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Abstract

This paper presents a mathematical model of the global, arterio-venous circulation in

the entire human body, coupled to a refined description of the cerebrospinal fluid

(CSF) dynamics in the craniospinal cavity. The present model represents a substan-

tially revised version of the original Müller-Toro mathematical model. It includes

one-dimensional (1D), non-linear systems of partial differential equations for

323 major blood vessels and 85 zero-dimensional, differential-algebraic systems for

the remaining components. Highlights include the myogenic mechanism of cerebral

blood regulation; refined vasculature for the inner ear, the brainstem and the cerebel-

lum; and viscoelastic, rather than purely elastic, models for all blood vessels, arterial

and venous. The derived 1D parabolic systems of partial differential equations for all

major vessels are approximated by hyperbolic systems with stiff source terms follow-

ing a relaxation approach. A major novelty of this paper is the coupling of the circula-

tion, as described, to a refined description of the CSF dynamics in the craniospinal

cavity, following Linninger et al. The numerical solution methodology employed to

approximate the hyperbolic non-linear systems of partial differential equations with

stiff source terms is based on the Arbitrary DERivative Riemann problem finite vol-

ume framework, supplemented with a well-balanced formulation, and a local time

stepping procedure. The full model is validated through comparison of computational

results against published data and bespoke MRI measurements. Then we present two

medical applications: (i) transverse sinus stenoses and their relation to Idiopathic

Intracranial Hypertension; and (ii) extra-cranial venous strictures and their impact in

the inner ear circulation, and its implications for Ménière's disease.
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1 | INTRODUCTION

The living human body is a complex biological, mechanical, electrical and chemical system, which involves the
dynamic interaction of fluids, gases and solids, all mediated through controls, membranes and intricate networks
of conduits and barriers. In this broad scenario, it is becoming increasingly accepted that bodily fluid systems and
their interactive dynamics play a major role in human-body physiology and pathology.1–3 A central part is played
by the cardiovascular system, or circulatory system, composed of the heart, the blood and two blood vessel net-
works for arteries and veins connected through the microvasculature. The circulatory system, comprising both the
systemic circulation and the pulmonary circulation,1–3 is primarily a transport system that connects muscles and
organs of the full body, whereby the transporter, the flowing blood, carries nutrients, wastes, oxygen, carbon diox-
ide, hormones, heat, antibodies, glucose, aminoacids, fatty acids, vitamins, drugs, water and many more materials.

The functions of the cardiovascular system are accomplished through the contribution of body organs, such as
the liver, the kidneys, the lungs and the central nervous system, among others. Transport of oxygen and carbon
dioxide is a function that involves the respiratory system and the pulmonary circulation. The blood also transports
nutrients to tissues and organs and this involves the digestive system. A major part of nutrients comes from the
small intestine; here, nutrients are absorbed by capillaries into the blood stream, are transported back to the heart
via the venous system and then into the arterial system that will deliver such nutrients at the level of the microvas-
culature. A closely related function is the clearance, or wash out, of metabolic waste products, which involves the
venous system, the urinary system and the lymphatic system. This is a one-way fluid and molecule transport system
consisting of an intricate network of vessels, lymph nodes and lymph organs, such as the spleen, the thymus and
the tonsils. Recall that blood in the cardiovascular system travels from the heart down to the capillaries, where
blood plasma and solutes are extravasated into the interstitium, that is, into the interstitial fluid (ISF) compartment.
Some of these materials are reabsorbed back directly into the circulation in the post-capillary venules, back into the
great veins and ultimately into the right atrium in the heart. The lymphatic system, starting at the initial lym-
phatics, collects the excess fluid and proteins from the interstitial space, called lymph once inside the lymphatic ves-
sel, and transports these materials to the blood circulation again, primarily into the great veins in the neck and
back to the heart. Transported in lymph are also proteins, waste products, interstitial macromolecules and immune
cells; it is also noted that the lymphatic system is also a major transport route for disseminating tumor cells; it is
also a privileged route for administered drugs; the lympahtic system plays a major role in theimmune system. Small
molecules in the interstitium tend to be reabsorbed by blood capillaries/venules, whereas the lymphatic system
tends to go for the larger molecules, typically of radius between 10 nm and 100 nm. Maintenance of tissue-fluid bal-
ance is the primary function of the lymphatic system. All contents of the lymphatic network end up in the venous sys-
tem and hence into the circulatory system. See reviews References 4 and 5.

Neurophysiology and neuropathologies draw more fluid compartments into the discussion. The cerebrospinal fluid
(CSF) in the craniospinal cavity is the centre of the attention of many specialists concerned with a range of disorders of
the central nervous system (CNS), such as hydrocephalus, syringomyelia, spinal cord injury, Chiari malformations, spi-
nal tumors, to name but a few; see reviews References 6 and 7. Then, the relatively recent discovery of the so called
glymphatic system has added strength to the biophysical point of view of neurological disorders.8 Evidence has been
reported on its role on CNS clearance, particularly important in Alzheimers disease, which is strongly linked to the mis-
accumulation of amyloid beta, a protein said to be cleared by the glymphatic system. To these developments, one must
add the recent discoveries of a meningeal lymphatic system by Aspelund et al9 and, independently, by Louveau et al10

the same year. The discovery of these fluid systems is contributing to configure a more complete picture of all and inter-
connected fluid systems acting on the CNS.

Surprisingly, the venous system,11 even if known for centuries as part of the circulatory system, has received much
less attention than its courterpart, the arterial system. The work of Zamboni et al12 on the potential connection of mul-
tiple sclerosis to anomalies of the extracranial venous system has, on the one hand, resurfaced the vascular theory of
multiple sclerosis, and on the other, has also stimulated increasing attention to the venous district of the circulatory sys-
tem and its potential link to several neurological pathologies. As is known, the main routes for venous return from the
CNS to the heart are the internal jugular veins, the vertebral veins and the azygous vein.13 It has become established
that such venous draining routes may be affected by various types of anomalies, such as stenoses, resulting in impaired
draining of venous blood from the CNS to the heart. Several venous-system associated pathologies of unknown cause
have been reported in recent years. Examples include retinal abnormalities,14 transient global amnesia,15,16 transient
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monocular blindness,17,18 Ménière's disease,19–22 idiopathic Parkinson's disease,23 and many more. For a review, see
Reference 24 and the many references therein.

Covid-19 entered the world scene in the year 2020 and has spread to every corner of the world causing, so far,
the death of more than 1 million people, as well as social and economic havoc, globally. Early scientific
communications,25–27 identified Covid-19 patients as suffering from hypoxemic respiratory failure, coagulopathy, evi-
dence of ischemia in the lower limbs and cerebral infarcts in multiple vascular territories. Subsequente communications
have confirmed the systemic character of Covid-19, revealing the involvement of not only the respiratory system, but
also of the circulatory system as a whole and the CNS.28 Covid-19, perhaps more than any other disease, along with its
global consequences, has also revealed the need for a global approach to the study of the human bodily fluid systems
and related pathologies.

Mathematical modeling and simulation in many areas of science and technology is a success story in the last few
decades. Developments have not gone unnoticed to cardiovascular mathematicians, who have made significant
advances in the biomedical field. For a description of the state-of-the-art in cardiovascular mathematics see for instance
Reference 29 and references therein. Early contributions include the seminal work of Otto Frank in 1899,

30 which was
primarily concerned with the basic shape of the arterial pulse. This is probably the first application of a mathematical
model to successfully describe haemodynamics, especially the exponential decay of the arterial pressure pulse in dias-
tole. Another early, seminal contribution is due to Guyton in the early 70s,31 which among other aspects, was con-
cerned with system analysis of arterial pressure regulation and hypertension, incorporating detailed regulatory
mechanisms. The review by Shi32 is highly recommended. Over the last few decades, most of the mathematical model-
ing effort has gone into the arterial system, isolated from other fluid compartments, notably the venous system. A
remarkable early attempt to model all intracranial vascular compartments is reported in Reference 33. Considering the
cardiovascular system from a wider point of view, that is not considering exclusively cerebral blood flow (CBF), signifi-
cant advances have been reported in recent years, see for example,34-44 to name but a few. For venous flow, however,
there is consensus in the cardiovascular modeling community that the subject is largely open. As a matter of fact, as
already pointed out, research on the venous system as a whole has not been given the importance it deserves, also from
the point of view of physiology. Early contributions on CSF dynamics are due to Ursino.45,46 Mathematical models of
CSF dynamics with clinical relevance in normal and pathological conditions were pioneered by Linninger and
coworkers.47–49 For more recent developments on the coupling of CSF mechanics and cerebral vasculature see Refer-
ence 50. The lymphatic system is also beginning to receive attention from mathematical modelers, although most works
have considered the system in isolation. An early attempt to model the lymphatic system is due to Reddy.51 More recent
works are due to Bertram et al,52 Caulk et al53 and Contarino and Toro,54 to name but a few. A major problem here, as
for the rest of the human cardiovascular system, is the lack of data for model development and validation.

The most complete mathematical model for the human extracellular bodily fluids will include the complete cir-
culatory system (arteries, veins, microvasculature), ISF, the lymphatic system and the CSF. The mathematical
modelsshould recognize that most conduits are compliant, giving rise to free-boundary problems, dealt with in the
framework of fluid–structure interaction (FSI), involving time-dependent, non-linear systems of equations for the
fluid and the vessel wall mechanics in three space dimensions.29,55,56 FSI models have the advantage of resolving
local details such as rheology, velocity vectors and wall shear stresses. However, due to their complexity and com-
putational cost, at the present time, it is unrealistic to think of deploying FSI models for a full human bodily fluid
configuration, not even for the circulatory system alone. One-dimensional (1D) averaged models derived from the
full 3D models offer a realistic alternative, still retaining the fluid–structure interaction but in a simpler, computa-
tionally tractable setting. Cross-sectional area, cross-sectional averages of velocity, flow and pressure at any time
and position along the length of vessels can be computed, at a much lower computational cost. Yet, these 1D
models cannot be deployed for the full vessel network and one must still consider even simpler models, zero-
dimensional (0D) or compartmental or lumped parameter models.45 These are governed by systems of ordinary
differential equations (ODEs) in time, subject to algebraic constraints. In view of the complexities alluded to, a
realistic and popular approach is the geometric multi-scale approach, whereby the human circulation, for example,
can be represented by a combination of 3D FSI models, 1D averaged models and lumped parameter, or 0D
models, with appropriate matching conditions.29,57 One of the early works following this approach, in which both
the arterial and venous systems are coupled in the model is that of Liang.58 More recently, Müller and Toro in
References 59,60 put forward a global, closed-loop mathematical model, with sub-models for the heart, the arterial
system, the venous system, the microvasculature, the pulmonary circulation and a very simple model for the CSF;
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notably, this model included a sophisticated representation of the venous system, especially for the head and neck.
Subsequent works along these lines include that of Mynard.61

The present paper results from the amalgamation of two substantial and independently developed pieces of work
and attempts to incorporate the major extracellular fluid compartments of the human body. The first piece consists of a
substantially improved version of the original Müller–Toro mathematical model59 for the global systemic and pulmo-
nary circulations in the entire human body. The improvements concern physiological aspects, underlying mathematical
models as well the associated computational methods. Then, the second piece of work, a major novelty of this paper, is
the coupling of the circulation as described, to a refined mathematical description of the CSF dynamics in the
craniospinal cavity, building upon the model proposed by Linninger.62 This includes all major CSF pathways and the
brain parenchyma, accounting for deformations and interaction between the cerebral vasculature, brain parenchyma
and CSF compartments during the cardiac cycle. The present mathematical model is depicted in Figure 1. Major fluid
components are the arterial system (right) and the venous system (left) for the entire body, comprising 323 major blood
vessels. The craniospinal cavity, in addition to the vasculature and the two-phase brain parenchyma, contains CSF rep-
resented by 0D compartments for the cranial subarachnoid space (CSAS), the four cerebral ventricles, the aqueduct of
Sylvius (AoS) and the spinal subarachnoid space (SSAS). Additional components include the four heart chambers, car-
diac valves, three compartments for the pulmonary circulation, 31 compartmental models describing the connections
between terminal arteries and veins through the microcirculation, 17 venous valves, 21 Starling resistors (SR). The
potential medical applications of the resulting model are numerous. Here, we have chosen to illustrate the applicability
of our model to two classes of fluid-dynamics related pathologies that involve the close dynamical interaction of all
major fluid compartments in the craniospinal space. The first class of pathologies concerns transverse sinus stenoses
and its relation to idiopathic intracranial hypertension (IIH).63–65 The second class of fluid-related pathologies concerns
the altered haemodynamics of the inner ear circulation resulting from extra-cranial venous outflow strictures, and its
implications for Ménière's disease.20,66–68

Even if the resulting model is suitable for the study of several physiological and pathophysiological phenomena, it
must be noted that its application for patient-specific simulations would be complex. Indeed, it is characterized by many
parameters that are difficult to be measured in the clinic, in particular for the CSF part. Thus, while the main goal of
this model is to explore fundamental aspects of physiological and pathological states, an attempt toward a patient-
specific application was done with a previous version of the Müller-Toro model.59 In that work, major head and neck
veins were modified according to patient-specific MRI-derived geometrical information.

The rest of the paper is structured as follows. Section 2 presents the mathematical models; section 3 presents the
numerical methods to solve the equations; section 4 deals with parametrization of the model; section 5 shows sample
computations and validation of results against published data and MRI measurements. In section 6, we illustrate the
potential applicability of the full model to fluid-dynamics related pathologies. Discussion and conclusions are found in
section 7.

2 | MATHEMATICAL MODELS

In this section, we present the mathematical models for describing the human circulatory system and the CSF
dynamics in the craniospinal space. As already pointed out, the present paper is based on two independently devel-
oped pieces of work. The circulatory system part emerges from References 59 and 69, with some significant improve-
ments. For the 1D representation of the blood vessels we include viscoelasticity of the vessel wall.39,70 The resulting
partial differential equation system is solved numerically using the high-order Arbitrary DERivative Riemann prob-
lem (ADER) framework71 with a solver that allows for local time stepping (LTS).72 The microcirculation and heart
models are also partially modified with respect to Reference 59. Representation of pulmonary circulation follows the
same models as in References 59 and 69 wherein a simple three-compartment (arteries, capillaries, veins) description
for systemic microcirculation based on the work by Sun et al73 is adopted. Venous valves and SR are modeled follow-
ing.41 The second piece of work underpinning this paper is the coupling of the circulation to a refined mathematical
description of the CSF dynamics in the craniospinal cavity, for which we follow the model proposed by Linninger.62

The Linninger model63 was chosen because it integrated results of extensive MR imaging studies47–49 with detailed
two and 3D mathematical models into a comprehensive mathematical description of the major intracranial dynamics
with fluid structure interactions of blood, CSF in the ventricular system, as well as cranial and the SSASs and the
deformable brain parenchyma.
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Since in this article we are particularly interested in the cerebral dynamics, we incorporate into our model one of
the most important physiological control systems, the cerebral autoregulation. This process aims at maintaining ade-
quate and stable CBF during changes in blood pressure working on dilatation or contraction of arterioles and capil-
laries.77 The model used to account for this phenomenon is based on References 75 and 76.

FIGURE 1 Schematic representation of the global model for the full human circulatory system coupled to the craniospinal fluids and

brain parenchyma. The arterial 1D network is represented in the right dotted box with red vessels while the venous 1D network is displayed

in the left dotted box with blue vessels. The terminal arteries of the arterial network are connected to draining veins of the venous

circulation through 0D models representing arterioles, capillaries, small arteries (red boxes) and venules, small veins (blue boxes). The

dotted arrows indicate the connection between 1D network and terminal vessels, depicted for simplicity as dots in the yellow bar. Left and

right cardiac chambers are displayed by red and blue boxes, respectively, connected to green atrioventricular valves; the left ventricle is

connected to aortic root and venae cavae are linked to right atrium through black arrows. Cardiac chambers are connected to the pulmonary

circulation, comprising arteries, capillaries and veins, represented by the pink box, through the aortic and pulmonary valves (green arrows).

The CSF compartments are represented by cyan boxes. The arrows between cardiovascular system and CSF circulation represent the fluid

exchange between these systems through production and absorption while the green dashed boxes indicate the mechanical interaction

between between all components in the cranial cavity through the Monro-Kellie hypothesis
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2.1 | Equations for blood flow in major vessels

In this section, we review the partial differential equations representing blood flow in major vessels, along with closure
laws and reformulations.

2.1.1 | Conservation laws and closure conditions

The flow of blood in major arteries and veins is represented through 1D cross-sectional averaged models resulting in
time-dependent systems of partial differential equations. We start from the classical laws of conservation of mass and of
balance of momentum

∂ tAþ ∂xq¼ 0 ,

∂ tqþ ∂x bαq2
A

� �
þA
ρ
∂xp¼�f :

8<: ð1Þ

For details on the derivation of (1) see Reference 29, for example. The 2�2 system (1) contains three
unknowns, namely A x, tð Þ, the cross-sectional area of the vessel lumen; q x, tð Þ, the blood flow rate and p x, tð Þ, the cross-
sectionally averaged internal pressure. Parameters in the equations include bα, the Coriolis coefficient, ρ the blood den-
sity, assumed constant, and f the friction force per unit length of the tube. The Coriolis coefficient depends on the
assumed velocity profile; here we take bα¼ 1, which corresponds to an assumed parabolic velocity profile.

The system of differential Equations (1) has more unknowns than equations; hence, one extra closure condition is
required. Such extra condition, usually called tube law, attempts to couple the internal blood flow distribution with the
mechanical properties of the solid moving vessel wall. A comparative analysis of various mathematical descriptions of
elastic properties of vessel walls in modern 1D models of hemodynamics can be found in Reference 77. In the existing
versions of our model,59,69 we used elastic tube laws for both arteries and veins. In the present paper, we improved upon
this by adopting viscoelastic tube laws for both arteries and veins in the entire circulation. To this end, we follow recent
works concerned with approximating time-dependent parabolic systems with hyperbolic balance laws with stiff source
terms,78,79 The approach was applied in Reference 70 to a simplified arterial network. In the present paper, we deploy
the framework to the full human circulatory system, major arteries and veins. Following Reference 62, the following
pressure-area relation (tube law) is adopted

p x, tð Þ¼ψ A x, tð Þ;A0 xð Þ,K xð Þ,P0ð Þþφ A x, tð Þ;A0 xð Þð Þ∂ tAþpext x, tð Þ: ð2Þ

Here, the first term ψ A x, tð Þ;A0 xð Þ,K xð Þ,P0ð Þ is the elastic part of the tube law, which in turn depends on the refer-
ence pressure P0 and the parameters A0 xð Þ and K xð Þ and can be written as

ψ A x, tð Þ;A0 xð Þ,K xð Þ,P0ð Þ¼K xð ÞΦ A x, tð Þ,A0 xð Þð ÞþP0, ð3Þ

with

Φ A x, tð Þ;A0 xð Þð Þ¼ A x, tð Þ
A0 xð Þ

� �m

� A x, tð Þ
A0 xð Þ

� �n� �
: ð4Þ

The term φ A x, tð Þ;A0 xð Þð Þ∂ tA represents the viscoelastic part of the tube law, while pext x, tð Þ denotes the external
pressure. As usual, the transmural pressure is defined as

ptransm � p x, tð Þ�pext x, tð Þ¼K xð ÞΦ A x, tð Þ,A0 xð Þð ÞþP0þφ A x, tð Þ;A0 xð Þð Þ∂ tA: ð5Þ

We now define geometric and mechanical parameters in the tube law. A0 xð Þ defines the vessel cross-sectional area
at equilibrium; K xð Þ represents the vessel wall stiffness, wile m and n are two real numbers, to be specified. Note that
A0 xð Þ and K xð Þ are variable parameters, they depend on distance x along the vessel.Throughout this work, we assume
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m¼ 0:5 and n¼ 0 for arteries, while m¼ 10 and n¼�1:5 for veins. Moreover, K xð Þ is a positive function that was
obtained from the reference wave speed c0 assumed for each vessel, distinguishing arteries, veins and dural sinuses.

The viscoelastic term of the tube law depends on the time partial derivative of the cross-sectional area of the vessel
and is defined as

φ A x, tð Þ;A0 xð Þð Þ∂ tA¼ Γ
A0

ffiffiffiffi
A

p ∂ tA: ð6Þ

Γ is related to the viscoelastic properties of the vessel wall, which following39 is chosen as

Γ¼ 2
3

ffiffiffi
π

p
γh0 xð Þ, ð7Þ

where γ is the wall viscosity. The wall viscosity is evaluated as the product of the viscoelastic parameter KM and the vol-
ume fraction of smooth muscle. KM is chosen such that hysteresis behavior of pressure-area plots in peripheral arteries
and veins lies within the physiological range. For arteries we take KM ¼ 3�105 dyn s/cm2 and a percentage of smooth
muscle of 10%.80 For veins we take KM ¼ 5�104 dyn s/cm2 and a smooth muscle fraction of 8%. Concerning the wall
thickness h0 xð Þ we follow80 and express it in relation to the vessel radius at equilibrium. For arteries h0 ¼ 10%r0, while
for veins h0 ¼ 5%r0.

The momentum equation in (1) contains the friction term f x, tð Þ, which depends on the local velocity profile
(assumed a priori). Here, we take

f ¼ 8μπ
ρ

q
A
, ð8Þ

with μ being the blood dynamic viscosity.

2.1.2 | Variable material properties and augmented equations

As already pointed out, the material and geometric parameters K xð Þ, A0 xð Þ and pext x, tð Þ are in general functions of dis-
tance x along the vessel length. Computationally, in order to deal with this situation we adopt the variable-parameter
formulation of Toro and Siviglia,81 admitting now, viscoelastic tube laws for arteries and veins.70 System 1, along with
the tube law (2), is then written as the following extended 5�5 system

∂tAþ ∂xq¼ 0,

∂tqþ ∂xðαq
2

A
Þ¼�A

ρ
∂xpext�

A
ρ
Φ∂xK�A

ρ
ðK∂AΦ� ∂Aφ∂xqÞ∂xA

�A
ρ
ðK∂A0Φ� ∂A0φ∂xqÞ∂xA0þA

ρ
φ∂ð2Þx q� f ,

∂tK ¼ 0,

∂tA0 ¼ 0,

∂tpext ¼ 0 :

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð9Þ

In succinct form system (9) reads

∂ tQþA Qð Þ∂xQ¼ ∂xG Q; ∂xQð ÞþS Qð Þ, ð10Þ

where Q is the vector of unknowns

Q¼ A q K A0 pext½ �T , ð11Þ
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A Qð Þ is the coefficient matrix

A Qð Þ¼

0 1 0 0 0

c2�u2þφ∂xq
2ρ

2u
A
ρ
Φ

A
A0

φ∂xq
ρ

� c2
� �

A
ρ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

266666664

377777775, ð12Þ

S Qð Þ is the source term vector

S Qð Þ¼ 0 �f 0 0 0½ �T ð13Þ

and

∂xG Q; ∂xQð Þ¼ 0
φA
ρ

∂ 2ð Þ
x q 0 0 0

� �T
ð14Þ

is a higher-order differential term emanating from the viscoelastic part of the tube law. This last differential term in the
advection–diffusion–reaction system defines a parabolic problem, no longer hyperbolic, as in the case of a purely elastic
tube law.81

2.1.3 | Hyperbolic approximation of a parabolic system

Toro and Montecinos,78,79 proposed a method to approximate time-dependent parabolic problems by hyperbolic sys-
tems with stiffsource terms, by extending the Cattaneo relaxation approach.82 Montecinos and coworkers70 applied the
procedure to a network of arterial blood vessels, thereby setting the bases for its extension to the global, closed-loop cir-
culation model of this paper, including arteries and veins.

To start with, a new variable ζ and a relaxation parameter ϵ>0 are introduced such that

ζ! ∂xq as ϵ! 0: ð15Þ

One then replaces the spatial gradient of the flow variable in (9) by the new variable ζ in (15), which is constrained
to satisfy an additional evolutionary PDE, namely the constitutive Cattaneo's law, which reads

∂ tζ¼ 1
ϵ

∂xq� ζð Þ: ð16Þ

We now have an augmented 6�6 system. Keeping the same notation for the vector of unknowns, the coefficient
matrix and the source term we may write

∂ tQþA Qð Þ∂xQ¼ S Qð Þ, ð17Þ

with

Q¼ A q K A0 pext ζ½ �T , ð18Þ
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A Qð Þ¼

0 1 0 0 0 0

c2�u2þaΓ
2

2u
A
ρ
Φ

A
A0

aΓ� c2
� � A

ρ
�A
ρ
φ

0 0 0 0 0 0

0 0 0 0 0 0

0 �1
ϵ

0 0 0 0

2666666664

3777777775
, ð19Þ

S¼ 0 �f 0 0 0 �1
ϵ
ζ

� �T
, ð20Þ

c2 ¼A
ρ
K∂AΦ, u¼ q

A
, aΓ ¼φζ

ρ
: ð21Þ

Here, c is the wave velocity (analogous to the sound speed) associated to theelastic tube law. The 6�6 system
(17) with the state vector (18) and coefficient matrix (19) is hyperbolic,70,78 provided the relaxationparameter is chosen
so as to satisfy

ϵ�1 ≥ � ζ

2A
�ρc2

φA
: ð22Þ

All eigenvalues of the coefficient matrix (19) are real and given as

λ1 ¼u�ec , λ2 ¼ λ3 ¼ λ4 ¼ λ5 ¼ 0 , λ6 ¼uþec , ð23Þ

where now ec denotes thewave speed associated to the complete tube law.

ec¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þω

p
, ω¼φA

ρϵ
þaΓ

2
: ð24Þ

The corresponding right eigenvectors are

R1 ¼ 1 u� ˜c 0 0 0 � 1Ðh iT
,

R2 ¼ 1 0 0 0 0 c2þaΓ=2�u2

φA ρ
h iT

,

R3 ¼ 0 0 1 0 0 Φ
φ

h iT
,

R4 ¼ 0 0 0 1 0 ðaΓ�c2Þ
φA0

ρ
h iT

,

R5 ¼ 0 0 0 0 1 1
φ

h iT
,

R6 ¼ 1 uþ ˜c 0 0 0 � 1Ðh iT
:

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

ð25Þ

These eigenvectors associated to the real eigenvalues (23) can be shown to be linearly independent, and hence sys-
tem (17) is hyperbolic.

We now consider two fundamental properties of system (17), namely the nature of the characteristic fields and the
generalized Riemann invariants. It can be shown that the characteristic fields associated to eigenvectors R1 and R6 are
genuinely non-linear, while the remaining characteristic fields are linearly degenerate. The generalized Riemann invari-
ants associated to R1 and R6 are
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Γ1 ¼uþ
ð ec
A
dA¼ constant, ð26Þ

Γ6 ¼u�
ð ec
A
dA¼ constant, ð27Þ

respectively. We also note that for constant pext,A0 and K, the generalized Riemann invariants for the linearly degener-
ate fields associated with R2, R3, R4 and R5 are

ΓLD
1 ¼epþ1

2
ρu2 ¼ constant ð28Þ

and

ΓLD
2 ¼ q¼ constant, ð29Þ

where

ep¼ pextþψ�φζ : ð30Þ

More details about the hyperbolic reformulation of the problem and its eigenstructure are found in References 79,
70. Next, we present the 0D mathematical models, which consist of systems of ODEs.

2.2 | Equations for lumped-parameter models

In the previous section, we described mathematical models for major arterial and venous blood vessels, consisting of
systems of partial differential equations. Here, we present compartmental, or 0D, models consisting of systems of ODEs,
for other districts of the circulation. These include the microvasculature (arterioles, capillaries and venules/veins), the
heart, the pulmonary circulation, venous valves and SR. We also present a mathematical model for cerebral
autoregulation, which works on the terminal portion of the cerebral arteries and on the cerebral vascular beds.
Lumped-parameter models for CSF compartments62 will be introduced in section 2.3.

2.2.1 | The microvasculature

Physiologically, the arterial system is connected to the venous system through arterioles, capillaries and venules. To
describe this connection, the microvasculature is represented by lumped-parameter, or 0D, models. This connection
can be simple, such as between one artery and one vein, or entail numerous compartments. The generic vascular bed
model for all microvasculature beds, depicted in Figure 2, is inspired in the three-element Windkessel model. The
model is characterized by

• Characteristic impedances. These couple any number of connecting 1D arteries/veins to lumped-parameter models
for the microvasculature (Rda or Rvn) and regulate the pressure drop between 1D domains and vascular beds;

• Peripheral resistances and compliances divided into arterioles Ral,Calð Þ and capillaries Rcp,Ccp
� �

;
• Venous compartment with related compliance Cvn.

As illustrated in Figure 2, each connecting artery can be linked to one or both venous capacitors, while each venous
capacitor can be connected to any number of terminal veins. Note that the second artery splits into both venous capaci-
tors, while the other arteries supply only one of them. Moreover, any number of veins can be connected to each venous
capacitor.
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For each vascular bed, the variables to be computed are pressure and flow, denoted as follows: for arterioles Pal, Qal;
for capillaries Pcp, Qcp and for venules Pvn and Qvn. Thus, for each element of the vascular bed one has

dP
dt

¼ 1
C

Qin�Qð ÞþdPext

dt
,

Q¼ P�Pout

R
,

8><>: ð31Þ

where C is compliance and Pext is the external pressure, generally taken as zero (relative to atmospheric pressure) or
equal to the intracranial pressure in the case of intracranial peripheral beds. Qin and Pout are flow and pressure in
neighboring compartments or obtained from the 1D models through boundary conditions. Well-matched coupling to
the connecting 1D arterial and venous segments is achieved via the characteristic impedances, as suggested in
Reference 83.

2.2.2 | Valves, Starling resistors and stenosis

Here, we describe a valve model based on Reference 41 that predicts valve motion on the basis of the instantaneous dif-
ference between upstream and downstream pressures. In the present paper, the model is applied to describe cardiac val-
ves, venous valves, SR in the cerebral circulation and stenosis. Here, we illustrate the general model, while for each
specific application, more details are given in sections 2.2.3, 2.2.4 and 6.

The valve dynamics is described by means of the function Ae tð Þ defining the effective cross-sectional area,
expressed by

Ae tð Þ¼Aa Msξ tð ÞþMr 1�ξ tð Þð Þ½ �, ð32Þ

FIGURE 2 Schematic representation of the generic vascular bed model. The red boxes include the terminal 1D arteries and the

corresponding arterioles and capillaries compartments; the green boxes represent the venous capacitors while the light blue boxes refer to

terminal venules/1D veins
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where Aa is the annulus area and the time-dependent function ξ tð Þ is the valve state, a dimensionless number in the
range 0,1½ � and representing the rate of opening and closing of the valve. ξ tð Þ is given by the solution of the following
variable-coefficient ODEs

dξ
dt

¼Ko Δp tð Þ�Δpoð Þ 1�ξ tð Þð Þ if Δp>Δpo opening state,

dξ
dt

¼Kc Δp tð Þ�Δpcð Þξ tð Þ if Δp<Δpc closing state:

8><>: ð33Þ

Here, Ko and Kc are rate coefficients for opening and closing respectively; Δpo and Δpc are opening and closure
threshold pressures. In (32), Mr and Ms are parameters representing regurgitating and stenotic valves respectively. Spe-
cifically, a healthy valve corresponds to Mr ¼ 0 and Ms ¼ 1, an incompetent valve is described by Mr >0, while a ste-
notic valve is represented by Ms <1. Flow variation in time across the valve is given by a first-order, variable
coefficients, ODE

dq tð Þ
dt

¼ 1
L tð Þ Δp tð Þ�B tð Þq tð Þ q tð Þj Þ:jð ð34Þ

Δp tð Þ is the pressure difference across the valve length, defined as

Δp tð Þ¼ pup tð Þ�pdown tð Þ , ð35Þ

where pup tð Þ and pdown tð Þ are the upstream and downstream pressures at time t, with respect to valve direction. pup tð Þ
and pdown tð Þ are evaluated from other compartments of the global model, specified later. L tð Þ and B tð Þ are time-
dependent coefficients; L tð Þ is blood inertance, which accounts for the component of the pressure difference related to
blood acceleration; B tð Þ is the Bernoulli's resistance, which governs pressure differences related to convective accelera-
tion and dynamic pressure losses due to diverging flow. They are expressed by

L tð Þ¼ ρle
Ae tð Þ , ð36Þ

and

B tð Þ¼ ρ

2A2
e tð Þ : ð37Þ

Here, ρ is the constant blood density and le is the effective length. More details on the valve model are found in Ref-
erences 41,59, 75 and in the appendix of Reference 84.

2.2.3 | Heart and pulmonary circulation

In the present paper, we consider a heart model for the dynamics of the four chambers and the cardiac valves. The
chambers are denoted as ch¼ RA,RV ,LA,LVf g, where RA and RV are the right atrium and ventricle, while LA and LV
represent the left atrium and ventricle. For the chambers we follow thetime-varying elastance model in References
58,73, while cardiac valves are modeled as presented in section 2.2.2 following.41 Briefly, blood pressure in each cardiac
chamber is calculated as

Pch ¼PperiþE tð Þ Vch�Vch,0ð Þþ γPch
dVch

dt
, ð38Þ
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where Vch is the current cardiac volume; Vch,0 is the dead volume (assumed to be 0); γPch tð Þ is the viscoelasticity coeffi-
cient of the cardiac wall and Pperi tð Þ is the external pericardial pressure defined by

Pperi ¼ exp
VH �VPC

ΦPC

� �
, ð39Þ

where VH tð Þ is the sum of the volume of each heart chamber and VPC, ΦPC are constant parameters. Pext tð Þ is the exter-
nal pericardial pressure and E tð Þ in (38) is the time-varying elastance, defined as

E tð Þ¼EAe tð ÞþEB, ð40Þ

where the constants EA and EB are the active and passive elastances, respectively, while e tð Þ is the normalized time-
varying elastance, taken as in Reference 73 as

eðtÞ� eaðtÞ¼

1
2
1þ cos½πðtþT� tarÞ=Tarp�, 0≤ t≤ tarþTarp�T,

0, tar þTarp�T < t≤ tac,
1
2
1� cos½πðt� tacÞ=Tacp�, tac < t≤ tacþTacp,

1
2
1þ cos½πðt� tarÞ=Tarp�, tacþTacp < t≤T,

8>>>>>>>><>>>>>>>>:
ð41Þ

for atria and as

e tð Þ� ev tð Þ¼

1
2
1� cos πt=Tvcp

� �	 

, 0≤ t≤Tvcp,

1
2

1þ cos π t�Tvcp
� �

=Tvrp
	 
� �

, Tvcp < t≤TvcpþTvrp,

0, TvcpþTvrp < t≤T,

8>>>><>>>>: ð42Þ

for ventricles.
The modeling of cardiac valves is described in what follows. As each chamber of the heart contracts, blood is

pushed through a valve either into another chamber or out of the heart into an artery (aorta or pulmonary). The
four cardiac valves (tricuspid, pulmonary, mitral and aortic) ensure one-way blood flow by (a) opening to let blood
through and (b) closing to prevent backflow. The mechanism that leads to opening or closure of a valve is driven
by blood pressure changes as the heart contracts and relaxes. Such mechanism is modeled here following sec-
tion 2.2.2. The pressure drop across each cardiac-valve length is defined from pressure data from the neighboring
cardiac chamber, from the aortic root and from the pulmonary arterial compartment. In particular, the tricuspid
and mitral valves are atrioventricular valves that prevent backflow of blood from the ventricles into the atria; in
these cases, the upstream pressure is the pressure of the atrium while the downstream pressure is that of the ven-
tricle. The pulmonary valve is located at the opening between the right ventricle and the pulmonary trunk, there-
fore its upstream and downstream pressures are the right ventricle and the arterial pulmonary pressure,
respectively. Finally, the pressure drop across the aortic valve is determined by the difference between the left
ventricle and the aortic root pressure. In Equation (33), Δpo and Δpc are set to 0 for all the cardiac valves. Other
parameters are defined later in section 4.1.

2.2.4 | Venous valves and Starling resistors

The Müller–Toro global model59,69 is equipped with submodels for venous valves and SR consisting of ideal diodes. In
the present article, these elements are replaced with the model described in section 2.2.2.
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Venous valves
Venous valves are placed at different locations of the venous network; each venous valve is located between
two venous vessels and governs flow across this interface. Location of valves are reported in Table 5 and are
related to the venous network depicted in Figures 5 and 6. In this case, the pressure drop which governs the
flow rate across the valve is determined by the pressure difference between the upstream and downstream ves-
sels with respect to the valve direction. Moreover, the annulus area Aa is assumed to be equal to the mean area
between the reference areas of the connecting vessels on the right and left side. In the same way, the effective length le
is taken as the mean diameter at equilibrium between the upstream and downstream vessels. Finally, Δpo and Δpc are
set to 0.

Starling resistors
Venous CBF is ensured by a SR mechanism, a fluid dynamic construct which governs the flow in collapsible tubes
exposed to variable external pressure. The SR act at the confluence of cortical veins in the dural sinuses; these are
located in the dura mater and are more rigid than cerebral veins. During the large physiological fluctuations of the
intracranial pressure, the SR mechanism prevents the vein collapse maintaining the blood pressure upstream the col-
lapsed segment higher than the intracranial pressure.

In previous work, we described SR simply via ideal diodes.69 Here, we adopt a model that allows for a richer descrip-
tion of opening/closing dynamics, as well as accounting for a better description of underlying physical processes. In our
venous network, Starling resistor behavior is represented through the model proposed in section 2.2.2. The pairs of ves-
sels between which each SR element is placed are reported in Table 5, where the left vessel index represents the number
of the cortical vein while the right vessel index indicates the corresponding venous sinus. The annulus area Aa and the
effective length le are assumed to be the mean area and diameter, respectively, between the reference area and diameter
at equilibrium of the pair of vessels connected to the SR element. The flow across SR is limited to that given by the pres-
sure difference between the cerebral vein (upstream vessel) and the larger of intracranial pressure and the downstream
pressure. When the intracranial pressure is much higher than the downstream pressure, the flow rate through the ves-
sel becomes independent of the downstream pressure and the driving pressure difference is given by the upstream and
the external pressures.As for other intracranial compartments, the external pressure is the intracranial pressure, that in
this work is taken as the pressure in the fluid part of the brain parenchyma. Therefore, the valve state in Equation (33)
is determined by Δp�Δpo ¼Δp�Δpc ¼ pdown tð Þ�pext tð Þ, where pext is the intracranial pressure. If pdown tð Þ< pext tð Þ, in
Equation (34), the driving pressure difference Δp is given by Δp¼ pup�pext; on the other hand, if the downstream pres-
sure is higher than the external pressure, the flow across the SR element is determined by the pressure difference
between the upstream and downstream pressures Δp¼ pup�pdown. Other parameters used in the valve and SR models
are reported in.

2.2.5 | Control system: Cerebral autoregulation

We consider a model of the cerebrovascular regulation mechanisms, which acts by modifying resistances and com-
pliances of the arterial microcirculation; changes in these parameters are not independent but are related through
biomechanical and geometrical laws. The model is based on References 75 and 76, with appropriate modifications.
Only one control mechanism is considered in this work, the myogenic response, which is linked to changes in
arterial pressure and CBF. The original autoregulation model proposed in Reference 75 reproduces also the meta-
bolic response of cerebral autoregulation, which is linked to carbon dioxide reactivity and the amount of oxygen
reaching the brain tissue. This mechanism is not included in the present paper, as the current version of our
model does not yet include a submodel for the transport of CO2 and oxygen in the brain. It is an aspect to be
considered in the near future.

Cerebral myogenic autoregulation is activated by changes in CBF; its action on the arterial microvasculature (arteri-
oles and capillaries) includes a static gain G and first-order low-pass dynamics with the time constant τ. An increase in
CBF causes vasoconstriction and, consequently, a decrease in compliance and an increase in resistance. The regulatory
response is modeled by a sigmoidal static relationship with upper and lower levels to account for the limits of vasodila-
tation and vasoconstriction capacities.

The following differential equations describe the actions of autoregulation by means of first-order low-pass dynam-
ics, time constants and gains
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τ
dxi
dt

¼�xiþGi
Qi�Q

T
i

Q
T
i

 !
; ð43Þ

xi is the state variable of cerebral autoregulation of the ith cerebral terminal artery that responds to alteration of
CBF. Gi is the static gain for the ith cerebral terminal artery; it is evaluated from the total static gain of autoregulation
G (which valued will be defined in section 4.1) according to the flow distribution inside the brain. Qi is the time aver-
aged flow and Q

T
i is the reference flow at the ith terminal artery over the period t�T, t½ �, where t is the current time

and T is the cardiac cycle duration.
Once the control actions xi of each ith terminal artery are found solving the ordinary differential Equation (43), arte-

rial compliances are changed through a sigmoidal relationship.

Ci ¼Ci 1�ΔCi=2ð Þþ 1þΔCi=2ð Þexp �xið Þ=ki½ �f g
1þexp �xið Þ=ki½ � , ð44Þ

with upper and lower saturation levels. In this section, Ci, Ri and Vi stand for compliance (Cal, Ccp), resistance (Ral,
Rcp) or volume of arteriolar and capillaries compartments that are in the vascular beds linked to the ith terminal artery,
ki is a constant parameter, inversely proportional to the central slope of the sigmoidal curve, Ci and ΔCi are the central
value and the amplitude of the sigmoidal curve. ΔCi depends on whether vasodilation or vasoconstriction is considered
and it is chosen for each terminal artery as follows

ΔCi ¼ 2sat1, ki ¼Cisat1 if xi >0,

ΔCi ¼ 2sat2, ki ¼Cisat2 if xi <0,

(
ð45Þ

where sat1 and sat2 are constant parameters that define the upper and lower saturation levels of the sigmoidal curve.
According to the literature,85 the sigmoidal curve is not symmetrical; the increase in blood volume induced by vasodila-
tion is higher than the blood volume decrease induced by vasoconstriction; therefore, two different values must be cho-
sen for the parameter ΔCi. From (44) and (45), it follows that the upper and lower saturation levels of the sigmoidal
curve are Ciþ sat2

2 and Ci� sat1
2 , respectively.

The cerebrovascular control mechanisms affects not only the compliances, but also the arterial resistances. The vari-
ation of compliance in time changes the arterial volume. Since blood volume in a vessel, as a first approximation, is pro-
portional to the radius squared (V / r2), for a given vessel length, and vessel resistance is proportional to the inverse of
radius to the power four (R/ 1=r4), volume varies according to the inverse square root of the resistance (V / 1=

ffiffiffi
R

p
).

Therefore, the following relationship is used to update the resistances of regulating arteries

Vi

V
T
i

¼
ffiffiffiffiffiffi
R
T
i

Ri

s
, ð46Þ

where Vi is the mean volume of the ith arterial compartment (arterioles and capillaries) in the interval t�T, t½ �, while
V

T
i is the mean baseline condition volume, Ri is the current resistance of the arteriolar-capillaries compartment and R

T
i

is the resistance under baseline conditions.

2.3 | Equations for cerebrospinal fluid and brain dynamics

A major aspect of the present paper is the coupling of the circulatory system to a more refined description of the CSF
dynamics than in the first version of our model.59,69 We depart from the model proposed by Linninger and collabora-
tors.62 The version of the Linninger model we present here differs somehow from the original version and includes nine
CSF compartments: the lateral (LV and RV), the third (3 V) and the fourth (4 V) ventricles; the cerebral aqueduct
(AoS), the CSAS, the SSAS and the bi-phasic brain parenchyma, comprising the left and right hemispheres. Each
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compartment is spatially idealized as a cylinder of length l and variable cross-sectional area A tð Þ. Each brain paren-
chyma hemisphere is treated as an incompressible, deformable medium composed of two phases, the solid cell matrix,
representing neurons, glial cells and axon fibers (70% of its total volume), and the extracellular fluid (remaining 30%);
the model assumes that the volume of the solid matrix does not change and therefore brain parenchyma size changes
depend only on the extracellular fluid content variations, that is, changes in porosity. All CSF compartments are inter-
connected and contain CSF assumed to be a Newtonian and incompressible liquid, with a constant viscosity of
0:001kg= msð Þ and a constant density of 998:2kg=m3

.
62

In our model, we assume that CSF is secreted by the choroid plexuses, a highly vascularized region from the micro-
circulation of the anterior and posterior cerebral arteries, into the lateral ventricles. Also included is a constant CSF pro-
duction from arterioles to the ventricles and the diffuse capillary production throughout the brain parenchyma to the
ventricles. Then, CSF flows from the lateral ventricles to the third ventricle and, through the cerebral aqueduct, to the
fourth ventricle. Then CSF is assumed to enter the subarachnoid space. Here, CSF is absorbed into the venous system
through arachnoid villi into the superior sagittal sinus. Moreover, from the CSAS, CSF is displaced into another CSF
compartment, namely the SSAS.

Figure 3 shows the craniospinal compartments involved in the CSF system and their connectivity. The arrows indi-
cate fluid exchange between compartments driven by pressure differences, while dashed arrows denote constant pro-
duction of CSF, from the cerebral arterioles into the lateral ventricles qAl!LVs,const and from the brain capillaries into the
extracellular space of the parenchyma. The type of arrows identifies whether the exchange of CSF between different
compartments is unidirectional or bidirectional.

Flow of CSF in CSF compartments is governed by mass conservation and momentum balance. Such equations are
accompanied by a tube law, relating deformation state and pressure, as for 1D vessels. Other equations are included in

FIGURE 3 Schematic representation of the cerebrospinal fluid (CSF) compartments. RV: right lateral ventricle; LV: left lateral ventricle;

3V: third ventricle; 4V: fourth ventricle; AoS: aqueduct of Sylvius; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space; SSS:

superior saggital sinus Brain: fluid part of brain parenchyma; Al: cerebral arterioles; Cp: cerebral capillaries. Solid double arrows denote

fluid exchange between different compartments driven by pressure differences, while dashed arrows describe constant CSF production. The

combination of a single dashed arrow and a solid double arrow between the brain parenchyma and the capillaries indicates that there are

both fluid exchange driven by pressure differences (qinbr driven by pCp�pbr) and constant CSF production (qCp!br,const). Single solid arrow

denotes CSF reabsorption into the venous system (SSS)
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the model to account for fluid exchange between different compartments of the CSF system or with the vasculature.
The full CSF model is composed of 36 equations and 36 unknowns. The continuity equations read

lRV
dARV

dt
¼ qinRV �qoutRV , ð47Þ

lLV
dALV

dt
¼ qinLV �qoutLV , ð48Þ

l3V
dA3V

dt
¼ qin3V �qout3V , ð49Þ

lAoS
dAAoS

dt
¼ qinAoS�qoutAoS , ð50Þ

l4V
dA4V

dt
¼ qin4V �qout4V , ð51Þ

lCSAS
dACSAS

dt
¼ qinCSAS�qoutCSAS , ð52Þ

lSSAS
dASSAS

dt
¼ qinSSAS�qoutSSAS , ð53Þ

lbr,R
dAbr,R

dt
¼ qinbr,RþqCp!br,const�qoutbr,R�qbr!RV ,const , ð54Þ

lbr,L
dAbr,L

dt
¼ qinbr,LþqCp!br,const�qoutbr,L�qbr!LV ,const : ð55Þ

Equations (47) to (55) are continuity equations that ensure that CSF is neither gained nor lost. Equations (47) to
(53) refer to continuity equations for ventricles, Aqueduct of Sylvious, cranial and SSAS. Each equation guarantees that
the volume change is given by the difference between the volumetric flow rates in and out of that compartment. Equa-
tions (54) and (55) are the continuity equations for the right and left fluid part of the brain parenchyma, respectively. In
this case, the right-hand-side of the equations considers both the volumetric flow rate in and out of the compartment
that is driven by pressure differences and the constant mass transfer. Flow into the the brain parenchyma is the sum of
a constant CSF production from the brain capillaries into the extracellular space of the parenchyma, qCp!br,const and the
pressure driven seepage from the capillaries to the brain parenchyma, qinbr . Flow exiting the brain parenchyma is the
sum of a constant seepage from the extracellular space of the parenchyma into the ventricles, qbr!LV ,const , and a pressure
driven exchange between brain parenchyma and lateral ventricles qoutbr,L.

The momentum equations are effectively Darcy's law of flow and relate the pressure difference between two com-
partments to the volumetric flow q exchanged between them and a resistance to flow R. For the brain parenchyma com-
partments, there are two momentum equations, one refers to CSF exchange between the lateral ventricles and the
extracellular fluid matrix of the brain, while the other one relates to the secretion of CSF from cerebral capillaries. As
shown in Figure 3, these exchange pathways are bi-directional, depending on the hydrostatic pressure differences.
When intracranial pressure exceeds the capillary pressure, reverse flow occurs, that is, in the present model capillaries
are a pathway for CSF drainage. The equations for CSF flow are

qoutRV ¼ pRV �p3V
R3V

, ð56Þ

qoutLV ¼ pLV �p3V
R3V

, ð57Þ
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qinAoS ¼
p3V �pAoS

RAoS
, ð58Þ

qin4V ¼ pAoS�p4V
R4V

, ð59Þ

qinCSAS ¼
p4V �pCSAS

RCSAS
, ð60Þ

qinSSAS ¼
pCSAS�pSSAS

RSSAS
, ð61Þ

qinbr,R ¼
pCp,R�pbr,R

Rbr
, ð62Þ

qinbr,L ¼
pCp,L�pbr,L

Rbr
, ð63Þ

qoutbr,R ¼
pbr,R�pRV

Rbr,2
, ð64Þ

qoutbr,L ¼
pbr,L�pLV

Rbr,2
: ð65Þ

The notation for pressures is obvious for most compartments; for example pCSAS denotes pressure in the cerebral
subarachnoid compartment. Just for clarity, in the last four equations pCp,R is pressure in the capillary compartments of
the right side of the brain, while pCp,L is pressure in the capillary compartments of the left part of the brain; pbr,R is pres-
sure in the extracellular fluid part of the right brain parenchyma and pbr,L is pressure in extracellular fluid part of the
left brain parenchyma. We note that Equation (62) attempts to account for the interacting dynamics of two major CSF
compartments. We are currently investigating these aspects as it has clearly some limitations, particularly regarding the
omission of inertial terms that are known to influence the timing of flow exchange between CSAS and SSAS.87

As already pointed out, the distensibility equations play the role of the tube law; they relate the internal pressure
with the cross-sectional area of the compartment in a linear manner. They describe the dilation and compression of a
compartment; if the pressure of the compartment exceeds the external pressure, the compartment is dilated with
respect to the reference state ϵ0ϵ; in the opposite case, the compartment is compressed. For each compartment inside
the cranial cavity, the external pressure is that of the brain parenchyma; for the SSAS, the external pressure is taken
equal to zero. For a generic compartment z, the distensibility equation expresses pressure pz as a function of cross-
sectional area Az in the compartment and three additional parameters, namely an external pressure pext,z, baseline
cross-sectional area A0

z and a coefficient Ez denoting elastance, that is

pz ¼ pext,zþEz
Az

A0
z

�1

 !
, ð66Þ

Therefore, for each specific compartment the equations are

pRV ¼ pbr,RþERV
ARV

A0
RV

�1

� �
, ð67Þ

pLV ¼ pbr,LþELV
ALV

A0
LV

�1

� �
, ð68Þ
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p3V ¼ 1
2

pbr,Rþpbr,L
� �þE3V

A3V

A0
3V

�1

� �
, ð69Þ

pAoS ¼ pbrþEAoS
AAoS

A0
AoS

�1

� �
, ð70Þ

p4V ¼ 1
2

pbr,Rþpbr,L
� �þE4V

A4V

A0
4V

�1

� �
, ð71Þ

pCSAS ¼
1
2

pbr,Rþpbr,L
� �þECSAS

ACSAS

A0
CSAS

�1

� �
, ð72Þ

pSSAS ¼ESSAS
ASSAS

A0
SSAS

�1

� �
: ð73Þ

Additional equations connecting different compartments are required to complete the description of CSF flow. Spe-
cifically, for the right lateral ventricle RV, the amount of CSF that enters the right lateral ventricle RV is equal to the
amount of CSF exiting the fluid part of the brain parenchyma plus the constant production rate from arterioles
qAl!RV ,const plus the constant production rate from capillaries qCp!br,const, namely

qinRV ¼ qoutbr,Rþqbr!RV ,constþqAl!RV ,const : ð74Þ

Similarly for the left lateral ventricle LV,

qinLV ¼ qoutbr,Lþqbr!LV ,constþqAl!LV ,const : ð75Þ

Then, CSF flows from lateral ventricles to the third ventricle

qoutRV þqoutLV ¼ qin3V , ð76Þ

from the third ventricle to the AoS

qout3V ¼ qinAoS , ð77Þ

from the AoS to the fourth ventricle

qoutAoS ¼ qin4V , ð78Þ

and from the fourth ventricle to the CSAS

qout4V ¼ qinCSAS : ð79Þ

From the cerebral subarachnoid space CSAS, CSF is temporarily displaced into the spinal cavity and reabsorbed into
the superior saggital sinus (SSS) through the arachnoid granulations.62,87 Reabsorption is represented by a mass transfer
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flux, which is a function of the pressure difference between the CSAS and CSAS and a reabsorption constant coeffi-
cient k

qoutCSAS ¼ qinSSASþmax 0,k pCSAS�psinusð Þð Þ: ð80Þ

We take the maximum value between zero and the mass transfer flux to enforce the unidirectional flow from the
cranial SAS to the venous sinus. Previous MRI measurements88 have shown that in a normal subject CSF reabsorption
in the spinal cavity is negligible, since almost the total flow into the spinal SAS goes back into the cerebral SAS; for this
reason, we set the CSF outflow from the SSAS equal to zero,

qoutSSAS ¼ 0: ð81Þ

Finally, the Monro–Kellie hypothesis is enforced: all compartments, except the SSAS, are enclosed inside the cra-
nium and the volume of each cerebral hemisphere remains constant over time

VBlood,RþVRV þ1
2
V3V þ1

2
VAoSþ1

2
V 4V þ1

2
VCSASþVbr,RþVSolid Parenchyma ¼ constant, ð82Þ

VBlood,LþVLV þ1
2
V 3V þ1

2
VAoSþ1

2
V4V þ1

2
VCSASþVbr,LþVSolid Parenchyma ¼ constant: ð83Þ

The volume of each compartment is evaluated as product of its length and its cross-sectional area.
So far, we have presented the complete model for the circulatory system and the craniospinal dynamics. In the next

section, we briefly present the numerical methods to solve all the equations.

3 | NUMERICAL METHODS

Much of the numerical methodology utilized here has already been applied in the original Müller–Toro model for the
human circulatory system.59 Therefore, in the present paper we limit ourselves to a succinct presentation of the numeri-
cal methods, with emphasis on the new aspects, along with relevant references.

3.1 | Overview of methods for PDE system

The hyperbolic system of blood flow Equations (17) is solved numerically using the ADER high-order numerical frame-
work, originally reported in Reference 64; some of the numerous, subsequent ADER developments are found in Refer-
ences 89–96. An up to date review of ADER is found in97 and references therein. An introductory presentation of the
ADER methods is given in Chaps. 19 and 20 of Reference 98. A key ingredient of the ADER method is the solution of
the generalized Riemann problem (GRP). In the present paper, we use the Dumbser–Enaux–Toro (DET) method,95

extended to nonconservative systems in References 99 and 100. This is a locally implicit method that is able todeal with
stiff source terms, in particular, the stiff source terms resulting from the hyperbolic approximation,70,78,79 of the para-
bolic system incorporating the viscoelastic nature of the vessel wall mechanics. The initial conditions for the GRP are
piece-wise smooth and result from a high-order nonlinear spatial reconstruction; here we use the WENO method, as
presented in Reference 101. The DET method makes succesive use of a solver for the conventional piece-wise constant
data Riemann problem. As already pointed out, the governing Equations (17) are written in non-conservative form, for
which we deploy the path-conservative framework102 to compute the numerical fluctuations, the analogues of the
numerical fluxes for conservative methods. As is well known, the presence of source terms in the equations requires a
suitable modification of the scheme so as to make it well-balanced. The present numerical scheme is indeed well-bal-
anced, as proposed in Reference 60; this is a modification of the original Dumbser–Osher–Toro (DOT)103,104 for con-
structing well-balanced fluctuations for a first-order nonoscillatory scheme in the framework of path-conservative
schemes. Full details of the schemes for the present application are found in References 105, 60.
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An enhancement to the numerical methodology for the present model of the human circulatory system is the LTS
technique,72 adapted from Reference 106. The technique is akin to the adaptive mesh refinement methodology,107 in
which different patches of the full domain are identified by a common spatial discretization length; then each patch is
updated with a constant time step for that patch. Explicit methods, such as the present ADER method, are constrained
to satisfy the Courant–Friedrichs–Lewy (CFL) stability condition. This is normally implemented on the basis of the
maximal wave speed present in the full domain and a minimal length emerging from the spatial discretization. Then,
the time step for the updating of each cell is constant, though the local Courant numbers are variable. By allowing a
variable time step for each cell, or patches of cells, according to its length and maximal wave speed one may reduce
local numerical diffusion and increase efficiency. It is here where the LTS technique can be very useful. The procedure
requires a careful global time matching at selected time levels. In our previous works on the human circulatory sys-
tem59,70 we have employed the common technique of a fixed time step per time level. In the present paper, we adopt
the LTS technique,72,106 in a vessel-wise manner. It seems as if the first example of a LTS solver applied to blood flow is
in Reference 108. In the present paper, we follow,72 allowing an explicit local time-stepping temporal discretization of
the underlying finite-volume type ADER scheme. The net benefits of the LTS technique are two fold: reduced numeri-
cal dissipation and enhanced computational efficiency by orders of magnitude.

Considering the introduction of viscoelasticity and the LTS technique, it is essential to adopt a numerical methodol-
ogy that considers the viscoelastic effects and solves the GRP at the coupling of several 1D vessels (junctions) accurately
enough in order to preserve the formal accuracy of the scheme used for the resolution of conservation laws within the
1D domain. For the numerical treatment of the junctions, we follow.59,72,109,110 Briefly, the adopted coupling strategy
enforces mass conservation and total pressure continuity among vessels sharing a node, while generalized Riemann
invariants are used to ensure that coupling conditions and states within 1D domains belong to a smooth solution of the
original PDE system.

A succinct description of the numerical methodology for solving the system of PDEs (17) for the human circulatory
system has been presented. Next, we describe the solution methods for the equations for the CSF system in the
craniospinal space, along with the coupling procedure between the circulation and the CSF and brain dynamics.

3.2 | Numerical treatment of CSF equations and its coupling to the circulation

The description of CSF and brain dynamics leads to a system of 36 equations with 36 unknowns. The unknowns for
each CSF compartment are pressure, cross-sectional area (which defines a volume since each compartment has an
assigned length), inflow and efflux. The coupling between blood flow and CSF dynamics is explicit. The two systems
are solved in a sequential manner. As we are using a LTS technique in a vessel-wise fashion, each 1D vessel is allowed
to evolve in time according to a local time step given by its local stability criterion. All vessels have a common synchro-
nization time defined by the prescribed maximum time step Δtmax allowed by the LTS procedure. Therefore, the cou-
pling between blood flow and the cranio-spinal systems is performed every synchronization time tn ¼ t0þnΔtmax , with
t0 the initial time. Figure 4 describes the coupling procedure from time tn to time tnþ1. At the beginning of each time
step, the vectors Sn and Bn are known. The vector Sn represents the unknowns for the blood circulation system that
includes area, flow and pressure in 1D vessels, as well as other 0D blood compartments. The vector Bn represents the
unknowns for the CSF and brain dynamics models. In the first step, the equations for the blood circulation models are
solved. First, the system of ODEs for the cerebral autoregulation model are solved by the explicit Euler scheme, in order
to find the new cerebral resistances and compliances, as described in section 2.2.5. Then we solve the system of partial
differential equations for blood flow in 1D vessels and the 0D blood compartments for the heart and pulmonary circula-
tion, microvasculature, SR and venous valves. Each jth vessel is evolved using the ADER scheme according to its local
time step until it reaches the next time step tnþ1 ¼ tnþΔtmax . The 0D blood compartments are solved by an explicit
Euler scheme and coupled to the 1D vessels. The external pressure for the intracranial 1D vessels and vascular beds, as
well as for the SR models, is given by the mean pressure between the left and right sides of the brain parenchyma (pbr,R
and pbr,L) at time tn. Once the blood circulation equations have been solved, the cerebral capillary pressures (pCp,R and
pCp,LÞ, the superior sagittal sinus pressure (psinus) and the intracranial blood volume (Vblood,R, Vblood,L) are provided to
the CSF models. This determines the CSF production, reabsorption rates and the blood volume inside the skull for the
Monro–Kellie hypothesis. At this point, the system of differential and algebraic equations for the CSF and brain dynam-
ics are solved by an implicit Euler scheme.
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At the beginning of the simulation, given the initial conditions for the blood circulation models, the ODEs and sys-
tems of equations for the CSF and brain dynamics models are solved. In this way, the initial intracranial pressures are
found and used as external pressure in the first time step update of the blood circulation.

4 | PARAMETRIZATION OF THE MODEL

In this section, we present all the parameters needed for the implementation of the global closed-loop model. The
parameters assignment correspond to a healthy young male subject. We underline that the parameters are, unless oth-
erwise specified, the ones proposed in References 59,69.

4.1 | Blood flow model parameters

4.1.1 | Arteries and veins

The 1D vascular network contains 323 1D segments, of which 98 are arteries and 209 are veins, all linked by 143 junc-
tions. Figure 5 shows a schematic representation of such networks, while Figure 6a,b provide a detailed description of
head and neck arteries and veins. Compared to the network used in References 59,69, in the present article we propose
a detailed description of the highly vascularized regions of the posterior part of the brain. Blood supply to the brainstem
is crucial for the function of sensory and motor pathways, as the nerve connections of these systems from the main part
of the brain to the rest of the body pass through it. More importantly, the brainstem plays a key role in maintaining car-
diac and respiratory functions, such as heart rate and breathing. Three main arteries supply blood to the cerebellum:
the superior cerebellar artery (SCA), the anterior inferior cerebellar artery (AICA) and the posterior inferior cerebellar
artery (PICA). AICA (No. 304, 305, 306, 307) was previously included in our model for the ear circulation network68;
the other arteries are added here using data from the ADAN network111 and from the literature.112 PICA (No. 285, 286,
310, 311) arises from the vertebral artery at about 15 mm from the vertebrobasilar junction. SCA (No. 287, 288) arises
from the basilar artery near the bifurcation of the basilar into the posterior cerebral artery. The brainstem is supplied
by the medullary branch of the PICA (No. 308, 309), the anterior spinal artery (No. 312, 313), which arises from the

FIGURE 4 Schematic representation of the coupling between blood circulation and CSF and brain dynamics models. Sn and Bn are the

vectors of unknowns in the blood circulation models (1D vessels and other 0D blood compartments) and in the CSF and brain dynamics

model at time tn. From Bn, the pressures of the left and right fluid part of the brain parenchyma pnbr,R and pnbr,L at time tn are used to find the

solution Snþ1 for the hemodynamics equations and the cerebral regulation. From Snþ1, the superior sagittal sinus pressure pnþ1
sinus, the pressure

of capillaries pnþ1
br,R , p

nþ1
br,L and the total cerebral blood volume Vnþ1

blood,R, V
nþ1
blood,L are used to find the solution Bnþ1 for the CSF and brain

equations
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terminal part of the vertebral artery and the pontine arteries (No. 316, 317, 318, 319), lateral branches from the basilar
artery that supply the pons. All these arteries end in the vascular beds of the cerebellum and brainstem.

According to experimental observations,113–115 the mean value of blood flow to the cerebellum and the brainstem is
about 10% of the total CBF. Following Reference 113, we estimate that flow to the cerebellum and to the brainstem are
1.01 and 0.13 ml/s, respectively. The posterior part of the brain is drained by the group of cerebellar veins, such as the
superior cerebellar veins and the inferior cerebellar veins. In this work, the intricate venous vasculature is represented
by three main veins: the superior vermian vein (No. 289, 290), the superior petrosal vein (No. 298, 299, 300, 301) in the
superior part and the inferior vermian vein (No. 291, 292, 295, 296) in inferior area. The superior vermian vein drains
into the vein of Galen (No. 106), the superior petrosal vein drains into the petrous sinus (No. 111, 112) while the inferior
vermian vein drains into the transverse sinus (No. 101, 102). The addition of the posterior brain vasculature is essential

(A) (B)

FIGURE 5 Arterial and venous network composed of 114 arteries and 209 veins; numbers refer to those used in Tables A1 and A2
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to explore some medical conditions that affect the brainstem and the cerebellum, such as the effect of vertebral artery
hypoplasia in the ipsilateral PICA.116 Moreover, in order to analyze better the implications of venous strictures in the
pathophysiology of Ménière's disease, we redefine the ear vasculature previously included in References 68. The ear is
mainly supplied by the labyrinthine artery,117–119 which arises from the AICA, passes through the internal acustic mea-
tus and then perfuses the inner ear. More details about the complete vessel network can be found in the Appendix.

The coefficient K present in tube law (5) is obtained from the reference wave speed c0 assumed for each vessel; in
this work, we estimate its value, distinguishing arteries, veins and dural sinuses. For arteries, this wave speed is com-
puted as proposed by Olufsen et al,120 namely,

c20 ¼
2
3ρ

k1exp k2r0ð Þþk3ð Þ , ð84Þ
where r0 is the artery's radius at the reference configuration, k1, k2 and k3 are empirical constants and are taken to
achieve normal wave speeds in the large vessels for a young adult human and a reasonable increase in smaller vessels.
We set k1 ¼ 3�106 g=s2=cm, k2 ¼�7 cm-1 and k3 ¼ 40�104 g=s2=cm. Following Reference 59, the venous reference
wave speed is estimated as follows

c0 ¼ c0,max � c0,max � c0,minð Þ r� rmin

rmax � rmin

� �1
2

, ð85Þ

where c0,max ¼ 400 cm=s, c0,min ¼ 150 cm=s and rmax ¼ 0:8 cmrmin ¼ 0:08 cm are the maximum and minimum vein radii
in the network. Due to the physiological rigid nature of the dural sinuses, for them we set a constant reference wave
speed equal to 1500 cm=s.

(A) (B)

FIGURE 6 Detail of head and neck arteries (left) and veins (left); numbers refer to those used in Tables A1 and A2
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4.1.2 | Vascular beds

As a consequence of the addition of vessels to the original network presented in References 59,69, the present work
includes four new terminal models representing the microvasculature of inner ear and brainstem-cerebellum. Table 1
summarizes the simple connections between one artery and one vein while Figure 7 shows the complex vascular beds.

Parameters corresponding to the microcirculation are not always retrievable from the literature; therefore, we use
the strategy proposed by References 58 and 61. Total arterial resistance, arterial compliance and venous compliance are
fixed up to a constant, according to literature data. Total arterial resistance is fixed to 0:85 mmHg=ml while arterial and
venous compliances are 1:7 ml=mmHg and 146 ml=mmHg, respectively. For each terminal artery, we set a total arterial
resistance RT (taken as the equivalent resistance of the circuit formed by distal arteries, arterioles and capillaries, using
data from References 59,69, and then modified to match the fixed arterial resistance). Then, each resistance is distrib-
uted between vascular subsystems according to the general pressure distributions among vascular segments. Art-
erialcharacteristic impedance Rda is set to be 15% of RT while the remaining part is partitioned between arterioles and
capillaries as 70% for Ral and 30% for Rcp; if an artery splits into two venous capacitors (as for the second artery in the
Figure 2), we divide the resistance of the capillaries part according to the flow distribution into venous capacitors. In
order to approximate the flow distribution of each venous capacitor, we use the Murray's law, that is, we assume that
the flow rate of a vessel is proportional to the cube of its radius; therefore, the flow rate of each venous capacitor is pro-
portional to the sum of the cube of the radii of 1D terminal veins draining from this capacitor. As for the total arterial
resistance, the total arterial compliance is fixed to a value taken from Reference 61 and then it is distributed among the
respective vascular bed compartments (Cart) according to Reference 58. Finally, Cal is set equal to Cart and Ccp is set to
be 0:15Cart . In Table A1 we report the total arterial resistance RT and compliance Cart for each terminal artery.

Concerning the venous compliances, we redistribute the venous compliance of each territory following Liang
et al.58 If a vascular bed is composed of two venous capacitors, we divide the venous compliance of the entire vascular
beds according to flow divisions among them. The venous impedance Rvn is taken as in References 59,69. Table A2

TABLE 1 Vascular beds—simple connections between one artery and one vein. Cvn index: number of the venous capacitor

Terminal index Artery index Cvn index Vein index

1 8 1 187

2 43 2 188

3 44 3 189

4 45 4 190

5 46 5 191

6 19 6 192

7 41 7 251

8 42 8 214

9 37 9 179

10 55 10 215

11 54 11 256

12 52 12 180

13 36 13 184

14 51 14 183

15 32 15 211

16 28 16 208

17 30 17 207

18 169 18 234

19 170 19 235

20 14 20 250
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shows the venous resistance Rvn of each terminal vein and the value of the venous compliance Cvn of the venous capaci-
tor associated to the vein.

4.1.3 | Heart and pulmonary circulation

Parameters for heart chambers and cardiac valves are taken from literature References 59 and 61, and then adjusted
accordingly to our vessel network. The duration of a cardiac cycle is set to 0:8 s. Other parameters are reported in

FIGURE 7 Complex vascular beds: red rectangles refer to connecting arteries, green squares to venous capacitors while blue rectangles

to terminal veins, as depicted in Figure 2. Arrows show if an artery is linked to one or both capacitors and the veins connected to each

capacitor. Vessel numbers refer to those used in Tables A1 and A2
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Tables 2 and 3. Parameters for the pulmonary circulation are the same as in the Müller–Toro model, previously taken
from References 73, and reported in Table 4. Finally, concerning the pericardium parameters, we set VPC equal to
400 ml and ΦPC equal to 100 ml.

4.1.4 | Venous valves and Starling resistors

According to the vessel network extension, this work presents additional valves and SR, for a total of 17 valves and
21 resistors. Table 5 shows the location of these elements in the vessel network. Parameter values for venous valves are
set to describe a normal functioning valve and are given by Ms ¼ 1, Mr ¼ 0:001, Ko ¼ 133:32 1

mmHg s, Kc ¼ 40 1
mmHg s.

Parameters for SR are set to Ms ¼ 0:5, Mr ¼ 0:05, Ko ¼Kc ¼ 133:32 1
mmHg s.

4.1.5 | Autoregulation

The cerebral autoregulation model works on 12 terminal cerebral arteries; the baseline haemodynamic parameters of
these arteries are set from the periodic solution obtained for a baseline simulation and reported in Table 6.

TABLE 2 Heart chambers parameters RA: right atrium, RV: right ventricle, LA: left atrium, LV: left ventricle

RA RV LA LV

EA mmHg=mlð Þ 0.07 0.55 0.07 2.75

EB mmHg=mlð Þ 0.04 0.05 0.09 0.12

Tcp sð Þ 0.25 0.4 0.17 0.4

Trp sð Þ 0.17 0.15 0.17 0.15

tc sð Þ 0.7 0.3 0.8 0

tr sð Þ 0.97 0.0005 0.97 0.3

α 0.0005 0.0005 0.0005 0.001

Pini mmHgð Þ 5.09 5.06 6.56 8.6

TABLE 3 Cardiac valves parameters. TriVal: tricuspid valve, PulVal: pulmonary valve, MitVal: mitral valve, AorVal: aortic valve

TriVal PulVal MitVal AorVal

Ms 1 1 1 1

Mr 0.00001 0.00001 0.00001 0.00001

Ko (cm
2/dynes/s) 0.03 0.02 0.02 0.02

Kc (cm
2/dynes/s) 0.04 0.02 0.04 0.02

le (cm) 2 1.5 2 1

Aa (cm
2) 6 5.7 5.1 4.9

TABLE 4 Parameters for pulmonary circulation. E0: baseline elastance (mmHg/ml); Φ: volume constant (ml); R: resistance (mmHg/

s/ml); L: inductance (mmHg/s2/ml); S: viscoelasticity (mmHg/s/ml)

E0 Φ R L S

Artery 0.02 20.0 0.040 0.0005 0.01

Capillary 0.02 60.0 0.040 0.0005 0.01

Vein 0.02 200.0 0.005 0.0005 0.01
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Other parameters of the model are taken from Ursino and Giannessi work75 and adjusted to match our cerebral ves-
sel network values (Table 7). For each terminal artery, the gain of autoregulation Gaut,i is computed from the total G,
according to the flow distribution inside the brain.

TABLE 5 Location of venous valves (on the left) and Starling resistors (on the right). Vessels numbers refer to those used in Table A2

No. Left vessel index Right vessel index

1 193 195

2 194 196

3 244 160

4 257 171

5 258 172

6 253 257

7 254 258

8 175 178

9 176 177

10 251 212

11 256 173

12 252 213

13 255 174

14 92 242

15 93 243

16 90 140

17 91 148

No. Left vessel index Right vessel index

1 158 261

2 159 262

3 161 263

4 162 264

5 237 265

6 238 266

7 239 267

8 249 268

9 245 269

10 260 270

11 271 106

12 150 272

13 151 273

14 276 281

15 277 282

16 279 283

17 280 284

18 291 295

19 292 296

20 298 300

21 299 301
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4.2 | CSF model parametrization

Parameters for the CSF model are based on Linninger et al.62 Table 8 shows length and area at rest of the cylindrical
volume representing each cerebral compartment, and different values of elastance taken from the literature. Table 9
reports flow resistance values; they account for the pressure drop in the fluid along the length of a compartment due to
viscous forces and they are obtained from the dynamic fluid viscosity μ, the length of the compartment l and the square
of the compartments' cross-sectional area.

As already written in section 2.3, the CSF model adopted here accounts for constant production of CSF, from capil-
laries qCp!br,const and from arterioles to lateral ventricles qAl!LV ,const. Almost two-thirds of the total CSF production
takes place in the choroid plexus of the lateral ventricles; it was found clinically that this process is almost invariant to
pressure changes suggesting an active transport process.121 As in Reference 62, we fix a constant mass transfer indepen-
dent from pressure equal to qAl!LVs,const ¼ 0:00583 ml/s. Moreover, there is CSF mass transfer from capillary beds into
the brain parenchyma; the constant diffuse CSF production is set equal to qCp!br,const ¼ 0:0005 ml/s. The active
exchange between capillaries and brain parenchyma is governed by Equations (62) and (63), where CSF seepage is
governed by pressure differences.

TABLE 6 Baseline values of cerebral haemodynamic variables obtained from a periodic baseline simulation

No. Vessel name Q
T
[ml/s] R

T
[mmHg/ml] C [mmHg/ml] V

T
[ml]

58 Right posterior cerebral artery II 1.42 39.15 3.324E-06 0.26

61 Right middle cerebral artery 3.01 19.06 6.649E-06 0.55

63 Right anterior cerebral artery II 1.54 38.08 3.324E-06 0.28

65 Left anterior cerebral artery II 1.54 38.08 3.324E-06 0.28

67 Left middle cerebral artery 3.01 19.06 6.649E-06 0.55

70 Left posterior cerebral artery II 1.42 39.15 3.324E-06 0.26

287 Right SCA 0.30 132.55 6.649E-07 0.06

288 Left SCA 0.30 132.55 6.649E-07 0.06

306 Right AICA II 0.08 714.26 6.589E-07 0.058

307 Left AICA II 0.08 714.26 6.589E-07 0.058

308 Right PICA MB 0.005 11885.65 6.589E-07 0.058

309 Left PICA MB 0.005 11,887.52 6.589E-07 0.058

310 Right PICA II 0.13 449.13 6.589E-07 0.058

311 Left PICA II 0.13 449.13 6.589E-07 0.058

312 Right anterior spinal a. 0.06 1048.93 6.589E-07 0.058

313 Left anterior spinal a. 0.06 1048.93 6.589E-07 0.058

316 Right pontine a. I 0.001 63,752.68 6.589E-07 0.058

317 Right pontine a. II 0.001 63,669.28 6.589E-07 0.058

318 Left pontine a. I 0.001 63,726.28 6.589E-07 0.058

319 Left pontine a. II 0.001 63,668.30 6.589E-07 0.058

TABLE 7 Parameters for the autoregulation model, taken from Reference 75

Parameter Value

τ (s) 20

G 0.9

sat1 0.55

sat2 2.0
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CSF reabsorption is described in (80) by a mass transfer flux that is a function of the pressure difference between
the subarachnoid space and the superior sagittal sinus and a reabsorption constant k. In this work, we use k¼ 0:0027
mmHg/ml/s. We underline that variation of reabsorption constant could simulate pathological situations; for example,
an increase of the reabsorption resistance may be due to inflammation of meninges while acute communicating hydro-
cephalus could be simulated by reducing k.

48,62

5 | SAMPLE NUMERICAL RESULTS AND VALIDATION

In this section, we present computational results obtained with the presented model in order to perform a comprehensive vali-
dation of the model's outputs. 1D domains are divided into computational cells with a reference length of Δx¼ 1 cm, impos-
ing a minimum of one computational cell in each vessel. Once that the mesh spacing of a vessel is fixed, the respective
relaxation time ϵ for each vessel is computed in order to ensure that the accuracy criterion for the hyperbolic
reformulation proposed in Reference 70 is satisfied. The CFL coefficient is set to CFL¼ 0:9 according to the linear sta-
bility limit of ADER finite volume schemes for 1D problems. A maximum time step of Δtmax ¼ 1�10�3 s is allowed. All
computations are run using a second-order accurate version of the numerical scheme previously described. Other
parameters linked to the blood characteristics are the blood viscosity taken as μ¼ 0:045 P and the blood density

TABLE 8 Hydraulic length, area at rest and elastance of each cerebral compartment

Compartment Length [cm] Area at rest [cm2] Elastance [mmHg]

LVs 0.75 12 7.55

V 1 2.5 7.55

AoS 1.8 0.00785 7.55

V 1 3.5 7.55

CSAS 1.69 17.76 80

SSAS 43 2 160

Brain parenchyma (Fluid) 14 30

Brain parenchyma (Solid) 14 70

TABLE 9 Flow resistances of cerebral compartments

Compartment Resistance [mmHg=ml]

3V—R3V 0.2

AoS—RAoS 5.5

V—R4V 0.2

CSAS—RSSAS 0.2

SSAS—RCSAS 0.1

Brain—Rbr 81,520

Brain—Rbr,2 500

TABLE 10 Initial pressure conditions for vascular compartments

Compartment Pini [mmHg]

Arteries 70.0

Veins 5.0

Arterioles 45.0

Capillaries 25.0

Venules 10.0
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ρ¼ 1:06 g=cm3. The reference pressures taken as initial conditions are reported in Table 10. Given the closed-loop
nature of our model, such pressures are important since they determine the periodic solution that the system will reach
by defining the stretched blood volume. All the computational results shown in this section are obtained with simula-
tions of 2000 cardiac cycles. A periodic state is reached after approximately 1600 cycles; compared to References 59, the
time used to reach the periodicity of the simulation is higher due to coupling between two systems (blood and CSF) that
have different time scales. Therefore, the verification of convergence of the solution is mainly based on the equality of
the CSF production and CSF reabsorption, since CSF production involves the arterial pressure, and the CSF
reabsorption rate is related to intracranial venous pressure. While future work will regard a more efficient treatment of
coupling for the two systems under investigation, it is interesting to note that this difference in time scales poses severe
constrains as to the mass conservation properties of the numerical schemes used to solve this problem. In fact, a dis-
cretization that is not able to enforce mass conservation at a discrete level would result in inability to reach a periodic
solution due to mass conservation error accumulation.

5.1 | Validation of systemic haemodynamics

5.1.1 | Arteries and veins

Figures 8–10 show computed pressure and flow rate at the midpoint of selected vessels in the arterial and venous net-
works. In particular, Figure 8 shows the computed waveforms along the aorta and major arteries of the lower limb.

(B)

(D)

(E) (F) (G)

(C)

(A)

FIGURE 8 Computed blood pressure p (continuous black line) and blood flow q (dashed red line) in the aortic tree at different

locations (a) to (g). Cardiac-cycle averaged values are denoted by p and q
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We can notice that, as the wave travels away from the heart toward the periphery, the systolic peak pressure increases
according to physiological patterns, with a pulse pressure from 25 mmHg in ascending aorta to 45 mmHg in femoral
artery. Moreover, the pressure range covers normal values of a young subject. Along the aorta pathway, the peak flow
decreases progressively. Flow distribution along systemic arteries is assessed by comparing computational results with

FIGURE 9 Blood flow distribution along in selected systemic arteries (left frame) and veins (right frame): computational results of the

present model, computational results from Reference 59 and literature data (average and standard deviation). Asc. Ao.: Ascending Aorta;

Kidneys: sum of both Renal Arteries; Tho. Ao.: Thoracic Aorta; Abd. Ao.: Abdominal Aorta; Ext. Il. A.: External Iliac Artery; Fem. A.:

Femoral Artery; SVC: Superior Vena Cava; IVC: Inferior Vena Cava; AzG V.: Azygos Vein; SCV: Subclavian Vein. Literature: aMurgo et al122;
bWolf et al123; cZitnik et al124; dCheng et al125; eItzchak et al126; fLewis et al127; g Be0eri et al128; h Cheng et al125; i Nabeshima et al129; j Fortune &

Feustel.130

TABLE 11 Cardiovascular indexes

Index Current value Ref. value References

SBP [mmHg] 107.065 105 ± 8 131

DBP [mmHg] 76.126 71 ± 7 131

MBP [mmHg] 93.272 89 ± 8 131

PPAorta [mmHg] 30.939 30 ± 6 131

PPBrachial [mmHg] 37.382 49 ± 9 131

PPAmplification [mmHg] 1.208 1.7 ± 0.14 131

CO [ml/s] 91.363

Ca [ml/mmHg] 2.001 1.7 132

Ees [mmHg/ml] 5.205 4.5 133

Ea [mmHg/ml] 2.746 2.3 133

Ea/Ees 0.528 0.58 133

LVmax 114.263 150 ± 67 61

LVEF 0.655 0.68 ± 0.12 61

max. dPLV
dt 1546.419 1915 ± 410 61

min. dPLV
dt �2861.828 �2296 ± 530 61

Note: Num. Value: computed numerical value; Ref. value: literature reference value with mean and standard deviation. (S/D) BP: systolic/diastolic aortic blood

pressure; MBP: mean blood pressure; PP: pulse pressure in aortic root and in brachial artery; PPAmplification: ratio between pulse pressure in brachial artery and
aortic root; CO: cardiac output; Ca: arterial compliance evaluated as the ratio between stroke volume and brachial pulse pressure132; Ea: arterial elastance; Ees:
left ventricle elastance; Ea/Ees: arterial-ventricular coupling index; LVmax: maximum left ventricle volume; LVEF: averaged left ventricle volume; max. dPLV

dt :
maximum pressure rate of left ventricle; min. dPLV

dt : minimum pressure rate of left ventricle.
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literature data and results obtained with the previous version of the model59; the corresponding bar plots are reported in
Figure 9 (left). We note that when using the terminology literature data we always make reference to experimental data
gathered in vivo and published by other research groups. Main cardiovascular indexes, such as systolic, diastolic and mean
blood pressure and pulse pressure are computed and compared to literature data in Table 11. We conclude that waveform
patterns in the arterial system are in accordance with general physiological data and that blood flow distribution along
the aorta is reasonable. Concerning the venous circulation, Figure 10 shows the pressure and flow rate along the main sys-
temic veins while Figure 9 (right) depicts a comparison of the predicted flow at different locations of the systemic venous
circulation with literature data and results obtained in Reference 59.

It is well known that blood flow in large to medium vessels is a convection-dominated process; therefore neg-
lecting viscoelasticity of vessel walls in 1D models is often chosen as compromise. However, the viscoelastic behavior
of arterial and venous walls is well-known. It has an impact on fundamental hemodynamic characteristics of the car-
diovascular system and plays a determinant role in setting the functional level of the cardiovascular system under
physiological and under pathological conditions. Previous works39,134,135 have shown the benefits of considering vis-
coelastic properties of vessel walls in arterial circulation comparing model predictions and in vivo measurements of
pressure and flow at different location. The effects of viscoelasticity become more significant in the periphery, espe-
cially on the flow wave. The same happens in the venous circulation. Zocalo et al136 showed the importance of the
dynamic process of veins walls to understand venous functioning under normal and pathological conditions; pres-
sures and diameters of anterior cava, jugular and femoral veins from sheep were registered during cyclical volume-
pressure pulses. The vein viscosity was higher in the peripheral segments and this could be important in the response
to acute overloads and in haemodynamic control. In this work, we introduce a viscoelastic tube law not only for the
arterial tree but also in the venous circulation. Both arteries and veins are represented as a Voigt-type visco-elastic
material (Equation 7). Figures 11 and 12 compare computed pressure and flow rate when vessels are represented
with elastic and viscoelastic behavior of their walls. Figure 11 refers to thoracic aorta, femoral and carotid artery
while Figure 12 depicts superior vena cava, femoral and jugular vein; the effect of the viscoelastic tube law is more
evident in peripheral vessels (femoral artery and vein, carotid artery and jugular vein) with respect to central vessels.
In particular, it can be seen that the solution obtained for viscoleastic vessels presents significantly less high-
frequency components with respect to the solution obtained for elastic vessels. This fact is consistent with the

(A)

(C)

(B)

(D)

FIGURE 10 Computed blood pressure p (continuous black line) and blood flow q (dashed red line) in selected systemic veins in

different locations (a) to (d). Cardiac-cycle averaged values are denoted by p and q
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dissipative capacity of real vessels, which, at least for physiological states, do not display pressure and flow wave-
forms with very high-frequency components.

5.1.2 | Vascular beds

Figure 13 shows the computed pressures during a cardiac cycle for three different compartments. The pressure values display
a physiologically behavior in all compartments; from arterioles to venules, the pressure slowly decreases. It ranges between
40 and 80 mmHg for arterioles, between 20 and 25 mmHg for capillaries and between 5 and 15 mmHg for venules. In partic-
ular, 13a refers to a simple connection in the kidney, 13b is a vascular bed in the abdominal region with four supplying arter-
ies and one draining vein while 13c represents the microcirculation pressures in the left part of the posterior brain.

5.1.3 | Heart

Figure 14 shows the computed pressures and volumes for the four cardiac chamberswhile Figure 15 displays the
pressure-volume relationship for the left and right ventricles. The heart model well represents the physiological

(B)

(A)

(C)

FIGURE 11 Computed blood pressure p and blood flow q in selected arteries obtained with viscoelastic (continuous black line, Visco)

and elastic (dashed red line, Elas) model for vessels wall. Cardiac-cycle averaged values are denoted by pVisco and qVisco for viscoelastic vessels

and by pElas and qElas for elastic vessels
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variations of pressure over the cardiac cycle for both atria and ventricles. Moreover, Table 11 compares the predicted
values for selected cardiovascular indexes to literature data, showing overall satisfactory agreement.

5.2 | Validation of cerebral haemodynamics

Figure 16 illustrates predicted pressure and flow waveforms in the head and neck arterial circulation. Moreover, flow
distribution among cerebral arteries is assessed via comparison to literature data and results reported in Reference 59 in
Figure 17 (left). The functioning of cerebral autoregulation is verified by changing arterial resistances of all but the cere-
bral arteries in order to cause a mean arterial pressure change, which would cause an increment in cerebral flow if
peripheral cerebral resistance would not adapt. Figure 18 shows the computed autoregulation curve compared with lit-
erature data from Reference 75. The autoregulation curve relates mean arterial pressure (pressure of vessel No. 1) and
the percentage change in CBF with respect to the baseline situation (evaluated as sum of mean flow over a cardiac cycle
of internal carotid arteries and vertebral arteries).

Particular attention is given to the head and neck veins; in this case, PC-MRI flow measurements were avail-
able from Reference 59; these data were collected by the MR Research Facility at Wayne State University,

(A)

(B)

(C)

FIGURE 12 Computed blood pressure p and blood flow q in selected veins obtained with viscoelastic (continuous black line, Visco) and

elastic (dashed red line, Elas) model for vessels wall. Cardiac-cycle averaged values are denoted by pVisco and qVisco for viscoelastic vessels and

by pElas and qElas for elastic vessels
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Detroit (USA) and were used in Reference 59 to construct the head and neck venous network of the present
model. For details on the image acquisition procedure and a discussion on expected agreement between MRI-
derived flow and model predictions refer to Reference 59; flow waveforms are compared with the underlying
patient-specific MRI flow quantification data. Furthermore, the average flow rate is compared with phase-contrast

(A) (B)

(C)

FIGURE 13 Computed pressure values for three vascular beds. p: pressure of supplying artery; pAl: pressure in arterioles; pCp:

pressure in capillaries; pVen: pressure in venules at venous capacitor; pV: pressure of draining vein. Numbers for supplying arteries and

draining veins refer to numeration in Tables 1 and 7

(A) (B)

(C) (D)

FIGURE 14 Computed pressures p and volumes V in the heart. Continuous black line denotes pressure, dashed red line refers to

volume
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MRI data in Figure 17 (right). Predicted flow waveforms display characteristic features of cerebral venous flow
with a bi-phasic character. Moreover, agreement of PC-MRI-derived average flows and predicted ones is reason-
able (Figure 19).

Figure 20 depicts computed intracranial pressure and pressures of a dural sinus and a cerebral vein; the effect of the
SR is evident: pressure in cerebral veins is always higher than intracranial pressure while dural sinus pressure is
governed by downstream conditions. Figure 21 shows the changes in volume of the main blood cerebral compartments:
arteries, arterioles, capillaries, venules and veins.

5.3 | Validation for CSF and brain dynamics

Here, we analyze pressure, flow and volume of different CSF compartments and their interaction with arterial and
venous blood within the brain; see Figures 22–25. Physiological intracranial pressure (ICP) values have been investi-
gated extensively, ranging from 7 to 15 mmHg for an adult in supine position.142 Generally, ICP refers to the CSF pres-
sure, regardless of where it is measured. In our simulation, slight differences are found between the mean pressure of
the extracellular fluid part of the brain parenchyma and other cranial and spinal CSF compartments. In this context,
we call ICP the pressure of CSF located in the brain parenchyma compartments; specifically, ICP is defined as
1
2 pbr,Rþpbr,L
� �

, that is the average between the CSF pressure of the right and left extracellular fluid part of the brain
parenchyma compartments. Figure 22 reports the pressures of the CSF compartments. The ventricular pressure ranges
from 7.7 to 9.7mmHg with a pulse pressure of about 2mmHg. The cranial and SSASs pressures values lie between
8.1/8.2 and 9.3/9.2mmHg and the pulse pressure is around 1.0mmHg. Comparing the left and right hemisphere, there
are no distinct differences concerning pressures. The brain parenchymal pressure varies from 7.8 to 9.8mmHg, with a
mean value of 8.42mmHg on the right and left sides.

Figure 23 shows an analysis of the intracranial pressure waveform according.143–146 We can notice three physiologi-
cal peaks: the first one, P1 or percussion wave, is the highest, followed by P2 or tidal wave and finally there is P3 or
dicrotic wave, which appears after the dicrotic notch. The peaks come from the arterial pulse wave from the heartbeat
on the brain which essentially floats in CSF; the ICP waveform can usually be seen in time-synchronized fashion rela-
tion to the arterial waveform. The three typical peaks of the intracranial pressure can be observed in all CSF compart-
ments but in the spinal canal they are less pronounced. P1 is caused by the arrival of the arterial flow pulse. P2 is
caused by the second arterial flow peak, which happens before the dicrotic notch, while the third peak, P3, is related to
the increased flow occurring right after the dicrotic notch.

Figure 23 compares the intracranial pressure waveform of the current CSF model based on Reference 62 and that
evaluated considering the simple CSF model proposed by Reference 141 and adopted in Reference 69. While mean ICP
depends on initial conditions for both models, in this second case, the waveform peaks are less well defined. Figure 24
reports changes in volume of the CSF model compartments. The major part of CSF is contained in the cranial and
SSASs, about 30 and 90 ml respectively, where the changes over the cardiac cycle tale place.

Figure 25 shows the time variation of the volumes occupied by different compartments of the cranio-spinal system,
stressing the effect of the Monro–Kellie hypothesis. During systole, intracranial arterial blood increases and arterial pul-
sations are transmitted directly into the incompressible CSF filled SAS. This evokes a chain of events in the following
temporal order: CSF shifts out of the skull into the spinal canal; venous blood from the sinuses flows out of the brain

(A) (B)

FIGURE 15 Computed Pressure-Volume loop for the right and left ventricles
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(A) R. Com. Car. Artery (No. 47) (B) R. Vertebral Artery (No. 6)

(C) R. Int. Car. Artery (No. 5) (D) R. M. Cerebral Artery (No. 61) (E) R. Sup. Cer. Artery (No. 287)

(F) R. Pon. Artery I (No. 316) (G) R. Pon. Artery II (No. 317) (H) R. Ant. Inf. Cer. Artery (No. 306)

(I) R. Post. Inf. Cer. Artery (No. 310) (J) R. PICA Med. Artery (No. 308) (K) R. Ant. Spi. Artery (No. 312)

FIGURE 16 Computed blood pressure p (continuous black line) and blood flow q (dashed red line) in the main cerebral and neck

arteries. Cardiac-cycle averaged values are denoted by p and q
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mainly through the internal jugular veins and part of the CSF from the ventricles is displaced out through the AoS.
Figure 26 underlines the relation between blood and CSF compartments' flow. In Figure 26 (left), arterial inflow,
venous outflow through internal jugular veins, flow in AoS and inflow in SSAS are depicted during a cardiac cycle. In
Figure 26 (right), the CSF and blood normalized flow of the same compartments is shown over a cardiac cycle. The lag
in time between the systolic peaks is reported in Table 12. The arterio-spinal CSF delay is underestimated by the mathe-
matical model compared to the literature range, although the lag in time between arterial systolic peak and CSF peak
in the AoS follows the literature data. This mismatch in the time lag of the flow of CSF into the spinal canal can be
attributed to the lack of inertia of the model describing flow in the spinal canal.147 A 1D model for computing the flow
of CSF within the SSAS under the simplifying assumption that it consists of two coaxial tubes representing the spinal
cord and the dura148 could better capture the physiology and the interaction with other compartments. Despite this, the
comparison of arterial cerebral inflow and inflow of the SSAS with MRI data from Reference 149, depicted in Figure 27,

FIGURE 17 Comparison between present computed results, other computed results59 and literature data (average and standard

deviation) or MRI flow quantification data59 for blood flow in head and neck arteries and veins. Brain: sum of average flow rate in both

internal carotid and vertebral arteries; ICA: Internal Carotid Artery; MCA: Middle Cerebral Artery; BA: Basilar Artery; VA: Vertebral Artery;

SSS: Superior sagittal Sinus; StS: Straight Sinus; TS: Transverse Sinus; IJV: Internal Jugular Vein. Literature: aStoquart-ElSankari et al137; b

Stock et al138; cBoorder et al139
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FIGURE 18 Computed autoregulation curve (blue continuous line) compared to Ursino's data78 (red dots). Mean arterial pressure,

MAP, against the percentage change in cerebral blood flow, % CBF, with respect to the baseline situation
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(A) L. Tran. Sinus (No. 101)

(B) R. Tran. Sinus (No. 102) (C) Sup. Sag. Sinus (No. 103) (D) Str. Sinus (No. 104)

(E) IJ Vein I (No. 229) (F) IJ Vein I (No. 228) (G) IJ Vein III (No. 225)

(H) IJ Vein III (No. 224) (I) IJ Vein VI (No. 243) (J) IJ Vein VI (No. 242)

FIGURE 19 Comparison between computed blood flow q and PC-MRI flow quantification59 in dural sinuses and internal jugular veins.

Full line denotes present model results, PC-MRI flow quantification data is shown with symbols and full line. Cardiac-cycle averaged values

are denoted by q and qMRI
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shows a good match between numerical results and physiological behavior. Finally, Figure 28 shows flow and CSF
velocity through the AoS, featuring an oscillatory behavior with shape and amplitudes similar to those obtained from
PC-MRI flow quantification studies.150

FIGURE 20 Computed cerebral venous pressure p and cerebrospinal fluid dynamics. CV: cerebral vein (No. 158); SSS: superior sagittal

sinus (No. 165); ICP: intracranial pressure (pressure of the fluid parts of the brain parenchyma compartments)

FIGURE 21 Variation in time of V �Vav where V is the volume of a compartment and Vav is the averaged volume over a cardiac cycle.

A: arteries; Al: arterioles; Cp: capillaries; Vn: venules; V: veins

FIGURE 22 Pressure in cerebrospinal fluid compartments over a cardiac cycle. Mean pressure over the cardiac cycle is reported in

brackets. Brain: pressure in fluid part of brain parenchyma; LVs: pressure in lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius;

4V: fourth ventricle; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space
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FIGURE 23 Cerebrospinal fluid pressure. Left frame shows computed pressure of lateral ventricles (LVs), cranial subarachnoid space

(CSAS) and spinal canal (SSAS). Right frame shows computed intracranial pressure with present blood circulation model and the

Linninger's CSF model62 with analysis of the peaks following140 and computed intracranial pressure with current blood circulation model

and Ursino's CSF model141
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FIGURE 24 Cerebrospinal fluid volumes. Variation in time of V �Vav, where V is the volume of the compartment and Vav is the

averaged volume over the cardiac cycle (value reported in brackets). LVs: lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V:

fourth ventricle; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space

FIGURE 25 Time variation of V �Vav of fluid volumes within the cardiac cycle, where V is the volume of the compartment and Vav is

the averaged volume over the cardiac cycle. A: cerebral 1D arteries, arterioles and capillaries; V: cerebral 1D veins and venules; C-CSF:

cranial CSF (CSF in all compartments inside the skull); SSAS: spinal CSF
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6 | APPLICATIONS: IMPACT OF HEAD AND NECK VENOUS STRICTURES
ON BLOOD AND CSF DYNAMICS

In order to show the applicability of the presented model to situations of clinical relevance, we carry out a preliminary
analysis of the effects of transverse sinus stenosis and of strictures in the main extra-cranial venous outflow routes on
the cerebral circulation, CSF and brain dynamics.

6.1 | Idiopathic intracranial hypertension patient with transverse sinus stenoses

The role of vascular abnormalities in the onset and course of neurological diseases has long been recognized. In the last
decade, the influence of intra- and extra-cranial venous pathology as a trigger/cause of certain neurological disorders
has gained attention. IIH is a neurological condition of unknown etiology, which requires prompt diagnosis and if left
untreated can result in a rapidly progressive visual loss. As said before, how increased CSF pressure in the subarachnoid
space influences intracranial arterial and venous fluid dynamics within the framework of the Monroe-Kellie hypothesis
remains unclear. Bateman showed that in IIH, the total cerebral arterial inflow is increased by 21%.69 On the venous
front, there is evidence that almost 93% of patients with IIH harbor some degree of dural sinus stenosis.139

6.1.1 | Problem setup

We investigate the impact of bilateral transverse sinus stenosis on cerebral venous flow and CSF dynamics, paying spe-
cial attention to the role played by collateral flow pathways between deep cerebral vessels and extra-cranial regions. We
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FIGURE 26 Time variation of blood and cerebrospinal fluid (CSF) flow within a cardiac cycle. Left frame shows blood and CSF flow

within a cardiac cycle, where axis on the right refers to AoS flow. Right frame shows CSF and blood normalized flow analysis over a cardiac

cycle. To highlight the temporal dynamic sequence in the four fluid compartments, each flow profile was normalized between 0 and 1 such

that all four systolic peaks correspond to 1. A: arterial flow of internal carotid arteries and vertebral arteries at C2C3 level; V: internal jugular

veins flow at C2C3 level; SSAS: flow of the spinal subarachnoid space; AOS: flow in the aqueduct of Sylvius

TABLE 12 CSF and blood flow over a cardiac cycle

Index Current value Ref. value

Mean arterial flow [ml/s] 13.13 13.55 ± 3.07

Mean venous flow [ml/s] 12.15 9.42 ± 2.37

Mean CSF flow [ml/s] 0.01 0.08 ± 1.33

Mean AoS flow [ml/s] 0.01 0.03 ± 0.013

tIJV/tA [%] 92.52 71.1 ± 22

AV delay [% CC] 5.62 12.5 ± 8.06

Arterio-CSFSSAS delay [% CC] 0.625 5.35 ± 2.36

Arterio-CSFAoS delay [% CC] 28.12 22.1 ± 74.66

Note: Literature range taken from Reference 71. Arterial flow: flow in internal carotid arteries and vertebral arteries; Venous Flow: flow in internal jugular veins at
C2C3 level; CSF flow: inflow of spinal subarachnoid space; tIJV/tA: ratio between total internal jugular veins flow and arterial flow at C2C3 level; AV, Arterio-

CSFSSAS, Arterio-CSFAoS Delay: lag in time between arterial and venous, spinal CSF and AoS CSF systolic peaks represented as a percentage of cardiac cycle.
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introduce stenoses to the reference venous network presented in Table 17 dividing the vessels affected by the stricture
(the right and left transverse sinuses, No. 101 and 102, Figure 29) in two segments and putting between them a stenosis
model. This model is based on References 152,153 and it evaluates the flow variation in time across the stenosis by
means of a first-order ODE

dq tð Þ
dt

¼ 1
L

Δp tð Þ�Rq tð Þ�Bq tð Þ q tð Þj Þ:jð ð86Þ

where Δp is the difference between the upstream and downstream pressures and L, R and B are defined by

FIGURE 27 Computed results compared to measured data. Left frame: normalized cerebral arterial inflow (internal carotid arteries and

vertebral arteries) over a cardiac cycle compared with MRI data from Reference 149. Right frame: normalized inflow of spinal subarachnoid

space at C2/C3 level over a cardiac cycle compared with MRI data from Reference 149

0.0 0.4 0.8
t [s]

-0.2

-0.1

0.0

0.1

0.2

q
[m

l/
s]

Num. data

MRI data

0.0 0.4 0.8
t [s]

-12.0

-6.0

0.0

6.0

12.0

V
el
oc
ity

[c
m

/s
]

Num. data

MRI data

FIGURE 28 Computed flow and velocity in the aqueduct of Sylvius. Left frame: computed cerebrospinal fluid (CSF) flow through the

aqueduct of Sylvius over a cardiac cycle compared with MRI data (mean and standard deviation) from Reference 138. Right frame:

computed CSF velocity in the aqueduct of Sylvius over a cardiac cycle compared with MRI data (mean and standard deviation) from

Reference 150
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FIGURE 29 Location of transverse sinus stenosis and computed flow in healthy control (HC) and stenotic case (ST) compared with

MRI data59
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L¼ kuρls
A0

, R¼ kvμ
2r0A0

, B¼ ktρ

2A2
0

A0

As
�1

� �2

: ð87Þ

A0 and r0 are the mean reference area and radius of the vessels wherein the stenosis model is placed while ls and As

are the length and the minimum area of the stricture, taken equal to 1 cm and 10 %A0. Finally, ku ¼ 1:2, kt ¼ 1:52 and
kv ¼ 16A2

0= r0A2
s

� �
0:83lsþ3:28rsð Þ are empirical coefficients.152,153

6.1.2 | Comparison between healthy and IIH patient

Figure 29 shows computed flow in the transverse sinuses for the healthy control (HC) and for the stenotic case (ST),
along with MRI data for a healthy subject; there is a reduction of average flow rate of about 70%. Moreover, due to the
stenosis, there is a re-distribution of flow in dural sinuses and an increase in dural pressure (Figure 30). As a conse-
quence, there is an increase in pressure in intracranial veins while the arterial flow and pressure are not modified. The
venous hypertension due to transverse sinuses stenosis leads to decreased CSF reabsorption via arachnoid granulation
which depends linearly on the pressure difference between intracranial pressure and superior sagittal sinus pressure.
As a consequence, in order to maintain the balance between CSF generation and absorption, the intracranial pressure
rises; moreover, following the Monro–Kellie hypothesis, a major amount of CSF is displaced into the spinal canal. For
equal narrowing of the transverse sinuses, the severity of intracranial hypertension depends on the ability of the venous
vascular network in developing collateral pathways to brain drainage. Occipital vein and sinus are the main collateral
routes for flow limited by stenosis; the flow through these vessels increases significantly, in particular in the occipital
vein (from 0.722 to 6.567 ml/s). We must consider that the venous network for head and neck used here represents a
best-case scenario, with all possible collaterals present. If the collateral circulation is impaired, the consequences of a
stenosis in the dural sinuses should be aggravated. In order to explore this hypothesis, we performed a simulation
where blood is forced to flow exclusively through the dural sinuses. Results are shown in Figure 31. There we show the
computed intracranial pressure for the HC and for the patient with stenotic transverse sinuses, when the collateral
routes are activated and also when they are compromised. In the first case, there is an increased intracranial pressure
from 8.42 to 9.83 mmHg in brain parenchyma and a comparable increase in other intracranial compartments; on the
other hand, when the collateral routes are excluded, the averaged intracranial pressure over the cardiac cycle rises from
8.42 to 31.16 mmHg in the brain. Concerning the intracranial pressure waveform, in Figure 32 (left) we observe that
the pulse amplitude between the healthy subject and the one with transverse sinus stenosis does not change, both in
case of complete collateral circulation and without collaterals. According to Reference 143, if the ICP values were low,
the pulse wave presents a descending saw-tooth appearance, with a clearly distinct P1 component; as the mean ICP
rises, there is a progressive elevation in the magnitude of P2 and to a lesser extent of P3. Increase in the P2 component
of the intracranial pressure wave is thought to represent decreased intracranial compliance.140,154 Moreover, the

FIGURE 30 Averaged pressure over a cardiac cycle of different dural sinuses: comparison between healthy control (HC) and stenotic

case (ST). HC: healthy control subject; ST—with Cols.: subject with transverse sinus stenosis and complete collateral circulation; ST—no

Cols.: subject with transverse sinus stenosis without collateral circulation. TS: transverse sinus; SS: straight sinus; SPS: superior petrosal

sinus; IPS: inferior petrosal sinus; SSS: superior sagittal sinus; ISS: inferior sagittal sinus
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increase in the P2 and P3 components of the ICP waveform may result from retrograde transmission of venous pres-
sures to the CSF when there are changes in the cerebral venous system.144 From the numerical experiments shown
here, we barely observe such changes in the ICP waveform. We attribute this fact to the linear character of intracranial
compliant compartments. We consider it a limitation of our model in its current form, that will be addressed in
future work.

Table 13 reports the cardiac cycle-averaged cerebral arterial volume (1D arteries and arterioles), venous flow (capil-
laries, venules and 1D veins), cranial CSF and spinal CSF. Arterial volume is 28.98% of total blood volume; this data is
in line with Reference 155 where the percentage of arterial blood volume with respect to total cerebral blood volume
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FIGURE 31 Pressure in CSF compartments over a cardiac cycle: comparison between healthy control (HC) and subject with transverse

sinuses stenosis (ST). When the collateral routes are blocked, the intracranial pressure rises by 30 mmHg. HC: healthy control subject; ST—
with Cols.: subject with transverse sinus stenosis and complete collateral circulation; ST—no Cols.: subject with transverse sinus stenosis

without collateral circulation. Brain: fluid part of brain parenchyma; LVs: lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V:

fourth ventricle; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space

FIGURE 32 (Left frame) Intracranial pressure waveform: comparison between healthy control (HC) and subject with transverse

sinuses stenosis (ST) with and without collateral circulation. We consider as intracranial pressure the pressure in the fluid part of the brain

parenchyma. p: computed intracranial pressure, p: averaged pressure over a cardiac cycle (value written in brackets). (Right frame) Variation

in time of flow through the aqueduct of Sylvius for the healthy control (HC), a patient with transverse sinus stenosis with collaterals (ST—
with Cols.) and a patient with transverse sinus stenosis without collaterals (ST—no Cols.). HC: healthy control subject; ST—with Cols.:

subject with transverse sinus stenosis and complete collateral circulation; ST—no Cols.: subject with transverse sinus stenosis without

collateral circulation
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was estimated to be approximately 20–30%. When the collateral routes are blocked, the spinal CSF volume increases
from 90.42 to 100.90 ml without significant changes in cerebral venous blood and cranial CSF. This rather insensitive
behavior of venous blood volume is thought to be related to the modeling approach adopted for representing SR, which
resistance to flow is not influenced by transmural pressure, see section 7 for more details. Figure 32 (right) shows flow
through the AoS. As for the case of ICP, we observe small changes in flow pulsatility for all cases considered. This
observation is not in line with experimental observations of flow across the AoS in patients with venous obstructions to
cerebral blood drainage, where visible increase in flow pulsatility is observed.150,156,157 As already remarked for ICP, we
believe that this behavior is due to the lack of non-linear compliance in intracranial compartments.

Cerebral arterial inflow is similar between healthy and stenotic subjects with collaterals, 13.13 and 12.92 ml, show-
ing that the cerebral autoregulation is maintaining the cerebral perfusion. The cerebral arterial pressure evaluated in
the middle cerebral artery is 85.49 mmHg in healthy subject and 85.64 mmHg in the ST. However, the ratio between
total jugular veins flow and arterial inflow is decreased from 93% in HC to 87% in subject with transverse sinuses steno-
sis; the outflow is deviated to external jugular veins and vertebral veins. When the collateral circulation is blocked in
the ST, the arterial inflow is decreased to 10.11 ml and the ratio between total jugular veins flow and arterial inflow is
94%. The pressure in main cerebral arteries is increased by 3 mmHg. In this case, the CBF is significantly lower than
that of HC, since the cerebral autoregulation is not able to fully compensate the drop in perfusion pressure (cerebral
arterial pressure minus intracranial pressure) by reducing peripheral arterial resistances. According to Reference 63,
standard MRI, MR venography and MR flow quantification studies revealed that the mean arterial inflow in stenotic
patient with IIH is 21% above normal, but the SSS outflow was within the normal range; this means that the mean out-
flow as a percentage of the total inflow was reduced: this is evidence of collateral flow. In our mathematical model, we
do not observe an increase in arterial inflow, both with and without collaterals circulation. However, when the collat-
erals are present, the percentage of venous outflow to arterial inflow is decreased, as in Reference 63. When the collat-
eral circulation is reduced, the arterial inflow predicted by our model decreases. While this is the expected behavior if
one analyses how our model is constructed, it contradicts observations in Reference 63. This disagreement could be due
to the fact that we consider a sudden change from a baseline situation to a pathological one. There certainly are short-
and/or long-term mechanisms not considered in our model that produce the above mentioned experimental

TABLE 13 Computed averaged volume of blood and CSF over a cardiac cycle in main cerebral compartments

HC ST—with Cols. ST—no Cols.

Arterial blood [ml] 48.01 48.00 48.05

Venous blood [ml] 117.84 118.12 119.83

Cranial CSF [ml] 469.55 469.86 471.53

Spinal CSF [ml] 90.42 91.18 100.90

Note: Arterial Blood: 1D arteries and arterioles; Venous Blood: capillaries, venules, 1D veins; Cranial CSF: lateral, third and fourth ventricles, aqueduct of

Sylvius, cranial subarachnoid space and fluid part of the brain parenchyma; Spinal CSF: spinal subarachnoid space. Comparison between healthy control and
stenotic cases. HC: healthy control; ST—with Cols.: stenotic case with collaterals; ST—no Cols.: stenotic case without collaterals.

TABLE 14 Cerebrospinal fluid exchange qinbr,L�R and qoutbr,LR and brain porosity Φbr (ratio between fluid part and total volume of brain

parenchyma, considering a solid part of 980ml): Comparison between healthy control and subject with transverse sinuses stenosis with and

without collaterals

HC ST - with Cols. ST - no Cols.

qinbr,L�10�4 [ml/s] 7.4 7.3 (�1.37) 7.0 (�5.4)

qinbr,R�10�4 [ml/s] 7.4 7.3 (�1.37) 7.0 (�5.4)

qoutbr,L�10�4 [ml/s] 7.4 7.3 (�1.37) 7.0 (�5.4)

qoutbr,R�10�4 [ml/s] 7.4 7.3 (�1.37) 7.0 (�5.4)

Φbr 0.298 0.298 0.298

Note: Percentage variation with respect to healthy case in brackets. HC: healthy control; ST—with Cols.: stenotic case with collaterals; ST—no Cols.: stenotic
case without collaterals.
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observation of increase cerebral flow in IIH patients. This aspect will be investigated in future work. Table 14 shows the
flow coming in and out of the left and right brain parenchyma (considering the pressure driven and the constant flow)
and the brain porosity, evaluated as the ratio between the volume of the fluid part of the brain parenchyma and its total
volume. The flow through the brain parenchyma decreases when there are stenotic transverse sinuses with respect to
the HC; when the collateral circulation is blocked, this decrease reaches 5%, that is almost 16% if we consider the

FIGURE 33 Computed cardiac-cycle averaged pressures p for the healthy control (HC) and the CCSVI subjects with case 1 and case

2 with collateral circulation. (Left frame) Pressures p in main dural sinuses. SPS: superior petrosal sinus, IPS: inferior petrosal sinus; TS:

transverse sinus; SSS: superior sagittal sinus; ISS: inferior sagittal sinus. (Right frame) Brain parenchyma pressure and results in main veins

of the right inner ear. VCAQ: vein of the cochlear aqueduct; LABV: labyrinthine vein
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FIGURE 34 Computed pressure p in CSF compartments over a cardiac cycle: comparison between the healthy control (HC) and CCSVI

patient (ST). Brain: fluid part of brain parenchyma; LVs: lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V: fourth ventricle;

CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space
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pressure driven seepage of extracellular fluid flow from capillaries into the brain. The brain porosity remains almost
constant in all cases.

6.2 | Extracranial venous outflow strictures and their implication for Ménière's disease

Chronic cerebrospinal venous insufficiency (CCSVI) has been described as a chronic syndrome, characterized by extra-
cranial venous malformations involving internal jugular veins, vertebral veins and the azygos vein.12 The narrowing of
these veins hampers the normal outflow from the brain, causing an impact on intracranial haemodynamics, as well as
on CSF and brain dynamics. Some works on modeling this condition are available in the literature. In References 69
and 158, stenoses of the internal jugular veins were studied, while Reference 84 concerns stenotic venous valves. In Ref-
erence 68, the neck venous strictures are associated to Ménière's disease, a pathology of the inner ear. These works
reveal that CCSVI leads to a significant increase in intracranial pressure; however, since in previous versions of our
work, a single CSF compartmental model was used, no refined information about the CSF dynamics could be obtained.
Here, we investigate the impact on the CSF and brain dynamics resulting from the CCSVI condition, using a more
sophisticated multicompartment model for CSF.

6.2.1 | Problem setup

We consider two different malformations of the extracranial venous vessels. The first one (case A) includes left and
right stenotic internal jugular veins, symmetrically above the insertion of the middle thyroid vein, and also a stenosis in
the azygos vein. In order to account for these strictures in the model, we introduce stenoses as represented in sec-
tion 6.1.1 for vessels No. 224, 225, 244. The minimum area of the strictures is taken equal to 10% of the reference cross-
sectional area of the vessels where the stenosis model is placed (Table 2). As for transverse sinuses stenosis, this area, as

TABLE 15 Cerebrospinal fluid exchange qinbr,L, q
in
br,R, q

out
br,L, q

out
br,R and brain porosity Φbr (ratio between fluid part and total volume of brain

parenchyma, considering a solid part of 980ml): Comparison of results for a healthy control and subject with IJV stenoses (case 1) with and

without collaterals, and subject with IJV stenotic valves (case 2)

HC ST - case 1 - with Cols. ST - case 1 - no Cols. ST - case 2 - with Cols.

qinbr,L [ml/s] 0.00074 0.00074 (�0.84) 0.00073 (�2.05) 0.00073 (�1.75)

qinbr,R [ml/s] 0.00074 0.00074 (�0.84) 0.00073 (�2.05) 0.00073 (�1.75)

qoutbr,L [ml/s] 0.00074 0.00074 (�0.84) 0.00073 (�2.05) 0.00073 (�1.75)

qoutbr,R [ml/s] 0.00074 0.00074 (�0.84) 0.00073 (�2.05) 0.00073 (�1.75)

Φbr 0.298 0.298 0.298 0.298

Note: Percentage variation with respect to healthy case in brackets. HC: healthy control; ST—with Cols.: stenotic case with collaterals; ST—no Cols.: stenotic
case without collaterals.
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FIGURE 35 Variation in time of flow through the aqueduct of Sylvius for the healthy control (HC), the CCSVI patient with collaterals

(ST—with Cols.) and the CCSVI patient without collaterals (ST—no Cols.)
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well as the reference cross-sectional area of the vessels, defines the parameters of the stenosis model in Equation (87).
The second configuration (case B) takes into account stenotic valves, symmetric in both left and right internal jugular
veins. The parameter Ms of Equation (33) is taken equal to 0.25, causing an obstruction of 75% of the reference cross-
sectional area.

6.2.2 | Comparison between healthy and pathological patients

As expected, the CCSVI condition is related to a significant pressure drop across strictures. Pressure drops between the
pre- and post-stenotic locations are negligible in the case of the HC while in case A it is almost 1.37 mmHg and in case
B it is 2.25 mmHg. The pressure rise observed in the extra-cranial venous strictures is transmitted to the intracranial cir-
culation. Figure 33 (left) depicts the computed cardiac-cycle averaged pressures in the main dural sinuses of the venous
network. Moreover, Figure 33 (right) shows averaged pressures for veins of the right inner ear. As reported in Reference
68, the venous pressure in the ear veins is increased due to the extra-cranial venous stenoses; because of the functioning
of the SR located in the ear circulation, this rise is not caused by the backward transmitted pressure waves from the
obstructed sites, as occurs in dural sinuses, but it is due to the increased intracranial pressure. As shown in Figure 34,
in all intracranial compartments the pressure is raised by 1 mmHg in case A and 2 mmHg in case B. By early animal
experiments in Reference 159, it was proved that the subarachnoid space is linked to the endolymphatic space and the
CSF pressure increase could be transmitted via the endolymphatic duct and sac to the inner ear, leading to the forma-
tion of the endolymphatic hydrops, one of the main anomalous conditions in Ménière's disease patients.

As in the previous pathological setting, the ability of developing collateral routes for brain drainage are important in
determining the severity of intracranial hypertension. When there are stenoses in the internal jugular veins, the flow is
redirected to the extracranial jugular and vertebral veins. The arterial inflow and the ratio between internal jugular vein
flow and arterial inflow are 13.11 ml and 76.31% for case A, while for case B they are 13.10 ml and 62.64%. When the
collateral routes are blocked, the internal jugular veins are the main drainage alternatives. We simulated such a situa-
tion where collateral pathways are blocked; in this case the arterial inflow is 12.52 ml and the ratio between internal
jugular veins outflow and arterial inflow is 99.4%. The intracranial pressure increases by 5.5 mmHg (see Figure 34).
This raise in pressure is of the same order of magnitude of the pressure drop through the stenosis (10.13 mmHg above
the stenosis and 4.48 mmHg below in the right internal jugular vein); in fact, the increase in venous pressure is trans-
mitted up the vessels into the superior sagittal sinus (from an averaged pressure of 5.31 mmHg in the HC to
10.97 mmHg), causing a proportional reduction in CSF absorption and then an increase in intracranial pressure until
equilibrium between CSF generation and absorption is reestablished.160 Table 15 reports data about the CSF flow in the
brain parenchyma; due to the presence of stenosis, the pressure driven CSF seepage from the capillaries to the brain
parenchyma is decreased. Figure 35 shows flow through the AoS. Deviations in terms of pulsatility are very small, even
for the configuration featuring no collaterals. However, in Reference 150 changes in pulsatility were observed for
patients with CCSVI. The fact that our model correctly captures the trend, that is, increased pulsatility, but fails to cap-
ture the magnitude of such increment, is certainly due to how well our model characterizes intracranial space compli-
ance in the pathological case. Clearly some modeling aspects have to be improved, specifically the model of the SR (see
discussion in next section), as well as mechanical properties of brain dynamics model compartments for patients with
CCSVI.

7 | CONCLUDING REMARKS

In this paper, we have presented a global, closed-loop, multiscale model of the human circulation coupled with a multi-
compartmental model for the cerebrospinal-fluid dynamics. The model comprises 1D descriptions for medium to large
blood vessels, arteries and veins, accounting for the viscoelastic property of the blood vessel wall. Lumped-parameter
descriptions are used for other components of the full model that include the heart, the pulmonary circulation, the
microvasculature, venous valves, SR and the dynamics of CSF in the craniospinal cavity, along with cerebral
autoregulation. The present work departs from the Müller–Toro mathematical model59,69 for the global systemic and
pulmonary circulations in the entire human body. The main improvements with respect to the original Müller-Toro
model and other works fall into three categories: (a) mathematical models for a better description of the physiology of
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the circulatory system; (b) the computational methods used to solve the governing equations and (c) the enlarged range
of potential applications of the resulting model.

On the physiological aspects of the present paper, the improvements include the adoption of a viscoelastic tube law,
not just for the arterial tree as in References 39,61,134 but also for the entire venous circulation. We find that computed
pressures and flow waveforms for the arterial and venous circulations are more realistic for the viscoelastic tube laws,
than for the purely elastic case. The heart model in the present paper is also an improvement over that in the original
global model,59,69 the cardiac valves are represented through a model based on Reference 41. A novelty of the present
paper is the coupling of the blood circulation to a refined mathematical description of the CSF dynamics in the
craniospinal cavity.62 The CSF model comprises the cerebral ventricles, the AoS, the cranial and SSASs and the brain
parenchyma. Other additions include the parametrization of the vascular beds, which together with the cerebral
autoregulation model, is relevant when studying anatomical malformations of the cerebral circulation. The computa-
tional results for the arterial and venous circulation are compared with literature data, while MRI measurements are
used for assessing our results for the cerebral venous circulation. Our results are in good agreement with literature and
MRI data.

The physiology modeling improvements have resulted in new mathematical problems to be solved, notably, the vis-
coelastic nature of all major blood vessels. The associated parabolic system of equations has been approximated by a
hyperbolic system with stiff source terms following a relaxation approach.70,78,79 The resulting stiff system is solved
numerically with the same high-order ADER-type numerical scheme,71,95 as in the originalmodel.59,69 An additional
numerical improvement is the adoption of the LTS technique,106 first introduced for blood flow in Reference 110 for
solving a simplified 1D vessel network. This technique results in significant computational savings, which are more evi-
dent when coupling the blood circulation to the CSF and brain dynamics, as thesetwo systems have different temporal
scales and the computational time needed to reach periodicity of the solution is considerably larger than the time scale
of a cardiac cycle.

The model as presented is applicable to many pathophysiological conditions associated to the circulatory system,
involving both the arterial and the venous systems. In the present paper, we have placed considerable emphasis on the
CNS fluids in the craniospinal cavity, in which blood (arteries, microvasculature and veins) interact with the CNS
fluids. To illustrate the applicability of the present model that couples the blood circulation and the CSF dynamics in a
holistic setting, we have presented two specific medical applications, namely IIH as associated to transverse sinus steno-
ses, and Ménière's disease as associated to extracranial venous outflow strictures. Our results reveal that obstructions in
the cerebral venous network lead to intracranial hypertension and disruption of the fluid dynamics in the entire
craniospinal cavity. The severity of the consequences of intracranial or extracranial venous outflow obstructions
depends on the balance between CSF generation and absorption, the displacement of CSF into the spinal cord and the
ability of the venous network in developing collateral routes to respond to the venous outflow obstructions. These find-
ings are relevant to the study of a very important function of CNS fluids, namelythe clearance of brain metabolic waste
and neurotoxins from the CNS. Impairment of the cerebral venous drainage will directly disrupt this clearance func-
tion. Indirectly, CSF absorption into the venous system will be hampered, due to venous hypertension, leading to
decreased CSF turnover, which will also affect the clearance function.

In spite of the progress reported in this paper, there are several limitations to be addressed in future developments.
One limitation is the description of SR, which are major determinants of cerebral venous dynamics; blood flow through
these compliant vessels is controlled by sphincter-like structures, which regulate discharge into the main dural sinuses.
Another limitation is the absence of a model for solute transport. This limitation prevent us at present from properly
describing, via Starling forces,2 the transport of fluid and selected solutes across the blood–brain barrier (BBB), for
example. Overcoming this limitation will be crucial for tackling the brain waste clearance function of the CNS, alluded
to earlier. Mathematical modeling steps in this direction are outlined in References 161,162. Another limitation involves
the linear distenibility equations of the CSF model. Following Reference 62, these equations link the internal pressure
with the cross-sectional area of the compartment in a linear manner. A simple linear pressure-volume relationship is
acceptable in the physiological pressure range, but could give under- and/or over-estimation of pressure changes in case
of large volume changes, especially when addressing pathological conditions. Future work will address the non-linear
behavior of the pressure-volume relationship in the CSF compartments. Another potential improvement concerns the
representation of CSF in the spinal canal, which at present consists of a single 0D model; a possible improvement could
be the adoption of a 1D model, as proposed in Reference 148, which is based on two coaxial compliant tubes rep-
resenting the spinal cord and the CSF between the cord and the dura. Potentially, such representation admitting spatial
variations could provide the bases for adding new potential routes for CSF reabsorption.
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Addressing the modeling of the microcirculation is a challenging task. Here, the microcirculation was simplified as
a lumped resistor capacitor system. While this simplification gave acceptable system-wide predictions, it is not able to
account for biphasic blood flow phenomena163 and network effects164 that occur in the microcirculation. Significant
progress has been made to develop realistic microvascular networks models135,165,166 which could be integrated with
the proposed system models in future work.

On balance, the mathematical model presented here is a significant improvement of the original model59,69 publi-
shed 7 years ago, represents the current state of the art and could provide the bases for realistic applications that require
the representation of all extracellular body fluids in a holistic setting, along with regulatory processes.
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APPENDIX

Tables A1 and A2 report geometrical data for arteries and veins networks. The first columns refer to number, name,
length and radii of each vessel while the last one show the location of the vessel in the human body (using the same
location codes of Reference 59, 1 = Dural sinuses, 2 = Extracranial, 3 = Neck, 4 = Thorax, 5 = Abdomen, 6 = Upper
limbs, 7 = Lower limbs, 8 = Pelvis, 9 = Intracranial). Geometrical data are the same of References 59,74,75 while, for
vessels added or changed in this work, the geometry is estimated from literature data.111,167

TABLE A1 Geometrical and mechanical parameters of the arterial network. RT is given in mmHg s/ml while Cart in ml (s mmHg)�1

No. Vessel name L (cm) r0 (cm) r1 (cm) RT Cart Loc

1 Ascending aorta 2 1.525 1.42 - - 4

2 Aortic arch 3 1.42 1.342 - - 4

3 Brachiocephalic a. 3.5 0.65 0.62 - - 4

4 R. subclavian a. 3.5 0.425 0.407 - - 6

5 R. carotid a. 17.7 0.4 0.37 - - 3

6 R. vertebral a. 13.5 0.15 0.136 - - 3

7 R. subclavian a. 39.8 0.407 0.23 - - 6

8 R. radius 22 0.175 0.14 40.3876 0.0059 6

(Continues)
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TABLE A1 (Continued)

9 R. ulnar a. 6.7 0.215 0.215 - - 6

10 Aortic arch 4 1.342 1.246 - - 4

11 L. carotid a. 20.8 0.4 0.37 - - 3

12 Thoracic aorta 5.5 1.246 1.124 - - 4

13 Thoracic aorta 10.5 1.124 0.924 - - 4

14 Intercostal a. 7.3 0.3 0.3 10.7761 0.0586 4

15 L. subclavian a. 3.5 0.425 0.407 - - 6

16 L. vertebral a. 13.5 0.15 0.136 - - 3

17 L. subclavian a. 39.8 0.407 0.23 - - 6

18 L. ulnar a. 6.7 0.215 0.215 - - 6

19 L. radius 22 0.175 0.14 40.8837 0.0059 6

20 Celiac a. 2 0.35 0.3 - - 5

21 Celiac a. 2 0.3 0.25 - - 5

22 Hepatic a. 6.5 0.275 0.25 27.8243 0.0089 5

23 Splenic a. 5.8 0.175 0.15 41.2558 0.0059 5

24 Gastric a. 5.5 0.2 0.2 18.0678 0.0139 5

25 Abdominal aorta 5.3 0.924 0.838 - - 5

26 Sup. mesenteric a. 5 0.4 0.35 7.1584 0.0342 5

27 Abdominal aorta 1.5 0.838 0.814 - - 5

28 R. renal a. 3 0.275 0.275 8.8134 0.0287 5

29 Abdominal aorta 1.5 0.814 0.792 - - 5

30 L. renal a. 3 0.275 0.275 8.8134 0.0287 5

31 Abdominal aorta 12.5 0.792 0.627 - - 5

32 Inf. mesenteric a. 3.8 0.2 0.175 52.3507 0.0075 5

33 Abdominal aorta 8 0.627 0.55 - - 5

34 R. com. iliac a. 5.8 0.4 0.37 - - 8

35 R. ext. iliac a. 14.5 0.37 0.314 - - 8

36 R. int. iliac a. 4.5 0.2 0.2 42.8843 0.0077 8

37 R. deep femoral a. 11.3 0.2 0.2 25.902 0.0485 7

38 R. femoral a. 44.3 0.314 0.275 - - 7

39 R. ext. carotid a. 4.1 0.2 0.15 - - 2

40 L. int. carotid a. 17.6 0.25 0.2 - - 3

41 R. post. tibial a. 34.4 0.175 0.175 57.3809 0.0211 7

42 R. ant. tibial a. 32.2 0.25 0.25 25.7857 0.0485 7

43 R. interosseous a. 7 0.1 0.1 644.368 0.0018 6

44 R. ulnar a. 17 0.203 0.18 40.9859 0.0059 6

45 L. ulnar a. 17 0.203 0.18 40.9859 0.0059 6

46 L. interosseous a. 7 0.1 0.1 644.368 0.0018 6

47 R. int. carotid a. 17.6 0.25 0.2 - - 3

48 L. ext. carotid a. 4.1 0.2 0.15 - - 3

49 L. com. iliac a. 5.8 0.4 0.37 - - 8

50 L. ext. iliac a. 14.5 0.37 0.314 - - 8

51 L. int. iliac a. 4.5 0.2 0.2 42.8843 0.0077 8

52 L. deep femoral a. 11.3 0.2 0.2 25.902 0.0485 7
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53 L. femoral a. 44.3 0.314 0.275 - - 7

54 L. post. tibial a. 34.4 0.175 0.175 57.3809 0.0211 7

55 L. ant. tibial a. 32.2 0.25 0.25 25.7857 0.0485 7

56 Basilar a. 0.96 0.162 0.162 - - 1

57 R. post. cerebral. a. 0.5 0.107 0.107 - - 1

58 R. post. cerebral. a. 8.6 0.105 0.105 46.3595 0.0029 1

59 R. post. communicating a. 1.5 0.073 0.073 - - 1

60 R. int. carotid a. 0.5 0.2 0.2 - - 1

61 R. mid. cerebral a. 11.9 0.143 0.143 22.5727 0.0059 1

62 R. ant. cerebral a. 1.2 0.117 0.117 - - 1

63 R. ant. cererbal a. 10.3 0.12 0.12 45.0952 0.0029 1

64 Ant. communicating a. 0.3 0.1 0.1 - - 1

65 L. ant. cerebral a. 10.3 0.12 0.12 45.0952 0.0029 1

66 L. ant. cerebral a. 1.2 0.117 0.117 - - 1

67 L. mid. cerebral a. 11.9 0.143 0.143 22.5727 0.0059 1

68 L. int. carotid a. 0.5 0.2 0.2 - - 1

69 L. post. communicating a. 1.5 0.073 0.073 - - 1

70 L. post. cerebral a. 8.6 0.105 0.105 46.3595 0.0029 1

71 L. post. cerebral a. 0.5 0.107 0.107 - - 1

72 L. ext. carotid a. 6.1 0.2 0.2 - - 3

73 R. ext. carotid a. 6.1 0.2 0.2 - - 3

74 L. sup. thyroid a. 10.1 0.1 0.1 228.82 0.0016 3

75 R. sup. thyroid a. 10.1 0.1 0.1 228.82 0.0016 3

76 L. superf. temporal a. 6.1 0.16 0.16 - - 2

77 R. superf. temporal a. 6.1 0.16 0.16 - - 2

78 L. maxillary a. 9.1 0.11 0.11 190.278 0.0016 2

79 R. maxillary a. 9.1 0.11 0.11 190.278 0.0016 2

80 L. superf. temp. fron. bran. 10 0.11 0.11 11379.1 0.0016 2

81 R. superf. temp. fron. bran. 10 0.11 0.11 190.278 0.0016 2

82 L. superf. temp. pari. bran. 10.1 0.11 0.11 190.278 0.0016 2

83 R. superf. temp. pari. bran 10.1 0.11 0.11 11379.1 0.0016 2

169 R. facial a. 11.6 0.13 0.13 207.502 0.0063 2

170 L. facial a. 11.6 0.13 0.13 207.502 0.0063 2

274 Basilar a. II 0.386 0.162 0.162 - - 1

275 R. Labyrinthine artery 1 0.01 0.01 377,411 0.0006 1

278 L. Labyrinthine artery 1 0.01 0.01 377,421 0.0006 1

285 R. PICA I 1 0.0433 0.0433 - - 1

286 L. PICA I 1 0.0433 0.0433 - - 1

287 R. SCA 1 0.0558 0.0558 111.364 0.0006 1

288 L. SCA 1 0.0558 0.0558 111.368 0.0006 1

293 L. Vertebral artery II 0.75 0.15 0.136 - - 3

294 R. Vertebral artery II 0.75 0.15 0.136 - - 3

304 R. AICA I 1.4 0.0366 0.05 - - 1

305 L. AICA I 1.4 0.0366 0.05 - - 1
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306 R. AICA II 2.35 0.0366 0.05 468.13 0.0006 1

307 L. AICA II 2.35 0.0366 0.05 468.23 0.0006 1

308 R. PICA MB 1 0.0216 0.0216 17099.13 0.0006 1

309 L. PICA MB 1 0.0216 0.0216 17099.13 0.0006 1

310 R. PICA II 1 0.0433 0.0433 646.13 0.0006 1

311 L. PICA II 1 0.0433 0.0433 646.13 0.0006 1

312 R. ASA 1 0.048 0.048 1509.03 0.0006 1

313 L. ASA 1 0.048 0.048 1509.03 0.0006 1

314 R. VA III 0.75 0.15 0.136 - - 3

315 L. VA III 0.75 0.15 0.136 - - 3

316 R. pontine a. I 1 0.012 0.012 91716.93 0.0006 1

317 R. pontine artery II 1 0.012 0.012 91596.94 0.0006 1

318 L. pontine a. I 1 0.012 0.012 91716.93 0.0006 1

319 L. pontine artery II 1 0.012 0.012 91596.94 0.0006 1

320 BA III 0.386 0.162 0.162 - - 1

321 BA IV 0.386 0.162 0.162 - - 1

322 BA V 0.386 0.162 0.162 - - 1

323 BA VI 0.386 0.162 0.162 - - 1

TABLE A2 Geometrical and mechanical parameters of the venous network. Rvn is given in mmHg s/ml while Cvn in ml (s mmHg)�1

No. Vessel name L (cm) r0 (cm) r1 (cm) Rvn CCvn Loc

84 Sup. vena cava 1.5 0.8 0.8 - - 4

85 Sup. vena cava 2 0.8 0.8 - - 4

86 R. brachiocephalic v. 4 0.564 0.564 - - 4

87 L. brachiocephalic v. 7.5 0.535 0.535 - - 4

88 L. subclavian v. I 3 0.564 0.564 - - 6

89 R. subclavian v. I 3 0.564 0.564 - - 6

90 R. ext. jugular v. 10 0.252 0.252 - - 3

91 L. ext. jugular v. 10 0.252 0.304 - - 3

92 R. int. jugular v. 2.5 0.399 0.399 - - 3

93 L. int. jugular v. 2.5 0.564 0.618 - - 3

94 L. vertebral v. 11 0.138 0.16 - - 3

95 R. vertebral v. 11 0.138 0.16 - - 3

96 R. deep cervical v. 13 0.16 0.16 - - 3

97 L. deep cervical v. 13 0.16 0.16 - - 3

98 Vertebral venous plexus 71 0.368 0.368 - - 3

99 R. sigmoid sinus 3.5 0.252 0.252 - - 1

100 L. sigmoid sinus 3.5 0.357 0.378 - - 1

101 R. trans. sinus 3.5 0.178 0.252 - - 1

102 L. trans. sinus 3.5 0.309 0.357 - - 1

103 Sup. sagittal sinus 2.5 0.35 0.367 - - 1

104 Straight sinus 4 0.25 0.25 - - 1

105 Inf. sagittal sinus 3.67 0.16 0.16 - - 1
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No. Vessel name L (cm) r0 (cm) r1 (cm) Rvn CCvn Loc

106 Vein of Galen 0.6 0.366 0.4 - - 9

107 L. int. cerebral v. 5 0.126 0.126 5.369 0.0539 9

108 R. int. cerebral v. 5 0.126 0.126 5.369 0.0539 9

109 L. basal v. of Rosenthal 1 0.126 0.126 5.369 0.0539 9

110 R. basal v. of Rosenthal 1 0.126 0.126 5.369 0.0539 9

111 R. sup. petrosal sinus 3.7 0.149 0.149 - - 1

112 L. sup. petrosal sinus 3.7 0.149 0.149 - - 1

113 R. inf. petrosal sinus 3.2 0.08 0.16 - - 1

114 L. inf. petrosal sinus 3.2 0.08 0.16 - - 1

115 R. post. auricular v. 5 0.08 0.08 15.817 0.0119 2

116 L. post. auricular v. 5 0.08 0.08 15.817 0.0119 2

117 R. post. retromandibular v. 3.52 0.25 0.25 - - 2

118 L. post. retromandibular v. 3.52 0.25 0.25 - - 2

119 R. ant. retromandibular v. 3.15 0.235 0.235 - - 2

120 L. ant. retromandibular v. 3.15 0.235 0.235 - - 2

121 R. retromandibular v. 4.5 0.26 0.26 - - 2

122 L. retromandibular v. 4.5 0.26 0.26 - - 2

123 R. facial v. 6 0.132 0.178 - - 2

124 L. facial v. 6 0.132 0.178 - - 2

125 R. com. facial v. 0.9 0.18 0.18 - - 2

126 L. com. facial v. 0.9 0.18 0.18 - - 2

127 R. superf. temp. v. 5 0.19 0.19 2.119 0.5042 2

128 L. superf. temp. v. 5 0.19 0.19 2.119 0.5042 2

129 R. maxillary v. 1 0.175 0.175 - - 2

130 L. maxillary v. 1 0.175 0.175 - - 2

131 R. deep facial v. 0.9 0.25 0.25 - - 2

132 L. deep facial v. 0.9 0.25 0.25 - - 2

133 R. emissary v. 3 0.1 0.1 - - 2

134 L. emissary v. 3 0.1 0.1 - - 2

135 R. pterygoid plexus 0.9 0.15 0.15 - - 2

136 L. pterygoid plexus 0.9 0.15 0.15 - - 2

137 R. marginal sinus 4 0.1 0.1 - - 1

138 L. marginal sinus 4 0.1 0.1 - - 1

139 Occipittal sinus 3.5 0.235 0.235 - - 1

140 R. ext. jugular v. 10 0.252 0.252 - - 3

141 R. mastoid emissary v. 7.2 0.175 0.175 - - 2

142 L. mastoid emissary v. 7.2 0.175 0.175 - - 2

143 R. post. condylar v. 3 0.315 0.315 - - 2

144 L. post. condylar v. 3 0.315 0.315 - - 2

145 R. subocc. sinus 1 0.45 0.45 - - 2

146 R. lat. ant. condylar v. 3 0.315 0.315 - - 2

147 L. lat. ant. condylar v. 3 0.315 0.315 - - 2

148 L. ext. jugular v. 10 0.304 0.357 - - 3
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No. Vessel name L (cm) r0 (cm) r1 (cm) Rvn CCvn Loc

149 Sup. sagittal sinus 4.33 0.229 0.258 - - 1

150 R. Labbe v. 5 0.15 0.15 3.622 0.0539 9

151 L. Labbe v. 5 0.15 0.15 3.622 0.0539 9

152 Sup. sagittal sinus 4.33 0.258 0.287 - - 1

153 Sup. sagittal sinus 2.5 0.334 0.35 - - 1

154 L. cavernous sinus 1.5 0.1 0.1 - - 1

155 R. cavernous sinus 1.5 0.1 0.1 - - 1

156 Occipittal v. 5 0.126 0.126 - - 2

157 Sup. sagittal sinus 5 0.3 0.334 - - 1

158 Cerebral vein 5 0.15 0.15 3.622 0.0207 9

159 Cerebral vein 5 0.15 0.15 3.622 0.0207 9

160 Azygos v. 2 0.425 0.425 - - 4

161 Cerebral vein 5 0.15 0.15 3.622 0.0207 9

162 Cerebral vein 5 0.15 0.15 3.622 0.0207 9

163 R. vertebral v. 5 0.16 0.16 - - 3

164 L. vertebral v. 5 0.16 0.16 - - 3

165 Sup. sagittal sinus 4.33 0.2 0.229 - - 1

166 L. subocc. sinus 1 0.45 0.45 - - 2

167 R. anastomotic v. 2 0.1 0.1 - - 3

168 L. anastomotic v. 2 0.1 0.1 - - 3

171 R. great saphenous v. 7.5 0.2215 0.23 - - 7

172 L. great saphenous v. 7.5 0.2215 0.23 - - 7

173 L. post. tibial v. 17.3 0.15 0.15 - - 7

174 L. ant. tibial v. 16 0.15 0.15 - - 7

175 R. popliteal v. 19 0.34 0.34 - - 7

176 L. popliteal v. 19 0.34 0.34 - - 7

177 L. femoral v. 25.4 0.35 0.35 - - 7

178 R. femoral v. 25.4 0.35 0.35 - - 7

179 R. deep femoral v. 12.6 0.35 0.35 0.51 2.8741 7

180 L. deep femoral v. 12.6 0.35 0.35 0.51 2.8741 7

181 R. ext. iliac v. 14.4 0.5 0.5 - - 8

182 L. ext. iliac v. 14.4 0.5 0.5 - - 8

183 L. int. iliac v. 5 0.15 0.15 3.622 3.5692 8

184 R. int. iliac v. 5 0.15 0.15 3.622 3.5692 8

185 R. com. iliac v. 2 0.575 0.575 - - 8

186 L. com. iliac v. 2 0.575 0.575 - - 8

187 R. radial v. 40.6 0.2 0.2 1.885 0.651448 6

188 L. interosseous v. 7 0.1 0.1 9.069 0.0372 6

189 R. ulnar v. 30.6 0.2 0.2 1.885 0.6514 6

190 L. ulnar v. 30.6 0.2 0.2 1.885 0.6514 6

191 L. interosseous v. 7 0.1 0.1 9.069 0.0372 6

192 L. radial v. 40.6 0.2 0.2 1.885 0.6514 6

193 L. subclavian v. 27 0.52 0.52 - - 6
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No. Vessel name L (cm) r0 (cm) r1 (cm) Rvn CCvn Loc

194 R. subclavian v. 27 0.52 0.52 - - 6

195 L. subclavian v. 3 0.52 0.52 - - 6

196 R. subclavian v. 3 0.52 0.52 - - 6

197 L. ulnar v. 10 0.2 0.2 - - 6

198 Inf. vena cava 15.3 0.7625 0.7625 - - 5

199 Hepatic v. 6.8 0.485 0.485 0.229 82.3232 5

200 Inf. vena cava 1.5 0.7625 0.7625 - - 5

201 inf. vena cava 1.5 0.7625 0.7625 - - 5

202 Inf. vena cava 12.5 0.7625 0.7625 - - 5

203 Inf. vena cava 8 0.7625 0.7625 - - 5

204 R. com. iliac v. 3.8 0.575 0.575 - - 8

205 L. com. iliac v. 3.8 0.575 0.575 - - 8

206 R. ulnar v. 10 0.2 0.2 - - 6

207 L. renal v. 3.2 0.25 0.25 1.128 11.6388 5

208 R. renal v. 3.2 0.25 0.25 1.128 11.6388 5

209 Ascending lumbar v. 23 0.2 0.2 - - 5

210 hemiazygos v. 23 0.28 0.28 - - 5

211 Inf. mesenteric v. 6 0.45 0.45 0.276 4.5795 5

212 R. post. tibial v. 17.3 0.15 0.15 - - 7

213 R. ant. tibial v. 16 0.15 0.15 - - 7

214 R. ant. tibial v. 2 0.6 0.6 0.132 0.5787 7

215 L. ant. tibial v. 2 0.6 0.6 0.132 0.5787 7

216 R. lumbar v. 3.8 0.1 0.1 - - 5

217 L. lumbar v. 3.8 0.1 0.1 - - 5

218 R. sup. thyroid v. 4 0.15 0.15 - - 3

219 L. sup. thyroid v. 4 0.15 0.15 - - 3

220 R. mid. thyroid v. 3 0.1 0.1 - - 3

221 L. mid. thyroid v. 3 0.1 0.1 - - 3

222 Inf. thyroid v. 7 0.126 0.126 - - 3

223 Thyroid connection 2 0.16 0.16 3.131 0.2585 3

224 R. int. jugular v. 3 0.357 0.357 - - 3

225 L. int. jugular v. 3 0.564 0.564 - - 3

226 R. int. jugular v. 2.7 0.252 0.357 - - 3

227 L. int. jugular v. 2.7 0.564 0.564 - - 3

228 R. int. jugular v. 6.8 0.252 0.252 - - 3

229 L. int. jugular v. 6.8 0.399 0.564 - - 3

230 R. sigmoid sinus 1.5 0.252 0.252 - - 1

231 L. sigmoid sinus 1.5 0.378 0.399 - - 1

232 R. trans. sinus 3.5 0.218 0.178 - - 1

233 L. trans. sinus 3.5 0.437 0.309 - - 1

234 R. facial v. 2 0.113 0.132 6.256 0.284 2

235 L. facial v. 2 0.113 0.132 6.256 0.284 2

236 Sup. sagittal sinus 2 0.287 0.3 - - 1
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No. Vessel name L (cm) r0 (cm) r1 (cm) Rvn CCvn Loc

237 Cerebral vein 5 0.15 0.15 3.622 0.1652 9

238 Cerebral vein 5 0.15 0.15 3.622 0.1652 9

239 Cerebral vein 5 0.15 0.15 3.622 0.1652 9

240 Intra-cavernous sinus 2 0.126 0.126 - - 1

241 Inf. sagittal sinus 3.67 0.16 0.16 - - 1

242 R. int. jugular v. 1 0.399 0.399 - - 3

243 L. int. jugular v. 1 0.618 0.618 - - 3

244 Azygos v. 28 0.425 0.425 - - 4

245 Cerebral vein 3 0.15 0.15 3.622 0.1652 9

246 L. basal v. of Rosenthal 7 0.126 0.126 - - 9

247 R. basal v. of Rosenthal 7 0.126 0.126 - - 9

248 Inf. sagittal sinus 3.67 0.16 0.16 - - 1

249 Cerebral vein 3 0.15 0.15 3.622 0.1652 9

250 Intercostal v. 2 0.4 0.4 0.369 1.395 4

251 R. post. tibial v. 17.3 0.15 0.15 3.622 0.6805 7

252 R. ant. tibial v. 16 0.15 0.15 - - 7

253 R. great saphenous v. 37.5 0.145 0.1875 - - 7

254 L. great saphenous v. 37.5 0.145 0.1875 - - 7

255 L. ant. tibial v. 16 0.15 0.15 - - 7

256 L. post. tibial v. 17.3 0.15 0.15 3.622 0.6805 7

257 R. great saphenous v. 30 0.1875 0.2215 - - 7

258 L. great saphenous v. 30 0.1875 0.2215 - - 7

259 Confluence of sinuses 1 0.1 0.1 - - 1

260 Cerebral vein 3 0.15 0.15 3.622 0.1652 9

261 Terminal cerebral vein 1 0.15 0.15 - - 1

262 Terminal cerebral vein 1 0.15 0.15 - - 1

263 Terminal cerebral vein 1 0.15 0.15 - - 1

264 Terminal cerebral vein 1 0.15 0.15 - - 1

265 Terminal cerebral vein 1 0.15 0.15 - - 1

266 Terminal cerebral vein 1 0.15 0.15 - - 1

267 Terminal cerebral vein 1 0.15 0.15 - - 1

268 Terminal cerebral vein 1 0.15 0.15 - - 1

269 Terminal cerebral vein 1 0.15 0.15 - - 1

270 Terminal cerebral vein 1 0.15 0.15 - - 1

271 Terminal cerebral vein 1 0.309 0.366 - - 9

272 Terminal cerebral vein 1 0.15 0.15 - - 1

273 Terminal cerebral vein 1 0.15 0.15 - - 1

276 R. v. of cochlear aq. I 0.65 0.01 0.01 253.077 2.33E-05 9

277 R. labyrinthine v. I 0.43 0.037 0.037 71.986 2.33E-05 9

279 L. v. of cochlear aq. I 0.65 0.01 0.01 253.077 2.33E-05 9

280 L. labyrinthine v. I 0.43 0.037 0.037 17.997 2.33E-05 9

281 R. v. of cochlear aq. II 0.65 0.01 0.01 - - 1

282 R. labyrinthine v. II 0.43 0.037 0.037 - - 1
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No. Vessel name L (cm) r0 (cm) r1 (cm) Rvn CCvn Loc

283 L. v. of cochlear aq. II 0.65 0.01 0.01 - - 1

284 L. labyrinthine v. II 0.43 0.037 0.037 - - 1

289 R. Sup. vermian vein 1 0.08 0.08 15.817 0.006 9

290 L. Sup. vermian vein 1 0.08 0.08 15.817 0.006 9

291 R. Inf. vermian vein 1 0.09 0.09 11.577 0.008 9

292 L. Inf. vermian vein 1 0.09 0.09 11.577 0.008 9

295 R. Inf. vermian vein II 1 0.09 0.09 - - 1

296 L. Inf. vermian vein II 1 0.09 0.09 - - 1

297 Cerebral vein 1 0.309 0.36 - - 9

298 R. Sup. petrosal vein 1 0.08 0.08 15.817 0.008 9

299 L. Sup. petrosal vein 1 0.08 0.08 15.817 0.008 9

300 R. Sup. petrosal vein II 1 0.08 0.08 - - 1

301 L. Sup. petrosal vein II 1 0.08 0.08 - - 1

302 R. Sup. petrosal sinus II 2 0.149 0.149 - - 1

303 L. Sup. petrosal sinus II 2 0.149 0.149 - - 1

TORO ET AL. 65 of 65


	Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: Mathematical models, numerical methods ...
	1  INTRODUCTION
	2  MATHEMATICAL MODELS
	2.1  Equations for blood flow in major vessels
	2.1.1  Conservation laws and closure conditions
	2.1.2  Variable material properties and augmented equations
	2.1.3  Hyperbolic approximation of a parabolic system

	2.2  Equations for lumped-parameter models
	2.2.1  The microvasculature
	2.2.2  Valves, Starling resistors and stenosis
	2.2.3  Heart and pulmonary circulation
	2.2.4  Venous valves and Starling resistors
	2.2.4  Venous valves
	2.2.4  Starling resistors

	2.2.5  Control system: Cerebral autoregulation

	2.3  Equations for cerebrospinal fluid and brain dynamics

	3  NUMERICAL METHODS
	3.1  Overview of methods for PDE system
	3.2  Numerical treatment of CSF equations and its coupling to the circulation

	4  PARAMETRIZATION OF THE MODEL
	4.1  Blood flow model parameters
	4.1.1  Arteries and veins
	4.1.2  Vascular beds
	4.1.3  Heart and pulmonary circulation
	4.1.4  Venous valves and Starling resistors
	4.1.5  Autoregulation

	4.2  CSF model parametrization

	5  SAMPLE NUMERICAL RESULTS AND VALIDATION
	5.1  Validation of systemic haemodynamics
	5.1.1  Arteries and veins
	5.1.2  Vascular beds
	5.1.3  Heart

	5.2  Validation of cerebral haemodynamics
	5.3  Validation for CSF and brain dynamics

	6  APPLICATIONS: IMPACT OF HEAD AND NECK VENOUS STRICTURES ON BLOOD AND CSF DYNAMICS
	6.1  Idiopathic intracranial hypertension patient with transverse sinus stenoses
	6.1.1  Problem setup
	6.1.2  Comparison between healthy and IIH patient

	6.2  Extracranial venous outflow strictures and their implication for Ménière's disease
	6.2.1  Problem setup
	6.2.2  Comparison between healthy and pathological patients


	7  CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES


