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Mathematical modeling allows using different formalisms to describe, investigate, and
understand biological processes. However, despite the advent of high-throughput
experimental techniques, quantitative information is still a challenge when looking for
data to calibrate model parameters. Furthermore, quantitative formalisms must cope with
stiffness and tractability problems, more so if used to describe multicellular systems. On
the other hand, qualitative models may lack the proper granularity to describe the
underlying kinetic processes. We propose a hybrid modeling approach that integrates
ordinary differential equations and logical formalism to describe distinct biological layers
and their communication. We focused on a multicellular system as a case study by
applying the hybrid formalism to the well-known Delta-Notch signaling pathway. We used
a differential equation model to describe the intracellular pathways while the cell–cell
interactions were defined by logic rules. The hybrid approach herein employed allows us to
combine the pros of different modeling techniques by overcoming the lack of quantitative
information with a qualitative description that discretizes activation and inhibition
processes, thus avoiding complexity.

Keywords: hybrid modeling, logic modeling, ordinary differential equations (ODEs), computational systems biology,
simulation algorithms

INTRODUCTION

Computational models have become a cornerstone of modern biology as a tool for data
interpretation and serving in parallel with experimental techniques to disentangle process
complexity (Markowetz, 2017). Depending on the available information and the addressed
questions, we can model the processes with different approaches, in function of model
granularity and abstraction level (Ideker and Lauffenburger, 2003). Biological processes for
which are available high-throughput omics data can be described using interaction networks
(Danaher et al., 2014; Hawe et al., 2019); these can be integrated with other experimental
evidences (such as knock-out experiments) to provide directed graphs (Gross et al., 2019). By
increasing the biological knowledge of the processes involved, providing the sign of the interactions,
we can obtain a regulatory graph that together with a set of rules for each component defines a logic
model (Abou-Jaoudé et al., 2016).

The logic formalism is the simplest way to model interactions among entities, in a parameter-free
fashion, and has been used since the 1970s to qualitatively describe biological pathways (Kauffman,
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1969), and intracellular and intercellular signaling networks
(Gonzalez et al., 2008; Morris et al., 2010) up to collective cell
behaviour (Varela et al., 2018). In the case that the pathways and
their components are thoroughly characterized, ordinary and
partial differential equations (ODEs and PDEs) can be used
instead (Aldridge et al., 2006). If the number of molecules
involved in the processes does not meet the Continuum
hypothesis requirements, then the stochastic methods allow to
overcome the problem (Simoni et al., 2019).

Selecting the appropriate mathematical formalism to describe
the biology is thus a trade-off between the a priori available
knowledge (e.g., parameters, concentrations etc.) and the
required granularity to address the biological problem.

Another important aspect to consider in systems biology is
the interplay between different biological layers, as most
models focus on a single scale. Progresses have been made
in implementing hierarchical representations to study how
local variations may affect the dynamics at other levels. An
example of this approach is the work of Uluseker et al. (2018)
in which the authors built an ODE model that integrates in a
holistic framework the glucose homeostasis together with
other regulatory hormones at different levels: gut, liver,
and adipose tissue. However, models that span over
different levels (e.g., from subcellular to tissue) are difficult
to parametrize and implement. Model combination (Palsson
et al., 2013) can be a solution but it is a challenging task due to
the non-modular implementation of these mathematical
frameworks, and goes beyond simple coupling of the
equations.

The technical difficulties of model integration, arising from the
different modeling formalisms, have been tackled by recasting the
mathematical descriptions to a single approach. Ryll et al. (2014),
with their model of hormonal regulation of glucose homeostasis,
proposed a strategy to integrate a logic model of signaling
network with an ODE model of metabolic processes: the
Boolean representation was converted into a set of logic-based
ODEs. The integration required a calibration step in which the
added parameters and the missing ones of the kinetic model were
fitted to experimental data.

As outlined in Uluseker et al. (2018), biological phenomena
interlay different abstraction levels, where interconnected
modules form complex collective behaviour. Hierarchical
models, as mentioned previously, are used to provide a
structured holistic representation of complex biological
systems. Single models communicate, through feedbacks, at
the systemic level producing the macroscopic behavior. Often,
for these interactions, only limited knowledge or qualitative
measurements are available and thus a complete ODE
description is hindered. Here, we propose an integrative
approach that leverages on different formalisms (ODE and
logic), with a fine-grained ODE representation of the bottom
layer to properly describe the variable dynamics, and the logic
formalism to represent in a coarse-grained fashion the regulative
interactions. This approach does not require a model re-
parametrization or recasting to a common description thus
enabling model reuse.

Although the modeling approach is the focus of the present
work, we decided to convey our strategy by presenting a case
study: the Delta-Notch signaling pathway.

Delta-Notch signaling is among the most conserved pathways
in tissue development based on the negative-feedback loop
between the two elements (Artavanis-Tsakonas et al., 1999).
Upon Delta ligand binding to the Notch receptor of another
cell, a response is triggered leading the receiving cell to repress
Delta, governing fate selection. Several examples of Delta-Notch
salt-and-pepper patterning are present in nature like in
Drosophila (Renaud and Simpson, 2001; De Joussineau et al.,
2003), as well as in the mouse inner ear (Hartman et al., 2010),
and mouse and zebrafish retina (Del Bene et al., 2008).

One of the first models investigating the Delta-Notch
signaling pathway, developed by Collier et al. (1996), used
the ODE formalism to qualitatively describe the dynamics of
active Notch and Delta between adjacent cells. The input of a
generic cell was modeled as the average of all neighbor Deltas.
The intracellular Notch activation and consequent fate
decision were described using a phenomenological Hill
function. Agrawal et al. (2009) adopted a fine-grained
approach describing with an ODE system the intracellular
processes of cleavage, transcription, translation, transport,
and degradation, after Notch activation. The work focused
on the analysis of the single cell fate decision, rather than the
pattern formation, highlighting the possibility of a phenotypic
switch from bistable system to oscillatory, by tuning a single
parameter. Mjolsness et al. (1991) and Marnellos and
Mjolsness (1998) modeled neuroblasts and sensory organ
precursor cell differentiation in Drosophila, as nodes in a
recurrent neural network. Cells are represented as discrete
entities, which can interact with neighbors. A minimal two-
gene network was used, allowing interaction with other gene
products from within the same cell or from neighboring ones.
Varela et al. (2018) developed a 2D logical model of lateral
inhibition, using the software Epilog. Each cell of the discrete
tissue contains a two-component logic model that responds to
the input coming from the neighboring cells. Both Varela et al.
and Marnellos et al. approaches allow to simulate pattern
formation at the tissue level without in depth knowledge of
the kinetic parameters or species concentrations. Also, agent-
based models (ABM) have been employed to address how
complex behaviors arise from the cell–cell interactions
(Reynolds et al., 2019) or cell–environment interaction (Yu
and Bagheri, 2020). In particular, Reynolds et al. (2019)
developed an ABM that recreates Delta-Notch patterns
using for each agent a set of rules that define the increment
of each species, thus providing a more abstract view.

The hybrid strategy we propose defines a semi-quantitative
framework optimal to simulate tissue level dynamics with fixed
interacting cells. The implementation, at the lower level, of an
ODE-based model generates a quantitative time that allows to
better appreciate the grid evolution. Complex behavior and
spatial effects can be implemented including in the logical
rules more than the first line of neighbors and by changing
the geometry of the grid (i.e., cylindrical, toroidal etc.).
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Materials and Methods
The intracellular signaling cascade model parameterization is
provided in Supplementary Material S1. All computations were
implemented and performed in MATLAB (R2019b); simulations
were performed with an Intel Core i7-8700T processor, CPU 2.40
GHz and installed RAM 16.00 GB. Numerical integration of the
ODE system was made using the ODE solver ode15s.

RESULTS

Hybrid Modeling Approach
In this work, we propose a hybrid modeling approach to describe
complex biological phenomena where the lack of kinetic
parameters, species concentrations, or mechanistic knowledge
hinders a complete ODE description.

The model is built hierarchically in a bottom-up fashion
(Figure 1). At the lower level, there is a matrix of quantitative
single modules (i.e., signaling pathways, cells) described by a system
of ordinary differential equations characterized by a set of variables.
Each module can receive two types of inputs: independent (II) or
dependent (ID) from the other modules. The latter is a logical
variable (Boolean or multivalued) which describes the interactions
between the single modules or environmental feedbacks
(i.e., pathway crosstalk, extracellular signaling) and encodes
through a logical rule the contribution of the neighboring
modules’ output variables (V). The independent input, II, is used
instead to portrait those signals that are only position dependent, as
diffusive molecules or other environmental cues.

The hybrid approach we propose thus puts into
communication the two layers (intracellular and tissue) and
can be simulated as illustrated by the pseudo-code of Figure 2.

While II is uniquely defined by the cell position, ID is locally
defined by the variable V of the neighboring modules. To define
each module’s ID, we first threshold V for all the modules,
generating the logic matrix V’; we compute ID by applying the
logical rule f on V’, considering a specific neighborhood of the
module of the grid in exam. Given the planar representation and
the finite number of grid elements, border cells may have a lower
number of neighbors when compared with the others; it is thus
important to define boundary conditions to mitigate artifact
effects. Possible strategies that we also apply in the context of
the case study, are cylindrical conditions, where two borders of
the grid are put in contact by a single fold of the grid or toroidal
conditions, where a double fold of the grid put in pairwise contact
the grid borders. The modules are then integrated until the
variable V crosses the quantization threshold (tthreshold).

The process is then repeated until the break condition is met;
this can be grid equilibrium, maximum allowed simulation time,
or other ad hoc constrains.

CASE STUDY: DELTA-NOTCH

Delta-Notch is a highly conserved cell–cell communication
pathway present in most animals; it allows cells to select
different fates based upon the neighborhood consensus. In
Drosophila, during the neuronal development phase, cellular
differentiation gives rise to salt-and-pepper patterns with cells
either reaching neuronal fate or not (Campos-Ortega, 1995;
Bertrand et al., 2002). The phenomenon of lateral inhibition
among adjacent cells, mediated by Delta-Notch signaling
pathway, has a major role in this kind of pattern formation.
Depending on the interconnectivity of the network, different

FIGURE 1 | Hybrid model approach. The tissue is composed by a grid of quantitative modules described by an ODE system depending on two types of inputs ID
and II, respectively dependent and independent from the other modules. The former is usually cast as a function of the internal variable (V ) of neighboring cells.
Thresholding the Vs of all cells will generate a logical matrix (V ’), which is then used to compute ID by applying a logical rule f . II identifies instead those inputs that are only
dependent from the spatial position.
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patterns can arise, and since cells are observed to extend
protrusions, even non-adjacent cells can interact (Renaud and
Simpson, 2001; Hadjivasiliou et al., 2016).

In the following sections, we will describe how we developed
and integrated the intracellular ODE model and the intercellular
logic model.

Intracellular Signaling Cascade
We developed a mathematical model describing the Notch
intracellular pathway, building upon the computational work
of Agrawal et al. (2009) (for details see Supplementary
Material S1). A set of ordinary differential equations
quantitatively trace the different components involved in
the processes, following the Delta-Notch binding on the
outer membrane (Figure 3).

The cell is modeled with two compartments: cytoplasm
(volume VC) and nucleus (volume VN). Every cell receives as
external input the ligand Delta (DE) from other cells; we
considered it binary: either present (DE � Dmax

E ) or not
(DE � 0). Upon binding of DE with free Notch (Notchfree),
Notch intracellular domain is cleaved and released in the
cytoplasm (NC) with a rate kcl. Assuming that Notch
expression is maintained constant (Ntot) the free amount of
Notch on the membrane as function of the other species is:

Notchfree � Ntot −NC −NN · VN

VC

NC has a molecular weight of 110 kDa, thus it can permeate the
nuclear envelope in two modalities: passive and active transport.
The former is due to concentration gradient (NN −NC) and

FIGURE 2 | Hybrid model simulation pseudo-code, an extended version of the code is available in Supplementary Material S1.

FIGURE 3 | Graphical representation of the model describing the Delta-Notch pathway. Upon binding to the Delta ligand (DE ) from another cell (yellow rectangle)
the Notch receptor releases its intracellular domain in the cytoplasm (NC ). After entering the nucleus, either due to passive or active transport, Notch (NN ) acts as
transcription factor inducing the expression of HesmRNA (HmRNA

N ) and its translation into Hes protein (Hp
C ).H

p
C migrates into the nucleus (Hp

N ) where it acts as repressor of
Delta expression (D) leading to a decrease in Delta protein at the membrane. Coupling this system with its counterpart in a neighbor cell will lead to having a Delta+

cell and a Delta− cell, respectively expressing or not the protein. The model consists of two cell compartments: nuclear (red) and cytoplasmatic (violet).
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occurs at rate kPtr. Active transport is modeled with a first-order
kinetic (see Supplementary material) with transport rate kAtr. The
differential equations describing NC and NN are:

dNC

dt
� kcl ·Notchfree ·DE + kPtr

VC
· (NN −NC) − kAtr

VC
·NC − μN

·NC

dNN

dt
� kPtr
VN

· (NC −NN) + kAtr
VN

·NC − μN ·NN

HmRNA
N represents the concentration of Hes-mRNA in the

nucleus, while Hp
C and Hp

N are Hes protein concentrations in
the cytoplasm and in the nucleus, respectively. We described their
dynamics as follows:

dHmRNA
N

dt
� ktH ·N2

N

N2
N +K2

H

− μHmRNA ·HmRNA
N ,

dHp
C

dt
� kHp ·HmRNA

N · VN

VC
+ kPtr
VC

· (Hp
N −Hp

C) − μHp ·Hp
C,

dHp
N

dt
� −k

p
tr

VN
· (Hp

N −Hp
C) − μpH ·Hp

N

Transcription of Hes-mRNA was modeled with an activation
Hill function ktH ·N2

N

N2
N+K2

H
, with coefficient equal to 2, and a maximal

transcription rate ktH. Hes-mRNA nuclear export was assumed to
occur instantaneously and translation into Hes protein occurs at
rate kHp . Hes1 has a molecular weight of ∼30 kDa, hence we
model nuclear permeation only due to concentration gradient
(Hp

N −Hp
C), with rate kPtr.

Delta transcription is inhibited by Hp
N, thus we modeled it

with a repression Hill function ktD ·K2
D

K2
D+H2

pN
, with a maximal

transcription rate ktD. To simplify our system, we considered
Delta mRNA as the final read out, implying that the translation
process and protein maturation will simply add a delay to the
transcriptional response.

dD

dt
� ktD · K2

D

K2
D +H2

pN

− μD · D.

All components face degradation, with rates μN, μHmRNA , μ
p
H,

and μD, where subscripts indicate the respective species.

Intercellular Signal Communication
The logic formalism was used to describe cell–cell
communications during the lateral inhibition process. The
epithelium was represented by a two-dimensional grid of cells
(Ci), characterized by the intracellular concentration of Delta (D)
binarized accordingly to a fixed threshold (Th):

Ci � { 1 if D≥Th
0 if D<Th.

Delta positive cells influence the neighbors’ fate, activating
their Notch pathway. The presence of Delta ligand (DE) for the
cell Ci is a logical function of N neighboring cells.

DE(C1, . . . , CN) �
⎧⎪⎨⎪⎩ Dmax

E if∑N
j�1
Cdist

j ≥ ϑ,

0 otherwise.

where ϑ represents the minimum number of the N neighboring
cells required to be Delta positive, and dist indicates the integer
distance at which a cell is considered neighbour.

Model Integration and Simulations
To simulate the pattern development, we integrated the two
models. The tissue is represented by a two-dimensional grid of
hexagonal cells, each containing the fine-grained kinetic model of
Figure 3. Cell–cell communication is instead implemented with
logical rules.

To bridge the two representations, for each cell the input of the
ODE model (DE) is defined according to the state of the
neighboring cells via a logical rule. To replicate the salt-and-
pepper pattern observed in biological contexts like theDrosophila
neuronal development, we used the following rule:

DE �
⎧⎪⎨⎪⎩ Dmax

E if∑6
i�1
C1

i ≥ 1,

0 otherwise.

This implies that a cell receives as input DE � Dmax
E if at least

one of the six most proximal neighbors (dist � 1) is delta positive.
After initializing the variables of each cell (Figures 4A), the
simulation follows the steps described previously until the
equilibrium of the grid is reached. To simulate the pattern
emergence, we started from random initial conditions, and we
selected independently for each cell the species concentrations
from their biological range.

Interestingly, in our simulation when starting with random
initial conditions (Figures 4A) the grid evolves first toward a
naïve state, with no fate decided (Figures 4B), then it
converges to the salt-and-pepper pattern accordingly to the
selected rule.

Moreover, as illustrated in Figure 5, since the single ODE
systems are responsible for the evolution of the epithelial grid, it is
possible to observe the dynamics of each module. This approach
thus provides multiple levels of information in function of the
investigation objectives, allowing to pass from the collective cell
behavior to the single intracellular dynamics.

Different rules for DE can include more than one circle of
neighbors (distance greater than one), giving rise to a variety of
different patterns (Figure 6).

In a cell, several signaling pathways concur to fate decision, in
addition to Delta-Notch (ID) we can consider the positional input
Wnt (II). This soluble protein can affect Notch signaling during
fate decisions by diffusing in the tissue and activating a
concentration-dependent inhibition of the Notch intracellular
domain transcriptional activity (Collu et al., 2012). Wnt was
integrated with a fixed concentration dependent on the cell
position on the grid (Figure 7). This test case also provides an
example of our modeling approach considering an external input
not dependent on neighbors.
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DISCUSSION

The description of amulticellular system is always a trade-off between
complexity and tractability. Using a fine-grained approach as ODEs
(or PDEs) provides a detailed representation of the system, which can
be quantitatively used to understand the underpinningmechanism at
the core of the biological processes. However, to be able to simulate
such models, a large number of parameters are required, eventually
leading to parametrization issues. Moreover, moving from a single
cell model to a multicellular one will generate a rapid increase in the
differential equation number, thus opening the door to integrability
and running time problems. On the other hand, parameter-free
approaches (such as logic modeling), although able to overcome
information gaps, allow only for a qualitative representation of the
system behavior. This kind of interpretation can be sometimes
insufficient to provide useful insights on biological problems or
help to analyze experimental evidence. Here, we introduce a new
hybrid approach that leverages on these two formalisms to produce a
semi-quantitative representation of a multicellular/tissue
environment. Our approach can be also employed to describe
interactions among pathways, as bridging signaling cascades by
representing the kinase activity as a Boolean variable, or between
organs as describing with an ODE system the glucose metabolism
and with a logical variable the insulin presence.

To showcase the hybrid formalism, we selected Delta-Notch
signaling pathway (Artavanis-Tsakonas et al., 1999) and the

consequent cell fate selection in an epithelium (Renaud and
Simpson, 2001; De Joussineau et al., 2003). As previously
mentioned, different approaches and different granularities have
been used to investigate this problem: from coarse-grained
intercellular models as the one of Collier et al. (1996) to fine
detailed intracellular models as the one of Agrawal et al. (2009).
The latter provided an in-depth quantitative description of the Notch
signaling pathway, which can be used to investigate the change in
phenotypic behavior of the network (from bistable to oscillatory)
through sensitivity analysis. However, representing cell–cell
communication without embedding the model into a multicellular
system may oversimplify important dynamics. Furthermore, fine-
grained representation cannot be indefinitely scaled up by simply
adding other ODEs for each cell of the epithelium because this would
eventually lead to stiffness and numerical instability. The progressively
granularity reduction can help to overcome these issues although it
provides just a qualitative representation of the system behavior that
focuses on the pattern generation: qualitative ODEs (Collier et al.,
1996), agent-based systems (Reynolds et al., 2019), and logical models
(Varela et al., 2018). These approaches allow to simulate pattern
formation at the tissue level but, due to their nature, they either lack
quantitative time or information about the species concentrations. To
bridge these two levels, we suggest, analogously to hierarchical models
(Uluseker et al., 2018), to connectmultiple single quantitativemodules
through the logic formalism. We selected an ODE formalism to
describe the intracellular kinetics of the different species which allows

FIGURE 4 | Pattern evolution of a 20 × 20 grid with cylindrical boundary conditions (lateral borders are in contact) using the logical rule DE � Dmax
E if ∑6

i�1 C1
i ≥ 1,

encoding that the input is present if at least one of the six neighbors at distance one are Delta positive. Colors indicate the intracellular delta concentration according to the
color bar. (A) Initial values of the variables are set randomly within the biological boundaries. (B) All cells in the grid become Delta negative. (C) Delta-positive cells start to
emerge and affect their neighbour’s fate. (D) Equilibrium grid is reached. The hours reported above each grid indicates the quantitative time obtained from the ODE
systems.
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to quantitatively trace the system variables for each cell and provide a
quantitative time. The rationale to use ODEs for the intracellular
pathway hinges on the amount of data and the availability of
experimental techniques apt to investigate missing gaps at this
level, while cell–cell interaction and tissue dynamics are harder to
explore and quantitatively characterize. As represented in Figure 1,
each cell can receive two types of input: ID or II; the former being
used to encode cell–cell communication. The system is simulated
following the pseudo-code of Figure 2 until the break condition
is met.

In our formalism, the tissue is composed of a grid of cells, each
uniquely identified by their position and neighbors. We used a
structure made by a 2D single cell layer of hexagonal cells, and the
number of neighboring cells varies depending on the distance we
consider (6 at distance 1, 12 at distance two etc.). The boundary
condition of the grid, important for the evolution, was assumed to
be cylindrical (folding the epithelium along the vertical axis)
enabling the study of periodic patterns over a larger domain.

The hybrid strategy we propose tries to overcome the
conundrum of providing a detailed enough description of the
problem while keeping the model complexity under control, each
formalism fulfilling a different purpose. The ODE system, being a
modular quantitative representation of the intracellular cascade,
can be expanded or substituted without major requirements
(beside parameter calibration). Furthermore, multicellular logical

models of Delta-Notch, as the case study presented by Varela et al.
(2018), lack quantitative time and are simulated with a
synchronous/asynchronous update of the grid. In our approach,
the ODE system provides a quantitative time to the tissue system
based on which the cellular grid is updated, allowing for a closer
biological interpretation of the resulting dynamics. The internal
species dynamics, stored along the simulation, can be instrumental
to evaluate the biological processes at different scales.

The logic layer connecting the different single modules is used
to describe qualitatively the receptor binding processes between
adjacent cells. In addition, it is possible to encode biological
information in the system using multilevel inputs; this, together
with the logic rule complexity, can account for the receptor binding
properties, although at a descriptive level. It is also possible to
combine logical dependent inputs, ID, with continuous
independent input, II. This possibility, in the particular case of
the Delta-Notch, can be used to model the intestinal crypt, where
the soluble factor WNT controls part of the Notch intracellular
cascade according to its concentration modulating the cell
stemness (Demitrack and Samuelson, 2016). The hybrid strategy
can thus be applied to the crypt system, considering Delta as a
dependent input coming from the neighboring cells and WNT as
continuous input with a concentration gradient (Figure 7).

The hybrid approach we propose in this work, despite the
qualitative representation of some model components, can be

FIGURE 5 | alt-and-pepper pattern of a 6 × 6 grid with cylindrical boundary conditions obtained by applying the rule DE � Dmax
E if ∑6

i�1 C1
i ≥ 2. Each cell contains a

plot of the computed intracellular variables dynamics; black dashed vertical lines indicate when the cell has generated an event by crossing the Delta threshold. The color
of the cell indicates if the dominant variable is Delta or Notch (in agreement with the intracellular dynamics).
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FIGURE 6 | Pattern evolution of a 20 × 20 grid with cylindrical boundary conditions (lateral borders are in contact) using the logical rule DE � Dmax
E if ∑18

i�1 C3
i ≥ 10,

encoding that the input is present if at least ten neighbors out of the 18 at distance three are Delta positive. Colors indicate the intracellular Delta concentration according to the
color bar. (A) Initial values of the variables are set randomlywithin the biological boundaries. (B)All cells in the grid becomeDelta negative. (C)Delta-positive cells start to emerge
and affect their neighbor’s fate. (D) Equilibrium grid is reached. The hours reported above each grid indicates the quantitative time obtained from the ODE systems.

FIGURE 7 | Pattern evolution of a 20 × 20 grid with cylindrical boundary conditions (lateral borders are in contact) using the logical ruleDE � Dmax
E if ∑6

i�1
C6
i ≥1, encoding

that the input is present if at least one of the six neighbors at distance one are Delta positive. A positional gradient simulates Wnt concentration over the grid. Colors indicate
the intracellular Delta concentration according to the color bar. (A) Initial values of the variables are set randomly within the biological boundaries. (B)Cells in the upper part of
the grid become Delta negative, while on the bottom Wnt inhibition starts to manifest its effect. (C) A clear separation between differentiated (Delta + or Delta −) and
undifferentiated cells (Wnt) emerges. (D) Equilibrium grid is reached. The hours reported above each grid indicates the quantitative time obtained from the ODE systems.

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7600778

Selvaggio et al. A Hybrid Logic-ODE Modeling Approach

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


used to investigate areas in which there are still uncertainties on the
underlyingmechanism or a lack of the system characterization. This
can be used to pave the road toward a more modular representation
of biological problems, progressively expanding the current models
by replacing the logic parts with more quantitative modules as soon
as the necessary information are available.
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