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It has been shown that Recurrent Artificial Neural Networks automatically acquire some

grammatical knowledge in the course of performing linguistic prediction tasks. The extent

to which such networks can actually learn grammar is still an object of investigation.

However, being mostly data-driven, they provide a natural testbed for usage-based

theories of language acquisition. This mini-review gives an overview of the state of the

field, focusing on the influence of the theoretical framework in the interpretation of results.
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1. INTRODUCTION

Artificial Neural Networks (ANNs), and in particular recurrent architectures such as Long
Short-Term Memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997), have consistently
demonstrated great capabilities in the area of language modeling, generating sentences with
credible surface patterns and showing promising performance when tested on very specific
grammatical abilities (Gulordava et al., 2018; Linzen and Baroni, 2021), without requiring any prior
bias towards the syntactic structure of natural languages. From a theoretical point of view, however,
published results sometimes appear inconsistent, and overall inconclusive. The present survey
suggests however that results should be interpreted in the light of various theoretical frameworks
if they are to be fully understood. To illustrate this, it approaches the literature from the point of
view of usage-based theories of acquisition, which are naturally suited to the behaviorist setting
implemented by language modeling techniques.

2. USAGE-BASED THEORIES OF GRAMMAR ACQUISITION

Taking a coarse-grained perspective on usage-based theories of language acquisition, we can
pinpoint three main standpoints that are relevant to language modeling with ANNs.

First and foremost, behaviorist theories argue for a systemic vision where general-purpose
memory and cognitive mechanisms account for the emergence of linguistic abilities (Tomasello,
2003; Goldberg, 2006; Christiansen and Chater, 2016; Cornish et al., 2017). That is, they stand
against the idea that explicit, innate biases should be required in the acquisition device.
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Secondly, usage-based theories argue for a tight relation
between input and learned representations in the course of
acquisition (Jackendoff, 2002; Boyd and Goldberg, 2009). This
is based on results that indicate that infants understand and
manipulate input signals in sophisticated ways: their ability to
analyze stream-like signals like language is well explored in
the statistical learning literature (Gómez and Gerken, 2000;
Romberg and Saffran, 2010; Christiansen, 2019), and the shape
of the input itself has been explained by its relation to basic
cognitive processes (Christiansen and Chater, 2015; Cornish
et al., 2017). Word segmentation for instance is accomplished
by 8-month old infants, relying purely on statistical relationships
between neighboring speech sounds, and with very limited
exposure (Saffran et al., 1996). Such limited input is also enough
for one-year-olds to acquire specific grammatical information,
thus discriminating new grammatical strings from those that
show string-internal violations (Gomez and Gerken, 1999).

Thirdly, gradedness of grammatical notions is a central
aspect in usage-based theories. Cognitive theories tend to
blur hard boundaries, e.g. when it comes to the structure
of categories (Barsalou, 1987), the content of semantic
knowledge (Elman, 2009; McRae and Matsuki, 2009) or
the distinction between lexically filled and pattern-like
instances (Goldberg, 2006).

Artificial statistical models seem an ideal toolbox to test the
above claims. They can be built without hard-coded linguistic
biases and they can be fed different types of input to investigate
their effect on the acquisition process. Moreover, both their
behavior and internal state can be analyzed in various ways.
Lakretz et al. (2019) take a physiological approach investigating
how, with no explicit bias, specific neurons specialize in detecting
and memorizing syntactic structures. Giulianelli et al. (2018)
propose instead a diagnostic downstream classifier to evaluate
representations of number agreement.

The rest of this survey approaches the literature in the light
of the three aspects of usage-based frameworks mentioned above,
discussing to what extent the theory fits both implementation and
results.

3. NEURAL LANGUAGE MODELS AND
LANGUAGE DEVELOPMENT

The comparison between artificial language models and human
language development starts at a fundamental mechanism:
prediction. Predictive functions are considered highly relevant
to language processing (Pickering and Garrod, 2013; Ramscar
et al., 2013) and have received particular attention from
theories that posit a direct relation between the shape of the
received input and the organization of grammar (Ramscar
et al., 2013; Fazekas et al., 2020). Consequently, (artificial)
predictive models should be ideally suited to test related
hypotheses.

While prediction is a shared mechanisms among neural
architectures, different models have been specialized for different
tasks, leveraging prediction in various ways. The task most
relevant to this survey is known as Language Modeling (LM):

networks are trained to predict the next word (or character)
given the previous sequence. Language Modeling encodes
language competence only partially, leaving aside aspects such
as interaction, grounding or event knowledge, which are crucial
to human linguistic abilities. Nevertheless, it lets us test to what
extent grammar can be learned from a pure and linear linguistic
signal.

Recurrent Neural Networks (RNNs), andmore specifically the
“Long Short-Term Memory network” or LSTM (see Figure 1 for
a brief description), are among the most common architectures
and the ones with the longest history in Language Modeling.
In LSTMs, contextual information is maintained from one
prediction step to the next. The output of the network at time
t thus depends on a subset of the inputs fed to the network across
a time window. The LSTM learns to regulate its attention over
this time window, deciding what to remember and what to forget
in the input.

LSTMs are a useful framework to compare learning in a purely
predictive setting and an innately biased model. Expectedly,
LSTMs that carry explicit syntactic bias [e.g. Recurrent Neural
Network Grammars, Dyer et al. (2016); Kuncoro et al. (2017)]
and specifically highlight the benefits of top-down parsing as
an anticipatory model (Kuncoro et al., 2018) tend to perform
better in experiments. But the question asked by usage-based
theories is to what extent such hard-coded biases could be
learned from language exposure only. A prime example of the
pure prediction approach can be found in Gulordava et al.
(2018): a vanilla LSTM is trained on a Language Modeling task,
under the argument that the predictive mechanism is sufficient
for the network to predict long-distance number agreement.
The authors conclude that “LM-trained RNNs can construct
abstract grammatical representations.” In a more ambivalent
study, Arehalli and Linzen (2020) consider how real-time human
comprehension and production do not always follow the general
grammatical constraint of subject-verb agreement, due to a
variety of possible syntactic or semantic factors. They replicate
six experiments from the agreement attraction literature using
LSTMs as subjects, and find that the model, despite its relatively
simple structure, captures human behavior in at least three of
them. The authors argue that those phenomena can be regarded
as emerging from domain-general processing mechanisms, while
also conceding that additional mechanisms might be required to
model others.

Notably, LSTMs also process the linguistic signal
incrementally, and can be trained on relatively small amounts
of data, comparable to the quantities that children are exposed
to during the acquisition years (Hart et al., 1997). While this
does not make LSTMs plausible models of human cognition,
it makes them good benchmarks for building and verifying
a range of psycholinguistic hypotheses around incremental
processing and the poverty of the stimulus. This feature is
especially important to test usage-based ideas that the statistical
distribution of child-directed language explains how children
acquire constructions in spite of the limited input they receive
(see Section 4).

More recently, a new class of models has emerged and
shown excellent performance in generating natural language (i.e.,
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FIGURE 1 | LSTM networks are capable of keeping track of long-term dependencies. As recurrent neural networks (upper layer of the figure), they present a

chain-like structure: at each time step t, the network’s output is computed based on both the input of time t(xt ) and the network’s state at time t− 1(ht−1). As opposed

to a simple recurrent cell, an LSTM cell (lower layer of the figure) has the ability to regulate how the two kinds of information (input and previous state) are weighted

towards the computation of the output. The first gate, the forget gate, evaluates Ct−1 (a representation of the previous state different from ht−1) against xt and learns

what information to keep from previous steps, including it in a vector ft. Next, a candidate value for the current state Ĉt is computed along with the input gate vector it
that weighs how much of the input will contribute to the current state. Finally, the state of the cell Ct is computed by weighting Ct−1 with the forget gate vector ft and

the at Ĉt with the input vector it. ht is then computed from Ct. A complete and easy to read guide to LSTMs can be found at https://colah.github.io/posts/2015-08-

Understanding-LSTMs/.

Transformer models Vaswani et al., 2017, TLMs) and have in
fact been shown to learn structural biases from raw input data
(Warstadt and Bowman, 2020). Some psycholinguistic informed
approaches have emerged around the architecture. Related the
question of acquisition, Warstadt et al. (2020a) and Hu et al.
(2020) have compared a range of models, including LSTMs and
transformers, on different sizes of corpora. While the amount
of training input clearly benefits system performance, Hu et al.
(2020) also conclude that the specific hard-coded architecture
of a model is more important than data size in yielding
correct syntactic knowledge. Their training data is however
not characteristic of child-directed input. In contrast, Huebner
et al. (2021) focus on training a TLM on developmentally
plausible input, matched in quantity and quality to what children
are exposed to. The authors also introduce a novel test suite
compatible with child-directed language requirements, such as
a reduced vocabulary. Their results show that both features of
the input and hyperparameters setting are highly relevant for the
acquisition process.

While TLMs seem to be a promising new avenue for
researchers, they require very large amounts of data to be
trained and exhibit a real preference for linguistic generalization,
as opposed to surface patterns (Warstadt et al., 2020b). It is
also still unclear whether such networks truly generalize or
simply memorize patterns they have encountered, leveraging
their extremely large size (Kharitonov et al., 2021).

4. THE ROLE OF INPUT

While widely debated in linguistic research, the effect of input on

learning has received less attention in computational studies, due
to the lack of availability of diverse and realistic input data. This

aspect is however a pillar of usage-based theories, and can help
make sense of various studies that report seemingly inconsistent
results across different input data.

Starting with the issue of input size, experiments such
as McCoy et al. (2018, 2020) tackle the poverty of the stimulus by
testing the acquisition of specific language abilities (i.e., auxiliary

inversion). However, the setup in those studies involves no pre-
training or Language Modeling phase, therefore treating the
phenomenon as a free-standing task. It is difficult to analyze

reported results with respect to children acquisition theories,
since, as the authors note themselves, humans tend to share
processing strategies across phenomena. As mentioned above,
Huebner et al. (2021) propose instead an attractive framework
tested on TLMs, which is however affected by the exact
hyperparameter setting of the model.

Turning to the actual shape of the input, Yu et al.
(2020) investigate the grammatical judgments of NLMs in a
minimal pair setting (i.e., two sentences that differ in their
acceptability due to just one grammatical property). They find
that performance is correlated across tasks and across models,
suggesting that the learnability of an item does not depend on
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a specific model but seems to be rather tied to the statistical
properties of the input (i.e., on the distribution of constituents).

In Davis and van Schijndel (2020), the authors examine biases
of ANNs for ambiguous relative clause attachments. In a sentence
like Andrew had dinner yesterday with the nephew of the teacher
that was divorced, both nephew and teacher are available for
modifications by the relative clause: from a purely grammatical
perspective, both interpretations are equally plausible. English
speakers however have a generic preference for attaching the
relative clause to the lower nominal, while other languages such
as Spanish show a preference for the higher nominal. RNNs
trained on either English or Spanish do not simulate this pattern,
and instead consistently prefer the low attachment (similar
results are reported in Davis et al. (2020) about the influence
of implicit causation on syntactic representations). The authors
show this preference is an artifact of training the network on
production data which, in Spanish, contains more instances of
low attachments. By manually correcting this bias in the input,
generating an equal proportion of high and low attachments, they
find that a preference for the higher nominal is learnable by the
LSTM.

Lepori et al. (2020) experiment with an artificially constructed
set of simple transitive sentences (Subject-Verb-Object),
containing optional adjectival or prepositional modifiers in
a controlled, probabilistic setting. They show that when a
BiLSTM is fine-tuned on a distribution which explicitly requires
moving beyond lexical co-occurrences and creating more
abstract representations, performance dramatically improves:
this suggests that a simple sequential mechanism can be enough
if the linguistic signal is structured in a way that abstraction is
encouraged.

Finally, Pannitto and Herbelot (2020) confirm the tendency
of ANNs to reproduce the particular input they are exposed
to. They train an LSTM on three different genres of child-
directed data. Their results show that when asked to generate, the
network accurately reproduces the distribution of the linguistic
constituents in its training data, while showing much lower
correlation with the distribution of the other two genres.

Overall, there seems to be evidence across the board that the
statistical properties of the language input affect learnability as a
whole and are responsible for inter-speaker differences. This fits
well in a usage-based framework, and it also contributes to a view
of grammar that allows for partial competence, as we will now
discuss.

5. GRADED VS. DISCRETE NOTION OF
GRAMMAR

Usage-based theories take a graded view on acquisition of
linguistic structures, acknowledging that partial competence can
be observed, blurring the distinction between semantic and
syntactic knowledge, and ultimately, allowing for a range of
varied grammatical intuitions across speakers. Existing studies
on the grammatical abilities of RNNs report results which tend
to confirm this view, but they are interpreted in different ways, as
we will presently see.

Wilcox et al. (2018) address the phenomenon of filler-gap
dependencies (e.g., the dependency existing betweenwhat and its
gap in I knowwhat/⋆that the lion devoured - at sunrise), evaluating
the surprisal values assigned by the pre-trained language models
of Gulordava et al. (2018) and Chelba et al. (2013). Their results
show that neural language models show high peaks of surprisal in
the post-gap position, irrespective of the syntactic position where
the gap happens (either subject, object or prepositional phrase).
When considering the whole clause, however, predictions related
to the subject position are much stronger than for the other
two positions, correlating with human online processing results.
Overall, their results indicate that filler-gap dependencies, and
the constraints on them, are acquired by language models, albeit
in a graded manner, and in many cases correlate with human
judgements. Similar results are reported by Chowdhury and
Zamparelli (2018), but the authors commit to a stronger binary
distinction between competence and performance, ultimately
stating that their model “is sensitive to linguistic processing
factors and probably ultimately unable to induce a more abstract
notion of grammaticality.”

A call for full abstraction, as opposed to a graded view of
syntactic abilities, is also expressed in Marvin and Linzen (2018):
English artificial sentence pairs (i.e., a grammatical sentence
with its ungrammatical counterpart) are automatically built
using a non recursive context free grammar, with the intent of
minimizing “the semantic or collocational cues that can be used
to identify the grammatical sentence.” Twomodels are evaluated:
a simple RNN language model and a multi-task RNN that solves
two tasks at the same time, language modeling and a tagging
task that superimposes syntactic information, both trained on a
Wikipedia subset. Overall, results are varied both between tasks
and, for a single benchmark, between different lexical items:
a result that, as the authors say “would not be expected if its
syntactic representations were fully abstract.” The outcome is
however perfectly reasonable in a usage-based framework, if we
think of abstraction as induced by the association of specific
lexical items with grammatical structure and intentions.

Gradedness is instead the explicit focus of Hawkins et al.
(2020), where the authors examine the performance of various
pre-trained neural language models, including the LSTM
of Gulordava et al. (2018), against a dataset containing
human preference judgements on dative alternations in various
conditions, manipulating the length and definiteness of the
recipient argument. In this study aimed at modeling verb biases,
human intuitions are collected and kept as graded values, which
the models are tested against. Lexical bias is seen here as a proxy
of syntactic abilities rather than as something that might hurt the
abstraction process.

Summarizing, we see a growing body of evidence for
gradedness of linguistic judgements, both in humans and
networks. Interestingly, studies such as Liu et al. (2021) also show
that the acquisition of different types of linguistic knowledge
proceeds in parallel, but at various rates, in both LSTMs
and TLMs. This opens the door for thinking of the potential
aggregation of syntactic and semantic knowledge, but also for
talking of different levels of competence, as acquisition takes
place over time.
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6. DISCUSSION

The current tendency in the computational community is to
give an account of the knowledge acquired at the end of
the acquisition process (Linzen et al., 2018, 2019; Alishahi
et al., 2019; Baroni, 2020), but the picture emerging from
the analysis of NLMs linguistic abilities is variegated, both
in terms of approaches and results. To some extent, the
inconsistent results reported in the literature are due to
differences in theoretical assumptions made by each of the
mentioned studies, rather than in experimental designs. As
already highlighted by Linzen and Baroni (2021), the conclusions
drawn by ANNs studies largely depend on the particular
notions of competence, performance, lexicon and grammar that
researchers commit to. Perhaps surprisingly, very few studies
explicitly link the performance of neural language models to
usage-based formalisms.

More specifically, the evaluation of NLMs is widely performed
over specialized datasets that capture some highly debated
phenomena, such as auxiliary inversion or agreement in
increasingly puzzling contexts. Datasets comprehending a wider
range of phenomena are now emerging (Hu et al., 2020;
Warstadt et al., 2020a). The mastery of such phenomena
undoubtedly corresponds to important milestones in acquisition,
but they only give a partial view on the learner’s trajectory
towards full productivity and compositionality. More careful

investigations are required to show how biases in the input affect
learning and grammatical performance, and how such biases are
eventually overcome.

Another issue is that the performance of NLMs is often
compared to those of adult speakers. But some usage-based
theories rely on the idea that grammar is an ability that evolves
throughout the human lifespan, generating different learning
patterns in children and adults. To fully explore this idea, studies
should increase their focus on alternative datasets, both at input
and evaluation stage.

Finally, NLMs are usually treated as an idealized average
speaker, with their predictions being compared to aggregates of
human judgements. While this can be regarded as a necessary
simplification, it also mirrors the view that there is a universally
shared grammar towards which both speakers and LMs converge,
and that this convergence, rather than individual differences,
is meaningful. Conceptualizing NLMs as individual speakers
rather than communities would probably let different evaluation
setups emerge and provide new modeling possibilities for usage-
based accounts.
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