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Abstract 

Periodic metafoundations have proven to inherit valuable properties from wave propagating in phononic 
periodic structures in the very low-frequency regime. Therefore, finite locally resonant metafoundations 
(LRMs) represent a novel type of seismic isolation for ultralow-frequency applications. In this context, it is 
still unknown the impact that massive resonators with varying frequencies or devices with hysteretic behavior 
can entail on the whole system performance. For this purpose, we develop and optimize two finite locally 
resonant multiple degrees of freedom (MDoF) metafoundations in this paper: i) a foundation endowed with 
resonators, linear springs and linear viscous dampers tuned to multiple frequencies; and ii) a foundation 
equipped with fully nonlinear hysteretic dampers. Both are optimized considering the stochastic nature of 
ground motion, modelled with a modified Kanai-Tajimi filter in the stationary frequency domain, and a 
massive MDoF superstructure, chosen to be a fuel storage tank. In order to take all of the above-mentioned 
effects into account, we establish a procedure based on nonlinear programming that is able to optimize any 
number of parameters. More precisely, to optimize the nonlinear behavior of damper devices we employ a 
Bouc-Wen hysteretic model. Therefore, we reduce the nonlinear differential equations of Bouc-Wen models 
to a system of linear equations through the stochastic (equivalent) linearization technique. Moreover, we test 
the optimized systems against natural seismic records both with linear and nonlinear time history analyses. To 
investigate the role of hysteresis on the nonlinear band structure, we derive linearized and nonlinear dispersion 
relationships for the uncoupled periodic metafoundation. Finally, we obtain further detailed information on the 
nonlinear wave propagation by means of spectro-spatial analysis. 
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1. Introduction 

1.1 Background and motivations 

Applied research in phononic periodic materials and structures has been abundant in recent years especially in 
the mid-frequency regime. See among others, the dense state of art of Hussein et al. [1], the investigation in 
acoustic metamaterials [2], the review of waves behavior in structured mediums [3] and the relevant problems 
of optimization. Investigations in the field of solid-state physics have shown that certain crystal arrangements 
may be used to manipulate the energy or patterns of acoustic (mechanical) wave energy [4-8]. These elastic 
materials, termed phononic crystals, can be designed to produce specific gaps in the frequency response of the 
structure. More precisely, when the frequency contents of a wave fall within the range of the frequency band 
gap of a periodic structure, the wave, and its energy, cannot propagate because they become evanescent. While 
acoustic/elastic metamaterials have provided a root to subwavelength applications, it is still challenging to 
control and attenuate waves in the ultralow-frequency domain.  



Within linear metamaterials, a new category of applications of phononic – or periodic - structures as alternative 
to classical seismic isolators to earthquake mitigation has received growing interest [9-11]. Their increasing 
popularity resides in the possibility of exploiting the advantages of periodic structures that are able to attenuate 
waves in certain frequency ranges. In particular, the authors exploit the advantages of LRMs, due to their 
capability of attenuating low-frequency waves by means of unit cells much smaller than the wavelength of the 
desired frequency region. In fact, the most common solutions of isolation use lead‐rubber bearings or spherical 
bearing devices. Although they are quite effective for the horizontal components of earthquakes, they require 
two strong floors, exert a very high stiffness against the vertical component of an earthquake, and seem to be 
ineffective for large structures subjected to rocking [12]. In order to reduce the seismic response of a 
superstructure, Casablanca et al. studied periodic and finite LRM foundations [13]. Although good results were 
obtained in terms of response reduction, neither of the proposed periodic systems were designed for gravity 
and/or seismic load combinations. Furthermore, the authors did not take into account the feedback forces from 
superstructures to metafoundations. 
In order to overcome these drawbacks, other researchers [14-15] proposed a finite lattice LRM, the so-called 
Metafoundation, for the seismic protection of process equipment, e.g. storage tanks. The foundation consists 
of standard steel columns and concrete slabs that define the primary load bearing structure, while massive 
concrete masses are considered as resonators. Moreover, the foundation was designed to remain undamaged 
for safe shutdown earthquakes (SSEs). In order to evaluate the optimal parameters of the resonators and to 
account for the stochastic nature of seismic waves, the authors proposed an optimization procedure based on 
nonlinear programming in the frequency domain. As a result, they showed that the limited layered 
Metafoundation is the most efficient solution for attenuating seismic waves. 
Nonetheless, three basic issues remained unresolved: i) first, the optimization of multiple resonators acting in 
a linear LRM and associated with different parameters; second, the optimization of structural devices, i.e. 
springs and/or dampers, operating in the nonlinear regime within finite lattices; and third, the inclusion of the 
stochastic nature of seismic input.  
With regard to the first, issue, i.e. the optimization of multiple resonators, the potential benefits of designing 
multiple resonators exhibiting both mass and bulk modulus dispersion between resonances are quite 
understood. More precisely, a metamaterial endowed with local resonators can exert an apparent negative mass 
as well as an apparent negative bulk modulus. These properties can be exploited for the attenuation of acoustic 
waves, and therefore, can be suitable adopted for the design of optimal multiple tuned resonators. 
As far as the second issue is concerned, i.e. the selection of proper hysteretic dampers, Basone et al. [14] 
suggested to use wire ropes; they represent simple devices able to both effectively suspend concrete resonators 
inside the foundation and allow motion in all three main directions. Their behavior is quite complex and some 
researchers [16-18], among others, characterized their main nonlinear properties. More precisely, the 
mechanical flexibility of wire ropes provides good isolation properties and the sliding friction between the 
intertwined cables results in high dissipative capabilities. As a result, these devices can achieve equivalent 
damping ratios of 15-20 percent associated with low production and maintenance costs. Their hysteretic 
behavior can be reproduced with a well-known Bouc-Wen model [19,20]. This model is quite popular because 
can describes the behavior of a nonlinear hysteretic system with a compact first-order differential equation 
[21]. Due to its versatility and mathematical tractability, the Bouc-Wen model has gained popularity and has 
extensively been applied to a wide variety of seismic engineering problems. As a result, we have to deal with 
hysteretic systems, where nonlinearities depend on the history of the motion, rather than simply on the 
instantaneous motion. 
In the same vein, the analysis of nonlinear metamaterials is still very challenging. For instance, from a 
perturbation approach specifically applied to weakly nonlinear periodic chains [8], emerges that: i) solutions 
to nonlinear wave equations are amplitude dependent; ii) wave amplitudes influence their own propagation 
characteristics, the so-called self-action; iii) analysis methods in the presence of self-action often do not trace 
all solutions when more than one dominant component is involved. Nonetheless, to both analyse and improve 
the performance of a metamaterial-based system several solutions are available. See among others, 
Yousefzadeh and Phani [22], which studied nonlinear transmission of wave energy in a finite dissipative 
periodic structure. They showed that there is a threshold for the driving amplitude above which a sudden 



increase in the energy transmitted across the finite structure happens. This phenomenon for nonlinear finite 
lattices is due to a loss of stability of the periodic solutions that are initially localized to the driven end of the 
structure. The influence of damping, coupling strength and type of nonlinearity, i.e. hardening or softening are 
assessed. More precisely, they showed that: i) damping may eliminate the transmission phenomenon within a 
frequency range in the stop band; ii) an increase of strength of coupling between the units is found to increase 
the minimum force required for the onset of transmission; iii) the type of nonlinearity determines on which 
side of the pass band the enhanced transmission may occur. Zhou et alii [23] analyzed wave packet propagation 
in weakly nonlinear acoustic metamaterials and highlighted the interior nonlinear wave mechanism through a 
spectro-spatial analysis. They found that that type of analysis can provide detailed information about solitary 
waves in short wavelength regions which cannot be captured by the Lindstedt-Poincare’ method. Moreover, 
they also found that optical wave modes in nonlinear metamaterial are sensitive to parameters of the nonlinear 
cubic constitutive relation. Zivieri et alii [24] started from the factorization of the spatial and temporal parts of 
the solution and a periodic distribution function as ansatz of a general solution of the temporal part of the 
nonlinear equations of motion (EoM). Hence, they derived an analytical nonlinear dispersion relation for 
nonlinear periodic mass-spring and mass-in-mass systems. A comparison with numerical simulations showed 
the range of validity of the proposed expressions. Moreover, Sheng et alii [25] systematically studied 
influences of amplitude, nonlinear stiffness coefficients, resonance frequencies, masses and beam thicknesses 
on the bandwidth and efficiency of vibration mitigation properties. Thus, in order to realize low-frequency, 
broadband and highly efficient vibration reduction with limited attached masses, they presented an optimized 
lightweight nonlinear acoustic metamaterial beam. Other studies dealing with nonlinear problems regard the 
so-called conceptual negative stiffness element (NSE) inserted in resonators of mass-in-mass periodic systems. 
More precisely, each NSE element can exerts a resulting force capable of assisting motion instead of opposing 
it: this effect can improve the whole system behaviour. A feasible mechanism for a finite lattice and the relevant 
effects on band gaps based on the harmonic balance linearization was proposed by Wenzel et al. [26].  
As regards the third issue, i.e. the stochastic nature of the seismic input and the subsequent stochastic response 
analysis of hysteretic systems, a rich literature is available; see, among others, [12, 17, 26]. In this respect, the 
equivalent (stochastic) linearization technique (ELT) suggested by [27,28], based on a non-Gaussian 
probability density function is viable because can be extended, in a relatively straightforward manner to MDoF 
systems; pros and cons of this technique were discussed in [28]. 

1.2 Scope 

In sum, in order to achieve the best performance of a finite LRM, the following objectives are pursued 
hereinafter: i) the optimal tuning of multiple resonators to different frequencies and damping via nonlinear 
programming within different configurations of metafoundations; ii) the optimization of the nonlinear behavior 
of wire ropes reproduced with hysteretic Bouc-Wen models and iii) to take into account the stochastic nature 
of seismic input both in the frequency and the time domain as well as the application of ELT to fully nonlinear 
devices. 
The superstructure is represented by a fuel storage tank and its equivalent 2D lumped mass model [29]. 
Therefore, the objective function for both i) and ii) is represented by the relative drift or the absolute 
acceleration of the impulsive mode of the tank. In particular, the metafoundation is designed to remain 
undamaged for an active seismic site located in Priolo Gargallo, Sicily, Italy. The slender tank (superstructure) 
instead, was part of an existing plant. In view of a consistent seismic input for linear/nonlinear time history 
analyses, a set of natural earthquakes that correspond to safe shutdown earthquakes (SSE) events are selected 
from Italian and European databases and fitted in average to the uniform hazard spectrum (UHS) of Priolo 
Gargallo. 
In order to take into account the stochastic nature of the seismic input, the computations are carried out in the 
frequency domain; and because the analysis of nonlinear periodic systems entails the aforementioned 
difficulties [8], an ELT is assumed for the Bouc-Wen model considered in objective ii). Therefore, an average 
power spectral density (PSD) function of those accelerograms is evaluated. The resulting PSD function is fitted 
with a Kanai-Tajimi filter [30] modified by Clough and Penzien [31] and, subsequently, adopted in the 



optimization procedure. The resulting optimized Metafoundations were then verified through nonlinear time 
history analyses (THAs) of the coupled systems subjected to the aforementioned ground motions. 
The rest of the paper is organized as follows. Firstly, details about the modelling of the various components of 
the coupled foundation-tank system are provided in Section 2. Section 3 provides the optimization procedure 
in the frequency domain when the foundation-tank system is composed of linear elements. The performance 
of the optimized system is verified by means of structural responses obtained with THAs for each considered 
case. Section 4 deals with the coupled system endowed with nonlinear components. In this case, the ELT is 
presented together with the optimization procedure. The choice of the optimal parameters of BW models that 
describe the hysteretic behavior of damper devices are discussed in Section 5, where the results of optimization 
are commented. Furthermore, each optimized nonlinear system is subject to verification by means of nonlinear 
THAs. Section 6 instead, presents both approximate and numerical spectral dispersion relationships for 
uncoupled periodic LRMs, together with topological (time-space domain) features of output waves traced by 
means of spectro-spatial analysis. Finally, conclusions and future developments are presented in Section 7. 

2. Modelling of foundation-tank coupled system components  

The finite LRM is composed by a finite number of unit cells realized with standard steel columns endowed 
with hollow sections and concrete slabs sketched in Fig. 1a. In each unit cell there are moving concrete masses, 
i.e. the resonators, that are linked via springs to the foundation as shown in Fig. 1b and Fig. 1c. The construction 
site was chosen to be Priolo Gargallo (Italy), which is characterized by a peak ground acceleration (PGA) of 
0.56g at a return period of 2475 years. In agreement with the paper objectives stated in Subsection 1.2, the 
metafoundation was designed to remain undamaged even for safe shutdown events (SSE), according to the 
Italian seismic code [32]. 
Two foundations were designed with one and two layers of resonators, respectively. Both systems have a 
height of 4 m, and are comprised of columns, which represent the vertical load bearing system, and slabs that 
support the resonators. The columns are made of steel hollow sections and govern the horizontal stiffness of 
the structure. Their dimensions are 300x300 mm and 230x230 mm for the one and two layered case, 
respectively, while the wall thickness of the hollow section is 30 mm for both. These dimensions are the results 
of the linear elastic design according to the NTC 2018 [32] and determine the minimal allowable column 
stiffness.  
The hydrodynamic response of liquid containers can be profitably simulated by means of the Housner’s model 
[33]. The models can approximate internal actions for regular containers assuming that the water can be split 
into impulsive and convective masses. More recently, Malhotra [29] developed a simplified procedure for 
seismic analysis of cylindrical liquid‐storage tanks. The relevant model reduces the tank response to the 
contribution of two main impulsive and convective modes, in which also the tank wall thickness is taken into 
account. Furthermore, in view of effectiveness, the concrete resonators are assumed to be suspended by wire 
ropes, as depicted in Fig. 1b and Fig. 1c, that allow each resonator motion in X, Y and Z directions. A sketch 
of a seismic record along X in Fig. 1c indicates the excitation direction. Details on the distribution of steel wire 
ropes in the single unit cell are provided in Fig. 2a. 

(b) 



 (a)  (c) 

Fig. 1. Coupled foundation -tank system with two layers: (a) isometric view, (b) layout and (c) cross section and sketch of a seismic 
record along the X direction of excitation. 

 

 (a) 
 

(b) 

 (c) 
Fig. 2. (a) Configuration of a single unit cell equipped with steel wire ropes (measures in cm); (b) details of a single wire rope and (c) 

hysteretic loop of Bouc-Wen model. 
 

2.1 Seismic metamaterial and negative apparent mass  

In seismic engineering, two types of periodic materials are currently investigated: phononic crystals (PCs) and 
locally resonant acoustic metamaterials. The main advantage of both consists in designing a periodic structure 
that exhibits stop bands capable of forbidding elastic wave propagation within a desired frequency band. In 
particular, locally resonant acoustic metamaterials are more suitable than PCs at ultralow frequencies due to 
their capability to exhibit very low frequency band gaps, endowed with unit cells much smaller than the 
wavelength of the desired frequency region [2,4]. In this regard, the LRM depicted in Fig. 1 can be designed 
as a finite periodic system that allow to suppress seismic waves in certain frequency regions [14,15]; these 
regions, the so-called band gaps, are analytically defined through a lattice dispersion analysis using the 
Floquet–Bloch theorem. More precisely, it is possible to reduce the study of an infinite lattice to the analysis 



of a single unit cell with Floquet-Bloch quasi-periodic boundary conditions. As a result, a frequency dispersion 
analysis can be carried out and the band gaps of the system can be found. More precisely, Fig. 3 shows the 
dispersion relation of an infinite periodic stack with linear properties, see, for instance, Fig. 14, of the unit cells 
described in Fig. 1. It demonstrates that a band gap forms in a predefined low-frequency range where elastic 
waves become evanescent. 

 
Fig. 3. Dispersion relation for an infinite stack of unit cells with the geometric properties of the two-layered foundation case (after 

[14]) 
It should be emphasized that these considerations are obtained considering the foundation system depicted in 
Fig. 1 as an infinite lattice. However, since the solution depicted in Fig. 1 is a finite metafoundation, further 
analyses are needed. In this regard, in order to decouple the mode of the foundation structure with that of the 
superstructure, well-known concepts of seismic isolation [34,35] drive the design of a foundation system 
versus large flexibility. It follows that the elastic design of the foundation required by NTC 2018 [32] provides 
minimum value of the columns cross-section depicted in Fig. 2a, to enhance flexibility. 
Conversely, in order to achieve the largest antiresonance effects or the maximum attenuation effects, resonator 
masses are massive and compatible with cell geometry to exploit the negative apparent mass concept [2,4,5]. 
In this respect and based on Fig. 4, the apparent masses experienced by the exterior cells read, 

 (1a) 

 (1b) 

where m1 and k1 are the mass and stiffness of the exterior unit cell, m2 and m3 are masses, k2 and k3 are 
stiffnesses of resonators, ω2 and ω3 are relevant frequencies of resonators while ω represents the forcing 
frequency. 
It is clear that the effective mass M1

app(w) becomes negative in Fig. 4a when the forcing frequency is close to 
resonance. Since the acceleration response is opposing to the applied force, the response amplitude is reduced 
and attenuation zones appear. This effect is greatly magnified as the input frequency ω approaches the local 
resonance frequency. Further enhancements can be obtained adding resonators with different resonant 
frequencies, as shown in Fig. 4b. Indeed, a double negativity can be observed close to the second resonant 
frequency of the system. As a result, further benefits can be obtained when multiple resonators are differently 
tuned [5]. These benefits will be achieved with different optimal configurations of Metafoundations presented 
in the next subsection. 
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Fig. 4. Apparent mass as a function of forcing frequency: (a) single and (b) double unit mass-in-mass case. 
 

2.2 System modelling and reduction 

For simplicity and without loss of generality, we consider only a seismic input along the X direction. As a 
result, through dynamic condensation of both mass and stiffness, the foundation-tank coupled system sketched 
in Fig. 1 can be modelled as a full mass system (FMS) in the X-Z plane, as shown in Fig. 5a. The result of the 
dynamic condensation is exact since all resonators in the Y direction are assumed to be endowed with the same 
mass and stiffness in each layer. 
In order to deal with simpler coupled systems and to take benefit in the optimization from different stiffness 
and damping values, both condensed mass (CMSs) and reduced mass systems (RMSs) have been also 
considered, as indicated in Fig. 5b and Fig. 5c, respectively. More precisely, to considerably reduce the 
computational effort during the optimization procedure, the CMS is obtained condensing all resonators in the 
X direction. However, CMS cannot benefit from different modal contributions in each layer. As a result, the 
RMS can consider different resonator parameters during the optimization, entailing a slight increase in 
computational effort. In the same veins, Fig. 5 shows the principal configuration of the three analyzed systems, 
for the two-layered case. Herein, mi, ci and ki represent mass, stiffness and damping coefficients of the 
impulsive mass of the superstructure -tank-, respectively, while mc, cc and kc represent mass, stiffness and 
damping coefficients of the relevant convective mass. We underline that resonators considered equal are 
endowed with the same mass and the same stiffness. This represents an ideal condition since statistically some 
variations of mass and stiffness exist. However, their variations are negligible in this study. 
The system of equations of motions (EOMs) of the systems depicted in Fig. 5 reads, 

 (2) 
where M, C, and K are the mass, damping, and stiffness matrices, respectively, while ,  and  
denote acceleration, velocity, and displacement vectors. Furthermore,  is the forcing vector, 

where τ is the mass influence vector and  represents the ground acceleration.  

In order to evaluate the dynamic properties of the RMS depicted in Fig. 5c, we employ the system equivalent 
reduction expansion procedure (SEREP) proposed by O’Callahan [36]. This procedure allows for the reduction 
of some modal vectors of the FMS systems. More precisely, the convective mode and the relevant DoF of the 
tank can be eliminated from the full set of ‘n’ DoFs, while the effects on the lower ‘a’ modes can be retained. 
Hence, the SEREP technique is based on the following transformation, 

 (3) 
where  is the transformation matrix, with  being the modal matrix of the original system, while 

 represents the generalized inverse of the modal matrix of the active/reduced system. More precisely,  
can be evaluated as, 

 (4) 

As a result, the system matrices of the reduced system read ,  and , while 

the forcing term becomes . Since the optimization procedure requires an inversion of the 

transmission matrix T for each frequency interval, as illustrated in Section 3, SEREP also contributes to the 
reduction of the run time of optimization algorithms. 
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Fig. 5. Models of the Metafoundation for the two-layered case: (a) FMS; (b) CMS and (c) RMS. 

 

2.3 Wire rope modelling 

In order to model the nonlinear behavior of wire ropes, we employ the Bouc-Wen model, which has been 
extensively used in the literature to capture the hysteretic behavior of many seismic devices [19-21]. In 
accordance with this model, for a SDoF system we get 

 (5) 
where R(t) defines the nonlinear restoring force, 

 (6) 
In particular, k and uy represent the yielding stiffness and displacement, respectively, whereas the 
dimensionless hysteretic component z is given by the solution of the nonlinear differential equation, 

 (7) 

Here A, b, g, and the exponent n are parameters that control the shape and smoothness of the force-displacement 
loop. Moreover in Eq. (6), α = kp/k0 defines the post-yielding to pre-yielding stiffness ratio, with 

 (8) 

where . 

For suitable values of the parameters A, b, g and n, the Bouc-Wen model can yield hardening or softening 
nonlinearities. A hardening behavior is simulated when  and ; otherwise, a softening behavior 
is obtained. Furthermore, n modulates the sharpness of yield and when n → ∞ the elasto-plastic hysteresis case 
is approached. By choosing n =1, Eq. (7) can be analytically solved with simple exponential functions [20,21]. 
Other parameter values used for the optimization process are discussed in Subsection 5.1. 

2.4 Accelerogram selection and seismic input model 

In order to evaluate the seismic activity of the construction site, i.e. Priolo Gargallo, a set of 12 natural 
accelerograms were selected from Italian and European database with 2% probability of exceedance in 50 
years. These accelerograms are selected so that their mean spectrum fits in a least‐square sense the uniform 
hazard spectrum (UHS) of Priolo Gargallo. It is well known that the UHS is often overly conservative because 
it combines the hazard from different sources and does not reflect a realistic spectrum that can be expected to 
occur during a single earthquake. However, the use of a conditional mean spectrum (CMS) that matches the 
UHS level only at the fundamental period of a system is overly complex and limiting for the problem to hand. 
Further details on the selection criteria of accelerograms are reported in Basone et al. [14]. 
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The optimization procedures performed in the frequency domain, see Section 3 and 4, assume that the seismic 
input is a weakly stationary Gaussian filtered white noise random process with zero mean and spectral intensity 
S0. In order to approximately take soil into account, we use the Kanai-Tajimi filter [30]; and to avoid unrealistic 
high values in the low-frequency range, a second filter in series proposed by Clough and Penzien [31] is 
adopted. For brevity, it is referred to as KTCP filter. The relevant power spectral density (PSD) function can 
be expressed as, 

 (9) 

where ωg and ζg are the frequency and damping ratio that describe the soil characteristics, while ωf and ζf 
denote the parameters of the low pass-filter [31], respectively.  
In the time domain, the KTCP model is governed by the following differential equation, 

 (10) 
which can be completed in a state-space variable form as follows, 

 

 
(11a) 

  ;         ;      ;        (11b) 

where f (t) is the bedrock Gaussian zero-mean white-noise process. The filter parameters are chosen to match 
the ground motion characteristics of Priolo Gargallo, at a return period of 2475 years. More precisely, the 
parameters of KTCP filter fit in a least square sense the stationary PSD function of the aforementioned 12 
accelerograms [14]. Their values amount to S0 = 0.09 (m2/s3), ωg = 14 (rad/s), ζg = 0.6, ωf = 0.75 (rad/s) and ζf 
= 1.9. 

3. Optimization of a Metafoundation endowed with linear devices 

The proposed Metafoundation is characterized by two sets of parameters: (i) parameters that derive from 
construction or feasibility constraints, e.g. column size, slab thickness, etc.; and (ii) parameters that can be 
chosen more freely, i.e. stiffness and damping parameters of the resonators. In this regard, to maximize 
antiresonance or negativity effects, see Subsection 2.1, masses of resonators are set as the largest mass 
compatible with the unit cell dimensions. This consideration is consistent with both metamaterials and tuned 
mass dampers discussed in [3-6, 14]. 
Owing to the seismic input defined in Eq. (9), the herein proposed optimization procedure is based on 
computations in the frequency domain, and can, in principle, optimize any number of parameters. The 
application of the Fourier transform to Eq. (2), entails, 

 (12) 
where ω represents the circular frequency. From Eq. (12) we can define the transmission matrix H(ω) as 
follows, 

 (13) 

Therefore, the PSD of the j-th DoF can be approximated with29, 

 (14) 

where  and  are the j-th transfer function component and the PSD of the force acting on the 

system, respectively. Therefore, we assume be valid for a weakly stationary random process, the Wiener–
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Khinchin theorem such that R(τ) and the PSD are a Fourier-transform pair. As a result, the autocorrelation 
function R(τ) and the PSD satisfy the necessary conditions for Fourier inversion, 

 (15) 

where σj
2 = R(τ=0) is the variance of the response of the j-th DoF of the system. The optimization criterion is 

chosen to be the minimization of the interstory drift or the absolute acceleration of the impulsive mode of the 
tank. Note, that for slender tanks, this mode has proven to dominate the base shear response of the whole 
system. Moreover, from Eq. (5), for the linear case, one obtains, 

 (16) 
where the relationship between interstory drift and absolute acceleration depend on damping forces. 
Therefore, the variance of the interstory drift and the absolute acceleration read, 

 (17a) 

 (17b) 

where Himp(ω) and Htl(ω) are the transfer functions of the impulsive mass and top layer, respectively. 
Furthermore, the dimensionless performance indices can be defined as follows, 

 (18a) 

 (18b) 

where  and  represent the variances of interstory drift and absolute acceleration impulsive mass, 

respectively, based on a tank without foundation, i.e. a fixed-base tank. These indices provide an estimation of 
the response reduction, and therefore, need to take up their minimal value for an optimal coupled system. 

3.1 Optimization problem 

The design variables ξk,n and fk,n define damping ratio and frequency of the n-th resonator in the k-th layer, 
respectively. They are collected in the parameter vector, 

 (19) 
Therefore, the optimization problem can thus be stated, 

  or   (20) 
for CMS, RMS and FMS cases, respectively Furthermore, the following bounds hold, 

  and   (21) 
Details on the chosen bounds in Eq. (21) are provided in Subsection 3.2. 
The optimization procedure is carried out with the aid of a numerical search algorithm, i.e. the built-in 
MATLAB fmincon function. It implements a nonlinear programming solver, based on the interior-point 
algorithm, with embedded constraint functions for the sought tuning variables collected in the parameter vector 
X. 

3.2 Optimization results 

The optimization procedure described in Subsection 3.1 is carried out for all CMS, RMS and FMS, for both 
one and two-layered foundation cases. In this respect, Table 1 summarizes the values for CMS, while Tables 
Table 2 and Table 3 show the results for RMS, and FMS, respectively. 
 
Table 1 
Optimal parameters of the CMS for both one and two-layered cases. 
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One-layered case (k=1) 
Performance index  [Hz]  

PIdr 0.677 2.5 0.20 
PIacc 0.845 2.5 0.20 

Two-layered case (k=1,2) 

Performance index  [Hz]   [Hz]  

PIdr 0.807 2.6 0.10 3.6 0.18 
PIacc 0.877 2.6 0.10 3.6 0.18 

 
Table 2 
Optimal parameters of the RMS for both one and two-layered cases. 

One-layered case (k=1) 
Performance index  [Hz]   [Hz]   [Hz]  

PIdr 0.618 3.4 0.16 2.2 0.17 2.2 0.17 
PIacc 0.783 3.4 0.16 2.2 0.17 2.2 0.17 

Two-layered case (k=1,2) 
Performance 

index 
 

[Hz] 
  

[Hz] 
  

[Hz] 
  

[Hz] 
  

[Hz] 
  

[Hz] 
 

PIdr 0.802 2.6 0.15 2.6 0.15 2.6 0.15 3.0 0.15 3.8 0.16 3.8 0.16 
PIacc 0.873 2.6 0.15 2.6 0.15 2.6 0.15 3.0 0.15 3.8 0.16 3.8 0.16 

 
Table 3 
Optimal parameters of the FMS for both one and two-layered cases. 

One-layered case (k=1) 
Performance index  [Hz]   [Hz]   [Hz]  

PIdr 0.617 2.2 0.15 3.4 0.16 2.2 0.18 
PIacc 0.776 2.0 0.12 3.4 0.16 2.4 0.14 

Two-layered case (k=1,2) 

Performance 
index 

 

[Hz] 
  

[Hz] 
  

[Hz] 
  

[Hz] 
  

[Hz] 
  

[Hz] 
 

PIdr 0.802 3.6 0.16 3.6 0.18 2.6 0.16 3.6 0.16 3.6 0.18 2.6 0.16 
PIacc 0.870 3.6 0.20 2.6 0.20 3.4 0.16 3.6 0.20 2.6 0.20 3.4 0.16 

 
When comparing the different systems to each other, the PI value slightly decreases from CMS to RMS. The 
RMS allows for the increase of the performance of the system due to resonant phenomena between two 
resonators tuned to different frequencies. Conversely, no significant advantage is obtained with the FMS due 
to fact that a further optimized resonator does not allow for the activation of significant resonance phenomena. 
This consideration is consistent with concepts of double negativity described in Subsection 2.1. However, 
these reductions are very small mainly due to the fact that we adopt resonator maximum masses, compatibly 
to unit cell dimensions. In sum, the mass of the resonators provides a great contribution in the seismic isolation 
of the system [14]; therefore, resonators tuning with different frequencies and damping ratios does not provide 
a significant contribution on the performance of the Metafoundation. 
The optimization of the PI via the interstory drift or the absolute acceleration of the superstructure yield almost 
the same values for resonator frequencies and damping. In fact, interstory drift and absolute acceleration of the 
impulsive mode of the tank differ only through damping forces as implied by Eq. (16). Damping ratios, on the 
other hand, seem to decrease when multiple resonators are tuned to different frequencies. This could potentially 
be useful when it may be difficult to achieve high damping ratios.  
With regard to the bounds of Eq. (21), Fig. 6a shows the optimization plane of the one-layered CMS with its 
corresponding contour lines. This surface is obtained removing the upper bound of  in order to show the 
trend of the optimization surface as a function of the damping ratio. It is evident that when the damping ratio 
exceeds a certain threshold, the advantage gained on PIdr is minimal. Moreover, Fig. 6b depicts the 
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optimization plane of the one-layered RMS case, where the x and y-axis denote the frequencies of the two 
independent resonators. The contour lines of this plot show a wide area for the optimal values of the two 
resonators, where the value of the PI does not change significantly. Clearly, the resonators can be tuned to any 
set of two frequencies in this area, without inhibiting the functionality of the metafoundation. Similar to the 
aforementioned damping ratio trend, this could have positive effects for practical applications, where the 
tuning of the resonators may not be very precise. In sum, the optimization of multiple resonators with different 
frequencies and damping ratios offer a slight advantage in terms of demand reduction from CMS to RMS, 
while no advantages are obtained with FMS. However, a system with optimal multiple resonators may be 
employed due to technological constraints.  

 (a)  (b) 
Fig. 6. Optimization surfaces of one-layered (a) CMS case and (b) RMS case. 

 

3.3 Time history analyses results 

In order to verify the results of the previous Subsection and to take into account the actual amplitude and phase 
variation of seismic waves, the performance of the optimized Metafoundation is evaluated with time history 
analyses (THSs). Therefore, the Metafoundation is subjected to the 12 natural seismic waves corresponding to 
a safe shutdown event (SSE) in the Priolo Gargallo site [14]. As a reference indicator, we use the root-mean 
square of the tank base shear Vrms, 

 , j = 1, … , n (22) 

where, ,  and  denote the displacement of the impulsive mass, the convective mass, and the top 

layer of the foundation, respectively, while n defines the number of time steps. The same quantities arms and 
drms have been evaluated for both absolute acceleration and interstory drift of the impulsive mass. 
Fig. 7 shows the aforementioned quantities as a function of PGA. More precisely, they compare the results of 
THAs obtained for the optimized one-layered CMS on both PIdr and PIacc with the results of the fixed-base 
tank. It is worth noting that the results of the THAs show a high dispersion for rms values. Therefore, PGA 
may not represent the most significant intensity measure for the engineering demand parameters under 
consideration. Nonetheless, since we are not interested in a fragility analysis of the system, the PGA has been 
considered as a sufficient parameter for result interpretation [14,34]. 
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Fig. 7. Root mean square values of the (a) base shear, (b) interstory drift and (c) absolute acceleration of one-layered CMS for both 
PIdr and PIacc. 

Nonetheless in the average, Vrms values are below values corresponding to the fixed-based tank. Moreover, 
similar results can be obtained with arms and drms for both PIdr and PIacc. Therefore, the following results will 
be expressed in terms of Vrms only. 
Along the same lines, both Fig. 8a and Fig. 8b depict Vrms values for the one and two layered RMSs, 
respectively; similarly, Fig. 8c and Fig. 8d show results for the FMS case. It becomes apparent that all systems 
perform on a comparable level, independently of the number of individual resonators in the system or the 
chosen optimization parameter. The only major difference that can be noticed is that the systems with only one 
layer outperforms the systems with two layers. This is due to the fact that the one-layered foundations offer 
the same total height of 4 m, and therefore, exhibit a significantly lower horizontal stiffness of the outer cells. 
This trend is consistent with the finding of Basone at al. [14]. 
 

 (a)  (b) 

 (c)  (d) 
Fig. 8. Root mean square values of the tanks base shear for: (a) one-layered RMS; (b) two-layered RMS; (c) one-layered FMS; (d) 

and two-layered FMS 

4. Optimization of a Metafoundation endowed with fully nonlinear devices  

Motivated by the use of simple hysteretic devices, i.e. the wire ropes [16, 17, 14] able to both effectively 
suspend concrete resonators inside the LRM, allow motion in all three main directions and provide significant 
damping, herein we propose an optimization procedure based on the stochastic linearization technique [27,28]. 
In addition, the treatment of a linearized system allows to bypass several difficulties related to the definition 
of dispersion properties of a nonlinear periodic system as discussed in Section 6. 
Similar to the linear case, we need to define a set of parameters to be optimized. These parameters, are chosen 
among the parameters of the Bouc-Wen model introduced in Subsection 2.3. In the same veins, we start with 
the following system of EOMs, 

 (23) NL
y(t) (t) (t) u (t) (t)+ + + =Mu Cu K u K z F!! !



where KNL defines the nonlinear component of the stiffness matrix that contains the terms (1 - αn) kn introduced 
in Eq. (6). In this model, n denotes the n-th resonator of the system, while z(t) is the vector that contains the 
components zn(t) of the n-th resonator. Since Eq. (23) defines a nonlinear system, it is not amenable to the 
classical linear random vibration theory introduced in Section 3. Therefore, a stochastic linearization technique 
(ELT) is employed to replace the nonlinear vector .  

4.1 Equivalent linearization technique 

The ELT is a relatively straightforward tool to define an equivalent linear system, equating its stochastic 
response to the response of a nonlinear system. More precisely, for a SDoF system with N = 1, the nonlinear 
differential equation Eq. (7) becomes,  

 (24) 
where ceq and keq are linearization coefficients that are “equivalent” in a statistical sense [27,28, 37, 38]. At 
this stage, it is useful to introduce a state-space formulation of Eq. (23) and Eq. (24), 

 (25) 

with, 

;    ;     (26) 

where Y is the state-space vector, KL and KNL define the linear and nonlinear components of the stiffness 
matrix, respectively, while keq and ceq represent the matrices including the equivalent linear coefficients. 
Moreover, N defines the number of DoFs of the system and r = 4 defines the number of equations of the KTCP 
filter introduced in Subsection 2.4. 
Let the covariance matrix of Y be S with Sij = E[yi yj]. Then, we assume that the seismic input is stationary. 
The solution of Eq. (25) can be derived from the following Lyapunov system of equations, 

 (27) 
where B is a zero matrix except for the generic diagonal element corresponding to the nonzero row of the 
forcing function vector, i.e. Bij = 2πS0. Eq. (27) was solved with the algorithm proposed by Bartels and Steward 
[39]. Because keq and ceq are not known a priori, an iterative solution procedure is required. In this regard, 
Maldonado et al. [37] suggested to set as initial values ceq = 1 and keq =0.05 (β + γ) for a faster convergence. 
Further details about the whole procedure based on a third order statistical linearization are available in [37,38] 
whilst a more elaborated variant of ELT based on Spanos and Giaralis [42] is discussed in Section 6. 

4.2 Linearized devices optimization 

In order to define the transfer function of the coupled systems depicted in Fig. 5 we start from Eq. (5). 

In fact, Eq. (25) includes the KTCP filter and the derivation is more burdensome. Therefore, the relevant  
for a SDoF reads, 

 (28) 

where the derivation details can be found in Appendix A. Its generalization reads, 

 (29) 

where  cointains terms zero terms except those in which the n-th resonator is physically connected to the 
k-th layer of the Metafoundation as depicted in Fig. 5. More precisely, the nonzero terms  of matrix  

read, 
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 (30) 

in which αn and kn are referred to the n-th resonator of the Metafoundation. Note the Eq. (29) degenerates into 
Eq. (13) when α = 1. 

4.3 Optimization problem 

The optimization procedure for the nonlinear devices relies on the design variables kk,n and βk,n gathered in the 
parameter vector XNL, 

 (31) 

Therefore, the optimization problem can be stated as, 
  or   (32) 

where k=1,…,nk and n=1,…,nr. Finally, bounds on the design variable βk,n are, 
 (33) 

Further details about the bound in Eq. (33) are provided in Subsection 5.1. 

5 Hysteretic dampers, Bouc-Wen parameters and optimization results 

5.1 Hysteretic dampers and Bouc-Wen parameters 

The optimization procedure presented in Section 4 allows for the evaluation of main parameters of a Bouc-
Wen model employed to reproduce a hysteretic damper. With regard to hysteretic devices, steel wire ropes 
schematically depicted in Fig. 2b, represent a commonly used solution in seismic engineering due to their 
capability to dissipate a relatively large amount of energy. Moreover, they are fairly cheap both in terms of 
production and maintenance costs. Furthermore, they allow for an effective motion of the resonators along X, 
Y and Z as indicated in Fig. 1. Many authors investigated the effectiveness of wire ropes subjected to shear 
forces; see, among others, [16-18]. In this respect, Paolacci and Giannini [16] fitted the parameters of a Bouc-
Wen model to sets of experimental data. As a result, we selected the wire rope WR36-400-08; its geometric 
dimensions are collected in Table 4 and the relevant nomenclature can be found in Fig. 9b. In particular, kp 
and Rv represent the horizontal stiffness and the vertical load-bearing capacity, respectively. The authors have 
found α = 0.254 and uy = 2.2 mm; in addition, the quality of the fitting can be appreciated in Fig. 9a. 

    (a) 
 

(b) 
Fig. 9. (a) Hysteretic behavior under cyclic shear loading (after Paolacci and Giannini [Error! Reference source not found.]) and 

(b) typical hysteretic loop of a Bouc-Wen model. 

 
Table 4 
Geometric and mechanical properties of wire ropes. 

Geometric characteristics Parameters of Bouc-Wen model 
H 

[mm] 
W 

[mm] 
L 

[mm] 
Φ 

[mm] 
k0 

[kN/mm] 
Ry 

[kN] 
uy 

[mm] 
n A α 

178 216 520.7 26.6 1.35 2.97 2.2 1.0 1.0 0.254 
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The aforementioned wire ropes have also been successfully used in finite LRMs for the protection of slender 
storage tanks against vertical ground accelerations [40]. More precisely, two different configurations have 
been used: i) the same layout of Fig. 1, the so-called aligned column solution; ii) a configuration with columns 
at the second level staggered with respect to those at the first level, the so-called staggered column solution; 
thus, the additional slabs flexural stiffness was taken into account. 
Once established the geometric and mechanical characteristics of a typical wire rope, some considerations on 
Bouc-Wen parameters need to be made. In fact, some parameters of the Bouc-Wen model presented in 
Subsection 2.3 are functionally redundant and can be appropriately set. More precisely, Charalampakis and 
Koumousis [20] reported that by setting A=1 and β + γ =1, the model collapses to a rate-dependent Maxwell 
model with a nonlinear dashpot, i.e. an Ozdemir model. As a result, with A=1 in Eq. (8), the value of the initial 

stiffness k = Ry /uy = k0 is retrieved. Furthermore, =1 and z Î[-1, 1] in Eq. (7). Finally, 

thermodynamic admissibility issues [41] would require the inequality β ≤ 	𝛾 to be satisfied; for the sake of 
generality, the aforementioned inequality is not strictly satisfied herein: thus, both bulge and slim-S shapes of 
the Bouc-Wen model are allowed. 

5.2 Optimization results and time history analyses 

The results of Subsection 3.3 underscore that only small differences in base shear values of the superstructures 
are achieved with CMS, RMS and FMS in the linear case; therefore herein, only optimizations of one and two-
layered of CMS are carried out. In Subsections 5.1 we set n, α and uy based on the properties collected in Table 
4. As a result, we search for optimal values of k, β and γ with the constraints A=1 and β + γ =1, respectively.  
The results of optimization based on PIdr are depicted in both Fig. 10a and Fig. 10b, for one-layered CMS and 
two-layered CMS, respectively. Notably, k2 represents the horizontal stiffness of a single resonator of the 
Metafoundation. Fig. 10a highlights a smooth surface in the range 50-60 kN/mm for the one-layered case; 
conversely, a narrow valley of possible optimal stiffness values characterizes the two-layered case. 
Furthermore, the two-layered CMS shows poor results in terms of PIdr due to the increased horizontal stiffness 
of the system. The parameters β and γ quantify the dissipation characteristics of wire ropes; one can observe 
that an increase of β, i.e. a decrease of γ, does not entail a significant reduction of PIdr. In fact, the constraint β 
+ γ =1 strongly sets the shape of the backbone loops and the relevant dissipated energy, as shown by the loops 
-in blue- depicted in Fig. 11. 

 (a)  (b) 
Fig. 10. Optimal surfaces in the nonlinear case: (a) one layered CMS and (b) two-layered CMS. 

In order to confirm the performance of the foundation-tank coupled system with the properties provided by 
Fig. 10, THAs in the nonlinear regime are carried out. More precisely, k2 values of 56.8 and 40.5 kN/mm are 
employed for one and two-layered foundation cases, respectively. These values entail a number of wire ropes 
per resonator equal to 42 and 30 for one and two-layered case, respectively, greater than those, i.e. 16 and 8, 
needed to bear each resonator weight.  
In particular, Fig. 11 shows hysteretic loops of one wire rope -blue lines- in one-layered CMS subjected to one 
of the 12 natural seismic waves corresponding to a SSE in the Priolo Gargallo site. In both figures, ures and utl 
represent displacements of the generic resonator and top-layer, respectively. More precisely, Fig. 11a refers to 
the optimized system in which each resonator is equipped with 42 wire ropes while Fig. 11b refers to the one 
in which each resonator is equipped with the minimum number of wire ropes to bear a resonator. In both cases, 

( ) 1/
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n
z A= é + ùë ûb g



β and γ read 0.9 and 0.1, respectively. One can observe that the hysteretic dampers exert a positive displacement 
demand of about 60 mm versus an actual experimental maximum displacement of about 10 mm shown in Fig. 
9a. Therefore, an effective LRM requires a significant amount of ductility and dissipated energy for quite 
strong earthquakes. 
Hence, given the size of the LRM, see Fig. 1b and Fig. 1c, we locate 12 and 6 dampers per resonator, for one 
and two-layered case, respectively. Their relevant horizontal stiffness is equal to the one provided by the 
aforementioned optimization procedure. THA results are shown herein only for the one-layered 
metafoundation case, based on Bouc-Wen parameter values collected in Table 5. In fact, as argued from Fig. 
10b, the two-layered metafoundation achieves a limited performance when hysteretic dampers are used. This 
can also be understood from Fig. 11, where the limited performance of hysteretic dampers versus linear 
dampers is evident. 

 (a)  (b) 
Fig. 11. Hysteretic loops of one-layered CMS hysteretic damper -blue lines, A=1, β=0.9 and γ =0.1- and linear viscous damper -red 

lines, zopt
1,1=0.2-: resonators equipped with (a) optimal and (b) minimum number of wire ropes. 

 

Table 5 
Different choices of Bouc-Wen parameters. 

β = 0.9 and γ =0.1 
β = 0.5 and γ =0.5 
β = 0.1 and γ =0.9 

 
Fig. 12 shows root-mean square values of the tank base shear for each considered optimal configuration: the 
benefits with respect to the case of a tank with a fixed foundation are evident. In agreement with the 
optimization outcomes, partly explained through Fig. 10a, there are no significant differences among the 
metafoundations equipped with wire ropes endowed with the parameters of Table 5. 
An additional comparison between linear and non-linear devices entails that damping devices with a linear 
behavior provide more favourable results than those characterized by a hysteretic behavior. This trend is also 
justified by the amount of viscous and hysteretic energy wiped out. In this respect, Fig. 13 depicts the Ed

non-lin 

/Ed
lin ratio for the one-layered CMS for each considered accelerogram. It is evident the limited performance of 

hysteretic dampers. Needless to say, that for the LRMs to hand endowed with resonators that move in X and 
Y directions, wire ropes represent a technological solution that is both much cheaper and feasible than fluid 
viscous dampers coupled to linear springs. Moreover, they can potentially be competitive against the vertical 
component of an earthquake [40]. 
 



 (a)  (b) 

(c) 
Fig. 12. Root-mean square values of the tank base shear for one-layered CMS: (a) β = 0.9 and γ =0.1, (b) β = 0.5 and γ =0.5 and (c) β 

= 0.1 and γ =0.9. 

 
Fig. 13. Ed

non-lin /Ed
lin ratio of dissipated energy by nonlinear hysteretic dampers and linear viscous dampers for the optimal cases of 

one-layered CMS. 

6 Characteristics of the uncoupled periodic metafoundation endowed with hysteretic dampers 

The performance of the finite optimized LRM depicted in Fig. 5, both with one and two layers, and endowed 
with fully nonlinear devices provided a favourable seismic performance of the coupled system discussed in 
Section 5. Therefore, given the potential vibration attenuation capabilities offered by periodic nonlinear 
metamaterials, it is worthy to examine the dynamic properties of the relevant uncoupled periodic 
metafoundation endowed with fully nonlinear devices. 

6.1 Dispersion characteristics of the linearized periodic system 

To crystallize the ideas, let’s consider the uncoupled periodic metafoundation made of repetitive unit cells 
depicted in Fig. 14, endowed with nonlinear devices highlighted in Fig. 2c. For brevity, we consider the 



optimized cell in which each resonator is equipped with 42 wire ropes, with α = 0.254, uy = 2.2mm, β and γ 
equal to 0.9 and 0.1, respectively. In addition, we assume the unit cell length d = 1 m and, therefore, the so-
called propagation constant μ = κd is equals to the wavenumber κ. Based on the ELT presented in Subsection 
4.1, we naturally fall back in a linear setting where we can track mode shape families, i.e. dispersion curves, 
defined by means of wavelengths -or inversely, wavenumbers- and frequencies. Nonetheless, these thus 
derived relationships depend both on effective damping and PSD S0.  

 

 
Fig. 14. Uncoupled metafoundation modelled as a periodic system 

 
To start with, the two-DoF system associated to the unit cell, i.e. the slab and the resonator of Fig. 14, can be 
represented as follows, 

 (34) 

where dots refer to time differentiation. Spanos and Giaralis [42], among others, showed that keq and ceq 
involved in Eq. (24) derive from a third-order ELT whose values do not correspond to any particular 
mechanical system; hence, their physical significance is limited. Conversely along the main vein of [42], we 
can rely on a second-order statistical linearization scheme, based on 

 (35) 
and governed by the effective linearization parameters ζeff and ωeff; this leads to a clearer interpretation of 
dispersion curves. Along this line, we assume the following harmonic solution for displacements, 

 (36) 

being ũn and ũR displacement amplitudes. Besides, the Floquet-Bloch theorem can be applied as, 

 (37) 

Thus, the application of the ELT by means of both third- and second-order linearization [42] together with the 
conditions (36) - (37), to the system of EOM (34), entails,  

 (38) 

The replacement of uR into the first equation of (38) leads to the following dispersion relationship,  
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in the (μ-ω) plane. 
Several effects due to damping endowed by linearized hysteretic devices and PSD amplitude S0 on the 
dispersion relations can be understood. With regard to Fig. 15, one can notice that the acoustic curves set for 
the PSD amplitude S0 = 0.09 m2/s3 point towards a center circular frequency ωeff corresponding to the inelastic 
-hardening branch- of the Bouc-Wen model depicted in Fig. 2c. Moreover, Fig. 15 indicates that as the effective 
damping ratio ζeff increases, the magnitude of μi in the band gap zone reduces; this entails that wave attenuation 
becomes worse but the bandwidth zone increases. Thus, an effective damping increase in the resonators is 
beneficial in terms of band structure. 
The effect of the nonlinearity of the resonators indirectly triggered by an increase of the PSD amplitude S0 on 
the dispersion curves can be appreciated by means of Fig. 16. More precisely, one can argue that due to a 
general softening behaviour of hysteretic devices, larger values of S0 entail smaller values of center circular 
frequencies. Finally, the impact of the nonlinearity on the position of the band structure is less significant than 
that of effective damping ratio ζeff illustrated in Fig. 15. 
 

 

a) b) 
Fig. 15. Dispersion curves for the power spectrum amplitude S0 = 0.09 m2/s3 and different values of actual effective damping ratio 

zeff :(a) imaginary component of μ; (b) real component of μ 
 

a) b) 
Fig. 16. Dispersion curves for initial effective damping ratio zeff = 0.02 and different values of S0: (a) imaginary component of μ; (b) 

real component of μ 
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6.2 Dispersion characteristics of the full nonlinear hysteretic periodic system – REVISE DUE TO NEW 
FIGURES 

In order to check the reliability of the dispersion curves presented in Subsection 6.1 based on the ELT with its 
variants [27, 28, 42], we carried out a numerical validation by means of transient analyses. In fact, dispersion 
characteristics do not reveal enough information about nonlinear wave propagation phenomena except 
frequency shifts. Therefore, to demonstrate other nonlinear wave propagation phenomena like wave 
localization or wave dispersion in nonlinear media, we employed a spectro-spatial analysis following Zhou et 
al.  [23]. In this regard, we simulated a mass-in-mass chain consisting of 500 cells, whose parameters are equal 
to those used in Fig. 14. In order to omit any reflective wave, we apply perfectly match layers (PML) at each 
end of the chain as indicated in [26]. The chain is excited by a transient wave packet of amplitude A0/2 and the 
velocity of each wave packet is chosen to force the wave to propagate in one direction. Typical normalized 
imposed wave packets defined at t = 0 sec are depicted in Figs. 18-20; the output displacement u is normalized 
with A0 at t = 5 sec for different magnitudes. Simulations are conducted by numerically integrating the 
governing equation by the Matlab built-in solver ODE45. 
After the simulation of the system at any wavenumber, we can determine the 2D Fourier transform of data in 
both frequency and wavenumber domains [23]. Successively, we assumed that the natural frequency of the 
system corresponds to the frequency associated with the point at maximum PSD. By sweeping the wave 
number over the first Brillouin zone, we numerically reconstructed some points of the dispersion curves from 
the datasets of wavenumbers and frequencies. Each of the acoustic and optimal modes was thus separately 
obtained by exciting the system at frequencies close to the required mode. Both the numerical and the 
linearized dispersion relationships corresponding to a PSD amplitude S0 = 0.09 m2/s3 with initial effective 
damping zeff = 0.02 are plotted in Fig. 17 for several values of A0.  
 

  
a) b) 

 
Fig. 17. Linearized dispersion curves for a power spectrum amplitude S0 = 0.09 m2/s3 with initial effective damping zeff = 0.02 and 

maximum power spectral density values based on full transient nonlinear response: (a) wave packets with low values of amplitude A0 
= 0.01 – 0.1 m; after Zhou et al. [23]; (b) high values of A0 = 0.2 – 1 m. 

Due to significant nonlinearity and damping exerted by hysteretic devices, we can trace frequencies in the low 
medium wavelength range with propagation constants µ! 	of	about	1.5. One can observe in Fig. 17(a) the actual 
acoustic branch and the marked frequency underestimation in the medium wavelength range caused by ELT 
[42]. Conversely higher values of A0, allow for tracing frequencies pertaining to the optical mode, but the 
additional damping triggered by A0 shifts down identified points of acoustic mode.  
Next, we plot both the wave profile of the output response of the chain and the hysteretic response of nonlinear 
devices for different wave amplitudes and limits. Let’s thus consider the low propagation constant µ! =

"
#
𝜋 

for low amplitudes in Fig. 18 and high amplitudes in Fig. 19, respectively. They clearly reveal that wave 
packets excites acoustic modes and that the delivered power decays, respectively less, see Fig 19, or more 
severely, look at Fig 20, as a function of amplitude A0. 
 



 

 

a) b) 
 
Fig. 18. Simulations relevant to the low propagation constant µ! =

"
#
𝜋	for A0 = 0.01 m: (a) spatial profile of the acoustic mode wave 

packet; (b) full nonlinear response of the hysteretic device  

 

 
 

a) b) 

 
Fig. 19. Simulations relevant to the low propagation constant µ! =

"
#
𝜋	for A0 = 1.0 m: (a) spatial profile of the acoustic mode wave 

packet; (b) full nonlinear response of the hysteretic device  

 
The variable slope of the dispersion curves in Fig. 17 is nonlinear and hence as expected, the waves are 
dispersive and relevant amplitudes significantly decrease. Moreover, waves exhibit low amplitude distributed 
features. The case of medium propagation constant µ! =

$
%
𝜋 and optical mode is depicted in Fig. 20. Only 

high amplitude A0 values are considered. Anew, the effect of dissipation entailed by the marked softening 
nonlinearity is significant and waves are characterized by low amplitude and dispersion; note the large 
hysteresis loops of Fig. 20b that indicate extensive energy dissipation. These results suggest that the interplay 
between high power amplitude and nonlinearity engages relatively few cells in achieving a wanted effective 
dispersion.  
 



 

 

a) b) 

 
Fig. 20. Simulations relevant to the medium propagation constant µ! =

$
%
𝜋	for A0 = 1.0 m: (a) spatial profile of the optical mode 

wave packet; (b) full nonlinear response of the hysteretic device  

 

7 Conclusions and future developments 

In this paper, we proposed two metafoundations designed to inherit favourable properties from seismic wave 
propagating in finite lattice phononic structures in the ultralow-frequency regime: i) a foundation endowed 
with resonators and linear dampers tuned to multiple frequencies; and ii) a foundation equipped with resonators 
and fully nonlinear hysteretic devices. They are composed by steel-concrete composite and steel components 
that define exterior unit cells that contain resonating concrete masses. All configurations were characterized 
by one and two layers, respectively. 
The tuning of this coupled tank-foundation systems was achieved through nonlinear programming in the 
frequency domain, which is able to optimize any number of parameters, to account for the superstructure as 
well as the stochastic nature of the seismic input. In particular, to optimize the nonlinear behavior of hysteretic 
damper devices we employed a Bouc-Wen hysteretic model; and to reduce the nonlinear differential equations 
of Bouc-Wen models to a system of linearized equations, we adopted the equivalent linearization technique 
(ELT). Then, we tested the optimized systems against natural seismic records both with linear and nonlinear 
time history analyses.  
Optimization results showed that a locally resonant Metafoundation (LRM) with multiple resonators provides 
limited benefits on the structural response during earthquake events. This happened because we always 
considered resonators characterized by massive masses. However, the optimization procedure entailed that a 
system with multiple resonators allows for the reduction of optimal damping values; therefore simple linear 
devices can be used, however characterized by a significant amount of damping given the intensity of the 
seismic input. With regard to the use of nonlinear hysteretic devices, the optimization process indicated that 
favourable results can be achieved with simple dampers endowed with relatively high dissipative 
characteristics, like the wire ropes. Nonetheless, the limited performance of wire ropes with respect to the case 
of linear dampers in terms of dissipated energy entails a higher amount of devices in LRMs. 
In order to generalize the study, we also analyzed a nonlinear mass-in-mass metastructure endowed with 
hysteretic devices bearing massive resonators. Anew, we employed the ELT to derive an analytical 
approximate solution for the spectral dispersion relationships. These expressions were validated by nonlinear 
transient analyses and the comparison showed that the ELT cannot predict significant frequency shift in the 
medium wavelength limit of the optical branch. These findings suggest that hysteretic devices needed to 
mitigate vibrations of superstructures subjected to strong seismic excitations alter and increase the band 
structure. We further investigated the nonlinear wave propagation by scrutinizing the spectro-spatial features 



of the metastructure. The spatial profile of output waves both in the low and medium propagation constant 
demonstrated that waves are dispersive with low amplitude distributed features. De facto, the high value of 
hysteric damping strongly limits wave propagation. These results lay down the basis for future developments 
of LRMs, where a proper use of nonlinear hysteretic devices arranged, for instance at 45° as in Fig. 2a, requires 
a 3D physical characterization of the wire rope set. Finally, the optimal relation between amount of hysteretic 
damping, hysteretic device location also between cells and number of cells in nonlinear finite lattices, for the 
prediction of amplitude-dependent band structure, deserves further studies. 
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Appendix A 

In this Appendix, we show how to obtain the transmission matrix  for a SDoF of the Metafoundation 
endowed with nonlinear devices depicted in Fig. 2b and introduced in Subsection 2.3. In particular, we need 
to solve Eq. (24). Hence, if we consider Eq. (24) as a Cauchy problem, we obtain, 

 (A.1) 

in which c defines the constant of integration. The initial conditions  and  entails c=0. 
Then, we substitute (A.1) in Eq. (5) and Eq. (6) and obtain, 

 (A.2) 

The solutions and  entail, 

 (A.3) 

More precisely, the integral in (A.3) has the following solution, 

 (A.4) 

and thus (A.3) becomes, 

 (A.5) 

Eventually, the transfer function H(ω) reads, 

 (A.6) 
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