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Negation is widely present in human communication, yet it is largely neglected in the

research on conversational agents based on neural network architectures. Cognitive

studies show that a supportive visual context makes the processing of negation easier.

We take GuessWhat?!, a referential visually grounded guessing game, as test-bed and

evaluate to which extent guessers based on pre-trained language models profit from

negatively answered polar questions. Moreover, to get a better grasp of models’ results,

we select a controlled sample of games and run a crowdsourcing experiment with

subjects. We evaluate models and humans against the same settings and use the

comparison to better interpret themodels’ results. We show that while humans profit from

negatively answered questions to solve the task, models struggle in grounding negation,

and some of them barely use it; however, when the language signal is poorly informative,

visual features help encoding the negative information. Finally, the experiments with

human subjects put us in the position of comparing humans and models’ predictions

and get a grasp about which models make errors that are more human-like and as such

more plausible.

Keywords: negation, multimodal models, transformers, multimodal encoders, visual dialogue, analysis

1. INTRODUCTION

Negation is often neglected by computational studies of natural language understanding, in
particular when using the successful neural network models. Very recently, a series of work
have highlighted that negation is under-represented in existing natural language inference
benchmarks (Hossain et al., 2020b) and that Pretrained Language Models have difficulty
distinguishing a sentence from its negated form in fill-in-the-blank tests (Kassner and Schütze,
2020). This weakness of Language Models could have a strong impact on their success in real-life
applications. For instance, Hossain et al. (2020a) show that the lack of a proper understanding of
negation is an important source of error in machine translation and similarly, it would impact the
quality of other applications based on natural language understanding, such as text summarization
or personal assistants for health care or other uses. A recent contribution of AI to the society is the
development of visual dialogue systems built on Pretrained Language Models. Clearly, they are an
important tool for instance as personal assistants of visually impaired people (Gurari et al., 2018),
but again their impressive achievements would be vanished if they fail to distinguish negative and
affirmative information.
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Admittedly, modeling negation is an ambitious goal, and even
humans have a harder time understanding negative sentences
than positive ones (Clark and Chase, 1972; Carpenter and
Just, 1975). However, it has been shown that the presence of
supportive context mitigates the processing cost of negation. In
particular, this happens within dialogues (Dale and Duran, 2011),
and when a visual context is given (Nordmeyer and Frank, 2014).
Based on these findings, we argue that Visual Dialogues are a
good starting point for making progress toward the ambitious
but crucial goal of developing neural network models that can
understand negation.

Visual Dialogues have a long tradition (e.g., Anderson et al.,
1991). They can be chit-chat (e.g., Das et al., 2017) or task-
oriented (e.g., de Vries et al., 2017; Haber et al., 2019; Ilinykh
et al., 2019a,b). Task-oriented dialogues are easier to evaluate
since their performance can be judged in terms of their task-
success, hence we focus on this type of dialogues which can be
further divided as following: the two agents can have access to the
same visual information (de Vries et al., 2017), share only part of
it Haber et al. (2019) and Ilinykh et al. (2019a) or only one agent
has access to the image (Chattopadhyay et al., 2017). Moreover,
dialogues can be symmetric (Haber et al., 2019), or asymetric,
with one agent asking questions and the other answering
it de Vries et al. (2017), Das et al. (2017), and Chattopadhyay et al.
(2017). Finally, the dialogue turns can contain different speech
acts (Haber et al., 2019; Ilinykh et al., 2019a,b) or only question
anwer pairs (Chattopadhyay et al., 2017; Das et al., 2017; de Vries
et al., 2017). The differences between the various type of dialogues
are illustrated in Figure 1. As we can see symmetric games
with partially observable data (PhotoBook and Meet up! Haber
et al., 2019; Ilinykh et al., 2019a) sollicitate more complex
exchanges than symmetric ones (Visual Dialogue, GuessWhich—
the referentional game built from it Chattopadhyay et al., 2017;
Das et al., 2017, and GuessWhat?! de Vries et al., 2017—the latter
is illustrated in Figure 2). Given the difficulty negation poses
to models, we take the scenario which is less complex from a

FIGURE 1 | Examples of dialogues from two asymmetric and partially observable visual dialogue data [PhotoBook and Meet Up! (Haber et al., 2019; Ilinykh et al.,

2019a)] and a symmetric visual dialogue in which the answerer sees the image and the questioner does not see it (Chattopadhyay et al., 2017; Das et al., 2017). For

all datasets, we selected exchanges containing negation, the focus of our study.

dialogue perspective and in which questions are always grounded
in the image: the one in which agents have access to the same
visual information, only one agent can ask questions, and the
questions are all of the same type. Hence, we take GuessWhat?! as
case-study and focus on the referential grounded guessing task: a
Guesser receives an asymmetric dialogue, consisting of Yes/No-
questions over an image, a list of candidates and has to guess
the target object the dialogue is about. In this setting, negation
is heavily present as the answer to a binary question. As such
it functions as a pointer to the alternative set of the negated
expression; in other words it should be interpreted as pointing
to the set of all the candidates objects which do not have the
queried property.

GuessWhat?! dialogues have been collected by letting two
humans play the game. As illustrated in Figure 2, such dialogues
are quite simple: a sequence of rather short questions answered
by “Yes” or “No” containing on average 30.1 (SD ± 17.6) tokens
per dialogue. The dialogue length differs across the games since
the questioner decides when he/she can stop asking questions
and is ready to guess the target. To evaluate the extent models
understand negatively answered questions, we take the human
dialogues as input to the guesser. We select successful games,
in other words those dialogues in which human players have
succeeded in guessing the target object at the end of the game.
We conjecture that within these dialogues a crucial role is played
by the last turn whose role is to create a singleton alternative set
and that this goal is achieved differently when the question is
answered positively or negatively. In the former case, the question
tends to almost fully describe the target object, whereas in the
latter case it conclusively identifies the target object by excluding
those candidates which most likely are not the target (Figure 2).
To validate this conjecture, we run an online experiment with
humans which set the ground for better evaluating the results
obtained by models. We let humans and computational models
perform the same task on the same controlled sample set. We
compare encoders with respect to the architecture (Recurrent
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FIGURE 2 | Two samples of GuessWhat?! human dialogues ending with a positive (left) and a negative (right) turn.

Neural Networks vs. Transformers), the input modalities (only
language vs. language and vision) and the model background
knowledge (trained from scratch vs. pre-trained and then fine-
tuned on the downstream task). Our analysis shows that:

• While humans profit from negatively answered questions to
solve the task, models struggle in grounding negation, and
some of them barely use it;

• In No-turns, when the language signal is poorly informative,
visual features help in processing the QA pair.

We hope that these results will stimulate more work on the
processing of (grounded) negation and that the data we collected
through our online experiment and its annotation will be a
valuable contribution to such research direction.1

2. RELATED WORK

2.1. Scrutinizing Visual Dialogue Encoding
Sankar et al. (2019) study how neural dialogue models encode
the dialogue history when generating the next utterance. They
show that neither recurrent nor transformer based architectures
are sensitive to perturbations in the dialogue history and
that Transformers are less sensitive than recurrent models
to perturbations that scramble the conversational structure;
furthermore, their findings suggest that models enhanced with
attention mechanisms use more information from the dialogue
history than their vanilla counterpart. We follow them in the
choice of the architectures we compare, but we change the focus
of the analysis by studying whether the polarity of the answer (Yes
vs. No) affects the encoding of the information provided by the
question-answer pair.

Kaushik and Lipton (2018) show that in many reading
comprehension datasets, that presumably require the
combination of both questions and passages to predict the
correct answer, models can achieve quite a good accuracy by

1https://github.com/albertotestoni/annotation_human_gw

using only part of the information provided. Similarly to this
work, we investigate how much models use the questions as well
as the answers, provided by the Oracle, to select the target object
among the possible candidates.

Interesting exploratory analysis has been carried out to
understand Visual Question Answering (VQA) systems and
highlight their strengths and weaknesses (e.g., Johnson et al.,
2017; Kafle and Kanan, 2017; Shekhar et al., 2017; Suhr et al.,
2017). Less is known about how well grounded conversational
models encode the dialogue history and in particular, negatively
answered questions. Greco et al. (2020) shows that pre-trained
models transformers detect salient information in the dialogue
history independently of the position in which it occurs.We build
on their study to dive into how encoders represent positively vs.
negatively answered questions within a visual dialogue.

2.2. SOTA LSTM-Based Models on
GuessWhat?!
After the introduction of the supervised baseline model (de Vries
et al., 2017), several models have been proposed. Zhao and
Tresp (2018) has used attention mechanisms based on Memory
Networks (Sukhbaatar et al., 2015) and (Shekhar et al., 2019) has
proposed a model that is jointly trained to ask questions and
guess the target. Building on the supervised learning step, all
these models have been further trained with either some form
of reinforcement learning (Zhang et al., 2018; Zhao and Tresp,
2018; Yang et al., 2019; Pang and Wang, 2020) or cooperative
learning (Shekhar et al., 2019; Pang and Wang, 2020); this two-
step process has been shown to reach higher task success than the
supervised approach. Since our focus is on the Guesser and we
are evaluating it on human dialogues, we will compare models
that have undergone only the supervised training step.

2.3. Transformer-Based Models
The last years have seen the increasing popularity of transformer-
based models pre-trained on several tasks to learn task-agnostic
multimodal representations (Chen et al., 2019; Li et al., 2019,
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2020; Lu et al., 2019; Tan and Bansal, 2019; Su et al., 2020).
ViLBERT (Lu et al., 2019) has been recently extended by
means of multi-task training involving 12 datasets which include
GuessWhat?! (Lu et al., 2020) and has been fine-tuned to play
the Answerer of VisDial (Murahari et al., 2019). Greco et al.
(2020) have adapted the pre-trained transformer, LXMERT (Tan
and Bansal, 2019), to the GuessWhat?! guessing task. Given
the high accuracy achieved, we choose LXMERT as pre-
trained transformer.

2.4. Visually Grounded Negation
Negation was already listed by Winograd among the linguistic
phenomena a Grounded Conversational System should be able
to interpret (Winograd, 1972). Significant progress has been
obtained in the development of conversational systems based on
neural network architecture; however, little is known about how
these models interpret negation. Nordmeyer and Frank (2014)
show that processing negation can be easier for humans if a
visual context creates pragmatic expectations that motivate its
use. However, it is unknown whether this holds for multimodal
models. Suhr et al. (2019) show that SOTA models tested
on visual reasoning often fail in properly grounding negative
utterances. Gokhale et al. (2020) show that models have harder
time in answering visual questions containing negation. Both
studies look at negation as a logical operation, it reverses the
truth value of the negated utterance. However, Oaksford (2002)
show that humans often use negation not as a logical operator
but rather as a way to create an alternative set of the negated
expressions. This is exactly the role of the negative answer in
the GuessWhat?! game. We are not aware of any study on Visual
Dialogue that have tackled this issue.

3. TASK AND DATASET

In this paper, we run an in-depth analysis on how models
integrate Yes/No answers into the question to solve the
GuessWhat?! guessing task. We run a comparative analysis to
evaluate the role of language priors and visual grounding, and
we run a crowdsourcing experiment with subjects on a controlled
sample of the games. Using a controlled sample set and knowing
about humans’ performance give us a better way to interpret the
results obtained by the models on the full test set. Below we
describe the task and training/validation set and the test sets we
use through out the paper.

3.1. Task
GuessWhat?! (de Vries et al., 2017) is an asymmetrical game
involving two participants who see a real-world image. One of
the participants (the Oracle) is assigned a target object in the
image and the other participant (the Questioner) has to guess it
by asking Yes/No questions to the Oracle. de Vries et al. (2017)
collected a human dialogue dataset via Amazon Mechanical
Turk. Our focus is on multimodal encoding, hence we focus on
the guessing task: given a human dialogue, consisting of Yes/No
questions and their answers, an image and a list of possible
candidate objects, the agent has to select the object the dialogue is
about. Greco et al. (2020) have shown that human dialogue length

TABLE 1 | Statistics on the full test set and on the Controlled test set; both

divided into the Yes- (resp. No-) subsets obtained by selecting only dialogues with

a positively (resp. negatively) answered question in the last turn.

Nr. Games Av. Dialogue length Av. nr candidates

Full test set 18,840 4.5 8

Yes-set 16,366 4.5 8

No-set 2,350 4.5 7.8

Controlled sample 300 4.5 6.1

Yes-set 150 4.5 6.1

No-set 150 4.3 6.1

is a good proxy of the guessing task difficulty2, where length is
measured in terms of number of turns; for instance in Figure 2

the dialogue on the left is of length 5 (it consists of five turns)
whereas the one on the right is of length 3. In the following, we
use “turn” to refer to the position (of just the question or the
answer or of the QA pair) within the dialogue.

3.2. Full Dataset
The GuessWhat?! dataset contains 155K English dialogues
about approximately 66K different images from the MS-COCO
dataset (Lin et al., 2014). We evaluate models using human
dialogues, selecting only the games on which human players
have succeeded finding the target and contain at most 10 turns
(total number of dialogues used: 90K in training and around 18K
both in validation and testing). Dialogues contain on average 4.5
Question-Answer (QA) pairs, the vocabulary consists of 4,901
words, and games have on average 8 candidates.3 The answer
distribution is the following: 52.2% No, 45.6% Yes, and 2.2% N/A
(not applicable). We divide the full test set into games whose
dialogue ends in a Yes- vs. in a No-turn and obtain the Yes-set
and No-set, whose statistics are reported in Table 1. As we can
see, the two sets contain dialogues of the same average length,
and similar number of candidate objects, hence their games are
expected to be of similar difficulty. The last turns in these two
subsets are expected to play a rather different role (as illustrated
by the example in Figure 2): a Yes-question in the last turn
is rather informative on its own, whereas a last turn answered
negatively quite often needs the information gathered in the
previous turns to be informative. On the other hand, we should
note that last turns containing a negative answer are expected
to be rather informative together with the dialogue history to
guess the target. Hence, they are an interesting test-bed for our
research question.

3.3. Controlled Sample
To compare models’ results against humans’ ones, we run an
annotation experiment on a sample of games we carefully select.
We consider dialogues consisting of 4- and 6-turns, and select
those containing an equal number of Yes/No answers. Moreover,

2In shorter dialogues the area of the target object is bigger than in longer dialogues,

and in short dialogues the target object is quite often a “person” – the most

common target category in the dataset; moreover, the number of distractors in

longer dialogues is much higher.
3The dataset of human dialogues is available at https://guesswhat.ai/download.
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FIGURE 3 | Shared Encoder-Guesser skeleton. The Guesser receives the category labels (e.g., “bottle”) and the spatial coordinates (pos) of each candidate object.

Multimodal encoders receive both the image and the dialogue history, whereas blind models receive only the latter.

to control for the level of difficulty of the game, we select only
games which have a maximum of 10 candidates. We obtain a
subset with a balanced overall distribution of the two types of
polar answers; it contains 1,491 games, of which 1,327 (resp.
164) contain in the last turn a question answered positively (resp.
negatively). From these games, we randomly select 300 games
(image, target) from the Yes- and No- test sets (150 each). In
this way, we obtain a subset balanced also with respect of the
polarity of the last question. We believe games in this sample set
are equally difficult, considering the criteria discussed above.

4. MODELS

Following, Greco et al. (2020), all the guesser models we
evaluate share the skeleton illustrated in Figure 3: an encoder
paired with a Guesser module. For the latter, all models use
the module proposed in de Vries et al. (2017). Candidate
objects are represented by the embeddings obtained via a Multi-
Layer Perceptron (MLP) starting from the category and spatial
coordinates of each candidate object. The representations so
obtained are used to compute dot products with the hidden
dialogue state produced by an encoder. The scores of each
candidate object are given to a softmax classifier to choose the
object with the highest probability. The Guesser is trained in
a supervised learning paradigm, receiving the complete human
dialogue history at once. The models we compare differ in how
the hidden dialogue state is computed. We compare LSTM vs.
Transformers when receiving only the language input (Language-
only, henceforth, Blind models) or both the language and the
visual input (Multimodal, henceforth, MMmodels).

4.1. Language-Only Encoders
4.1.1. LSTM
As in de Vries et al. (2017), the representations of the candidates
are fused with the last hidden state obtained by an LSTM which
processes only the dialogue history.

4.1.2. RoBERTa
In the architecture of the model described above, we replace
the LSTM with a robustly-optimized version of BERT (Devlin
et al., 2019), RoBERTa, a SOTA universal transformer-based
encoder introduced in Liu et al. (2019).4 We use RoBERTaBASE
which has been pre-trained on 160GB of English text trained
for 500K steps to perform masked language modeling. RoBERTa
was pretrained on several text corpora containing rather long
utterances: BookCorpus (Zhu et al., 2015)+ English Wikipedia
(as the original BERT model), CC-NEWS (Nagel, 2016),
OPENWEBTEXT (Gokaslan and Cohen, 2019), and STORIES
(Trinh and Le, 2018). It has 12 self-attention layers with 12
heads each. It uses three special tokens, namely CLS, which
is taken to be the representation of the given sequence, SEP,
which separates sequences, and EOS, which denotes the end
of the input. We give the output corresponding to the CLS
token to a linear layer and a tanh activation function to obtain
the hidden state which is given to the Guesser. To study
the impact of the pre-training phase, we have compared the
publicly available pre-trained model, which we fine-tuned on
GuessWhat?! (RoBERTa), against its counterpart trained from
scratch only on the game (RoBERTa-S).

4.2. Multimodal Encoders
4.2.1. V-LSTM
We enhance the LSTM model described above with the
visual modality by concatenating the linguistic and visual
representation and scaling its result with an MLP; the
result is passed through a linear layer and a tanh activation
function to obtain the hidden state which is used as input
for the Guesser module. We use a frozen ResNet-152
pre-trained on ImageNet (He et al., 2016) to extract the
visual vectors.

4We have also tried BERT, but we obtained higher accuracy with RoBERTa.
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4.2.2. LXMERT
To evaluate the performance of a universal multimodal encoder,
we employ LXMERT (Learning Cross-Modality Encoder
Representations from Transformers) (Tan and Bansal, 2019).
It represents an image by the set of position-aware object
embeddings for the 36 most salient regions detected by a
Faster R-CNN and it processes the text input by position-aware
randomly-initialized word embeddings. LXMERT is pre-trained
on datasets containing rather short utterances: MSCOCO
(Lin et al., 2014), Visual Genome (Krishna et al., 2017), VQA
v2.0 (Antol et al., 2015), GQA balanced version (Hudson and
Manning, 2019), and VG-QA (Zhu et al., 2016). Both the visual
and linguistic representations are processed by a specialized
transformer encoder based on self-attention layers; their outputs
are then processed by a cross-modality encoder that, through
a cross-attention mechanism, generates representations of the
single modality (language and visual output) enhanced with
the other modality as well as their joint representation (cross-
modality output). Like RoBERTa, LXMERT uses the special
tokens CLS and SEP. Differently from RoBERTa, LXMERT uses
the special token SEP both to separate sequences and to denote
the end of the textual input. LXMERT has been pre-trained
on five tasks.5 It has 19 attention layers: 9 and 5 self-attention
layers in the language and visual encoders, respectively and 5
cross-attention layers. We process the output corresponding to
the CLS token as in RoBERTa. Similarly, we consider both the
pre-trained version (LXMERT) and the one trained from scratch
(LXMERT-S).6

5. EXPERIMENTS ON THE FULL TEST SET

We aim to understand whether models encode Yes/No answers
and properly integrate them into the question. If answers play
a role in the performance of the models in guessing the target
object, removing them from the dialogues should cause a drop in
the task accuracy. Following this conjecture, we evaluate models
(at test time, without additional training) when receiving only the
questions from the dialogues (without the answers). Moreover,
as commented above, the last turn in the Yes-set vs. No-set is
expected to play a rather different role. In particular, already
alone a positively answered question in the last turn is expected
to be rather informative whereas a last turn answered negatively
is not. On the other hand, last turns containing a negative answer
are expected to enrich the dialogue history and help to guess the
target. Hence, in the following, we evaluate models aiming to
understand the role of the last turn.

5.1. Accuracy Results
5.1.1. Only Questions
We evaluate models when receiving dialogues containing only
the questions.7 As expected, all models show an important

5Masked cross-modality language modeling, masked object prediction via RoI-

feature regression, masked object prediction via detected-label classification, cross-

modality matching, and image question answering.
6We use the code available from https://github.com/claudiogreco/aixia2021.
7We replaced all the answers with the “unknown” [UNK] token.

TABLE 2 | Full test set: Task Accuracy obtained by models when receiving: a) only

the questions (Only Q); b) the full dialogue in the Yes-set vs. No-set, viz. games

ending with a Yes-turn vs. a No-turn.

Full dialogue Only Q Full dialogue

all games all games Yes-set No-set

Random 12.5 12.5 16.4 16.4

B
L
IN

D LSTM 64.7 47.9 67.0 49.0

RoBERTa-S 64.2 43.7 66.6 48.1

RoBERTa 67.9 51.7 69.6 54.5

M
M

V-LSTM 64.5 46.2 67.0 48.3

LXMERT-S 64.4 32.0 66.6 49.5

LXMERT 69.2 44.8 71.9 50.9

All differences between RoBERTa and LXMERT are statistically significant.

drop as we can see from Table 2. Blind models have higher
accuracy than the multimodal counterpart when receiving only
the question, maybe because during training they learn to exploit
the language surface more. Moreover, the pre-training phase
helps to exploit the keywords in the questions as shown by the
difference between the pre-trained and from scratch versions
of both transformer based models. These results show that all
models take the answers into account to some extent, and thus
it is important to study their impact on the performance of
the models.

5.1.2. Dialogues With a Yes- vs. No- Answer in the

Last Turn
We now investigate how the polarity of the final answer in
the dialogue affects the performance in the guessing task.
Models reach a rather lower accuracy on the No-set, suggesting
that models have harder time interpreting dialogues ending
with a negative answer (Table 2). Differently from what one
would expect, it seems the pre-trained transformer that does
not have access to the visual representation of the “alternative
set” (RoBERTa) performs better than the multimodal model,
LXMERT, in the challenging No-set games. It is not clear,
however, where the advantage of RoBERTa comes from. Hence,
in the next section, we aim to understand these results better by
using the controlled sample and comparing models against the
humans’ performance, with a particular focus on the role of the
last dialogue turn.

5.1.3. The Role of the Last Turn
To analyse the role of the last turn, we compute models’ accuracy
when receiving the dialogues without the last turn or with only
the last turn. The drop obtained from the setting in which models
have access to the full dialogue quantifies the role of the last
turn. First of all, as shown in Table 3, when removing the last
turn in the Yes-set, LXMERT has a higher drop in accuracy than
RoBERTa: −22.0% (from 71.9 to 49.9) vs. –16.1% (from 69.6 to
53.5); the fact that LXMERT relies on the last turn a lot might be
due to LXMERT having harder time than RoBERTa in encoding
the dialogue history, as observed in Greco et al. (2020). When
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TABLE 3 | Full test set: Accuracy comparison when giving to the model the

dialogue without the last turn (W/o Last) or with only the last turn (Last).

Yes-set No-set

W/o Last Last W/o Last Last

LSTM 48.3 51.8 39.9 24.5

RoBERTa-S 49.8 50.7 39.6 21.8

RoBERTa 53.5 55.6 42.5* 23.3

V-LSTM 48.6 47.3 37.8 20.7

LXMERT-S 48.4 51.7 41.0 22.2

LXMERT 49.9 61.2 41.9* 26.6

(The *marks RoBERTa’s and LXMERT’s scores whose differences are statistically not

significant).

only the last turn is provided, LXMERT profits from the pre-
training phase more than RoBERTa. Recall that LXMERT has
seen shorter text than RoBERTa during training, e.g., MS-COCO
captions vs. Wikipedia text. This difference could be behind such
results. In the No-set, LXMERT processes the last turn better
than RoBERTa (it reaches 26.6 accuracy when receiving only the
last turn, +3.3 than RoBERTa), but again it has more difficulty
in integrating such information with that gathered through the
dialogue history (it scores –3.4% than RoBERTa when receiving
the full dialogue). Finally, as expected, when receiving only the
last turn, models obtain a high accuracy when the answer is
positive (Yes-set) and are near to chance level when it is negative
(No-set). Interestingly, in the No-set, RoBERTa and LXMERT
have a rather similar accuracy when the last turn is not given
and LXMERT does slightly better than the language encoder
when receiving only the last turn. These results suggest that the
advantage of RoBERTa over LXMERT highlighted in Table 2 is
due to a better processing of the whole dialogue history, while
LXMERT exploits better shorter sequences such as the last turn
taken individually in the No-Set (Table 3).

5.1.4. Tests of Statistical Significance
To validate our findings about the comparison between RoBERTa
and LXMERT, we have run theMcNemar’s test with a significance
level of 0.05. We use an asterisk to signal scores whose differences
is not significant (Tables 2, 3).

5.2. Guesser’s Probability Distribution
We now analyze how the guesser module assigns probabilities to
the target object across the turns to understand better the role
of positive and negative answers at a more fine-grained level.
We compute how the probability assigned by the Guesser to the
target object P(o) changes after each turn (P(o)Ti+i − P(o)Ti ) and
compare turns Ti with a Yes, No or N/A answer. We expect it is
easier to use the Yes-turns than the No ones, but we hope models
are able to benefit from the questions answered negatively more
than those answered by N/A. Moreover, we focus on the games
in which the Guesser succeeds to select the target object, and
quantify the effect of the last turn on the probability assigned to
the target. We expect the change in the last turn of the No-set to

TABLE 4 | Change across consecutive turns in the probability assigned to the

target after Yes- vs. No- vs. N/A-turns, i.e., P(o)Ti+1
− P(o)Ti (full dialogue history in

the full test set) and before/after the last turn (Last turn in games on which the

model has succeeded).

All games All successful games

Full dialogue history Last turn

Ti :Yes Ti :No Ti :N/A Ti :Yes Ti :No Ti :N/A

LSTM 14.5 2.9 2.3 26.3 16.2 6.3

RoBERTa-S 12.7 3.5 1.9 24.6 16.4 1.1

RoBERTa 12.3 5.9 1.4 22.9 18.8 1.1

V-LSTM 14.0 3.1 2.9 23.7 13.7 6.7

LXMERT-S 12.3 4.4 2.1 24.8 19.3 0.7

LXMERT 16.4 4.1 1.4 30.0 24.9 3.2

be much higher than No-turns in average, whereas this should
not happen with last turn in the Yes-set.

Although the average probability assigned to the target is
similar before a Yes-turn and a No-tun for all models,8 questions
answered with Yes bring a much higher increase of probability
than questions answered with No—which for LSTM have on
average the same impact as those answered by N/A (2.9 vs. 2.3)
(Table 4).9 Again, RoBERTa is the model that seems to profit of
the negative turn more: the probability the guesser assigns to
the target object after a No-turn increases of 5.9 vs. 4.1 when
using LXMERT as encoder. However, when we focus on the
last turn (Table 4-right), LXMERT is the model for which the
negative answer brings a higher increase to the target object In
the following, by zooming into the controlled sample we aim to
get a more accurate comparison of models with respect to the
specific issue of how they encode negatively answered questions.

5.3. Summary
In short, the experiments run so far show that all models take the
answer of the asymmetric GuessWhat?! dialogues into account.
The pre-trained encoders are the best models over all games and
are on par with one another in processing positively answered
questions. But, the results on the Yes-set when removing the last
turn or when giving only the last turn shows that LXMERT profits
from the last Yes-turn more than RoBERTa. We conjecture this
is due to the fact that LXMERT has a harder time encoding
the dialogue history. The overall accuracy obtained on the No-
set suggests that RoBERTa encodes the negatively answered
questions better than LXMERT. However, an in-depth analysis
of the Guesser probability distribution shows that the Guesser
profits from the last turn in the No-set more when it is based on
LXMERT than on RoBERTa. From the analyses presented so far,
it emerges that the models we considered have different strengths
and weaknesses, depending on many factors. To establish an
upper-bound for models’ performance and to assess the severity

8The difference is lower than 10%.
9In Table 4 we report the results for all the dialogues. Similar patterns have been

seen when comparing the models on games with a given number of candidate

objects.
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FIGURE 4 | Prolific interface: Humans were given a dialogue, an image with

colored bounding boxes, and a numbered list of candidates with colors

matching those of the bounding boxes. They had to use the keyboard device

to choose the target.

of the errors made by the models, in the following we present an
in-depth analysis we carried out with human annotators playing
the same guessing task of the models.

6. CONTROLLED SAMPLE: HUMANS AND
MODELS

In order to interpret models’ performance on encoding Yes/No-
turns, we evaluated humans’ performance on the controlled
games sample described in section 3. These results set an upper-
bound for model performance, and give us a powerful tool to
better scrutinize our results.

6.1. Experiments and Results With Human
Annotators
We asked human annotators to perform the GuessWhat?!
guessing task on a controlled sample of test set games. Similarly
to what discussed in section 5, we evaluate several settings: we
provide annotators with the full dialogue, the dialogue without
the last turns, or only the last turn.Moreover, to check the average
informativeness of Yes- No-turns, we add the setting in which we
remove from the dialogues all turns of the same polarity.

6.1.1. Data Collection
Through Prolific,10 we collected complete annotations from
48 subjects who were paid Euro 8.27/h. Each participant
annotated 75 games from one of the four settings. In total, we
have collected 3600 human answers. Each setting has received
annotation from 3 participants. Participants were asked to be
native English speakers.

Participants were given an image with bounding boxes
associated with each candidate object, together with a progressive
ID number, as illustrated in Figure 4. They express their guess
by pressing on the device’s keyboard the number corresponding
to the chosen object. Before starting the experiment, they were

10https://www.prolific.co/

shown three trial games for which the correct answer was
displayed in case the annotator chose the wrong target. We added
two control games in each setting, i.e., games with a full dialogue
history and few candidate objects. Participants were told there
where control games and that they would have been excluded
from the data collection in case the wrong answer was given for
those games. Only one annotator wrongly guessed the control
games and was therefore excluded. We recorded the time taken
by each participant to complete the experiment. On average,
humans took 12.23 s for each datapoint in the group A (removing
turns), 15.55 s for group B (without last turn), 10.52 s for group
C (only last turn), and finally 20.26 for group D (full dialogue).
We found no statistically significant correlation between the time
taken to guess the target and the success in solving the task.

6.1.2. Tests of Statistical Significance
As we did in the previous section, we validate the accuracy
results by running a McNemar’s test with a significance level
of 0.05 (Tables 5, 7). Table 6 reports the times taken by
humans to play games belonging to the different groups we
have analyzed. The differences within groups are not normally
distributed—Shapiro–Wilk test. Hence, to check the validity of
such comparisons we have run a Wilcoxon rank-sum statistic
for two samples using 0.05 as significance level. Again, we use
asterisks to signal the results whose difference is not statistically
significant.

6.1.3. Results With Humans
Asmentioned above, we focus on games on which human players
have been successful in guessing the target object. It has to be
noted that during the GuessWhat?! data collection, each game
was played only once and the target object was guessed by the
same player who asked the questions. Hence we do not know
whether the same dialogue-image would be equally informative
for another player to succeed in the game neither we know the
level of uncertainty behind the choice made by the successful
player. With these questions in mind, in Table 5 we report
the accuracy obtained by humans in our controlled experiment
by considering a game successfully solved if (a) at least one
participant correctly identifies the target object among the list of
candidates (the typical GuessWhat?! accuracy evaluation setting,
modulo the fact that in our case the questions are already
asked) and (b) at least two participants guess the target correctly
(the most standard and solid evaluation); we refer to these two
accuracy metrics as minority (MIN) and majority (MAJ) schema,
respectively.

Given that we are working with games on which GuessWhat?!
human players succeed guessing the target, the fact we do not
obtain 100% accuracy in the group D (complete dialogues) is by
itself interesting. The difference between the two schema shows
that, also in the games successfully solved by human players
in the GuessWhat?! dataset, there is a margin of uncertainty.
As we see from the Table 5 (Group D, full dialogue), 98.00%
of the games ending with a Yes-turn could be guessed by at
least one participant (minority schema) whereas 86.67% of them
were guessed correctly by at least two participants (majority
schema). Games ending with a No-turn are more difficult:
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TABLE 5 | Humans’ performance on controlled sample: percentage of games

guessed correctly by at least two participants (MAJ) vs. by at least one

participant (MIN).

A) Removing turns

M
A
J Only Yes 66.00

Only No 46.00

M
IN Only Yes 80.67

Only No 72.67

B) W/o last C) Only last D) Full dialogue

M
A
J Yes-set 75.33 71.33 86.67*

No-set 49.33 30.67 80.67*

M
IN Yes-set 92.00 88.00 98.00

No-set 64.67 58.00 90.00

*Not significant.

TABLE 6 | Average time (seconds) taken by humans to solve games belonging to

the different groups analyzed.

Group Description Average time/token (s)

A only yes turns 0.45

A only no turns 0.57

B without last (yes) 0.94*

B without last (no) 0.79*

C only last (yes) 1.20

C only last (no) 2.53

D full dial ending with yes 0.72

D full dial ending with no 0.85

Normalized with respect to the number of token in the text; only successful games are

considered. *not significant.

90.00% (resp. 80.67%) of the games could be guessed based
on the minority (resp. majority) schema. However, whereas the
difference between the Yes- vs. No-set in the minority schema
is significant it is not so in the majority schema. This suggests
that, for humans, the level of difficulty of the two subsets is
similar. The results on Group A (removing turns) shows that
on average Yes-turns are more informative than No-turns. As
expected, the last turn in the Yes-set is quite informative: with
only the last turn (Group C), humans’ accuracy drops of only –
10.00% (resp. –15.34) reaching 88.00 (resp. 71.33) accuracy in the
minority (resp. majority) schema. Furthermore, the last turn in
the Yes-set is quite redundant with the information provided by
the previous turns: when receiving the dialogue without the last
turns (Group B), humans’ accuracy drops of only 6% (resp. 11.34)
in the minority (resp. majority) schema. Instead, the last turn in
the No-set seems to provide further information that needs to be
integrated with those received in the previous turns: without the
last turn the accuracy on the No-set drops of 25.33 (resp. 31.34).
All in all, these results show that also for humans gathering
information from the No-turn is harder than with the Yes-turn,
yet the last turn in the No-set is informative and humans manage
to profit from it to succeed in the task relatively well. This result

TABLE 7 | Controlled sample.

Full dialogue Removing turns

Only No-turns Only Yes-turns

Random 16.5 16.5 16.5

B
L
IN

D LSTM 57.0 30.67 48.00

RoBERTa-S 54.66 29.33 50.00

RoBERTa 60.0* 35.33 52.00**

M
M

V-LSTM 55.66 25.33 50.66

LXMERT-S 54.33 32.66 48.00

LXMERT 59.67* 25.33 56.66**

Human (MAJ) 83.67 46.00 66.00

Removing turns: comparison of the task accuracy when models receive the full dialogue

vs. only the No- vs. only the Yes-turns. Human accuracy computed with the majority vote.

*, **not significant.

highlights the value of negation in visual dialogues, and show
why it is an important requirement for computational models to
properly process it.

To measure the processing cost of negative turns, we have
analyzed the average time taken by human to correctly solve
games belonging to the four categories we discussed so far.
Table 6 shows that interpreting questions answered positively is
faster than interpreting the ones answered negatively, and this
result holds for all settings. In particular, processing positively-
answered questions takes less than processing negatively-
answered ones (group A), and a final positive turn is processed
much faster than a negative final turn (group C). Interestingly,
in the Yes-set guessing the target is faster when receiving the
full dialogue than when receiving the dialogue without the last
turn (0.72 vs. 0.94 s/token, p < 0.05), this might be due to what
observed above, namely the last Yes-turn summarizes the salient
information collected till that point and hence speeds up the
choice. Whereas the negative answer in the last turn brings a
boost in performance, it does not affect significantly the time
taken by human annotators to process the dialogue (0.79 vs. 0.85
s/token, p > 0.05). These results show that the time taken by
human participants to solve the gamemirrors the processing cost
of negation, which is also influenced by the context (dialogue) in
which it appears.

6.1.4. Results Humans vs. Models
We now evaluate the models on the same controlled sample of
games we used with human annotators. In Table 7, we report
the task accuracy obtained by models when removing all the
Yes turns (remaining with only No-turns) or all the No-turns
(remaining with only Yes-turns). As can be seen from the table,
the performance of the two best models is rather similar: both
in the full dialogue and in the only Yes-turns the difference
between their results is not significant. Similarly to humans,
models accuracy drops less when receiving only the Yes-turns
than when receiving only the No-turns. However, models’ overall
accuracy when receiving the full dialogue is far from the human
upper-bound even when using the majority vote schema. As we
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TABLE 8 | Controlled sample.

Yes-set No-set

Full W/o Only Full W/o Only

dialogue last last dialogue last last

B
L
IN

D LSTM 68.00 55.30 51.30 46.00 34.00 30.00

RoBERTa-S 64.67 49.33 48.67 44.67 39.33 27.33

RoBERTa 71.33 55.33 63.33 48.67 40.67 22.00

M
M

V-LSTM 60.67 49.33 49.33 50.67 34.67 16.67

LXMERT-S 61.33 50.00 47.33 47.33 36.00 22.00

LXMERT 71.33 53.33 60.67 48.00 46.00 31.33

Humans (MAJ) 86.67 75.33 71.33 80.67 49.33 30.67

Without the last turn, Only the last turn, Full Dialogue: accuracy comparison to highlight

the role of the last turn when it contains a positive (Yes-set) vs. negative (No-set) answer.

TABLE 9 | Error Analysis: Percentage of games human failed among those failed

by each model.

Removing turns W/o last Only last Full dialogue

V-LSTM 80.65 73.56 78.61 53.38

LXMERT-S 82.12 71.35 81.12 59.12

LXMERT 83.05 77.48 85.19 58.68

RoBERTa-S 82.87 73.65 80.65 55.88

RoBERTa 83.43 72.44 82.56 55.00

TABLE 10 | Error Analysis: Percentage of games in which each model does the

same mistake made by humans (i.e., by selecting the same wrong candidate

object as a human annotator).

Removing turns W/o last Only last Full dialogue

V-LSTM 45.33 48.44 41.14 49.30

LXMERT-S 52.38 52.46 42.77 51.85

LXMERT 51.70 58.12 47.10 49.30

RoBERTa-S 57.33 51.22 46.67 44.74

RoBERTa 60.99 51.33 53.52 53.03

can see in Table 8 this rather big difference between models and
humans is due to the No-set: while humans correctly succeed in
80.67% of the games ending in a No-turn, models reach at most
the 50%. It is thus clear that if it is true that negation has a higher
processing cost for both humans and computational models, the
latter struggle to profit from negatively answered questions.

6.2. Comparison With Humans’ Errors
In the following, we run an error analysis by comparing models
and humans on their failures. We expect that a model that
properly grounds the dialogues is likely to make human-like
mistakes. To this end, among the games failed by a model,
we check how many of them have been failed by at least one
human annotator (Table 9); moreover, in the games in which
a model and at least one participant failed, we check whether

FIGURE 5 | Errors made by humans and computational models when

receiving dialogues without the last turn.

the error made by the model and the participant is exactly
the same, i.e., if they have chosen the same (wrong) candidate
object (Table 10). As we can see from Table 9, LXMERT is the
model whose failed games are most similar to the ones failed
by human annotators. However, if we look (in a more fine-
grained way) at the exact candidate objects they select, we found
that RoBERTa is the model whose errors are more human-like
for most of the settings (Table 10). This analysis highlights how
human annotations help interpret models’ results and evaluate
the quality of their predictions.

In Figure 5, we report a game in which both models and
humans failed to guess the target when the last turn was not
given; interestingly, at that stage, with only the first three turns,
the selection made by RoBERTa and humans could be valid. This
shows that checking when models and humans make the same
mistakes gives a hint about which errors are plausible. From our
qualitative analysis, it seems that RoBERTa takes spatial questions
into account more than LXMERT, maybe because it exploits the
spatial coordinates of the candidate objects whereas LXMERT
overrides that information with the one it receives from the visual
features. More in-depth analysis is required to assess what factors
most influence the outcome of the models.

6.3. Summary
The evaluation of models on the controlled sample confirms that
RoBERTa and LXMERT behave rather similarly on the Yes-set
across all settings. More interestingly, it shows that in the No-
set LXMERT is closer to humans than RoBERTa considering
the accuracy in the task. LXMERT seems to be failing in the
integration of the last No-turn with the dialogue history: its
accuracy is similar to humans in the settings without last and
only last turn, but it is far from them when the whole dialogue
is given. Moreover, visual features seem to be of more help in the
No-set than in the Yes-set: in the Yes-set across the controlled
groups, the blind models do better or similar to their multimodal
counterpart, whereas on the No-set the opposite holds. Finally,
our error analysis reveals that RoBERTa is the model whose
predictions are most human-like when it fails to identify the
target object.
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7. DISCUSSION AND CONCLUSION

In the current AI research, driven by the success of language

models and neural network architectures, negation is under-
studied. Dialogue history and visual context have been shown to

facilitate the processing of negation in humans. Hence, we took
negation in visual dialogues as our object of investigation and

studied how SOTA multimodal models profit from negatively
answered questions (No-turns) in the GuessWhat?! game. Such
negative information is informative for humans to succeed in

the game, and this holds in particular when the No-turn occurs
as the last one of a game in which the human player has been

successful in guessing the target. Therefore, we focus attention on
the subset of dialogues ending with a No-turn and compare them
with those ending with a Yes-turn. Our results show that SOTA
models’ performances on these two sub-sets is rather different,
e.g., LXMERT obtains 71.9 vs. 50.9% accuracy in the Yes- vs.
No-set, respectively (Table 2). To better interpret these results,
we have run an online experiment with humans: we carefully
selected a controlled sample of games and asked subjects to play
the role of the guesser. We evaluated models’ behavior on such
a controlled sample of games and used humans’ results to better
interpret the success and failures of models. The analysis shows
that humans are much faster in processing positively answered
questions than negatively answered ones. Yet, they do profit from
the latter to succeed in the referential guessing task reaching
80.67% accuracy in the No-set – on which models guess correctly
barely the 50% (Table 8). This shows that models are far away
from the human ability to ground negation and we believe efforts
should be put to reduce this important gap between humans and
models’ performance.

Our findings can help design models which could ground
negation better than current SOTA models. First of all, our
comparison between the accuracy obtained by LXMERT and
RoBERTa in the various settings (Tables 2, 3, 8) suggests
that LXMERT grounding of negation within a dialogue could
be improved by pre-training it on longer text. One could
consider adding task-oriented dialogues in the pre-training
phase Moreover, our comparison of models’ and humans’
errors leads us to conjecture that LXMERT fails to exploit
the spatial information provided in the dialogue, this could be
behind the fact that though it grounds negation in short texts
better than RoBERTa, the latter’s mistakes are more human-
like, since humans rely on such information to locate and
identify the target object. This limitation of the LXMERT
based Guesser could be overcome by building a model that
exploits the image regions received as input to perform the
task, similarly to what has been recently proposed in Tu
et al. (2021) for another multimodal model. Finally, Hosseini
et al. (2021) shows that pre-trained language models can better
understand negation if trained with an unlikelihood objective.
This is a first important step ahead in modeling negation
in the neural network-era, but the model’s performance on
entailment judgments involving negation is still low. Cognitive
sciences findings on human processing of negation show that
humans profit from expectations driven by the visual context to
process negative information quickly and effectively Nordmeyer

and Frank (2014); we believe that models should be trained
to exploit more such expecations and that a (multimodal)
communicative setting can help bring a boost for learning to
encode (grounded) negation.

The results we obtain do not always provide conclusive
answers, but we believe they convincingly show the weakness
of current multimodal encoders in processing negation and
represent a starting point toward future research. We started
from the observation that dialogue history and visual context
makes the processing of negation easier for humans. To fully
understand whether this can be the case for models too,
a comparison on processing negation in language-only vs.
multimodal settings should be carried out. To this end, the
study could be extended to other dasests in which the visual
input is not shared or only partially shared by the agents,
such as VisDial, PhotoBook and Meet up! (Haber et al., 2019;
Ilinykh et al., 2019a) or language-only task-oriented dialogues
(e.g., those used in Wu et al., 2020). Moreover, negative
information can be conveyed in different ways, but we have
studied only the easiest: a straightforward negative answer to
a binary question. It would be interesting to explore the use
of negation in declarative sentences and in more complex
interactions. Finally, though our study builds on observations
about the information gain the guesser accumulates through
the dialogue at each turn, we have taken the dialogues as static
blocks. A study about how humans and models incrementally
gain information through the dialogue should be run to better
understand their behavior.

To conclude, our findings have theoretical and also practical
implications: for humans, negatively answered questions can be
as informative as affirmatively answered ones; a system that is
not able to properly handle negation may be detrimental in real-
world scenarios. More research should be done on the issue
to better understand whether neural network architectures can
learn to ground negation on the alternative set it activates. To
this end, we might need to single out various issues that are
entangled in our analysis. First of all, it would be beneficial to
have a multimodal dataset designed for this purpose. Secondly,
when evaluating universal encoders the difference in the pre-
training data is a confounder that should be avoided. Finally,
it would be useful to have a large-scale human behavioral
experiment that takes into account the incremental information
gain at the core of a task-oriented dialogue exchange. We believe
such data to be crucial both for training models to properly
ground negation and for evaluating not only their task success
but also their inside mechanisms as advocated for instance
by Zhang et al. (2019). Once models learn to encode negation
in grounded contexts, the next step will be to transfer such skills
to language-only settings by exploiting transfer learning methods
(e.g., Ruder, 2019).
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