instance,

|δG(S, S)| is minimum, as in Problem 2.1.

Problem 2.1 (Compute a bond of G with minimum number of edges). Given a

connected graph G = (V, E), compute a bond of G, either in form of an edge-set

δG(S, S) or in form of a bond-shore S, such that the number of edges |δG(S, S)| is

minimum.

If the graph is weighted, we may adapt the objective function of Problem 2.1 to

consider the sum of the weights instead of the cardinality of the edges in the bond.

In this work, I focus on listing all bonds, i.e., ignoring the objective function.

In particular, I present new algorithms to address the following two fundamental

problems.

Problem 2.2 (Listing all bonds of G). Given a connected graph G = (V, E), output

all bonds of G, each one either in form of an edge-set δG(S, S) or in form of a

bond-shore S.

Problem 2.3 (Listing all s, t-bonds of G). Given a connected graph G = (V, E) and

two distinct vertices s, t ∈ V, output all s, t-bonds of G, each one either in form of

an edge-set δG(S, S) or in form of an s, t-bond-shore S.

The current state-of-the-art algorithm to solve Problem 2.2 and Problem 2.3 is

the one by [Tsukiyama et al., 1980]. This exploits binary partition to output each

s, t-bond in O(m) per bond, being thus classified as an O(m)-delay algorithm.

Observing this result, we can ask ourselves: how can it be improved it? Is it

possible to develop an enumeration algorithm whose bound, rather than depend-

ing on the number of edges m, is expressed only in terms of the number of vertices

n? The answer is yes. Here, I present the first Õ(n)-delay algorithm for Problem 2.2

and Problem 2.3, assuming only the two bond-shores are output for every bond. In

2.2. Applications 23

case the entire edge-set of every bond is explicitly provided, then I can claim the fol-

lowing performance: every time the procedure finishes outputting a bond δG(S, S),

then |δG(S, S)|+ Õ(n) is the time elapsed since the previous output was complete or

the algorithm started. Disregarding the polylogarithmic factors hidden in the Õ no-

tation, this is the first output-linear algorithm to list bonds. To obtain these bounds,

I exploit a slightly different branching strategy than [Tsukiyama et al., 1980], by

focusing more on the role of cut-vertices, and I rely on dynamic data structures,

some described by [Holm et al., 2001].

This chapter is structured as follows. In Section 2.2, I motivate the study of these

problems by presenting a few relevant applications. In order to fully describe the

two algorithms, in Section 2.3, I give some graph-theory definitions and notions on

biconnectivity, needed in the rest of the chapter. In Section 2.4, I recall the main

related work. In Section 2.5, first I show how to reduce the two problems above

to the one effectively tackled by [Tsukiyama et al., 1980]. Then, by recalling the

key lemmas used in [Tsukiyama et al., 1980], I introduce the main ideas, lemmas,

and invariants at the base of the approach I propose, and I illustrate in what these

differ from [Tsukiyama et al., 1980]. Only then, I illustrate the first algorithm,

which has the same complexity as [Tsukiyama et al., 1980]. In order to improve it,

in Section 2.6, I recall some relevant results on dynamic data structures by [Holm

et al., 2001], to support connectivity and biconnectivity queries in graphs subject to

change in the fully-dynamic paradigm. I also introduce a third ad hoc and relatively

simple dynamic data structure to operate over a tree and a given subset of its

vertices. In Section 2.7, I describe the second algorithm and analyse its complexity.

Finally, in Section 2.8, I discuss other possible research directions concerning the

enumeration of bonds.

2.2 Applications

These problems find application in many research areas, starting of course from

connectivity in graph theory (see, e.g., [Tutte, 1966] or [Diestel, 2017]). Recently,

[Duarte et al., 2021] addressed the problem of computing the largest bond in gen-

eral graphs and also in specific classes, such as planar, bipartite, and split graphs.

Graphs are widely used to represent networks. Typically, in this context, bonds

have been studied to assess the structural vulnerability and reliability of a network,

i.e., the probability of a given network to succeed in performing its tasks, even

when some of its components, such as nodes and links, may fail (e.g., [Van Slyke

24 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

and Frank, 1971], [Colbourn, 1987], [Shier, 1991], [Lin et al., 2003], and [Gaur et al.,

2021]).

Reliability is the motivation that also brought researchers from other different

disciplines to study minimal cuts.

In logistics and supply chain management, distribution networks are the main in-

strument to deal with the storage and transportation of products. In this context,

as described in [Niu et al., 2017] and [Nguyen and Lin, 2021], we may want to

compute the probability that the nodes of the network remain connected, or that

the destination can be reached within a specified deadline, or also that a given flow

demand can be transported from a given source to a given destination.

In production networks and process management, we can be interested in identify-

ing the parts of the systems that may crash and interrupt a process. This is the

case, for example, of a subsea system for oil and gas production ([Cheliyan and

Bhattacharyya, 2018]).

In bioinformatics, minimal cuts have been used by [Klamt and Gilles, 2004] in

biochemical reaction networks, in order to identify a set of reactions whose inac-

tivation would lead to a failure in certain network functions. Later, [Hädicke and

Klamt, 2010] generalized their approach by specifying not only the functionalities

to be disabled but also those to be preserved in the metabolic networks. Starting

from these results, [Gerstl et al., 2016] investigated the robustness of a metabolic

network, that is, its ability to perform normally under the presence of perturba-

tions. Moreover, [Apaolaza et al., 2017] applied minimal cuts to predict and exploit

synthetic lethality in cancer metabolism.

In engineering, another application sees minimal cuts at the basis of a software

fault-tree analysis, utilized to investigate the safety of digital reactor protection

systems in nuclear power plants ([Jung et al., 2020]). In computer vision, minimal

cuts are exploited in some schemes designed for image segmentation ([Eriksson

et al., 2006], [Peng et al., 2013]).

2.3 Preliminaries

Here I recall a few needed notions and lemmas from graph theory, by especially

focusing on connectivity and biconnectivity.

We work with finite undirected graphs without self-loops. Consider a connected

graph G = (V, E) with n := |V| vertices and m := |E| undirected pairs of vertices

called edges. We often write uv as shorthand for an edge (u, v) ∈ E. To avoid

ambiguity, we always use the term node to indicate a subproblem of a recursion tree

2.3. Preliminaries 25

built by an enumeration algorithm, whereas the term vertex refers to an element of

the set V in G.

Connectedness is a monotone property in the sense that, if E′ ⊆ E, then the

connectedness of (V, E′) implies the connectedness of (V, E). A graph G ′ = (V′, E′)

is called a subgraph of G if V′ ⊆ V and E′ ⊆ E. The subgraph is called spanning if

V′ = V. Given a set of edges F ⊆ E, we denote by G \ F the spanning subgraph

of G having E \ F as its edge set and V(G \ F) = V. For e ∈ E, we write G \ e as

a shorthand for G \ {e}. When S ⊆ V, G[S] denotes the subgraph of G having S

as its vertex set and all edges in E with both endpoints in S as its edge set. This

is the maximal subgraph of G with V(G[S]) = S and is called the subgraph of G
induced by S. Being also the maximal subgraph of G avoiding the vertices in S, it is

also denoted by G \ S and considered as the subgraph obtained from G after removing

the vertices in S. For v ∈ V, we write G \ v as a shorthand for G \ {v}. Given a

vertex u ∈ V, we denote by N(u) := {v ∈ V | uv ∈ E} the neighborhood of u. For

any subset S of V, N(S) :=
{

v ∈ S | uv ∈ E, u ∈ S
}

.

A connected component of G is a maximal set S ⊆ V such that G[S] is connected.

The connected components of G form a partition of V. The number of connected

components increases by at most one when one single edge is removed. As such,

m ≥ n − 1 for every connected graph. A forest is an acyclic graph F , that is,

|E(F [S])| ≤ |S| − 1 for every S ⊆ V(F). In particular, m = n − k ≤ n − 1 for

every forest, where k is the number of connected components of F . A tree is a

connected forest. Equivalently, trees are those forests for which m = n − 1. A span-

ning tree τ of G is a spanning subgraph of G which is a tree; there is included at

least one if and only if G is connected. Given a vertex v of G, we denote by τv the

outward-rooted orientation of τ.

When V can be partitioned into the two sets S and S, such that both G[S] and

G[S] have no edges, then G is called bipartite of color classes S and S. Given two dis-

joint vertex sets S, T ⊆ V, then δG(S, T) denotes the edge set {uv ∈ E : u ∈ S, v ∈ T}.

Notice that the spanning subgraph (V, δG(S, S)) is bipartite with color classes S and

S and that the cut C := δG(S, S) intersects every spanning tree of G. Therefore, G \C

is not connected and every connected component of G \ C is either contained in S

or in S. As defined in the introduction, a bond is a minimal non-empty cut. When

a cut F = δG(S, S) is a bond of G, then both S and S are connected components of

G \ F (for otherwise G \ (F \ { f }) could not be connected for any f ∈ F). There-

fore, every bond is a cut whose shores induce two connected subgraphs, as proved

by [Jensen and Bellmore, 1969].

26 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

Lemma 2.3.1 (Double connectivity – [Jensen and Bellmore, 1969]). Assume G =

(V, E) is connected. Then, a cut C := δG(S, S) of G is a bond if and only if the induced

subgraphs G[S] and G[S] are both connected (i.e., G \ C has only two connected compo-

nents).

Proof. Assume G[S] and G[S] are both connected and let T (resp., T) be a spanning

tree of G[S] (resp., G[S]). We need to show that G \C′ is connected for every C′ ⊊ C.

Take any edge e ∈ C \ C′ and notice that e together with T and T comprise a

spanning tree for G \ C′.

1

2 3

4

5

6

7

8

9 10

11

14
12

15
13

(a) Given
{

S1, S1
}

, δG(S1, S1) is a cut.

1

2 3

4

5

6

7

8

9 10

11

14
12

13
15

(b) Given
{

S2, S2
}

, δG(S2, S2) is a bond.

Figure 2.1: Difference between a generic cut
and a minimal cut (i.e., a bond).

A vertex v of a connected graph G = (V, E) is called a cut-vertex of G if G \ v

is not connected. When no cut-vertex exists, the graph is called biconnected. A

biconnected component (or block) of G is a maximal set S ⊆ V such that G[S] is

biconnected. When S is a (bi)connected component of G, we may also refer to the

graph G[S] as a (bi)connected component of G. While the connected components

of G partition V, the biconnected components overlap in that the cut-vertices of

G belong to more than one biconnected component. Notice, however, that every

edge of G belongs to precisely one biconnected component of G. As an example,

Figure 2.2 shows a connected graph, its three cut-vertices in red, and each of its four

biconnected components shadowed with a different color. Notice that the edges of

a cycle (e.g., (4, 9) − (9, 8) − (8, 10) − (10, 4) in Figure 2.2), all belong to a same

block since the removal of a single vertex cannot break a cycle apart.

A vertex incident with precisely one edge is called a leaf.

Lemma 2.3.2 (Leaf of a tree). Given a connected graph G = (V, E), let τ be a spanning

tree of G. Then, no leaf of τ is a cut-vertex of G.

2.3. Preliminaries 27

1

2 3

4

5

6

7

8

9 10

11

12

13

14

15

Figure 2.2: The connected graph of Figure 2.1, its three
cut-vertices ({2, 3, 5}), and its four biconnected components

({1, 2, 3, 4, 5, 8, 9, 10, 13}, {2, 11, 14}, {3, 12, 15}, and {5, 6, 7}).

Proof. Consider any leaf x of τ. Then, τ \ x is still a tree, spanning and certifying

the connectivity of G \ x.

A well-known linear-time algorithm by [Hopcroft and Tarjan, 1973] computes

the cut-vertices of a graph by implementing a depth-first search visit, as described

by [Tarjan, 1971]. Consider a depth-first search tree of the graph, as described in Al-

gorithm 2.1. Then there are two possible conditions for a vertex u to be a cut-vertex:

either it is the root of the tree and has at least two children that correspond to two

disjoint subgraphs, or it has a child v such that no vertex in the subtree rooted at v

has a back-edge to one of the ancestors of u. The former case is straightforward to

check, whereas the latter requires two additional attributes to be defined during the

traversal of the graph. The algorithm by [Hopcroft and Tarjan, 1973] keeps track

of the order of vertices discovered, from the earliest to the latest: every time a new

vertex is reached, it is marked with a discovery time (i.e., a counter) needed to detect

back-edges. Then, to each vertex, they assign a lowpoint value, in order to maintain

the earliest possible vertex accessible from that vertex by traversing any back-edge.

Hereafter, Algorithm 2.2 wraps Algorithm 2.1in order to return all cut-vertices of G.

28 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

Algorithm 2.1: DFS(G, u, lowpoint, discovery, time) – [Hopcroft and Tarjan,

1973].

1. Set discovery[u] and lowpoint[u] to time. For each child v of u:

1.1. If discovery[v] = −1, then:

1.1.1. Increment the number of children of u.

1.1.2. Make the recursive call DFS(G, v, lowpoint, discovery, time + 1).

1.1.3. Update lowpoint[u] := min {lowpoint[u], lowpoint[v]}.

1.1.4. If u is the root of the DFS tree and has at least two children, or if

lowpoint[v] ≥ discovery[u], then mark u as a cut-vertex of G.

1.2. Otherwise, update lowpoint[u] := min {lowpoint[u], discovery[v]}.

Algorithm 2.2: Computing the cut-vertices of a connected graph G –

[Hopcroft and Tarjan, 1973].

1. For each vertex u in V, initialize lowpoint[u] and discovery[u] to −1.

Set time to 0.

2. Given a vertex u ∈ V, call DFS(G, u, lowpoint, discovery, time + 1).

3. Return all vertices of G marked as cut-vertices.

Starting from a vertex u, for each child v of u the recursive algorithm checks if

v has already been visited. If not, it increments the number of children of u and

makes a recursive call on v. When the subproblem of v is closed, the algorithm up-

dates the lowpoint value of u by taking the minimum between the current lowpoint

of u and the lowpoint of v. The algorithm marks u as a cut-vertex if it has more

than two children or if the lowpoint of v is greater or equal to the discovery time of

u. Otherwise, if v has been already discovered in a previous recursive call, the algo-

rithm updates the lowpoint of u by taking the minimum between the lowpoint of u

and the discovery time of v. The algorithm keeps track of new vertices reached on

a stack. When a cut-vertex is found, all the edges examined during the search are

placed on a different stack in order to retrieve the biconnected component reach-

able through that cut-vertex. Since the algorithm performs a single traversal of the

graph, the required time complexity is O(n + m).

For more details, see also [Cormen et al., 2009] (problem 22-2).

2.4. Related work 29

2.4 Related work

Although the literature is full of works about cuts in graphs, not so many are

about the computation and enumeration of bonds (as mentioned in Section 1.2,

see [Wasa, 2019] for an online and periodically updated catalogue of enumeration

algorithms). Moreover, different communities tend to use different terms, or to

associate the same term with various notions. Indeed, beyond minimal cuts, bonds

are also referred as minimal cutsets (see, e.g., [Martelli, 1976], [Arunkumar and Lee,

1979], [Abel and Bicker, 1982], [Yan et al., 1994], and [Lin et al., 2003]) or cocycles

(see, e.g., [Harary, 1969]); sometimes the adjective minimal is avoided (see, e.g., [Liu

and Edelberg, 1968], [Wilson, 1972], [Deo, 2017], and [Tsukiyama et al., 1980]), or

proper is used instead (see, e.g., [Jensen and Bellmore, 1969] and [Bellmore and

Jensen, 1970]). The term bond, as we mean it in this work, was used by [Bondy and

Murty, 1976]. From this point onwards, we will only use this word to refer to the

minimal cuts of a given connected graph G = (V, E).

The literature about listing bonds dates back to the 1960s, when [Jensen and

Bellmore, 1969] were among the first authors to discuss minimal cuts in the context

of reliability of complex systems. They proved by contradiction that a cut must

induce two connected subgraphs in order to be minimal. In a successive work,

[Bellmore and Jensen, 1970] also considered the number of bonds, stating that the

maximum is reached with the clique graph, where there are 2n ways to partition

the vertices of G, that become 2n−2 if we consider s, t-bonds (i.e., forcing s and t

to be in different partitions). [Bellmore and Jensen, 1970] first developed a brute-

force algorithm to check all possible 2n − 2 bipartitions. Then, they also proposed

an enumeration algorithm based on the construction of a binary-search tree (i.e.,

a precursor of binary partition). At each recursive call, they checked connectivity

requirements for the two induced subgraphs, in order to obtain a bond at each leaf.

[Martelli, 1976] defined a suitable algebra for bonds by using a semi-ring com-

posed of two operations, that were, sum and multiplication. Then, he showed how

to reduce the problem of enumerating all bonds to solving a system of linear equa-

tions by using Gaussian elimination. The method computed simultaneously the

bonds between all pairs of vertices, but its efficiency depended on the implementa-

tion of the two operations. Nevertheless, the time required to output all bonds was

output-linear, assuming the number of bonds µ was Ω(2n).

Until now, the state of the art for listing bonds is the work by [Tsukiyama et al.,

1980], which relied on the proof by [Jensen and Bellmore, 1969] on the two induced

subgraphs generated by a bond. [Tsukiyama et al., 1980] designed and compared

30 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

three versions of an algorithm to enumerate all s, t-bonds separating two given

vertices s and t, based on the partition of the vertices of V. To output all the bonds

in the graph, the most efficient version of their algorithms offers a linear delay O(m)

and requires O(m) also in terms of the storage needed for computation.

Later, [Abel and Bicker, 1982] provided a O(n3 · µ) procedure to generate all µ

s, t-bonds exactly once, by blocking any solutions that could be yielded from other

bonds already computed.

[Yan et al., 1994] implemented the partitioning principle of [Bellmore and Jensen,

1970] without constructing a systematic binary-search tree. They presented a recur-

sive labelling algorithm adapted from a dynamic-programming approach for the

classical shortest route problem, for both undirected and directed graphs. Their

method produced all s, t-bonds by eliminating redundancies through comparison.

Moreover, they showed how the required time per bond decreases exponentially

with the density of the graph. Unfortunately, even if applicable to both undirected

and directed graphs, in the former case their approach was not completely correct

by also generating non-minimal cuts.

Based on [Tsukiyama et al., 1980], [Lin et al., 2003] enumerated all s, t-bonds

through a simple recursive algorithm. This approach merges the source s one by

one with its adjacent vertices, and absorbs all vertices that cannot reach t without

going through any vertex in the source set. They combined this procedure with

Binary Decision Diagrams, in order to evaluate networks reliability and availability.

Their approach was sped up by [Debieux et al., 2017], who had the idea to exploit

cut-vertices to run the recursive merge algorithm separately on the biconnected

components of the graph. They did not provide neither an implementation nor a

complexity analysis, but just showed experimental results.

More recently, [Conte et al., 2018] investigated the number of s, t-bonds in an

undirected connected graph G, proving that there are Ω(m) s, t-bonds in any bicon-

nected graph G for any choice of distinct vertices s, t.

2.5 Yet another O(m)–delay algorithm

In this section, I propose an alternative O(m)-delay algorithm for Problem 2.2

and Problem 2.3.

2.5.1 From bonds to S, T-bonds

Consider the following problem.

2.5. Yet another O(m)–delay algorithm 31

Problem 2.4 (Listing all S, T-bonds of G). Given a connected graph G = (V, E) and

two disjoint sets S, T ⊊ V, list the S, T-bonds of G.

A bond δG
(
S, S
)

is called an S′, T′-bond for every pair (S′, T′) with S′ ⊆ S and

T′ ⊆ S. In this way, Problem 2.4 has Problem 2.2 as its special case with S = T =

∅, and Problem 2.3 as its special case with S = {s} and T = {t}.

However, this is not the right joint generalization to go for, since we next show

that the corresponding decision problem is NP-complete.

Problem 2.5 (Checking the existence of an S, T-bond of G). Given a connected

graph G = (V, E) and two disjoint sets S, T ⊊ V, decide whether there exists an

S, T-bond of G.

The reduction is from the following problem.

Problem 2.6 (NAE-3-SAT). Given a Boolean formula ϕ in 3-CNF, composed of a

set of m clauses over the variables {x1, . . . , xn}, decide whether there exists a truth

assignment α → {true, false}n such that for no clause all three literals evaluate to

the same truth value.

By the dichotomy theorem provided in [Schaefer, 1978], NAE-3-SAT is NP-

complete even when all literals are positive. This special case is known as Mono-

tone NAE-3-SAT.

Theorem 2.5.1. Problem 2.5 is NP-complete.

Proof. We show that Monotone NAE-3-SAT ≤p Problem 2.5.

Consider an instance ϕ of Monotone NAE-3-SAT with m clauses defined over

the set of n variables. Construct the corresponding graph G = (V, E) as follows:

• for each variable xi, i = 1, . . . , n, add the corresponding vertex xi;

• add two vertices s and t and connect them with all other vertices;

• for each clause ci in ϕ, i = 1, . . . , m, add the two vertices ci and ci; then, add

the edges (x, ci) and (x, ci) if x appears in ci.

Define the sets S := {s, c1, . . . , cm} and T := {t, c1, . . . , cm}.

Example 2.1 Let ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6). Figure 2.3

shows its corresponding graph G and the sets S and T.

If α is a truth assignment certifying that ϕ is a YES-instance for Problem 2.6,

then an S, T-bond is obtained by augmenting S and T with all the vertices cor-

responding to the variables respectively set to true and to false. Conversely, if

32 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

s

t

x1

x2

x3

x4

x5

x6

c1

c1

c2

c2

c3

c3

Figure 2.3: The graph G corresponding to ϕ = (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) in Example 2.1. The vertices

in green (in red) belong to S (to T).

δG
(
X, X

)
is an S, T-bond for G, with S ⊆ X and T ⊆ X, then consider the truth

assignment α setting to true all variables xi ∈ X and to false all those in X. This α

certifies that ϕ is a YES-instance for Problem 2.6.

Problem 2.7 (Listing all S, T-bonds of G with G[S] and G[T] connected). Given a

connected graph G = (V, E) and two disjoint sets S, T ⊊ V, such that both G[S] and

G[T] are connected, list the S, T-bonds of G.

Problem 2.2 and Problem 2.3 are still two special cases of Problem 2.7, when

S = T = ∅, and when S = {s} and T = {t}, respectively. However, the associ-

ated decision problem analogous to Problem 2.5 is now obviously in P. Starting

with an assigned pair (S, T), and facing the decision to put an unassigned vertex

v ∈ V \ (S ∪ T) either in S or in T, is exactly what suggests a binary-partition

approach. However, this recursive decomposition rule cannot always be applied.

Indeed, when assigning v to S, we may lose the connectedness of the vertices in T.

Requiring that both G[S] and G[T] are connected will not be under our control in

general. What is the nature and the complexity of the associated decision problem

when we relax this double condition by assuming connectedness only for G[S]? As

noticed by [Tsukiyama et al., 1980], an S, T-bond will exist if and only if all the

vertices in T end up contained within a same connected component of G \ S, which

can be checked in linear time (in the following this single component of G[S] will

be called W). Thus, we arrive at the following problem as identified by [Tsukiyama

et al., 1980].

2.5. Yet another O(m)–delay algorithm 33

Problem 2.8 (Listing all S, T-bonds of G with G[S] and G[T] connected and S, T ̸= ∅).

Given a connected graph G = (V, E) and two disjoint sets S, T ⊊ V, such that G[S]
is connected and all vertices in T are contained in a same connected component

(W) of G[S], output all S, T-bonds of G. We are assured this family of bonds is not

empty.

As for the assumption that S, T ̸= ∅, we deliberately introduced Problem 2.8 in

order to avoid having to deal with spurious cases that would otherwise bother us

with not much construct. Though Problem 2.2 is not any longer a special case, it

can still be reduced to Problem 2.8 by means of Algorithm 2.3, that can be easily

implemented as to take only an output-linear overhead.

Algorithm 2.3: Listing all bonds of a graph G

0. Assert G is connected.

1. Let S := {s}, with s an arbitrary vertex of G, and consider any vertex

t ∈ N(S).

2. Solve Problem 2.8 over the pair (S, {t}).

3. S := S ∪ {t}.

4. While N(S) ̸= ∅:

4.1. Choose any t ∈ N(S).

4.2. Solve Problem 2.8 over the pair (S, {t}).

4.3. S := S ∪ {t}.

Lemma 2.5.1. Algorithm 2.3 correctly lists all bonds of G without duplicates.

Proof. Each set of solutions output by Algorithm 2.3 at Steps 2 and 4.2 is a set of

S, T-bonds (and thus also a set of bonds). Since there are no other steps where

something is output, then every object returned by Algorithm 2.3 is an S, T-bond.

At Steps 1 and 4.1, any vertex in N(S) is first considered as t and then included

into S. Thus, all sets of solutions output by Algorithm 2.3 are disjoint, each one

differing from the others in at least one element t. Each S, T-bond of G belongs to

exactly one set of solutions.

By relying on any spanning tree of G, we address Problem 2.2 by solving O(n)

34 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

instances of Problem 2.8. Thus, in the following, we will focus on efficiently tack-

ling Problem 2.8.

2.5.2 Main idea, invariants, and base cases

Let X be the set of all bond-shores of G. A bond-shore X ∈ X and the bond

δG
(
X, X

)
are said to comply two disjoint sets S, T ⊊ V if S ⊆ X and T ⊆ X.

Similarly to [Tsukiyama et al., 1980], we define:

X (S, T) :=
{

X ∈ X | S ⊆ X, T ⊆ X
}

. (2.1)

To address Problem 2.8, first we discuss an O(m)-delay algorithm to list all

S, T-bond-shores in X , which immediately implies an O(m)-delay algorithm to list

their related bonds δG
(
X, X

)
, that is, all S, T-bonds of G. Then, these bounds are

improved in later sections, but the high-level description of the algorithm remains

the one introduced in this section.

We develop a recursion over the pair of parameters (S, T). Like [Tsukiyama

et al., 1980], we propose an implicit enumeration algorithm based on a binary par-

tition of the space of solutions for the subproblem at hand, yielding two subprob-

lems.

Lemma 2.5.2 (Binary partition – [Tsukiyama et al., 1980]). Given a connected graph

G = (V, E), let S, T ⊊ V be disjoint, with S ̸= ∅ and G[S] connected. For any vertex

v ∈ V \ (S ∪ T), we introduce the following decomposition:

X (S, T) = X (S ∪ {v} , T) +X (S, T ∪ {v}) , (2.2)

where “+” denotes the disjoint union operation.

The main difference with the algorithm of [Tsukiyama et al., 1980] is in that we

take into account also the biconnectivity structure of the graph at hand, in particular

we are going to exploit cut-vertices. The algorithm maintains three invariants, i.e.,

all subproblems issued in the recursive calls will respect them:

1. the subproblem (S, T) is fertile in the sense that X (S, T) ̸= ∅:

1a. the induced subgraph G[S] is connected;

1b. S ̸= ∅ and T is contained within the same connected component W in

G[S].

2. T ⊆ N(S).

2.5. Yet another O(m)–delay algorithm 35

Invariants 1 are the critical ones: we should concentrate first on these; Invariant 2

just plays useful. One first natural and convenient trick we stick to is to choose

the pivot vertex v out from (N(S) ∩ W) \ T. This guarantees that Invariant 1a is

maintained when v is added to S. Clearly, Invariant 1a is always maintained when

v is added to T and S is left unaffected. Also Invariant 1b is always maintained

when S is left unaffected, given that v ∈ W.

Once Invariant 1a holds, Invariant 1b characterizes fertility: the delicate issues

are how to maintain Invariant 1b when v is added to S and how to detect when

X (S ∪ {v} , T) = ∅. Indeed, S = ∅ immediately implies X (S, T) = ∅. Moreover, if

t1 and t2 were two vertices in T belonging to two different connected components of

G[S], then for no X ⊆ V \ T with S ⊆ X it might hold that G[X] is connected, being

G[X] a subgraph of G[S] with t1, t2 ∈ X. Conversely, both G and G[S] are connected

by assumption and by Invariant 1a, respectively. Then, the bond-shore X := W

or its corresponding bond is the incumbent solution (i.e., the current best solution

found), since G[X] = G[W] and G[X] are connected. Figure 2.4 below shows an

example.

1

2 3

4

5

6

7

8

9 10

11

14
12

13
15

Figure 2.4: Example of a subproblem (S, T),
where S = {1, 2, 4, 9, 11} (filled-green vertices), T = {5, 10}

(filled-orange vertices), W = {3, 5, 6, 7, 8, 10, 12, 13},
and (N(S) ∩ W) \ T = {3, 8, 13} (orange circles).

The bond-shore S, or its corresponding bond δG (S, W)

(red edges), is the incumbent solution.

Lemma 2.5.3 (Easy fertility). If v is not a cut-vertex of G[W], then X (S ∪ {v} , T) ̸= ∅

and Invariant 1b holds for subproblem (S ∪ {v} , T).

36 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

Lemma 2.5.4 (Fertility on cut-vertices). Assume v is a cut-vertex. Let τ(G[W]) be

any spanning tree of G[W]. Invariant 1b holds for subproblem (S ∪ {v} , T) and X (S ∪
{v} , T) ̸= ∅ if and only if for no two vertices t1, t2 ∈ T, v is on the unique path between

t1 and t2 in τ(G[W]).

Proof. Invariant 1b holds for subproblem (S ∪ {v} , T) if and only if, for no two

vertices t1, t2 ∈ T, v belongs to every path between t1 and t2 in G[W]. This last

condition is equivalent to the one formulated in the statement of the lemma.

When v is a cut-vertex of G[S] separating any pair of vertices in T, we say that v

is critical (noncritical otherwise).

Figure 2.5 shows the three possible cases to choose the pivot vertex v among

(N(S) ∩ W) \ T in order to put it into S. When v is not a cut-vertex of G[S] (Fig-

ure 2.5a), we can add it to S without any worries. Instead, if v is a critical cut-vertex

of G[S] (Figure 2.5b), then it cannot be put into S, otherwise Invariant 1b would

not hold by Lemma 2.5.4, thus the subproblem (S ∪ {v} , T) would not be fertile.

Finally, when v is a noncritical cut-vertex of G[S] and is added to S (Figure 2.5c), the

only way to generate a fertile subproblem is to put in S also all other components

of G[S] connected to v and not containing any vertex in T.

The base cases of the recursion (i.e., the leaves of the recursion tree) are the

following, different from what in [Tsukiyama et al., 1980] as a consequence of the

fact that our branching differs:

1. |W| = 1;

2. (N(S) ∩ W) ⊆ T.

In both cases, the incumbent solution W, with its corresponding bond δG
(
W, W

)
,

is the only element in X (S, T): we output it and return to the calling subproblem.

2.5.3 Algorithm

Based on all previous lemmas, we can define Algorithm 2.4, a recursive procedure

based on binary partition. In the very first call, we are given as input the two

nonempty disjoint sets S, T ⊊ V and the connected component W containing all

vertices in T.

2.5. Yet another O(m)–delay algorithm 37

1

2 3

4

5

6

7

8

9 10

11

14
12

13
15

(a) v = 13 is not a cut-vertex of G[S]: W is updated by removing {13}; X (S ∪
{v} , T) ̸= ∅.

1

2 3

4

5

6

7

8

9 10

11

14
12

13
15

(b) v = 3 is a critical cut-vertex of G[S]: the vertices in T would not be in the
same connected component anymore; X (S ∪ {v} , T) = ∅.

1

2 3

4

5

6

7

8

9 10

11

14
12

13
15

(c) v = 8 is a noncritical cut-vertex of G[S]: W is updated by removing {8, 13};
X (S ∪ {v} , T) = X (W, W) ̸= ∅.

Figure 2.5: Possible choices of the pivot vertex v
(filled-grey vertex) in the example subproblem (S, T)

shown in Figure 2.4.

38 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

Algorithm 2.4: Listing S, T-bonds(S, T, W)

1. If |W| = 1 or (N(S) ∩ W) ⊆ T, output the S, T-bond-shore W and the

S, T-bond δG
(
W, W

)
.

2. Choose any v ∈ (N(S) ∩ W) \ T.

3. Call the subproblem (S, T ∪ {v} , W).

4. If v is a noncritical cut-vertex of G[W], then let W ′ be the connected

component of G \ (S ∪ {v}) that contains T and call the subproblem(
W ′, T, W ′

)
.

5. Else if v is not a cut-vertex of G[S], call the subproblem (S ∪ {v} , T, W \ {v}).

Theorem 2.5.2. Algorithm 2.4 correctly lists all S, T-bonds of G without duplicates.

Proof. In Step 1, the algorithm outputs a new S, T-bond-shore W and/or the corre-

sponding S, T-bond δG
(
W, W

)
= δG (S, W) = δG (S, T), where G[W] is connected

by Invariant 1 and G[W] is connected since either |W| = 1 or W = T. Thus,

δG
(
W, W

)
is a bond by Lemma 2.3.1. Since there are no other steps where some-

thing is output, then every object returned by Algorithm 2.4 is an S, T-bond. By

Lemma 2.5.2, no S, T-bond is output more than once, being this branching a special

case of [Tsukiyama et al., 1980] decomposition (Equation 2.2). By the same lemma,

every bond is output, because we omit to explore the second term of the decompo-

sition only when the vertices in T would get irreversibly separated by placing v in

S, which assures this second term is actually empty.

Theorem 2.5.3. Algorithm 2.4 takes O(m) time to output a new S, T-bond-shore (or a new

S, T-bond) of G.

Proof. We analyse the cost of each type (leaf, unary, and binary) of nodes in the

recursion tree of Algorithm 2.4 separately.

Leaf nodes A leaf node corresponds to either Base case 1 or Base case 2, both

handled at Step 1. In the former, δG
(
W, W

)
comprises the edges incident

with the only vertex in W, thus it is output in O
(
|δG
(
W, W

)
|
)
. In the latter,

δG
(
W, W

)
= δG (S, W) = δG (S, T) is output in O (|δG (S, T) |) time. In both

cases, S is output in O(n).

Unary nodes These nodes appear in the recursion tree when the pivot vertex v

cannot be put into S, since v is a critical cut-vertex of G[S]. Thus, Algorithm 2.4

2.5. Yet another O(m)–delay algorithm 39

performs only Steps 2–3. Choosing any v ∈ (N(S) ∩ W) \ T at Step 2 costs

O(1). To state that v is a cut-vertex of G[W], we use the algorithm in [Tarjan,

1971], that takes O(n + m). Then, we compute a spanning tree τ of G[W] in

O(n + m) and we check Lemma 2.5.4 in O(n). Step 3 generates a subproblem

by adding v to T without changing the incumbent solution. We can attribute

the cost of the incumbent solution to the current node in the recursion tree,

which pays O(1) + O(n + m) + O(n + m) + O(n) = O(m).

Binary nodes In case of binary nodes, the first child is obtained by generating the

same subproblem as in a unary node (Steps 2–3). The second child depends

on the nature of the pivot vertex v.

• If v is a noncritical cut-vertex of G[S] (Step 4), finding the connected com-

ponent W ′ costs O(n + m). The incumbent solution δG (S, W) is updated

with δG
(

W ′, W ′
)

in O(m) (i.e., by removing all edges between W ′ \ S and

S and by adding all those between W ′ and W).

• Otherwise (Step 5), computing W \ {v} costs O(1). The incumbent solu-

tion is updated in O(n) (i.e., by removing all edges between v and S and

by adding all those between v and W \ {v}).

As in the previous case, we can attribute both the costs of the incumbent

solution and of the second child to the current node in the recursion tree,

which pays O(m) + max {O(n + m) + O(m), O(1) + O(n)} = O(m).

To achieve these bounds, we can use the following data structures:

• a spanning tree τW of G[W] (rooted at a vertex in T);

• the set VW
cut, which offers the cut-vertices of G[W];

• the set DW , which offers those vertices in τW with a strict descendant in T.

When choosing an unassigned vertex v, we place in DW all its ancestors in τW

found by going up in the tree until the first vertex already in DW . We can always

generate at least one subproblem by putting v in T. If v ∈
(
VW

cut \ DW) (i.e., v is a

noncritical cut-vertex of W) or v /∈ VW
cut, then we can also put it into S and generate

a second subproblem. However, in this case the graph G[W] changes and we have

to update the incumbent solution δG (S, W) and to recompute τW , VW
cut and DW .

This is the main bottleneck of Algorithm 2.4. In the following sections, we see how

to avoid this recomputation by efficiently keeping these structures updated.

40 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

2.6 The dynamic data structures employed

After a brief introduction on dynamic graph problems, this section offers the data

structures needed to improve the bounds of Algorithm 2.4.

2.6.1 Dynamic graph problems

A dynamic graph problem asks to answer queries about a graph subject to updating

operations (e.g., insertion and/or deletion of edges). The goal is to deal as effi-

ciently as possible with an arbitrary and unpredictable sequence of updates and

queries over the graph. When the only operation allowed to update a graph is the

insertion (resp., deletion) of edges, then we speak of incremental (resp. decremen-

tal) dynamic graph problems. If both updating operations are allowed, the graph

problem is called fully-dynamic. In order to completely specify the problem as an

abstract data-structure interface, we must also indicate the kind of queries sup-

ported, together with the cost of each kind of operation, both queries and updates.

We consider deterministic dynamic data structures: starting from a set of input ob-

jects and an empty structure, a sequence of updates communicated by the user is

performed, dynamically changing the data structure. Each time the sequence is

performed, the same resulting structure will be produced. This is not guaranteed

when using probabilistic data structures, where the sequence of operations depends

on random bits.

To improve the bounds of Algorithm 2.4, we are going to introduce three dy-

namic data structures. The first two, defined by [Holm et al., 2001], maintain con-

nectivity and biconnectivity, respectively. In later sections, we are going to exploit

their results as black-boxes to avoid recomputing the tree τW and the set of cut-

vertices VW
cut when an unassigned vertex v is added to S. The third data structure

operates over a tree where some vertices are lit up (i.e., highlighted). Given a vertex

of the tree, the data structure checks whether it is on the path between any pair of

lit-up vertices.

For more details about dynamic graph algorithms, the reader is referred to [Cor-

men et al., 2009] (in particular, Section 10.4, Chapters 12–14, and also Chapter 17

for the basics of amortized analysis).

2.6. The dynamic data structures employed 41

2.6.2 Maintaining connectivity

Consider the graph H = (V, E), with |V| = n and |E| = m. We speak of a fully-

dynamic graph connectivity problem when queries concern the connectedness of H.

In particular, to maintain a maximal forest F of H, [Holm et al., 2001] built a de-

terministic data structure which offered an O(log2 n) amortized update time and

an O(log n/ log log n) query time. [Thorup, 2000] provided a data structure with

a randomized expected amortized update time of O(log n(log log n)3) and a query

time of O(log n/ log log log n). This is very close to the cell-probe lower bound of

Ω(log n/ log log n) in [Henzinger and Fredman, 1998] and [Miltersen et al., 1994].

In 2013, starting from [Thorup, 2000], [Wulff-Nilsen, 2013] improved [Holm et al.,

2001], by obtaining an O
(

log2 n/ log log n
)

update time in the deterministic case.

For a description of the data structure, I refer the reader to [Holm et al., 2001].

[Holm et al., 2001] employed Euler Tour (ET) trees introduced by [Henzinger and

King, 1999]. They offered the following operations:

update in O
(

log2 n
)

amortized time:

• Insert(u, v): inserts the edge (u, v) in H;

• Delete(u, v): deletes the edge (u, v) from H.

query in O(log n/ log log n) amortized time:

• Connected(u, v): tells whether the two vertices u and v are connected in

H.

The occupied memory varies with the changing of E, but it is always O(m +

n log n).

Lemma 2.6.1 (Maintaining a connected component given T). Assume given a con-

nected graph H = (V, E), with n := |V| and m := |E|, and a maximal forest F of G.

Let T ⊊ V be a set of vertices contained in the same connected component W of H. Let

v ∈ W \ T be not a critical cut-vertex of H[W]. If v is removed from W, then we can

find the new connected component W ′ containing T with at most n − 1 calls to the query

Connected(u, v).

Proof. If v is not a cut-vertex of H[W], then we can find W ′ := W \ {v} in O(1).

Otherwise, if v is a noncritical cut-vertex of H[W], then to find W ′ we remove from

W all those vertices that are in a different component of H[W] \ {v} than T. We

choose any u ∈ T and we call at most n − 1 times the query Connected(u, v), with

v ∈ W \ T. Thus, we can find W ′ in (n − 1) · Õ(log n/ log log n) = Õ(n).

42 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

2.6.3 Maintaining biconnectivity

In the fully-dynamic graph biconnectivity problem, the edge updates may be inter-

spersed with queries asking whether two given vertices are biconnected (i.e., they

are in the same biconnected component). In this case, [Holm et al., 2001] used

Top Trees from [Alstrup et al., 1997]. Top trees can be implemented both with the

topology trees defined in [Frederickson, 1997] and with the s, t-trees in [Sleator and

Tarjan, 1983], as shown in [Alstrup et al., 2005].

[Holm et al., 2001] remarked that biconnectivity is not a transitive relation over

vertices but over edges, i.e., if the edges e and f are in the same biconnected com-

ponent, and the same holds for f and g as well, then also e and g belong to the

same biconnected component.

Lemma 2.6.2 (Biconnectivity – [Holm et al., 2001]). Consider a graph H = (V, E).

(i) Biconnectivity is a transitive relation over the neighbours of a vertex v ∈ V and if

two neighbours of v are in the same biconnected component, then also v is in the

biconnected component containing them.

(ii) A vertex v ∈ V is a cut-vertex if and only if there exists a pair of its neighbours that

are not in the same biconnected component.

Proof. To prove (i), consider two biconnected neighbours x and y of the vertex v.

Since they are in the same biconnected component, either there exists the edge

xy ∈ E or there are two distinct paths from x to y with no common vertex other

than x and y. Now take a path not containing v and add the edges xv and vy

to form a cycle. This cycle certifies that all three vertices v, x and y are in the

same biconnected component. Moreover, the two edges xv and vy both enjoy the

property of having the endpoints belonging to a same biconnected component,

from which also transitivity follows.

In (ii), if v is not a cut-vertex, then by definition its removal would not discon-

nect the graph and any two of its neighbours x and y would still be connected.

Thus, there would exist two distinct paths connecting x and y. Conversely, if v is

a cut-vertex, then two of its neighbours would belong to different components of

H \ v, hence to different biconnected components of H.

The algorithm proposed by [Holm et al., 2001] maintains a maximal spanning

forest in a top tree data structure, which offers the following operations:

update in O
(

log5 n
)

amortized time:

2.6. The dynamic data structures employed 43

• Insert(u, v): inserts the edge (u, v) in H;

• Delete(u, v): deletes the edge (u, v) from H.

query in O(log5 n) amortized time:

• Biconnected(u, v): tells whether the two vertices u and v are bicon-

nected in H.

The space used is O(m + n log2 n).

In the following lemma, we provide the details on how to use what in [Holm

et al., 2001] in order to maintain an updated knowledge of the cut-vertices.

Lemma 2.6.3 (Spanning tree and biconnectivity). Assume given a connected graph

H = (V, E), with n := |V| and m := |E|, and a spanning tree τ of H. Then, we can

identify all the cut-vertices of H with at most n calls to the query biconnected(u, v).

Proof. By Lemma 2.3.2, we can avoid checking the leaves of τ. Consider any internal

vertex v of τ, let N(v) be the set of its neighbours and fix x ∈ N(v). For each

y ∈ N(x) \ x, use the query biconnected(x, y) by paying Õ(log5 n). When x and y

are not in the same biconnected component, by Lemma 2.6.2 v is a cut-vertex of H,

and we move to test another internal vertex v′. Thus, for each vertex v, we check at

most |N(v)| − 1 pairs. Since the sum of the degrees of the vertices in a tree is 2m =

2(n − 1), we can discover all cut-vertices of H in 2(n − 1) · Õ
(

log5 n
)
= Õ(n).

2.6.4 Checking cut-vertices

Given a connected graph H = (V, E), let L be the set of lit-up vertices of V, i.e.,

those vertices satisfying a certain property. We assume that L can only increase and

it is initialized when a vertex r ∈ V satisfies the required property. No vertex gets

ever removed from L. We define a dynamic data structure called lit-up tree to effi-

ciently keep L updated and to answer queries about the vertices, by operating over

a spanning tree τL of H. The data structure offers the following three operations:

setup in O(n):

• Initialize

(
τL): takes in charge the tree τL with n vertices and rooted in

r, and sets L := {r}.

update in O(1) amortized time:

• Insert(v): inserts v into L.

44 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

query in O(1) time:

• Intermediate(v): tells whether there exist two vertices a, b ∈ L such that

v is an internal vertex of the unique path between a and b in the tree τL.

The lit-up tree requires O(n) space.

The setup operation is called only once, as the very first operation on the data

structure. About the update operation, when a vertex v is inserted into L, actually

a sequence of Insert operations is performed. Indeed, all the ancestors of v found

by going up in the tree (until the first one already in L) are inserted into L. Since

no vertex gets ever removed from L, the Insert operation is called at most n − 1

times. Thus, the average cost of each operation is O(n)/n = O(1). Then, the query

Intermediate(v) corresponds to just checking whether v ∈ L or not.

Lemma 2.6.4. Assume given a connected graph H = (V, E), with n := |V| and m := |E|
and a subset T ⊂ V. Let τL be a lit-up tree of H, rooted at a chosen t ∈ T, with L = T. Let

Vcut ⊂ V be the nonempty set of cut-vertices of H. Then, we can check whether v ∈ Vcut

separates any pair of vertices in T in O(1).

Proof. It directly follows from the query Intermediate(v).

2.6.5 Summary

Table 2.1 summarizes the operations allowed by each dynamic data structure de-

scribed in the previous subsections.

Goal Data
structure Update time Query time Space

Maximal forest to
maintain connectivity

ET-tree
[Holm et al., 2001]

Insert(u, v)
Delete(u, v)
in O(log2 n)∗

Connected(u, v)
in O(log n/ log log n)∗ O(m + n log n)

Spanning tree to
maintain biconnectivity

Top tree
[Holm et al., 2001]

Insert(u, v)
Delete(u, v)
in O(log5 n)∗

Biconnected(u, v)

in O
(

log5 n
)∗ O

(
m + n log2 n

)
Spanning tree to
check cut-vertices

Lit-up tree
[Raffaele et al., 2021]

Insert(v)
in O(1)∗

Intermediate(v)
in O(1) O(n)

∗ amortized time.

Table 2.1: Dynamic data structures exploited.

2.7. An Õ(n)–delay algorithm 45

2.7 An Õ(n)–delay algorithm

Here we see how to improve Algorithm 2.4 in order to obtain the following deter-

ministic performance guarantees:

• listing each S, T-bond-shore in Õ(n)-delay time;

• when contextually listing also each S, T-bond δG
(
S, S
)

as an edge-set, the

delay time to output it becomes Õ(n) + O
(
|δG
(
S, S
)
|
)
.

We stick to the high-level description of Algorithm 2.4 based on Invariants 1

and 2, and Lemmas 2.5.2, 2.5.3, and 2.5.4. What differ is that we exploit the dynamic

data structures introduced in Section 2.6 to maintain the connected component W

of G[S], its spanning tree τW , its set of cut-vertices VW
cut and the incumbent solution

δG(S, W).

We use a maximal forest F of G[S] to maintain connectivity of τW . To efficiently

update W and VW
cut, we rely on the following two lemmas.

Lemma 2.7.1 (Updating W). Given a connected graph G = (V, E), with n := |V| and

m := |E|, let F be a maximal forest of G[S]. Let S, T ⊊ V be disjoint, with S ̸= ∅, G[S]
connected, and the vertices of T contained in the same connected component W of G[S].
Assume a vertex v ∈ (N(S) ∩ W) \ T is assigned to S. Then, we can update W in Õ(n).

Proof. It directly follows from Lemma 2.6.1.

Lemma 2.7.2 (Updating VW
cut). Given a connected graph G = (V, E), with n := |V| and

m := |E|, let S, T ⊊ V be disjoint, with S ̸= ∅, G[S] connected, and the vertices of T

contained in the same connected component W of G[S]. Let τW be a spanning tree of G[W].

Then, we can identify all the cut-vertices of G[W] in Õ(n).

Proof. It directly follows from Lemma 2.6.3.

To distinguish whether a cut-vertex in VW
cut is critical or not, we use a lit-up tree.

Lemma 2.7.3 (Checking critical cut-vertices). Given a connected graph G = (V, E),

with n := |V| and m := |E|, let S, T ⊊ V be disjoint, with S ̸= ∅, G[S] connected, and

the vertices of T contained in the same connected component W of G[S]. Let τL be a lit-up

tree of G[W] with L = T and let VW
cut be the set of cut-vertices of G[W]. Then, we can check

whether v ∈ VW
cut separates any pair of vertices in T in O(1).

Proof. It directly follows from Lemma 2.6.4.

46 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

Now we analyse the cost to compute and output a new S, T-bond-shore (or

a new S, T-bond) by running Algorithm 2.4 implementing these data structures.

For the amortized analysis, we use the accounting method (see [Cormen et al.,

2009], Chapter 17.2). At the very first call of Algorithm 2.4, we deposit a credit for

each edge in the incumbent solution δG(S, W). These will be needed during the

execution of the algorithm to keep δG(S, W) updated within the desired bounds.

We notice that the delay to output both the very first bond-shore S and its related

bond δG
(
S, S
)

will be Θ(m), as needed to take in the input.

Theorem 2.7.1 (Improving Algorithm 2.4). Assume given a connected graph G =

(V, E), with n := |V| and m := |E|, let S, T ⊊ V be disjoint, with S ̸= ∅, G[S]
connected, and the vertices of T contained in the same connected component W of G[S].
Then, by using a maximal forest F of G[S], a spanning tree τW and a lit-up tree τL of

G[W], Algorithm 2.4 takes Õ(n) time to output a new bond-shore S and Õ(n) + |δG(S, S)|
to output a new S, T-bond δG

(
S, S
)

of G.

Proof. We analyse the cost of each type (leaf, unary, and binary) of nodes in the

recursion tree of Algorithm 2.4 separately.

Leaf nodes A leaf node corresponds to either Base case 1 or Base case 2, both

handled at Step 1. In the former, δG(I, I) comprises the edges incident with

the only vertex in I, thus it is output in O(|δG(I, I)|). In the latter, δG(I, I) =

δG(S, I) = δG(S, T) is output in O(|δG(S, T)|) time. The bond-shore S is output

in O(n).

Unary nodes In this case, Algorithm 2.4 performs only Steps 2–3. Step 2 costs

O(1). In Step 3, before generating a subproblem by adding v to T, the only

operation to perform is to check, when v ∈ VW
cut, whether v is a critical cut-

vertex. By Lemma 2.7.3, this is done in O(1). W is unchanged, as well as the

incumbent solution.

Binary nodes In case of binary nodes, the first child is obtained by generating

the same subproblem as in a unary node (Steps 2–3) and the second child

depends on the nature of the pivot vertex v. We attribute both the costs of

the incumbent solution and of the second child to the current node in the

recursion tree.

• When v is a noncritical cut-vertex of G[W] (Step 4), updating W takes

Õ(n) by Lemma 2.7.1. Also τW is updated by removing v and all its

edges from, relying on the primitive Delete(u, v). This operation costs

2.8. Further developments 47

at most n · O(log5 n) ([Holm et al., 2001]). Updating VW
cut costs Õ(n) by

Lemma 2.7.2. The incumbent solution δG(S, W) is updated by removing

all edges between v and S and adding all those between v and the up-

dated W in O(n). To also remove all edges between W \ S and S, we use

the corresponding credits anticipated in the first call of the algorithm.

• When v is not a cut-vertex of G[W] (Step 5), removing v from W costs

O(1) by Lemma 2.7.1. As in the previous case, updating τW costs at

most n · O(log5 n) ([Holm et al., 2001]) and updating VW ′
cut costs Õ(n) by

Lemma 2.7.2. The incumbent solution changes by removing all edges

between v and S and adding all those between v and the updated W,

which is done in O(n).

Thus, the current node in the recursion tree pays Õ(n).

2.8 Further developments

As for future work concerning bonds, we can wonder whether it is possible to avoid

paying the Õ(n) part when listing bonds as edge-sets, thus paying only |δG(S, S)|.
Also, it would be interesting to investigate the possibility of developing an algo-

rithm output-linear in the number of vertices and not exploiting dynamic data

structures. Moreover, one could be curious to discover whether there exists an

enumeration algorithm for listing bonds that does not rely on minimal s, t-cuts.

Another small improvement may be about not choosing any vertex from N(S)∩
W \ T for branching, but instead identifying the most convenient one, in order to

make the decomposition faster. One could be interested in focusing on particular

classes of graphs (e.g., planar graphs, k-degenerate graphs).

Furthermore, Algorithm 2.4 could be parallelized in case of binary nodes, being

the two generated subproblems independent from each other. Indeed, a processor

managing a current binary node could pass the first subproblem (generated in

Step 3) to another available processor, together with a copy of all dynamic data

structures at that point. Then, it could handle by itself the second subproblem

(generated either in Step 4 or in Step 5). The only interaction among processors

would be just an output collection process, which would concatenate the output

into a single stream.

More generally, one could focus on other enumeration problems for which it is

possible to develop and utilize dynamic data structures specifically designed for

48 Chapter 2. Listing the bonds of a graph in Õ(n)–delay

listing. This is a research direction not so explored so far, since there are just a

few examples of listing problems tackled by using dynamic graph algorithms (e.g.,

[Eppstein et al., 2010], [Eppstein and Strash, 2011]).

49

Chapter 3

A new decomposition for the

Monotone Boolean Duality

problem

“The fact is, my writing has always found itself facing two divergent paths that correspond

to two different types of knowledge. One path goes into the mental space of bodiless

rationality, where one may trace lines that converge, projections, abstract forms, vectors of

force. The other path goes through a space crammed with objects and attempts to create a

verbal equivalent of that space by filling the page with words, involving a most careful,

painstaking effort to adapt what is written to what is not written, to the sum of what is

sayable and not sayable. [...] I think we are always searching for something hidden or

merely potential or hypothetical, following its traces whenever they appear on the surface.”

Italo Calvino, Exactitude, in Six Memos for the Next Millennium

This chapter is dedicated to some of the most interesting and still open problems

in enumeration and combinatorics, that are the Monotone Boolean Duality problem

and the Monotone Boolean Dualization problem.

I warn the reader that some notations of this chapter overlap with those used

in Chapter 2. For instance, the letters G and F , adopted to respectively indicate a

graph and a forest of it, now represent two set families. I decided not to change

the letters in either the two chapters because in graph theory G is conventionally

used to indicate a graph, and the two symbols F and G have been used in many

previous works on the Monotone Boolean Duality and Dualization problems.

50 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

3.1 Introduction

Any family F of incomparable subsets of V := {1, 2, . . . , n} essentially encodes a

positive DNF (i.e., disjunctive normal form) of a Boolean function f : {0, 1}V →
{0, 1}:

f (x) =
∨

F∈F

∧
i∈F

xi =: DNF (F) . (3.1)

Clearly, f is monotone given that DNF (F) involves no negative literals.

Conversely, any monotone Boolean function f can be written in this way where

F comprises those minimal subsets of V whose characteristic vectors evaluate to

true under f ; these are also called the prime implicants of f . Thus, DNF (F) is the

unique irredundant DNF of the monotone Boolean function f .

Dually, any monotone Boolean function g : {0, 1}V → {0, 1} can be described

instead by its unique irredundant CNF (i.e., conjunctive normal form) in which no

negation occurs:

g(x) =
∧

G∈G

∨
i∈G

xi =: CNF (G) , (3.2)

where G comprises the prime implicates of g. These are the complementary sets

of the maximal subsets of V whose characteristic vectors evaluate to false under g.

Indeed, a point x evaluates to true if and only if it misses every possible occasion to

evaluate to false, that is, if and only if it falls out from every set in G :=
{

G : G ∈ G
}

.

The following two problems arise naturally.

Problem 3.1 (Monotone Boolean Duality using Boolean functions). Given a pair

(f , g) of monotone Boolean functions, where f and g are expressed through a DNF

and a CNF, respectively, decide the equivalence of f and g.

Problem 3.2 (Monotone Boolean Dualization using Boolean functions). Given a

monotone Boolean function f , expressed through a DNF, compute its equivalent

monotone Boolean function g expressed through a CNF.

Given a subset of V, we say that it is a transversal of G when it shares at least one

element with each set of G. Problem 3.1 consists in checking whether f (x) = g(x),

∀ x ∈ {0, 1}V . This is the case if and only if, considering the corresponding pair

of set families (F ,G), F comprises precisely the minimal transversals of G. Indeed,

every point x ∈ {0, 1}V containing an F ∈ F (hence f (x) = 1) intersects every

G ∈ G (the contrary would imply g(x) = 0), and every point x strictly contained in

some F ∈ F (hence f (x) = 0, since x contains no one of the incomparable sets in

F) misses some G ∈ G (the contrary would imply g(x) = 1). Equivalently, it holds

3.1. Introduction 51

that G comprises the minimal transversals of F . Indeed, given any x ∈ {0, 1}V

intersecting all F ∈ F , its complement x contains no F (hence f (x) = 0) and there

exists some G ∈ G disjoint from x, that is, contained in x. Thus, the dual of G is F
and the relationship between F and G is symmetric.

All authors in the related literature (see Section 3.3) have always preferred to

work with the set families F and G, rather than with the monotone Boolean func-

tions, for symmetry reasons. This is the approach also used to tackle Problem 3.2.

Indeed, one could try to apply elementary Boolean laws to compute the CNF func-

tion corresponding to a given DNF, but generally this would not be efficient ([Eiter

et al., 2008]). Thus, we slightly reformulate Problem 3.1 and Problem 3.2 as fol-

lows.

Problem 3.3 (Monotone Boolean Duality using set families). Given a pair (F ,G)
of set families, both defined over a vertex set V := {1, 2, . . . , n}, decide whether F
and G are dual of each other (i.e., whether F comprises the minimal transversals of

G and viceversa).

Problem 3.4 (Monotone Boolean Dualization using set families). Given a set family

F , defined over a vertex set V := {1, 2, . . . , n}, compute its dual set family G (i.e.,

G comprises the minimal transversals of F).

Problem 3.4, also known as the Hypergraph Transversal Generation problem, can

be reduced to Problem 3.3. Indeed, given a set family F , corresponding to a DNF

function f , we start by considering an empty G. Given this input pair (F ,G), we

solve Problem 3.3. If the answer is positive, we stop. Otherwise, we can find a

transversal in G that is not minimal or a minimal transversal of F not present in G.

This is added to G and the whole procedure is repeated, until the duality testing

is satisfied (i.e., until G is composed of all minimal transversals of F). Therefore,

checking that the two set families F and G are dual (i.e., solving Problem 3.3)

cannot be harder than computing the dual of F (i.e., solving Problem 3.4).

Currently, given σ := |F | + |G|, the best known algorithms to solve Prob-

lem 3.3 run in quasi-polynomial σo(log σ) time, or use O
(

log2 σ
)

nondeterministic

bits ([Fredman and Khachiyan, 1996], [Eiter et al., 2003], [Kavvadias and Stavropou-

los, 2003]). This is strong evidence that the problem is not coNP-complete, but no

polynomial time algorithm has been discovered yet. Despite this compelling pos-

itive result, and even if polynomial-time algorithms for many special classes are

known, the exact complexity of the general problem is still an open question.

52 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

The main purpose of this chapter is to present another possible decomposition

for Problem 3.3 based on both the remarkable result by [Fredman and Khachiyan,

1996] and the concept of full covers introduced by [Boros and Makino, 2009]. The

approach I define provides a strong bound for Problem 3.3 which, however, in the

worst case is the same as the one of [Fredman and Khachiyan, 1996]. Anyway, the

problem is described under another light, with more commitment to the symmetry

between F and G. I hope this might foster simplifications and further comprehen-

sion. I also express an analogy with classical implicit enumeration approaches, like

those widely used in operations research or in constraint programming.

This chapter is organized as follows. In Section 3.2, I present some applications

of the two problems, with a particular focus on a fundamental question in linear

programming. In Section 3.3, I review the most relevant works on the two problems.

In Section 3.4, I provide a few preliminary definitions and lemmas on set families

and clutters, as well as some operations and decompositions. In Section 3.5, I

introduce the main ideas at the base of my approach. To define it, I need the concept

of full covers, which I recall in Section 3.6. Then, in Section 3.7, I describe the new

decomposition to solve Problem 3.3 and analyse its time complexity. Successively,

I shift my attention to Problem 3.4. In Section 3.8, after discussing a few delicate

issues regarding memory, I show how to exploit the decomposition proposed to

solve Problem 3.4 by using only polynomial space. Finally, Section 3.9 illustrates

some further developments and future work.

3.2 Applications

Problem 3.3 and Problem 3.4 have relevance in many research areas, such as the-

oretical computer science, artificial intelligence, combinatorial optimization, and

mathematical programming. Hereafter I propose a few examples of applications

studied in the literature.

[Eiter and Gottlob, 1991] and [Eiter and Gottlob, 2000] provided a rich list of

related problems in clause satisfiability, Boolean switching theory, model-based di-

agnosis, design of relational databases, and updates in distributed databases.

Regarding data mining and knowledge discovery, [Gunopulos et al., 1997] refers

to problems such as computing maximal frequent and minimal infrequent sets,

finding episodes from sequences, and finding keys or inclusion dependencies from

relation instances.

3.2. Applications 53

More recently, in the context of query-oriented extractive summarization, [Van

Lierde and Chow, 2019] made a connection between the problem of sentence re-

trieval and the extraction of a transversal in a hypergraph.

In terms of data profiling, [Bläsius et al., 2022] solved the discovery problem of

minimal unique column combinations of several real-world and artificially gener-

ated databases by providing an enumeration algorithm to list all minimal bounded-

size transversals of an hypergraph, also improving the result of [Eiter and Gottlob,

1995].

In matroid theory, given a matroid defined on a ground set V and two nonempty

disjoint sets A, B ⊂ V, consider the problem to enumerate all maximal subsets

X ⊆ A such that the Span(X) ∩ B ̸= ∅, where Span(X) is the set of all subsets

Y of V such that the rank of (X ∪ Y) is equal to the rank of X itself. [Khachiyan

et al., 2005] underlined that, in case of binary matroids, this includes as special case

Problem 3.4. Indeed, it corresponds to listing all maximal independent sets for a

given hypergraph defined over 2V , where A and B are the sets of the characteristic

vectors of all vertices and edges, respectively.

3.2.1 The Vertex (Facet) Enumeration problem

Problem 3.3 and Problem 3.4 can also find application in linear programming (e.g.,

[Boros et al., 2002], [Boros et al., 2007]). Consider the following theorem.

Theorem 3.2.1 (Minkowski-Weyl’s theorem [Ziegler, 2012]). Any convex polyhedron

P can be described through two different equivalent formulations:

• H-representation, as the intersection of closed halfspaces:

P = P(A, b) = {Ax ≤ b | x ∈ Rn},

where A ∈ Rm×n is an m × n real matrix and b ∈ Rm is an m-dimensional real

vector;

• V-representation, as the Minkowski sum of the convex hull of a finite set of points

plus a conical combination of vectors Rn:

P = conv{v1, . . . , vr}+ cone{d1, . . . , ds},

where V(P) = {v1, . . . , vr} ⊆ Rn is the set of vertices or extreme points of P and

{d1, . . . , ds} ⊆ Rn is the set of extreme directions of P.

54 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Theorem 3.2.1 naturally leads to the fundamental question: is there a way to pass

from one representation to the other? The two following enumeration problems arise.

Problem 3.5 (Vertex enumeration). Given a H-representation of a polyhedron, com-

pute all of its vertices and extreme directions, to obtain its V-representation.

Problem 3.6 (Facet enumeration). Given a V-representation of a polyhedron, com-

pute all of its halfspaces, to obtain its H-representation.

[Lovász, 1992] denoted Problem 3.5 and Problem 3.6 by the name of “Polytope-

Polyhedron problem”, and underlined the structural similarity between these and

Problem 3.3 and Problem 3.4. To better see how these are connected, let A ∈
{0, 1}m×n and let 1 and 0 be two m-dimensional vectors of all ones and all zeros,

respectively. Then P(A, 1) := {Rn | x ∈ Ax ≥ 1, x ≥ 0} is the set-covering polyhe-

dron with only integral vertices, having A as ideal matrix (see, e.g., [Boros et al.,

2009]). These vertices are in bijection with the minimal transversals of the hy-

pergraph H associated to the matrix A. Indeed, the columns and the rows of A

correspond to the vertices and the characteristic vectors of the hyperedges of H,

respectively. Thus, the problem of enumerating the vertices of P(A, 1) is equivalent

to the problem of computing the minimal transversals of H, that is Problem 3.4.

Then, an efficient procedure to solve Problem 3.4 would lead to an efficient proce-

dure to also solve this special restriction of Problem 3.5 (and vice versa), but may

not hold for the general case. Anyway, given the celebrated result by [Fredman and

Khachiyan, 1996], the vertices of P(A, 1) can be enumerated in quasi-polynomial

time, which makes Problem 3.5 unlikely to be NP-Hard.

In the literature, the main approaches to solve Problem 3.5 and Problem 3.6

are pivoting algorithms (e.g., reverse search by [Avis and Fukuda, 1992] – see Sub-

section 1.4.3) or incremental algorithms (e.g., the double-description method by

[Motzkin et al., 1953], later described by [Fukuda and Prodon, 1995]). In case of

0/1-polytopes, [Bussieck and Lübbecke, 1998] showed that Problem 3.5 is strongly

P-enumerable. [Khachiyan et al., 2006] proved that generating the vertices of a poly-

hedron is NP-Hard. Anyway, the problem of generating the vertices and extreme

rays of a polyhedron and the problem of generating the vertices of a polytope (i.e.,

a bounded polyhedron) are still open.

We can also consider tackling the Problem 3.5 and Problem 3.6 jointly. Let

M := {1, . . . , m}. Given the H-representation {aT
i x ≤ bi, | i ∈ M, ai, x ∈ Rn} of

a polytope P and a subset S ⊆ M, let P(S) := {aT
i x ≤ bi | i ∈ M \ S, ai, x ∈

Rn}∩ {aT
i x = bi | i ∈ S, ai, x ∈ Rn}. Let W be the set family comprising the subsets

3.2. Applications 55

of 2M such that P(S) is nonempty. Then, there exists a 1-1 correspondence between

the vertices V(P) and the maximal subsets of W ([Boros et al., 2007]. Similarly,

there exists a 1-1 correspondence between the facets of P and the maximal subsets

X of V(P), for which the following system, in the variables (a, b) ∈ Rn × R, is

feasible: {
aTv ≤ b, ∀v ∈ V(P),

aTv = b, ∀v ∈ X.
(3.3)

Also, we can define the set family B, consisting of the subsets of 2M \ W such

that P(S) is empty. The set of the maximal subsets of W and the one of the minimal

subsets of B are dual of each other, and quasi-polynomial time algorithms are

known to produce both, jointly ([Boros et al., 2004]). Indeed, we can develop a

polynomial satisfiability oracle that, given a subset S of 2M, classifies it by putting

into W , if the corresponding polytope P(S) is nonempty, or into B, otherwise. This

oracle could be then used in a recursive algorithm that, receiving as input the two

set families W and B, either confirms their duality or returns an unclassified point.

By considering a generic monotone property, we can define the following prob-

lem.

Problem 3.7 (Joint Generation – [Khachiyan et al., 2006]). Given a monotone prop-

erty, represented by a satisfiability oracle, and two set families W and B of subsets

of M := {1, 2, . . . , m}, either find an unclassified subset S ∈ 2M that belongs to W
or B, or prove that W and B are complete (and dual of each other).

Studying Problem 3.5, Problem 3.6, and Problem 3.7 may be relevant to pro-

vide an alternative way to the mainstream operations-research approach to combi-

natorial optimization, that is, formulating integer linear programming (ILP) models

that are managed by an industrial solver (e.g., CPLEX by [IBM, nd] and [Gurobi Op-

timization, nd]). Solving such an ILP is known to be NP-Hard in general, therefore

formulating the problem in this way might impede solvability. Usually, the ap-

proach is to relax the integrality constraints and solve an LP relaxation, which is a

polynomial problem. However, this introduces fractional vertices. The truth is that,

for all NP-Hard optimization problems, there will not be any compact description

of the facets (unless NP = coNP [Papadimitriou and Yannakakis, 1984]). For a given

family of combinatorial problems (and for their associated polytopes), polyhedral

combinatorics struggles in the task to understand their minimal description, being

already happy to identify some important families of defining inequalities.

56 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

3.3 Related work

This section briefly presents the most relevant works in the literature about the def-

inition, the study, and the resolution of Problem 3.3 and Problem 3.4.

[Bioch and Ibaraki, 1995] showed that Problem 3.3 and Problem 3.4 are poly-

nomially equivalent, in the sense that an incremental-polynomial algorithm for the

former exists if and only if the latter is in P. With V = {a1, ..., an, b1, ..., bn}, the dual

of F = {{ai, bi} : i = 1, ..., n} is G =
⊗n

i=1{ai, bi}, where
⊗

indicates the Cartesian

product. There exists hence an infinite sequence of set families Fk, k ∈ N, such that

|Gk| is exponential in |Fk|. With this, the algorithm for the Problem 3.4 would be

polynomial time in the input and output sizes. The existence of such an algorithm

is a challenging open problem.

[Fredman and Khachiyan, 1996] obtained a remarkable result by using inter-

section properties of clutters (i.e., set families of pairwise incomparable sets – see

Subsections 3.4.2–3.4.4) and the concept of frequency of an element of the vertex

set (see Subsection 3.4.5). These allowed them to put the decision problem in an

intermediate class between P and coNP, presenting two quasi-polynomial-time al-

gorithms. The former, known as Algorithm FK-A, solves Problem 3.3 in σO(log2 σ),

whereas the latter, known as Algorithm FK-B, solves it in σo(log σ) time (in our no-

tation, σ = |F |+ |G| is the input size).

[Tamaki, 2000] remastered the decompositions by [Fredman and Khachiyan,

1996] to obtain an algorithm streaming out the dual form of the input formula

f , which requires only polynomial internal space. His algorithm carefully manages

lexicographic orderings in order to avoid multiple outputs of the same clause.

[Kavvadias and Stavropoulos, 2003] modified [Fredman and Khachiyan, 1996]’s

algorithms to solve the problem in deterministic polynomial time plus O
(

log2 n
)

non-deterministic guesses, thus placing the problem in the coNP-
[
log2 σ

]
class,

according to our notation.

[Eiter et al., 2003] investigated some subclasses of the decision problem and

provided new polynomial-time cases (e.g., degenerate CNFs, read-k CNFs, acyclic

CNFs). Independently from [Kavvadias and Stavropoulos, 2003], they also used

the results of [Fredman and Khachiyan, 1996] to show that the duality of a pair

of monotone Boolean functions can be checked in polynomial time with limited

nondeterminism.

[Gaur and Krishnamurti, 2004] studied the problem of determining the self-

duality of a DNF, a special case equivalent to the general Problem 3.3, since h =

3.3. Related work 57

x f ∨ yg ∨ xy is self-dual if and only if f and g are dual ([Eiter and Gottlob, 2000]).

They developed an algorithm that, according to our notation, generally runs in

O
(

σ2 log σ+2
)

time and in average polynomial time on random instances.

[Khachiyan et al., 2006] moved from Boolean lattices to integrality boxes. For

monotone properties over the integral vectors in a rectangular box, they described

an implementation of FK-A to jointly generate the families F and G of minimal

satisfying and maximal non-satisfying integral vectors respectively.

[Elbassioni, 2008] generalized [Fredman and Khachiyan, 1996] by considering

the following question: what can we do when more than one variable is frequent? He

proposed two efficient parallel versions of [Fredman and Khachiyan, 1996]’s algo-

rithms, which run in polylogarithmic time on a quasi-polynomial number of pro-

cessors (in a PRAM model). These two algorithms also offer stronger bounds on the

sequential complexity of the problem in the asymmetric case (i.e., when the sizes

of the two families F and G significantly differ). Moreover, they allow to generate

all minimal transversals of a given hypergraph using only input polynomial space.

[Boros and Makino, 2009] developed an approach based on full covers (see Sec-

tion 3.6) that shows better parallel-time complexity than the algorithms proposed

by [Elbassioni, 2008], requiring a smaller number of processors for polylogarithmic-

time parallel computation. Furthermore, they also improved the best known bound

on the sequential time complexity in the asymmetric case.

[Hagen et al., 2009] provided a detailed description of FK-A and FK-B, also

discussing possible variants to be considered in the implementation. They also

reported some experimental results on test instances already used in [Khachiyan

et al., 2006]. Before their work, FK-B had never been tested in practice: they showed

that it is competitive on almost all classes of instances; thus, this version should be

included in further experimental studies.

One of the most recent works has been done by [Sedaghat et al., 2018], where

they speeded up dualization in FK-B, modifying the algorithm in order to pro-

duce multiple certificates of non-duality. Moreover, they showed how to reduce

the number of redundant tests performed at the beginning of FK-B (i.e., removing

any supersets found comparing every pair of implicates in the input CNF and ev-

ery pair of implicants in the input DNF). Furthermore, they also implemented a

memoization technique to avoid solving the same subproblem more than once.

The interested reader is also referred to [Hagen, 2008] for more details.

58 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

3.4 Preliminaries

From now on, I will focus on Problem 3.3. The goal is to propose a new decompo-

sition to solve it. To start, in this section I introduce the notation used in the whole

chapter, and I recall the needed background on set families and clutters.

3.4.1 Set families

A family E of pairwise different sets is called a set family over V(E) :=
⋃

E∈E
E. Where

V := V(E), the pair (V, E) is an hypergraph: V is its vertex set and the set family E
is its edge set.

Definition 3.4.1 (Complement). Given a subset S ⊆ V, we denote by S := V \ S its

complementary set. Moreover, for a set family E , the family of complementary sets is

given by E := {E : E ∈ E}.

Definition 3.4.2 (Downward closed set). A set family E is downward-closed if the

subsets of any set in E are also in E . We denote by E− := {S ⊆ V : ∃ E ∈ E s.t.

S ⊆ E} the downward closure of E .

Definition 3.4.3 (Upward closed set). A set family E is upward-closed if E is downward-

closed. We denote by E+ := {S ⊆ V : ∃ E ∈ E s.t. E ⊆ S} the upward closure of E .

Definition 3.4.4 (Minimal/Maximal). A set E ∈ E is called minimal (resp., maximal)

in E when no proper subset (resp., superset) of E belongs to E . The family of such

extremal sets in E is denoted by Minimals(E) (resp., Maximals(E)).

Note that E+ is the largest set family defined over V(E) having the same min-

imal sets as E . Meanwhile, Minimals(E) is the smallest such set family. The dual

considerations hold for Maximals(E).

Example 3.1 A truth assignment t over a set of Boolean variables x1, x2, . . . , xn can

be encoded as a subset of V := {1, 2, . . . , n}, namely the set {i ∈ V : t(xi) = 1}.

Any Boolean function over x1, x2, . . . , xn is hence encoded as a set family over V;

just list the sets encoding its satisfying truth assignments. Denote by W this set

family, and let B := W . A point x ∈ {0, 1}V (and the corresponding subset of V)

is called white if it satisfies the function f , black otherwise. When the function is

monotone, then W is upward-closed, hence univocally captured by the white border

F := Minimals (W). This comprises of the minimal implicants of the function and

3.4. Preliminaries 59

offers its unique irredundant DNF
∨

F∈F

∧
i∈F

xi. At the same time, B is downward-

closed, hence univocally captured by the black border G := Maximals (B). Its com-

plementary set G, which clearly conveys the same information, offers the unique

irredundant CNF form
∧

G∈G

∨
i∈G

xi. In this way, the family F of minimal white

points and the family G comprising the complements of the maximal black points

offer two alternative representations of the very same function.

For instance, let V := {1, 2, 3, 4}, f := (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x3 ∧ x4) and g :=

(x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3). Then:

• W := {{1, 2}, {1, 3}, {3, 4}, {1, 2, 3}, {1, 2, 4}};

• B := {{1}, {2}, {3}, {4}, {1, 4}, {2, 3}, {2, 4}}.

It follows that:

• F := {{1, 2}, {1, 3}, {3, 4}};

• G := {{2, 4}, {2, 3}, {1, 4}};

• G := {{1, 3}, {1, 4}, {2, 3}}.

3.4.2 Clutters, blockers, and duality

Definition 3.4.5 (Clutter). Two sets are incomparable if neither of the two contains

the other. A clutter is a set family E of pairwise incomparable sets.

The family of all minimal (maximal) sets of any set family E is always a clutter.

Example 3.1 (cont.) This definition holds, for example, for the family F of the

minimal white points that satisfy a monotone Boolean function, and for the family

G of the maximal black points on which such a function is false. Given a pair

of clutters F and G, when wondering whether f ≡ g, we can readily find out in

poly-time if there exists a point x such that f (x) = 1 and g(x) = 0. For each pair

(F, G) ∈ F × G, we check that F ∩ G ̸= ∅. Indeed, if F ∩ G = ∅, then f (F) = 1

and, by monotonicity, g(F) ≤ g(G) = 0. Conversely, if f (x) = 1 and g(x) = 0,

then x ⊇ F ∈ F and x ⊆ G ∈ G, that is, x ⊇ G ∈ G, thus F ∩ G = ∅. If every

pair (F, G) passes the test, then no such x exists. It is hence standard practice, when

dealing with these issues, to assume to work with pairs fulfilling this first necessary

condition.

Definition 3.4.6. A pair (E ,D) is standard if and only if for no (E, D) ∈ E × D it

holds that E ∩ D = ∅.

60 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Example 3.2 Given F := {{1, 2}, {1, 3}, {3, 4}} and G := {{1, 4}, {2, 3}}, the pair

(F ,G) is standard.

Definition 3.4.7 (Transversal). Two sets intersect when they have elements in com-

mon. A set T ⊆ V(E) is called a transversal of a set family E if it intersects every set

of E . A transversal T is called a minimal transversal when no proper subset of T is a

transversal.

Definition 3.4.8 (Blocker). Given a clutter E , the family of all minimal transversals

of E is always a clutter, called the blocker of E and denoted by E∗.

Definition 3.4.9 (Duality – [Berge, 1989]). Given a clutter E and its blocker E∗, E
and E∗ are called dual.

The relationship between a clutter E and its blocker E∗ is symmetric, as unveiled

by the following lemma.

Lemma 3.4.1 ([Edmonds and Fulkerson, 1970], [Lehman, 1964], [Lehman, 1979],

[Seymour, 1976], and [Berge, 1989]). If E is a clutter, then (E∗)∗ = E .

Proof. Every member E of E intersects every member of E∗, thus E contains some

members of (E∗)∗. Since E is a clutter, we can now close this proof by showing

that each member of (E∗)∗ contains some members of E . Indeed, each E ∈ (E∗)∗

intersects every member of E∗ and so E contains no member of E∗. Thus, E is not a

transversal of E and, as such, it does not intersect some members Ẽ of E . Namely,

Ẽ ⊆ E for some Ẽ ∈ E .

Example 3.1 (cont.) The DNF function f in Eq. 3.1 and the CNF function g in

Eq. 3.2 are equivalent if and only if F and G are dual. The fact that every G ∈ G
should be a transversal for F or that every F ∈ F should be a transversal for G is

a must in order for the pair to be standard. Informally, the reason why we want

G (F) to contain all minimal transversals of F (G) is because we want each single

point in {0, 1}V to be classified either white or black.

3.4.3 Clean pairs and a first naive approach

As observed in Subsection 3.4.2, we can check in polynomial time that the pair

(E ,D) is standard, i.e., that every member in D is a transversal for E (and every

member of E is a transversal for D, this condition is actually symmetric since two

universal quantifiers commute). Actually, we can also check in polynomial time that

all these transversals are minimal (just try to remove any possible element). The

open problem is how to make sure we are not omitting some minimal transversals.

3.4. Preliminaries 61

Definition 3.4.10. A pair of clutters (E ,D) is clean if every D ∈ D is a minimal

transversal of E and every E ∈ E is a minimal transversal of D.

Example 3.2 (cont.) Given F := {{1, 2}, {1, 3}, {3, 4}} and G := {{1, 4}, {2, 3}},

the pair (F ,G) is clean.

When (E ,D) is clean, then D ⊆ E∗ and E ⊆ D∗, but the converse does not hold.

It is in this space to the converse that the complexity of the problem is open. On

the contrary, the two necessary conditions can both be checked in polynomial time,

and any violation to any of them can be promptly turned into a missing transversal

(since, informally, it offers a still unclassified point).

Given a clutter E , a simple way to compute its minimal transversals (i.e., to solve

Problem 3.4) is provided by the following lemma.

Lemma 3.4.2 (Naive approach). Let E := E ′ ∪ {E} be a clutter, with E ⊆ V(E). Then:

E∗ := Minimals
({

D ∪ {v} | D ∈
(
E ′)∗, v ∈ E

})
. (3.4)

Proof. Consider D ∈ (E ′)∗. If D∩ E ̸= ∅, then D ∈ E∗ and it is minimal. Otherwise,

D misses every point in E and a minimal transversal of E can be obtained by adding

v ∈ E to D. Conversely, we know that, for every D ∈ E∗, D ∩ E ̸= ∅. Also, when

|D ∩ E| ≥ 2, if we remove a single element of D ∩ E from D, D would still intersect

E in at least another element. Thus, in this case, D ∈ (E ′)∗.

We could recursively rely on Lemma 3.4.2 to decompose the problem, one set

E ∈ E at a time. The cardinality of {D ∪ {v} | D ∈ (E ′) , v ∈ E∗} is bounded by

|V(E)| · |(E ′)∗|. However, the issue of this first simple procedure is that the minimal

transversals of E ′ can be more than the ones of E (i.e., |(E ′)∗| ≥ |(E)∗|). Thus, it

would not be guaranteed that generated subproblems have a smaller size. It may

seem counter-intuitive, but we provide the following example to solve any doubts.

Example 3.3 Let V :=
{

v1, . . . , vn, v′1, . . . , v′n
}

, thus |V| = 2n.

Let F1 :=
{{

vi, v′i
}
| i = 1, . . . , n

}
and F2 :=

{{
vi, v′j

}
| i, j = 1, . . . , n

}
, where

V (F1) = V (F2) = V (see Figure 3.1). Then, |F ∗
1 | = 2n (for each edge

{
vi, v′i

}
,

we choose either vi or v′i) and |F ∗
2 | =

∣∣{{v1, . . . , vn} , {v′1, . . . , v′n}
}∣∣ = 2.

Now, note that, if we remove one edge at a time from F2, then we would even-

tually obtain F ′
2 = F1. The number of the minimal transversals of F ′

2 would be 2n,

whereas F2 would have only 2 minimal transversals.

62 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

v1

v2

. . .

vn

v′1

v′2

. . .

v′n

(a) F1.

v1

v2

. . .

vn

v′1

v′2

. . .

v′n

(b) F2.

Figure 3.1: The clutters F1 := {{vi, v′i} | i = 1, . . . , n} and
F2 := {{vi, v′j} | i, j = 1, . . . , n} in Example 3.3.

Thus, we need to investigate other ways to more efficiently decompose the orig-

inal problem. To do so, we first recall some operations on clutters.

3.4.4 Filter and Projection

Deletion and Contraction are two basic operations on clutters that have been exten-

sively studied in the literature. Instead of them, in this section I prefer to recall two

operations introduced by [Elbassioni, 2008], that turn out to be handy to deal with

this problem. I call them Filter and Projection, and I show the link they have with

Deletion and Contraction, respectively.

We consider a clutter E defined over a vertex set V(E).

Definition 3.4.11 (Filter). Filtering a clutter E through a set S ⊆ V(E) yields the clutter

ES := {E ∈ E | E ⊆ S}. That is, only those sets of E contained in S are considered.

Example 3.1 (cont.) Back to the context of representing monotone Boolean func-

tions, the Filter operation addresses the question: what would become the white border

once all variables outside S were frozen to 0?

Definition 3.4.12 (Projection). Projecting a clutter E over a set S ⊆ V(E) yields the set

family ES comprising of the minimal sets in {E ∩ S | E ∈ E}.

Example 3.1 (cont.) The question addressed by Projection is: what would become

the maximal black points in case all variables outside S were set to 1?

3.4. Preliminaries 63

Example 3.2 (cont.) Given F := {{1, 2}, {1, 3}, {3, 4}}, let S := {2, 3, 4}. Then:

• FS := {F ∈ F | F ⊆ S} = {{3, 4}};

• FS := Minimals{F ∩ S | F ∈ F} = Minimals{{2}, {3}, {3, 4}} = {{2}, {3}}.

Remark 3.4.1. Filter and Projection are just the complementary versions of Deletion and

Contraction, respectively. Indeed, the clutter ES, obtained by filtering the set S on the clutter

E , corresponds to the one computed by deleting the set S from E . Similarly, the clutter ES,

obtained by projecting the set S on the clutter E , corresponds to the one computed by

contracting the set S in E . The main reason why we prefer to rely on Filter and Projection

is to lighten the notation and, consequently, to simplify the following lemmas.

Both Filter and Projection can be repeatedly applied to a clutter, by considering

different subsets of the vertex set V(E), and they can also be applied in a composed

way, as shown in the following lemma.

Lemma 3.4.3. Given a clutter E and two disjoint sets S1, S2 ⊆ V(E), then:

(i)
(
ES1

)
S2

= ES1∩S2 ;

(ii)
(
ES1
)S2 = ES1∩S2 ;

(iii)
(
ES1
)

S2
= (ES2)

S1 .

Moreover, [Seymour, 1976] proved how these two operations link a clutter and

its blocker, as reported below.

Lemma 3.4.4 ([Seymour, 1976]). Given a clutter E and a set S ⊆ V(E), then:

(i) (ES)
∗ = (E∗)S;

(ii)
(
ES)∗ = (E∗)S.

Proof. Consider the first statement. If Ẽ ∈ (ES)
∗, then Ẽ ∪ S intersects each member

of E and contains some member E ∈ E∗; then E \ S (and hence Ẽ) contains some

member of (E∗)S. In the opposite direction, if Ẽ ∈ (E∗)S and Ẽ = E \ S, where

E ∈ E∗, Ẽ intersects each member of ES; thus Ẽ contains a member of (ES)
∗.

The second statement is equivalent to the first one by Lemma 3.4.1. Indeed,(
ES)∗ = (((E∗)∗

)S
)∗

=
(
((E∗)S)

∗)∗ = (E∗)S.

Given a clutter E and a vertex v ∈ V(E), by applying Filter and Projection, we

can uniquely reconstruct E from E{v} and E{v}.

64 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Lemma 3.4.5 (Reconstructability). Let E and D be two clutters on the same vertex set

V, and let v ∈ V. Assume E{v} = D{v} and E{v} = D{v}. Then, E = D.

Proof. E can be uniquely decomposed as follows. By definition, E{v} = {E ∈ E |

E ̸∋ v}. As for {E ∈ E , v ∈ E}, note that {E \ {v} | E ∈ E , v ∈ E} ⊆ E{v}, since E is

a clutter. Also, E{v} \ {E \ {v} | E ∈ E , v ∈ E} ⊆ E{v}.

In explicit, E = E{v} ∪
{

E ∪ {v} | E ∈ E{v} \ E{v}

}
.

3.4.5 Fredman and Khachiyan’s result and frequency

Given a clean pair (E ,D) of clutters, we can apply Filter and Projection to check

the duality between E and D as follows.

Lemma 3.4.6 (Variable-based decomposition (see, e.g., [Eiter et al., 2008] and [Ha-

gen, 2008]). Let E and D be two clutters and consider an element v of the vertex set V.

Then, D = E∗ if and only if both of the following hold:

(i) D{v} =
(
E{v}

)∗
, and

(ii) D{v} =
(
E{v}

)∗
.

Proof. If D = E∗, then (i) and (ii) follow by Lemma 3.4.4. Conversely, we first apply

Lemma 3.4.4 to
(
E{v}

)∗
in (i) and to

(
E{v}

)∗
in (ii) to obtain, respectively:

(i) D{v} =
(
E{v}

)∗
= (E∗){v}, and

(ii) D{v} =
(
E{v}

)∗
= (E∗){v},

which, by also means of Lemma 3.4.5, imply that D = E∗.

This lemma is at the base of the two algorithms proposed by [Fredman and

Khachiyan, 1996] to solve Problem 3.3. These algorithms are known as FK-A and

its improved version FK-B, respectively. Indeed, given a clean pair (E ,D) of clut-

ters, defined over the same vertex set V, [Fredman and Khachiyan, 1996] select an

element v ∈ V and recursively call the two smaller subproblems
(
E{v},D{v}

)
and(

E{v},D{v}
)

. This approach is called variable-based decomposition (see, e.g., [Eiter

et al., 2008] and [Hagen, 2008]).

However, this procedure is efficient only if the given v appears in a large fraction

of the sets in at least one of the clutters E or D. This led [Fredman and Khachiyan,

1996] to introduce the concept of frequency.

3.5. Pursuing symmetry 65

Definition 3.4.13 (Frequency). Given a set family E and an element v ∈ V, we

define the frequency of v in E as follows:

ωv,E :=
|{E ∈ E | v ∈ E}|

|E | . (3.5)

Example 3.2 (cont.) Given F := {{1, 2}, {1, 3}, {3, 4}} and G := {{1, 4}, {2, 3}},

then:

• ω1,F = ω3,F := 2
3 ;

• ω2,F = ω4,F := 1
3 ;

• ω1,G = ω2,G = ω3,G = ω4,G := 1
2 .

When E and D are dual, [Fredman and Khachiyan, 1996] proved the existence

of an element v ∈ V with frequency in E or in D greater or equal than 1
log (|E |+|D|) .

By carefully selecting such an element to apply Lemma 3.4.6, the two subproblems

obtained have size at most
(

1 − 1
log(|E |+|D|)

)
|E | · |D| and |E | · |D| − 1, respectively.

In this way, [Fredman and Khachiyan, 1996] achieved the first quasi-polynomial

bound for Problem 3.3, which still represents the state of the art.

3.5 Pursuing symmetry

In this section, I present the main idea guiding the approach I propose, inspired

by the fact that two dual clutters are just two representations of one and the same

object.

3.5.1 The role of certificates

The bijective relation between two dual clutters is perfectly symmetric. This sym-

metry is the reason why, similarly to [Berge, 1989] and [Fredman and Khachiyan,

1996], all authors have preferred to work, rather than with the DNF f and the CNF

g, with their encoding families F and G.

Previous algorithms were dedicated to assess duality by recursively checking

the duality of a certain number of smaller instances, hinging on lemmas stating

the equivalence between the duality of the original input pair and the duality of

each pair of some family of subproblems (as in the variable-based decomposition

in Subsection 3.4.5). Only in joint generation algorithms, relying either on this idea

or on duality checking as a subroutine ([Boros et al., 2004]), attention was also paid

66 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

to certificates, and then the algorithm was aspiring to find a missing transversal for

just one of the two families, and thus trying to correct their anomalies.

The problem of deciding whether the two members E and D of a clean pair

(E ,D) are mutually dual is in coNP, by its very definition. As a NO-certificate,

one could either provide a set in E∗ \ D or a set in D∗ \ E . Concentrating on just

searching for a set that hits all the sets in E and is not contained in any set in D
(i.e., the notion of NO-certificate usually adopted at this point in other works, as

also most natural when pursuing the generation of the dual) breaks the perfect

symmetry in the problem. In dislike of this double, two-ways, possibility for a

certificate, one could observe by pursuing symmetry that a certificate of one form

exists if and only if a certificate of the other form also exists (a set X is a transversal

of E not containing any set in D if and only if X is a transversal of D not containing

any set in E).

3.5.2 Bipartitions as certificates

Here we pursue and seek for symmetry also in the language of certificates. For this

reason, we prefer and propose to work with NO-certificates having the form of a

bipartition of the vertex set
{

S, S
}

, where S intersects every member of E and its

complement S intersects every member of D.

Fact 3.5.1. Let (E ,D) be a clean pair of clutters. Then, E and D are not dual if and only if

there exists a bipartition
{

S, S
}

of the vertex set such that:

(i) S intersects every member of E ;

(ii) S intersects every member of D.

Proof. If we have such a partition, then S is a transversal of E not containing any

set in D. Any minimal subset of S that is a transversal of E is hence a member of

E∗ \ D.

Conversely, if there exists an S ∈ E∗ \ D, then S is a transversal of E and,

moreover, S is a transversal of D, since S is incomparable with every other set in E∗

and D ⊆ E∗.

Fact 3.5.1 leads to the following.

Fact 3.5.2. Let (E ,D) be a clean pair of clutters and let
{

S, S
}

be a bipartition of their

common vertex set V. Then, exactly one of the following three cases occurs:

(i) there exists a set E0 ∈ E such that E0 ⊆ S;

3.6. Full covers 67

(ii) there exists a set D0 ∈ D such that D0 ⊆ S;

(iii) no set of E is contained in S and no set of D is contained in S.

Proof. The three cases are pairwise incompatible since: (i) and (ii) together imply

E0 ∩ D0 = ∅, (i) and (iii) together imply E0 ∩ S = ∅, (ii) and (iii) together imply

D0 ∩ S = ∅. When (i) does not hold, then S is a transversal for E . When (ii) does

not hold, then S is a transversal for D. Thus, when both (i) and (ii) do not hold,

then (iii) holds: S intersects every set in E and S intersects every set in D.

3.5.3 Bipartitions and frequency

We can exploit the concept of frequency, introduced in Subsection 3.4.5, to provide

the following definition.

Definition 3.5.1 (Ω-bipartition). Let E and D be two set families with V(E) =

V(D) =: V. Let Ω ∈ [0, 1] be a threshold value, fixed in advance. A partition{
S, S
}

is called an Ω-bipartition if both of the following two properties hold:

(i) ωv,E < Ω for every v ∈ S;

(ii) ωv,D < Ω for every v ∈ S.

Lemma 3.5.1. Let E and D be two set families with V(E) = V(D) =: V. Let Ω ∈ [0, 1]

be a threshold value, fixed in advance. Let S := {v ∈ V | ωv,E < Ω}. Then, V admits an

Ω-bipartition if and only if for every v ∈ V either ωv,E < Ω or ωv,D < Ω.

Proof. Two cases are possible: either
{

S, S
}

is an Ω-bipartition, or there exists a

v ∈ S such that both ωv,E ≥ Ω and ωv,D ≥ Ω. In the second case, no ω-bipartition

exists by definition.

3.6 Full covers

In this section, I introduce the last concept needed to define a new procedure to

solve Problem 3.3. First, I recall the notion of full covers of a clutter and some

methods to construct them, as defined by [Boros and Makino, 2009] and implicitly

by [Elbassioni, 2008]. Then, I show how to exploit full covers and Ω-bipartitions

together, in order to decompose an instance of Problem 3.3 in a family of smaller

instances.

68 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

3.6.1 Full covers and duality testing

Definition 3.6.1 (Full cover). A set family C is a full cover of a set family E if for

every E ∈ E there exists a C ∈ C such that E ⊆ C.

Examples of (trivial) full covers of E are {V} and E itself.

Hereafter we consider the definition, given by [Boros and Makino, 2009], that

exploits the Filter operation seen in Subsection 3.4.4.

Definition 3.6.2 ([Boros and Makino, 2009]). Given a clutter E , a set family C is a

full cover of E if and only if

E =
⋃

C∈C
EC. (3.6)

Lemma 3.6.1 (Duality with full covers – [Boros and Makino, 2009]). Let E and E∗ be

dual clutters, let D ⊆ E∗, and let C be a full cover of E∗ \ D. Then, D = E∗ if and only if

DC =
(
EC)∗, for each C ∈ C.

Proof. By Lemma 3.4.4, if D = E∗, then DC =
(
EC)∗, for every possible C ⊆ V.

Conversely, if D is missing some member T ∈ E∗, then consider any C ∈ C such

that T ⊆ C. Clearly, T ̸∈ DC, whereas
(
EC)∗ = (E∗)C contains T.

We remark that the reformulation of Lemma 3.6.1 given above offers a (very

shallow) strengthening with respect to the original one by [Boros and Makino,

2009], in that C is not required to be a full cover of the whole E∗. This new

formulation is slightly more handy, since it does not yield dummy subproblems

in the resulting decomposition algorithms and helps in simplifying some general

constructions for full covers.

[Boros and Makino, 2009] showed that, conversely, the completeness of the de-

composition characterizes in a sense the concept of full cover. Anyway, both in

[Boros and Makino, 2009] and here, what given in Lemma 3.6.1 suffices in decom-

posing the problem into smaller subproblems to allow for a recursive approach. In-

deed, Lemma 3.6.1 allows substituting one single instance with a family of smaller

instances: E and D are dual in the original problem if and only if, for every C ∈ C,

EC and DC are dual.

[Boros and Makino, 2009] provided two methods to construct a full cover of

the dual clutter E∗, that they alternate appropriately during the execution of their

algorithm, according to properties satisfied by transversals in E or in E∗. The former

3.6. Full covers 69

method, which will be used later in this chapter, is described in the following

lemma.

Lemma 3.6.2 (Full cover construction – [Boros and Makino, 2009]). Given a clutter E
and a set E0 ∈ E , the family

C(E0) =
{
{i} ∪ E | E ∈ E , i ∈ E ∩ E0

}
(3.7)

forms a full cover of E∗. By construction, the number of sets in C(E0) is at most ∑E∈E |E|.

Example 3.2 (cont.) Given F := {{1, 2}, {1, 3}, {3, 4}}, let F0 := {1, 3}. Then,

C(F0) := {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

We prove only a slightly stronger version of Lemma 3.6.2, offered in the follow-

ing lemma.

Lemma 3.6.3 (Stronger full cover construction). Given a set family E , let E0 ∈ E and

fix its elements in a specific order E0 = {e1, e2, . . . , et}. Then, the following

C(E0) :=
t⋃

i=1

⋃
{E∈E|ei∈E}

{{ei} ∪ (V \ {e1, e2 . . . ei−1} \ E)} (3.8)

forms a full cover of E∗.

Proof. Let D be any set of E∗. Then, D intersects E0. Let i be the smallest natural

such that ei ∈ D ∩ E0; from this, D ⊆ V \ {e1, e2 . . . ei−1}. Since D is a minimal

transversal of E , then there exists a set E ∈ E such that D ∩ E = {ei}. For such E it

holds that D \ {ei} ⊆ V \ {e1, e2 . . . ei−1} \ E.

To yield smaller subproblems, in the use of Lemma 3.6.3, it is only natural to

sort the elements of E0 as e1, e2, . . . , et in increasing order of their frequency in the

sets of the dual E∗.

Example 3.2 (cont.) Given F := {{1, 2}, {1, 3}, {3, 4}}, let F0 := {1, 3}. Then,

C(F0) := {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}.

For completeness, we also report the second method described by [Boros and

Makino, 2009] to construct a full cover of the dual clutter E∗, even if we are not

going to exploit it in this chapter. Actually, [Boros and Makino, 2009] attributed

it to [Elbassioni, 2008], which implicitly used it in his own decomposition to solve

Problem 3.3.

70 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Lemma 3.6.4 (Full cover construction – [Elbassioni, 2008], [Boros and Makino,

2009]). Given a clutter E and a minimal transversal D0 ∈ E∗, the family

C(D0) = {V \ {i} | i ∈ D0} ∪ {D0} (3.9)

forms a full cover of E∗.

Proof. Let D be any set of E∗ other than D0. Then, there exists an i ∈ D0 \ D since

E∗ is a clutter.

3.6.2 Full covers and bipartitions

In this subsection, we link the concepts of full covers and Ω-bipartitions, previously

defined in Subsection 3.5.3. They are used jointly in the following lemma.

Lemma 3.6.5. Let E be a clutter, let D ⊆ E∗. Let
{

S, S
}

be an Ω-bipartition of V(E) =
V(D) =: V. If there exists E0 ∈ E such that E0 ⊆ S, let C(E0) be a full cover of E∗. Then,

|DC| ≤ Ω · |D|, for each C ∈ C(E0).

Proof. Consider any E0 ∈ E with E0 ⊆ S and any C ∈ C(E0). Then, there exists an

E ∈ E and an i ∈ E0 ∩ E such that C = {i} ∪ E. The sets of D can be divided into

two groups:

• those containing i: these are at most Ω · |D| sets, since i ∈ E0 ⊆ S;

• those not containing i: these must all intersect E, since E ∈ E and D ⊆ E∗. Thus,

each of these sets D ∈ D not containing i should have at least one element

external to E and also external to {i} ∪ E; as such, D falls out from DC.

In conclusion, |DC| ≤ Ω · |D|.

Example 3.2 (cont.) Given F := {{1, 2}, {1, 3}, {3, 4}} and G := {{1, 4}, {2, 3}},

let Ω := 2
3 . Then,

{
S, S
}

:= {{2, 4}, {1, 3}} is an Ω-bipartition of V(F) = V(G) =:

V. Also, there exists F0 := {1, 3} ⊆ S and C(F0) := {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}.

Let Ω := 2
3 . Then, |GC| ≤ Ω · |G|, for each C ∈ C(F0). Indeed:

• GC1={1,2,3} := {{2, 3}}, then |GC1 | = 1 ≤ 2
3 · 2 = 4

3 ;

• GC2={1,2,4} := {{1, 4}}, then |GC2 | = 1 ≤ 2
3 · 2 = 4

3 ;

• GC3={1,3,4} := {{1, 4}}, then |GC3 | = 1 ≤ 2
3 · 2 = 4

3 .

3.7. A new decomposition algorithm 71

To conclude this section, we provide the following lemma to bound the cardi-

nality of a full cover.

Lemma 3.6.6. Let (E ,D) be a clean pair of clutters defined over the vertex set V. Let C be

a full cover of E∗ constructed by applying Lemma 3.6.2. Then, |E | · |D| ≥ |C|.

Proof. Since every member of E is a minimal transversal of D, for every E ∈ E and

for every v ∈ V, there exists a Dv ∈ D such that E ∩ Dv = {v}. Clearly, for every

u ∈ E \ {v}, there exists Du ∈ D such that Du ̸= Dv. Thus, |E | · |D| = ∑E∈E |D| ≥
∑E∈E |E| ≥ |C|.

3.7 A new decomposition algorithm

In this section, I describe a new decomposition algorithm, based on all previous

lemmas recalled defined in Sections 3.4, 3.5, and 3.6. Indeed, Algorithm 3.2 com-

bines the classical decomposition by [Fredman and Khachiyan, 1996], their concept

of frequency, and the notion of full covers, introduced by [Boros and Makino, 2009]

and implicitly used also by [Elbassioni, 2008].

3.7.1 Algorithm

Algorithm 3.2 describes a recursive procedure called MissingPair(E ,D, Ω), whose

structure follows by the three pairwise incompatible cases of Fact 3.5.2. Whenever

given a clean pair (E ,D) and a threshold parameter Ω ∈ [0, 1], the procedure

checks the duality of the two input clutters E and D. In case they are not dual

of each other, then MissingPair(E ,D, Ω) returns a missing pair
{

S, S
}

such that S

intersects every set in E and S intersects every set in D.

Simple subproblems, where |E | or |D| is equal to 1, or when their product is

less than 4, are solved by a procedure called SimpleDuality(E ,D) without making

any recursive calls. This is described in Algorithm 3.1, reported below, just before

Algorithm 3.2.

72 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Algorithm 3.1: SimpleDuality(E ,D)

Case 1.1: |E | = 1. Let E := {E} and let E∗ := {{v} | v ∈ E ∈ E}.

Then, if any, return a set S in E∗ \ D.

Case 1.2: |D| = 1. This is dual of Case 1.1.

Case 2: |E | = |D| = 2. Let E := {E1, E2} and let D := {D1, D2}.

If E1 and E2 are disjoint, then E∗ := {(i, j) | i ∈ E1, j ∈ E2}. Otherwise, let

E∗ := {i | i ∈ E1 ∩ E2} ∪ {(i, j) | i ∈ E1 \ (E1 ∩ E2), j ∈ E2 \ (E1 ∩ E2)}.

Then, if any, return a set S in E∗ \ D. Otherwise, similarly compute D∗ and,

if any, return a set S in D∗ \ E .

Algorithm 3.2: MissingPair(E , D, Ω)

0. Let V := V(E).
Case 0: |E | or |D| = 1, or |E | · |D| ≤ 4. Return SimpleDuality(E ,D).

1. Case 1: there exists a v ∈ V such that ωv,E ≥ Ω and ωv,D ≥ Ω both hold.

Apply Lemma 3.4.6 to recursively call MissingPair

(
E{v},D{v}, Ω

)
and

MissingPair

(
E{v},D{v}, Ω

)
.

2. Otherwise, obtain an Ω-bipartition
{

S, S
}

of the vertex set V by means of

Lemma 3.5.1. By Fact 3.5.2, only one of the following cases can occur:

Case 2.1: there exists a set E0 ∈ E such that E0 ⊆ S. Construct the set family

C(E0), that is a full cover of the dual E∗ by Lemma 3.6.3. Then, resort on

Lemma 3.6.5 to decompose the problem, making |C(E0)| recursive calls

to the procedure MissingPair

(
EC,DC, Ω

)
, for each C ∈ C(E0);

Case 2.2: there exists a set D0 ∈ D such that D0 ⊆ S. This is dual to

Case 2.1. Build a full cover C(D0) of the dual D∗ and decompose the

problem into |C(D0)| recursive calls, again by using Lemma 3.6.3 and

Lemma 3.6.5, calling the procedure MissingPair

(
EC,DC, Ω

)
, for each

C ∈ C(D0);

Case 2.3: no set of E is contained in S and no set of D is contained in S. A

missing pair has already been found. Indeed, S intersects every set in E
and S intersects every set in D. Return the bipartition

{
S, S
}

as a

NO-certificate of the duality of E and D.

3.7. A new decomposition algorithm 73

The following lemma just assures that the preconditions are preserved at each

recursive call of Algorithm 3.2.

Lemma 3.7.1. Let (E ,D) be a clean pair over the vertex set V and let S ⊆ V. Then(
ES,DS) and

(
ES,DS

)
are clean pairs over S.

Proof. By Lemma 3.4.1, it suffices to show that
(
ES,DS) is clean. Consider any

(E, D) ∈ ES × DS. Then, E ∈ E with E ⊆ S and D ∪ S ∈ D+. Therefore, E

intersects D ∪ S since (E ,D) is clean and thus standard, and E intersects D as well

for E ∩ S = ∅. This proves that also
(
ES,DS) is standard. Assume ES contains a

set E that is not a minimal transversal of DS and let E′ ⊊ E be a transversal of DS.

Since for every set D ∈ D the family DS contains some subset of D, then E′ is also a

transversal of D, contradicting that E is a minimal transversal of D. Finally, assume

DS contains a set D that is not a minimal transversal of ES and let D′ ⊊ D be a

transversal of ES. Then, D′ ∪ S is a transversal of E . But then DS should contain a

subset of D′, contradicting that DS is a clutter.

Lemma 3.7.2 (Correctness of Algorithm 3.2). Let (E ,D) be a clean pair of clutters

defined over the vertex set V(E) = V(D) =: V. Then, Algorithm 3.2 correctly decides

whether E and D are dual of each other or not.

Proof. The decomposition rules applied in Case 1 and in Cases 2.1, 2.2, and 2.3 are

correct by Lemma 3.4.6 and Lemma 3.6.1, respectively. Also, by Lemma 3.7.1, any

pair given as input to a subproblem generated by Algorithm 3.2 is clean. Moreover,

either Algorithm 3.2 does not return anything, when E and D are dual, or it reports

a NO-certificate of their duality in the form of a bipartition
{

S, S
}

(Case 2.3) or of

a missing transversal (Case 0).

The perspective we adopt here, with Algorithm 3.2, makes more explicit the

inherent symmetry of the problem, by looking for a symmetric NO-certificate pro-

vided by the pair
{

S, S
}

. Besides the fact that having two possible alternative views

on something is always intriguing, we point out that seeking for a bipartition
{

S, S
}

with the properties required by Lemma 3.6.5, or excluding that one such exists,

lends itself to implicit enumeration approaches (exhaustive or not). Branching on

whether an element v ∈ V should go on one side or the other makes more explicit

the analogy with techniques widely used in operations research or in constraint

programming. All previous methods could be rewritten under this viewpoint.

74 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

3.7.2 Summary

Table 3.1 indicates which main decomposition techniques are used by state-of-the-

art algorithms solving Problem 3.3.

Variable-based decomposition Full covers
[Fredman and Khachiyan, 1996] ✓
[Elbassioni, 2008] ✓ ✓
[Boros and Makino, 2009] ✓
[Raffaele and Rizzi, 2021] ✓ ✓

Table 3.1: Comparison among state-of-the-art algorithms to
solve the Monotone Boolean Duality problem.

3.7.3 Time complexity

Here we discuss the time complexity of Algorithm 3.2. We use n, σ, and π to

indicate the cardinality of |V|, the sum |E | + |D|, and the product |E | · |D|. In

previous works, the last quantity was called volume and denoted by v (see, e.g.,

[Fredman and Khachiyan, 1996] and [Elbassioni, 2008]).

Remark 3.7.1. At every recursive decomposition of the problem in Algorithm 3.2, all pa-

rameters involved (i.e., n, |E |, |D|, and, thus, σ and π) strictly decrease. Therefore, the

values of these parameters in the original instance offer a valid upper bound on those in any

generated subproblems.

Remark 3.7.2. Working on a super-polynomial bound, our goal is to decrease the constant

at the exponent. Thus, we focus only on providing an estimate on the number of recursive

calls. The estimate on the total running time is then obtained by multiplying this bound

with the maximum that can be spent locally in one single call, that is, when disregarding

what taken in the recursive calls (i.e., considering only the internal operations performed

to create subproblems and handle their answers), clearly polynomial in the parameters.

As such, this multiplicative factor is indeed negligible (actually, it could even be entirely

disregarded since the vast majority of the subproblems will be leaves of the recursion tree).

By Remark 3.7.1, considering the parameters of the original instance yields a safe bound

on this maximum. Notice now that the parameters of the instance also affect the branching

factor, but again monotonically. Therefore, by Remark 3.7.1, if for some of these parameters

we employ their values in the original instance, we anyhow obtain valid upper bounds. We

are going to resort on such convenient simplifications in the analyses that follow.

3.7. A new decomposition algorithm 75

As in [Fredman and Khachiyan, 1996] and [Elbassioni, 2008], we exploit the

following equation, where χ(a, b) is the unique positive root:

(
χ(a, b)

b

)χ(a,b)
= a. (3.10)

We observe that, when log a = ω(b), χ(a, b) ≈ log a
log log a , whereas, if log a = O(b) and

a ≥ 1, then χ(a, b) = Θ(b).

Theorem 3.7.1 (Number of recursive calls of Algorithm 3.2). Let (E ,D) be a clean pair

of clutters defined over the vertex set V, such that |E | · |D| := π and
(

χ(π,2)
2

)χ(π,2)
= π.

Then, Problem 3.3 can be solved with at most πkχ(π,2) recursive calls of Algorithm 3.2,

where k := max
{

ln 2, 1 − logχ(π,2) 2
}

.

Proof. Let P(π) be the number of recursive calls of Algorithm 3.2 needed to solve

the instance (E ,D) of Problem 3.3. We introduce Ω := 1
χ(π,2) as a threshold.

Similarly to [Fredman and Khachiyan, 1996] and [Elbassioni, 2008], we prove by

induction that P(π) ≤ πk·χ(π,2), for some k ∈ R+.

Base case This corresponds to Case 0, where |E | or |D| is equal to 1, or when

|E | · |D| = π ≤ 4. Actually, we can assume π < 6, since π = 5 would

imply either |E | or |D| trivial. Since we do not make any recursive calls,

P(π) = 1 ≤ πk·χ(π,2), ∀k > 0, k ∈ R+.

Inductive step We assume that π ≥ 6 and analyse each remaining case of Algo-

rithm 3.2.

Case 1. Lemma 3.4.6 yields two subproblems. Thus, we get the following

recurrence:

P(π) ≤ 1 + 2P ((1 − Ω)π) . (3.11)

By induction, we obtain:

P(π) ≤ 1 + 2 ((1 − Ω)π)k·χ((1−Ω)π,2)

≤ 2 ((1 − Ω)π)k·χ(π,2) , for k ≥ 0.32

= 2 (1 − Ω)k·χ(π,2) πk·χ(π,2)

≤ 2
(

e−Ω
)k·χ(π,2)

πk·χ(π,2), since 1 − x ≤ e−x, for all x ∈ R

≤ 2
(

1
e

) 1
χ(π,2) ·k·χ(π,2)

πk·χ(π,2)

=

(
2
ek

)
πk·χ(π,2) ≤ πk·χ(π,2), for k ≥ ln 2.

76 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Case 2.1. There exists a set E0 ∈ E such that E0 ⊆ S, thus we construct a full

cover C(E0) containing at most ∑E∈E |E| sets.

This translates in the following recurrence:

P(π) ≤ 1 +

(
∑

E∈E
|E|
)

P(Ωπ). (3.12)

By induction and monotonicity of χ(·, 2), we obtain:

P(π) ≤ 1 +

(
∑

E∈E
|E|
)
(Ωπ)k·χ(Ωπ,2)

≤ 1 + π(Ωπ)k·χ(Ωπ,2) by Lemma 3.6.6

≤ π(Ωπ)k·χ(π,2), for k ≥ 0.23

≤ πΩk·χ(π,2)πk·χ(π,2).

We want πΩk·χ(π,2)πk·χ(π,2) ≤ πk·χ(π,2), thus we set πΩk·χ(π,2) ≤ 1.

Since Ω := 1
χ(π,2) , we get:

(
1

χ(π, 2)

)k·χ(π,2)
≤ 1

π

χ(π, 2)k·χ(π,2) > π

k · χ(π, 2) ≥ logχ(π,2) π.

By definition,
(

χ(π,2)
2

)χ(π,2)
= π.

Thus:

k ≥ 1
χ(π, 2)

logχ(π,2)

(
χ(π, 2)

2

)χ(π,2)

k ≥ 1
χ(π, 2)

χ(π, 2) logχ(π,2)

(
χ(π, 2)

2

)
k ≥ logχ(π,2)

(
χ(π, 2)

2

)
k ≥ 1 − logχ(π,2) 2.

Case 2.2. This is symmetric to Case 2.1 by clutter duality from Lemma 3.4.1.

Case 2.3. This is a lucky case in which the computation ends without calling

any subproblems.

3.7. A new decomposition algorithm 77

Summarizing, we obtain the following bounds for π and k:

• Case 0: π < 6, k ≥ 0;

• Case 1: π ≥ 6, k ≥ 0.32 and k ≥ ln 2;

• Case 2: π ≥ 6, k ≥ 0.23 and k ≥ 1 − logχ(π,2) 2.

Figure 3.2a shows that, for any χ(π, 2) ≥ 2 (i.e., π ≥ 1), the minimum value of

k required in Case 2 is always greater than 0 but generally also less than 1. Only

when π → ∞, then also χ(π, 2) → ∞, and k = 1.

2 4 6 8 10

−1

1

2

χ(π, 2)

(a) 1 − logχ(π,2) 2.

2,000 4,000 6,000 8,000 10,000

−1

1

2

π

(b) k = max
{

ln 2, 1 − logχ(π,2) 2
}

.

Figure 3.2: Trends of 1 − logχ(π,2) 2 and

k = max
{

ln 2, 1 − logχ(π,2) 2
}

as χ(π, 2) and π increase, respectively.

Since the value of k cannot be fixed in advance for any π, to finally get to our

claimed bound, we just take the maximum value between ln 2 and 1 − logχ(π,2) 2

(Figure 3.2b).

Example 3.4 Let (E ,D) be a clean pair of clutters such that π := |E | · |D| = 220.

Then, χ(π, 2) = 9.13 and k := max
{

ln 2, 1 − log9.13(2)
}
= ln 2.

Theorem 3.7.2 (Running time of Algorithm 3.2). Let (E ,D) be a clean pair of clutters

defined over the vertex set V, such that |E |+ |D| =: σ, |E | · |D| =: π, and
(

χ(π,2)
2

)χ(π,2)
=

π. Then, Problem 3.3 can be solved in σ4kχ(σ,2) time, where k := max
{

ln 2, 1 − logχ(π,2) 2
}

.

Proof. By monotonicity of χ(·, 2), χ
(
σ2, 2

)
> χ(σ, 2).

Since σ2 =

(
χ(σ2,2)

2

)χ(σ2,2)
=
(

χ(σ,2)
2

)2χ(σ,2)
, we have χ

(
σ2, 2

)
< 2χ(σ, 2).

By definition, π = |E | · |D| ≤
(
(|E |+|D|)

4

)2
≤ (|E |+ |D|)2 ≤ σ2.

78 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Hence, by Theorem 3.7.1, the number of recursive calls of Algorithm 3.2 is at most

πkχ(π,2) ≤ (σ2)kχ(σ2,2) < σ4kχ(σ,2).

Thus, even if the bounds obtained seem promising, in the worst case Algo-

rithm 3.2 offers the same performance guarantee as the state-of-the-art algorithms

by [Fredman and Khachiyan, 1996].

3.8 The space issues in dualization

Now, after providing a new decomposition approach to solve Problem 3.3 (i.e.,

duality), we shift our attention to Problem 3.4 (i.e., dualization). In particular, in

this section, I first provide a simple procedure to solve Problem 3.4 by relying

on Algorithm 3.2, and I underline the main issues in terms of space. To avoid

them, first I recall some implementation techniques used by [Tamaki, 2000]. Then,

I consequently adapt the decomposition rules applied in Algorithm 3.2. Finally, I

propose an algorithm to solve Problem 3.4 by using only polynomial space.

3.8.1 A naive procedure to dualize

Since Problem 3.3 is a decision problem, we do not worry about the memory occu-

pied by Algorithm 3.2 when solving it. Indeed, the memory used by a subproblem

already handled can be exploited again by another subproblem still to be examined.

Moreover, given an input pair (E ,D), what we are interested in is just computing

one missing pair
{

S, S
}

such that S is a transversal of E and S is a transversal of

D. When we find the first NO-certificate of such a form, we return it and conclude

that E and D are not dual of each other.

Instead, space has to be carefully taken into account when solving Problem 3.4.

In this case, given an input clutter E , we want to return its dual E∗ = D, i.e., we

want to return all the minimal transversals of E . Also, we would like each minimal

transversal to be output exactly once.

As mentioned in Section 3.1, Problem 3.4 can be reduced to Problem 3.3. In

particular, given a clutter E and a threshold parameter Ω ∈ [0, 1], we can rely on

Algorithm 3.2 to obtain the following procedure.

3.8. The space issues in dualization 79

Algorithm 3.3: NaiveDualize(E , Ω)

1. Let D := ∅.

2. While MissingPair(E ,D, Ω) =
{

S, S
}

:

Add S to D.

3. Return D.

Algorithm 3.3 is pretty simple, but it has a main issue in Step 2. Indeed, it

requires that all minimal transversals generated are stored in memory and used

as input in successive iterations. In terms of space, this could be prohibitive, e.g.,

when a clutter has an exponential number of transversals, as in Example 3.3.

3.8.2 Reporting transversals one by one by using processes

[Tamaki, 2000] faced the same issue of Algorithm 3.3 when applying the decom-

positions by [Fredman and Khachiyan, 1996] to solve Problem 3.4. To overcome

it, he first reformulated FK-B and then proposed a process-based algorithm, which

occupies polynomial space only. This approach was also used by [Elbassioni, 2008].

The key idea implemented is the following: “Each process reports transversal one

by one, rather than returning the set of transversals as a whole” ([Tamaki, 2000], page

5). To be able to do so, [Tamaki, 2000] introduces a (sub)process for each recursive

call of his dualization algorithm. A subprocess is in charge of the execution of the

subproblem corresponding to that recursive call. The first call of the algorithm,

corresponding to the original input problem, is associated with the so-called root

process. A subprocess knows its parent (sub)process. In a given moment, only one

subprocess, called current, is active and being executed, whereas all other subpro-

cesses are either suspended (waiting to be resumed) or have already terminated

their execution. The root process, as well as a generic subprocess, can initiate some

child subprocesses, according to the decomposition rule that can be applied in the

recursive algorithm. In this case, the current process saves its state and is sus-

pended, and one of the child subprocesses becomes active. When there is a return

statement, the subprocess returns to its parent (sub)process either a new minimal

transversal or a termination signal. In the former case, the subprocess is suspended

until the transversal is output. In the latter case, it is terminated and not resumed

anymore, thus the storage it has occupied can be freed and used by another sub-

process not yet terminated.

80 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Thus, together with the recursion tree of the algorithm, where nodes are asso-

ciated with subproblems of the original input problem, we can assume to have a

process tree. The algorithm developed by [Tamaki, 2000] schedules processes and

keeps all those that are ready and waiting for execution in a stack. Hereafter we

report the main invariants maintained:

(I1) except for the current, all ready processes are in the stack, where entries are

ordered according to the right-to-left ordering in the process tree;

(I2) if a process is waiting, it is waiting for its rightmost child to respond;

(I3) the current process is always on the path in the process tree from the root to

the rightmost leaf.

3.8.3 Reformulating decomposition rules

In order to avoid storing all minimal transversals as in Algorithm 3.3, we can re-

turn transversals one by one by using processes as in [Tamaki, 2000]. To do so, we

need to reformulate the two decomposition rules used in Algorithm 3.2, i.e., the

variable-based decomposition and the full-cover decomposition.

To adapt the variable-based decomposition in Lemma 3.4.6, we can proceed as

follows. Given E , we can decompose E as:

E =
{

E ∪ {v} | E ∈ E{v}
}
∪ E{v}.

Lemma 3.8.1 (Decomposition of E∗). Let E be a clutter defined over the vertex set V.

Then

E∗ = Minimals
((

E{v}
)∗

∪
{
{v} ∪ D | D ∈

(
E{v}

)∗
\
(
E{v}

)∗})
.

Proof. A set S ⊆ V is a minimal transversal of E if and only if either v /∈ S and S is

a transversal of E{v}, or S \ {v} is a transversal of E{v}.

The two clutters
(
E{v}

)∗
and

{
{v} ∪ D | D ∈

(
E{v}

)∗
\
(
E{v}

)∗}
are disjoint.

Thus, we can ensure that each transversal of E , obtained through this variable-

based decomposition, is output only once.

3.8. The space issues in dualization 81

When we apply a full-cover decomposition, actually we do not need to work on

disjoint clutters, but we can add an easy testing procedure based on the following

lemma.

Lemma 3.8.2. Let E be a clutter defined over the vertex set V. Let C :=
{

C1, . . . , C|C|

}
be

a full cover of E∗ and let D ⊆ E∗. Let T ⊆ V. Then, given Ci ∈ C, T ∈
(
ECi
)∗ \ DCi and

T ⊈ Cj, for all Cj ∈ C such that j < i, if and only if T ∈ E∗ \ D and T ⊆ Ci.

Proof. By Lemma 3.6.1, T ∈
(
ECi
)∗ \ DCi is a transversal of E . Since T ∈

(
ECi
)∗,

then T ⊆ Ci. Given this and the fact that T /∈ DCi , then T /∈ D.

Conversely, clearly T /∈ DCi , because T /∈ D and the filter operation computes a

subset of it. Also, T ∈
(
ECi
)∗ because T ⊆ Ci and, by the definition of the projection

operation, ECi := Minimals {E ∩ Ci | E ∈ E}. Thus, for each set in ECi , there exists

at least one element in T intersecting it. Finally, since T is a minimal transversal of

E , it is also a minimal transversal of ECi .

We build a full cover C := {C1, . . . , C|C|} of E∗ and we apply Lemma 3.6.5 to

decompose the input problem in |C| subproblems. In a given subproblem ECi , by

Lemma 3.8.2 we avoid generating a transversal T of E more than once by simply

checking whether T is a subset of any Cj ∈ C, with j < i. Indeed, if T is not a

new transversal, then it has already been generated in a previous subproblem as a

transversal of ECj , j < i, where V
(
ECj
)
= Cj and T ⊆ Cj. Thus, it is enough to

store all the sets in the full cover C and consider the related subproblems one by

one, solving them sequentially. Differently from [Tamaki, 2000], we do not need to

sort sets in a lexicographic or any specific order, to perform this polynomial check.

3.8.4 A polynomial-space algorithm for dualization

In this subsection, I propose Algorithm 3.4, a polynomial-space procedure to solve

Problem 3.4. Algorithm 3.4 improves Algorithm 3.3 by integrating the variable-

based decomposition and the full-cover decomposition as described in Lemma 3.8.1

and in Lemma 3.8.2, respectively.

To keep the pseudocode of Algorithm 3.4 simple, we do not explicitly write all

initiated, suspended, and resumed subprocesses. Actually, we assume the proce-

dure is implemented as a generator and that transversals are reported one by one

by using the keyword yield (as allowed by some programming languages, such as

Python1).

1See, e.g., https://docs.python.org/3/reference/expressions.html#yieldexpr.

https://docs.python.org/3/reference/expressions.html#yieldexpr

82 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

Algorithm 3.4: Dualize(E)

0. Let V := V(E).
Case 0: |E | = 1. Let E be the only set in E . For each v ∈ E, yield {v}.

1. Case 1: there exists a v ∈ V such that ωv,E ≥ Ω.

Apply Lemma 3.8.1. For each D in Dualize

(
E{v}

)
, yield D.

Then, for each D in Dualize

(
E{v}

)
, if D is not a transversal of E{v}, yield D.

2. Case 2: there does not exist a v ∈ V such that ωv,E ≥ Ω.

Apply Lemma 3.6.1. Let E0 ∈ E and use Lemma 3.6.3 to construct the set

family C(E0) :=
{

C1, . . . , C|C(E0)|

}
, that is a full cover of E∗.

Then, resort on Lemma 3.6.5 to make |C(E0)| recursive calls by considering

each Ci ∈ C(E0) and applying Lemma 3.8.2:

for each T in Dualize

(
ECi
)
, if T ⊈ Cj for each j < i, yield T.

Lemma 3.8.3 (Correctness and uniqueness of solutions of Algorithm 3.4). Let E be

a clutter defined over the vertex set V. Then, Algorithm 3.4 correctly lists all minimal

transversals of E without duplicates.

Proof. In Case 0, Algorithm 3.4 returns |E| minimal transversals of E . In Case 1,

by Lemma 3.8.1, the two recursive calls of the variable-based decomposition are

disjoint, return all minimal transversals only, and no minimal transversal is output

more than once. In Case 2, by Lemma 3.6.1, all minimal transversals of E are output

and, by Lemma 3.8.2, no minimal transversal is output more than once.

3.8.5 Space complexity

In this subsection, I show that Algorithm 3.4 can be implemented by occupying

polynomial space only.

Given a clutter E , defined over a vertex set V, we consider all the pairs (v, E)

where v is an element of V and E is a set of E , such that v ∈ E.

Lemma 3.8.4 (Storage cost of an instance). Given a clutter E , defined over the vertex set

V, the cost to represent E by using doubly linked list is O (η), where η := ∑E∈E |E|.

This is a natural measure that arises, corresponding to what we would like to

pay, in terms of space, to represent E . Indeed, we can introduce a doubly linked

list for each v ∈ V and a doubly linked list for each E ∈ E , which contain links to

the related pairs (v, E).

3.8. The space issues in dualization 83

Through its list, an element v can easily get information about all the sets E ∈ E
in which it appears. Similarly, a set E is able to retrieve all the elements v ∈ V

it contains. It is also easy to remove a set E from E , by removing each pair (v, E)

in its doubly linked list and updating the corresponding list of v. Likewise, when

removing an element v from V, we remove each pair (v, E) in its doubly linked

list and we update the list of the related E. (Instead of removing a pair, we can

alternatively associate a Boolean value to each pair, that states whether it has to

be considered or discharged). Anyway, since removing an element from a doubly

linked list requires θ(1) time and O(1) space, this kind of operation on E or on V

is linear in η.

Also other procedures, which can occur several times when solving Problem 3.3

and Problem 3.4, can be performed linearly as well by adopting this measure.

Lemma 3.8.5 (Transversal testing). Let E be a clutter defined over a vertex set V, and

let D ⊆ V. Then, we can test whether D is a transversal of E in O (η) time, where

η := ∑E∈E |E|.

For each v ∈ D, we assign a Boolean value set to true to every pair (v, E) in the

doubly linked list of v. Then, for each E ∈ E , we check that in its doubly linked list

there exists at least one pair set to true. In the worst case, this checking is linear in

the number of pairs (v, E).

Lemma 3.8.6 (Minimal-transversal testing). Let E be a clutter defined over a vertex set

V, and let D ⊆ V. Then, we can test whether D is a minimal transversal of E in O (η)

time, where η := ∑E∈E |E|.

In this case, instead of a Boolean value for each pair (v, E), we can use a counter

for each E ∈ E . First, we iterate over the elements v ∈ D: for each pair (v, E),

we increment the counter of the related E and we keep a record of v as the last

element of D hitting E. Then, we consider E ′ as the sets E ∈ E hit only once:

if every element of D is the last hitting element of at least one set of E ′, then D is

a minimal transversal of E . Also this checking is linear in the number of pairs (v, E).

Now we can proceed analysing the storage required by Algorithm 3.4. Similarly

to [Tamaki, 2000], we consider two types of storage: the temporary storage and the

process storage. The former is used to test whether a given subset of the vertex set

V is a (minimal) transversal of a given hypergraph.

Lemma 3.8.7 (Temporary storage of Algorithm 3.4). Let E be a clutter defined over a

vertex set V and let E be the original input of Algorithm 3.4. Then, the temporary storage

84 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

required by Algorithm 3.4 to test whether S is a (minimal) transversal of E (or of some

subproblem of E) is O (η), where η := ∑E∈E |E|.

Proof. This follows directly from Lemma 3.8.4, Lemma 3.8.5, and Lemma 3.8.6.

Now we consider the process storage. We note that, at any time during the

execution of Algorithm 3.4, the nodes in the recursive tree are generated only when

needed. Thus, we actually keep in memory only an active subtree composed of

all nodes that have been visited but whose execution has not terminated yet. As

[Tamaki, 2000] reported, for each subprocess associated with such a node, we store:

(i) its parent (sub)process pointer and its resumption point;

(ii) the storage it needs to represent the clutters it has created and passed as input

to a subprocess that is still in the process tree;

(iii) the list cells for which it is the creator and which are still referred to by some

subprocesses in the process tree.

For each time step t and a process p in the process tree at time t, let Wt(p) be

the number of words of process storage that p is responsible for. Let E be the input

clutter for p. If Case 0 applies to p, as process storage we need only O(1) for the

parent process pointer and the resumption point. If Case 1 applies to p, we need

this O(1) plus O (η) to represent the two subproblems E{v} and E{v}. Finally, if

Case 2 applies to p, we need O(1) plus O (η) to represent the full cover C(E0), and

O (η) to represent the subproblem ECi , with Ci ∈ C(E0). Thus:

Wt(p) ≤

O(1) in Case 0,

O (η) in Case 1 and Case 2.

Let Mt(p) denote the sum of Wt(q) over all the processes q in the process tree

rooted at p. Let M(η) denote the worst possible value of Mt(p), over all possible

input E to the process p, with ∑E∈E |E| ≤ η over all possible steps t.

Lemma 3.8.8 (Process storage of Algorithm 3.4). Let E be a clutter defined over the

vertex set V, such that ∑E∈E |E| =: η. Then, M(η), i.e., the number of words of process

storage required by Algorithm 3.4 to list all minimal transversals of E , is O
(
η2).

Proof. We analyse each possible case.

Case 0: M(η) ≤ O(1).

Case 1 and Case 2: M(η) ≤ O (η) + M(η − 1).

3.8. The space issues in dualization 85

Let c be a large enough constant such that M(1) ≤ c and M(η) ≤ cη + M(η − 1),

for η > 1. We show by induction that M(η) ≤ cη2, for every η ≥ 1. The base case

η = 1 is trivial. Let η > 1 and suppose M(k) ≤ ck2 holds for every k < η. When

M(η) ≤ cη + M(η − 1) holds, then we have

M(η) ≤ cη + c(η − 1)2

= c(η + η2 − 2η + 1)

= c(η2 − η + 1)

≤ cη2, for η ≥ 1.

Theorem 3.8.1 (Storage of Algorithm 3.4). Let E be a clutter defined over the vertex set

V, such that ∑E∈E |E| =: η. Then, Algorithm 3.4 lists all minimal transversals of E by

using O
(
η2) space.

Proof. This follows directly from Lemma 3.8.7 and Lemma 3.8.8.

Finally, we provide the following theorem about the number of processes gen-

erated by Algorithm 3.4.

Theorem 3.8.2 (Number of processes of Algorithm 3.4). Let E be a clutter defined

over the vertex set V. Then, the total number of processes generated by Algorithm 3.4 to

solve Problem 3.4 is equal to the number of recursive calls of Algorithm 3.2 stated in

Theorem 3.7.1.

Proof. By definition, there is a one-to-one correspondence between the processes

initiated by Algorithm 3.4 and the nodes in the recursion tree of Algorithm 3.2.

Could [Tamaki, 2000]’s algorithm and Algorithm 3.4 be executed in parallel?

Each ready subprocess, waiting in the stack for execution, could be handled by a

different available processor, but we should be careful in maintaining the invariants

(I1)–(I3) described in Subsection 3.8.2 (unless of course we modify the structure of

the algorithm). However, if we decide to use several processors, then we should

be willing to occupy some additional space. Indeed, we would actually keep in

memory more than one active subtree. By Theorem 3.8.2, the number of processes

generated is equal to the number of recursive calls of Algorithm 3.2. Thus, the

maximum number of processors to be used should be delicately set, in order not to

compromise too much the advantage achieved in terms of space.

86 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

3.9 Further developments

To conclude this chapter, I discuss some further developments and interesting re-

search lines for future work.

3.9.1 Generalizations and extensions of full-covers methods

Here I provide some other methods to construct full covers, which lead to other

possible experimental decompositions. The main goal to keep in mind is to try to

define a full cover with a small size (i.e., the number of subproblems that would be

generated by its application) and such that the cardinality of its sets is also not big

(i.e., that would allow obtaining smaller subproblems).

Lemma 3.6.3 can be generalized as follows.

Lemma 3.9.1 (Generalized full cover construction). Let V := {1, 2, . . . , n}. Let E be a

set family over V, and E ′ ⊆ E . Then, the following is a full cover of E∗:

⋃
K={k1,...,k|K|}∈(E ′)∗

⋃
k∈K

K ∪

V \
⋃

{E∈E :k∈E}
E


 . (3.13)

Proof. Let D be any set of E∗. Then, D contains some minimal transversal of E ′. Let

K be a minimal transversal of E ′ contained in D. For every k ∈ K, k ∈ D and, since

D is a minimal transversal for E , then there exists an E ∈ E such that D ∩ E = {k}.

Therefore, D \ K ⊆

V \
⋃

{E∈E :k∈E}
E

.

Here it is an extension of Lemma 3.6.3.

Lemma 3.9.2 (Stronger full cover construction (extended)). Given a set family E , let

E0 = {e1, e2, . . . , ep} and F0 = { f1, f2, . . . , fq} be two disjoint sets in E . Then, the

following is a full cover of E∗:

p⋃
i=1

q⋃
j=1

⋃
{E∈E|ei∈E}

⋃
{F∈E| f j∈F}

{
{ei, f j} ∪ (V \ {e1, e2 . . . ei−1} \ { f1, f2 . . . f j−1} \ E \ F)

}
.

(3.14)

Proof. Let D be any set of E∗. Then, D intersects both E0 and F0. Let i (resp.,

j) be the smallest natural such that ei ∈ D ∩ E0 (resp., f j ∈ D ∩ F0); from this

D ⊆ V \ {e1, e2 . . . ei−1} \ { f1, f2 . . . f j−1}. Since D is a minimal transversal of E , then

3.9. Further developments 87

there exists a set E ∈ E such that D ∩ E = {ei} and a set F ∈ E such that D ∩ F =

{ f j}. Therefore, D \ {ei, f j} ⊆ V \ {e1, e2 . . . ei−1} \ { f1, f2 . . . f j−1} \ E \ F.

[Boros and Makino, 2009] attributed a first example of the use of full covers to

[Elbassioni, 2008], which implicitly used the following kind.

Lemma 3.9.3 (Full cover construction – [Elbassioni, 2008], [Boros and Makino,

2009]). Given a clutter E and a minimal transversal D0 ∈ E∗, the family

C(D0) = {V \ {i} | i ∈ D0} ∪ {D0} (3.15)

forms a full cover of E∗.

Proof. Let D be any set of E∗ other than D0. Then, there exists an i ∈ D0 \ D since

E∗ is a clutter.

Lemma 3.9.3 can be regarded as a special case of the following.

Lemma 3.9.4. Given a set family E , let D0 ⊆ E∗. Then, the following is a full cover of

E∗ \ D0:

D0 ∪
{

P | P ∈ D∗
0
}

. (3.16)

Proof. Let D be any set in E∗ \ D0. Since E∗ is a clutter, then D is a transversal

of E∗ \ D, and also a transversal of D0 \ D = D0, since D ̸∈ D0 ⊆ E∗. Being a

transversal of D0, D contains a set P ∈ D∗
0 . From P ⊆ D, we get D ⊆ P.

We can join Lemma 3.6.3 and Lemma 3.9.3 as described right away.

Lemma 3.9.5 (Full cover construction (two sides)). Given a set family E , let E0 ∈ E
and fix its elements in a specific order E0 = {e1, e2, . . . , et}. Assume given a minimal

transversal D0 ∈ E∗. Then, the following is a full cover of E∗:

{D0} ∪
⋃

d0∈D0

t⋃
i=1

⋃
{E∈E|ei∈E}

{
{ei} ∪ (V \ {e1, e2 . . . ei−1} \ E \ {d0})

}
. (3.17)

Proof. Let D be any set in E∗ \ {D0}. Then, there exists a d0 ∈ D0 \ D since E∗

is a clutter. Moreover, D intersects E0. Let i be the smallest natural such that

ei ∈ D ∩ E0; from this, D ⊆ V \ {e1, e2 . . . ei−1}. Since D is a minimal transversal of

E , then there exists a set E ∈ E such that D ∩ E = {ei}. For such an E it holds that

D \ {ei} ⊆ V \ {e1, e2 . . . ei−1} \ E \ {d0}.

88 Chapter 3. A new decomposition for the Monotone Boolean Duality problem

In a more general form:

Lemma 3.9.6 (Generalized full cover construction (two sides)). Given a set family E ,

let E0 ∈ E and fix its elements in a specific order E0 = {e1, e2, . . . , et}. Assume D0 ⊆ E∗.

Then, the following is a full cover of E∗ \ D0:

D0 ∪
⋃

P∈D∗
0

t⋃
i=1

⋃
{E∈E|ei∈E}

{
{ei} ∪ (P \ {e1, e2 . . . ei−1} \ E)

}
. (3.18)

Proof. Let D be any set in E∗ \ D0. Since E∗ is a clutter, then D is a transversal

of E∗ \ D, and also a transversal of D0 \ D = D0, since D ̸∈ D0 ⊆ E∗. Being a

transversal of D0, D contains a P ∈ D∗
0 . Moreover, D intersects E0. Let i be the

smallest natural such that ei ∈ D ∩ E0; from this, D ⊆ V \ {e1, e2 . . . ei−1}. Since D

is a minimal transversal of E , then there exists a set E ∈ E such that D ∩ E = {ei}.

For such an E it holds that D \ {ei} ⊆ P \ {e1, e2 . . . ei−1} \ E.

3.9.2 Investigating other measures and techniques

At present, the proposed decomposition does not take advantage of the reductions

used in the FK-B algorithm by [Fredman and Khachiyan, 1996]. Thus, a natural

development would be to find a way to integrate and exploit them, aiming for the

desired stronger bound.

Anyway, all recalled and presented decompositions rely on the concept of fre-

quency of an element v ∈ V in the sets of E and D. However, this measure may

not entirely express the relevance of v for E and D. Indeed, a more appropriate

measure should take into account not only the percentage of sets containing v, but

also the cardinality of these where v appears: is v a crucial element for these sets?

A better measure could be the following:

ωv,E := ∑
{E∈E|v∈E}

1
|E| .

Another interesting direction to investigate is whether these measures could actu-

ally be computed, i.e., obtained as a result of the optimization of a linear program-

ming model.

Also, experiments could be used to try to characterize or even tabulate the val-

ues of Ω for the branching decisions.

Moreover, one could consider the possibility to implement some machine-learning

techniques to learn how to better balance the subproblems sizes, based on what

3.9. Further developments 89

learned from the analysis of enumeration trees from previous instances, or even

based on the partial and ongoing exploration of the current enumeration tree.

91

Chapter 4

Conclusions

“The artist’s imagination is a world of potentialities that no work will succeed in realizing.

What we experience by living is another world, answering to other forms of order and

disorder. [...] A writer carries out operations that involve the infinity of their imagination

or the infinity of the contingency that may be attempted, or both,

by means of the infinity of linguistic possibilities in writing.”

Italo Calvino, Visibility, in Six Memos for the Next Millennium

In this thesis, I moved from the context of optimization to the one of listing,

by investigating some interesting and fundamental enumeration problems that can

also have applications and connections with operations research.

In Chapter 1, I gave a brief introduction to the research area of enumeration

problems and algorithms. In particular, I provided some basic definitions, pre-

sented some applications arising from different disciplines, discussed complexity

classes used to classify enumeration problems, and illustrated the most common

techniques to design and analyse enumeration algorithms.

In Chapter 2, I discussed the first problem of my interest: given an undirected

and connected graph G = (V, E), with n = |V| and m = |E|, list all its bonds (i.e.,

minimal cuts). The state of the art by [Tsukiyama et al., 1980] offers an enumeration

algorithm which is output-linear in the number of edges of the graph. Thus, I

wondered about the possibility of developing an algorithm output-linear in the

number of vertices.

I was able to answer affirmatively. Indeed, I reduced the problem of listing

bonds and the one of listing all s, t-bonds to the one of listing all S, T-bonds, where

S and T are two nonempty disjoint subsets of V. By giving relevance to cut-vertices

and biconnectivity, I provided a new recursive procedure which carefully generates

92 Chapter 4. Conclusions

only fertile subproblems. I developed an algorithm in two versions that share the

same high-level description. The former outputs each bond in O(m), guaranteeing

the same time complexity as [Tsukiyama et al., 1980]. The latter relies on dynamic

data structures to achieve better bounds. In particular, I exploited two data struc-

tures defined by [Holm et al., 2001] to maintain connectivity and biconnectivity

through a maximal forest and a spanning tree of the graph, respectively. Moreover,

I defined a third data structure operating over a tree to check critical cut-vertices.

These techniques, together with amortized analysis, allowed for presenting the first

output-linear algorithm to list all S, T-bond shores in Õ(n) per bond, and all S, T-

bonds as edge-sets in Õ(n) + |δG(S, S)|.
In the literature, there are a few examples of enumeration problems tackled by

using dynamic graph algorithms. Thus, this is one of the most original aspects of

this work, which could enhance applications and improvements in the state of the

art of other enumeration problems.

In Chapter 3, also motivated by a fundamental question in linear programming

about the double representation of a polyhedron, I studied the Monotone Boolean

Duality: given two set clutters F and G, we want to establish if they are dual

of each other. The remarkable result by [Fredman and Khachiyan, 1996] put the

Monotone Boolean Duality problem between P and coNP, by providing a quasi-

polynomial time algorithm running in σo(log σ) time, where σ = |F | + |G|. Since

their contribution, several attempts have been made to improve this bound and

also to determine the exact complexity of the problem. Thus, the research question

was the following: what could be another decomposition approach able to improve

the state of the art?

I was able to provide a new recursive algorithm to solve the Monotone Boolean

Duality problem. This combines steps of a variable-based decomposition with steps

based on the full covers, depending on which yields the most promising reduction

in terms of the sizes of subproblems. The bound offered by the proposed decompo-

sition is indeed σ4kχ(σ,2), where k ≤ 1. More exactly, k := max
{

ln 2, 1 − logχ(π,2) 2
}

,

where π = |F | · |G|. When π → ∞, also χ(π, 2) → ∞, and k = 1. Thus, in the

worst case, this approach still has the same complexity as [Fredman and Khachiyan,

1996].

I also considered the Monotone Boolean Dualization problem: given a clutter

F , we want to compute its dual G. This problem can be reduced to the Monotone

Boolean Duality problem. In the last part of the chapter, I showed how to adapt the

new decomposition to solve this problem by using polynomial space only.

Chapter 4. Conclusions 93

These results do not exactly match what I hoped for. For sure, they do not settle

the intriguing open question about the exact complexity class of the two problems.

Anyway, they encourage the study, development, and experimentation of other

kinds of decompositions and approaches. The whole exploration process has been

symmetrized, and is now cast under a new light and a more standard perspective.

This paves the way to the applicability of several standard speeding-up techniques

with complete enumeration algorithms.

95

Appendix A

On communicating operations

research

“[...] the contemporary novel as an encyclopedia, as a method of knowledge,

and above all as a network of connections between the events, the people,

and the things of the world.”

Italo Calvino, Multiplicity, in Six Memos for the Next Millennium

Operations research (OR) has a manifold nature, and so had my doctorate. In-

deed, besides enumeration problems and algorithms, I dedicated part of these last

four years also to explore other fields. Here I do not list all of them, but I just give a

brief overview on two particular side projects, which led me to investigate diverse

research directions, and to relate with people with different backgrounds and age,

from various contexts and sectors. Mostly, they allowed me to discuss the topic and

the relevance of communicating OR to laypeople, which is the main content of this

appendix.

The former project, presented in Section A.1, is related to an industrial case

study, which required to analyse, evaluate, and possibly improve the current im-

plementation of the interlibrary loan service provided by the public libraries in the

provinces of Brescia and Cremona (Italy). Together with a few practitioners of the

public company involved, I studied the real situation and identified an optimiza-

tion problem. Here I just provide the mathematical formulation and I outline the

setting of the experimental evaluation performed.

The latter project, described in Section A.2, is instead an educational initiative

aimed to introduce OR in higher secondary schools. This is a joint project de-

veloped in collaboration with two other young researchers in OR, Dr. Gabriella

Colajanni (University of Catania) and Dr. Alessandro Gobbi (University of Brescia),

96 Appendix A. On communicating operations research

another young researcher in mathematics education, Dr. Eugenia Taranto (Univer-

sity of Catania), and a high-school mathematics teacher, Dr. Marinella Picchi (IIS

Antonietti). After studying and comparing the state of the art, we designed some

teaching units, which we have been experimenting in a few Italian high schools

since March 2021. In this section, I report the origin of the project, its main fea-

tures, the ongoing teaching experimentations, and some work done also in the field

of mathematics education.

In Section A.3, I discuss the higher purpose of these projects, that is, making

OR more known, exploited, and appreciated, not only in academia. This is directly

linked to the relevance and the difficulty to communicate OR to laypeople, who

often do not have an idea of what OR is and how it could be applied. On this, first

I bring some considerations by researchers and practitioners. Then, I describe three

specific contexts where to promote and communicate OR with different purposes

and actions.

Finally, I draw my conclusions in Section A.4.

A.1 The industrial case study of Province of Brescia

In this section, I describe the first side project needed to introduce and discuss the

topic of communicating OR.

The interlibrary loan is a service that allows the users of a library to borrow or

obtain copies of items from other libraries. The term includes the phases of borrow-

ing, lending, and document delivery of the materials ([Boucher, 1997]). Through

such a service, libraries can share and exchange their catalogues, making more re-

sources available to their users. This is precious when, for instance, libraries are

very small, or located in little towns far from the cities, where there may be more

than one library able to satisfy users’ requests. Nowadays, different libraries can

belong to the same network, sharing the same information system, accessing their

own catalogue, as well as the ones of other libraries.

Here we describe the case of Province of Brescia, an Italian public company which

includes a department called the Libraries Office, in charge of the management of

the public libraries in the provinces of Brescia and Cremona (see Figure A.1).

The Libraries Office promotes and coordinates the public libraries in the net-

work, for instance by managing the information systems adopted and the data col-

lected, taking care of the training and continuing education of the librarians and all

other employees, and managing the interlibrary loan service. The Libraries Office

A.1. The industrial case study of Province of Brescia 97

Figure A.1: Public libraries located in the provinces of Brescia
and Cremona (© OpenStreetMap contributors).

offers an online catalogue where a user, after logging in, can perform several oper-

ations, such as checking its current loans or searching for any items owned by any

libraries in the network. Once a desired item is found, the user can place a request

to obtain a copy of it, by collecting it from a particular library the user explicitly

chooses. If the chosen library owns a copy and this is available (i.e., not already

on loan), then the item is made ready to be borrowed. Otherwise, the request is

satisfied by another library in the network owning that item, which makes it ready

for transit. The Libraries Office has an agreement with an external logistics com-

pany, which handles the transportation of the items in the whole network through

a fleet of vehicles and couriers. When a courier stops in a library, it delivers all

items addressed to that library and picks up all items that are instead addressed to

other libraries in the network. In the current implementation, pickup and delivery

operations are performed at the same time. However, couriers do not deliver right

away what they have just picked-up, but they temporarily bring the collected items

to the only depot in the network. There, in the following days, items are rearranged

and assigned to other couriers to be delivered to their target libraries. In agreement

with the Libraries Office, each library is visited by a courier a few times a week, ac-

cording to a fixed calendar based on historical data. Also, libraries are divided into

fixed groups, called lines. Figure A.2 shows the lines established for the libraries in

the province of Brescia. Each line is associated with a fixed route, scheduled in all

its stops. All routes start from the depot, where they also end.

Every year, the Libraries Office spends a fixed amount to rent the vehicles of the

logistics company, plus some variable costs related to the length of the routes trav-

elled by couriers. The Libraries Office is thus interested in evaluating the current

implementation of the service in terms of routing and transportation costs, but also

determining whether their approach with fixed lines and calendar is good or not.

This is the main reason why we started collaborating in early 2020. During the first

98 Appendix A. On communicating operations research

Figure A.2: Organization of the public libraries in the province
of Brescia into a set of lines, each one represented with a differ-

ent colour (Google map: https://shorturl.at/axEFR).

meetings, the company introduced us to the service and provided us the raw data

related to all interlibrary loans performed in 2019 in the province of Brescia only.

A.1.1 Problem definition

Hereafter I provide a formal description of the problem.

We consider a time horizon of one day. Let K := {1, . . . , K} be the fleet of avail-

able vehicles. Vehicles are heterogeneous, with different capacities q and working

times w. All vehicles start their routes from the same depot D, to which they also

return at the end.

Let L := {1, . . . , L} be the set of public libraries to be served. Each library ℓ can

have pℓ items to be picked-up or dℓ items to be delivered. According to the kind

of operations performed, the service time sℓ to perform the operations varies. Each

vehicle is able to do at least one type of operation. Let Kℓ ⊆ K be the subset of

vehicles in the fleet able to perform the operations required by library ℓ. All items

to be delivered are already available at the depot D at the beginning of the day,

whereas all items picked-up by vehicles’ couriers are brought to the depot D at the

end of the day. Each library ℓ has to be served by exactly one vehicle k during its

opening window [aℓ, bℓ], unless the courier of k owns a copy of the keys of ℓ. In that

case, the service can be performed also after hours, by spending an additional time

S to exploit the keys. Let L′ ⊆ L be the set of libraries whose keys are available,

through some copies, to the whole fleet of vehicles.

https://shorturl.at/axEFR

A.1. The industrial case study of Province of Brescia 99

We can model the problem as a complete graph G := (V ,A), where V := {D} ∪
L and A is the set of arcs (i, j) such that both i and j belong to V . Every arc is

characterized by two values: its travel cost cij and its travel time tij, representing

the distance from i to j and the time required to go through the arc, respectively.

Both these quantities satisfy the triangle inequality.

The main goal is to build an optimal schedule, i.e., to assign a vehicle to each

library and to define the route of each vehicle, while satisfying all the constraints

and minimizing the total travelled distance, the number of libraries unserved, and

the number of vehicles used.

A.1.2 Mathematical formulation

The problem can be modelled as a single-depot pickup-and-delivery vehicle routing

problem with time windows and heterogeneous fleet ([Desaulniers et al., 2002],

[Montané and Galvão, 2002], and [Salhi et al., 2014]). We introduce:

• a binary variable uk for each vehicle k ∈ K, whose value is 1 when k is used,

0 otherwise;

• a binary variable gℓ for each library ℓ ∈ L, whose value is 1 when ℓ is not

served by any vehicle, 0 otherwise;

• a binary variable xℓk for each library ℓ ∈ L and for each vehicle k ∈ K, whose

value is 1 when ℓ is served by k, 0 otherwise;

• a binary variable hℓk for each library ℓ ∈ L and for each vehicle k ∈ K, whose

value is 1 when the courier of k uses a copy of the keys of ℓ to provide the

service requested, 0 otherwise;

• a binary variable yijk for each arc (i, j) ∈ A and for each vehicle k ∈ K, whose

value is 1 when k goes through the arc (i, j), 0 otherwise;

• a continuous variable lijk for each arc (i, j) ∈ A and for each vehicle k ∈ K,

representing the occupied capacity of k when going through arc (i, j);

• a continuous variable τv for each node v ∈ V , representing the time when

service starts in v;

• a continuous variable zℓ for each library ℓ ∈ L, representing when service

ends (i.e., the lateness) in ℓ.

100 Appendix A. On communicating operations research

We get the following mixed-integer linear programming model, where M is a
large positive constant.

min ∑
k∈K

∑
(i,j)∈A

cijyijk + M ∑
ℓ∈L

gℓ + M ∑
k∈K

uk (A.1)

s.t. ∑
k∈K

xℓk ≤ 1 ∀ℓ ∈ L (A.2)

∑
k∈Kℓ

xℓk + gℓ = 1 ∀ℓ ∈ L (A.3)

∑
(i,ℓ)∈A

yiℓk = xℓk ∀k ∈ K, ∀ℓ ∈ L (A.4)

∑
(ℓ,j)∈A

yℓjk = xℓk ∀k ∈ K, ∀ℓ ∈ L (A.5)

∑
ℓ∈L

yℓDk = uk ∀k ∈ K (A.6)

∑
ℓ∈L

yDℓk = uk ∀k ∈ K (A.7)

hℓk = 0 ∀ℓ ∈ L \ L′, ∀k ∈ K (A.8)

hℓk ≤ ∑
j∈L

yℓjk ∀k ∈ K, ∀ℓ ∈ L (A.9)

τℓ ≥ aℓ(1 − ∑
k∈Kℓ

hℓk) ∀ℓ ∈ L (A.10)

τℓ ≤ bℓ + M ∑
k∈Kℓ

hℓk ∀ℓ ∈ L (A.11)

τℓ ≥ τD + tDℓ − M(1 − ∑
k∈K

yDℓk) ∀(D, ℓ) ∈ A (A.12)

τj ≥ τℓ + sℓ + tℓj + S ∑
k∈K

hℓ,k − M(1 − ∑
k∈K

yℓjk) ∀(ℓ, j) ∈ A (A.13)

zℓ ≥ τℓ + sℓ ∀ℓ ∈ L (A.14)

∑
(i,j)∈A

tijyijk + ∑
ℓ∈L

sℓxℓk ≤ wkuk ∀k ∈ K (A.15)

lijk ≤ qkyijk ∀(i, j) ∈ A, ∀k ∈ K (A.16)

∑
ℓ∈L

lDℓk = ∑
ℓ∈L

dℓxℓk ∀k ∈ K (A.17)

∑
ℓ∈L

lℓDk = ∑
ℓ∈L

pℓxℓk ∀k ∈ K (A.18)

∑
(i,ℓ)∈A

liℓk + ∑
i∈V

(pℓ − dℓ)yiℓk = ∑
(ℓ,j)∈A

lℓjk ∀ℓ ∈ L, ∀k ∈ K (A.19)

uk ∈ {0, 1} ∀k ∈ K (A.20)

gℓ ∈ {0, 1} ∀ℓ ∈ L (A.21)

xℓk, hℓk ∈ {0, 1} ∀ℓ ∈ L, ∀k ∈ K (A.22)

yijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K (A.23)

lijk ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K (A.24)

A.1. The industrial case study of Province of Brescia 101

τv ≥ 0 ∀v ∈ V (A.25)

zℓ ≥ 0 ∀ℓ ∈ L (A.26)

The objective function (A.1) asks to minimize the total travelled distance, the

number of libraries unserved, and the number of vehicles used. Constraints (A.2)

and (A.3) state that every library is either served by at most one vehicle or is un-

served. Constraints (A.4)–(A.7) are needed to form a tour starting and ending in the

depot D. A courier cannot exploit a copy of the keys of a library when this is not

available (Constraints (A.8)) and, even when it is, the copy may be not used (Con-

straints (A.9)). Constraints (A.10) and (A.11) ask for a library to be served either

during its opening hours or by exploiting a copy of the keys. Constraints (A.12)

and (A.13) are needed to compute the start of service in the libraries, whereas Con-

straints (A.14) express when the service ends. Constraints (A.15) and (A.16) guaran-

tee that a vehicle does not work more than its maximum working time and that its

maximum capacity is never overcome, respectively. Constraints (A.17) and (A.18)

define the initial and final capacity of each vehicle, whereas Constraints (A.19) up-

date the capacity of a vehicle when it serves a library. Finally, Constraints (A.20)–

(A.26) represent the variables introduced.

A.1.3 Experimental evaluation

From the available data and the registry information of the libraries, I derived four

sets of instances, by considering (or not) the fixed lines and the fixed calendar

implemented by the company. When relaxing these static constraints, the average

instance size (i.e., the number of libraries to serve) increases, as shown in Table A.1.

Set name Fixed
lines

Fixed
calendar

Number of
instances

Min
size

Max
size

Avg
size

lines_calendar ✓ ✓ 1584 1 25 12
lines_no_calendar ✓ ✗ 2485 1 33 18

days_calendar ✗ ✓ 267 1 90 74
days_no_calendar ✗ ✗ 313 2 176 148

Table A.1: Sets of instances derived from the data
on the interlibrary loans in the province of Brescia in 2019.

I relied on Open Source Routing Machine1 to get shortest distances and times

between any two points in the network. I implemented the model in Python and

solved it over all instances by using Gurobi 9.5 on a PC with Ubuntu 20.04.2 LTS

1http://project-osrm.org/

http://project-osrm.org/

102 Appendix A. On communicating operations research

(GNU/Linux 5.4.0-90-generic x86_64), 16 core, 2 GHz, 32 GB RAM2. I set a time

limit of five minutes for each instance.

Figure A.3 shows just a sample of the results obtained, where we can compare

the optimal solutions of the instances in lines_calendar with an estimate of the

actual costs. The actual costs were not available, but anyway I was able to compute

some lower bounds by considering the fixed schedule of each line. From this, we

can say that the mixed-integer linear programming model improves the current

approach used by the company by at least 20.4%, saving at least 49, 020 km.

Figure A.3: Comparison between an estimate of the actual costs
and the optimal solutions of the instances in lines_calendar.

A dynamic approach, computing each day with Gurobi the optimal routes to

serve the public libraries, could replace the static approach implemented by the

company. Even if this would be preferable in terms of savings, relying on a fixed

calendar and fixed lines may still be a better method according to couriers or librar-

ians. Indeed, if the routes completely change every day, couriers could not exploit

their previous knowledge on roads or towns, and some delays could occur. Also,

without a calendar, the librarians would not have a fixed schedule to follow, in order

to prepare the items to be picked-up on time. A compromise could be to just relax

the fixed schedule of the lines, by keeping the calendar and computing an optimal

groups of libraries. On a given day, for each line, the items in the depot waiting

to be delivered are known, as well as the items that have to be picked-up in the

line. Thus, we can easily obtain an instance similar to the ones in lines_calendar,

to be solved with Gurobi before the start of the working day. The schedule to fol-

low would not drastically change every day, and couriers would avoid stopping at

2The virtual machine is hosted by the Centro Piattaforme Tecnologiche (CPT) of the University of
Verona (https://cpt.univr.it/en).

https://cpt.univr.it/en

A.2. Mathematics education and OR 103

libraries where there are no items either to be picked-up or delivered.

Moreover, in order to allow the Libraries Office to consider minor or major

improvements to make, I performed a simple statistical analysis on the data of

2019. I extracted interesting information which I reported in a set of documents

already delivered to the company. For instance, for each library in each line, I

computed the average number of items picked-up and delivered by the courier at

each stop. Also, by considering the calendar, I estimated the average delay for

pickups and deliveries in each library. These data can be useful to the company in

order to understand whether and where there are slowdowns in the whole service.

The complete experimental evaluation, as well as some further developments,

will be reported in [Raffaele et al., 2022].

A.2 Mathematics education and OR

In this section, I provide an introduction to the second side project needed to

deepen the topic of communicating OR.

A.2.1 A literature review

As mentioned, OR has a manifold nature, with plenty of applications in different

fields, ranging from management to finance, from transportation to security, and

many others. These fields are often related to STEM (i.e., Science, Technology, Engi-

neering and Mathematics) disciplines. This is one of the reasons why presenting OR

could be stimulating, not only at university level. Indeed, the study of OR prob-

lems and methods could be really helpful in increasing pupils’ motivation towards

mathematics and other scientific subjects, as well as in strengthening modelling

and problem-solving skills. Also, Grades 9–123 would already have acquired all

required mathematical background to learn some basic topics of OR. Despite this,

OR is hardly ever included in higher secondary-school curricula.

By reflecting on these, in [Raffaele and Gobbi, 2021] we investigated the exis-

tence of specific educational initiatives sharing the aim of introducing OR to Grades

9–12. By using search engines, consulting repositories and journals, and checking

programs of recent conferences in Europe, we collected 23 different initiatives4.

3Corresponding to 14–17 year-old students. We refer to the US/International Grades scale (see,
e.g., https://www.asmilan.org/admissions/grade-equivalents).

4Map of the OR educational initiatives collected (February 2021): https://shorturl.at/deyIZ.
This list is certainly not exhaustive. There may be plenty of initiatives we are not aware of and that
we did not find through our research. If the reader is aware of other initiatives, please let us know.

https://www.asmilan.org/admissions/grade-equivalents
https://shorturl.at/deyIZ

104 Appendix A. On communicating operations research

Then, we classified them as promotion activities done by societies and communities,

national and international projects, competitions, training courses for teachers, workshops

for students, and didactic units or lectures. We compared the initiatives according

to their focus and objectives (modelling and algorithmics – see Figure A.4a), topics

(mostly linear and integer programming, graph theory, and combinatorial opti-

mization – see Figure A.4b), teaching methods (mostly based on constructionism,

active learning, and collaboration – see Figure A.4c), instruments and software, and

feedback.

Modelling

43.48%

Algorithms
17.39%

Both

39.13%

(a) Objectives and focus

Linear and integer prog. (56.52%)

Graph theory
(65.22%)

Combinatorial opt. (65.22%)

Dynamic prog. (13.04%)

Others (56.52%)

13

15 15

3

13

(b) OR topics

Teamwork
(69.57%)

Cooperative Learning (65.22%)

Project-based Learning (21.74%)

Cases (56.52%)

Games (17.39%)

Blended (8.70%)

16 15

5

13

4
2

(c) Teaching methods

Figure A.4: Some comparisons among the OR educational
initiatives collected in [Raffaele and Gobbi, 2021].

Also, all the main guidelines on mathematics education, stated by international

organizations such as PISA, UNESCO, and European Union, share the objective to

promote the learning of how to apply mathematics to model, analyse, and solve

real-world problems. This is exactly what the study of OR would entail, enhancing

problem-solving and modelling skills, and the implementation of algorithms.

For all the details, I refer the reader to [Raffaele and Gobbi, 2021].

A.2. Mathematics education and OR 105

A.2.2 The ROAR project

By making treasure of all the information collected in [Raffaele and Gobbi, 2021],

we designed Ricerca Operativa Applicazioni Reali (ROAR; in English, Real Applications

of Operations Research), a three-year project for higher secondary schools ([Colajanni

et al., 2022]). One of the key features of ROAR is the study and analysis of authentic

problems (i.e., problems coming from a particular field and recognized by workers

in that field as possible situations they might face in their daily work [Niss, 1992]).

These problems are inspired by students’ everyday life or by industrial realities.

Also, students are supposed to work in teams, to foster their collaboration.

ROAR is composed of three teaching units. The first one, addressed to Grade 10,

provides an introduction to OR and to mathematical models and techniques, solvers,

and other digital technologies useful to tackle optimization problems. The second

unit, for Grade 11, concerns common graph-theory problems and algorithms. The

third unit, for Grade 12, is on the implementation of OR methods and algorithms

in a programming language students are already familiar with. It also involves the

learning of an algebraic modelling programming language.

The design of the first teaching unit is completely described in [Colajanni et al.,

2022], in terms of objectives, prerequisites, and instructors’ roles. Also, we provided

full details about the first implementation of the unit, occurred from March to May

2021 in a Grade-10 class at the scientific high school IIS Antonietti in Iseo (Brescia,

Italy). Indeed, we illustrated the positioning of the unit in the mathematics pro-

gram of the class, the teaching methods adopted, the digital technologies used, the

organization of the lectures, and the feedback received from students and teachers.

Moreover, all the lectures were video-recorded, including all group-work ses-

sions. This allowed us to deeply analyse the work of some groups as case studies,

by also evaluating their protocols (i.e., images, PDFs, screenshots, and Excel sheets

they produced). By referring to some tasks assigned throughout the whole teach-

ing unit, we investigated some research questions linking OR and mathematics

education. For instance, we investigated whether it is appropriate to include OR in

regular mathematics lectures, or how collaborative group work and the use of dig-

ital technologies can foster the development of the modelling and problem-solving

competences. Through qualitative and quantitative analysis, we showed how the

answers are positive, and how such activities could impact students’ understanding

and appreciation of OR. For more details, I refer the reader to [Taranto et al., 2022].

Beyond the manuscripts, all the material produced, in terms of the slides and

the texts of the problems used in the experimentations, is available on a public

106 Appendix A. On communicating operations research

repository, both in Italian and in English5. Indeed, we wish that it will be used by

other researchers or higher secondary school teachers, to develop similar teaching

units, other extra-curricular workshops or seminars. This is exactly what happened

in November 2021, with another experimentation in a Grade-12 class in Piazza

Armerina, Enna (Italy), and with a training course based in Catania addressed

to some higher-secondary school teachers (Italy)6. Both these two initiatives were

managed by Dr. Colajanni and Dr. Taranto.

A.3 On communicating operations research

Besides their specific objectives, the projects described in Section A.2 and Sec-

tion A.1 can be seen as two different ways to fulfil the third mission of universities,

that is, trying to generate knowledge outside academic environments to the benefit

of the social, cultural, and economic development ([Compagnucci and Spigarelli,

2020]). In this sense, the two projects share the purpose to communicate OR to

laypeople, in order to increase their awareness. Precisely with regard to the com-

munication of this discipline, there are some issues that are worth considering and

discussing.

A.3.1 The issue of visibility of operations research

As mentioned, OR finds application in many fields. In the last few years, it has also

taken into account important aspects such as sustainability (see, e.g., [Dekker et al.,

2012]) and shared mobility (see, e.g, [Mourad et al., 2019]). Moreover, since March

2020, several works have been dedicated to manage and solve several optimization

problems arisen after the spread of the COVID-19 pandemic (see, e.g., [Shen, 2020]

for a general survey, or [INFORMS, 2020] and [The OR Society, 2020] for the specific

web-pages developed by the two international OR associations).

However, despite all the results OR could achieve since its birth in the 1940s, it

is still almost unknown to the public. On the contrary, other buzzwords have been

spreading on and on, such as “machine learning”, “big data” or “data science”. If

we compare on Google Trends7 the worldwide interest in these search terms over

the months of 2021, we obtain basically the same results I reported in [Raffaele,

2021] over three months of 2020. In Figure A.5, the numbers represent search inter-

est relative to the highest point on the chart: a value of 100 is the peak popularity

5https://github.com/aliceraffaele/ROAR
6Map of ROAR initiatives in Italy (December 2021): https://shorturl.at/bjnqP.
7https://trends.google.com/

https://github.com/aliceraffaele/ROAR
https://shorturl.at/bjnqP
https://trends.google.com/

A.3. On communicating operations research 107

for the input terms; a value of 50 means that the term is half as popular; a score of

0 means that there are not enough data. Even if the comparison is in relative terms,

we can observe that OR searches are constant and low throughout time.

Figure A.5: Interest over time of the search terms “operations
research”, “data science”, “machine learning”, and “big data”,

in the period [December 27, 2020 – December 23, 2021].

OR is still remaining invisible, even being quite used. For instance, people are

shopping online more and more, receiving their goods at home; when they book

a plane ticket, they are offered the possibility to choose their preferred seating,

by paying some fees accordingly. Still, they are usually unaware that there may

probably be OR behind both situations. Often, what is on people’s mouths is a

simplification, an intuition behind the true concepts which exploit information and

digital technologies. The news talks almost every day about some “new artificial

intelligence” believed to do something magical. Algorithms have become so wo-

ven with our lives that people usually do not even ask how these work: they are

satisfied with what algorithms do and what they can be applied for.

When one says “operations research”, very few understand. This lack of visibil-

ity has long been a source of concern to OR professionals. [Pidd, 2001] described

the two main paradoxes of this discipline: “OR is neither young nor old and, despite its

widespread use, the visibility of OR in the public eye is very limited”. [Power et al., 2018]

reported that the concepts of OR and management science may have been replaced

by “business analytics”, used as a synonym. On “The Boston Globe”, [Postrel, 2004]

stated that OR “is probably the most important field nobody’s ever heard of ”. Through

the years, data availability and quality have been increasing. As [Bixby, 2020] said,

“At the highest levels of companies, there is an awareness of the importance of being able to

understand data and use it to make the best possible business decisions (which is precisely

what mathematical optimization does)”. And still, in December 2021, things seem not

to have changed, according to [Rothberg, 2021], who wrote on Forbes that “employ-

ers will be competing to hire statisticians and data scientists, but they’ll also need to fill a

108 Appendix A. On communicating operations research

role many have never heard of: operations research analyst”.

What could be the main reasons for this issue? In [Raffaele, 2021], I tried to

answer this question. [Brixius, 2015] wrote that OR is an indispensable tool of

industry, but has never really connected with the technology community in the way

it deserves, and that may be its fault. The interfaces we adopt to present OR may be

too intricate; software developed only for specific and peculiar problems, not easy

to use and general purpose. Recently, [Rothberg, 2020] agreed: OR applications are

usually exploited to address highly-complex, large-scale business problems that

are not as tangible to most people as other technologies such as machine learning.

People may be scared away with too many technical details. [Lübbecke, 2015]

suggested that we are “too complicated”. He reported the story of Randal Olson,

an AI researcher who, starting from a procedure developed to compute the optimal

search strategy for Where is Waldo?, implemented in 2015 his own genetic algorithm,

in order to obtain an optimal road trip to visit each U.S. state and D.C. ([Olson,

2015]). Exactly as the original problem studied by [Dantzig et al., 1954]. But Olson’s

work was promoted in an article of [The Washington Post, 2015] that made appear

an instance with 49 cities as very large to solve, while not mentioning a single word

about the deep study of the Travelling Salesman Problem done in the last decades

(e.g., see [Applegate et al., 2006]). Apparently, OR is not taken into account, but

we know that it can have a relevant role in tackling several problems arising from

industry or everyday life. We know that OR can empower companies to exploit

their data to make better decisions (as in Section A.1). Also, it can provide young

students with problem-solving and modelling skills, as well as encourage them to

continue their studies or pursue a career in a STEM discipline (as in Section A.2).

A.3.2 Different contexts, different purposes, and different actions

In order to discuss what we can do to make OR more “visible”, hereafter we eval-

uate some interpretations of this term by defining three possible contexts.

Industry Enhancing OR visibility to companies can mean promoting the applica-

tion of OR techniques to real-world situations that need to be optimized. Indeed,

OR can offer as powerful tools as machine learning and artificial intelligence, and

these do not have to be alternative but rather synergical. In this case, maybe it is not

so relevant that people understand what OR really is; it would be more effective

to make companies understand what OR can actually do, opening CEOs’ eyes to

further applications. Using the OR label would not be required. Indeed, “a rose by

A.3. On communicating operations research 109

any other name would smell as sweet” ([Shakespeare and Gibbons, 2002]). To this pur-

pose, the absorption by other labels, as defined by [Pidd, 2001], could be acceptable,

even if the main risk would be not to fully credit OR of its merits. OR practitioners

employed in the industry would be the ideal communicators to expose to CEOs the

potential achievements of OR. They would get their expertise widely taken up by

managers. Here, one possible skill could be to be able to exploit OR interplay with

other disciplines, adapting to the latest trend influencing the industry, in order to

sell OR contents, implicitly or explicitly.

In the case study described in Section A.1, when discussing with the employ-

ees of Province of Brescia, we almost never used the OR label. Indeed, the most

important aspect to them was not the learning of the OR methods and the tech-

niques eventually applied. Their primary goal was the evaluation of their service.

Thus, they cared more about the interpretation of the results obtained by relying on

mixed-integer linear programming and Gurobi. In particular, they were more inter-

ested in the computation of the possible savings (in terms of kilometers travelled by

couriers), and in getting practical suggestions to improve their implementation, no

matter the OR or the statistical methods exploited. The most delicate parts in the

interaction with the company were the understanding of the problem at the begin-

ning and the discussion about the results in the end. Indeed, we had to solve any

misunderstandings in terms of lexicon and terminology used, to correctly identify

all the decision variables and to ensure to have included all the constraints. As

a simple example, we noticed that the employees of the company used the word

“variable” to refer to what actually was a parameter, a value that could change in

different instances but that was anyway known. Regarding the presentation of the

results, they appreciated the dynamic approach proposed, but they also right away

stated that it was not very doable in reality, for the reasons explained in Subsec-

tion A.1.3. Thus, we found a few minor aspects to optimize. In these exchanges

and dialogues, OR was exploited but nevertheless concealed.

Education The OR label should be explicitly adopted when introducing the dis-

cipline to students. In this case, fostering OR visibility means to uncover a specific

branch of applied mathematics in order to increase students’ motivation towards

mathematics and all other STEM disciplines. Examples of activities to present OR

are workshops, seminars, or competitions. When we present a topic to some stu-

dents, we could provide them some preliminary details to grow their interest, not

only theory and formulas, but maybe inspiring quotes or scenes from movies and

books related to the topic we are going to present. Actually, not only students

110 Appendix A. On communicating operations research

but also teachers should be considered as possible recipients, through, for instance,

ad hoc training courses. Indeed, they may become the future communicators of

OR, reaching a wider audience throughout the years, by presenting OR to their

classrooms and, why not, to their colleagues too. Furthermore, beyond OR topics,

historic OR figures can be presented such as George Dantzig, Delbert Ray Fulker-

son, Ailsa H. Land and Alison Grant Harcourt, to encourage both girls and boys.

When carrying out the experimentation of the educational initiative reported

in Section A.2, we always use the OR label. Also, we always start from examples

and problems very close to students’ everyday life8. For instance, to present the

knapsack problem, we can consider a streaming service such as Netflix, a few TV

series, and some spare time available. Then, we ask the students to decide which

episodes to watch in order to minimize the time not used. Also, to introduce

them to graph theory for the first time, we can rely on social media networks

such as Facebook, Instagram, and TikTok in order to represent and play with their

actual accounts and relationships. Only after that, we give them some basic notions

about undirected and directed graphs, and we ask them to indicate other situations

where graphs can be adopted. This is what we usually do when we present a new

problem or method, i.e., we show students disparate applications and encourage

them to find many others as well. In this way, we try at the same time to increase

their awareness about OR and its connections to reality, and to disprove the idea

that students may have about mathematics, which definitely does not only involve

abstract and repeated calculations.

Government institutions Finally, as the third and last context, we consider gov-

ernment institutions as target audiences. Unfortunately, not always national or local

OR organizations are well-known as international societies such as The OR Society

or INFORMS. They should aim to be more visible, i.e., in terms of recognition by

governments. In fact, being more recognized may lead to obtaining support and

funding for research activities, as well as to be taken into account when govern-

ments make decisions. These can be improved by OR. Indeed, it can be applied

to problems such as urban and air transportation, natural resources management,

homeland security and safety risks, military systems, deployment of police, fire

and emergency units, but also voting systems, and sports (for further details, see

[Pollock, 1994]). Thus, also in this context the OR label should be adopted explic-

itly, without being absorbed by any other discipline. Ideal communicators may be,

for instance, presidents and counsellors of associations and societies.

8https://github.com/aliceraffaele/ROAR/.

https://www.theorsociety.com
https://www.informs.org
https://github.com/aliceraffaele/ROAR/

A.4. Conclusions 111

A.4 Conclusions

What we could do, in our own small way, is try to increase and improve our com-

munication. When we write something and especially mathematics, we should

have a specific reader in mind ([Steenrod et al., 1973]); the same when we commu-

nicate. To divulge OR, we should first understand our audience, and then choose

our words properly, without sounding complex or out of reach, and also avoid-

ing misunderstandings (e.g., the term “optimization” may have several meanings,

based on the specific field of mathematics, to common sense, or other connotations).

We could and should try to simplify our arguments. [Goulet and Lamontagne,

2018] suggested adapting the language by summarizing the main concepts to trans-

mit in a limited amount of words and making the text more understandable. But

what is the right level of simplicity? [Scharrer et al., 2017] observed that laypeo-

ple can be hit by the easiness effect when reading easy texts. The easiness effect is

the simplification of complex information characteristic of authentic popularized

articles addressed to the general public. Despite being not trained or qualified in

a particular subject, people can find persuasive the information provided. They

can over confidently rely on their own judgement, maybe underestimating the real

complexity of the topic. Thus, some cautiousness becomes necessary. Determining

how much to simplify may depend both on the message we want to transmit and

on the qualification and expertise of our target audience.

We should aim to make our topics more flexible. Among possible models

of communication of science and technology, the contextual one acknowledges

that people process information according to social and psychological schemas

shaped by their previous experiences, cultural context, and personal circumstances

([Lewenstein, 2003]). Thus, their background, knowledge, and objectives are rel-

evant. Also, nowadays we cannot forget the online platforms they visit. Perhaps

social networks are the tool to bet on, to find a breakthrough in the visibility prob-

lem of OR. Easy to use and interact with, they can reach thousands of people all

over the world in the time of a click. Companies and also policymakers and politi-

cians exploit them to reach their customers and partners or their public. We could

try to exploit more Twitter, where the OR community has a very active niche.

The side projects described in Section A.1 and Section A.2 are just two examples,

two very small pieces of a puzzle our community of OR researchers could try to

solve together, to show a clearer and larger picture of OR to other researchers and

laypeople. According to the age and the identity of our listeners, we need to change

our words and the tone of our voices, to deliver our main message. We are playing

112 Appendix A. On communicating operations research

with their attention level, that is why we should move our eyes from the topics

to these recipients. What would they like to hear? After all, operations research

is polyhedric: there must be some facets (or some vertices) our target audience is

curious to discover. Let’s list them.

113

References

[Abel and Bicker, 1982] Abel, U. and Bicker, R. (1982). Determination of All Min-

imal Cut-Sets between a Vertex Pair in an Undirected Graph. IEEE Transactions

on Reliability, R-31(2):167–171.

[Abu-khzam et al., 2005] Abu-khzam, F. N., Baldwin, N. E., Langston, M. A., and

Samatova, N. F. (2005). On the relative efficiency of maximal clique enumera-

tion algorithms, with application to high-throughput. In Computational Biology,

Proceedings, International Conference on Research Trends in Science and Technology.

[Alstrup et al., 1997] Alstrup, S., Holm, J., de Lichtenberg, K., and Thorup, M.

(1997). Minimizing diameters of dynamic trees. In Degano, P., Gorrieri, R., and

Marchetti-Spaccamela, A., editors, Automata, Languages and Programming, pages

270–280, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Alstrup et al., 2005] Alstrup, S., Holm, J., Lichtenberg, K. D., and Thorup, M.

(2005). Maintaining Information in Fully Dynamic Trees with Top Trees. ACM

Trans. Algorithms, 1(2):243–264.

[Apaolaza et al., 2017] Apaolaza, I., San José-Eneriz, E., Tobalina, L., Miranda, E.,

Garate, L., Agirre, X., Prósper, F., and Planes, F. J. (2017). An in-silico approach

to predict and exploit synthetic lethality in cancer metabolism. Nature communi-

cations, 8(1):1–9.

[Applegate et al., 2006] Applegate, D. L., Bixby, R. E., Chvatál, V., and Cook, W. J.

(2006). The Traveling Salesman Problem: A Computational Study. Princeton Univer-

sity Press.

[Aringhieri et al., 2003] Aringhieri, R., Hansen, P., and Malucelli, F. (2003). Chem-

ical trees enumeration algorithms. Quarterly Journal of the Belgian, French and

Italian Operations Research Societies, 1(1):67–83.

[Arunkumar and Lee, 1979] Arunkumar, S. and Lee, S. H. (1979). Enumeration of

All Minimal Cut-Sets for a Node Pair in a Graph. IEEE Transactions on Reliability,

R-28(1):51–55.

114 REFERENCES

[Avis and Fukuda, 1992] Avis, D. and Fukuda, K. (1992). A pivoting algorithm for

convex hulls and vertex enumeration of arrangements and polyhedra. Discrete &

Computational Geometry, 8:295–313.

[Avis and Fukuda, 1996] Avis, D. and Fukuda, K. (1996). Reverse search for enu-

meration. Discrete Applied Mathematics, 65(1):21–46. First International Collo-

quium on Graphs and Optimization.

[Avis and Jordan, 2018] Avis, D. and Jordan, C. (2018). mplrs: A scalable par-

allel vertex/facet enumeration code. Mathematical Programming Computation,

10(2):267–302.

[Avis and Jordan, 2021] Avis, D. and Jordan, C. (2021). mts: a light framework for

parallelizing tree search codes. Optimization Methods and Software, 36(2-3):279–

300.

[Avis and Roumanis, 2013] Avis, D. and Roumanis, G. (2013). A portable parallel

implementation of the lrs vertex enumeration code. In International Conference on

Combinatorial Optimization and Applications, pages 414–429. Springer.

[Bagan et al., 2007] Bagan, G., Durand, A., and Grandjean, E. (2007). On Acyclic

Conjunctive Queries and Constant Delay Enumeration. In Duparc, J. and Hen-

zinger, T. A., editors, Computer Science Logic, pages 208–222, Berlin, Heidelberg.

Springer Berlin Heidelberg.

[Baldwin et al., 2004] Baldwin, N. E., Collins, R. L., Langston, M. A., Symons, C. T.,

Leuze, M. R., and Voy, B. H. (2004). High performance computational tools for

motif discovery. In 18th International Parallel and Distributed Processing Symposium,

2004. Proceedings., page 192. IEEE.

[Bellmore and Jensen, 1970] Bellmore, M. and Jensen, P. A. (1970). An Implicit Enu-

meration Scheme for Proper Cut Generation. Technometrics, 12(4):775–788.

[Berge, 1989] Berge, C. (1989). Hypergraphs: Combinatorics of Finite Sets., volume 45

of North-Holland mathematical library. North-Holland.

[Bioch and Ibaraki, 1995] Bioch, J. and Ibaraki, T. (1995). Complexity of Identifica-

tion and Dualization of Positive Boolean Functions. Information and Computation,

123(1):50–63.

[Birmelé et al., 2012] Birmelé, E., Ferreira, R., Grossi, R., Marino, A., Pisanti, N.,

Rizzi, R., and Sacomoto, G. (2012). Optimal listing of cycles and st-paths in

REFERENCES 115

undirected graphs. In Khanna, S., editor, SODA 2012: the 24th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1884–1896, New Orleans, LA, USA.

[Bixby, 2020] Bixby, R. (2020). Mathematical Optimization: Past,

Present and Future (Part 3). https://www.gurobi.com/resource/

mathematical-optimization-past-present-and-future-part-3/.

Accessed: 2021-12-29.

[Bläsius et al., 2022] Bläsius, T., Friedrich, T., Lischeid, J., Meeks, K., and Schirneck,

M. (2022). Efficiently enumerating hitting sets of hypergraphs arising in data

profiling. Journal of Computer and System Sciences, 124:192–213.

[Bondy and Murty, 1976] Bondy, J. A. and Murty, U. (1976). Graph Theory with Ap-

plications. Macmillan.

[Boros et al., 2004] Boros, E., Elbassioni, K., Gurvich, V., and Khachiyan, L. (2004).

An Efficient Implementation of a Joint Generation Algorithm. In Ribeiro, C. and

Martins, S., editors, Experimental and Efficient Algorithms, pages 114–128, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Boros et al., 2002] Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., and

Makino, K. (2002). Dual-Bounded Generating Problems: All Minimal Integer

Solutions for a Monotone System of Linear Inequalities. SIAM Journal on Com-

puting, 31:1624–1643.

[Boros et al., 2007] Boros, E., Elbassioni, K., Gurvich, V., and Makino, K. (2007).

Generating vertices of polyhedra and related monotone generation problems.

Technical report, DIMACS Technical Report 2007-03.

[Boros et al., 2009] Boros, E., Elbassioni, K., Gurvich, V., and Makino, K. (2009).

Generating vertices of polyhedra and related problems of monotone generation.

Proceedings of the Centre de Recherches Mathématiques at the Université de Montréal,

special issue on Polyhedral Computation (CRM Proceedings and Lecture Notes), 49:15–

43.

[Boros and Makino, 2009] Boros, E. and Makino, K. (2009). A Fast and Simple Par-

allel Algorithm for the Monotone Duality Problem. In Albers, S., Marchetti-

Spaccamela, A., Matias, Y., Nikoletseas, S., and Thomas, W., editors, Automata,

Languages and Programming, pages 183–194, Berlin, Heidelberg. Springer Berlin

Heidelberg.

https://www.gurobi.com/resource/mathematical-optimization-past-present-and-future-part-3/
https://www.gurobi.com/resource/mathematical-optimization-past-present-and-future-part-3/

116 REFERENCES

[Boucher, 1997] Boucher, V. (1997). Interlibrary loan practices handbook. American

Library Association.

[Brixius, 2015] Brixius, N. (2015). Hole Hawg: OR’s PR Problem. https://

nathanbrixius.wordpress.com/2015/03/19/hole-hawg-ors-pr-problem/.

Accessed: 2021-12-29.

[Bron and Kerbosch, 1973] Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding

all cliques of an undirected graph. Communications of the ACM, 16(9):575–577.

[Brüngger et al., 1999] Brüngger, A., Marzetta, A., Fukuda, K., and Nievergelt, J.

(1999). The parallel search bench zram and its applications. Annals of Operations

Research, 90:45–63.

[Bussieck and Lübbecke, 1998] Bussieck, M. R. and Lübbecke, M. E. (1998). The

vertex set of a 01-polytope is strongly p-enumerable. Computational Geometry,

11(2):103–109.

[Calvino, 1988] Calvino, I. (1988). Six memos for the next millennium. Harvard Uni-

versity Press.

[Capelli and Strozecki, 2017] Capelli, F. and Strozecki, Y. (2017). On The Complex-

ity of Enumeration.

[Carmeli and Kröll, 2019] Carmeli, N. and Kröll, M. (2019). On the enumeration

complexity of unions of conjunctive queries. In Proceedings of the 38th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’19,

page 134–148, New York, NY, USA. Association for Computing Machinery.

[Cheliyan and Bhattacharyya, 2018] Cheliyan, A. and Bhattacharyya, S. (2018).

Fuzzy fault tree analysis of oil and gas leakage in subsea production systems.

Journal of Ocean Engineering and Science, 3(1):38–48.

[Colajanni et al., 2022] Colajanni, G., Gobbi, A., Picchi, M., Raffaele, A., and

Taranto, E. (2022). An OR-based Teaching Unit for Grade 10: The ROAR Ex-

perience, Part I. INFORMS Transactions on Education. To appear.

[Colbourn, 1987] Colbourn, C. J. (1987). The Combinatorics of Network Reliability.

Oxford University Press, Inc., USA.

[Compagnucci and Spigarelli, 2020] Compagnucci, L. and Spigarelli, F. (2020). The

Third Mission of the university: A systematic literature review on potentials and

constraints. Technological Forecasting and Social Change, 161:120284.

https://nathanbrixius.wordpress.com/2015/03/19/hole-hawg-ors-pr-problem/
https://nathanbrixius.wordpress.com/2015/03/19/hole-hawg-ors-pr-problem/

REFERENCES 117

[Conte, 2018] Conte, A. (2018). Enumeration algorithms for real-world networks:

efficiency and beyond. PhD Thesis.

[Conte et al., 2020] Conte, A., Crescenzi, P., Marino, A., and Punzi, G. (2020). Enu-

meration of sd separators in dags with application to reliability analysis in tem-

poral graphs. In 45th International Symposium on Mathematical Foundations of Com-

puter Science (MFCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[Conte et al., 2018] Conte, A., Grossi, R., Marino, A., Rizzi, R., Uno, T., and Versari,

L. (2018). Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts.

In Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG

2018, Cottbus, Germany, June 27-29, 2018, Proceedings, pages 100–110.

[Conte et al., 2016] Conte, A., Grossi, R., Marino, A., and Versari, L. (2016).

Sublinear-space bounded-delay enumeration for massive network analytics:

Maximal cliques. In Ioannis Chatzigiannakis Michael Mitzenmacher, Y. R. and

Sangiorgi, D., editors, ICALP 2016: the 43rd International Colloquium on Automata,

Languages, and Programming, volume 55 of Leibniz International Proceedings in In-

formatics (LIPIcs), pages 148:1—-148:15, Dagstuhl, Germany. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik.

[Conte et al., 2021] Conte, A., Kanté, M. M., Uno, T., and Wasa, K. (2021). Max-

imal strongly connected cliques in directed graphs: Algorithms and bounds.

Discrete Applied Mathematics, 303:237–252. Combined Special Issue: 1) 17th

Cologne–Twente Workshop on Graphs and Combinatorial Optimization (CTW

2019); Guest edited by Johann Hurink, Bodo Manthey 2) WEPA 2018 (Second

Workshop on Enumeration Problems and Applications); Guest edited by Takeaki

Uno, Andrea Marino.

[Conte and Uno, 2019] Conte, A. and Uno, T. (2019). New polynomial delay

bounds for maximal subgraph enumeration by proximity search. In Charikar,

M. and Cohen, E., editors, Proceedings of the 51st Annual ACM SIGACT Sympo-

sium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019,

pages 1179–1190. ACM.

[Cordone et al., 2005] Cordone, R., Ferrarini, L., and Piroddi, L. (2005). Enumer-

ation algorithms for minimal siphons in petri nets based on place constraints.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

35(6):844–854.

118 REFERENCES

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

(2009). Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition.

[Danielson, 1968] Danielson, G. (1968). On finding the simple paths and circuits in

a graph. IEEE Transactions on Circuit Theory, 15(3):294–295.

[Dantzig et al., 1954] Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M. (1954).

Solution of a large-scale Traveling-Salesman Problem. Operations Research, 2:393–410.

[Debieux et al., 2017] Debieux, V., Pignolet, Y., and Sivanthi, T. (2017). Faster Exact

Reliability Computation. In 2017 47th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks Workshops (DSN-W), pages 121–124.

[Dekker et al., 2012] Dekker, R., Bloemhof, J., and Mallidis, I. (2012). Operations

research for green logistics – an overview of aspects, issues, contributions and

challenges. European Journal of Operational Research, 219(3):671–679. Feature Clus-

ters.

[Deo, 2017] Deo, N. (2017). Graph Theory with Applications to Engineering and Com-

puter Science. Dover Publications.

[Desaulniers et al., 2002] Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon,

M. M., and Soumis, F. (2002). VRP with Pickup and Delivery. The vehicle routing

problem, 9:225–242.

[Diestel, 2017] Diestel, R. (2017). Graph Theory. Springer Publishing Company, In-

corporated, 5th edition.

[Duarte et al., 2021] Duarte, G. L., Eto, H., Hanaka, T., Kobayashi, Y., Kobayashi,

Y., Lokshtanov, D., Pedrosa, L. L. C., Schouery, R. C. S., and Souza, U. S. (2021).

Computing the Largest Bond and the Maximum Connected Cut of a Graph.

Algorithmica, 83(5):1421–1458.

[Edmonds and Fulkerson, 1970] Edmonds, J. and Fulkerson, D. (1970). Bottleneck

extrema. Journal of Combinatorial Theory, 8(3):299–306.

[Eiter and Gottlob, 1991] Eiter, T. and Gottlob, G. (1991). Identifying the minimal

transversals of a hypergraph and related problems. CD-TR 91/16.

[Eiter and Gottlob, 1995] Eiter, T. and Gottlob, G. (1995). Identifying the minimal

transversals of a hypergraph and related problems. SIAM Journal on Computing,

24(6):1278–1304.

REFERENCES 119

[Eiter and Gottlob, 2000] Eiter, T. and Gottlob, G. (2000). Identifying The Minimal

Transversals Of A Hypergraph And Related Problems. SIAM Journal on Comput-

ing, 31.

[Eiter et al., 2003] Eiter, T., Gottlob, G., and Makino, K. (2003). New Results on

Monotone Dualization and Generating Hypergraph Transversals. SIAM Journal

on Computing, 32(2):514–537.

[Eiter et al., 2008] Eiter, T., Makino, K., and Gottlob, G. (2008). Computational

aspects of monotone dualization: A brief survey. Discrete Applied Mathematics,

156(11):2035–2049. In Memory of Leonid Khachiyan (1952 - 2005).

[Elbassioni, 2008] Elbassioni, K. (2008). On the complexity of monotone dualization

and generating minimal hypergraph transversals. Discrete Applied Mathematics,

156(11):2109–2123.

[Eppstein, 1998] Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on

Computing, 28(2):652–673.

[Eppstein et al., 2010] Eppstein, D., Löffler, M., and Strash, D. (2010). Listing All

Maximal Cliques in Sparse Graphs in Near-Optimal Time. In Cheong, O., Chwa,

K.-Y., and Park, K., editors, Algorithms and Computation, pages 403–414, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Eppstein and Strash, 2011] Eppstein, D. and Strash, D. (2011). Listing All Maximal

Cliques in Large Sparse Real-World Graphs. In Pardalos, P. M. and Rebennack,

S., editors, Experimental Algorithms, pages 364–375, Berlin, Heidelberg. Springer

Berlin Heidelberg.

[Eriksson et al., 2006] Eriksson, A. P., Barr, O., and Astrom, K. (2006). Image seg-

mentation using minimal graph cuts. In SSBA Symposium on Image Analysis.

[Ferreira et al., 2011] Ferreira, R., Grossi, R., and Rizzi, R. (2011). Output-sensitive

listing of bounded-size trees in undirected graphs. In Demetrescu, C. and

Halldórsson, M. M., editors, ESA 2011: the 19th Annual European Symposium

on Algorithms, volume 6942 of Lecture Notes in Computer Science, pages 275–286.

Springer Berlin Heidelberg.

[Ferreira et al., 2014] Ferreira, R., Grossi, R., Rizzi, R., Sacomoto, G., and Marie-

France, S. (2014). Amortized Õ(|V|)-Delay Algorithm for Listing Chordless Cy-

cles in Undirected Graphs. In Schulz, A. S. and Wagner, D., editors, ESA 2014:

120 REFERENCES

the 22th Annual European Symposium on Algorithms, volume 8737 of Lecture Notes

in Computer Science, pages 418–429, Wroclaw, Poland. Springer Berlin Heidelberg.

[Floyd, 1967] Floyd, R. W. (1967). Nondeterministic algorithms. J. ACM,

14(4):636–644.

[Ford and Fulkerson, 2015] Ford, L. R. and Fulkerson, D. R. (2015). Flows in net-

works. Princeton University Press.

[Frederickson, 1997] Frederickson, G. N. (1997). Ambivalent Data Structures for

Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees. SIAM Journal on

Computing, 26(2):484–538.

[Fredman and Khachiyan, 1996] Fredman, M. L. and Khachiyan, L. (1996). On the

Complexity of Dualization of Monotone Disjunctive Normal Forms. Journal of

Algorithms, 21(3):618–628.

[Fukuda and Prodon, 1995] Fukuda, K. and Prodon, A. (1995). Double description

method revisited. In Franco-Japanese and Franco-Chinese Conference on Combina-

torics and Computer Science, pages 91–111. Springer.

[Gabow and Myers, 1978] Gabow, H. N. and Myers, E. W. (1978). Finding all

spanning trees of directed and undirected graphs. SIAM Journal on Computing,

7(3):280–287.

[Gaur and Krishnamurti, 2004] Gaur, D. and Krishnamurti, R. (2004). Average Case

Self-Duality of Monotone Boolean Functions. In Tawfik, A. and Goodwin, S., edi-

tors, Advances in Artificial Intelligence, pages 322–338, Berlin, Heidelberg. Springer

Berlin Heidelberg.

[Gaur et al., 2021] Gaur, V., Yadav, O. P., Soni, G., and Rathore, A. P. S. (2021). A

literature review on network reliability analysis and its engineering applications.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 235(2):167–181.

[Gerstl et al., 2016] Gerstl, M. P., Klamt, S., Jungreuthmayer, C., and Zanghellini,

J. (2016). Exact quantification of cellular robustness in genome-scale metabolic

networks. Bioinformatics, 32(5):730–737.

[Gianinazzi et al., 2021] Gianinazzi, L., Besta, M., Schaffner, Y., and Hoefler, T.

(2021). Parallel algorithms for finding large cliques in sparse graphs. In Pro-

ceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures,

REFERENCES 121

SPAA ’21, page 243–253, New York, NY, USA. Association for Computing Ma-

chinery.

[Ginzburg, 2017] Ginzburg, N. (2017). The Little Virtues: Essays. Simon and Schus-

ter.

[Goulet and Lamontagne, 2018] Goulet, C. and Lamontagne, M. (2018). To Reach a

Wider Audience, Simplify Your Science. Seismological Research Letters, 89(2A):677–

677.

[Grossi, 2016] Grossi, R. (2016). Enumeration of Paths, Cycles, and Spanning Trees.

In Kao, M.-Y., editor, Encyclopedia of Algorithms, pages 640–645. Springer New

York, New York, NY.

[Gunopulos et al., 1997] Gunopulos, D., Mannila, H., Khardon, R., and Toivonen,

H. (1997). Data Mining, Hypergraph Transversals, and Machine Learning. In Pro-

ceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, PODS ’97, pages 209–216, New York, NY, USA. Association

for Computing Machinery.

[Gurobi Optimization, nd] Gurobi Optimization (n.d.). Gurobi Optimizer. https:

//www.gurobi.com. Accessed: 2021-12-29.

[Hagen, 2008] Hagen, M. (2008). Algorithmic and Computational Complexity Issues of

MONET. Cuvillier Verlag.

[Hagen et al., 2009] Hagen, M., Horatschek, P., and Mundhenk, M. (2009). Experi-

mental Comparison of the Two Fredman-Khachiyan-Algorithms. In Proceedings

of the Meeting on Algorithm Engineering and Experiments, pages 154–161, USA. So-

ciety for Industrial and Applied Mathematics.

[Harary, 1969] Harary, F. (1969). Graph Theory. Addison-Wesley, Reading, MA.

[Henzinger and Fredman, 1998] Henzinger, M. R. and Fredman, M. L. (1998).

Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica,

22(3):351–362.

[Henzinger and King, 1999] Henzinger, M. R. and King, V. (1999). Randomized

fully dynamic graph algorithms with polylogarithmic time per operation. Journal

of the ACM (JACM), 46(4):502–516.

[Holm et al., 2001] Holm, J., de Lichtenberg, K., and Thorup, M. (2001). Poly-

Logarithmic Deterministic Fully-Dynamic Algorithms for Connectivity, Mini-

mum Spanning Tree, 2-Edge, and Biconnectivity. J. ACM, 48(4):723–760.

https://www.gurobi.com
https://www.gurobi.com

122 REFERENCES

[Hopcroft and Tarjan, 1973] Hopcroft, J. E. and Tarjan, R. E. (1973). Algorithm 447:

Efficient Algorithms for Graph Manipulation. Commun. ACM, 16(6):372–378.

[Hädicke and Klamt, 2010] Hädicke, O. and Klamt, S. (2010). Computing complex

metabolic intervention strategies using constrained minimal cut sets. Metabolic

engineering, 13:204–13.

[IBM, nd] IBM (n.d.). ILOG CPLEX Optimization Studio. https://www.ibm.com/

products/ilog-cplex-optimization-studio?lnk=STW_US_STESCH&lnk2=

trial_ILOGOptStudio&pexp=def&psrc=none&mhsrc=ibmsearch_a&mhq=cplex.

Accessed: 2021-12-29.

[INFORMS, 2020] INFORMS (2020). Information on COVID-19 and Pandemics.

https://www.informs.org/Impact/O.R.-Analytics-for-Policymakers/

COVID-19. Accessed: 2021-12-29.

[Jensen and Bellmore, 1969] Jensen, P. A. and Bellmore, M. (1969). An algorithm to

determine the reliability of a complex system. IEEE Trans. Rehahty R-I 4, pages

169–174.

[Johnson, 1975] Johnson, D. B. (1975). Finding all the elementary circuits of a di-

rected graph. SIAM Journal on Computing, 4(1):77–84.

[Johnson et al., 1988] Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H.

(1988). On generating all maximal independent sets. Information Processing Let-

ters, 27(3):119–123.

[Jordan et al., 2017] Jordan, C., Joswig, M., and Kastner, L. (2017). Parallel enumer-

ation of triangulations. arXiv preprint arXiv:1709.04746.

[Jung et al., 2020] Jung, S., Yoo, J., and Lee, Y.-J. (2020). A software fault tree analy-

sis technique for formal requirement specifications of nuclear reactor protection

systems. Reliability Engineering & System Safety, 203:107064.

[Kao, 2016] Kao, M.-Y., editor (2016). Encyclopedia of Algorithms. Springer, New

York, 2nd edition.

[Kavvadias and Stavropoulos, 2003] Kavvadias, D. J. and Stavropoulos, E. C.

(2003). Monotone Boolean dualization is in co-NP[log2n]. Information Process-

ing Letters, 85(1):1–6.

[Khachiyan et al., 2009] Khachiyan, L., Boros, E., Borys, K., Gurvich, V., and Elbas-

sioni, K. (2009). Generating all vertices of a polyhedron is hard. In Twentieth

Anniversary Volume:, pages 1–17. Springer.

https://www.ibm.com/products/ilog-cplex-optimization-studio?lnk=STW_US_STESCH&lnk2=trial_ILOGOptStudio&pexp=def&psrc=none&mhsrc=ibmsearch_a&mhq=cplex
https://www.ibm.com/products/ilog-cplex-optimization-studio?lnk=STW_US_STESCH&lnk2=trial_ILOGOptStudio&pexp=def&psrc=none&mhsrc=ibmsearch_a&mhq=cplex
https://www.ibm.com/products/ilog-cplex-optimization-studio?lnk=STW_US_STESCH&lnk2=trial_ILOGOptStudio&pexp=def&psrc=none&mhsrc=ibmsearch_a&mhq=cplex
https://www.informs.org/Impact/O.R.-Analytics-for-Policymakers/COVID-19
https://www.informs.org/Impact/O.R.-Analytics-for-Policymakers/COVID-19

REFERENCES 123

[Khachiyan et al., 2006] Khachiyan, L., Boros, E., Elbassioni, K., and Gurvich, V.

(2006). An efficient implementation of a quasi-polynomial algorithm for gen-

erating hypergraph transversals and its application in joint generation. Discrete

Applied Mathematics, 154(16):2350–2372.

[Khachiyan et al., 2005] Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., and

Makino, K. (2005). On the Complexity of Some Enumeration Problems for Ma-

troids. SIAM Journal on Discrete Mathematics, 19(4):966–984.

[Kiyomi, 2016] Kiyomi, M. (2016). Reverse Search; Enumeration Algorithms. In

Kao, M.-Y., editor, Encyclopedia of Algorithms, pages 1840–1842. Springer New

York, New York, NY.

[Klamt and Gilles, 2004] Klamt, S. and Gilles, E. D. (2004). Minimal cut sets in

biochemical reaction networks. Bioinformatics, 20 2:226–34.

[Kurita et al., 2021a] Kurita, K., Wasa, K., Arimura, H., and Uno, T. (2021a). Effi-

cient enumeration of dominating sets for sparse graphs. Discrete Applied Mathe-

matics, 303:283–295. Combined Special Issue: 1) 17th Cologne–Twente Workshop

on Graphs and Combinatorial Optimization (CTW 2019); Guest edited by Jo-

hann Hurink, Bodo Manthey 2) WEPA 2018 (Second Workshop on Enumeration

Problems and Applications); Guest edited by Takeaki Uno, Andrea Marino.

[Kurita et al., 2021b] Kurita, K., Wasa, K., Uno, T., and Arimura, H. (2021b). A

constant amortized time enumeration algorithm for independent sets in graphs

with bounded clique number. Theoretical Computer Science, 874:32–41.

[Lehman, 1964] Lehman, A. (1964). A Solution of the Shannon Switching Game.

Journal of the Society for Industrial and Applied Mathematics, 12(4):687–725.

[Lehman, 1979] Lehman, A. (1979). On the width—length inequality. Mathematical

Programming, 17:403–417.

[Lewenstein, 2003] Lewenstein, B. V. (2003). Models of public communication of science

and technology.

[Lin et al., 2003] Lin, H.-Y., Kuo, S.-Y., and Yeh, F.-M. (2003). Minimal cutset enu-

meration and network reliability evaluation by recursive merge and BDD. In

Proceedings of the Eighth IEEE Symposium on Computers and Communications. ISCC

2003, pages 1341–1346 vol.2.

[Liu and Edelberg, 1968] Liu, C. L. and Edelberg, M. (1968). Introduction to Combi-

natorial Mathematics. Computer science series. McGraw-Hill.

124 REFERENCES

[Liu et al., 2015] Liu, F., Vilaça, P., Rocha, I., and Rocha, M. (2015). Development

and application of efficient pathway enumeration algorithms for metabolic engi-

neering applications. Computer Methods and Programs in Biomedicine, 118(2):134–

146.

[Lovász, 1992] Lovász, L. (1992). Combinatorial optimization: some problems and

trends. DIMACS, Center for Discrete Mathematics and Theoretical Computer

Science.

[Lübbecke, 2015] Lübbecke, M. (2015). Are we too complicated? https:

//mluebbecke.wordpress.com/2015/03/23/are-we-too-complicated/. Ac-

cessed: 2021-12-29.

[Marino, 2015] Marino, A. (2015). Enumeration Algorithms, pages 13–35. Atlantis

Press, Paris.

[Martelli, 1976] Martelli, A. (1976). A Gaussian Elimination Algorithm for the Enu-

meration of Cut Sets in a Graph. Journal of the ACM, 23(1):58–73.

[Marzetta, 1998] Marzetta, A. (1998). ZRAM: A library of parallel search algorithms

and its use in enumeration and combinatorial optimization. Citeseer.

[Miltersen et al., 1994] Miltersen, P. B., Subramanian, S., Vitter, J. S., and Tamassia,

R. (1994). Complexity models for incremental computation. Theoretical Computer

Science, 130(1):203 – 236.

[Modani and Dey, 2009] Modani, N. and Dey, K. (2009). Large maximal cliques

enumeration in large sparse graphs. In COMAD. Citeseer.

[Montané and Galvão, 2002] Montané, F. A. T. and Galvão, R. D. (2002). Vehicle

routing problems with simultaneous pick-up and delivery service. Opsearch,

39(1):19–33.

[Motzkin et al., 1953] Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M.

(1953). The double description method. Contributions to the Theory of Games,

2(28):51–73.

[Mourad et al., 2019] Mourad, A., Puchinger, J., and Chu, C. (2019). A survey of

models and algorithms for optimizing shared mobility. Transportation Research

Part B: Methodological, 123:323–346.

[Nguyen and Lin, 2021] Nguyen, T.-P. and Lin, Y.-K. (2021). Reliability assessment

of a stochastic air transport network with late arrivals. Computers & Industrial

Engineering, 151:106956.

https://mluebbecke.wordpress.com/2015/03/23/are-we-too-complicated/
https://mluebbecke.wordpress.com/2015/03/23/are-we-too-complicated/

REFERENCES 125

[Niss, 1992] Niss, M. (1992). Applications and modelling in school Mathematics-

directions for future development, volume 3. Development in School Mathematics

Education Around the World.

[Niu et al., 2017] Niu, Y.-F., Gao, Z.-Y., and Lam, W. H. (2017). Evaluating the relia-

bility of a stochastic distribution network in terms of minimal cuts. Transportation

Research Part E: Logistics and Transportation Review, 100:75–97.

[Olson, 2015] Olson, R. (2015). Computing the optimal road trip

across the U.S. http://www.randalolson.com/2015/03/08/

computing-the-optimal-road-trip-across-the-u-s/.

Accessed: 2021-12-29.

[Pan and Santos, 2008] Pan, L. and Santos, E. E. (2008). An anytime-anywhere ap-

proach for maximal clique enumeration in social network analysis. In 2008 IEEE

International Conference on Systems, Man and Cybernetics, pages 3529–3535.

[Papadimitriou and Yannakakis, 1984] Papadimitriou, C. and Yannakakis, M.

(1984). The complexity of facets (and some facets of complexity). Journal of

Computer and System Sciences, 28(2):244–259.

[Peng et al., 2013] Peng, B., Zhang, L., and Zhang, D. (2013). A survey of graph

theoretical approaches to image segmentation. Pattern Recognition, 46(3):1020–

1038.

[Pidd, 2001] Pidd, M. (2001). The future of OR. Journal of the Operational Research

Society, 52:1181–1190.

[Pollock, 1994] Pollock, S. M., editor (1994). Operations Research and the Public Sector,

Volume 6 – 1st Edition. Handbooks in Operations Research and Management

Science. Elsevier Science.

[Postrel, 2004] Postrel, V. (2004). Operation everything – It stocks your gro-

cery store, schedules your favorite team’s games, and helps plan your vaca-

tion. A primer on the most influential academic discipline you’ve never heard

of. http://archive.boston.com/news/globe/ideas/articles/2004/06/27/

operation_everything?pg=full. Accessed: 2021-12-29.

[Power et al., 2018] Power, D. J., Heavin, C., McDermott, J., and Daly, M. (2018).

Defining business analytics: an empirical approach. Journal of Business Analytics,

1(1):40–53.

http://www.randalolson.com/2015/03/08/computing-the-optimal-road-trip-across-the-u-s/
http://www.randalolson.com/2015/03/08/computing-the-optimal-road-trip-across-the-u-s/
http://archive.boston.com/news/globe/ideas/articles/2004/06/27/operation_everything?pg=full
http://archive.boston.com/news/globe/ideas/articles/2004/06/27/operation_everything?pg=full

126 REFERENCES

[Raffaele, 2021] Raffaele, A. (2021). Becoming Visible: Why We Should be Better

Communicators Now. Operations Research Forum, 2(1):7.

[Raffaele and Gobbi, 2021] Raffaele, A. and Gobbi, A. (2021). Teaching Operations

Research Before University: A Focus on Grades 9–12. Operations Research Forum,

2(1):13.

[Raffaele et al., 2022] Raffaele, A., Gussago, M., Zavatteri, M., Bazzoli, F., and Rizzi,

R. (2022). Analysis, evaluation, and improvement of the routing of an interlibrary

loan service: the industrial case study of Province of Brescia. Working paper.

[Raffaele and Rizzi, 2021] Raffaele, A. and Rizzi, R. (2021). A new decomposition

for the Monotone Boolean Duality problem. July 2021. Submitted.

[Raffaele et al., 2021] Raffaele, A., Rizzi, R., and Uno, T. (2021). Listing the bonds

of a graph in Õ(n)-delay. June 2021. Submitted.

[Rains and Sloane, 1999] Rains, E. M. and Sloane, N. J. A. (1999). On Cayley’s

Enumeration of Alkanes (or 4-Valent Trees). Journal of Integer Sequences, 2:11.

[Rausand, 2014] Rausand, M. (2014). Reliability of Safety-Critical Systems: Theory and

Applications. Wiley.

[Ravikrishnan et al., 2018] Ravikrishnan, A., Nasre, M., and Raman, K. (2018). Enu-

merating all possible biosynthetic pathways in metabolic networks. Scientific Re-

ports, 8(1):9932.

[Read and Tarjan, 1975] Read, R. C. and Tarjan, R. E. (1975). Bounds on backtrack

algorithms for listing cycles, paths, and spanning trees. Networks, 5(3):237–252.

[Rothberg, 2020] Rothberg, E. (2020). Imagine a World without

Mathematical Optimization. https://www.gurobi.com/resource/

imagine-a-world-without-mathematical-optimization/.

Accessed: 2021-12-29.

[Rothberg, 2021] Rothberg, E. (2021). Operations Research Ana-

lyst: The Fastest-Growing Job You’ve Never Heard Of. https:

//www.forbes.com/sites/forbestechcouncil/2021/12/20/

operations-research-analyst-the-fastest-growing-job-youve-never-heard-of/.

Accessed: 2021-12-23.

[Salhi et al., 2014] Salhi, S., Imran, A., and Wassan, N. A. (2014). The multi-depot

vehicle routing problem with heterogeneous vehicle fleet: Formulation and a

https://www.gurobi.com/resource/imagine-a-world-without-mathematical-optimization/
https://www.gurobi.com/resource/imagine-a-world-without-mathematical-optimization/
https://www.forbes.com/sites/forbestechcouncil/2021/12/20/operations-research-analyst-the-fastest-growing-job-youve-never-heard-of/
https://www.forbes.com/sites/forbestechcouncil/2021/12/20/operations-research-analyst-the-fastest-growing-job-youve-never-heard-of/
https://www.forbes.com/sites/forbestechcouncil/2021/12/20/operations-research-analyst-the-fastest-growing-job-youve-never-heard-of/

REFERENCES 127

variable neighborhood search implementation. Computers and Operations Re-

search, 52(Part B):315–325.

[Schaefer, 1978] Schaefer, T. J. (1978). The complexity of satisfiability problems. In

Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San

Diego, Calif., 1978), pages 216–226. ACM, New York.

[Scharrer et al., 2017] Scharrer, L., Rupieper, Y., Stadtler, M., and Bromme, R.

(2017). When science becomes too easy: Science popularization inclines laypeo-

ple to underrate their dependence on experts. Public Understanding of Science,

26(8):1003–1018.

[Sedaghat et al., 2018] Sedaghat, N., Stephen, T., and Chindelevitch, L. (2018).

Speeding up Dualization in the Fredman-Khachiyan Algorithm B. In D’Angelo,

G., editor, 17th International Symposium on Experimental Algorithms (SEA 2018),

volume 103 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–

6:13, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Seymour, 1976] Seymour, P. (1976). The Forbidden Minors of Binary Clutters. Jour-

nal of the London Mathematical Society, s2-12(3):356–360.

[Shakespeare and Gibbons, 2002] Shakespeare, W. and Gibbons, B. (2002). Romeo

and Juliet. Arden edition of the works of William Shakespeare. Arden Shake-

speare.

[Shen, 2020] Shen, S. (2020). From Data to Actions, From Observations to So-

lutions. A Summary of Operations Research and Industrial Engineering Tools

for Fighting COVID-19. http://www-personal.umich.edu/~siqian/docs/

or-ie-fighting-covid19_v1.pdf. Accessed: 2021-12-29.

[Shier, 1991] Shier, D. R. (1991). Network Reliability and Algebraic Structures. Claren-

don Press, USA.

[Shioura et al., 1997] Shioura, A., Tamura, A., and Uno, T. (1997). An optimal al-

gorithm for scanning all spanning trees of undirected graphs. SIAM Journal on

Computing, 26(3):678–692.

[Shmoys, 1995] Shmoys, D. B. (1995). Computing near-optimal solutions to combi-

natorial optimization problems. Combinatorial Optimization, 20:355–397.

[Sleator and Tarjan, 1983] Sleator, D. D. and Tarjan, R. E. (1983). A Data Structure

for Dynamic Trees. J. Comput. Syst. Sci., 26:362–391.

http://www-personal.umich.edu/~siqian/docs/or-ie-fighting-covid19_v1.pdf
http://www-personal.umich.edu/~siqian/docs/or-ie-fighting-covid19_v1.pdf

128 REFERENCES

[Steenrod et al., 1973] Steenrod, N. E., Halmos, P. R., Schiffer, M. M., and

Dieudonne, J. A. (1973). How to Write Mathematics. American Mathematical Soci-

ety.

[Tamaki, 2000] Tamaki, H. (2000). Space-efficient enumeration of minimal transver-

sals of a hypergraph. In IPSJ-AL, volume 75, pages 29–36.

[Taranto et al., 2022] Taranto, E., Colajanni, G., Gobbi, A., Picchi, M., and Raffaele,

A. (2022). Fostering students’ development of modelling and problem-solving

skills through Operations Research and digital technologies in a collaborative

environment. November 2021. Submitted.

[Tarjan, 1971] Tarjan, R. (1971). Depth-first search and linear graph algorithms.

In 12th Annual Symposium on Switching and Automata Theory (swat 1971), pages

114–121.

[Tarjan, 1985] Tarjan, R. E. (1985). Amortized computational complexity. SIAM

Journal on Algebraic Discrete Methods, 6(2):306–318.

[The OR Society, 2020] The OR Society (2020). Coronavirus (COVID-19). https:

//www.theorsociety.com/get-involved/coronavirus-covid-19/. Accessed:

2021-12-29.

[The Washington Post, 2015] The Washington Post (2015). A

data genius computes the ultimate American road trip. https:

//www.washingtonpost.com/news/wonk/wp/2015/03/10/

a-data-genius-computes-the-ultimate-american-road-trip/.

Accessed: 2021-12-29.

[Thorup, 2000] Thorup, M. (2000). Near-Optimal Fully-Dynamic Graph Connec-

tivity. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of

Computing, STOC ’00, page 343–350, New York, NY, USA. Association for Com-

puting Machinery.

[Tomita et al., 2019] Tomita, E., Mitsutake, A., and Nozaki, T. (2019). Enumeration

of maximum cliques and its application to coding theory. In Boros, E., Kimelfeld,

B., Pichler, R., and Schweikardt, N., editors, Enumeration in Data Management

(Dagstuhl Seminar 19211), volume 9, pages 89–109, Dagstuhl, Germany. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

https://www.theorsociety.com/get-involved/coronavirus-covid-19/
https://www.theorsociety.com/get-involved/coronavirus-covid-19/
https://www.washingtonpost.com/news/wonk/wp/2015/03/10/a-data-genius-computes-the-ultimate-american-road-trip/
https://www.washingtonpost.com/news/wonk/wp/2015/03/10/a-data-genius-computes-the-ultimate-american-road-trip/
https://www.washingtonpost.com/news/wonk/wp/2015/03/10/a-data-genius-computes-the-ultimate-american-road-trip/

REFERENCES 129

[Tsukiyama et al., 1980] Tsukiyama, S., Shirakawa, I., Ozaki, H., and Ariyoshi, H.

(1980). An Algorithm to Enumerate All Cutsets of a Graph in Linear Time per

Cutset. J. ACM, 27:619–632.

[Tutte, 1966] Tutte, W. T. (1966). Connectivity in graphs. Mathematical expositions.

University of Toronto Press.

[Uno, 2016] Uno, T. (2016). Amortized Analysis on Enumeration Algorithms. In

Kao, M.-Y., editor, Encyclopedia of Algorithms, pages 72–76. Springer New York,

New York, NY.

[Van Lierde and Chow, 2019] Van Lierde, H. and Chow, T. W. (2019). Query-

oriented text summarization based on hypergraph transversals. Information Pro-

cessing & Management, 56(4):1317–1338.

[Van Slyke and Frank, 1971] Van Slyke, R. M. and Frank, H. (1971). Network relia-

bility analysis: Part I. Networks, 1(3):279–290.

[Veyrat-Charvillon et al., 2013] Veyrat-Charvillon, N., Gérard, B., Renauld, M., and

Standaert, F.-X. (2013). An optimal key enumeration algorithm and its applica-

tion to side-channel attacks. In Knudsen, L. R. and Wu, H., editors, Selected Areas

in Cryptography, pages 390–406, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Wang et al., 2021] Wang, Z., Hu, W., Chen, G., Yuan, C., Gu, R., and Huang, Y.

(2021). Towards efficient distributed subgraph enumeration via backtracking-

based framework. IEEE Transactions on Parallel and Distributed Systems,

32(12):2953–2969.

[Wasa, 2019] Wasa, K. (2019). Enumeration of Enumeration Algorithms and Its

Complexity. https://kunihirowasa.github.io/enum. Accessed: 2021-12-29.

[Weibel, 2010] Weibel, C. (2010). Implementation and parallelization of a reverse-

search algorithm for minkowski sums. In 2010 Proceedings of the Twelfth Workshop

on Algorithm Engineering and Experiments (ALENEX), pages 34–42. SIAM.

[Wilson, 1972] Wilson, R. (1972). Introduction to graph theory, oliver and boyd.

[Wulff-Nilsen, 2013] Wulff-Nilsen, C. (2013). Faster deterministic fully-dynamic

graph connectivity. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’13, page 1757–1769, USA. Society for In-

dustrial and Applied Mathematics.

https://kunihirowasa.github.io/enum

130 REFERENCES

[Yan et al., 1994] Yan, L., Taha, H. A., and Landers, T. L. (1994). A recursive ap-

proach for enumerating minimal cutsets in a network. IEEE Transactions on Reli-

ability, 43(3):383–388.

[Ziegler, 2012] Ziegler, G. M. (2012). Lectures on polytopes, volume 152. Springer

Science & Business Media.

	List of Figures
	List of Tables
	List of Algorithms
	Preface
	Outline of the thesis
	Summary of contributions

	Introduction to enumeration
	Enumeration problems and algorithms
	Applications
	Complexity classes of enumeration problems
	Designing enumeration algorithms
	Backtracking
	Binary partition
	Reverse search
	A note on parallel computing

	Analysing enumeration algorithms

	Listing the bonds of a graph in Õ(n)–delay
	Introduction
	Applications
	Preliminaries
	Related work
	Yet another O(m)–delay algorithm
	From bonds to –bonds
	Main idea, invariants, and base cases
	Algorithm

	The dynamic data structures employed
	Dynamic graph problems
	Maintaining connectivity
	Maintaining biconnectivity
	Checking cut-vertices
	Summary

	An Õ(n)–delay algorithm
	Further developments

	A new decomposition for the Monotone Boolean Duality problem
	Introduction
	Applications
	The Vertex (Facet) Enumeration problem

	Related work
	Preliminaries
	Set families
	Clutters, blockers, and duality
	Clean pairs and a first naive approach
	Filter and Projection
	Fredman and Khachiyan's result and frequency

	Pursuing symmetry
	The role of certificates
	Bipartitions as certificates
	Bipartitions and frequency

	Full covers
	Full covers and duality testing
	Full covers and bipartitions

	A new decomposition algorithm
	Algorithm
	Summary
	Time complexity

	The space issues in dualization
	A naive procedure to dualize
	Reporting transversals one by one by using processes
	Reformulating decomposition rules
	A polynomial-space algorithm for dualization
	Space complexity

	Further developments
	Generalizations and extensions of full-covers methods
	Investigating other measures and techniques

	Conclusions
	On communicating operations research
	The industrial case study of Province of Brescia
	Problem definition
	Mathematical formulation
	Experimental evaluation

	Mathematics education and OR
	A literature review
	The ROAR project

	On communicating operations research
	The issue of visibility of operations research
	Different contexts, different purposes, and different actions

	Conclusions

	References

