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ABSTRACT

Radar sounders (RSs) mounted on airborne platforms are active sensors widely employed to acquire subsurface
data of the cryosphere for Earth observation. RS data, also called radargrams, provide information on the buried
geology by identifying dielectric discontinuities in the subsurface. Recently, a strong effort can be observed in
designing automatic techniques to identify the main targets of the cryosphere. However, most of the methods
are based on target-specific handcrafted features. Newly convolutional neural networks (CNNs) automatically
extract meaningful features from data. However, supervised training requires numerous labeled data that are
hard to retrieve in the RS domain. In this work, we adopt a CNN pre-trained in domains other than RS
for automatically segmenting cryosphere radargrams. To adapt to the radargram characteristics, we introduce
convolutional layers at the beginning of the pre-trained network. We modify the top layers of the network to a U-
fashion autoencoder to extract relevant features for the target task. The new layers are fine-tuned with few labeled
radargrams to identify and segment five targets: free space, continental ice layering, floating ice, bedrock, and
EFZ and thermal noise. The pre-trained weights are not updated during fine-tuning. We applied the proposed
approach to radargrams from Antarctica acquired by MCoRDS3, obtaining high overall accuracy. These results
demonstrate the effectiveness of the method in segmenting radargrams and discriminating continental and coastal
ice structures.
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1. INTRODUCTION

Understanding the dynamics of the ice sheets and ice shelves helps to predict the impact of climate change on the
cryosphere1 and the evolution of the ice at the Poles. This can be done by analyzing the inner structure of ice
sheets and ice shelves to estimate climate change indicators for example related to the ice shelf melting and the
ice sheet mass balance decrease. The analysis of the mass balance of ice sheets and ice shelves requires the direct
measurement of the ice up to the basal interface to extract important information on the subsurface geologic
structures and processes. These measurements can be provided by radar sounders (RSs), acquiring radargrams.

RSs transmit an electromagnetic wave in the range of High Frequency (HF) or Very High Frequency (VHF).
The wave is transmitted in the nadir direction and propagates through the subsurface. The interaction of the
EM wave with the dielectric interfaces in the subsurface results in backscattered echoes that are captured by the
sensor. The radargram is generated by adding the echoes and concatenating them in the along-track direction of
the radar. Hence, radargrams image the targets in the cryosphere, like continental ice layering, bedrock, floating
ice and crevasses, and echo-free zone (EFZ) and noise (see Fig 1).

RSs for Earth observation are mainly mounted on an airborne platform and generally probe the subsurface of
Greenland and Antarctica. Motivated by the expected increasing amount of radar sounders with planned airborne
and satellite-borne missions,2,3 there exist automatic approaches for radargram analysis based on statistical
methods and machine learning techniques to identify targets in the subsurface.4,5 Ilisei et al.5 proposed a
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method based on the Support Vector Machine (SVM) to automatically segment grounded ice sheet radargrams.
This approach employed several hand-crafted features, e.g. the entropy, which are target-specific. SVM-based
methods have been also employed to detect and segment specific targets in cryosphere radargrams, such as Donini
et al.4 that presented a method to detect refreezing ice. Similar to 5, this approach uses several class-specific
handcrafted features. Due to the use of handcrafted features, the main disadvantage of these approaches is that
every new target calls for a complete redesign of the features.

In recent years, advanced deep learning (DL) techniques, such as convolutional neural networks (CCNs),
have become prominent to analyze and segment several data types. Deep CNNs automatically learn meaningful
features from the data during training at the cost of a large amount of labeled data6. When a large labeled
dataset is not available, as in the RS domain, there are possible mitigation techniques as randomly initializing
the network parameters leads to overfitting or suboptimal results.6 For instance, Ronneberber et al.7 propose
the U-Net that employs data augmentation techniques. However, when the training samples are not enough,
data augmentation could still lead to overfitting, since data augmentation does not introduce a great variability
in the training set.8 An alternative is a lightweight CNN, such as the MobileNet v2,9 that employs residual
connections and obtains good performance in several tasks. Other techniques to cope with the lack of training
data are transfer learning and domain adaptation. These techniques are based on pre-training the network on
a large training set to avoid overfitting and learn features with large generalization capabilities. Subsequently,
the network is adapted and fine-tuned with a small amount of target data. The literature has demonstrated the
effectiveness of domain adaptation and transfer learning to analyze different domains (including remote sensing)
and perform different tasks.10,11 Transfer learning aims to reuse solidly pre-trained architectures on a source
task (TS) to adapt a network to perform a target task (TT ).12 To analyze data of different domains, domain
adaptation techniques are employed to minimize the distance across domains and re-use in the target domain
(DT ) features already learned in the source domain (DS). It is assumed that the domains DT and DS have
different yet related distributions.13

DL for RSs faces several specific challenges caused by the early stage of development of DL for RS data. The
main challenge is the lack of reliable labeled RS data, which makes it difficult to properly train from scratch,
i.e, with random initialization of the network parameters, a DL architecture without overfitting. However,
techniques like data augmentation are not suitable since they would not introduce enough variability in the RS
dataset to avoid overfitting. Although domain adaptation and transfer learning are widely used for computer
vision and other remote sensing domains, these techniques have never been used for radar sounder data. Using
these techniques for RS requires considering the radar sounder data properties, e.g., signal and noise distribution.
Moreover, DL for RSs has other challenges, such as the unbalanced prior probabilities of the subsurface targets
in the radargrams.

In this work, we propose a transfer learning and domain adaptation approach that reuses a CNN pre-trained
in domains other than RS data to segment radargrams (i.e., assign a label to each pixel of the radargram).
The method uses domain adaptation and transfer learning to adapt a CNN for image classification (i.e., assign
a label for each image) to automatically segment cryosphere radargrams. The network is pre-trained in the
source domain with a multimedia reliable labeled dataset on a classification task. We apply domain adaptation
by adding a convolutional layer at the beginning of the CNN architecture to make the network able to handle
radargram properties, e.g., having one channel instead of three. In addition, we employ transfer learning to
modify the pre-trained architecture to segment radargrams. To this end, we modify the ending layers to have
a U-Net fashion autoencoder able to extract meaningful features for all the radargram pixels. Then, the new
elements in the CNN are fine-tuned on the target domain, i.e., radargrams, with a segmentation task. Note
that the parameters of the pre-trained CNN are not modified during fine-tuning. The method is tested on
MCoRDS radargrams acquired in Antarctica imaging both ice sheets and ice shelves to segment radargrams
into five classes (free space or air, floating ice, ice layering, bedrock, and thermal noise and echo-free zone).
Here, as pre-trained CNN, we use the MobileNetV2 that performs well in many segmentation and classification
tasks [9]. The goodness of the results demonstrates that it is possible to import CNN pre-trained weights from
other domains to analyze radargrams. The rest of this paper is organized as follows: Section 2 formulates the
problem and describes the radargram characteristics, and Section 3 describes the proposed methodology. The
experimental results are in Section 3. Finally, Section 4 concludes the paper and presents the directions for
future work.



Figure 1: Detail of a radargram acquired in Antarctica by MCoRDS3 imaging the main subsurface targets.

2. PROBLEM FORMULATION

Let us consider a radargram R as a 2-dimensional matrix with nT traces along track or azimuth direction
(columns) and nS samples in the depth or range direction (rows):

R = {R(x, y)|x ∈ X = [1, ..., nT ], y ∈ Y = [1, ..., ns]}. (1)

Cryosphere radargrams image the ice sheets in the continental areas and the ice shelves floating on the ocean.
In both, the first interface is the ice surface that generates the strongest reflections in terms of power in the
radargram. This interface delimits the ice and the free space above the surface. Below the surface in radargrams
of inland ice, the ice layering generates bright lines as a result of variations of the dielectric coefficient. The
deepest reflection in continental radargrams is the bedrock, which is generated by the rocky interface under
the ice that reflects all the remaining incident signal by generating a peak in the backscattered signal. The
noisy contributions in continental ice radargrams are above the bedrock, called EFZ,14 and below the bedrock,
the thermal noise. Both noisy contributions have statistical properties similar to thermal noise added by the
receiver. Coastal areas of radargrams mostly image the floating ice and crevasses. Crevasses are vertical fractures
caused by the movement of the ice shelf over the water as a result of the ice melting.15 Crevasses are identified
in radargrams as high scattered vertical lines caused by the penetration of the transmitted signal through the
fractures (see Fig. 1). In coastal radargrams, the target that causes the deepest reflection is the interface between
the floating ice and the ocean or the crevasses in absence of floating ice. Finally, the noisy area in floating ice
radargrams is placed below the floating ice and water interface. A cryosphere radargram of Antarctica is shown
in Fig. 1. Note that the targets in radargrams are mainly distributed along the range direction and that the
targets cover areas of different sizes in radargrams and show different prior probabilities. For example, the area
covered by the layers is 20 times greater than that of the bedrock.

To summarize, the main challenges faced in the RS domain when using DL are: i) the complexity and
variability of jointly processing inland and coastal icy areas, ii) the extremely unbalanced prior probabilities of
the targets, iii) the limited amount of reliably labeled data available for training, and iv) the limited number
of available labeled samples that leads to overfitting with the random initialization of the CNN weights when
training from scratch.

3. PROPOSED METHOD

This section describes the problem and introduces the proposed method for radargram segmentation. We will
explain in detail the proposed methodology for radargram segmentation based on transfer learning and domain
adaptation.
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Figure 2: Block scheme of the proposed methodology.

Here, we propose a method for the automatic segmentation of radar sounder data acquired in the cryosphere.
The aim is to segment a radargram R into N classes Ω = {ω1,, ω2, ..., ωN}, using a CNN able to automatically
extract semantically meaningful features for each pixel.8 To extract features in a supervised way, a CNN needs
a large amount of labeled data that are not usually available in the RS data domain, the target domain DT . To
mitigate this problem, the CNN is pre-trained in another domain, called source domain DS , to perform a source
task TS , so that the network weights are not set to a random initial value decreasing the performance of the
network.6 The source domain DS , usually presents different characteristics, such as a higher number of channels,
and the different statistical distribution PS . So, to performs the adaptation from DS to DT , we design domain
adaptation by adding a convolutional layer at the beginning of the architecture. We introduce transfer learning
techniques to reuse the pre-trained CNN weights and adapt the CNN architecture to perform the target task TT ,
i.e., radargram segmentation. The last layers of the pre-trained CNN are deleted since they identify the most
specific features from DS ,8 resulting in a reduced pre-trained CNN. The reduced CNN is modified to a U-fashion
autoencoder, where the reduced CNN is the encoder and the decoder consists of several up-convolutional layers
to match the input size. The up-convolutional layers identify the target classes Ω in the target domain DT .

The method is divided in two steps as shown in Fig. 2:

1. The network is pre-trained in the source domain DS to perform the source task TS , which consists of image
classification into M classes V = {ν1,, ν2, ..., νM} (different than Ω) with a multimedia labeled dataset.

2. We adapt the network for the radargrams characteristics and to perform segmentation by employing domain
adaptation and transfer learning techniques to analyze data of the target domain DT , i.e, radargrams, and
perform the target task TT , i.e., radargram segmentation.

3. Finally, the network is fine-tuned in DT to extract semantically meaningful features for each pixel of the
radargrams.

3.1 Pre-training in DS

In the pre-training step, the network is trained in the source domain DS to perform a source task TS . Choosing the
source domain DS and the task TS depend on i) the availability of reliable labeled data in the source domain, and
ii) the similarity of the source domain to the target domain in terms of data probability density distribution. The
source domain DS is formed by a feature space XS and a related probability distribution P (XS), where XS is the
set of labeled training samples XS = {xS1

, xS2
, ..., xSr

} ∈ XS . Thus, given a source domain DS = {XS , P (XS)},
the source task TS associated to DS can be defined by: the label space V and the predictive function fS(). The
label space V = {ν1,, ν2, ..., νM} consists of the labels of the training samples XS . The predictive function fS is
an unobserved attribute that predicts a label ySi

∈ V corresponding to a given sample xSi
∈ XS . Therefore, the

source task can be defined as:
TS = {V, fS(·)}. (2)

From a probabilistic viewpoint, fS(x) can be expressed as PS(yS |xS). Hence, the source domain data DS can
be defined as:

DS = {(xS1
, yS1

), ..., (xSr
, ySr

)}. (3)
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Figure 3: Block scheme of the proposed new architecture.

Deep learning for visual recognition is currently in a very advanced stage of development. So, this led us to
choose an extremely optimized approach with enough training data to be robustly trained. Here, robust training
is critical since the better the extracted features from data are in DS , the better results will be reached in
the target domain.6 We choose the MobileNet V2 that performs well in many segmentation and classification
tasks.9 Moreover, the number of parameters is very low compared to other DL solutions, which is optimal for
the RS domain to avoid overfitting. The CNN employs depthwise separable convolutions, a low computational
cost convolution with a significant small trade-off in accuracy reduction to improve the performance.16 Also,
the network takes advantage of inverted residual blocks, a variation of the traditional residual blocks that insert
shortcuts between the bottlenecks to avoid transmitting non-linear transformations. As Mobilenet is developed
in the computer vision domain, available Mobilenet V2 is pre-trained with 3-channel RGB images to perform a
classification task.9

3.2 Network adaptation and fine-tuning in DT

Here, we apply domain adaptation techniques to make the network analyze data in the target domain DT ,
i.e, radargrams, and transfer learning techniques to perform the target task (TT ), i.e., radargram segmentation,
reusing the CNN pre-trained weights. Let us define the target domain (DT ) similarly to DS : DT = {XT , P (XT )}.
DT consists of the feature space XT , and the related probability distribution P (XT ). Analogously, the set of
training samples XT is defined as XT = {xT1 , xT2 , ..., xTr} ∈ XT . The target task (TS) can be defined as:

TT = {Ω, fT (·)}, (4)

where Ω represents the segmentation classes and fT is the function that segments the radargram in the classes
Ω. Thus, fT can be expressed as P (yT |xT ), yT ∈ Ω and YT = {yT1

, yT2
, ..., yTr

} ∈ Ω, therefore the target domain
data is:

DT = {(xT1 , yT1), ..., (xTr , yTr )}. (5)

We adapt the MobileNet V2 to consider the radargram characteristics by proposing a new architecture with a
U-fashion shape, as shown in Fig. 3. We divide the implementation into two steps: adaptation to the radargram
characteristics, and adaptation to the radargram segmentation task.

Adaptation to the radargram characteristics. This step aims to perform the domain adaptation to
handle the target domain that has i) one channel instead of three, and ii) different marginal probability of the
radar data P (XT ) 6= P (XS) than the multimedia data, which means different distribution of the features between
the domains. Radar data are affected by a noise that can be approximated as multiplicative, which has different
properties than the additive noise of optical or multimedia data.17 We assume that XT ∈ XS , since a radargram



is a 1 channel image representation. To learn and compensate for the difference between the domains, we include
a 2D convolution layer at the top of the MobileNet V2. This layer performs the domain adaptation function fda
to fit the target domain in input to the system to the source domain data by doing the 1-to-3 channel conversion
as:

DS = {(fda(xT1), yS1), ..., (fda(xTq ), ySq )}. (6)

Adaptation to the radargram segmentation. Here, we apply transfer learning to make the MobileNet V2
to segment the input radargrams into the Ω classes reusing the pre-trained CNN weights. So we adapt the
network to extract relevant features for the target task TS . The last three layers of the pre-trained network (two
2D convolutional layers and an average pool layer) are discarded since they extract features specific to the source
domain and task. We introduce a new reduced target task TSred

= {Vred, fSred
(·)}, a new label space (Vred), and

a new predictive function (fSred
), which is PSred

(ySred
|fda(xT )), ySred

∈ Vred . This can be fitted in the source
domain data:

DS = {(fda(xT1), ySred1
), ..., (fda(xTq ), ySredq

)}. (7)

Due to the MobileNet V2 architecture, the new output features are significantly smaller in size compared to the
input radargram. Since we aim to segment the input radargrams, we add five up-convolutional layers acting as
a decoder to increase the size of the output features. Additionally, each up-convolutional layer in the decoder
is shortcutted with a matching size layer in the reduced MobileNet V2 to facilitate gradient propagation. The
decoder classifies each pixel of the radargram in one of the N classes in Ω, acting as fT . The target task is:

TT = {Ω, fT (fSred
(·))}. (8)

Finally, the network layers added in this step are fine-tuned with a small amount of labeled data to set the
network weights to extract semantically meaningful features from the pixels for the segmentation. Note that
the pre-trained weights of the MobileNet V2 are not updated in this step. The loss optimized in fine-tuning is
the sparse categorical cross-entropy loss. The error during fine-tuning is used to update the weights of the new
convolutional layers. The pre-trained weights remain unchanged to avoid over-fitting due to the small amount
of labeled data in the target domain.

Due to the extremely unbalanced appearance of classes in DT , we introduce weight maps to increase the
importance of the less frequent classes otherwise under-considered in the training. For instance, the noise class
appears over twenty times more frequently than the bedrock in cryosphere radargrams. Hence, the less frequent
classes are not well differentiated since their contribution to the overall error value is low. The weight of each
class wωi

depends on the class prior probability in XT :

wωi
=

Np

NωiN
(9)

where Nωi is the total number of pixels of ωi in YT , and Np identifies the total number of pixels in XT . The
value of wωi

weights the error calculated for each class during the fine-tuning.

4. EXPERIMENTAL RESULTS

4.1 Dataset and experimental setup

In this subsection, we describe the datasets for the pre-train and fine-tuning of the network and the ex-
perimental set-ups. The radargram segmentation aims at labeling each pixel of the input radargrams into
the five considered classes: air, layers of the ice sheet, floating ice, bedrock, and EFZ and thermal noise
(Ω = {ωfree space, ωlayers, ωbedrock, ωfloating ice, ωnoise}).

As source domain dataset DS , we choose a multimedia dataset that can be easily collected. In this case we
use the ImageNet dataset that consists of 14 million RGB images of 3 channels divided into 1000 classes18 (See
Table 1). The source task TS is to classify the images. Hence, the network is pre-trained with this dataset.

The dataset for fine-tuning (DT ) includes radargrams acquired by MCoRDS-319 in four campaigns in inland
and coastal areas of Antarctica to have all the target classes (Ω = {ωfree space, ωlayers, ωbedrock, ωfloating ice, ωnoise})



Table 1: Pre-training dataset and experimental set-up.

Parameter Value

Dataset ImageNet
Image Size (height×width×channels) 224×224×3

Images 14000000
Classes 1000

Figure 4: Location of the campaigns: 20161109 03 (orange), 20181015 01 (red), 20181115 01 (purple), 20181012 01
(green) in Antarctica.

and are provided by the Center of Remote Sensing of Ice Sheets (CReSIS): 20161109 03, 20181012 01, 20181015 01,
and 20181115 01 with a total of 116288 traces. The location of the campaigns is shown in Fig. 4. The MCoRDS-3
is mounted in a Douglas DC-8 aircraft, and the radar parameters are shown in Table 2.

The data are range compressed and azimuth focused via synthetic aperture radar (SAR) processing. The
fluctuations caused by the movements of the aircraft were corrected, and the power information of each radargram
was log scaled and normalized to approximate the noise as additive. The radargrams were divided into 1817
patches of size 1536×64 pixels to meet the pre-trained network requirements. The vertical dimension is chosen
to maximize the variability in terms of the considered classes in the range direction. Finally, DT is divided
into training for fine-tuning, validation, and test sets by making sure to use different campaigns for each set.
The network is fine-tuned with a learning rate of 0.001 using the Adam optimizer, and minimizing the sparse
categorical cross-entropy loss. The fine-tuning parameters are shown in Table 3.

4.2 Evaluation Metrics

To evaluate the performance of the proposed methodology, we consider i) the average producer accuracy (APA),
which is computed by dividing the number of correctly classified pixels on each class Cωi

by the number of
reference pixels of that class Nωi

(see Eq. 10), ii) the average user accuracy (AUA) that results from dividing the
number of correctly classified pixels in each class Cωi by the total number of pixels that were classified in that
class Uωi (see Eq. 11), and iii) the overall accuracy (OA) that is calculated by dividing the correctly classified
pixels by the network Cωi

by the total number of pixels Np (see Eq. 12):

APA =
Cωi

Nωi

· 100% (10)

AUA =
Cωi

Uωi

· 100% (11)

OA =
Cωi

Np
· 100% (12)



Table 2: Parameters and characteristics of MCoRDS-3 mounted on DC-8 aircraft.19

Parameter Value

Central Frequency (fc) 190 MHz
Bandwidth (BW ) 50 MHz

Transmitted Power (Ptr) 6000 W (1000W/channel)
Aircraft Altitude (h) 1500 m

Range Resolution in Ice (Rr) 4.3 m
Along-track Resolution (Ra) 27.5 m

Table 3: Fine-tuning dataset and experimental set-up parameters.
Parameter Value

Campaign ID (Radargram ID)
20161109 03 (045-047), 20181015 01 (004-009),

20181115 01 (001-002, 012-014), 20181012 01 (009-013, 017-026, 028-030)
Patch size (height×width×channels) 1536×64×1

Number of traces 116288
Dimension of training set 939

Dimension of validation set 234
Dimension of test set 410

Number of classes 5
Learning rate 0.001

Optimizer Adam
Loss Sparse categorical cross entropy loss

Epochs 200

4.3 Segmentation results

Fig. 5b shows the segmentation map of the radargram presented in Fig. 5a. The radargram was acquired in the
Pine Island Glacier. The floating ice is on the left part of the radargram and the inland ice is on the right part
of the radargram. The segmentation map shows that classes are well discriminated. The network manages to
properly delimit the floating ice by identifying the interface between free space and ice, and ice and ocean. We
can also see that the CNN efficiently differentiates the floating ice, the inland ice, and the bedrock, which could
help to identify the grounding lines. The segmentation map proves the robustness of the network since no data
acquired from this campaign were used for training.

Fig. 6b presents the segmentation map of the radargram in Fig. 6a. Note that the network can identify
and segment the five classes in this radargram with good accuracy. Again, the network differentiates between
the continental ice and the floating ice. We can also see how the network properly segments other areas as the
bedrock. However, we can see that the segmentation of the floating ice is less accurate in this classification map.
This is probably caused by the artifacts that can be observed in the original radargram. In any case, the network
manages to delimit accurately the floating ice in most of the traces.

Table 4 shows the error matrix in pixel classification obtained by the network on the test set. The matrix
shows the accuracy results obtained for each class and the overall accuracy, which is over 94%. These results
prove that the learned features from the source domain DS are extendable and effective to analyze radar sounder
data and the learned features in the added layers are meaningful for segmenting radargrams. We can notice that
the latest layers of the network manage to extract meaningful features from the main targets in the radargram,
see Fig. 7. In addition, the overall accuracy reached by the network demonstrates that the method is robust and
that the network has not overfitted during training. This could be critical due to the small number of training
samples. We compared these results with the same autoencoder with random initialization of the weights of
the added layers instead of fine-tuning. However, the accuracy results obtained without fine-tuning were not
satisfactory, below 50% OA.
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(a)

(b)

Figure 5: (a) Radargram 045-047 acquired in the campaign 20161109 03 and (b) segmentation map by the proposed
network. The free space is represented in purple, the floating ice is mapped in yellow, the layers of the continental ice
sheet in green, the bedrock is represented in light blue, and dark blue is the noise and the EFZ.

(a)

(b)

Figure 6: (a) Radargram 012-013 acquired in the campaign 20181115 01 and (b) segmentation map by the proposed
network. The free space is represented in purple, the floating ice is mapped in yellow, the layers of the continental ice
sheet in green, the bedrock is represented in light blue, and dark blue is the noise and the EFZ.



Table 4: Error matrix of the proposed methodology on the test samples.
Reference Pixels

Class Free Space Noise Bedrock Layers Floating Ice Total AUA

P
re

d
.

V
a
lu

e Free Space 960624 8453 0 7485 9544 9631723 99.74%
Noise 0 21459213 124559 173601 590948 22348321 96.02%

Bedrock 0 76554 284195 334 417 361500 78.62%
Layers 2039 784520 1235 3500774 27690 4316258 81.11%

Floating ice 13903 228275 4952 60356 3385595 3693081 91.67%
Total 9622183 22557015 414941 3742550 4014194
APA 99.83% 95.13% 68.49% 93.54% 84.34% OA = 94.76%

Figure 7: From left to right: original patch, features extracted from the third 2D transpose convolution in the decoder,
and features extracted from the fourth 2D transpose convolution in the decoder.

5. CONCLUSION

In this work, we proposed a method based on transfer learning and domain adaptation to reuse a pre-trained Mo-
bileNet V2 to automatically segment radargrams. The radargrams are acquired in the cryosphere and radargrams
are segmented with high accuracy in the five target classes.

We have employed domain adaptation techniques to be able to employ a pre-trained network with RGB
images to analyze data from a very different domain by adding a convolutional layer at the beginning of the
architecture. In addition, we employed transfer learning techniques to reuse the pre-trained weights and to
redesign the MobileNet V2 architecture, which was originally designed to classify images, into a U-fashion
autoencoder to segment radargrams in the target RS domain classes. Finally, we have fine-tuned the elements
added to the redesigned architecture with a small labeled dataset in the RS domain so the new layers learn
semantically meaningful features for each pixel.

We tested our approach on radargrams acquired in Antarctica by MCoRDS-3 over a complex scenario in-
cluding both inland and coastal areas. The results that we obtained show that the network can identify the
target classes. Also, we proved the robustness of the approach by reaching over 94% of segmentation accuracy on
radargrams whose campaigns were not used for fine-tuning. With these results, we also proved that it is possible
to reuse pre-trained features from other domains in the RS domain. We also demonstrated the effectiveness of
the fine-tuning since the fine-tuned autoencoder outperformed the randomly initialized one.

As future work, we aim to compare this approach with other pre-trained architectures and with other ap-
proaches, such as unsupervised learning. We also aim to expand this approach to data acquired in other regions
as Greenland or other planets of the Solar System.
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