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Abstract
We consider the global Hadamard condition and the notion of Hadamard parametrix
whose use is pervasive in algebraic QFT in curved spacetime (see references in the
main text). We point out the existence of a technical problem in the literature concern-
ing well-definedness of the global Hadamard parametrix in normal neighbourhoods
of Cauchy surfaces. We discuss in particular the definition of the (signed) geodesic
distance σ and related structures in an open neighbourhood of the diagonal of M × M
larger thanU ×U , for a normal convex neighbourhoodU , where (M, g) is a Rieman-
nian or Lorentzian (smooth Hausdorff paracompact) manifold. We eventually propose
a quite natural solution which slightly changes the original definition by Kay andWald
and relies upon some non-trivial consequences of the paracompactness property. The
proposed re-formulation is in agreement with Radzikowski’s microlocal version of
the Hadamard condition.

Keywords Hadamard parametrix · Hadamard states · Geodesical distance · Normal
convex neighborhood

Mathematics Subject Classification 81T20 · 53B30 · 53C50 · 83C47 · 53B21

1 Introduction

The use ofHadamard states is nowadays pervasive in algebraic QFT (aQFT) in curved
spacetime (see, e.g. [1,2,7–12,16,17,27,28,35] and [3] for a recent survey on aQFT).
The rigorous definition of Hadamard state in terms of short-distance behaviour of the
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two-point function was stated in the celebrated paper [19] by Kay and Wald for the
first time. Some years later, that technically complex definition was translated into the
language of microlocal analysis within a pair of nice papers by Radzikowski [32,33].

The original geometric definition of [19] of a globalHadamard parametrix has been
exploited for instance to deal with rigorous interpretations of the Hawking radiation,
see [29] and the recent interesting paper [22]. Just to mention some other applications
of the Hadamard parametrix in aQFT (the following list of examples is by no means
exhaustive), we can say that it plays a crucial role in the definition of locally covariant
Wick powers [16,20], including the definition of the stress-energy tensor operator [27].
The Hadamard parametrix has been also employed in the study of quantum energy
inequalities [10]. It has been also used in semiclassical approaches to the quantum
gravity and cosmological applications [7,24].

Locally (and a bit roughly) speaking, in a globally hyperbolic four-dimensional
spacetime (M, g), an algebraic state ω of a real scalar Klein–Gordon quantum field
is of Hadamard type if its two-point function �ω has the Hadamard short-distance
singularity,

�ω(x, y) = 1

(2π)2

(
�(x, y)1/2

σ(x, y)
+ v(x, y) ln σ(x, y)

)
+ Hω(x, y) (1)

when viewed as an integral kernel (see Sect. 3 for some technical details here dis-
regarded). Hω is a smooth function depending on the state ω, whereas �, v, σ are
universal geometric objects constructed out of the local geometry only. In partic-
ular, σ(x, y) is the so-called signed squared geodesic distance of x, y ∈ M . It is
defined as the squared length—with the appropriate sign—of the geodesic segment
joining x and y. The so-called Hadamard parametrix is the singular universal part
�ω(x, y) − H(x, y).

Since there are many geodesics, in principle, joining x and y, a standard possibility
is to assume that the identity above is true in a normal convex neighbourhood1 (see
Sect. 2). This is an open set U such that every pair of points x, y ∈ U can be joined
by a unique geodesic segment γ : [0, 1] → M that belongs to the set: γ ([0, 1]) ⊂ U .
This elementary precaution is not enough however in the global definition discussed in
[19]. It is because (1) is assumed to be valid for pairs (x, y) contained inmany normal
convex neighbourhoods. In principle, this gives rise to a cumbersome many-valued
function σ . This is one of the most difficult technical issues tackled in [19].

Remark 1 If the spacetime points x and y belong to many convex normal neighbour-
hoods, different choices of such a neighbourhood may not only lead to different values
for σ(x, y) around (x, y), but also to different singularity structures as determined by
the Hadamard parametrix (1). Therefore, in principle, the introduced issue not only
affects the construction of the Hadamard parametrix, but also the singularity struc-
ture that the Hadamard condition is assumed to describe. In particular, Hadamard
states may not satisfy (1) in every convex normal neighbourhood. (See also the end of
Example 2.)

1 A weaker requirement is that the identity is valid in a normal neighbourhood of one of the points.
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If x and y are causally related, a natural choice of U for the given x, y exists
which solves the problem of the definition of σ(x, y) and it was adopted in [19]
(see Remark 13 for more details). U , if it exists, is a normal convex neighbourhood
that simultaneously includes x, y, and their causal double cone J (x, y) (see (7)).
Obviously, every other normal convex neighbourhood U ′ which both includes x, y,
and J (x, y) must also contain the causal geodesic γ joining x and y in U . As U ′ is
convex, γ is also its own geodesic γ ′ joining x and y inU ′. There is, in fact, only one
geodesic segment (parametrized in [0, 1]) joining a pair of causally related points x
and y in common for the subfamily of the said normal convex sets. For these pairs
(x, y), σ(x, y) can be therefore unambiguously defined.

Physics is properly reflected by the family of causal geodesics, but amathematically
coherent definition of the Hadamard parametrix needs to consider also non-causal
geodesics: the non-causal ones “arbitrarily close” to the causal ones. For technical
reasons, in [19] σ was therefore also required to be smooth and well-defined in a
neighbourhoodO of that special family of causally related pairs (x, y). We stress that
the neighbourhood O must also contain non-causally connected pairs. The argument
used to give a non-ambiguous definition of σ cannot be used for those pairs. The
existence ofO with a non-ambiguous extension of the definition of σ was assumed in
[19] and also in [32,33] without a proof. In this author’s view, it remains a gap in the
whole construction. This work is devoted to that gap.

Referring to Remark 1, one eventually sees that the problem of the definition of
σ for non-causally connected pairs actually affects the definition of the Hadamard
parametrix in (1), but not its singularity structure (see Remark 20).

We shall not try to directly prove the existence of that O . Our solution relies on a
thin refinement of the definition of Hadamard parametrix which is possible thanks to a
consequence of the paracompactness property. The final new definition of Hadamard
state, which is a quite slight modification of the original definition in [19], though
it is based on a non-trivial topological result, turns out to be in agreement with the
microlocal version of the Hadamard condition.

To achieve our final goal, in the first part of the paper, we shall focus on the more
abstract and mathematically minded problem of a well-posed definition of σ (and
related geometric objects) in a neighbourhood of the diagonal of M × M . This issue
is the core of the problem with the Hadamard parametrix, but it may have other
applications in mathematical physics, so that it deserves a separate study.

Example 2 Aconcrete elementary illustration of the problems one faces when trying to
define σ(x, x ′) in a non-trivial spacetime is the following one2. Consider the spacetime
(M, g) constructed out of the 1+1Minkowski spacetime periodically identified under
(t, x) �→ (t, x +2L) (c = 1). Differently from the Minkowski space, M is not normal
convex in its own right. To define σ(x, x ′), one is therefore forced to make a choice of
a normal convex open set containing x and x ′.

Let x = (0, L/2) and x ′ = (L/2, L) ≡ (L/2,−L). These points are causally
related and J (x, x ′) (a null line segment) can be thickened up to become a normal
convex neighbourhood U . We wish to define the function σ near (x, x ′). Let us first

2 This illustration is a straightforward re-elaboration of an example proposed by Fewster to the author in a
private communication.
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consider nearbypoints that are still causally connected. In particular, let y = x and y′ =
(L/2, L − ε) = (L/2,−L − ε) with 0 < ε � L . These are causally related and near
to (x, x ′). In the considered case, we can also assume, enlarging U if necessary, that
U ⊃ J (y, y′). We can create further normal convex neighbourhoods which include
(y, y′) by

(i) thickening the line segment (in R
2) between (0, L/2) and (L/2, L − ε) which is a

timelike geodesic between y and y′. It produces a convex neighbourhoodU ′ which
we can assume to satisfy againU ′ ⊃ J (y, y′). The line segment between (0, L/2)
and (L/2, L − ε) belongs to bothU andU ′. Consequently, σ(y, y′) referred toU
must coincide with σ(y, y′) referred to U ′.

(ii) thickening the line segment between (0, L/2) and (L/2,−L − ε) which is a
spacelike geodesic between y and y′. In this case, we obtain a value for σ(y, y′)
different from the one computed in U .

This illustrates why, when defining σ(y, y′) in the causally connected case, the con-
dition on the geodesically convex neighbourhood that it contains J (y, y′) permits to
select a common notion of distance.

Next, consider the causally disconnected case. Let y = x = (0, L/2) and y′ =
(L/2, L + ε) = (L/2,−L + ε) with 0 < ε � L . These are not causally connected.
We can still create normal convex neighbourhoods containing y and y′ by thickening
the line segment between (0, L/2) and (L/2, L+ε) or the one between (L/2,−L+ε)

and (0, L/2) giving spacelike geodesics of differing lengths and different values of
σ(y, y′). There are actually infinitely many other possibilities that can be obtained
using other image points (L/2, (2n + 1)L + ε), n ∈ Z, throughout a very slim
thickening of these segments, wrapping on the cylinder without any self-intersection.

An explicit illustration of the content of Remark 1 arises by referring to the example
above and considering the timelike related points p = (0, 0) and p0 = (2L, 0), which
can also be connected by null geodesics. Thickening a timelike or a null geodesic from
p to p0 to a convex normal neighbourhood leads to distinct singularity structures.

2 Extension of the signed squared geodesic distance and related
structures

Smoothmanifolds are hereafter assumed to be Hausdorff and paracompact3.We adopt
the Lorentzian signature (−,+, · · · ,+) and we follow [31] concerning basic defini-
tions, notation, and results in the theory of Lorentzian manifolds (see [26] for an
up-to-date general review).

3 For a topological space locally homeomorphic toR
n and equippedwith a smooth atlas, (a) the existence of

a smoothLorentzmetric implies paracompactness (this is standard in theRiemannian case and it remains true
with a more elaborated proof in the indefinite case), but not Hausdorffness; (b) when the space is connected,
2nd countability and paracompactness are equivalent. Thus, the usual requirements for spacetimes (existence
of a Lorentz metric and connectedness) imply that all the subtle required topological conditions hold
(paracompactness, 2nd countability, Lindelöf) but Hausdorffness, which must be imposed explicitly.
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2.1 Normal convex sets and the local definition of the (signed) squared geodesic
distance�

Following Chapter 5 of [31], exp : D ⊂ T M → M will denote the standard exponen-
tial map associated to the geodesic flow of g of a smooth Riemannian or Lorentzian
manifold (M, g). Its maximal domainD is a fibrewise starshaped open neighbourhood
of the zero section of T M , and expp(v) := exp(p, v) if (p, v) ∈ D.

Definition 3 If (M, g) is a Riemannian or Lorentzian smooth manifold, a normal
convex neighbourhood U—also known as normal convex open set—is an open set
U ⊂ M such that, for every q ∈ U , there is a starshaped open neighbourhood V (U )

q

of the origin of TqM such that expq : V (U )
q → U is a diffeomorphism.

Remark 4 (1) U as above is geodesically starshaped with respect to every p ∈ U :
for every other q ∈ U there is only one geodesic segment γ (U )

pq : [0, 1] → M such

that both γ
(U )
pq (0) = p, γ (U )

pq (1) = q and γ
(U )
pq ([0, 1]) ⊂ U are valid (Proposition

31 in chapter 3 of [31]). By definition of expp, it holds γ
(U )
pq (t) = expp(tvq)where

vq := exp−1
p (q) and t ∈ [0, 1].

(2) AsU is geodesically starshapedwith respect to every point p ∈ U , it is not difficult
to prove that V (U )

p in Def. 3 is completely determined by U and p ∈ U .

(3) The set∪p∈U {p}×V (U )
p ⊂ D is open in T M . This is because the differential of the

bijective map U × U � (p, q) �→ (p, (expp |
V (U )
p

)−1(q)) ∈ ∪p∈U {p} × V (U )
p is

everywhere non-singular so that themap is open. exp : ∪p∈U {p}×V (U )
p → U×U

is the inverse diffeomorphism and thus it is smooth (see in particular Lemma 9,
Chap 5 [31] and comments around it).

A crucial result by Whitehead4 proves that (Proposition 7 Chapter 5 of [31] and its
proof.)

Theorem 5 For a Riemannian or Lorentzian smooth manifold (M, g), the family of
normal convex open sets is not empty and forms a topological basis of M.

Among other important constructions, theWhitehead theorem and the properties of
exp allow one to define the so-called (signed) squared geodesic distance also known
as Synge’s world function. If U is an open normal convex set in (M, g),

σU (p, q) := gp
(
γ̇ (U )
pq (0), γ̇ (U )

pq (0)
)

= ±
(∫ 1

0

√∣∣∣g (
γ̇

(U )
pq (t), γ̇ (U )

pq (t)
)∣∣∣dt

)2

for p, q ∈ U (2)

4 The definition of normal convex neighbourhoods and Whitehead’s result are more generally true for
smooth manifolds equipped with smooth affine connections [21], however in this paper we stick to the
smooth Levi-Civita connection generated by g.
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where the sign − appears only if g is Lorentzian and γ
(U )
pq is timelike. This function

is smooth in U × U because γ
(U )
pq (t) = expp

(
t
(
expp |

V (U )
p

)−1
(q)

)
is smooth in

[0, 1] ×U ×U , it being the restriction to [0, 1] ×U ×U of the composition of three
smooth functions (defined on open sets): exp : D → M , the multiplication with t ,

and a component of U × U � (p, q) �→
(
p,

(
expp |

V (U )
p

)−1
(q)

)
∈ ∪p∈U {p} × Vp

according to (3) in Remark 4.
It is evident that σU (p, q) strictly depends on the choice of the normal convex

neighbourhood containing the points p, q. If there were another normal convex neigh-
bourhood U ′ � p, q, in general σU (p, q) �= σU ′(p, q) because the two sides refer
to generally different geodesic segments: one stays in U and the other stays in U ′,
though both geodesics join p and q. This fact prevents one from defining σ as a global
smooth function over M × M .

2.2 Assignment of geodesics around the diagonal ofM×M and extension of�
thereon

Anatural issuewhich pops out at this juncture iswhether or not σ can bemore globally
defined, at least in an open neighbourhoodA of thediagonal�M := {(p, p)| p ∈ M}
of M × M .

The root of the problem is that, generally speaking, there are many geodesics
connecting a pair of points p, q and σ(p, q) depends on the choice of one of those
curves. One restricts to work in a “small” neighbourhoodA of the diagonal of M×M
because it seems that the choice should be easier if p and q are close to each other.
(There are however results concerning really global definitions of σ , on the whole
M × M , when assuming suitable hypotheses on the topology of M [5].) To address
the issue above, one may therefore wonder if it is possible to define a jointly smooth
assignment of geodesic segments γpq(t) = 	(t, p, q) where t ∈ [0, 1], (p, q) varies
in a neighbourhood A of �M and γpq(0) = p, γpq(t) = q. Indeed, equipped with
such an assignment, σ can be defined on A by direct use of (2).

Remark 6 If (M, g) is Riemannian and its injectivity radius is positive, then other
known ways exist to define a (smooth) notion of squared geodesic distance in a neigh-
bourhood of the diagonal of M ×M (see, e.g. [36] for the case of a bounded geometry
manifold in particular). However, we refer here to the general case where (M, g) may
be Lorentzian, or Riemannian with zero injectivity radius.

An idea to construct	 andσ inA (see also the discussion on p. 131 of [31]) relies on
the insight that sufficiently small normal convex neighbourhoods are expected to have
intersectionswhich are normal convex aswell. In that case, ifU∩U ′ is convex and both
p, q ∈ U , p, q ∈ U ′, then the unique geodesic segment 	U (t, p, q) := γ

(U )
p,q (t) ∈ U ,

t ∈ [0, 1], joining them inU coincideswith the analogue	U ′(t, p, q) := γU ′
p,q(t) ∈ U ′

joining p and q inU ′, since it is the unique geodesic segment joining p and q inU∩U ′.
Therefore 	U (t, p, q) = 	U∩U ′(t, p, q) = 	U ′(t, p, q). If a covering C of M exists
made of normal convex open sets such that U ,U ′ ∈ C implies that U ∩ U ′ is convex
as well, then a jointly smooth assignment of geodesic segments 	 : [0, 1] ×A → M
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joining the arguments (p, q) ∈ A (i.e. 	(0, p, q) = p and 	(1, p, q) = q) is well-
defined and smooth on the open neighbourhood A of �M . It suffices to define

A :=
⋃
U∈C

U ×U (3)

if (x, y) ∈ A , 	(t, x, y) := 	U (t, x, y) where U ∈ C is such that x, y ∈ U .
(4)

Indeed, if (x, y) ∈ A , then there must exist U ∈ C such that x, y ∈ U . Next, the
right-hand side of (2) is well defined, since it does not depend on U if there are other
elements in C containing x, y as pointed out above. 	 is also jointly smooth on A
because it is locally jointly smooth. In this way, an associated signed squared geodesic
distance σ : A → R results to be well-defined and smooth because it is a composition
of smooth functions:

σ(p, q) := gp

(
∂	

∂t

∣∣∣∣(0,p,q),
∂	

∂t

∣∣∣∣
(0,p,q)

)
, (p, q) ∈ A . (5)

Definition 7 If (M, g) is a smooth Riemannian or Lorentzian manifold, a strongly
convex covering of M is a covering C of M made of normal convex open sets such
that C ∩ C ′ is normal convex if C,C ′ ∈ C and C ∩ C ′ �= ∅.

Existence of a strongly convex covering C is guaranteed when explicitly assuming
Hausdorff and paracompactness hypotheses on M5. In fact, paracompactness pos-
sesses an important technical feature discovered by A.H. Stone [37] (see also [25]).

Theorem 8 A topological space X is Hausdorff and paracompact if and only if it is
T1 and every covering C of X made of open sets admits a ∗-refinement of open sets.
That is another covering C∗ of open sets such that, for every V ∈ C∗,

⋃
{V ′ ∈ C∗ | V ′ ∩ V �= ∅} ⊂ UV for some UV ∈ C.

(Notice that V ⊂ UV ∈ C in particular, so that a ∗-refinement is a refinement as
well). This theorem implies the existence of the desired well-behaved covering C of
normal convex open sets of (M, g) (see also Lemma 10 in Chapter 5 of [31]).

Proposition 9 Let (M, g) be a smooth (Hausdorff paracompact) Riemannian or
Lorentzian manifold and A a covering of M made of open sets (possibly A := {M}).
Then, there exists a covering C of M sets such that,

(a) C is a refinement of A (i.e. if C ∈ C, then C ⊂ UC ∈ A) made of normal convex
open sets;

5 This idea is sketched in Lemma 10 of Chapter 5 of [31] unfortunately with very few details and without
explicitly referring to the crucial topological result of Theorem 8.
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(b) C is a strongly convex covering of M.

Proof Using Theorem 5, consider the covering C0 made of all normal convex neigh-
bourhoods that are subsets of the elements of A. Exploiting Theorem 8, consider a
refinement C∗

0 of C0 satisfying, for every V ∈ C∗
0 ,

⋃
{V ′ ∈ C∗

0 | V ′ ∩ V �= ∅} ⊂ CV for some CV ∈ C0.

The proof concludes by defining C as the family of normal convex neighbourhoods
contained within elements of C∗

0 so that (a) is in particular true by construction. To
prove (b), we start by observing that, if C,C ′ ∈ C, then C ⊂ V and C ′ ⊂ V ′ for some
V , V ′ ∈ C∗

0 ; if furthermore C ∩ C ′ �= ∅, we conclude that V ∩ V ′ �= ∅ and thus
C∪C ′ ⊂ V ∪V ′ ⊂ CV . Property (b) now comes easily using convex normality ofCV .
First the intersection C ∩C ′ is open. Next, if p, q ∈ C ∩C ′, then the unique geodesic
segment γ : [0, 1] → CV joining p and q is also completely included in C ∩ C ′
since it must simultaneously stay in C and C ′, they being normal convex as well. As a

consequence, if p ∈ C ∩C ′, it necessarily holds C ∩C ′ = expp
(
V (C∩C ′)
p

)
for some

star-shaped open neighbourhood V (C∩C ′)
p :=

(
expp |

V (C)
p

)−1
(C ∩C ′) of the origin of

TpM . Notice that expp |
V (C∩C ′)
p

: V (C∩C ′)
p → C ∩ C ′ is a diffeomorphism because it

is the restriction of the diffeomorphism expp |
V (C)
p

: V (C)
p → C . In summary, C ∩ C ′

fulfils Definition 3 and the proof is over. ��
Collecting all results, we are in a position to state the main theorem of this sec-

tion, concerning the existence of strongly convex coverings in particular, which also
includes a (local) uniqueness statement.

Theorem 10 Let (M, g) be a smooth (Hausdorff paracompact) Riemannian or
Lorentzian manifold, and C a strongly convex covering of M. Then, the following
facts hold.

(a) Defining the open neighbourhood A ⊃ �M as in (3) with respect to C, the
assignment of geodesic segments (2)

	 : [0, 1] × A � (t, p, q) → γp,q(t) ∈ M where γp,q(0) = p and γp,q(1) = q,

and the (signed) squared geodesic distance (5)

σ(p, q) := gp(γ̇p,q(0), γ̇p,q(0)) for (p, q) ∈ A

are well-defined and smooth on A .
(b) IfA ′ ⊃ �M, 	′ : [0, 1] ×A ′ → M, and σ ′ : A ′ → R is another triple as in (a)

but constructed out of another strongly convex covering C′, then there is an open
set A ′′ ⊂ M × M such that

A ∩ A ′ ⊃ A ′′ ⊃ �M , 	|[0,1]×A ′′ = 	′|[0,1]×A ′′ , σ |A ′′ = σ ′|A ′′ . (6)
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Proof (a) If A is as in (3), 	 : [0, 1] × A → M defined as in (2) and σ : A → R

defined as in (5) are well-defined and smooth as discussed in the paragraph before
Eq. (3) and after Eq. (2). (b) Define a new covering C1 (a simultaneous refinement of
C and C′) made of the sets C ∩C ′, for all choices of C ∈ C and C ′ ∈ C′. According to
Proposition 9, define C′′ as a refinement of C1 made of normal convex neighbourhoods
such that U ,U ′ ∈ C′′ implies that U ∩ U ′ is empty or normal convex and define
A ′′ := ∪U ′′∈C′′U ′′ ×U ′′. By construction, both A ′′ ⊂ A and A ′′ ⊂ A ′. Moreover,
if x, y ∈ A ′′ then we have both x, y ∈ U ′′ ⊂ U ∈ C and x, y ∈ U ′′ ⊂ U ′ ∈ C′, so
that 	(t, x, y) = 	U (t, x, y) = 	U ′′(t, x, y) = 	U ′(t, x, y) = 	′(t, x, y). The same
fact holds for σ and σ ′ in view of their definition (5) in terms of 	 and 	′. ��
Definition 11 A triple (A , 	, σ ) as in in (a) of Theorem 10 is said to be subordinated
to C.
Remark 12 Strongly convex coverings are not an ad hoc artefact for the proposal of this
work, but a natural and commonly used technical tool in Semi-Riemannian Geometry.
The existence of this sort of geodesically convex coverings is a straightforward fact
in Riemannian Geometry (see the elementary version of the sketch of proof above
when h = g). The extension to Lorentzian manifolds is however not straightforward.
In addition to the topological approach of Proposition 9, a purely geometric (in this
sense perhaps more natural) proof of existence of strongly convex coverings for a
Lorentzian geometry can be obtained along the following construction6. (What follows
is however valid, with the same proof, when referring to the geodesic flow of a smooth
affine connection 	 on M which is not the Levi-Civita connection of some metric.)

Let (M, g) be a smooth connected (Hausdorff 2nd countable) Lorentzian manifold.

(i) Let h be an auxiliary Riemannian metric on M (which exists as a consequence
of elementary results in Riemannian geometry [21]). h can be chosen in order
that the Riemannian manifold (M, h) is complete [30] so that the h-injectivity
radius at a given point p ∈ M is a continuous function of p (see, e.g. Prop. 10.37
in [23]). Consider the atlas of Riemannian normal coordinates (Up, ψp) centred
on every p ∈ M and referred to the Riemannian metric h.

(ii) Following the classic proof of the Whitehead theorem on the existence of the
topological basis of convex normal neighbourhoods of g [21], one sees that
every ψp-coordinate ball Bh

r (p) with centre p is g-normal convex if the radius
rp is sufficiently small. This would happen if referring to any atlas on M , but in
the considered case the balls Bh

r (p) are also geodesical balls with respect to h
and they are normal and convex with respect to h for sufficiently small rp. As is
known, these balls are also metric balls of the natural metric space on M induced
by h (the distance d(p, q) is the inf of the h-length of the smooth curves joining
p and q).

(iii) Then, one can choose a continuous function μ : M → (0,+∞) – with 2μ
smaller than the h-radius of injectivity at each point p ∈ M – such that the ball
Bh
r (p) with 0 < r ≤ 2μ(p) is g-normal convex for all p ∈ M .

6 The author is grateful to an anonymous referee for the comments contained in this remark, and to M.
Sànchez for the idea of the alternative existence proof of strongly convex coverings sketched here.
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A strong g-convex covering is made of the family of all the balls Bh
μ(p)(p), p ∈ M .

Indeed, from elementary properties of balls inmetric spaces, the intersection (assumed
to be non-empty) of a pair of such balls with centres p1 and p2 is included in the ball
of the centre p1 and (bigger) radius 2μ(p). This ball is g-convex by construction.

3 An issue with the global Hadamard condition and Hadamard
parametrix

Before addressing another issue still related to the well-definedness of σ and associ-
ated structures, we summarize the relevant notions introduced by the milestone paper
[19] where, for the first time, a rigorous definition of a Hadamard state was proposed
and used by Kay and Wald. The definition was used in [19] (relying on previous work
as [14] and [18]) to establish some important uniqueness results of QFT on a space-
time equipped with a bifurcate Killing horizon related to the KMS states of a real
Klein–Gordon scalar field with the Hawking temperature. However, the definition of
Hadamard state discussed therein applies to every (four-dimensional) globally hyper-
bolic spacetime. The notion of Hadamard states in Kay-Wald’s approach relies upon
the notion of Hadamard parametrix. The Hadamard condition on states can be nowa-
days formulated without a Hadamard parametrix using microlocal techniques as we
shall briefly discuss later. It is however worth stressing that the notion of Hadamard
parametrix remains a crucial technical tool for the construction of other important
mathematical objects in QFT as theWick powers in the locally covariant formulation
(see in particular [16,20]).

3.1 Hadamard states according to [19]

If (M, g) is a time-oriented smooth spacetime and x, y ∈ M ,

J (x, y) := (J−(x) ∩ J+(y)) ∪ (J−(y) ∩ J+(x)) , (7)

where J±(S) are defined as in [31]. We say that x, y are causally related in (M, g)
if J (x, y) �= ∅. We henceforth assume that (M, g) is four dimensional and globally
hyperbolic.

Remark 13 If x, y ∈ M are causally related in a globally hyperbolic spacetime (M, g),
then there is a causal geodesic segment joining them in view of Proposition 19 in
Chapter 14 of [31]. This fact has a crucial consequence. If x, y are causally related
and both U ⊃ J (x, y), U ′ ⊃ J (x, y) for convex normal neighbourhoods U ,U ′, then
σU (x, y) = σU ′(x, y). Indeed, the unique geodesic segments parametrized on [0, 1]
connecting x and y, respectively, in U and U ′ must belong to J (x, y) ⊂ U ∩ U ′
and thus they must coincide. This fact is throughout exploited in [19] and provides
a well-defined notion of signed squared geodesic distance σ(x, y) on the subset of
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M × M

ZM := {(x, y) ∈ M × M |
x, y causally related , J (x, y) ⊂ U , U normal convex neighbourhood} .

The definition of Hadamard state according to [19] passes through the following
four steps.

(H1) The so-called (global) Hadamard parametrix is defined in [19], for every
natural n and ε > 0, as

GT ,n
ε (x, y) := 1

(2π)2[
�(x, y)1/2

σ(x, y) + 2iεt(x, y) + ε2
+ vn(x, y) ln

(
σ(x, y) + 2iεt(x, y) + ε2

)]
,

(x, y) ∈ O . (8)

Above O ⊃ ZM is an open set supposed to exist where σ and GT ,n
ε are well

defined, t(x, y) := T (x) − T (y), where the smooth function T : M → R is a
temporal function7 increasing towards the future, the branch cut of the logarithm
is taken along the negative real axis, and the function �(x, y) and vn(x, y) are
known and defined in terms of σ(x, y) and known recursion integrals along the
geodesic segment γxy connecting x and y (see, e.g. Appendix A of [27] and
[15]).

Remark 14 If σ(x, y) and the geodesic segment γxy connecting x and y are well
defined in some neighbourhood, then�(x, y) and vn(x, y) are completely determined
in that neighbourhood. This happens in particular for x, y ∈ U withU normal convex
neighbourhood.

(H2) Following [19], given a globally hyperbolic spacetime (M, g) with a time ori-
entation and a smooth spacelike Cauchy surface �, a normal neighbourhood
N of � is an open set including � and such that

(a) (N , g|N ) is a globally hyperbolic spacetime and � is a Cauchy surface of it;
(b) (x, y) ∈ N × N are causally related in (M, g) iff (x, y) ∈ ZM .

Lemma 2.2 of [19] proves the existence of a normal neighbourhood of any given
Cauchy surface �.

(H3) Consider an open set O ′ ⊂ N × N which includes ZM ∩ (N × N ) (i.e. the set
of causally related pairs (x, y) ∈ N × N ) and such that its closure in N × N

satisfies O ′N×N ⊂ O . Finally, χ : N × N → R is a smooth function such that

χ(x, y) = 1 for (x, y) ∈ O ′N×N
and χ(x, y) = 0 for (x, y) /∈ O ∩ (N × N ).

(H4) With O , N , T , χ as above, we can state the definition of Hadamard state.

7 That is, dT = 0 is everywhere past-directed.
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Definition 15 An algebraic state ω on the (Weyl C∗ or ∗) algebra of a real scalar
Klein–Gordon field on (M, g) is said to be globally Hadamard according to [19]
if the associated two-point function, i.e. a certain bilinear map [19] �ω : C∞

0 (M) ×
C∞
0 (M) → C, satisfies the following requirement

�ω(F1, F2) = lim
ε→0+

∫
N×N

�T ,n
ε (x, y)F1(x)F2(y)dμg(x)dμg(y) ,

∀F1, F2 ∈ C∞
0 (N ) , (9)

where μg is the natural measure induced by g on M and

�T ,n
ε (x, y) = χ(x, y)GT ,n

ε (x, y) + Hn(x, y) , (10)

for every natural n and some associated functions Hn ∈ Cn(N × N ).

Remark 16 In [19], it is proved that Definition 15 is independent of O, N , χ,�. Yet,
that independence proof assumes at various steps that GT ,n

ε (x, y) is well defined, not
only on ZM , but also on O (and O ′). In particular, σ(x, y) is expected to have the
standard behaviour inO: σ(x, y) > 0 if x �= y are not causally related.More precisely,
σ(x, y) is supposed to take the standard formσ(x, x ′) = −(y0(x ′))2+∑3

α=1(y
α(x ′))2

in Riemannian normal coordinates y0, y1, y2, y3 centred at one of the entries (here
x) also for non-causally related arguments.

Definition 15 was later proved to be equivalent to a certain microlocal version by a
famous paper byM.Radzikowski [32], when assuming the requirement�ω ∈ D′(M×
M) (see (2) in Theorem 21). This second analytic version (extended to n-dimensional
spacetimes with n ≥ 2) is the one usually nowadays adopted in perturbative aQFT,
also including cosmological applications, starting from semiclassical versions of the
Einstein equations (see [24] for a recent application). The Hadamard parametrix plays
a special role in the definition of locally covariantWick powers [16,20] and in the study
of quantum energy inequalities [10]. Kay-Wald’s version of the Hadamard condition
has been used by R. Verch to prove physically important properties of Hadamard states
at algebraic level, like local quasi equivalence and local definiteness [38]. Using Kay-
Wald’s definition, Sahlmann and Verch [34] extended the formalism to vector-valued
quantum fields in a globally hyperbolic spacetime of dimension n ≥ 2. There, also
the equivalent microlocal formulation has been discussed and an extension of the
theorem of propagation of Hadamard singularity has been established in the fashion
of the original formulation [14] of that property of Hadamard states. We recommend
[3] for a recent account on the wide spectrum of applications of Hadamard states (a
pedagogical introduction to quasifree Hadamard states and their relevance in aQFT
takes place in [20] therein).

The specific use of theHadamard condition in the study ofHawking radiation can be
traced back to [13], already before that the precise form of the Hadamard parametrix
was stated in [19]. Though the microlocal version has been recently employed in
applications to aQFT in black-hole background [9,35], the originary [19] version of
the Hadamard condition has continued to play a crucial role to discuss the Hawking
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radiation [39], also in terms of a tunnelling process [6,29] (actually, those works only
concern a local version of the Hadamard condition). See in particular the recent inter-
estingwork [22] on theHawking radiation (and partially on the black-hole entropy) for
a collapsing black-hole spherically symmetric spacetime, where the global Hadamard
condition has been used.

An interesting global definition of Hadamard state has been recently discussed in
[4] in terms of pseudo-differential operators and a different, but related, notion of
global parametrix for globally hyperbolic spacetimes with compact Cauchy surfaces.

3.2 A gap in the definition of GT,n
� and a proposal of solution

The parametrix GT ,n
ε is evidently well defined on ZM , but there is no guarantee that

it is also well defined on some open neighbourhood O ⊃ ZM . Indeed, the open set
O must also contain pairs (p, q) which are not causally related and each such pair
may be connected by many geodesic segments because Remark 13 does not apply. At
this juncture, there is no explicit prescription to smoothly choose a unique geodesic
segment for every such pair (p, q) in order to have a well defined σ(p, q), which, e.g.
satisfies σ(x, y) > 0 when x �= y are not causally related. The problem also arises in
the definition of�(p, q) and vn(p, q) as they are computed using a geodesic segment
joining p and q as said above.

Instead of attacking the problem directly by trying to establish the existence of a
neighbourhood O ⊃ ZM where σ and GT ,n

ε are well defined, we adopt a different
strategy to circumvent the gapby employing the achievements of Sect. 2.2. The strategy
relies on minimal modifications of original Kay-Wald’s machinery. For this reason, in
author’s view, all important results established over the years that rely onDefinition 15
(some of them quoted above) are correct.

Given a four-dimensional globally hyperbolic spacetime (M, g)with a time orienta-
tion, choose a strong convex covering C ofM , define the triple (A , 	, σ ) subordinated
to C as in Theorem 10 and the set

Z C
M := {(x, y) ∈ M × M | x, y causally related , J (x, y) ⊂ U ∈ C} .

Notice that A is an open neighbourhood of Z C
M by construction.

(H1)′ Define a (global) Hadamard parametrix subordinated to C, for every natural
n and ε > 0, as

GT ,n,C
ε (x, y) := 1

(2π)2[
�(x, y)1/2

σ(x, y) + 2iεt(x, y) + ε2
+ vn(x, y) ln(σ (x, y) + 2iεt(x, y) + ε2)

]
,

(x, y) ∈ A . (11)

Above, t(x, y) := T (x)−T (y), where T : M → R is global smooth time func-
tion increasing towards the future, the branch cut of the logarithm is taken along

123



130 Page 14 of 19 Valter Moretti

the negative real axis, and the functions, σ , � and vn are the ones constructed
out of (A , 	, σ ) starting from C.

(H2)′ Given a smooth spacelike Cauchy surface � of (M, g) (with dimension ≥ 2), a
normal neighbourhood NC of � subordinated to C is an open set including
� and such that

(a) (NC, g|NC ) is a globally hyperbolic spacetime and � is a Cauchy surface of it;
(b) (x, y) ∈ NC × NC are causally related in (M, g) iff (x, y) ∈ Z C

M .

Lemma 17 Given a strong convex covering of M, every smooth spacelike Cauchy
surface of (M, g) admits a normal neighbourhood subordinated to C.

Proof Use the same proof as the one of Lemma 2.2 of [19] with the only difference
that all the used normal convex neighbourhoods must be taken in C. ��
(H3)′ Consider an open set A ′ ⊂ NC × NC which includes Z C

M ∩ (NC × NC) (i.e.
the set of causally related pairs (x, y) ∈ NC × NC) and such that its closure in

NC × NC satisfies A ′NC×NC ⊂ A ∩ (NC × NC).

Remark 18 A ′ does exist because Z C
M ∩ (NC × NC) is closed in NC × NC (with

the relative topology) and it is included in the open set A ∩ (NC × NC). (The set
Z C

M ∩ (NC × NC) of causally related points in NC is closed in NC × NC because NC
is globally hyperbolic and Lemma 22 in Chapter 14 of [31] is valid8.)

Finally, taking advantage of the smooth Urysohn lemma, choose a smooth function

χ : NC × NC → [0, 1] such that χ(x, y) = 1 for (x, y) ∈ A ′NC×NC and χ(x, y) = 0
for (x, y) /∈ A ∩ (NC × NC).

(H4)′ With C, NC ,T , χ as above, we can give the definition of Hadamard state.

Definition 19 An algebraic stateω on the (WeylC∗ or ∗) algebra of a real scalar Klein–
Gordon field on (M, g) is said to be globally Hadamard if the associated two-point
function �ω : C∞

0 (M) × C∞
0 (M) → C, satisfies the following requirement

�ω(F1, F2) = lim
ε→0+

∫
NC×NC

�T ,n,C
ε (x, y)F1(x)F2(y)dμg(x)dμg(y) ,

∀F1, F2 ∈ C∞
0 (NC) , (12)

where μg is the natural measure induced by g on M and

�T ,n,C
ε (x, y) = χ(x, y)GT ,n,C

ε (x, y) + Hn(x, y) , (13)

for every natural n and some associated functions Hn ∈ Cn(NC × NC).

8 The proof appearing in Lemma 3.3 in [32] of this fact seems to be wrong or incomplete, because σ is
not necessarily defined in the target points of the considered sequences, though it grasps the correct insight,
with an appropriate use of the time separation function τ in place of σ as in Chapter 14 of [31].
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Remark 20 An identity is of utmost physical interest: two parametrices subordinated
to different strong convex coverings are however identical and also coincide with
GT ,n

ε (x, y) in (8)

GT ,n,C
ε (x, y) = GT ,n,C′

ε (x, y) = GT ,n
ε (x, y)

when evaluated on causally related points (x, y) ∈ NC ∩ NC′ . In fact, in the said
hypothesis, it simultaneously holds (x, y) ∈ J (x, y) ⊂ C ∈ C and (x, y) ∈ J (x, y) ⊂
C ′ ∈ C′ and thus, according to Remark 13, the geodesic segments joining x and
y in C and C ′, respectively, coincide. Finally the parametrices coincide as well in
view of Remark 14. What happens to GT ,n,C

ε (x, y) for non-causally related points is
physically irrelevant and it permits an arbitrary choice of the function χ appearing in
χ(x, y)GT ,n,C

ε (x, y). A change of the function χ can be reabsorbed in a change of the
functions Hn . That is a consequence of the fact that, for x �= y non-causally related,
σ(x, y) > 0 and no singularity (for ε → 0+) shows up in the parametrixGT ,n,C

ε (x, y).
In other words, the parametrix viewed as a distribution is actually a smooth function
for non-causally related arguments. All that was discussed and clearly emphasized in
[19] referring to the parametrixGT ,n

ε . Unfortunately these properties ofGT ,n
ε rely also

on a good behaviour of σ in the whole open neighbourhood O (and O ′) which is not
proved to exist.

3.3 Independence of the choices of C,NC, T,� and nice interplay with the
microlocal formulation

What remains to be demonstrated is that the given definition ofHadamard state does not
depend on the choice of C, NC, T , χ and it corresponds to the microlocal formulation
[32]. Radzikowski [32] aimed to establish that a state of a real Klein–Gordon field
in a globally hyperbolic spacetime (M, g) is Hadamard in the sense of [19] if and
only if it satisfies the microlocal spectral condition (14). (Actually, it was done when
also assuming the fair hypothesis that the two-point function � is a distribution of
D′(M × M).) As a matter of fact, this result gave rise to an alternative definition of
Hadamard state.

The presentation of theHadamard condition in the original sense of [19] in [32,33] is
affected by the issue pointed out above (in the proof of Lemma 3.1 in [32] in particular)
since [32] includes a faithful summary of relevant ideas and notions appearing in [19].

We argue that the statement of Theorem 5.1 in [32] which establishes the equiv-
alence of the two formulations is however valid when assuming our definition of
Hadamard state according to (H1)′–(H4)′. Let us re-state here part of Radzikowski’s
equivalence theorem (excerpt from Theorem 5.1 [32] with notations adapted to our
paper).

Theorem 21 Let (M, g) be a smooth, time oriented, four-dimensional globally hyper-
bolic spacetime and � ∈ D′(M × M), define the Klein–Gordon operator P :=
−� + m2 : C∞(M) → C∞(M) for some real valued m2 ∈ C∞(M). Choose
C, T , χ, NC as above. Then, the following conditions are equivalent.

(1) � satisfies what follows.
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(a) The global Hadamard condition in Definition 19 (referring to the given choice
of C, T , χ, NC),

(b) its antisymmetric part is i
2 (�A − �R) (where �A/R : C∞

0 (M) → C∞(M)

are the advanced/retarded Green operators of P),
(c) �(PF ⊗ F ′) = �(F ⊗ PF ′) = 0 for all real-valued F, F ′ ∈ C∞

0 (M).

(2) � satisfies what follows.

(a)’ The microlocal spectral condition

WF(�) =
{((x1, k1), (x2, k2) ∈ T ∗M \ 0 × T ∗M \ 0 | (x1, k1), (x2,−k2) , k1 � 0} ,

(14)

(b) its antisymmetric part is i
2 (�A − �R),

(c) �(PF ⊗ F ′) = �(F ⊗ PF ′) = 0 for all real-valued F, F ′ ∈ C∞
0 (M).

((b) and (c) are in particular valid if � = �ω for an algebraic state ω on the (Weyl
C∗ or ∗) algebra of a real Klein Gordon quantum field.)
Equivalence of (1) and (2) is still valid with the following changes. (b) and (c) in (1)
are true mod C∞, (b) in (2) is true mod C∞, and (c) is omitted from (2).

Sketch of Proof. The proof of Theorem 5.1 [32] uses both microlocal analysis argu-
ments and some results from [19]. Concerning definitions and facts established in
[19], it is assumed that (i) the parametrix GT ,n

ε (x, y) has the known structure in terms
of σ , �, vn in a covering of normal convex neighbourhoods as stated in [19], (ii) the
Hadamard expansion is well-behaved on the open neighbourhood O ′ of the causally
related points in N × N , where σ(x, y) > 0 for x �= y which are not causally related
(more precisely it takes the standard form σ(x, x ′) = −(y0(x ′))2 + ∑3

α=1(y
α(x ′))2

in Riemannian normal coordinates y0, y1, y2, y3 centred at x), and (iii) the definition
of Hadamard state according to [19] is independent from the choice of the Cauchy
temporal function T . This proof of independence appears in Appendix B of [19] and
it can be recast without changes for our definition of Hadamard state based on the
parametrix GT ,n,C

ε (x, y) and a normal neighbourhood NC . In summary, replacing O ′
for A ′, using the fact that GT ,n,C

ε (x, y) has the same local structure as GT ,n
ε (x, y) in

terms of σ and the Hadamard expansion coefficients and is well-behaved on A , and
exploiting independence of the definition from the choice of T , the proof of Theorem
5.1 [32] is valid as it stands for Definition 19 of Hadamard state9. �

Corollary 22 The definition of Hadamard state in Definition 19 (based on (H1)’–(H4)’
and assuming (b) and (c) of Theorem 21 for �ω) does not depend on the choices of
C, NC, T , χ if �ω ∈ D′(M × M).

9 As is known, the proof of Theorem 5.1 in [32] has a gap. It is the content of the three lines immediately
before the proof of (ii) 3⇒ 2 on p. 547. This gap was closed in several independent works, in particular (but
not only) [34] and [20]. In the latter, only the microlocal analysis approach was exploited and thus without
relation with the issue with [19] definition of Hadamard state. See Remark 23 in [20] for a summary on this
subject.
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Proof Item (2) above does not depend on the choices of C, NC, χ . (Independence from
the choice of T was independently established in the proof of Theorem 21 using the
same proof as in [19].) ��

To conclude we observe that, following [33], an algebraic state ω on a Klein–
Gordon quantum field on a spacetime (M, g) is said to be locally Hadamard if there
is a (normal convex) neighbourhood U of every point where, for every natural n, the
two-point function of the state �ω can be decomposed as in (10) (i.e. (13)) with �ω

in place of �T ,n , for χ = 1 and Hn ∈ Cn(U ×U ). It is possible to prove that a state
ω such that �ω ∈ D′(M × M) satisfies (b) in Theorem 21 is locally Hadamard in a
four-dimensional globally hyperbolic spacetime if and only if it is globally Hadamard.
It was established in Theorem 9.2 in [33] using only the microlocal definition (i.e. (2)
in Theorem 21) of Hadamard state and thus that result is valid also with our definition
of (global) Hadamard state.
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