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Abstract

In absence of external fields, vibrational modes of periodic systems are usually consid-
ered as linearly polarized and, as such, they do not carry angular momentum. Our work
proves that non-adiabatic effects due to the electron-phonon coupling are time-reversal
symmetry breaking interactions for the vibrational field in systems with non-collinear
magnetism and large spin-orbit coupling. Since in these systems the deformation po-
tential matrix elements are necessarily complex, a nonzero synthetic gauge field (Berry
curvature) arises in the dynamic equations of the ionic motion. As a result, phonon
modes are elliptically polarized in the non-adiabatic framework and intrinsic vibra-
tional angular momenta occur even for non-degenerate modes and without external
probes. These results are validated by performing fully relativistic ab-initio calcula-
tions on two insulating platinum clusters and a metallic manganese compound, with
non-collinear magnetism. In both cases, non-adiabatic vibrational modes carry sizeable
angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.

Keywords: non-adiabatic effects, phonon angular momentum, Berry curvature, non-
collinear magnetism, electron-phonon coupling, time-reversal symmetry

Abstrait
En l’absence de champs externes, les modes vibrationnels des systèmes périodiques
sont généralement considérés comme linéairement polarisés et, en tant que tels, ils ne
portent pas de moment cinétique. Notre travail prouve que les effets non adiabatiques
dus au couplage électron-phonon sont des interactions de rupture de symétrie par in-
version du temps pour le champ vibrationnel dans des systèmes à magnétisme non
colinéaire et à grand couplage spin-orbite. Comme dans ces systèmes les éléments de
matrice de potentiel de déformation sont nécessairement complexes, un champ de gauge
synthétique non nul (courbure de Berry) apparaît dans les équations dynamiques du
mouvement ionique. En conséquence, les phonons non adiabatique sont polarisés de
manière elliptique et des moments angulaires vibrationnels intrinsèques se produisent
même pour des modes non dégénérés et sans sondes externes. Ces résultats sont validés
en effectuant des calculs ab-initio entièrement relativistes sur des molécules de platine
isolantes et un composé de manganèse métallique, à magnétisme non colinéaire. Dans
les deux cas, les modes vibrationnels non adiabatiques portent des moments angulaires
importants comparables à ceux électroniques orbitaux dans les ferroaimants itinérants.

Mots clés: effets non-adiabatiques, moment cinétique des phonons, courbure de Berry,
magnétisme non-colinéaire, couplage électron-phonon, symétrie par inversion du temps
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Introduction

Several experiments demonstrated the non-negligible interaction between vibrational
modes and magnetic fields or optical probes. The phonon Hall effect [1, 2] and the
phonon contribution to the gyromagnetic ratio detected in the Einstein de Haas ef-
fect [3,4] are eminent examples. Moreover, it has been demonstrated that valley selec-
tive infrared optical absorption in transition metal dichalcogenides breaks time-reversal
symmetry for the phonon field and can be used to probe the chirality of phonon modes
at particular points in the Brillouin zone [5, 6].

In the absence of external probes, phonons are usually thought as static lattice vi-
bration and, as such, they are considered as linearly polarized, namely they are invariant
under time-reversal and they are not supposed to carry a finite angular momentum.
In this case, a nonzero angular momentum of phonons can be obtained from twofold
degenerate vibrational modes with a linear combination of the phonon eigenvectors, in
the same way as circularly polarized light can arise from two linear polarizations. This
case has been investigated in literature extensively [6–10], particularly for hexagonal
crystal lattices1.

For each circularly polarized phonon carrying an angular momentum ` there exists
another linearly independent combination of polarizations that leads to an angular
momentum −`, so that the total phonon angular momentum for the degenerate mode
is zero. An external time-reversal symmetry breaking probe, such as optical absorption
or magnetic field is then needed to break the degeneracy. The question is still open
if a non-degenerate phonon mode can host an intrinsic angular momentum without
external probes. Namely, can an intrinsic mechanism break time-reversal symmetry for
the phonon field?

In condensed matter theory, the electronic problem is usually decoupled from the
nuclear motion via the Born-Oppenheimer (adiabatic) approximation [11]. The vibra-
tional properties of the system can then be described, from a microscopic point of view,
in terms of static displacements of the ions (nuclei plus core electrons) from their equi-
librium positions [12]. In density functional theory (DFT), these phonon displacements
are usually handled as external perturbations to the electronic charge density and total
energy of the system and in the linear response regime, where the density response

1In hexagonal crystal lattices with broken in-plane inversion symmetry, such as monolayer hexagonal
boron nitride, single degenerate phonon modes carry opposite angular momenta at the Brillouin zone
corners K and K′ = −K. However, the phonon modes at K and K′ have the same energy and if
vibrations are described in a

√
3×
√

3R30o supercell, K and K′ fold at Γ and the two single degenerate
modes become twofold degenerate at zone center.

1



2 INTRODUCTION

varies linearly with the perturbation. In this approach, the force constant matrix is
obtained as the second derivative of the total energy with respect to the ionic displace-
ment and the vibrational frequencies are equal to the square root of the eigenvalues of
the dynamical matrix.

Even though the scenario outlined so far works pretty well for many systems, there
are some cases in which the coupling between electrons and phonons cannot be ig-
nored. Large non-adiabatic effects, so-called because they go beyond the naive Born-
Oppenheimer approximation, have been predicted in two-dimensional systems and lay-
ered metals [13,14], particularly in the vicinity of Kohn anomalies [15,16], in the clean
limit regime. In density functional perturbation theory (DFPT), non-adiabatic effects
due to the electron-phonon coupling are taken into account by allowing the electrons to
perceive the ionic vibrations by means of a time-dependent perturbation to the charge
density [17]. In so doing, the dynamical matrix becomes a function of the frequency
ω and the eigenvalue problem admits complex solutions. This framework is usually
referred to as dynamical Born-Oppenheimer approximation since a dynamical phonon
displacement is considered instead of a static one.

The thesis aims at demonstrating that, in systems with non-collinear magnetism,
non-adiabatic (dynamical) effects due to the electron-phonon coupling are time-reversal
symmetry breaking interactions for the vibrational field and hence entail an intrinsic
angular momentum of phonons. In fact, for non-collinear magnetic systems, the elec-
tronic wavefunction can not be chosen as real and a nonzero geometric vector potential
(Berry connection) arises in the Born-Oppenheimer approximation [18]. As a result,
an intrinsic nonzero vibrational angular momentum occurs even for non-degenerate
modes and in the absence of external probes. Phonons can then be seen as elemen-
tary quantum particles carrying a sizeable angular momentum driven by non-adiabatic
effects.

The main advancements brought by the thesis can be summarized as follows:

1. We demonstrate that non-adiabatic effects are related to the topology of the
system. Namely, we show that the non-adiabatic dynamical matrix, to leading
order in the low frequency expansion, yields the same eigenvalue problem as the
screened Born-Oppenheimer approximation [19] in which the Berry curvature
of the electrons behaves as an effective viscous friction coefficient for the ionic
motion.

2. In systems with spontaneously broken time-reversal symmetry (and relevant spin-
orbit interaction), we prove that non-adiabatic effects lead to a sizeable intrinsic
vibrational angular momentum even when the non-adiabatic frequencies are ex-
perimentally indistinguishable from the adiabatic ones (∆ω/ω < 1%).

The reason why we consider non-collinear magnetic systems is that, for spin-diagonal
hamiltonians, namely without magnetism or with collinear magnetism, the electronic
wavefunctions can be chosen in such a way that the Berry curvature vanishes. In those
cases therefore, the angular momentum of vibrational modes is zero. On the other
hand, in non-collinear magnetic systems, the Berry curvature of electrons is nonzero
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and the angular momentum of phonons can be finite. In other words, in non-collinear
magnetic systems, the Berry curvature due to the screening of electrons becomes the in-
trinsic mechanism that breaks time-reversal symmetry for the phonon field. As a result,
the vibrational modes may carry a finite angular momentum driven by non-adiabatic
effects.

As a further development, the first-principles approach used for calculation of non-
adiabatic effects [20] is generalized to study non-collinear magnetic systems. And the
electron-phonon calculation in the linear response code is adapted following the method
proposed in reference [21] based on the properties of the time-reversal operator.

The workflow can be summarized as follows. Firstly, a fully relativistic ab-initio
calculation is carried on. Then, a self-consistent calculation of the adiabatic (static)
phonon response is performed. Subsequently, the non-adiabatic dynamical matrix is
obtained with a non-self-consistent procedure which makes use of a (force constant)
functional that is stationary with respect to the variation of the electronic charge den-
sity. Finally, the angular momentum of phonons is obtained from the eigenvectors of
the dynamical matrix [22].

As a proof of concept, we demonstrate the magnitude of this topological effect in
two insulating magnetic platinum clusters. These systems are ideal as the large spin-
orbit coupling leads to a non-collinear arrangement of the magnetic moments and the
energy gap between the highest occupied and lowest-unoccupied molecular orbitals is
rather small compared to other magnetic molecular systems. Afterwards, the protocol
developed for molecules is generalized to study periodic extended systems and applied
to calculate non-adiabatic effects and phonon angular momenta in a metallic man-
ganese compound with a non-collinear antiferromagnetic phase, namely Mn3Pt. Such
system has drawn our attention because recent studies have detected the anomalous
Hall effect in epitaxial films of Mn3Pt at room temperature [23–25]. In both the in-
sulating platinum clusters and the metallic manganese compound we find that some
vibrational modes host a sizeable intrinsic angular momentum driven by non-adiabatic
effects. The magnitude of such phonon angular momenta is comparable to that of the
electronic orbital angular momenta in itinerant ferromagnets, namely few percents of
~ [26]. Our work therefore provides the conceptual link between non-adiabatic effects,
electron-phonon coupling and the existence of a finite angular momentum of vibrational
modes in the absence of external fields.

Finally, the question arises if the angular momenta of phonons can be observable
in experiments. There are two cases in which it could be detected. The first is the case
in which a twofold degenerate mode at zone center occurs in the adiabatic phonon fre-
quencies of the non-collinear magnetic system. As the time-reversal symmetry-breaking
non-adiabatic term related to the Berry connection lowers the crystal symmetry, then
the twofold degenerate mode could split in two different modes hosting different angu-
lar momenta. In this case, even if the angular momentum itself would not be observed,
its effects on the phonon spectrum would be. The second case is infrared absorption
from left and right circularly polarized modes. As the vibrational angular momentum
affects the atomic dipoles, the infrared intensities could be different for different circular
polarizations.

The angular momentum of phonons is important for the control of intervalley scat-
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tering [27,28], for lattice modulation-driven electronic phase transitions [29,30] and for
phonon-driven topological states [7]. It is involved in several opto-magnetic and chiral-
driven effects, the most revelant being the phonon ac Stark and Zeeman effects [31,32],
phonon rotoelectric and magnetochiral effects [33,34], dynamical multiferroicity [32] and
chiral-induced spin selectivity [35]. Furthermore, the angular momentum of phonons
can be used as a new degree of freedom in phonon integrated circuitry [36,37].

Topics covered in the manuscript are organized as follows. Experimental evidences
of the existence of the angular momentum of phonons as part of the interaction between
vibrational fields and magnetic or optic probes are reviewed in the first chapter. Subse-
quently, we present the formalism usually employed to describe non-adiabatic effects in
density functional theory as well as the definition of the Berry curvature and of the an-
gular momentum of phonons. Then we establish the connection between non-adiabatic
effects and the Berry curvature in insulating molecular systems. In this case the treat-
ment is simplified and meaningful insights can be gained with little effort. Following
this line we demonstrate that an intrinsic vibrational angular momentum can arise in
non-collinear magnetic molecules as a result of the non-adiabatic vibronic coupling.
Finally, we generalize the theoretical apparatus and numerical techniques to evaluate
non-adiabatic effects and the phonon angular momentum in periodic systems with non-
collinear magnetism. As proof, we carry out fully relativistic ab-initio calculations for
a metallic manganese compound in the non-collinear antiferromagnetic phase. Because
in this system we find sizeable angular momenta of non-degenerate modes, the overall
framework of the thesis is deemed to be reliable.



Chapter 1

Experimental framework

The interaction between phonons and magnetic fields is pivotal in the understanding
of some physical phenomena such as the phonon Hall effect [1, 2, 38] and the phonon
contribution to the Einstein-de Haas effect [3, 4, 39]. The former is the analog of the
electron Hall effect for phonons, while the latter can be seen as the evidence of the
conservation of the total angular momentum. In both effects, the external magnetic field
breaks time-reversal symmetry for the phonon dynamics. In absence of external probes,
phonons are usually understood in terms of springs and as such, they are solutions of the
classical lattice dynamics, which is invariant under time-reversal2. When the magnetic
field is applied, non-symmetric terms with respect to time-reversal appear in the phonon
Hamiltonian and hence nontrivial effects occur.

In recent years, the interest in this domain of research has grown even further
because it has been shown that phonons, i.e. collective modes of the crystal, can host a
finite (pseudo)angular momentum3. In the semi-classical description, lattice vibrations
are linearly polarized4 and phonons do not carry angular momentum. However, two
degenerate linearly polarized modes can give rise to opposite angular momenta, in the
same way as circularly polarized light can arise from two linear polarizations. The
total angular momentum of degenerate phonons would still vanish. Nevertheless, if
the degeneracy between the two modes is broken, by internal or external interactions,
the circular polarization of each mode can be detected and the angular momentum of
phonons can be nonzero.

First experimental evidence of pseudoangular momentum of phonons came forward
when chiral phonons were observed at the corners of the Brillouin zone in monolayer
WSe2 using an optical pump-probe technique based on the intervalley transition of
holes [5]. As in this system the broken inversion symmetry of the lattice lifts the
degeneracy of valley phonon modes, a circular polarization of phonons can take place.
In this chapter we review the main experimental facts that have led to the formulation of
the angular momentum in the presence of external symmetry breaking fields (magnetic
fields, optical probes).

2See appendix A.
3In the following we will use pseudo only when referring to other authors work.
4In this thesis we refer to the polarization of phonons as if they were charged particles. The meaning

will be clearer later.
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6 CHAPTER 1. EXPERIMENTAL FRAMEWORK

1.1 Phonon Hall effect

When a perpendicular magnetic field is applied on a slab of a paramagnetic material
subject to a temperature gradient, a transverse thermal current is recorded as shown
in Fig. 1.1. This effect is known as phonon (or thermal) Hall effect (PHE) by analogy
with the electron Hall effect in which, instead of a temperature gradient, there is an
electric potential difference and, instead of a thermal current, it is observed a transverse
charge current. The first experimental evidences of such effect have been reported in
Refs. [1, 2] for a terbium gallium garnet Tb3Ga5O12 at low temperature. Unlike the

Thot T cold

B

Figure 1.1: Schematic of the phonon Hall effect. A transverse heat current is recorded
in the paramagnetic material, perpendicularly to the applied temperature gradient and
external magnetic field.

electron analogue, the phonon Hall effect is not justified by the Lorentz force as phonons,
being neutral quasiparticles, do not directly couple with the magnetic field. Therefore,
after the phenomenological evidence, a sizeable effort has been devoted to study the
PHE from a theoretical perspective [40–45]. Most of the articles published in this
regard ascribe the PHE to the coupling between the pseudospin of the paramagnetic
ions and lattice vibrations. Indeed, the Hamiltonian of the vibrating ions, for a ionic
crystal lattice in a uniform external magnetic field, reads [46]

H =
∑
I

1
2MI

[
pI −

e

c
A(uI)

]2
+ 1

2
∑
IJ

uICIJ(R)uJ (1.1)

where uI is the phonon ionic displacement of the I-th ion, pI is the conjugate momen-
tum, MI is the mass, A(uI) is the vector potential of the magnetic field, CIJ(R) is the
force constant matrix, e is the ionic charge and c the speed of light. In this section, we
use the matrix notation in which vectors and matrices are bold and summations over
the Cartesian indexes are implicit. For a constant magnetic field B, the vector potential
A can be written in the symmetric gauge as A(u) = −u×B/2. If the magnetic field
is directed along the z axis and we consider only the two-dimensional motion (x and y
directions) of the system, then the Hamiltonian can be expressed as

H =
∑
I

1
2MI

(pI −ΛuI)T (pI −ΛuI) + 1
2
∑
IJ

uTI CIJuJ (1.2)

where the conjugate variables are defined as uI = (uIx, uIy)T , pI = (pIx, pIy)T , the
superscript T is used for transposed vectors and the antisymmetric matrix Λ is given

by Λ =
(

0 λ
−λ 0

)
where λ = −eB/2c has the dimension of a frequency and it is
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proportional to the magnetic field. Notice that Λ is independent on the ionic index so
long as the magnetic field is constant.

The cross term in the kinetic energy product uTI ΛpI/MI can be interpreted as
an isotropic Raman spin-phonon interaction [47–50] as it couples the pseudospin of the
paramagnetic ions and lattice vibrations. In fact, the Raman spin-phonon interaction is
usually expressed in the form of a spin-orbit interaction asHR = g

∑
I sI ·(uI×pI) where

g is a constant of proportionality, sI is the pseudospin of the lowest Kramers doublet5
and uI × pI is the orbital angular momentum of the I-th ion. For an isotropic spin-
phonon interaction, the average pseudospin is parallel to the magnetization M. In the
mean-field approximation, one can therefore replace 〈s〉 = hM into the equation of HR.
Then, if the magnetic field is oriented along the z direction, the Raman spin-phonon
interaction readsHR = k

∑
I uTI ΛpI/MI where k is another constant of proportionality.

When the magnetic field is present, the spin-phonon interaction breaks time-reversal
symmetry of the ionic Hamiltonian as it introduces linear terms in the odd momentum
p (velocities and momenta change sign when time is reversed). As a consequence, the
phonon dynamics is governed by an effective non-hermitian Hamiltonian whose eigen-
states include both positive and negative energies. This reflects on the energy current
density and gives rise to a finite transverse thermal conductivity in the paramagnetic
system. In reference [43] the interested reader can find the explicit calculation of the
current density operator and of the phonon Hall conductivity. For our purposes, the
important thing is that the Raman spin-phonon coupling constitutes a time-reversal
symmetry breaking interaction for the phonon field that is responsible for the phonon
Hall effect.

1.1.1 Topological nature of the phonon Hall effect

Some part of the literature enriched the theoretical demonstration of the phonon Hall
effect from a topological point of view [43–45]. Namely, it was shown that the transverse
thermal conductivity of the PHE can be expressed in terms of the Berry curvature of
phonons, a geometrical object that is invariant under gauge transformation6 and thus
embed a physical observable. The Berry curvature in question can be defined as

Ων
qx,qy = ∂

∂qx
X νqy −

∂

∂qy
X νqx (1.3)

where X νq is the Berry connection of the phonon branch ν defined in the space of
the phonon wavevector q. It can be expressed in terms of the phonon eigenvectors
εν as X νq = iε†ν

∂
∂qεν . The Berry connection and the Berry curvature can be viewed,

respectively, as a local gauge potential and gauge field associated with the Berry phase
or geometric phase. The latter is defined as the loop integral of the vector potential
X νq in the parameter space, namely

φν =
∮
X νq · dq. (1.4)

5Pair of degenerate electronic states. See appendix A.
6A transformation of the form A→ A + ∇f where f(r, t) is a scalar function.
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These concepts have been introduced by Micheal Berry in 1984 [51] and widely used
over the past thirty years to explain and revisit a variety of phenomena in several
domains of physics. In the next chapter, we will revise the main definitions and discuss
one of the most popular effect due to the Berry phase, presented already in Berry’s
original paper, the Aharonov-Bohm effect.

In the standard Hall effect, the Berry phase of electrons has been related to the
anomalous velocity of electrons in ferromagnetic materials [52–54] (topological nature
of the anomalous Hall effect). In the thermal Hall effect instead, the Berry connection
and curvature are associated with the phonon eigenvectors of the Hamiltonian Eq. 1.2
and they are defined in the space of the phonon wavevector q [55]. Going further
with the parallel between phonon and electrons, the thermal current density in the
phonon Hall effect exhibits off-diagonal elements equivalent to the anomalous velocity
of electrons in the electron Hall effect. Moreover, the thermal Hall conductivity can be
expressed by means of the phonon Berry curvature in a similar fashion as it can be done
for electrons in the anomalous Hall effect. These similarities highlight the topological
nature of the phonon Hall effect. However, even if the qualitative explanation of the
phonon Hall effect and its topological nature has been given, a quantitative description
is still missing. For example, what is the meaning of the spin-phonon interaction from
a microscopic point of view?

1.2 Angular momentum of phonons
After the formulation of the topological nature of the phonon Hall effect, further studies
on the interaction between phonons and magnetic fields have been carried on. In
ionic crystals with Raman spin-phonon interaction, it has been shown that an external
magnetic field breaks time-reversal symmetry for the phonon field [4]. As a result, non-
degenerate vibrational modes can get a nonlinear polarization and host a finite angular
momentum.

In a crystal lattice, the total angular momentum is equal to J = L + S + N where
L and S are the orbital and spin angular momentum of the electrons, respectively,
and N =

∑
I RI × PI is the orbital angular momentum of the nuclei, where RI and

PI are respectively the equilibrium position and the momentum of the I-th nucleus.
The spin of the nuclei is usually neglected because it is much smaller than the spin of
the electrons. When considering a phonon ionic displacement u of the nuclei from the
equilibrium positions R0, the angular momentum becomes

N =
∑
I

(R0
I + uI)× (PI + pI) = Nlat + Nph (1.5)

where N lat =
∑
I R0

I × PI is the angular momentum of the lattice which reflects a
rigid-body rotation of the system and Nph =

∑
I uI × pI is the angular momentum of

phonons. The cross terms vanish at equilibrium as the phonon ionic displacement and
momentum average to zero on the timescale of the equilibrium variables. Within the
classical theory of lattice dynamics, the phonon angular momentum can be defined as

Nph =
∑
I

MIuI × u̇I (1.6)
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where u is the phonon ionic displacement and M is the mass of the atom. In reference
[4], it is demonstrated that the angular momentum of phonons as defined by Eq. 1.6 can
be nonzero in systems with strong spin-phonon interaction and large magnetization.
The magnitude of the angular momentum is related to the parameter λ that appears in
Eq. 1.2. Such parameter can be estimated from the phonon Hall effect or measured by
means of Raman scattering experiments given that the spin-phonon interaction splits
zone-center degenerate modes with an energy gap of 2λ.

The angular momentum of phonons can be observed in experiments that exploit the
conservation law of the total angular momentum. Among them, it is worth mentioning
the Einstein-de Haas effect that demonstrates that a change in the magnetization of
a free body induces a mechanical rotation of the body itself. In the experiment, a
ferromagnetic material is suspended into a cylindrical coil, that provides a uniform
external magnetic field, as shown in Fig. 1.2.

Figure 1.2: Schematic of the Einstein-de Haas effect. A cylinder of ferromagnetic
material is suspended into a cylindrical coil which provides the external magnetic field.
The rotation of the system is measured with a laser beam reflecting on a mirror. Image
by Jasper Olbrich, distributed under a CC BY-SA 3.0 licence.

The magnetization of the system M is proportional to the total angular momentum
of electrons through the gyromagnetic ratio. A variation of the magnetization, namely
a variation of the angular momentum of electrons, must therefore be compensated by
a torque on the rigid-body due to the conservation of the total angular momentum.
In other words, a variation of the magnetization induces a mechanical rotation of the
free body that can be measured with a laser beam. In the presence of spin-phonon
interaction, the spin angular momentum of electrons is coupled to the phonon angular
momentum. A variation of the former thus modifies the latter. A phonon contribution
can therefore be detected in the gyromagnetic ratio from the Einstein-de Haas effect [4].

Another possible experiment to detect the total angular momentum of phonons,
based on the thermal Hall effect, has been proposed in reference [38]. Once again, the
rigid body is free to rotate around a given vertical axis as shown in Fig. 1.3. A laser
beam is then used to heat it up. As long as the material is heated, circular thermal Hall
currents flow at the edge of the sample perpendicularly to the temperature gradient.
Therefore, a variation of the magnetization along the direction of the gradient must
also take place [56]. Similarly to the Einstein-de Haas effect then, the variation of the
magnetization entails a variation of the angular momentum of electrons that is com-

https://commons.wikimedia.org/wiki/User_talk:JasperOCommons
https://creativecommons.org/licenses/by-sa/3.0/
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Figure 1.3: Experimental setup for measurement of mechanical rotation induced by a
temperature gradient. (a) A thin rounded disk is heated in the center. (b) A cylinder
is heated from the bottom. The mechanical rotation is measured by the laser-mirror
setup. Image from New Journal of Physics 18, 103039 (2016), distributed under CC
BY 3.0 licence.

pensated by a mechanical rotation of the rigid body. If the system has sufficiently low
crystallographic symmetries, such as polar or chiral crystal structures, the temperature
gradient induces a finite phonon angular momentum due to the non-equilibrium phonon
distribution [57]. In non-metallic systems, the mechanical torque is then uniquely due
to the total phonon angular momentum. Note that in this experiment, the external
magnetic field is unnecessary as the temperature gradient by itself breaks time-reversal
symmetry and induces nonzero angular momentum of phonons.

1.3 Observation of chiral phonons

Chirality is a fundamental property of an object not identical to its mirror image. For
elementary particles and quasiparticles, it is an important quantum concept at heart
of modern physics. Much effort in the recent years has been addressed to demonstrate
that bosonic collective excitations such as phonons can attain chirality. In this section,
we would like to focus on one particular experiment that showed that phonons can
exhibit intrinsic chirality at the corners of the Brillouin zone in monolayer tungstene
diselenide [5]. As in this system the broken inversion symmetry of the lattice lifts the
degeneracy of valley phonon modes, a circular polarization of phonons can take place.
Owing to the threefold rotational symmetry of the two-dimensional hexagonal lattice,
the pseudoangular momentum l of phonons at K and K ′ can only be 0 or ±1 [6],
depending on the phase change of the atomic motion after a counterclockwise 120◦
rotation: Ĉ3(uq) = e−i(2π/3)luq. For example, the longitudinal optical mode LO(K)
shown in the left side of Fig. 1.4 gains a negative phase after rotation and thus it
carries pseudoangular momentum l = 1. In contrast, the longitudinal acoustic mode

https://iopscience.iop.org/article/10.1088/1367-2630/18/10/103039
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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LA(K) is symmetric under C3 rotations and thus it has l = 0.

Provided that time-reversal is a symmetry of the system, chiral phonons exist in
pairs with identical energy, one in each valley. Namely, for each K phonon with pseu-
doangular momentum l, there exists a K ′ phonon with the same energy and pseudoan-
gular momentum −l.

Figure 1.4: Phonons chirality at the corners of the Brillouin zone in WSe2, probed
via infrared optical absorption. (A) Phonon displacements of W and Se atoms (blue
and yellow spheres, respectively) for two chiral phonon modes at the K point (red dot)
of the reciprocal lattice (array of black dots). (B) Intervalley optical transition of holes
through virtual scattering with a LO valley phonon. The pseudoangular momentum of
the valley phonon is equal to the spin of the infrared photon due to angular momentum
conservation. From Science 359, 579 (2018). Reprinted with permission from AAAS.

The chirality of phonons is probed with an optical pump-probe technique which
allows to determine the pseudoangular momentum of valley phonons scattering with
the holes. The intervalence band transition process is represented in the right hand side
of Fig. 1.4. First, holes are injected at K valley by a left-circularly polarized optical
pump pulse. K-valley polarized holes can then transit to K ′ valley in a virtual state by
emitting a K phonon with pseudoangular momentum l = 1. The probe infrared pulse
is sent to satisfy energy conservation and to place the hole in the spin-split band at
K ′. The pseudoangular momentum of the K phonon is determined by measuring the
polarization selection of the absorbed photon. With left-circularly polarized excitation,
the intervalley transition of holes from the K-valley can either absorb a left-circularly
polarized infrared photon to produce LO phonons with pseudoangular momentum l = 1
or absorb a right-circularly polarized infrared photon to excite TA/A1 phonons with
pseudoangular momentum l = −1.

From another perspective, the experiment proves that infrared optical probes break
time-reversal symmetry for the phonon field. In fact, so long as valley phonons have
the same energy, K and K ′ fold at Γ in a supercell

√
3×
√

3R30o reconstruction and the
two phonon modes become doubly degenerate at zone center. The infrared absorption
must therefore break valleys time-reversal symmetry to create chiral phonons.

https://www.science.org/doi/10.1126/science.aar2711
https://www.science.org/content/page/institutional-license-agreement
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1.4 Summary
In this first chapter, we introduced the experimental background in which our research
has been carried on. The interaction between phonons and external magnetic fields
is established through two main physical phenomena: the phonon Hall effect and the
Einstein-de Haas effect. The former is usually explained in terms of the spin-phonon
interaction, which breaks time-reversal symmetry of phonons when an external mag-
netic field is applied. The latter descends from the principle of conservation of the
total angular momentum. Experimental setups based on these phenomena have been
proposed to measure the angular momentum of phonons.

Alternatively, it has been demonstrated that valley phonons in lattice crystals with
broken inversion symmetry can attain chirality. In particular, the chirality of some
vibrational modes in monolayer tungstene diselenide has been probed by means of
infrared optical absorption. We show that circularly polarized phonons arise within
the intervalence band transition process of holes from K to K ′ valley. Chiral phonons
are important for electron-phonon coupling in solids, phonon-driven topological states,
and energy-efficient information processing.



Chapter 2

Topology and Berry phase:
general concepts

Topological effects are at the heart of many physical phenomena. Here we present the
formalism usually employed to define the Berry phase and related quantities in a general
case. As a proof of concept, we discuss the Aharonov-Bohm (AB) effect and molecular
AB effect in which topological effects are crucial. The last sections are devoted to the
parallel transport gauge, to the adiabatic approximation and to the geometrical phase
in periodic lattice structures. We refer the interested reader to [18] and [58] for a more
complete treatment of these topics.

2.1 Berry phase and related quantities

Let us consider a generic quantum system whose Hamiltonian depends on the param-
eter ξ. The parameter can have more than one component. The time-independent
Shrödinger equation reads

H(ξ)|ψ(ξ)〉 = E(ξ)|ψ(ξ)〉 (2.1)

where the eigenstates |ψ(ξ)〉 of the system reside in a suitable Hilbert space. As an
example, the parameter ξ can be the nuclear coordinates in a molecule and H(ξ) the
Hamiltonian of electrons. Let us consider a subset of ξ such that the ground state of the
system |ψ0(ξ)〉 is non-degenerate. In the following, we drop the subscript 0. The phase
difference ∆φ12 between the ground states at two different ξ points in the parameter
space is given by

∆φ12 = −Im log 〈ψ(ξ1)|ψ(ξ2)〉 (2.2)

e−i∆φ12 = 〈ψ(ξ1)|ψ(ξ2)〉
|〈ψ(ξ1)|ψ(ξ2)〉| . (2.3)

∆φ12 however, has no physical meaning. The state vectors are defined up to a global
phase and an arbitrary change in the phase of the ground-states |ψ(ξ1,2)〉 make the
difference ∆φ12 vary accordingly. However, if we consider a closed loop in the parameter

13



14 CHAPTER 2. TOPOLOGY AND BERRY PHASE

space, as shown in Fig. 2.1, the phase difference along the path can be written as

φ = ∆φ12 + ∆φ23 + ∆φ34 + ∆φ41

= −Im log [〈ψ(ξ1)|ψ(ξ2)〉〈ψ(ξ2)|ψ(ξ3)〉〈ψ(ξ3)|ψ(ξ4)〉〈ψ(ξ4)|ψ(ξ1)〉] (2.4)

where now the gauge-arbitrary phases cancel in pairs, making the overall phase φ a
gauge-invariant quantity. The sum Eq. 2.4, therefore, only depends on the path and
the phase φ does have a physical meaning.

ξ4

|ψ(ξ4)〉
ξ2

|ψ(ξ2)〉

ξ3 |ψ(ξ3)〉

ξ1 |ψ(ξ1)〉

Figure 2.1: Closed loop in the parameter space.

In the continuum limit, the sum becomes an integral over the closed path γ and the
Berry phase, defined modulo 2π, reads

φ =
∮
γ

X (ξ) · dξ =
∮
γ
i〈ψ(ξ)|∇ξψ(ξ)〉 · dξ (2.5)

where the vector potential X (ξ), hereinafter called Berry potential or Berry connec-
tion7, is defined as

X (ξ) = i〈ψ(ξ)|∇ξψ(ξ)〉. (2.6)

The latter is not a gauge invariant object as it transforms, under an arbitrary phase
change of the wavefunction, in the following way:

ψ(ξ)→ eif(ξ)ψ(ξ) (2.7)
X (ξ)→ X (ξ) + ∇ξf(ξ) (2.8)

where f(ξ) is some differentiable scalar function of the parameter ξ. The phase φ is
given by a circuit integral in parameter space and it is independent of how the circuit
is traversed, provided that the phase of the wavefunction is differentiable all along the
path. The curl of the Berry potential in the parameter space is called Berry curvature
and it is equal to

Ωµν = ∂Xν
∂ξµ
− ∂Xµ
∂ξν

= −2Im
〈
∂ψ

∂ξµ

∣∣∣ ∂ψ
∂ξν

〉
(2.9)

where µ and ν label the components of ξ. Notice that Ω is a real antisymmetric tensor.
Since the curl of a gradient vanishes, the Berry curvature is gauge invariant and hence,

7The term connection is borrowed from differential geometry.
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in principle, physically observable. From the right hand side of Eq. 2.9, it is evident
that the curvature vanishes whenever the wavefunctions can be taken as real. This is
the case of finite systems with no magnetic field and negligible spin-orbit interaction, as
we will see in the following. When instead the wavefunctions are unavoidably complex,
the curvature can be nonzero and the Berry phase can assume any value.

The main discovery of Berry’s work is that geometric phases can be measurable.
There exists therefore a whole class of observables that cannot be cast as the expectation
value of any operator. Such geometric phases manifest themselves in many diverse
unrelated domain of physics. Why these observables arise is explained in the original
paper by Berry [51]. In a truly isolated system, no geometric phase can exist, as
only conservative fields can occur. However, no real system is isolated. Indeed, the
first assumption that we made of a parametric Hamiltonian implies that the system is
not isolated. The parameter ξ in fact plays the role of all the variables that are not
included in the Hilbert space. In this sense the importance of the Berry phase can be
appreciated. Namely, the parametric Hamiltonian can be used to describe some part
of a larger system as if it were isolated, at the cost of introducing new observables that
cannot be cast as the expectation value of hermitian operators [18].

The theory hereby presented works very well for those systems whose sub-parts
are almost isolated relative to each other and the little coupled variables are static
parameters compared to the rest, as for example the nuclear coordinates in crystals.
Nowadays, the Berry phase is ubiquitous in physics and its effects have been detected in
many diverse domain of research [59]. The first (recognized) and most known example
of a manifestation of the Berry phase is the Aharonov-Bohm effect.

2.2 Aharonov-Bohm effect

The Aharonov-Bohm (AB) effect is an intriguing phenomenon by which a quantum
system moving nearby a magnetic field B is affected by the vector potential A of the
magnetic field, despite the latter is not invariant under a gauge transformation and
thus not observable [60]. Experimental evidences of the effect have been sought and
found since the 1960’s [61].

The schematic of the AB effect for electrons, shown in Fig. 2.2, resembles the double-
slit experiment that is commonly referred to demonstrate the wave-particle duality of
light. The electrons are allowed to pass next to a region of space where the magnetic
field is present through two slits in a wall. In classical electromagnetism, only the
magnetic field is real and the vector potential does not affect the electrons. In quantum
mechanics, instead, the vector potential is real and can modify the wavefunction of
electrons in regions of space where the magnetic field identically vanishes. Indeed, when
passing through a region with nonzero vector potential, the wavefunction undergoes the
phase transformation

ψ(r, t)→ exp
[
i
e

~c

∫
γ
A(r, t) · dr

]
ψ(r, t) (2.10)

where γ is the path of the particle and e is the electron charge. The magnetic vector
potential thus modifies the phase of the vector state. However, the observations in
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path
one

path
two

electrons

observation plane/screen

(interference)

B

Figure 2.2: Schematic of the Aharonov-bohm effect.

quantum physics typically rely on the probability density |ψ(r, t)|2 where the phase
of the wavefunction is irrelevant. The AB effect can be detected in the interference
pattern of the electrons on the observation screen. The intensity of the signal is related
to the phase difference between the wavefunctions. If we consider a confined magnetic
field as in Fig. 2.2, the phase difference of the wavefunctions can be written as the line
integral of the vector potential along a closed path, namely

∆φ = e

~c

∮
A(r, t) · dr, (2.11)

and it is proportional to the flux of the magnetic field across the surface bounded by
the path. In order to demonstrate that ∆φ is a Berry phase, we consider an electron
in a box (infinite potential well) subject to the time-independent Shrödinger equation[

p2

2m + V (r)
]
χ(r) = Eχ(r). (2.12)

When the box is displaced by a vectorR, the Hamiltonian and the wavefunction become

H(R) = p2

2m + V (r−R) (2.13)

〈r|ψ(R)〉 = χ(r−R) (2.14)

while the eigenvalue is R-independent. Suppose now that a magnetic field is switched
on somewhere in space. The Hamiltonian becomes

H(R) = 1
2m

[
p− e

c
A(r)

]2
+ V (r−R) (2.15)

where A(r) is the vector potential of the magnetic field. The formal solution of the
Shrödinger equation can thus be written as

〈r|ψ(R)〉 = exp
[
i
e

~c

∫ r

R
A(r′) · dr′

]
χ(r−R). (2.16)
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The wavefunction so obtained is not a single-valued function of r as the integral in the
phase factor depends on the path. Therefore, we consider a confined magnetic field and
prevent the box from overlapping the region of the magnetic field. With such a choice,
the wavefunction Eq. 2.16 is single-valued with respect to r. If we let the box wind
once around the flux tube of the magnetic field, the electronic wavefunction picks up a
Berry phase φ. The Berry connection of the problem indeed is equal to8

X (R) = i〈ψ(R)|∇Rψ(R)〉 = e

~c
A(R), (2.17)

and the Berry phase reads

φ = e

~c

∮
γ
A(R) · dR = e

~c

∫∫
S(γ)

B(R) · dS, (2.18)

that is to say, it is proportional to the flux of the magnetic field across the surface
S(γ) bounded by the path. The Berry curvature is proportional to the magnetic field,
defined as the curl of the vector potential.

The AB effect is an example of manifestation of the Berry phase in which the geo-
metric vector potential and the gauge field coincide with the magnetic vector potential
and field, respectively. In general, the Berry connection and curvature can be inter-
preted respectively as effective (synthetic) vector potential and magnetic field in the
parameter space. In Table 2.1, we summarize the dualism between magnetism and the
Berry related quantities. In the last column, the gauge invariance of each is specified.

magnetism synthetic fields
in the parameter space

gauge
invariance

flux of the magnetic field
across a closed surface Berry phase φ Y
vector potential A Berry connection X N
magnetic field B Berry curvature Ω Y

Table 2.1: Summary of the correspondence between magnetic flux, potential and field
with the Berry related quantities. Gauge invariance is specified for each.

2.2.1 Molecular Aharonov-Bohm effect

Another interesting manifestation of the Berry phase is the molecular Aharonov-Bohm
affect [62]. It concerns the ionic motion in the adiabatic approximation and it is observ-
able in rotovibrational spectra of molecules. As parameter ξ, we consider the nuclear
coordinates Rs, where s labels the nuclei in the molecule, and as parametric Hamilto-
nian we consider that of electrons in the Born-Oppenheimer approximation. Then the
nuclear dynamics can be described by an effective Hamiltonian [18]

Hnucl =
∑
s

1
2Ms

[−i~∇Rs − ~X (Rs)]2 + E(R) (2.19)

8The term
∫
χ(r−R)∇Rχ(r−R)dr vanishes as we are considering normalized real wavefunctions.
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where Ms is the mass of the s-th nucleus, X (R) is the Berry connection of electrons
defined by Eq. 2.6 and E(R) is the Born-Oppenheimer energy surface of electrons. In
molecular systems, one typically assumes vanishing wavefunctions at infinity. Then, in
the absence of magnetic interactions, the Berry connection vanishes and the nuclear
dynamics reduces to the classical one.

When the wavefunctions are not real, as for example in the presence of a mag-
netic field, the Berry connection in Eq. 2.19 accounts for the screening of electrons
to the nuclear dynamics. An illustrative example in this regard is the failure of the
adiabatic approximation in the case of an hydrogen atom immersed into an external
magnetic field. Within the naive Born–Oppenheimer approximation, the hydrogen
atom is wrongly deflected by a Lorentz force according to its naked nuclear charge.
The screening of the electron needs to be reinserted "by hand" to recover the correct re-
sult. When including the Berry connection in the description of the nuclear dynamics,
the trajectory of the hydrogen atom is not affected by the magnetic field. The nuclear
momentum in Eq. 2.19 can be replaced by

− i~∇R → −i~∇R + e

c
A(R) (2.20)

where A(R) is the vector potential of the magnetic field B. By expressing the potential
A in the symmetric gauge, it can be shown that the electronic wavefunction ψ(r)
acquires a geometric phase of the kind ∆φ = e

2~cr · (B × R), analogously to what
happens in the AB effect (see equation 2.10). The Berry connection X (R) therefore
reads

X (R) = i〈ψR|∇RψR〉 = e

2~c〈ψR|B× r|ψR〉 = e

2~cB×R = e

~c
A(R), (2.21)

namely it is equal, up to constants, to the vector potential at the proton site. When in-
serted into Eq. 2.19, the Berry connection, therefore, exactly cancels with the magnetic
potential from Eq. 2.20. As a result, no Lorentz force is experienced by the neutral
hydrogen atom moving in the magnetic field. In this example, the Berry connection
provides the screening of the electron which is absent in the adiabatic approximation.

In the pre-Berry literature, this working framework is sometimes referred to as the
screened Born-Oppenheimer approximation [19] and represents the first step beyond
the naive Born-Oppenheimer approximation. It is therefore a good starting point for
the description of non-adiabatic effects in solids and it will be the working topic of the
next chapter.

2.3 The parallel transport gauge
One of the main attributes of the Berry curvature is the gauge-invariance. The Berry
curvature Ω as defined by Eq. 2.9, is invariant under the gauge transformation Eq. 2.7.
This allows for example to safely express the Berry curvature in perturbation theory
without worrying about the gauge fixing. When we write the perturbed state as

|ψ0(ξ + ∆ξ)〉 = |ψ0(ξ)〉+
∑
n6=0
|ψn(ξ)〉〈ψn(ξ)|∇ξH(ξ)|ψ0(ξ)〉

E0(ξ)− En(ξ) (2.22)
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we are implicitly assuming the parallel transport gauge fixing in which the phase of the
state vector is kept constant as ξ is varied by an infinitesimal amount. As the excited
states |ψn(ξ)〉 are orthogonal to the ground state |ψ0(ξ)〉, the Berry connection, defined
as X (ξ) = i〈ψ(ξ)|∇ξψ(ξ)〉, vanishes along the path. However, the curvature is not
necessarily zero and it can be written within the parallel transport gauge as

Ωµν = −2Im
∑
n6=0

〈ψ0(ξ)|∂H(ξ)
∂ξµ
|ψn(ξ)〉〈ψn(ξ)|∂H(ξ)

∂ξν
|ψ0(ξ)〉

[E0(ξ)− En(ξ)]2
. (2.23)

If the ground state is allowed to be degenerate with the first exited state, the curvature
present a singularity. This case is particularly interesting when the wavefunctions can
be taken as real valued. Indeed, in these cases, a nontrivial change of sign in the wave-
function occurs, namely the Berry phase is equal to π, only if the path encircles these
degeneracy points. This sign change has remarkable observable effects on the rotovi-
brational spectra of some molecules, such as lithium trimer [63]. If the wavefunctions
are complex, the Berry phase can assume any value.

2.4 The adiabatic approximation
In this paragraph we deal with the case in which the parameter ξ is a smooth function of
time (we follow reference [58]). The adiabatic approximation consists in assuming that
the variation of the parameter ξ(t) is so slow that the state vector |ψ(ξ)〉 is always well
approximated by the static solution of the Schrödinger equation at the current value of
ξ(t). As the Hamiltonian does not explicitly depend on time, the eigenvalue equation
H(ξ)|n(ξ)〉 = En(ξ)|n(ξ)〉 holds at any time. Here n labels the stationary solutions
of the eigenvalue problem. If the parameter ξ had been time-independent, the time
evolution of the state vector, solution of the time-dependent Schrödinger equation,
would have been

|ψ(t)〉 =
∑
n

an(0)e−iEnt/~|n〉 (2.24)

with coefficients an(0) determined by the initial state. Now, if the parameter ξ slowly
changes in time so that we can approximate it as constant in each interval of time dt,
the phase evolution can be written as

|ψ(t)〉 =
∑
n

an(t)e−i
1
~

∫ t
0 En(t′)dt′ |n(t)〉 (2.25)

where |n(t)〉 ≡ |n(ξ(t))〉 is the eigenstate of the time-independent problem |n(ξ)〉 eval-
uated at ξ = ξ(t) and an(t) is to be determined. We replace Eq. 2.25 into the time-
dependent Schrödinger equation and multiply by 〈n(t)| on the left. We end up with a
first order differential equation for an(t), namely

ȧn(t) + an(t)〈n(t)|∂tn(t)〉 = 0 (2.26)

that we solve by separation of variables as an(t) = an(0)eiφn(t) where φn(t) is an open-
path Berry phase in time which can be written as

φn(t) =
∫ t

0
Xn(t′)dt′ (2.27)
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and Xn(t) = i〈n(t)|∂tn(t)〉 is the Berry connection. Moreover, the Berry phase in
Eq. 2.27 can be expressed as a function of the parameter ξ alone as

φn(ξ) =
∫ ξ(t)

ξ(0)
X n(ξ) · dξ (2.28)

where now X n(ξ) = i〈n(ξ)|∇ξn(ξ)〉 is the Berry connection in the parameter space.
Eq. 2.28 shows how the Berry phase of the time-dependent wavefunction is only related
to the path travelled by the system in the parameter space and does not depend upon
the rate at which the path is traversed, so long as the parametric evolution is sufficiently
slow. The time evolution of the state vector in the adiabatic approximation is therefore
given by

|ψ(t)〉 =
∑
n

an(0)eiφn(ξ(t))e−i
1
~

∫ t
0 En(t′)dt′ |n(t)〉 (2.29)

where the “normal” phase factor that usually determines the time evolution of the
system is now accompanied by a Berry like phase factor that is absent in the time-
independent picture (compare Eq. 2.29 with Eq. 2.24). It should be pointed out, how-
ever, that such phase is irrelevant in most treatments of physical problems as it cancels
out when computing the expectation value of an hermitian operator. Nonetheless, as
we already mentioned before, the Berry phase can sometimes play a role in interfer-
ence processes such as the AB effect. The adiabatic approximation is very powerful in
systems where “fast” and “slow” variables can be efficiently separated. A prototypical
case is the one of electrons in molecules and crystals, which are much lighter than the
nuclei and thus much faster. The electronic Hamiltonian can be handled in a very good
approximation as if the nuclear coordinates RI were classical variables varying slowly
enough to solve the electronic problem as if they were still.

2.5 Berry phase in crystal lattices

Up until now in this chapter, we have considered Berry phases, connections and curva-
tures defined in the space of the generic parameter ξ. In the following we will consider as
parameter the phonon ionic displacement u = (u1x, . . . , uNtotz) where Ntot is the total
number of atoms in the system. The parametric Hamiltonian will be the Kohn-Sham
Hamiltonian of electrons9 and the wavefunctions will be the Kohn-Sham eigenstates.
In periodic systems, the electronic wavefunctions can be written as ψki(r) = 〈r|ψki〉
where k is the crystal momentum of electrons and i is the band index. These wave-
functions comply with the Bloch’s theorem, namely ψki(r) = eik·ruki(r), where uki(r)
is a lattice-periodic function such that uki(r) = uki(r+R) with R vector of the Bravais
lattice.

When defined using the Bloch’s wavefunctions, the Berry connection and curvature
also carry a k-vector and band subscripts. According to Eqs. 2.6 and 2.9, they can be
written as

X ki(u) = i〈ψki|∇uψki〉 (2.30)
9The Kohn-Sham formulation of density functional theory is discussed later on.
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Ωµν,ki(u) = ∂Xν,ki
∂uµ

−
∂Xµ,ki
∂uν

= −2Im
〈
∂ψki
∂uµ

∣∣∣∂ψki
∂uν

〉
. (2.31)

Analogous relations can be established for the periodic part of the wavefunction uki(r).
We do not need to explicitly define the Berry phase in the crystal lattice formalism. In
density functional perturbation theory, the derivative of the Kohn-Sham wavefunction
with respect to the phonon ionic displacement u can be written in the parallel transport
gauge as ∣∣∣∣∂ψki

∂uν

〉
=
∑
k′j
|ψk′j〉

〈ψk′j |∂HKS
∂uν
|ψki〉

εki − εk′j
(2.32)

where HKS is the Kohn-Sham Hamiltonian of electrons, ∂HKS/∂uν is the deformation
potential and εki are the Kohn-Sham eigenvalues. Replacing Eq. 2.32 into the definition
of the Berry curvature Eq. 2.31, it can be shown that

ΩKS
µν,ki(u) = −2Im

∑
k′j

〈ψki|∂HKS
∂uµ
|ψk′j〉〈ψk′j |∂HKS

∂uν
|ψki〉

(εki − εk′j)2 . (2.33)

This expression for the gauge invariant Berry curvature, defined in the space of the
phonon ionic displacement, for the Kohn-Sham electronic wavefunctions and Hamilto-
nian, is the particular case of the most general Eq. 2.23. In the following chapters we
will show that such quantity is related with non-adiabatic effects due to the electron-
phonon coupling.

2.6 Summary
In this second chapter we defined the Berry phase and related quantities. As a proof of
concept, the Aharonov-Bohm effect is discussed as an example of manifestation of the
Berry phase. It is also shown that the Berry phase, in the adiabatic approximation,
has the meaning of the phase of the wavefunction.

In the next chapter we apply the adiabatic approximation to crystals and illustrate
how the Berry connection of the electrons affects the nuclear dynamics. By analogy
with the phonon Hall effect we demonstrate that the synthetic gauge field can break
time-reversal symmetry of phonons and induce nonzero angular momentum.





Chapter 3

Theoretical background

3.1 Born-Oppenheimer approximation

In molecules as well as in solids the theory of vibrational modes is usually based on
the Born-Oppenheimer (adiabatic) approximation which allows to decouple the ionic
and electronic degrees of freedom. The two-particles Hamiltonian of the system of Ntot
nuclei and N electrons, neglecting the spin-orbit interaction, is given by

H = −
∑
I

~2

2MI
∇2

RI
− ~2

2m
∑
i

∇2
ri + 1

2
∑
i 6=j

e2

|ri − rj |
−
∑
iI

ZIe
2

|ri −RI |
+ 1

2
∑
I 6=J

ZIZJe
2

|RI −RJ |
(3.1)

where the first two terms are the kinetic energies of the nuclei and of the electrons
and the other three terms represent the two-particle Coulomb interactions. RI , MI

and ZI are respectively the position, the mass and the atomic number of the I-th
nucleus while ri is the position of the i-th electron and m is the mass. In the Born-
Oppenheimer approximation, it is assumed that the nuclei are much slower than the
electrons because of the larger mass and thus we can neglect the gradient of the elec-
tronic wave function with respect to the nuclear coordinates. In this approximation,
the total wavefunction can be factorized as Ψ({R}, r)Ξ(R) where Ψ({R}, r1, . . . , rN )
is the many-body electron wave function which depends parametrically on the nuclear
coordinates {R} = R1, . . . ,RNtot and Ξ(R1, . . . ,RNtot) is the wave function of the nu-
clei.
We now make use of the Dirac notation to evaluate the action of the nuclear kinetic
energy operator on the product wavefunction Ψ({R}, r)Ξ(R). The canonical nuclear
momentum PI ≡ −i~∇RI

yields

PI |Ψ(R)〉Ξ(R) = −i~|Ψ(R)〉∇RIΞ(R)− i~|∇RIΨ(R)〉Ξ(R). (3.2)

Then we multiply on the left for the electronic wave function and integrate out. The
resulting effective momentum acting on the ionic wave function therefore reads

〈Ψ|PI |Ψ〉 = [−i~∇RI − i~〈Ψ|∇RIΨ〉] (3.3)

23
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where we dropped the explicit dependence of |Ψ〉 on R for the sake of readability. In a
similar way one may compute the averaged square momentum which yields

〈Ψ|P 2
I |Ψ〉 = −~2

[
∇2
RI

+ 2〈Ψ|∇RIΨ〉 ·∇RI + 〈Ψ|∇2
RI

Ψ〉
]
. (3.4)

Note that all these operators act on the nuclear wavefunction Ξ(R). Let us also compute
the variance of the momentum as it will be useful for later purpose:

〈P 2
I 〉 − 〈PI〉2 = ~2

[
〈∇RIΨ|∇RIΨ〉 − |〈Ψ|∇RIΨ〉|

2
]
. (3.5)

We are now ready to separate the problem in two Shroedinger equations, one for the
electrons and one for the nuclei, namely

Hel[{R}, r]Ψ({R}, r) = E({R})Ψ({R}, r) (3.6)(∑
I

〈P2
I〉

2MI
+ E({R})

)
Ξ(R) = EΞ(R) (3.7)

where the electronic Hamiltonian Hel is given by Eq. 3.1 having removed the nuclear
kinetic energy, namely

Hel = − ~2

2m
∑
i

∇2
ri + 1

2
∑
i 6=j

e2

|ri − rj |
−
∑
iI

ZIe
2

|ri −RI |
+ 1

2
∑
I 6=J

ZIZJe
2

|RI −RJ |
, (3.8)

E({R}) is the Born-Oppenheimer energy surface which represents the ground-state
energy of the interacting electrons moving in the field of the fixed nuclei and E is
the eigenenergy of the nuclei. In the Hamiltonian of the nuclei, Eq. 3.7, the quantity
〈P 2

I 〉 is equal to the average over the electronic state vector |Ψ〉 of the squared nuclear
momentum PI that we already calculated in Eq. 3.4.

Let us now suppose that we already solved the clamped-nuclei electronic problem10

and we know the energy surface E({R}) that serves as scalar potential for the nuclei.
Then let us focus on the nuclear dynamics. The effective kinetic energy

∑
I〈P 2

I 〉/2MI

resembles very much the kinetic energy of a particle with charge q and mass m in an
external magnetic field B = ∇×A, namely

T = − ~2

2m∇
2 + iq~

m
A ·∇ + q2

2mA2 (3.9)

where the Coulomb gauge condition ∇ ·A = 0 has been enforced. Indeed, the second
term in Eq. 3.4, divided by the mass, can be written as

+ i~2

MI
X I(R) ·∇RI

(3.10)

where the Berry connection X I(R) = i〈Ψ|∇RI
Ψ〉 plays the role of the magnetic vector

potential A. The contribution from Eq. 3.10 is generally omitted when the coupling
10In the next chapter we deal with the electronic problem and give an overview of the most common

method employed to handle it, namely density functional theory.
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between electronic states is neglected. In the following discussion, however, this con-
tribution to the kinetic energy will be fundamental and thus we keep it.

As for the last term of Eq. 3.4 instead, the quantity −~2〈Ψ|∇2Ψ〉/2M cannot be
directly expressed in terms of the geometric potential squared. Despite this, we can
write the effective Hamiltonian of the nuclei in a similar fashion as for the particle in
an external magnetic field, namely

Hnucl[R] =
∑
I

1
2MI

(−i~∇RI
− ~X I)2 + E({R}) (3.11)

in such a way that the only quantity that we neglect is the difference between the mean
squared momentum and the square of the average momentum, namely the variance in
Eq. 3.5.

The effective Hamiltonian of Eq. 3.11 governs the trajectory of the nuclei along
the BO energy surface. The Berry connection in the kinetic energy accounts for a
back-interaction (screening) from the other electrons which is usually not taken into
consideration. The reason is that, in time-reversal symmetric systems, one usually can
choose real-valued electronic wavefunctions for which the Berry connection vanishes
and the Schrödinger equation of the nuclei becomes unaware of the electronic states
(naive adiabatic approximation). When instead time-reversal symmetry is broken, the
electronic wavefunctions are necessarily complex and the nuclear dynamics is affected
by the Berry potential.

3.1.1 Equations of motion

It is instructive to derive the equations of motion for the coordinates and momenta
from the Hamiltonian of Eq. 3.11. Let us firstly rewrite for clarity the Hamiltonian in
the Cartesian basis

Hnucl =
∑
Iα

1
2MI

(PIα − ~XIα)2 + E({R}) (3.12)

where PIα ≡ −i~∂/∂RIα. In the Heisenberg representation, the time-derivatives of the
coordinates and momenta are related to the commutator with the Hamiltonian, namely

ṘIα = i

~
[H, RIα] (3.13)

ṖIα = i

~
[H, PIα] (3.14)

Then, by using canonical commutation relations such as [RIα, PJβ] = i~δIJδαβ and
[f({R}), PIα] = i~ ∂f({R})/∂RIα we can write down the equations of the nuclear
motion stemming from the Hamiltonian of Eq. 3.12:

ṘIα = 1
MI

(PIα − ~XIα) (3.15)

ṖIα =~
∑
Jβ

∂XJβ
∂RIα

1
MJ

(PJβ − ~XJβ)− i~
2

2
∑
Jβ

1
MJ

∂2XJβ
∂RIα∂RJβ

− ∂E

∂RIα
(3.16)
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Compared to the classical equations of motion, the ones that we just derived exhibit
many additional terms related to the Berry connection and its spacial derivatives.
Once again, when the electronic wavefunctions are real, all these terms vanish and the
nuclear trajectory along the BO surface is governed by classical Newton’s equations.
The second derivative of the coordinates with respect to time can be expressed solely
in terms of the coordinates themselves as

MIR̈Iα + ~
∑
Jβ

ΩIα,JβṘJβ + ∂E

∂RIα
= 0 (3.17)

where, we recall, the Berry curvature is given by

ΩIα,Jβ = ∂XJβ
∂RIα

− ∂XIα
∂RJβ

(3.18)

and we neglected a term proportional to the gradient of the curvature as it is of higher
order, in the derivative of the wavefunction, than other terms that we already neglected
in the adiabatic approximation. When it comes to study the vibrational modes of
molecules or solids, the Berry curvature in Eq. 3.17 behaves as a viscous damping
coefficient to the harmonic oscillations. The Berry-like term in Eq. 3.17 can thus be
thought as an effective Lorentz force (acting on the nuclei) induced by the geometric
gauge field of the electrons. Note that there is no external magnetic field in the problem
under investigation but, we can say, there is a synthetic gauge field due to the parametric
dependence on R of the Hamiltonian of electrons Eq. 3.8.

3.2 Lattice dynamics in the harmonic approximation

Let us put aside for one moment the Berry connection in the Hamiltonian of the nuclei
and revise the theory of lattice dynamics where the phonons are treated as classical
oscillators. The equations presented so far are valid for both molecules and solids. In
the following we specialize the theory to solids only while the equations for molecules
will be given in a separate section.

Let us consider a (Bravais lattice) crystal with Nat atoms per unit cell and Nc

cells. The total number of atoms be Ntot = NatNc. The vibrational modes in a crystal
lattice are usually described in terms of the displacement of the ions (nuclei plus valence
electrons) with respect to the equilibrium sites. The position of each ion will therefore
be equal to RI ≡ RLs = R0

Ls + uLs = RL + τs + uLs where RL localizes the L-th
unit cell, τs identifies the equilibrium position of the s-th ion in the unit cell and uLs
is the ionic displacement from the equilibrium position R0

Ls ≡ RL + τs. The index
I = {Ls} runs from 1 to Ntot while the indexes L and s run from 1 to Nc and from 1
to Nat, respectively. The equilibrium positions of the ions are determined by nullifying
the forces

FIα = − ∂E

∂RIα

∣∣∣
u=0

. (3.19)

In the Born-Oppenheimer approximation, the total energy of the electronic system is
a parametric function of the ionic coordinates. If the deviation of the ionic positions
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from the equilibrium is small, we can expand the total energy as a power series of the
displacement uI . The harmonic approximation consists in truncating such series at the
second order, namely

E({R}) = E({R0}) + 1
2
∑
Iα,Jβ

uIαCIα,Jβ(R)uJβ (3.20)

where the first derivative has been omitted as it vanishes at equilibrium and the second
derivative of the total energy has been used to define the interatomic force constant
matrix, namely

CIα,Jβ(R) = Csα,rβ(RL −RM ) = ∂2E

∂uLsα∂uMrβ
(3.21)

We stress out that CIαJβ is symmetric under exchange of the indexes and it is a function
of the difference RL −RM only, as consequence of the translational invariance of the
crystal. The Fourier transform of the interatomic force constant matrix is given by

Csα,rβ(q) =
∑
L

e−iq·RLCsα,rβ(RL) = 1
Nc

∂2E

∂u∗qsα∂uqrβ
(3.22)

where, exploiting translational invariance, we have chosen RM = 0 and in the right
hand side of the equation Nc is the number of unit cells in the crystal and uqsα is the
Fourier transformed ionic displacement. The dynamical matrix is equal to the Fourier
transformed force constant matrix divided by the square root of the masses, namely

Dsα,rβ(q) = 1√
MsMr

Csα,rβ(q) (3.23)

whereMs andMr do not carry the cell index as the atoms have the same mass in every
cell. The 3Ntot Newton’s laws of motion read

MsüLsα = −
∑
Mrβ

Csα,rβ(RL −RM )uMrβ. (3.24)

We seek for solution in the form

uLsα(t) = 1√
Ms

Re
[
εsα(q)eiq·RLe−iωqt

]
(3.25)

where εsα(q) and ωq are respectively the polarization vector and the frequency of the
phonon with wavevector q. The resulting equation delineates an eigenvalue problem
for the dynamical matrix Dsα,rβ(q), the solutions of which are labeled with a phonon
mode index ν running from 1 to 3Nat, namely∑

rβ

Dsα,rβ(q)ενrβ(q) = ω2
qνενsα(q) (3.26)

Following from the symmetry properties of the interatomic force constant matrix, the
dynamical matrix is hermitian and such that D(q) = D(−q). Moreover, the phonon
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frequencies and eigenvectors fulfill the conditions ωq = ω−q and ε∗νsα(q) = ενsα(−q).
The phonon polarization vectors also satisfy the orthogonality and the completeness
relations: ∑

sα

ε∗νsα(q)εν′sα(q) = δνν′ (3.27)∑
ν

ενsα(q)ε∗νrβ(q) = δαβδsr. (3.28)

It is worth mentioning that phonon polarization vectors can be trivially complex,
namely real vectors multiplied by a global phase, or nontrivially complex as in the
case of polyatomic crystals at q 6= 0. In the latter case, the ions perform elliptical
trajectories around their equilibrium positions. Consequently, each ion gives rise to an
orbital angular momentum perpendicular to the plane of the orbit. For each mode ν
and wavevector q, the angular momentum of the lattice vibration is equal to the sum of
the angular momenta of the rotating ions. Note that all along this section, we treated
phonons classically and we did not include any Berry phase effect in the derivation. We
wonder now how the Berry connection in the Hamiltonian of the nuclei Eq. (3.12), stem-
ming from the quantum derivation of the Born-Oppenheimer approximation, affects the
lattice dynamics and, particularly, how the phonon eigenvalue problem Eq. (3.26) is
modified. The angular momentum of phonons will be object of the last section in this
chapter.

3.2.1 How to deal with molecules

Molecules can be seen as a crystal with just one cell. The total number of ions is
Ntot = Nat. The ionic index I coincides with the ionic index s in the unit cell. All
the quantities that depends on the cell indexes in solids, are equal to themselves in
reciprocal space for molecules. Therefore, all the equations of solids in reciprocal space
are also valid for molecules provided that the wavevector q is set equal to zero. In
particular, the eigenvalue equation of the dynamical matrix reads∑

Jβ

DIα,JβενJβ = ω2
νενIα (3.29)

where D is real and ε is real up to a global phase. Vibrations of polyatomic molecules
are described in terms of normal modes. Nonlinear molecules have 3 modes of transla-
tion (acoustic), 3 modes of rotation and 3Ntot − 6 optical modes. A molecular vibra-
tion is excited when the molecule absorbs an amount of energy corresponding to the
vibrational frequency. The vibrational states of a molecule are typically probed via In-
frared and Raman spectroscopy as vibrational frequencies typically range from less than
1013 Hz to approximately 1014 Hz. The non-adiabatic interaction (beyond the naive
Born-Oppenheimer approximation) between electronic and nuclear vibrational motion
in molecules is called vibronic coupling. It cannot be neglected when two adiabatic
potential energy surfaces are close to each other as in presence of avoided crossings and
conical intersections.
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3.2.2 Harmonic lattice dynamics in the presence of the Berry connec-
tion

For ease of notation, throughout all this section, the Cartesian indexes α and β will
be omitted. The Hamiltonian of the nuclei Eq. (3.12), when dealing with vibrational
modes, can be expressed in the harmonic approximation as a quadratic function of the
phonon ionic displacements uI and its conjugate momenta pI ≡ −i~∇uI as

H =
∑
I

1
2MI

(pI − ~XI)2 + 1
2
∑
IJ

uICIJuJ (3.30)

where the interionic force constant matrix CIJ is defined by Eq. 3.21 as the second
derivative of the BO electronic energy with respect to the ionic displacement and the
Berry connection XI(u) = i〈Ψ(u)|∇uIΨ(u)〉 must be linear in the ionic displacement u
since we only retain quadratic terms in the harmonic approximation. In analogy with
the electromagnetism, the Berry connection can be expressed in a proper gauge as (see
appendix B)

XI = −1
2
∑
J

ΩIJuJ (3.31)

where now the Berry curvature is constant and given by

ΩIJ = ∂XJ
∂uI

− ∂XI
∂uJ

. (3.32)

The equation of motion (3.17) is then replaced by eq. 3.24 with an additional viscous
friction term proportional to the Berry curvature itself:

MI üI + ~
∑
J

ΩIJ u̇J +
∑
J

CIJuJ = 0. (3.33)

We use the solution of Eq. 3.25 to obtain the phonon eigenvalue problem

∑
r

1√
MsMr

[Csr(q)− i~ωqΩsr(q)] εr(q) = ω2
qεs(q) (3.34)

where Ωsr(q) is the Fourier component of the Berry curvature ΩIJ . The phonon eigen-
value problem Eq. 3.34 has been obtained by retaining the Berry connection in the
kinetic energy of the ionic Hamiltonian. It differs from Eq. 3.26 for a term in the
dynamical matrix that is linear with the frequency and proportional to the Berry cur-
vature in reciprocal space. Indeed, Eq. 3.34 is not a standard eigenvalue problem and
needs to be solved carefully. First of all, we replace Eq. 3.31 into the equations of
motion and we arrange it in the following way√

MI u̇I =
∑
J

ΣIJ

√
MJuJ + pI√

MI
(3.35)

ṗI√
MI

= −
∑
J

DIJ

√
MJuJ +

∑
J

ΣIJ
pJ√
MJ

(3.36)
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where we defined a new antisymmetric matrix ΣIJ ≡ ~
2ΩIJ/

√
MIMJ which is pro-

portional to the Berry curvature divided by the square root of the masses and also we
definedDIJ ≡ CIJ/

√
MIMJ−

∑
K ΣIKΣKJ . Following Ref. [45] and the supplementary

material of Refs. [4, 43], we then consider solutions in the form

uI(t) = εs/
√
Ms e

iq·RLe−iωqt (3.37)
pI(t) = µs

√
Ms e

iq·RLe−iωqt (3.38)

where the polarization vectors εs and µs are related to the coordinates and the momenta
respectively. The equations of motion can therefore be written in a compact form as

− iωq

(
εs
µs

)
=
∑
r

(
Σsr Isr
−Dsr Σsr

)(
εr
µr

)
(3.39)

where Σsr is the Fourier transform of ΣIJ , Dsr is the dynamical matrix and Isr is
the identity matrix. The momentum component is related to the coordinate one via
µs = −iωqεs −

∑
r Σsrεr. In addition, Eq. 3.39 can be seen as the Schrödinger equa-

tion of the effective non-hermitian Hamiltonian Hsr = i

(
Σsr Isr
−Dsr Σsr

)
with eigenvec-

tors ξs = (εs, µs)T and eigenvalues ωq, namely
∑
rHsrξr = ωqξs. However, since the

Hamiltonian is not a self-adjoint operator, the eigenvalue equation
∑
r ζ

T
r Hrs = ωqζ

T
s

of the hermitian conjugate operator must also be considered, where we named ζTs =
(µ†s,−ε†s)/(2iωq) the left eigenvectors of H (the normalization has been chosen in such
a way that the second quantization of the Hamiltonian is satisfied). The eigenvalue
equations of the effective Hamiltonian are therefore given by

∑
r

Hsr(q)ξνr(q) = ωqνξνs(q) (3.40)∑
r

ζTνr(q)Hrs(q) = ωqνζ
T
νs(q) (3.41)

where the index ν labels the 3Nat solutions, ωqν are the eigenvalues, ξνs(q) are the
right eigenvectors and ζTνs(q) are the left eigenvectors. The right and left eigenvec-
tors obey the orthonormality condition

∑
s ζ

T
νsξν′s = δνν′ and the completeness relation∑

ν ξνs ⊗ ζTνr = Isr. The former can also be expressed solely in terms of the coordi-
nate components as ε†ε + i

ωq
ε†Σε = 1. Since the Hamiltonian H is not hermitian,

the complete set of solutions includes negative phonon branches. For the purposes of
this thesis, we retain only positive phonon branches11 (ω > 0) and define the phonon
annihilation and creation operator as aqν and a†qν . Then the commutation relation
[aqν , a

†
q′ν′ ] = δqq′δνν′ holds. The time evolution of the annihilation and creation oper-

ators is respectively given by aqν(t) = aqνe
−iωqνt and a†qν(t) = a†qνeiωqνt. We therefore

11Another approach is possible in which the negative branches are included (see Ref. [55]).
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write the second quantization relations in the form

uLs =

√
~

2N
∑
qν
ενs(q) 1√

Msωqν

(
aqν + a†−qν

)
eiq·RL (3.42)

pLs =

√
~

2N
∑
qν
µνs(q)

√
Msωqν

(
aqν − a†−qν

)
eiq·RL (3.43)

The canonical commutation relations are satisfied [uLs, pMr] = i~δLMδsr and the Hamil-
tonian Eq. 3.30 in the harmonic approximation reads

H = 1
2
∑
qν

~ωqν(a†qνaqν + 1
2). (3.44)

To summarize, in this section we have seen how the Berry phase in the Hamiltonian
of the ions affect the lattice dynamics in the harmonic approximation. We found that
the equations of motion of the ions Eq. 3.33 exhibit an additional viscous friction term
proportional to the Berry curvature of the ionic displacements. Then we replaced
the standard solutions of the classical theory of lattice dynamics but we obtained a
nonlinear eigenvalue problem for the dynamical matrix Eq. 3.34. To solve this problem
we separated the polarization vectors of the coordinates and momenta and diagonalized
the non-hermitian Hamiltonian H in order to write the solutions under the form of right
and left orthonormal eigenvectors. We used second quantization relations to write the
Hamiltonian in the familiar form, Eq. 3.44. The same procedure applies to solve the
equations of motions for an ionic crystal into an external magnetic field, as shown
in the Ref. [4]. The Berry curvature indeed, behaves in the lattice dynamics as an
effective magnetic field. Interestingly, it is found that, when the interaction term in
the Hamiltonian is nonzero, the phonons host a finite angular momentum. In the
next section therefore we want to take a closer look to this analogy. Our aim is to
demonstrate that also the Berry connection can give rise to nonzero angular momentum
in the phonon modes.

3.3 Phonon angular momentum
The Raman spin-phonon interaction also plays a role in the appearance of the angular
momentum of phonons in the presence of an external magnetic field [4]. In a crystal
lattice the total angular momentum is equal to J = L + S + N where L and S are the
orbital and spin angular momentum of the electrons, respectively, and N =

∑
I RI ×

PI is the orbital angular momentum of the nuclei. The spin of the nuclei is usually
neglected because it is much smaller than the spin of the electrons. When considering
a phonon ionic displacement from the equilibrium positions, the angular momentum
becomes

N =
∑
I

(R0
I + uI)× (PI + pI) = Nlat + Nph (3.45)

where N lat =
∑
I R0

I × PI is the angular momentum of the lattice which reflects a
rigid-body rotation of the system and Nph =

∑
I uI × pI is the angular momentum of
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phonons. The cross terms vanish at equilibrium. Within the classical theory of lattice
dynamics, the phonon angular momentum can be defined as

Nph =
∑
Ls

MsuLs × u̇Ls (3.46)

where uLs is a displacement vector of the s-th atom in the L-th unit cell, and Ms is
the mass of the atom. The z component of the phonon angular momentum can be
expressed in terms of the x and y components of the phonon ionic displacements as
Nph
z =

∑
LsMs(uxLsu̇

y
ls−u

y
Lsu̇

x
Ls). By taking into account only positive eigenmodes, we

use the second quantization relation Eq. 3.42 to express the z component of the total
phonon angular momentum as12

Nph
z = 1

2
∑
kk′

`kk′,z

(√
ωk
ωk′

+
√
ωk′

ωk

)
δq,q′a

†
k′ake

i(ωk′−ωk)t + 1
2
∑
k

`kk,z (3.47)

where k = (q, ν) and `kk′,z = ~
∑
s i(εksxε∗k′sy − εksyε

∗
k′sx). At the equilibrium, the

expectation value of the angular momentum reads

〈Nph
z 〉 =

∑
qν
`qν,z

[
b(ωqν) + 1

2

]
(3.48)

where b(ωqν) = 1/(e~ωqν/KBT − 1) is the Bose-Einstein occupation function. We use
the relation 〈a†qν′aqν〉 = b(ωqν)δνν′ . At zero temperature, the total phonon angular
momentum reads 〈Nph

z 〉(T = 0) = 1
2
∑

qν `qν,z which means that each mode has a zero-
point angular momentum 1

2`qν,z in addition to a zero-point energy 1
2~ωqν . In the high

temperature limit, the phonon angular momentum is proportional to 1/T and vanishes
(see Ref [4]):

〈Nph
z 〉(T →∞) =

∑
qν
`qν,z

~ωqν
12KBT

→ 0 (3.49)

At high temperatures, the classical statistical mechanics applies and the summation
over quantum states is replaced by a phase space integral on the displacements and
momenta. Then we can recast, through a change of variables, the kinetic energy in the
usual form p2/2M , removing the effect of the Berry connection. For such pure harmonic
system the angular momentum is zero. It follows that the phonon angular momentum
is meaningful only in low-temperature quantum systems. The angular momentum `qν
of the phonon mode ν with wavevector q can also be expressed as a cross product
between phonon polarization vectors as [22]

`qν = −i~
∑
s

ε∗νs(q)× ενs(q) (3.50)

where ενs(q) is the eigenvector of the dynamical matrix. When the polarization vec-
tors are real, up to a global phase, the angular momentum therefore vanishes. From
Eq. 3.26, it is seen that the angular momentum `qν is always zero when the dynamical

12A demonstration is available in the supplementary material of Ref. [4] and in Appendix C of this
thesis.
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matrix is real, namely in molecules and monoatomic crystals. Moreover, even when
the dynamical matrix is complex, whenever the relation ε∗νs(q) = ενs(−q) is valid, the
angular momentum at −q will be equal to minus the angular momentum at q, namely
`−qν = −`qν , which implies, together with the relation ωqν = ω−qν , that the expecta-
tion value of the total angular momentum 〈Nph〉 vanishes because the summation runs
over both positive and negative wavevectors. In order to have nonzero total angular
momentum of phonons, we thus need that ε∗νs(q) 6= ενs(−q) or that ωqν 6= ω−qν . This
happens when the time-reversal symmetry of phonons is broken.

3.3.1 Discussion and summary

In section 1.1, we have seen that the (Raman) spin-phonon interaction can be seen as
a spin-orbit coupling for the ions. As the external magnetic field takes action on the
spin of the ions, the spin-phonon interaction breaks time-reversal (TR) symmetry of
phonons. Namely it transmits the information (about TR symmetry breaking) to the
orbital sector of the ions, where phonons originate. It should be pointed out however
that the Raman spin-phonon interaction alone HR ∝

∑
I sI · (uI×pI) is TR symmetric

because s and p are odd under TR while u is even (see appendix A). It is therefore
needed an external magnetic field to break TR symmetry.

In harmonic lattice dynamics instead, when the Berry connection term is retained
in the Born-Oppenheimer approximation, the phonon Hamiltonian Eq. 3.30 is not in-
variant under TR because the kinetic energy contains linear terms in the momentum p,
which is odd under TR. This reflects in the phonon eigenvalue problem Eq. 3.24 with a
linear term in the frequency ω that is proportional to the Berry curvature Ω. In fact,
even if there is no external magnetic field, we have a synthetic gauge field in the ionic
dynamics stemming from the screening of electrons.

Differently from the spin-phonon interaction, moreover, the Berry connection X in
the Hamiltonian Eq. 3.30 spontaneously arises from the Born-Oppenheimer approxima-
tion as the only one track left of the electrons wavefunction after integrating out the
electrons problem. It is therefore the back-interaction of the electrons, as an external
potential for the nuclei in the BO approximation, that breaks time-reversal symmetry
of phonons irrespective of whether the electronic Hamiltonian is TR invariant [64]. As
a consequence, the phonons are allowed to host a finite angular momentum. In this
illustration, there is no need of external time-reversal symmetry breaking probes to
get a finite phonon angular momentum. We just need a nonzero curvature from the
electrons. We will therefore refer to it as an intrinsic phonon angular momentum to
distinguish it from the phonon angular momentum “induced” by external probes.





Chapter 4

The electronic problem and
linear response theory

We address now the problem of electrons moving in the field of the fixed nuclei and
treat the displacement of the nuclei from the equilibrium position as a perturbation
to the electronic wavefunction. Even when decoupled from the nuclear problem, the
electronic problem is a many-body problem whose complexity grows exponentially with
the number of particles. Many computational methods have then be developed to
study such a problem. Among the most successful approach there is density functional
theory (DFT). In this chapter we describe the Kohn-Sham (KS) formulation of density
functional theory with and without spin and we present the theory of linear response
with particular interest in the vibrational modes of molecules and crystals. We also
discuss the effect of spin-orbit interaction and introduce the computational method
that we use to interpolate the dynamical matrix.

4.1 Density Functional Theory

Many physical properties of a system of interacting electrons are uniquely determined by
its ground-state charge density distribution. The electronic problem is usually treated
within the Kohn and Sham formulation of the density functional theory [65] which
maps the interacting many-body problem onto a non-interacting single-particle one
that has the same ground state density as the real one. The Kohn-Sham single-particle
Hamiltonian reads

HKS = p2

2m + Vext(r) + V
[n]
H (r) + V [n]

xc (r) (4.1)

where p2/2m is the kinetic energy, Vext(r) is the external potential due to the Coulomb
interaction with the nuclei, namely

Vext(r) = −
∑
I

ZIe
2

|r−RI |
+ 1

2
∑
I 6=J

ZIZJe
2

|RI −RJ |
, (4.2)

35
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V
[n]
H (r) and V [n]

xc (r) are the Hartree and exchange-correlation potentials, that are func-
tionals of the electronic density n(r) and can be written as

V
[n]
H (r) = e2

∫
n(r′)
|r− r′|dr

′ (4.3)

V [n]
xc (r) = δExc[n]

δn(r) , (4.4)

where Exc[n] is the exchange-correlation energy functional and δ is used for the func-
tional derivative. The electronic density n(r) can be expressed in terms of the single-
particle KS wavefunction |ψi〉 as

n(r) =
∑
i

fi〈ψi|r〉〈r|ψi〉 =
∑
i

fiψ
∗
i (r)ψi(r) (4.5)

where fi is the occupation number (varying between 0 and 1 for empty and occupied
states respectively). The single-particle KS equation reads

HKS|ψi〉 = εi|ψi〉 (4.6)

where HKS is given by Eq. 4.1 and εi are the KS single-particle energies. The above
set of equations forms a closed loop as the density is a function of the KS orbitals, the
KS potential is a functional of the density and the KS Hamiltonian is diagonalized by
the KS states. In practical calculations, the problem is thus handled with an iterative
procedure known as self-consistent field (SCF) method. The procedure, together with
other methodological techniques is quickly reviewed in appendix D.

Up to here density functional theory is exact but the exact exchange-correlation
energy functional Exc[n] is unfortunately unknown. Some methods have therefore been
developed to approximate the exchange-correlation energy functional. The most com-
mon one is the local density approximation (LDA) [66] according to which the functional
is given by

ELDA
xc [n] =

∫
n(r)Ehomxc (n(r))dr (4.7)

where Ehomxc (n(r)) is the exact exchange-correlation energy density of a homogeneous
electron gas with local density n(r). LDA describes quite well the chemical bond, par-
ticularly for strong bonds like covalent and metallic. It also works well for vibrational
properties. It is not accurate for strongly correlated systems. For spin-polarized sys-
tems, the LDA is replaced by the local spin density approximation (LSDA) [67] in which
the exchange-correlation energy density is a function of the spin-up and spin-down elec-
tron density. The performance of the L(S)DA functional has then been improved by
including the so-called gradient corrections [68–70]. Such approximation goes under
the name of generalized gradient (GGA) and the functional reads

EGGA
xc [n] =

∫
n(r)EGGA

xc (n(r),∇n(r))dr (4.8)

where the exchange-correlation energy density EGGA
xc (n(r),∇n(r)) is now also a function

of the non-local gradient of the density. In most of the cases, the band structure in GGA
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is very similar to LDA. However, GGA yields better total energies than LDA, better
atomization energies and structural energy differences and it works slightly better than
LDA for weak bonds, albeit it lacks the Van der Waals interaction. Several approaches
based on hybrid functionals have been proposed [71]. These techniques incorporate
a portion of exact exchange from Hartree–Fock theory [72, 73]. For a more complete
description of the approximate functionals we refer the reader to [74].

4.1.1 Spin Density Functional Theory

In a spin-polarized system, the electron wave function is a spinor, the components of
which are ψiσ(r). The spin density matrix can be written as:

ρσσ
′(r) =

∑
i

fiψ
∗
iσ(r)ψiσ′(r) (4.9)

The electron density and magnetization density are obtained as

n(r) =
∑
σ

ρσσ(r) (4.10)

mα(r) = µB
∑
σσ′

ρσσ
′(r)σσσ′α (4.11)

where µB is the Bohr magneton, α is a Cartesian index and the Pauli matrices σα are
defined as

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (4.12)

In this framework, the KS equation reads

∑
σ′

[(
p2

2m + VH + Vxc

)
δσσ

′ + V σσ′
ext − µB

∑
α

Bxc,ασ
σσ′
α

]
|ψiσ′〉 = εi|ψiσ〉 (4.13)

where Vxc is the spin-diagonal exchange-correlation potential defined by Eq. 4.4 and
Bxc(r) is the exchange-correlation magnetic field, defined as the first derivative of the
exchange-correlation energy with respect to the magnetization, namely

Bxc,α(r) = − δExc
δmα(r) . (4.14)

Note that Vext can be non-diagonal in the spin components (we are considering a more
general case than the pure ionic potential of Eq. 4.2). The Hamiltonian of Eq. 4.13 is
not time-reversal symmetric due to the exchange correlation magnetic field. Indeed,
we have

T H [B]
KST

−1 = H
[−B]
KS . (4.15)

Collinear magnetism

In the special case of collinear magnetism without spin-orbit coupling, the spin quan-
tization axis can be taken parallel to the magnetization (usually the z direction). The
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spin index σ therefore assumes the value ↑ and ↓, namely the two opposite directions
on the quantization axis. The spin density matrix is diagonal:

ρσσ
′(r) =

(
ρ↑↑(r) 0

0 ρ↓↓(r)

)
(4.16)

The charge and magnetization density read:

n(r) = ρ↑↑(r) + ρ↓↓(r) (4.17)

mz(r) = µB
(
ρ↑↑(r)− ρ↓↓(r)

)
(4.18)

where m(r) is always aligned with the spin quantization axis (usually chosen as the
z-axis). The electronic problem is now separable (diagonal) in the spin components
and the Kohn-Sham equations are given by[

p2

2m + VH + Vxc + Vext − µBBxc,z

]
|ψi↑〉 = εi↑|ψi↑〉 (4.19)[

p2

2m + VH + Vxc + Vext + µBBxc,z

]
|ψi↓〉 = εi↓|ψi↓〉 (4.20)

The case of collinear magnetism can therefore be exemplified within the local spin
density approximation (LSDA) in which the KS equations are time-reversal invariant.
Namely, even when TR symmetry is spontaneously broken, and a collinear magnetic
order emerges, the KS Hamiltonian is diagonal in the spin components and thus TR
symmetric. This is not true however when the spin-orbit coupling is non-negligible.

Spin-orbit coupling

In one-electron atoms, the spin angular momentum s and the orbital angular momen-
tum ` are not separately conserved. Only the total angular momentum j in a good
quantum number, namely the sum of the spin and the orbital angular momentum
commutes with the Hamiltonian. The spin-orbit interaction

HSOC = ~
2m2c2

∑
i

∇V (ri)× pi · Si (4.21)

is a relativistic effect that scales as the fourth power of the atomic number and it is
negligible in light atoms. Here V (r) = −eφ(r) is the potential felt by the electrons
and summation is carried out on the electronic index i. Since ∇φ is strongest in the
core region, HSOC is often approximated by a sum of on-site contributions of the form
ξ(r)L · S where L = r× p and S are the orbital and spin angular momenta on the site
in question and ξ(r) is a radial function given by

ξ(r) = ~
2m2c2

1
r

dφ

dr
(4.22)

Spin-orbit coupling is responsible for the splitting of the electronic energy levels both
in molecules and solids. However, such interaction, does not break the time-reversal
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symmetry and, therefore, the Kramers degeneracy is not broken by the spin-orbit in-
teraction alone. Nonetheless, when time-reversal symmetry is broken, as for example
in the presence of magnetism, the spin-orbit coupling transfers the information to the
orbital sector [58]. The time-reversal operator for spin-1/2 particles T = iσyK, where
K is the complex conjugation operator, acts on the spinor wavefunction in the following
way

T
(
ψσ
ψσ′

)
=
(
ψ∗σ′

−ψ∗σ

)
(4.23)

where σ and σ′ are equal to ↑ and ↓ when SOC is negligible, otherwise they just label
the spinor components. In the KS formulation of spin density functional theory, the
spin-orbit coupling is usually included through the pseudopotential even if a relativistic
DFT has also been proposed [75, 76]. The full relativistic (FR) pseudopotential [77] is
opposed to the scalar relativistic (SR) one [78] in which the radial Dirac equation is
averaged over the total angular momentum.

As for the interplay of magnetism and spin-orbit interaction, in the absence of
external fields, we may distinguish between the following situations.

• The system is nonmagnetic and spin-orbit interaction is negligible. Then the
theory of the spinless electrons applies.

• The system is nonmagnetic but spin-orbit coupling is finite. Then the number
of bands is doubled, the wavefunctions are spinors but time-reversal symmetry
holds.

• The system is magnetic and spin-orbit coupling is negligible. Typically the spin
are aligned and LSDA can be used. The direction of the magnetization is arbitrary
and unrelated to the underlying lattice symmetry.

• The system is magnetic and spin-orbit coupling is non-negligible. The magneti-
zation in an output of the calculation and its direction in space depends on the
orientation of the crystal lattice. Time-reversal symmetry is broken for both the
spin and orbital sectors.

4.2 Density functional perturbation theory

Let us consider a generic perturbation in the external potential and study the linear
response of the system to this perturbation. According to the Hellmann-Feynman
theorem [79,80], the first and second derivatives of the total energy with respect to the
perturbation parameter reads

∂E

∂λ
=
∫
∂Vext(r)
∂λ

n(r)dr (4.24)

∂2E

∂λ∂η
=
∫
∂2Vext(r)
∂λ∂η

n(r)dr +
∫
∂Vext(r)
∂λ

∂n(r)
∂η

dr (4.25)
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where n(r) is the electronic density in the absence of the perturbation. The first
derivative of the electronic density with respect to the parameter ∂n(r)/∂η in the
second term of Eq. 4.25 can be written in perturbation theory as [12]

∂n(r)
∂η

= 2
∑
i

∑
j 6=i

fi − fj
εi − εj

ψ∗i (r)ψj(r)〈ψj |
∂HKS

∂η
|ψi〉. (4.26)

Here |ψi〉 are the KS orbitals, fi is the occupation number and εi are the KS eigenvalues;
the factor of 2 accounts for the spin degeneracy. The three equations above are generic
and apply for any kind of perturbation. Moreover, in Eq. 4.26, the only indexes present
are the band indexes. In the next sections we will add complexity to the equations
step-by-step and specialize perturbation theory to study the vibrational properties of
molecules and solids.

4.2.1 Spin density functional perturbation theory

The equations of density functional perturbation theory will now include the spin in-
dexes. The first and second derivatives of the total energy can be written as

∂E

∂λ
=
∑
σσ′

∫
∂V σσ′

ext (r)
∂λ

ρσσ
′(r)dr (4.27)

∂2E

∂λ∂η
=
∑
σσ′

∫
∂2V σσ′

ext (r)
∂λ∂η

ρσσ
′(r)dr +

∑
σσ′

∫
∂V σσ′

ext (r)
∂λ

∂ρσσ
′(r)

∂η
dr (4.28)

and the first derivative of the spin density matrix ρσσ′ with respect to the perturbation
η can be written as

∂ρσσ
′(r)

∂η
=
∑
i

∑
j 6=i

fi − fj
εi − εj

ψ∗iσ(r)ψjσ′(r)
∑
σ1σ2

〈ψjσ1 |
∂Hσ1σ2

KS

∂η
|ψiσ2〉 (4.29)

where the bracket of the screened potential is also summed over the spin indexes. The
induced charge and magnetization densities are respectively given by

∂n(r)
∂η

=
∑
σ

∂ρσσ(r)
∂η

(4.30)

∂mα(r)
∂η

= µB
∑
σσ′

∂ρσσ
′(r)

∂η
σσσ

′
α . (4.31)

Up to here we considered static perturbations.

4.2.2 Time-dependent perturbation

For time-dependent perturbations, the wavefunction and the density are time-dependent.
Therefore also the functionals of the density are time-dependent. In the adiabatic ap-
proximation, the Hartree and exchange-correlation potential at time t is a functional of
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the density at the same time t. For a general time-dependent wavefunction satisfying
the Schrödinger equation

i~
d

dt
ψλ(t) = Hλψλ(t), (4.32)

where λ is the perturbation parameter, the Hellmann–Feynman theorem is not valid [81]
but the following relation holds

i~
d

dt
〈ψλ(t)|∂ψλ(t)

∂λ
〉 = 〈ψλ(t)|∂Hλ

∂λ
|ψλ(t)〉. (4.33)

It is still possible to evaluate response functions via time-dependent density functional
perturbation theory. However, it is not practical to give the equations for a generic
perturbation as we did in the static case because the response functions cannot be
expressed as derivatives of the total energy. In the next section we write the specific
equations for vibrational modes in molecules and solids. Then we apply the Kohn-Sham
formalism to study non-adiabatic effects within the time-dependent linear response.

As a side note, when time-dependent density functional perturbation theory is em-
ployed, usually a monochromatic perturbation is considered so that response functions
at different frequencies are decoupled.

4.3 Lattice dynamics in time-dependent density functional
perturbation theory

In section 3.2, we presented the classical theory of lattice dynamics in the harmonic
approximation and we solved the eigenvalue problem of the dynamical matrix. In den-
sity functional theory, the phonon response function is obtained through perturbation
theory from the KS electronic problem. In the naive (static) Born-Oppenheimer ap-
proximation, the ionic motion is decoupled from electrons and static density functional
perturbation theory can be used. However, non-adiabatic effects arise only when the
electrons are allowed to exchange energy with the ions, namely when the electrons
“perceive” the ionic motion. This can be obtained by considering a time-dependent
perturbation instead of a static one. Such working framework is called dynamical BO
approximation13 and often referred to as nonadiabatic BO approximation.

In this section we derive the expression of the force constants using the time-
dependent density functional perturbation theory in the harmonic approximation for
periodic extended systems. Namely, we consider a time-dependent phonon ionic dis-
placement u(t) as a monochromatic perturbation to the equilibrium ionic positions.
The force acting on the J-th ion at time t due to the displacement uI(t′) of the I-th
ion at time t′ is labeled FJ(t). The matrix of the force constants is defined as

CIα,Jβ(t− t′) = − ∂FJβ(t)
∂uIα(t′) (4.34)

13The BO approximation still holds in the sense that non-adiabatic contributions beyond the electron-
phonon coupling are still neglected.
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for t > t′. In the following we omit the Cartesian indexes α and β where unnecessary.
The ω transform of the force constant matrix is given by

CIJ(ω) =
∫
CIJ(t)eiωtdt (4.35)

From section 3.2 we recall that the Fourier transform of the (frequency dependent)
interatomic force constant matrix is given by

Csr(q, ω) =
∑
R
e−iq·RCIJ(R, ω). (4.36)

The dynamical matrix is equal to the hermitian part of force constant matrix in recip-
rocal space divided by the square root of the masses, namely

Dsr(q, ω) = 1
2
√
MsMr

[Csr(q, ω) + Crs(q, ω)∗] . (4.37)

The antihermitian part on the contrary is related to the phonon damping which deter-
mines the phonon linewidth. When the antihermitian part of Csr(q, ω) is much smaller
than the hermitian part, then non-adiabatic phonon frequencies ω̃ and polarization
vectors ε̃ are obtained as the square root of the eigenvalues and as the eigenvectors of
the dynamical matrix respectively (the tilde to distinguish from the adiabatic case).
However, unlike the adiabatic case, the dynamical matrix of Eq. 4.37 depends on the
frequency ω itself. We may therefore define the non-adiabatic phonons as solutions of
the nonlinear eigenvalue problem∑

r

Dsr(q, ω̃qν)ε̃νr(q) = ω̃2
qν ε̃νs(q) (4.38)

where ω̃qν and ε̃νr(q) are respectively the frequency and the non-adiabatic polarization
vector of the phonon mode ν with wavevector q. Finally, by analogy with the static
case, the angular momentum of non-adiabatic phonons can be defined as

`qν = −i~
∑
s

ε̃∗νs(q)× ε̃νs(q). (4.39)

4.3.1 Linear response theory

The force-constant matrix in the frequency domain can be evaluated in time-dependent
linear response. The force acting on the J-th ion at time t can be evaluated in terms
of the variation in the external potential as

FJ(t) = −
∫
n(r, t)∂Vext(r)

∂RJ
dr (4.40)

where n(r, t) is the electron charge density and Vext(r) is the external potential due
to the ions defined by Eq. 4.2. In time-dependent linear response the force constant
matrix in the frequency domain can then be evaluated as [20]

CIJ(ω) =
∫
∂n(r, ω)
∂uI

∂Vext(r)
∂uJ

dr +
∫
n0(r)∂

2Vext(r)
∂uI∂uJ

dr (4.41)
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where ∂n(r, ω)/∂uI is the induced density, n0(r) is the unperturbed density and Vext(r)
is the external potential of the nuclei which does not depends explicitly on time but
only through the dependence of the phonon ionic displacement u(t). The derivatives
of the external potential in Eq. 4.41 are evaluated at the equilibrium position of the
nuclei (u = 0) and they are real and time-independent quantities. The induced density
∂n(r, ω)/∂uI instead is complex. We can evaluate it by using the time-dependent
density functional perturbation theory as shown in the previous section. For solids,
the derivative of the density with respect to the ionic displacement as a function of the
frequency is given by

∂n(r, ω)
∂uI

= 2
Nk∑

ki,k′j

fki − fk′j
εki − εk′j + ω + iη

〈ψk′j |
∂VKS(r, ω)

∂uI
|ψki〉ψ∗ki(r)ψk′j(r) (4.42)

where the wavefunctions and the energies are labeled with a wavevector k of the recipro-
cal lattice (the quasimomentum of the electrons) and a band index i, Nk is the number
of k-points necessary to converge the sum, the Fermi occupation functions fki = f(εki)
only depend on the energy εki, η is small positive real number14 and the factor of 2
accounts for the spin degeneracy. The derivative of the KS potential with respect to
the ionic displacement ∂VKS(ω)/∂uI is a complex object that can be written as

∂VKS(r, ω)
∂uI

= ∂Vext(r)
∂uI

+
∫
KHxc(r, r′)

∂n(r′, ω)
∂uI

dr′ (4.43)

where KHxc(r, r′) defined as KHxc(r, r′) = δ2EHxc
δn(r)δn(r′) is the Hartree and exchange-

correlation kernel which we assume to be real and independent on the frequency ω.
Following Ref. [20], we use both Eq. 4.42 and Eq. 4.43 to rewrite the force constant
matrix of Eq. 4.41 as

CIJ(ω) = 2
Nk∑

ki,k′j

fki − fk′j
εki − εk′j + ω + iη

〈ψk′j |
∂VKS(r, ω)

∂uI
|ψki〉〈ψki|

∂VKS(r, ω)
∂uJ

|ψk′j〉+

+
∫
dr∂

2Vext(r)
∂uI∂uJ

n0(r)−
∫∫

drdr′∂n(r, ω)
∂uI

KHxc(r, r′)
∂n(r′, ω)
∂uJ

. (4.44)

This formulation is different from Eq. 4.41, as it involves the derivative of the screened
potential in both the matrix elements in the first term. As a consequence the symmetry
of the force constant matrix under exchange of the ionic and Cartesian indexes is made
explicit in Eq. 4.44 at the cost of introducing a negative double counting term (last
one). The advantage is that the formulation given in Eq. 4.44 allows to introduce a
functional that is stationary with respect to the variation in the self-consistent charge
density [20] and, as a consequence, permits the calculation of the vibrational frequencies
in a non-self-consistent way with a negligible error.

In the next section, we present the main passages of the scheme proposed in Ref. [20]
to compute non-self-consistently the non-adiabatic force constant matrix CIJ(ω) taking
advantage of the formulation of Eq. 4.44.

14The small imaginary part prevents divergences. See for example Ref. [82].
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4.4 First-principles scheme for calculation of non-adiabatic
phonons

Equations 4.42 and 4.44 constitute a frequency-dependent self-consistent scheme that
allows the calculation of the non-adiabatic force constant matrix. However, the self-
consistent calculation of the perturbed KS potential as a function of the frequency is no
easy task, both at the numerical stage and in terms of implementation in the ab-initio
code. We, therefore, resort to the scheme depicted in Ref. [20] to evaluate the non-
adiabatic force constant matrix using a functional that is stationary in the variation
of the self-consistent charge density. Such procedure allows to avoid the self-consistent
calculation of the derivative of the KS potential at the cost of a small error. The force
constant functional is given by

FIJ [x(r), x̄(r), ω, T ] = 2
Nk(T )∑
ki,k′j

fki(T )− fk′j(T )
εki − εk′j + ω + iη

× 〈ψk′j |
∂Vext(r)
∂uI

+
∫
KHxc(r, r′)x(r′)dr′|ψki〉

× 〈ψki|
∂Vext(r)
∂uJ

+
∫
KHxc(r, r′)x̄(r′)dr′|ψk′j〉

+
∫
dr∂

2Vext(r)
∂uI∂uJ

n0(r)−
∫∫

drdr′x(r)KHxc(r, r′)x̄(r′) (4.45)

where fki(T ) is the Fermi occupation function at the electronic temperature T . With
this definition, the force constant matrix CIJ at frequency ω and temperature T reads

CIJ(ω, T ) = FIJ [n(1)
I (r, ω, T ), n(1)

J (r, ω, T ), ω, T ] (4.46)

where n(1)
I (r, ω, T ) ≡ ∂n(r, ω)/∂uI is the first derivative of the charge density with

respect to the ionic displacement, given by Eq. 4.42. The functional of Eq. 4.45 is
stationary with respect to the first-order perturbation of the electronic charge density,

δFIJ [x(r), x̄(r), ω, T ]
δx(r)

∣∣∣∣
x(r)=n(1)

I (r,ω,T ), x̄(r)=n(1)
J (r,ω,T )

= 0. (4.47)

The same relation holds upon derivation with respect to x̄(r). As a consequence, an
error in the derivative of the density n(1)

I (r, ω, T ) affects the force constants CIJ(ω, T )
only at second order.

4.4.1 Approximate force constant functional

The most precise force-constant matrix CIJ(ω, T ) is obtained when T coincides with
the physical temperature T0 (e.g., room temperature) of the system. However, in
a metal, the number of k-points required to converge the summation of Eq. 4.45 at
T = T0, namely Nk(T0), can be so large (T so small) as to make the calculation
unfeasible. In addition, the self-consistent calculation of n(1)

I (r, ω, T ) at finite ω 6=
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0 requires to increase further the number of k-points with respect to the standard
static linear response calculation n(1)

I (r, 0, T ). In order to overcome these problems, we
approximate the force constant matrix as

C̃IJ(ω, T0) = FIJ [n(1)
I (r, 0, Tph), n(1)

J (r, 0, Tph), ω, T0] (4.48)

where the induced densities n(1)
I (r, ω, T ) and n(1)

J (r, ω, T ) are evaluated at ω = 0 and
T = Tph � T0. That is, the static limit is considered and the temperature is in-
creased so that the number of k-points needed to converge diminishes. Thanks to the
stationary property of the functional, these approximations only introduce an error
that is quadratic in the difference |n(1)

I (r, ω, T0) − n(1)
I (r, 0, Tph)| and thus negligible.

The approximate force constant matrix does not need a self-consistent calculation of the
non-adiabatic phonon response as the only frequency dependence left is in the weighting
factor of the first term of Eq. 4.44. In this approximation, by summing and subtracting
CIJ(0, Tph) on the right hand side of Eq. 4.48, the non-adiabatic force constant matrix
can be written as

C̃IJ(ω, T0) = ΠIJ(ω, T0) + CIJ(0, Tph) (4.49)

where CIJ(0, Tph) is the standard linear-response self-consistent force constant matrix
at temperature Tph and ΠIJ(ω, T0) is the phonon self-energy at frequency ω and tem-
perature T0 given by (see appendix E)

ΠIJ(ω, T0) = 2
Nk(T0)∑
ki,k′j

fki(T0)− fk′j(T0)
εki − εk′j + ω + iη

〈ψk′j |
∂VKS
∂uI

|ψki〉〈ψki|
∂VKS
∂uJ

|ψk′j〉

− 2
Nk(Tph)∑

ki,k′j

fki(Tph)− fk′j(Tph)
εki − εk′j

〈ψk′j |
∂VKS
∂uI

|ψki〉〈ψki|
∂VKS
∂uJ

|ψk′j〉. (4.50)

Here k and k′ are crystal momenta, i and j are band indexes, |ψki〉 is the Bloch wave
function, ∂VKS/∂uI is the derivative of the static KS potential with respect to the
phonon ionic displacement uI (also known as deformation potential), fki(T ) is the
Fermi occupation function at temperature T and η is an arbitrarily small number.

4.4.2 Characterization of the phonon self-energy

The phonon self-energy of Eq. 4.50 consists of the difference between two terms related
to the non-adiabatic and to the adiabatic response, respectively. This is due to the
approximation that we have used to evaluate the force-constant matrix CIJ(ω, T ).

The product of the deformation potential matrix elements on the right side of
Eq. 4.50 is the same for both terms. It represents the electron-phonon interaction. The
product also determines the symmetry properties of the self-energy, namely hermiticity
and reality conditions (see appendix E) as the weighting factors, albeit relevant for
symmetry, are independent on the ionic indexes.

The weighting factors in the summations of Eq. 4.50 differ for the quantity ω+ iη in
the denominator. The second one (without ω + iη) is the standard coefficient of linear
responses in solids. It basically selects KS states |ψki〉 and |ψk′j〉 that have different
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occupation numbers and close enough energies (as for states far apart in energy the
denominator suppresses the function). In practical calculations, when two states with
different occupations are degenerate in metals, the weighting function is replaced with
its limiting value, namely minus the density of states at the Fermi energy.

The weighting factor in the first summation of Eq. 4.50 instead selects KS states
that are resonant with the vibrational frequency ω. The small imaginary part η ensures
that the denominator does not vanish when the difference εk′j− εki is equal to ω. Even
though necessary for mathematical reasons, the parameter η has the meaning of inverse
phonon lifetime. Indeed the imaginary part of the self-energy is related to the phonon
linewidth and to the phonon damping coefficients.

4.4.3 Practical calculation

The main advantage of approximating the force constant functional with Eq. 4.48 is
that calculation of the phonon self-energy ΠIJ(ω, T0) does not require the knowledge of
the self-consistent deformation potential on the dense grid Nk(T0) and thus it is much
faster than calculating the non-adiabatic force constant matrix without approximation.

The practical calculation of the approximate force constant matrix is carried out in
reciprocal space. Eq. 4.49 becomes

C̃sr(q, ω, T0) = Πsr(q, ω, T0) + Csr(q, 0, Tph) (4.51)

where s and r label the positions of the ions in the unit cell and q is the phonon
wavevector. The phonon self-energy in reciprocal space reads (see appendix E)

Πsr(q, ω, T0) = 2
Nk(T0)

Nk(T0)∑
kij

fk+qi(T0)− fkj(T0)
εk+qi − εkj + ω + iη

〈ukj |
∂vKS
∂u−qs

|uk+qi〉〈uk+qi|
∂vKS
∂uqr

|ukj〉

− 2
Nk(Tph)

Nk(Tph)∑
kij

fk+qi(Tph)− fkj(Tph)
εk+qi − εkj

〈ukj |
∂vKS
∂u−qs

|uk+qi〉〈uk+qi|
∂vKS
∂uqr

|ukj〉. (4.52)

where |uki〉 is the periodic part of the Bloch wave function, vKS is the periodic part
of the static self-consistent potential and uqs is the Fourier component of the phonon
displacement.

The calculation of the force constant matrix C̃sr(q, ω, T0) is carried out as follows.
Firstly Csr(q, 0, Tph) is calculated self-consistently on the NK(Tph) k-points grid at the
high temperature Tph. Secondly the band energies and wavefunctions are calculated on
the denser grid NK(T0) and the deformation potential of the sparse grid is interpolated
to the denser one. Finally, the two summations in the phonon self-energy Eq. 4.52 are
calculated on the dense and on the sparse grids respectively. The force constant matrix
in reciprocal space is then given by the sum Eq. 4.51.

At the given temperature, the dynamical matrix is equal to the hermitian part of
force constant matrix in reciprocal space divided by the square root of the masses,
namely

D̃sr(q, ω) = 1
2
√
MsMr

[
C̃sr(q, ω) + C̃rs(q, ω)∗

]
. (4.53)
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Density functional perturbation theory ensures that phonon responses at different q
vectors and frequencies ω are decoupled (monochromatic perturbation). The non-
adiabatic phonon frequencies ω̃ and polarization vectors ε̃ are obtained as the square
root of the eigenvalues and as the eigenvectors of the dynamical matrix, respectively.
Namely they solve the nonlinear eigenvalue problem∑

r

D̃sr(q, ω̃qν)ε̃νr(q) = ω̃2
qν ε̃νs(q) (4.54)

where ν labels the phonon branches. The nonlinear eigenvalue problem Eq. 4.54 can be
solved numerically with an iterative procedure. The adiabatic vibrational frequencies
ωqν are replaced for each mode in the phonon self-energy Eq. 4.52. Then the non-
adiabatic dynamical matrix is computed using Eq. 4.53 and diagonalized to yield the
new guess frequency ω̃qν . The procedure is iterated until the input and the output
frequencies agree within a given threshold. Usually, no more than one iteration is
necessary to converge.

The method discussed so far allows to calculate the non-adiabatic force constant
matrix C̃sr(q, ω, T0) at a given q vector with a non-self-consistent procedure on the
dense grid Nk(T0) at temperature T0. In Ref. [20] the whole method is detailed and a
technique based on Wannier functions which allows to interpolate the dynamical matrix
onto the whole Brillouin zone is also described. We refer to the article for a complete
coverage of the argument.

4.5 Discussion and summary

The non-adiabatic dynamical matrix as defined in Eq. 4.53, where C̃sr(q, ω) is the
time-dependent linear response force constant matrix, comprehends the screening of
electrons. As a matter of fact, in the present framework, non-adiabatic effects are
induced by the electron-phonon interaction. In the dynamical Born-Oppenheimer ap-
proximation, electrons are coupled with phonons by means of the time-dependent per-
turbation parameter u(t). When the approximation Eq. 4.51 is introduced in the
context of the first-principles scheme, non-adiabatic effects are affected to second order
in the variation of the induced charge density thanks to the properties of the functional
FIJ .

By comparing the nonlinear eigenvalue problem Eq. 4.54, stemming from non-
adiabatic effects driven by the electron-phonon interaction, with the eigenvalue problem
of the harmonic lattice dynamics in the presence of the Berry connection Eq. 3.34, one
can reasonably argue that the former looks simply like a particular case of the latter.
Namely the case in which

C̃sr(q, ω) = Csr(q)− i~ωΩsr(q). (4.55)

It is therefore interesting to investigate the relation between non-adiabatic effects in
the dynamical Born-Oppenheimer approximation and topological effects in the screened
Born-Oppenheimer approximation. In particular, we wonder if non-adiabatic effects can
be time-reversal symmetry breaking interactions for the phonon field just like the Berry
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connection is for adiabatic phonons (see section 3.2.2). In such case, do non-adiabatic
phonons carry angular momentum?

4.5.1 Summary

In this chapter we have addressed the electronic problem in the Born-Oppenheimer ap-
proximation. We illustrated the Kohn-Sham formulation of density functional theory
with and without spin. The interplay between magnetic and spin-orbit interactions is
also analysed. The equations of density functional perturbation theory are then spe-
cialized to study lattice dynamics in time-dependent linear response. A first-principles
method to calculate the non-adiabatic force constant matrix with non-self-consistent
evaluation of the deformation potential is presented. Nonadiabatic phonons are finally
obtained from iterative diagonalization of the dynamical matrix.

In the next chapter we demonstrate that non-adiabatic effects are related, at least
in the low frequency limit, to the topology of the system. By doing so, we provide a
first-principles derivation of the spin-phonon interaction (discussed in chapter 1). This
demonstrates that non-adiabatic phonons can carry finite angular momentum.



Chapter 5

Non-adiabatic effects and
topology

Now we want to relate the non-adiabatic effects to the geometric properties of the
system, and in particular to the gauge invariant Berry curvature that we introduced in
chapter 2. In insulators with vibrational frequencies much smaller than the bandgap,
we expand the non-adiabatic force constant matrix to linear order in the frequency
ω and demonstrate that the coefficients of the linear term of the expansion can be
expressed in terms of the Berry curvature of the Kohn-Sham states with respect to
the phonon ionic displacement. This result demonstrates the microscopic link between
non-adiabatic effects and topological properties.

By analogy with the theory of lattice dynamics in the screened Born-Oppenheimer
approximation, we infer that a nonzero vibrational angular momentum can arise due to
non-adiabatic effects. For insulators with vibrational frequencies much smaller than the
bandgap, time-dependent linear response allows to determine the symmetry conditions
required to obtain a finite angular momentum of vibrational modes in the absence of
external probes. We show that the KS Berry curvature vanishes in nonmagnetic and
collinear magnetic systems as in these systems the electronic wavefunctions can be taken
as real and the curvature is proportional to the imaginary part of the deformation po-
tential matrix elements. We expect that an intrinsic vibrational angular momentum can
arise in non-collinear magnetic materials. Therefore we need to extend the equations of
section 4.3 and the first-principles scheme for calculation of non-adiabatic effects to the
case of non-collinear magnetism. Finally we resume the discussion on the phonon angu-
lar momentum and thoroughly explain why the non-adiabatic effects are time-reversal
symmetry breaking interactions for the vibrational field.

In metals and insulators with vibrational frequencies greater than the bandgap, the
calculation is slightly more complicated because the phonon self-energy is divergent for
infinite phonon lifetime (η = 0). The non-adiabatic force constant matrix thus cannot
be expanded in power series of the frequency ω without including η. We therefore delay
the treatment of this class of materials to chapter 7.

49
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5.1 Non-adiabatic effects in molecular systems

Let us consider in the first place, non-adiabatic effects in the simpler case of molecules
which can be dealt with as solids with one unit cell. As we have seen in section 3.2.1,
the vibrational modes in molecules are solution of the eigenvalue equation of the force
constant matrix ∑

r

Csrεr = ω2εs (5.1)

where the indexes s and r label the ionic positions and the Cartesian indexes are
omitted.

In the adiabatic (static) description of vibrational modes, the force constant matrix
is real and the polarization vectors are real up to a global phase. In this case, vibrational
modes are linearly polarized and no vibrational angular momentum can arise.

The non-adiabatic interaction (beyond the naive Born-Oppenheimer approxima-
tion) between electronic and nuclear vibrational motion in molecules is called vibronic
coupling. It cannot be neglected when two adiabatic potential energy surfaces are close
to each other as in presence of avoided crossings and conical intersections [83].

The theory discussed for solids can be straightforwardly adapted to study molecules
by setting k = k′ = q = 0 everywhere. The nonlinear eigenvalue problem thus becomes∑

r

Csr(ω)εr = ω2εs (5.2)

where the non-adiabatic force constant matrix can be written in time-dependent density
functional perturbation theory as

Csr(ω) = 2
∑
ij

fi − fj
εi − εj + ω + iη

〈ψj |
∂VKS(r, ω)

∂us
|ψi〉〈ψi|

∂VKS(r, ω)
∂ur

|ψj〉+

+
∫
dr∂

2Vext(r)
∂us∂ur

n0(r)−
∫∫

drdr′∂n(r, ω)
∂us

KHxc(r, r′)
∂n(r′, ω)
∂ur

. (5.3)

The solutions of the eigenproblem Eq. 5.2 will be the non-adiabatic vibrational
frequencies ω̃ and the non-adiabatic polarization vectors ε̃. Since the frequency de-
pendent force constant matrix Csr(ω) is complex, also the polarization vectors can be
nontrivially complex. A nonzero angular momentum can arise in vibrational modes of
molecules. Following section 3.3, the expectation value of the angular momentum of
non-adiabatic modes over the quantum vibron ground state can be defined as

〈Nph〉 =
∑
ν

˜̀
ν

[
b(ω̃ν) + 1

2

]
(5.4)

where ν labels the phonon branches, b(ω̃ν) is the Bose-Einstein occupation function
and angular momentum ˜̀

ν of vibrational mode ν can be expressed in terms of the
non-adiabatic polarization vectors as

˜̀
ν = −i~

∑
s

ε̃∗νs × ε̃νs. (5.5)
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We underline that the expectation value of the angular momentum of phonons over
the vibron ground state is not a quantized object as the (pseudo)angular momentum
does not commute with the phonon Hamiltonian [84] and the vibron ground state
is not its eigenvector. According to Eq. 5.5, the non-adiabatic polarizations vectors
must be nontrivially complex in order to generate a nonzero angular momentum of
phonons. However, Eq. 5.3 for the non-adiabatic force constant matrix does not allow
to determine in which cases the phonon eigenvectors are non-trivially complex and give
rise to a finite angular momentum. We therefore resort to the first-principles scheme
presented for solids in Sec. 4.4 to evaluate the non-adiabatic force constant matrix
Csr(ω). For the sake of simplicity, in this section we neglect the dependence on the
temperature. The approximate force constant functional at frequency ω reads

C̃sr(ω) = Πsr(ω) + Csr(0) (5.6)

where Csr(0) is the standard linear-response self-consistent force constant matrix and
Πsr(ω) is the phonon self-energy at frequency ω. In molecules the self-energy of vibra-
tional modes can be written as (the equation is the same as Eq. 4.50 for solids)

Πsr(ω) = 2
∑
ij

[
fi − fj

εi − εj + ω + iη
− fi − fj
εi − εj

]
〈ψj |

∂VKS
∂us

|ψi〉〈ψi|
∂VKS
∂ur

|ψj〉 (5.7)

where the square bracket contains the weighting function of the frequency ω and the
matrix elements on the right account for the vibronic coupling. Note that the self-
energy Eq. 5.7 is well defined even for metals thanks to the small imaginary part in the
denominator η of the first fraction. In section 4.4.2 we already discussed the behavior
of the weighting function in the general case: the first fraction selects KS states with
different occupations that are resonant with the vibrational frequency ω; the second
fraction is well behaved even when εi = εj as the limiting value exists and it is finite.
The nonlinear eigenvalue equation of the force constant matrix C̃sr(ω) in the frequency
domain reads ∑

r

1
2
√
MsMr

[
C̃sr(ω̃ν) + C̃∗rs(ω̃ν)

]
ε̃νr = ω̃2

ν ε̃νs (5.8)

where ω̃ν and ε̃νs are respectively the non-adiabatic vibrational frequencies and polar-
ization vectors of vibrational modes.

5.2 Insulating systems
If we limit our considerations to insulating molecules with vibrational frequencies
smaller than the gap, the denominator in the first fraction of Eq. 5.7 never vanishes
and the parameter η can be set to 0. Then, we can expand the self-energy as a power
series of the frequency ω, that is15

Πsr(ω) =
∞∑
n=1

1
n!Π

(n)
sr ω

n, (5.9)

15Here we use the fact that 1
1−x =

∑∞
n=0 x

n when |x| < 1.
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where the coefficients Π(n) are given by the n-th derivative of the self-energy with
respect to ω evaluated at ω = 0 and they can be explicitly written as

Π(n)
sr = 2n!

∑
i

∑
j 6=i

fi − fj
εi − εj

(−1)n

(εi − εj)n
〈ψj |

∂VKS
∂us

|ψi〉〈ψi|
∂VKS
∂ur

|ψj〉. (5.10)

In insulators, the coefficients Π(n)
sr are well defined because two bands with the same

energy have also the same occupation number (0 or 1) and two bands with different oc-
cupation numbers have always different energies. The difference εi−εj is always greater
than or equal to the gap between the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO).

Since the weighting function in Eq. 5.10 is odd/even under exchange of the indexes
i ↔ j according to parity of n, the overall matrix Π(n)

sr is antisymmetric (symmetric)
in s and r for n odd (even), namely

Π(n)
sr = −Π(n)

rs for n odd (5.11)
Π(n)
sr = Π(n)

rs for n even. (5.12)

This, together with the hermiticity condition Πsr(ω) = Π∗sr(ω) implies that odd (even)
coefficients in the series expansion of the self-energy Eq. 5.9 are purely imaginary (real).

5.2.1 The Kohn-Sham Berry curvature

When the vibrational frequencies are much smaller than the HOMO-LUMO gap, we
can neglect higher than linear order terms in the series expansion and evaluate the
phonon self-energy as

Πsr(ω) ' −2ω
∑
i

∑
j 6=i

fi − fj
(εi − εj)2 〈ψj |

∂VKS
∂us

|ψi〉〈ψi|
∂VKS
∂ur

|ψj〉. (5.13)

As we retained only the first order of the expansion, the phonon self-energy is now
purely imaginary as it can be shown by rewriting it in the form

Πsr(ω) ' −4iω Im
∑
i

∑
j 6=i

fi
(εi − εj)2 〈ψj |

∂VKS
∂us

|ψi〉〈ψi|
∂VKS
∂ur

|ψj〉, (5.14)

where we used the fact that dsij = (dsji)∗. The attentive reader may recognize here
the Berry curvature expressed in perturbation theory from Eq. 2.23. The phonon
self-energy, to leading order in the low-frequency expansion, can thus be expresses
in insulators as a summation over the occupied states of the Berry curvature ΩKS

sr,i

associated with the KS state |ψi〉 and the phonon ionic displacements u, namely

Πsr(ω) ' −iωΩKS
sr = −iω

∑
i

fiΩKS
sr,i, (5.15)

where ΩKS
sr,i is given by

ΩKS
sr,i = 4Im

∑
j 6=i

1
(εi − εj)2 〈ψj |

∂VKS
∂us

|ψi〉〈ψi|
∂VKS
∂ur

|ψj〉. (5.16)
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The matrix ΩKS
sr is a real antisimmetric matrix that plays the role of the Berry curvature

in the case of Kohn-Sham independent electrons. When replacing the phonon self-
energy Eq. 5.15 into the approximate force constant matrix Eq. 5.6, we can write the
nonlinear eigenvalue problem as

∑
r

1√
MsMr

[
Csr − i~ω̃νΩKS

sr

]
ε̃νr = ω̃2

ν ε̃νs (5.17)

which is equal to the phonon eigenvalue problem of the harmonic crystal lattice in
the presence of the Berry connection, Eq. 3.34. The difference between the present
derivation and the latter is that, in chapter 3, the Berry curvature directly arises
from the Born-Oppenheimer approximation as the effect of the back-interaction of the
electrons whereas, in this section, the KS Berry curvature represents, to leading order
in the low-frequency expansion, the non-adiabatic effects due to the vibronic coupling.

We stress that, in the present calculation, Eq. 5.17 holds because the force constant
matrix has been evaluated in time-dependent linear response with the approximation
of section 4.4. The coupling between electrons and vibrational modes is accounted for
via the dynamical Born-Oppenheimer approximation and the KS Berry curvature can
only be expressed in density functional perturbation theory as in Eq. 5.16. On the
other hand, the Berry curvature in the screened BO approximation Eq. 3.34 is exact,
namely it includes the full electronic wavefunction. The two equations coincide when
the latter is also evaluated in linear response.

5.2.2 Time-reversal symmetry breaking

Since the KS Berry curvature in Eq. 5.17 is real, the force constant matrix and polar-
ization vectors become complex and thus a nonzero angular momentum of vibrational
modes can arise. The present derivation also allows to establish what are the conditions
that the molecule must meet in order to have nonzero vibrational angular momentum.

If time-reversal symmetry holds, the matrix elements in Eq. 5.16 are real and there-
fore the KS Berry curvature vanishes. Indeed a necessary condition to have nonzero
vibrational angular momentum is that time-reversal symmetry is broken. In experi-
mental works reviewed in chapter 1 it has been shown that phonon angular momentum
arises in presence of external time-reversal symmetry breaking probes like the magnetic
field. However, time-reversal symmetry is broken as well in the magnetic phase of in-
sulators without external probes. Since we are looking for an intrinsic mechanism to
induce nonzero vibrational angular momentum in molecules, we need to exclude from
the analysis nonmagnetic systems and generalize the theory to include spin.

Moreover, collinear magnetism with negligible spin-orbit coupling, can be dealt with
as if the spin up and down sectors were independent (local spin density approximation).
The collinear KS Hamiltonian is therefore diagonal in the spin components and the KS
equations are time-reversed of each other (see section 4.1.1). Linear response functions
can therefore be written as the sum of a spin-up and a spin-down term. The KS
Berry curvature then vanishes because the deformation potential matrix elements are
real. Another way to prove it is the following. In magnetic systems with negligible
spin-orbit coupling, time-reversal symmetry is broken in the spin sector of electronic



54 CHAPTER 5. NON-ADIABATIC EFFECTS AND TOPOLOGY

wavefunctions. The KS Berry curvature representing the electron-vibron coupling must
therefore vanish to prevent time-reversal symmetry breaking in the orbital sector since
spin-orbit is negligible.

In order to observe non-adiabatic effects in molecules and nonzero vibrational an-
gular momentum we must consider non-collinear magnetic systems in which the spin
components cannot be decoupled. A specific class of non-collinear magnetic phase is
the case in which the spin-orbit interaction is sizeable along with magnetic interactions.
However non-collinear magnetism can arise also in the absence of relativistic effects (see
geometric frustration). An example of frustrated non-collinear magnetic molecular sys-
tems with large spin-orbit coupling are platinum clusters that we present in the next
chapter.

5.2.3 Few more considerations

Equations 5.16 and 5.17 are the microscopic link between the electron-vibron interac-
tion, non-adiabatic (dynamical) effects and the occurrence of a finite angular momen-
tum in molecules. In insulators with vibrational frequencies much smaller than the
bandgap, non-adiabatic effects can be expressed as a KS Berry curvature in the space
of the ionic displacement. This result allows one to determine the conditions that the
system must meet in order to get a nonzero vibrational angular momentum, namely
the KS Berry curvature is nonzero in non-collinear magnetic systems. Furthermore, the
equation of the non-adiabatic force constant matrix provides a practical computational
scheme to evaluate the vibrational quantum angular momentum based on the method
presented in Sec. 4.4.

In section 5.2.1, we showed that non-adiabatic effects are time-reversal symmetry
breaking interaction for the vibrational field in insulating molecules with vibrational
frequencies much smaller than the HOMO-LUMO gap. When the vibrational frequen-
cies are not much smaller (but still smaller) than the electronic gap, higher order terms
in the power series expansion of the self-energy can be relevant. However, the second
order term quadratic in ω is real and thus it can be incorporated in the adiabatic
real force constant matrix. Indeed, it does not change the qualitative result. Third
order and higher terms in the power series expansion can safely be neglected as they
are related with anharmonic effects which we do not take into account. In practical
calculations, the linear term in the frequency ω, with the aim of evaluating the vibra-
tional angular momentum, is the only one that should be considered in molecules with
vibrational frequencies smaller than the HOMO-LUMO gap.

Insulating systems with vibrational frequencies equal to or greater than the bandgap
will be dealt with in chapter 7 together with metals. In the latter case the parameter η
cannot be set equal to zero because the first weighting factor in the self-energy Eq. 5.7
diverges in the limit η → 0. Nonetheless, a Taylor series expansion around ω = 0 can
still be performed keeping η 6= 0 and a more general KS Berry curvature can be defined.

As a final remark, we notice that ΩKS
sr is directly proportional to the square of the

deformation potential and inversely proportional to the HOMO-LUMO gap (Eq. 5.16).
The requirement of non-collinear magnetism and such proportionalities suggest that
large non-adiabatic (dynamical) effects and vibrational angular momenta could be
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found in insulating non-collinear magnetic molecules with a small gap and a large
electron-vibron interaction.

5.3 Non-adiabatic effects in non-collinear magnetic molecules
The non-adiabatic effects due to the electron-phonon interaction, expressed through the
KS Berry curvature to leading order in the low-frequency expansion, break the time-
reversal symmetry in the eigenvalue problem of the force constant matrix. However,
the Berry curvature itself, is nonzero only when the electronic wavefunctions and the
deformation potential are complex. The complete electron-phonon interaction on the
other side does not necessarily break time-reversal symmetry for vibrational modes
unless the symmetry has already been broken for electrons (magnetism). In this section,
we generalize the theory illustrated so far to the spin-dependent case as we expect that
non-adiabatic effects induce a nonzero angular momentum in non-collinear magnetic
systems.

In section 4.1.1 and 4.2.1 we introduced the spin density matrix ρσσ′ and spin density
functional perturbation theory. When dealing with time-dependent linear response,
however, it is more convenient to introduce a 4-vector notation. We define the 4-vector
density ρ(r) = (n(r),mx(r),my(r),mz(r)) in such a way that the spin density matrix
is equal to ρσσ′ =

∑
λ ρλσ

σσ′
λ where the index λ runs from 0 to 3 and σ is the 4-vector

of the identity and Pauli matrices.
The equations that we present in the following are analogous to those given in

section 4.3.1 for spin-independent extended periodic systems. The first derivative of
the frequency dependent KS potential can be written in this framework as

∂VKS,λ(r, ω)
∂us

= ∂Vext,λ(r)
∂us

+
∑
µ

∫
KHxc,λµ(r, r′)∂ρµ(r′, ω)

∂us
dr′, (5.18)

where VKS,λ and Vext,λ are the components of the Kohn-Sham and external poten-
tials in the basis of the identity and Pauli matrices, us is the phonon ionic displace-
ment,KHxc,λµ(r, r′) is the Hartree and exchange-correlation kernel defined as the second
derivative of the Hartree and exchange-correlation energy with respect to the 4-vector
density,

KHxc,λµ(r, r′) = δ2EHxc[ρ]
δρλ(r)δρµ(r′) , (5.19)

and the first derivative of the 4-vector spin density in the frequency domain can be
written in density functional perturbation theory as

∂ρµ(r, ω)
∂us

=
∑
ij

fi − fj
εi − εj + ω + iη

∑
σ1σ2

〈ψjσ1 |
∂V σ1σ2

KS (r, ω)
∂us

|ψiσ2〉
∑
σσ′

ψ∗iσ(r)ψjσ′(r)σσσ′µ .

(5.20)
The frequency dependent force constant matrix, as a second derivative of the total

energy, is

Csr(ω) =
∑
λ

∫
∂ρλ(r, ω)
∂us

∂Vext,λ(r)
∂ur

dr +
∑
λ

∫
ρ0
λ(r)∂

2Vext,λ(r)
∂us∂ur

dr, (5.21)
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where ρ0(r) is the unperturbed 4-vector spin density and Vext(r) is the external potential
of the nuclei, which does not depends explicitly on time. We allow the external potential
to have 4 components in order to include the spin-orbit interaction and the eventual
external magnetic field as well.

Replacing Eq. 5.20 into Eq. 5.21 and replacing the derivative of the external po-
tential in the first term as obtained from Eq. 5.18, the force constant matrix can be
expressed as

Csr(ω) =
∑
ij

fi − fj
εi − εj + ω + iη

∑
σ1σ2

〈ψjσ1 |
∂V σ1σ2

KS (r, ω)
∂us

|ψiσ2〉
∑
σ3σ4

〈ψiσ3 |
∂V σ3σ4

KS (r, ω)
∂ur

|ψjσ4〉

+
∑
λ

∫
dr∂

2Vext,λ(r)
∂us∂ur

ρ0
λ(r)−

∑
λµ

∫∫
drdr′∂ρλ(r, ω)

∂us
KHxc,λµ(r, r′)∂ρµ(r′, ω)

∂ur
.

(5.22)

The above equation generalizes Eq. 4.44 to the spin dependent case in molecular sys-
tems. The force constant matrix as a function of the frequency can be written as a
quadratic form of the 4-vector spin density just like in the spin independent framework.

5.3.1 First-principles scheme in non-collinear magnetic molecules

Following the line of section 4.4, we may define a spin-dependent functional of the
density to evaluate the non-adiabatic force constant matrix with a non-self-consistent
procedure. Then, the non-adiabatic force constant matrix can be approximated as in
the spin-independent case with a negligible error due to the stationary properties of
the functional. The force constant functional of the generic 4-vector spin-density y(r)
reads

Fsr[y(r), ȳ(r), ω] =
∑
ij

fi − fj
εi − εj + ω + iη

×
∑
σ1σ2

〈ψjσ1 |
∂V σ1σ2

ext (r)
∂us

+
∫
KHxc(r, r′)yσ1σ2(r′)dr′|ψiσ2〉

×
∑
σ3σ4

〈ψiσ3 |
∂V σ3σ4

ext (r)
∂ur

+
∫
KHxc(r, r′)ȳσ3σ4(r′)dr′|ψjσ4〉

+
∑
λ

∫
dr∂

2Vext,λ(r)
∂us∂ur

ρ0
λ(r)

−
∑
λµ

∫∫
drdr′yλ(r)KHxc,λµ(r, r′)ȳµ(r′). (5.23)

Eq. 5.23 generalizes Eq. 4.45 to the spin-dependent molecular systems. The force
constant matrix in the frequency domain reads

Csr(ω) = Fsr
[
ρ(1)
s (r, ω), ρ(1)

r (r, ω), ω
]
, (5.24)

where ρ(1)
s (r, ω) = ∂ρ(r, ω)/∂us. The functional is stationary with respect to the first-

order perturbation of the spin charge density which means that an error on the induced
density affects the force constants only at second order.
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We approximate the force constant matrix with a functional of the frequency in-
dependent spin density which does not need a self-consistent evaluation of the non-
adiabatic linear response. The approximate force constant functional in the frequency
domain therefore reads

C̃sr(ω) = Πsr(ω) + Csr(0) (5.25)

where Csr(0) is the usual linear response to the vibrational field, while the self-energy
Πsr(ω), embodies the non-adiabatic part of the response function. In the spin dependent
framework the self-energy is

Πsr(ω) =
∑
ij

fi − fj
εi − εj + ω + iη

∑
σ1σ2

〈ψjσ1 |
∂V σ1σ2

KS
∂us

|ψiσ2〉
∑
σ3σ4

〈ψiσ3 |
∂V σ3σ4

KS
∂ur

|ψjσ4〉

−
∑
i 6=j

fi − fj
εi − εj

∑
σ1σ2

〈ψjσ1 |
∂V σ1σ2

KS
∂us

|ψiσ2〉
∑
σ3σ4

〈ψiσ3 |
∂V σ3σ4

KS
∂ur

|ψjσ4〉. (5.26)

Eq. 5.26 is an adaptation of Eq. 4.52 to spin dependent molecular insulating and metallic
systems.

The study of non-adiabatic effects in molecules is easier than periodic systems be-
cause there is just one unit cell and we do not have to worry about Fourier transforms.
Moreover, in solids, the Bloch wavefunctions at k are related with the Bloch wave-
functions at −k (the same for phonon linear response at q and −q) via time-reversal
symmetry. Most of the ab-initio codes and first-principles methods enforce this sym-
metry in the calculation of vibrational modes. The evaluation of the non-adiabatic
force constant matrix in reciprocal space thus would need major modifications of the
existing code. Luckily, the linear response theory for adiabatic lattice dynamics has
been recently extended to study non-collinear magnetic systems (see references [21]
and [85]). We take care of these aspects in chapter 7 when dealing with solids.

5.4 Discussion and summary
If we consider the phonon self-energy in the low frequency expansion, the KS Berry cur-
vature breaks time-reversal symmetry for the vibrational field (see Eq. 5.17). However,
in section 5.2.2 we showed that the KS Berry curvature is nonzero only in non-collinear
magnetic systems.

Instead, if we consider the full self-energy Eq. 5.7 representing the electron-vibron
interaction, magnetism alone is not enough to break time-reversal symmetry for vi-
brational modes.In fact, magnetism breaks time-reversal symmetry in the spin sector
of electronic wavefunctions while the vibronic interaction couples the orbital sector of
electrons with vibrational modes. Thus, in order to transmit the symmetry breaking
to the vibrational modes, the spin and orbit sectors of electrons must also be coupled.

The spin-orbit interaction alone, without magnetic order, does not break time-
reversal symmetry of the electronic KS equations. In this class of materials therefore
non-adiabatic effects do not induce a finite angular momentum of vibrational modes.

Spin-orbit coupling is sizeable in heavy atoms with a large atomic number Z. In the
next chapter we will therefore evaluate, as a proof of concept, the non-adiabatic effects
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and vibrational angular momentum in non-collinear magnetic clusters of platinum (Z=
78).

5.4.1 Summary

In this chapter we addressed the connection between non-adiabatic effects and topo-
logical properties of the system. We demonstrated that non-adiabatic effects due to
vibronic coupling are time-reversal symmetry breaking interactions for the vibrational
field in non-collinear magnetic molecules with vibrational frequencies much smaller than
the electronic gap. As in this systems the deformation potential matrix elements cannot
be real valued, a nonzero synthetic field arises (KS Berry curvature). As a result, an in-
trinsic nonzero phonon angular momentum occurs even for non-degenerate modes and
in the absence of external time-reversal symmetry breaking probes. Our work provides
the conceptual link between topology, electron-vibron interaction, and the existence
of a nonzero intrinsic phonon angular momentum in insulating non-collinear magnetic
molecules.



Chapter 6

Vibrational angular momentum
in noncollinear magnetic
platinum clusters

The angular momentum of vibrational modes in molecules can be nonzero when time-
reversal symmetry is broken for the ionic motion. This last circumstance eventually
occurs in three stages: the magnetic interaction ensures that time-reversal symmetry
is broken in the Kohn-Sham equations of electrons; spin-orbit coupling guarantees that
time-reversal symmetry breaking is communicated to the orbital sector of the electronic
wavefunctions; the vibronic interaction transmits time-reversal symmetry breaking to
the vibrational field. Molecular systems with non-collinear magnetism and large spin-
orbit coupling are therefore ideal candidates to host polarized vibrational modes in the
absence of external fields. The magnitude of the angular momentum is expected to
be inversely proportional to the HOMO-LUMO gap and proportional to the absolute
magnetization of the system.

Here, we demonstrate the occurrence of an intrinsic total vibrational angular mo-
mentum driven by non-adiabatic (dynamical) effects in two small platinum clusters
with an odd number of atoms, namely platinum trimer Pt3 and platinum pentamer
Pt5. These systems are ideal as they are (i) magnetic, (ii) the large spin-orbit cou-
pling leads to a non-collinear magnetic order and (iii) the HOMO-LUMO gap is quite
small compared to other magnetic molecules (∼ 102 meV). We calculate the electronic
structure and vibrational properties (adiabatic and non-adiabatic) by performing fully
relativistic calculations using version 6.4.1 of the Quantum-Espresso suite [86, 87]
and the compatible version of Thermo_pw [21] for the non-collinear treatment of the
magnetization densities. We used version 3.3.0 of the fully relativistic ONCV pseu-
dopotential [88, 89] with Perdew-Burke-Ernzerhof exchange-correlation functional [90]
and a kinetic energy cutoff of 90 Ry. A simple cubic Bravais lattice structure with a
parameter of 10.6 Å was used in order to minimize the interaction between the clusters
and their copies. Then we study the vibrational properties of the platinum clusters
using linear response theory and compare the results with the few data present in the
literature. Finally the nonlinear eigenvalue equation is solved by evaluating the force

59
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constant matrix as a function of the frequency ω and by diagonalizing it. For each mode,
the non-adiabatic (dynamical) vibrational frequency and polarization vectors can be
found when the square root of the eigenvalue is equal to the value of the frequency
fed into the force constant matrix. The non-adiabatic vibrational angular momentum
is ultimately obtained from the polarization vectors in platinum trimer and pentamer
with non-collinear alignment of the magnetic moments.

6.1 Electronic structure properties

In full relativistic density functional calculations, it is found that non-collinear magnetic
order minimizes the total energy in platinum trimer and pentamer. The lowest energy
structure of the two platinum clusters is shown in Fig. 6.1. In both systems, a small
Jahn-Teller distortion takes place. Pt3 arranges in a isosceles triangular shape with
interatomic distances of 2.49 Å and 2.50 Å whereas Pt5 stabilizes in a trigonal bipyramid
configuration with the atoms at the vertexes of the pyramids slightly shifted towards
one side of the basis triangle. In platinum pentamer, the interatomic distance is 2.59 Å
for in-plane atoms and 2.58 Å and 2.62 Å for out-of-plane atoms.

The magnetic phase of platinum clusters is reported in Fig. 6.1. The arrows cor-
respond to the magnetic moments of the atoms and the value is given in units of
µB/atom. It is found that relativistic effects lower the energy of the non-collinear mag-
netic configuration with respect to the collinear one. In Pt3, the magnetic moments of
the two atoms in the basis of the triangle are tilted towards the center compared to the
collinear phase. The same occurs for the atoms at the vertexes of the pyramids in Pt5
whose magnetic moments are tilted in opposite directions with respect to the vertical
axis. The total magnetization is 1.58 µB for platinum trimer and 3.63 µB for platinum
pentamer, in agreement with Ref. [91].
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Figure 6.1: Non-collinear magnetic ground state of Pt3 (left) and Pt5 (right): geo-
metric structure, interatomic distances and magnetic moments.
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The binding energy per atom of each cluster is obtained as (nE1 − En)/n where
n is the number of atoms in the cluster and E1 is the energy of the isolated atom.
The calculated binding energy per atom in Pt3 and Pt5 is respectively 2.177 eV and
2.835 eV, in agreement with Ref. [92]. The HOMO-LUMO gap is 137 meV for Pt3 in
agreement with [91,93] and 92 meV for Pt5, in agreement with [91]. The small value of
the electronic gap suggests the occurrence of large non-adiabatic effects and meaningful
angular momentum of vibrational modes both in platinum trimer and pentamer.

The results obtained in the present electronic structure calculation are compared
with available data from literature in Table 6.1 for platinum trimer and Table 6.2
for platinum pentamer. In the second column it is specified whether the spin-orbit
coupling (SOC) was included or not in the calculation. Columns 3 to 7 report in
order the geometrical structure, interatomic distances in Angstrom, the binding energy
per atom in electronVolt, the HOMO-LUMO energy gap in electronVolt, the magnetic
moment per atom in units of the Bohr magneton.

Table 6.1: Comparison of electronic structure properties in triangular arrangements
of platinum trimer from several different studies (referred to in the first column). Our
results are shown in the first line. In column 2 it is specified whether spin-orbit coupling
was included or not in the calculation. Columns 3 to 7 report, in the cited reference,
the geometrical structure (equilateral or isosceles triangular), interatomic distances, the
binding energy per atom, the HOMO-LUMO energy gap and the magnetic moment per
atom (0 for nonmagnetic configurations). Blank spaces correspond to unavailable data.

SOC structure d (Å) Eb/atom (eV) gap (eV) µB/atom

this work Y is. 4 2.489, 2.501 2.177 0.1365 0.379, 0.584
[94] Y eq. 4 2.52 1.85 1.85
[91] Y is. 4 2.502, 2.512 2.90 0.13 0.443, 0.644

N eq. 4 2.465 3.13 0.09 0.012
[92] Y is. 4 2.50, 2.51 2.22 0.43, 0.65
[95] N eq. 4 2.49 2.41
[96] N eq. 4 2.49 2.063 0.1139
[93] Y is. 4 2.509, 2.558 2.210 0.128

N eq. 4 2.476 2.443 0.479
[97] N eq. 4 2.47 2.33 0.034 0
[98] N eq. 4 2.58 2.40

In platinum trimer there is general agreement on the structure, interatomic distances
and binding energy while the value of the HOMO-LUMO gap is uncertain (although
our result agrees well with the relativistic calculations of references [93] and [91]). Most
of referenced articles agree on the structure that minimizes the total energy, namely
equilateral or isosceles triangle depending on whether SOC is included or not. The non-
collinear magnetic configuration of platinum trimer has only been analysed in Ref. [91]
and Ref. [92] and the resulting magnetic moments are reasonably similar to ours.

For what concerns platinum pentamer there is, in general, less agreement between
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Table 6.2: Comparison of electronic structure properties of bipyramidal platinum
pentamer from several different studies (referred to in the first column). Our results
are shown in the first line. Description of the columns is given in the caption of Tab. 6.1.

SOC d (Å) Eb/atom (eV) gap (eV) µB/atom

this work Y 2.59/
2.58, 2.62 2.835 0.092 0.59, 0.74/

0.48
[94] Y 2.25

[91] Y 2.599, 2.609/
2.620, 2.625 2.75 0.09 0.653, 0.685/

0.378
N 2.569/2.634 2.99 0.39 0.790/0.485

[92] Y 2.60/2.62 2.8 0.64/0.36
[96] N 2.61 2.593 0.387
[93] Y 2.607/2.619 2.748

N 2.574/2.633 2.956
[97] N 2.57/2.63 2.91 0.63 0.8

[98] N 2.58, 2.85,
2.71, 2.84 2.59

different studies on which is the lowest energy isomer. In Table 6.2 we consider the
bipyramid isomer only as . Our calculated interatomic distances and binding energy
are in agreement with other relativistic calculations and in line with the rest of the
data. The result obtained for the HOMO-LUMO energy gap agrees with Ref. [91] but
not with others. The magnetic configuration of platinum pentamer is more difficult to
compare with the literature as the non-collinear magnetic phase is difficult to stabilize
in the fully relativistic calculation. Still, the values of the magnetic moments obtained
in our work (last field in the first row of Table 6.2) are of the same order of magnitude
as other calculations.

6.2 Static vibrational modes

After studying the magnetic ground state, we investigate the vibrational properties of
the platinum clusters using static linear response theory. Nonlinear molecules have 3
modes of translation (acoustic), 3 modes of rotation and 3Ntot−6 optical modes. In the
following we will consider only optical modes because translations and rotations have
zero energy. The vibrational frequencies of the optical modes in platinum trimer and
pentamer obtained from static linear response calculations are reported in Table 6.3 in
cm−1 and meV. Roto-translational modes have zero energy and are not shown. Notice
that all the listed frequencies are much smaller than the electronic energy gap both in
Pt3 and Pt5.

The ionic displacements of the static vibrational modes of the two platinum clus-
ters are represented in Fig. 6.2. In this case the polarization vectors are real and no
vibrational angular momentum can arise. It is worth mentioning that modes ν = 1
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Table 6.3: Adiabatic vibrational frequencies of the optical modes in platinum trimer
and pentamer obtained from static linear response calculations.

ν ων (cm−1) ων (meV)

Pt3
1 102.4 12.7
2 121.7 15.1
3 217.7 27.0

Pt5

1 54.0 6.7
2 71.1 8.8
3 97.0 12.0
4 103.3 12.8
5 119.6 14.8
6 134.8 16.7
7 138.6 17.2
8 169.4 21.0
9 210.4 26.1

and ν = 2 in trimer are degenerate in the absence of magnetism and spin-orbit interac-
tion. The same occurs for asymmetric stretching modes ν = 6 and ν = 7 of platinum
pentamer.

To our knowledge, only one experimental work on vibrational properties of platinum
trimer is available in the literature [99]. It dates back to 1988. The technique employed
is photoelectron spectroscopy and the reported optical frequencies are equal to 105 cm−1

and 225 cm−1. The vibrational modes of platinum trimer have been studied in density
functional theory in Ref. [98], where a non-self-consistent LDA functional method has
been used and in Ref. [94] where time-dependent density functional theory is claimed
to be used with relativistic core potentials. Our result is partly in agreement with the
experiment (one mode is not observed) but disagrees with the other density functional
theory calculations. We could not find any study on vibrational properties of platinum
pentamer instead.

6.3 Nonadiabatic effects
Using the first-principles scheme in the spin-dependent framework introduced in sec-
tion 5.3.1, non-adiabatic effects due to the vibronic coupling are now taken into con-
sideration. We calculate the non-adiabatic vibrational frequencies of platinum clusters
in the following two ways.

1. The approximate non-adiabatic force constant matrix C̃sr(ω) is calculated as a
function of the frequency ω using the vibron self-energy Πsr(ω) of Eq. 5.26.

2. Since vibrational frequencies are much smaller than the electronic gap, we enforce
the low-frequency expansion and evaluate the non-adiabatic force constant matrix
C̃sr(ω) using the Kohn-Sham Berry curvature Eq. 5.16.
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Figure 6.2: Schematics of the optical eigenmodes of platinum trimer and pentamer
obtained from self-consistent static linear response. The corresponding vibrational
frequencies are given in Table 6.3.

In both cases we need the KS eigenvalues and the deformation potential matrix elements
of the static self-consistent linear response calculation to evaluate the vibron self-energy
or the KS curvature. The nonlinear eigenvalue equation 5.8 is then solved by evaluating
the force constant matrix C̃sr(ω) at the adiabatic frequency ων of each mode and by
diagonalizing its hermitian part divided by the mass. The non-adiabatic (dynamical)
vibrational frequencies and polarization vectors are obtained as the square root of the
eigenvalues and as the eigenvectors of the force constant matrix, respectively.

For platinum trimer and pentamer, the optical frequencies thus obtained are shown
in the fourth column of Tab. 6.3 for calculation 1 (ω̃ν) and in the fifth column for
calculation 2 (ω̃′ν). Compared to the results of the static linear response theory, it is
found that both in Pt3 and Pt5, the non-adiabatic corrections on vibrational frequencies
are relatively small. Moreover we notice that the non-adiabatic frequencies obtained
from the low-frequency expansion ω̃′ν are almost identical to the adiabatic ones. This
does not mean that the curvature vanishes but tells us that vibrational frequencies
are not affected by first order terms in the low-frequency expansion of the vibron self-
energy. Our result can be summarized as follows. Even by considering non-collinear
magnetic platinum clusters, which fulfill all the requirements to exhibit non-adiabatic
effects due to the electron-vibron interaction (small gap, spin-orbit coupling, etc.), the
vibrational frequencies are not sensitive enough to observe such effects.
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Table 6.4: Nonadiabatic optical frequencies in platinum trimer and pentamer. From
left to right, adiabatic mode index ν, adiabatic vibrational frequencies ων , non-adiabatic
frequencies ω̃ν calculated using the vibron self-energy Πsr(ω) of Eq. 5.26, non-adiabatic
frequencies ω̃′ν calculated using the Kohn-Sham Berry curvature Eq. 5.16.

ν ων (cm−1) ω̃ν (cm−1) ω̃′ν (cm−1)

Pt3
1 102.4 100.6 102.5
2 121.7 121.2 121.7
3 217.7 217.7 217.7

Pt5

1 54.0 53.6 54.0
2 71.1 71.1 71.1
3 97.0 96.6 96.7
4 103.3 103.5 103.5
5 119.6 119.5 119.6
6 134.8 134.7 134.7
7 138.6 138.6 138.6
8 169.4 169.4 169.5
9 210.4 209.9 210.5

6.4 Vibrational angular momentum

Even if non-adiabatic effects are small on the frequencies, it is nonetheless worthwhile
to calculate the angular momentum of vibrational modes in platinum clusters. In the
adiabatic linear response, the vibrational modes are linearly polarized, the eigenvectors
of the force constant matrix are real and the vibrational angular momentum vanishes.
Nonadiabatic effects instead modify the oscillatory motion of the ions around their
equilibrium positions in such a way that the eigenvectors are nontrivially complex
in platinum clusters. The real ionic displacement is related to the polarization vector
through us = Re

[
ε̃νse

−iω̃νt]. Therefore, even if the vibrational frequency is not modified
by non-adiabatic effects, the trajectory of the ions around equilibrium positions is. As
a consequence, each ion gives rise to an orbital angular momentum perpendicular to
the plane of the trajectory. For each vibrational mode, the angular momentum of the
cluster is equal to the sum of the angular momenta of the rotating ions. Such intrinsic
vibrational angular momentum driven by non-adiabatic effects can be evaluated by
replacing the non-adiabatic polarization vectors ε̃νs, obtained from time-dependent
linear response, into Eq. 5.5.

Because non-adiabatic effects act as local magnetic fields on every atom, the phonon
Hamiltonian does not commute with the phonon angular momentum operator Nph =∑
sMsus×u̇s. What we calculate here then is the expectation value of the angular mo-

mentum operator over the ground state of the Hamiltonian, namely 〈Nα〉 = 1
2
∑
ν `να,

where α = x, y, z. Hence, this quantity is not a quantized object and it makes sense
to list the three Cartesian components `να. Indeed, when driven by non-adiabatic ef-
fects, `να is not equal to the eigenvalue of the phonon angular momentum but rather
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it is equal to its expectation value over the quantum vibron ground state. It becomes
observable in the form of the angular momentum of the classical ionic motion.

As an illustrative example, we represent in Fig. 6.3 the adiabatic and non-adiabatic
polarization vectors of two stretching modes of platinum trimer and pentamer obtained
as solutions of the nonlinear eigenvalue problem of the force constant matrix C̃sr(ω) as
described in section 6.3. In both cases the polarization vectors acquire an imaginary
part, although small compared to the real part, and the non-adiabatic modes carry
nonzero angular momentum as shown in the right hand side of Fig. 6.3 (red arrows).

Re[ε̃1]ε1

y
z x

z
x y

a) 20×Im[ε̃1] `1

Re[ε̃6] 20×Im[ε̃6] `6ε6

y
z x

z
x y

b)

Figure 6.3: Angular momentum of vibrational modes. From left to right: adiabatic
(static) polarization vectors εν , real and imaginary parts of the non-adiabatic (dynam-
ical) polarization vectors ε̃ν , vibrational angular momentum `ν . From top to bottom:
a) top representation (x-y) of platinum trimer, side representation (y-z) of platinum
trimer; b) top representation (x-y) of platinum pentamer, side representation (y-z) of
platinum pentamer.

In platinum trimer, the imaginary part of the polarization vectors is perpendicular
to the the plane of the cluster. The angular momentum of vibrational mode ν = 1 is
coplanar with the cluster which means that the atomic vibrations around equilibrium
position have a small out-of-plane component. In platinum pentamer, the optical mode
ν = 6 shown in Fig. 6.3 (b) is approximately the same as the asymmetric stretching
mode of the trimer. Namely, the eigendisplacements of the vertex atoms is much smaller
than the eigendisplacements of the 3 atoms in the basis of the pyramids and these last
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have high overlap16 with the eigendisplacements of the trimer shown in Fig. 6.3 (a).
However, the imaginary parts of the polarization vectors and consequently the vibra-
tional angular momentum behave differently with respect to the trimer. Notably, the
angular momenta of the basis atoms are mainly orthogonal to the basis plane whereas
in platinum trimer they are coplanar with the cluster. The non-adiabatic trajectories
of the basis atoms in Pt5 therefore do not come out of the plane.

It is interesting to remark that the imaginary part of the asymmetric stretching
mode ν = 6 in platinum pentamer exhibits a similar character as the adiabatic mode
ν = 7 (see Fig. 6.2). In the absence of a magnetic order, the two modes are de-
generate and finite angular momentum can be obtained from a linear combination of
the polarization vectors. In the present calculation, magnetism and spin-orbit interac-
tion break the degeneracy between the vibrational modes already in the static linear
response. However, a nonzero angular momentum arises only when we include the
electron-vibron interaction in the calculation, namely when non-adiabatic effects are
taken into account.

The angular momentum of vibrational modes shown in Fig. 6.3 (sum of the angular
momenta of the ions) is reported together with the other modes in Tab. 6.5 for platinum
trimer and pentamer in units of ~. We notice that y and z components (with reference
to Fig. 6.3 (a) of the angular momentum in platinum trimer always vanish. The same
occurs for x and y components in platinum pentamer. This is actually related to the
orientation of the atomic magnetic moments and more in general to the non-collinear
magnetic order in the two clusters: in trimer the total magnetization is directed along
the x-axis while in pentamer it is parallel to the z-axis.

Table 6.5: Vibrational angular momentum driven by dynamical effects in platinum
clusters. Cartesian components (with reference to Fig. 6.3) of the angular momentum
`ν in units of ~ are listed for the vibrational modes of platinum clusters.

ν `νx (~) `νy (~) `νz (~)

Pt3
1 −0.048 0.000 0.000
2 0.000 0.000 0.000
3 0.001 0.000 0.000

Pt5

1 0.000 0.000 −0.064
2 0.000 0.000 −0.094
3 0.001 0.000 −0.089
4 0.002 0.000 −0.086
5 0.002 0.000 0.000
6 −0.003 0.000 0.071
7 0.000 0.000 0.093
8 0.000 0.000 0.001
9 0.000 0.000 −0.003

16The overlap between polarization vectors of two given vibrational modes can be used as a measure
of the matching between the character of the two modes.
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Unexpectedly, we record a sizeable vibrational angular momentum even where the
vibrational frequency is marginally altered by the non-adiabatic (dynamical) effects.
The reason is that vibrational frequencies are affected by non-adiabatic effects only in
the second order of the low-frequency expansion of section 5.2 while the polarization
vectors and the angular momentum are affected already at the first order. The magni-
tude of these vibrational angular momenta is of the same order of the typical values of
the electron orbital momenta in itinerant ferromagnets [26].

The expectation value of the total angular momentum 〈Nph〉 = 1
2
∑
ν `ν is nonzero

as well because the Cartesian components of `ν have been calculated for each mode
at different frequencies (namely at the frequencies ω̃ν). Since the angular momentum
of the cluster must be conserved, a non-adiabatic variation of the electron angular
momentum (spin plus orbital) must also occur in order to compensate the phonon
contribution. The calculation of such variation, however, requires simulating the non-
adiabatic dynamics of the whole cluster, which goes beyond the purpose of this work.

6.5 Summary
Nonadiabatic effects due to the vibronic coupling are time-reversal symmetry breaking
interactions for the vibrational field in non-collinear magnetic molecules with vibra-
tional frequencies much smaller than the electronic gap. As a proof of concept, we
studied non-adiabatic effects in two platinum clusters with non-collinear magnetic or-
der, namely a trimer and a pentamer.

In these systems, we calculate the electronic structure and vibrational properties
by performing fully relativistic ab-initio calculations. The non-collinear magnetic ar-
rangement together with a geometrical distortion of the symmetric structure is found
to minimize the total energy in both platinum clusters. The electronic structure prop-
erties are then compared with existing data in literature resulting in good agreement
with some of the previous studies.

Subsequently, adiabatic and non-adiabatic vibrational properties are analysed. It is
found that non-adiabatic corrections to the optical frequencies of platinum clusters are
not observable notwithstanding magnetism, spin-orbit coupling and the small electronic
gap. However, a nonzero vibrational angular momentum is recorded for some modes in
platinum clusters, the magnitude being of the same order of electron orbital momenta
in itinerant ferromagnets. Such result confirms the theoretical predictions.

As the same conclusions obtained for molecules can be easily generalized to insulat-
ing crystals, we expect that in any non-collinear magnetic system (solid or molecule)
with strong electron-phonon interaction and sufficiently small gap non-adiabatic ef-
fects break time-reversal symmetry for the vibrational field and induce sizeable phonon
angular momenta in the absence of external probes.



Chapter 7

Non-adiabatic effects in
non-collinear magnetic periodic
systems

Let us now move on to the most general results obtained for solids. In chapter 5 we
have shown that non-adiabatic effects due to the vibronic coupling are time-reversal
symmetry breaking interactions for the vibrational field in molecules. In particular, we
showed that the non-adiabatic force constant matrix in insulating molecular systems,
in the low-frequency limit, is related to the Berry curvature of the Kohn-Sham states
|ψi〉 and to the ionic displacements us, ur.

When the curvature vanishes, in time-reversal symmetric systems, the vibrational
modes are linearly polarized and do not carry angular momentum. In non-collinear
magnetic molecules, one can get nonzero vibrational angular momentum driven by
non-adiabatic effects. We adapted the first-principles scheme depicted in section 4.4 to
calculate the force constant functional in systems with non-collinear magnetism. As a
proof of concept, we then evaluated in chapter 6 the non-adiabatic vibrational modes
in two platinum clusters with non-collinear magnetic order through a fully relativistic
ab-initio calculation. The results confirmed the theoretical expectations as a nonzero
vibrational angular momentum was found for some optical modes.

In this chapter we therefore aim at broadening the treatment to periodic extended
systems and metals. Insulating solids with vibrational frequencies smaller than the
bandgap, can be handled in the same way as molecular systems and therefore they do
not present particular difficulties. Still they constitute an intermediate step between
molecules and metals and thus it is useful to rapidly go through it.

We generalize the definition of the Kohn-Sham Berry curvature to all insulating
and metallic systems. In this case the phonon self-energy can be expanded in power
series of the frequency by retaining a nonzero imaginary part η. Although nonlinear
order terms in the expansion cannot in principle be neglected, the non-adiabatic force
constant matrix in the low-frequency limit can be expressed in terms of the generalized
Berry curvature as for molecules. Such result demonstrate the connection between non-
adiabatic effects driven by the electron-phonon coupling and topological properties of

69
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the system both in insulators and metals.
The nonlinear eigenvalue problem for the non-adiabatic dynamical matrix is then

obtained and compared to the theory of lattice dynamics presented in section 3.2.2.
Moreover, we show that the Kohn-Sham Berry curvature in reciprocal space breaks
the time-reversal symmetry of the phonon eigenvalue problem. Consequently a finite
angular momentum can be obtained even for non-degenerate modes in the absence of
external probes.

In the second part of the chapter, we extend the first-principles scheme of section 4.4
to calculate non-adiabatic phonons in non-collinear magnetic insulating and metallic
periodic structures by exploiting the properties of the time-reversal operator. In doing
so, we adopt the method proposed in references [21, 85] and presently implemented in
the phonon linear response package of Quantum-Espresso.

7.1 Non-adiabatic effects and topology in solids

In section 5.2, we investigated the connection between non-adiabatic effects and topo-
logical properties in insulating molecules. We demonstrated that, in molecular systems
with vibrational frequencies much smaller than the electronic gap, the non-adiabatic
part of the force constant matrix can be expressed as a Kohn-Sham Berry curvature in
the low-frequency limit. Analogous results can be obtained for periodic systems both
in insulators and metals.

In this section we show that the non-adiabatic dynamical matrix, as approximated
in section 4.4, can be expressed in power series of the frequency ω, even for metals
provided that the parameter η is finite. Then link the first term of the expansion to
the Kohn-Sham Berry curvature expressed in linear response theory, demonstrating
the relation between low-frequency non-adiabatic effects due to the electron-phonon
interaction and the topological properties of the system. Here we generalize the results
obtained in section 5.2 for insulating molecules to periodic extended systems, insulators
and metals. Throughout this section we do not explicitly include the spin dependence in
deformation potential matrix elements and the temperature in the phonon self-energy.

Let us rewrite here for solids the equation of the phonon self-energy ΠIJ(ω) as a
function of the frequency ω in the form

ΠIJ(ω) = 2
Nk∑

ki,k′j

[
fki − fk′j

εki − εk′j + ω + iη
−
fki − fk′j
εki − εk′j

]
〈ψk′j |

∂VKS
∂uI

|ψki〉〈ψki|
∂VKS
∂uJ

|ψk′j〉

(7.1)
where, compared to the molecular case, the band index i is now accompanied with a
crystal momentum index k both in Kohn-Sham eigenvalues and eigenfunctions.

7.1.1 Insulators with vibrational frequencies smaller than the bandgap

Since the case of insulators with vibrational frequencies much smaller than the electronic
gap has been thoroughly studied in chapter 5, we limit here the treatment to the most
relevant equations and comments trying to avoid repetition.
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In insulators with vibrational frequencies smaller than the bandgap, the non-adiabatic
part of the force constant matrix can be expanded in power series of the frequency ω,
by setting η = 0 in Eq. 7.1. In this case the phonon self-energy ΠIJ(ω) is hermitian in
the ionic indexes I and J

ΠIJ(ω) =
∞∑
n=1

2
Nk∑

ki,k′j

fki − fk′j
εki − εk′j

(−1)n

(εki − εk′j)n
〈ψk′j |

∂VKS
∂uI

|ψki〉〈ψki|
∂VKS
∂uJ

|ψk′j〉

ωn
(7.2)

where the coefficient of the n-th term of the expansion is equal to the n-th derivative of
the self-energy with respect to ω evaluated at ω = 0. Like for molecules, the odd (even)
coefficients of the expansion are purely imaginary (real). We stress that the self-energy
Eq. 7.2 is well defined in insulators because the difference εki − εk′j is always greater
than or equal to the electronic bandgap when the numerator fki − fk′j is nonzero.

If the vibrational frequencies are much smaller than the electronic bandgap, then
we can neglect higher than linear order terms in the series expansion and rewrite the
non-adiabatic part of the self-energy in the form

ΠIJ(ω) ' −iωΩKS
IJ = −2iω

Nk∑
ki
fkiΩKS

IJ,ki (7.3)

ΩKS
IJ,ki = 2Im

Nk∑
k′j

〈ψk′j |∂VKS
∂uI
|ψki〉〈ψki|∂VKS

∂uJ
|ψk′j〉

(εki − εk′j)2 (7.4)

where ΩKS
IJ,ki is the Berry curvature associated with the KS eigenstate |ψki〉 and the

phonon ionic displacements uI , uJ (see Eq. 2.33).
In analogy with the case of insulating molecular systems, the phonon self-energy

in the low-frequency limit can therefore be expressed in terms of a real antisymmetric
matrix ΩKS

IJ that plays the role of the Berry curvature in the case of KS independent
electrons.

If the vibrational frequencies range between roughly half of the energy gap and
the energy gap, the expansion Eq. 7.2 is still valid but higher than linear order terms
cannot be neglected. The ω2 order term is real and symmetric. In any event, it can be
incorporated in the adiabatic force constant matrix as it does not significantly modify
the eigenvalue problem. Higher order terms in the frequency ω are not harmonic.

7.1.2 Insulators with vibrational frequencies larger than the bandgap
and metals

In insulators with the vibrational frequencies similar to bandgap as well as in metals,
the phonon self-energy cannot be expanded in power series as in Eq. 7.2 because the
coefficients in the square brackets diverge. Non-adiabatic effects can be obtained from
the full self-energy ΠIJ(ω) with η 6= 0. We already pointed out that η is not just
a mathematical workaround but it physically represents the inverse phonon lifetime.
Notice that for ω = 0 and η 6= 0 the phonon self-energy Eq. 7.1 does not vanish, namely
the non-adiabatic force constant matrix does not coincide with the adiabatic one in the
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zero frequency limit due to the finite phonon lifetime. Then, one can relate the phonon
self-energy with a more generally defined Kohn-Sham Berry curvature, demonstrating
the link between non-adiabatic effects and topological properties also in metals.

Even if a proper series expansion of the phonon self-energy is not possible in
metals, it is still interesting to see how the non-adiabatic part of the force constant
matrix behaves in the low-frequency limit. Since we are interested in the calcula-
tion of the dynamical matrix, let us consider the hermitian part of the self-energy
ΠH
IJ(ω) = 1

2 [ΠIJ(ω) + ΠJI(−ω)] where ΠIJ(ω) is given by Eq. 7.1. Such quantity can
be also written in the form

ΠH
IJ(ω) = 2

Nk∑
ki,k′j

fki − fk′j
εki − εk′j

Wki,k′j(ω)〈ψk′j |
∂VKS
∂uI

|ψki〉〈ψki|
∂VKS
∂uJ

|ψk′j〉 (7.5)

where the weighting function W is defined as

Wki,k′j(ω) = −
ω(εki − εk′j + ω) + η2

(εki − εk′j + ω)2 + η2 . (7.6)

This function is well behaved for any value of ω and η 6= 0. We can expand it in Taylor
series around ω = 0 as

Wki,k′j(ω ≈ 0) =
∑
n

1
n!W

(n)
ki,k′jω

n (7.7)

where W(n)
ki,k′j is the n-th derivative of Wki,k′j(ω) evaluated at ω = 0. Note that here

n runs from 0 to ∞ whereas in the series expansion of insulators the index ran from
1 to ∞. It can be shown that, under exchange of the band and momentum indexes
ki↔ k′j, the n-th derivative of W has the same parity of n, namely

W(n)
ki,k′j = (−1)nW(n)

k′j,ki. (7.8)

When expanding the self-energy Eq. 7.5 in Taylor series, we can separate the even and
odd derivatives of W. By doing so, the part containing the even derivatives is real and
symmetric under exchange of the ionic indexes I and J , while the part containing the
odd derivatives is imaginary and antisymmetric. The hermitian part of the self-energy
ΠH
IJ(ω), in the zero frequency limit, reads

ΠH
IJ(ω ≈ 0) =4Re

Nk∑
ki,k′j

fki
εki − εk′j

[
W(0)

ki,k′j + 1
2W

(2)
ki,k′jω

2 + . . .

]
〈ψk′j |

∂VKS
∂uI

|ψki〉〈ψki|
∂VKS
∂uJ

|ψk′j〉

+ 4iIm
Nk∑
kij

fki
εki − εk′j

[
W(1)

ki,k′jω + . . .
]
〈ψk′j |

∂VKS
∂uI

|ψki〉〈ψki|
∂VKS
∂uJ

|ψk′j〉.

(7.9)

In the limit η → 0, the coefficients in the square bracket are all the more divergent as
the power of ω increases, but for the zero order term which vanishes. When η 6= 0, the
zero order term of the expansion, being real and symmetric, can be incorporated in the
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adiabatic force constant matrix as a constant. The hermitian part of the approximate
force constant matrix in the small frequency limit thus reads

C̃HIJ(ω ≈ 0) = CIJ(0) + ΠH
IJ(0)− iωΩKS

IJ +O(ω2) (7.10)

where the coefficients of the linear term can be viewed as a generalized Kohn-Sham
Berry curvature for metals defined in the same way as for insulators but for the small
imaginary part η, namely

ΩKS
IJ = 2

∑
ki
fkiΩKS

IJ,ki (7.11)

ΩKS
IJ,ki = 2Im

∑
k′j

〈ψk′j |∂VKS
∂uI
|ψki〉〈ψki|∂VKS

∂uJ
|ψk′j〉

(εki − εk′j + iη)(εki − εk′j − iη) (7.12)

where ΩKS
IJ,ki is the Berry curvature associated with the KS eigenstate |ψki〉 and the

phonon ionic displacements uI and uJ . Note that, when defined as in Eq. 7.12, the
Berry curvature includes the definition given for insulators as the limit η = 0. Such
result can therefore be understood as the link between low-frequency non-adiabatic
effects due to the electron-phonon coupling and topological effects in both insulating
and metallic periodic systems.

7.2 The Kohn-Sham Berry curvature in reciprocal space
In order to relate the just seen result with the phonon eigenvalue problem in the screened
Born-Oppenheimer approximation Eq. 3.34, we now aim at writing the phonon self-
energy in reciprocal space as a function of the Fourier component of the Berry curvature.
For both metals and insulators, the phonon self-energy in reciprocal space can be
written in density functional perturbation theory from Eq. 4.52 as

Πsr(q, ω) = 2
Nk

Nk∑
kij

[
fk+qi − fkj

εk+qi − εkj + ω + iη
−
fk+qi − fkj
εk+qi − εkj

]

× 〈ukj |
∂vKS
∂u−qs

|uk+qi〉〈uk+qi|
∂vKS
∂uqr

|ukj〉 (7.13)

where q is the phonon quasimomentum, ukj(r) is the lattice periodic part of the KS
wavefunction and vKS is the periodic part of the KS potential. Analogously to what
we did for the self-energy in real space, we can consider the hermitian part of the self-
energy and expand it in Taylor series around ω = 0. Again, the expansion is legitimate
in metals only if η 6= 0. In reciprocal space the coefficients of the expansion can be
written in the form

ΠH
sr

(n)(q, ω) = 2
Nk

Nk∑
ki
fki
[
Y(n)
sr,ki(q) + (−1)nY(n)

rs,ki(−q)
]

(7.14)

where the superscript H means hermitian and the term in the square brackets is equal
to the sum of some coefficients Y(n)

sr,ki(q) and its transpose (in the ionic indexes s and r)
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at −q for n even, to the difference for n odd. The sum/difference in the square bracket
indeed corresponds to the real/imaginary part of the matrix elements in the real space
self-energy Eq. 7.9. The functions Y(n) are defined as

Y(n)
sr,ki(q) =

∑
j

1
εki − εk+qj

W(n)
ki,k+qj〈uki|

∂vKS
∂u−qs

|uk+qj〉〈uk+qj |
∂vKS
∂uqr

|uki〉 (7.15)

where the real coefficients W(n)
ki,k+qj have been defined in the previous section and have

the same parity of n under exchange of the band and momentum indexes. For n = 1
the coefficients of the expansion can be expressed in terms of the Fourier transform of
the KS Berry curvature Eq. 7.12 as

ΠH
sr

(1)(q, ω) = −iΩKS
sr (q) (7.16)

ΩKS
sr (q) = 2

Nk∑
ki
fkiΩKS

sr,ki(q) = 2i
Nk∑
ki
fki
[
Y(1)
sr,ki(q)− Y(1)

rs,ki(−q)
]

(7.17)

Y(1)
sr,ki(q) = −

∑
j

〈uki| ∂VKS
∂u−qs

|uk+qj〉〈uk+qj |∂vKS
∂uqr
|uki〉

(εk+qj − εki + iη)(εk+qj − εki − iη) . (7.18)

When written in this form, is can be easily verified that the KS Berry curvature in
reciprocal space satisfies the following relations

ΩKS
sr (−q) =

[
ΩKS
sr (q)

]∗
= −ΩKS

rs (q), (7.19)

namely the complex conjugate operation reverses the sign of q as it happens for any real
function in direct space, and it is antihermitian since the coefficients Y(n) are hermitian.

7.2.1 Nonlinear eigenvalue problem

In the low-frequency limit, by neglecting nonlinear order terms, the non-adiabatic dy-
namical matrix Eq. 4.53 can finally be written in the form

D̃sr(q, ω ≈ 0) ' 1√
MsMr

[
Csr(q)− iωΩKS

sr (q)
]

(7.20)

where the zero order term of the expansion ΠH
sr(q, ω = 0), which vanishes in insulators,

has been incorporated as a constant in the adiabatic force constant matrix Csr(q) and
ΩKS
sr (q) is the Fourier transform of the generalized Kohn-Sham Berry curvature from

Eq. 7.12. The nonlinear eigenvalue problem for the non-adiabatic dynamical matrix
can therefore be written as∑

r

1√
MsMr

[
Csr(q)− iω̃qΩKS

sr (q)
]
ε̃r(q) = ω̃2

qε̃s(q). (7.21)

This last equation obtained from the non-adiabatic description of vibrational modes in
the low-frequency limit, is equal to the eigenvalue problem Eq. 3.34 that we have en-
countered in the theory of harmonic lattice vibrations in the screened Born-Oppenheimer
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approximation. The nonlinear eigenvalue problem Eq. 7.21 can thus be solved by fol-
lowing the procedure detailed in section 3.2.2. Namely by defining an effective non-
hermitian Hamiltonian for the coordinates and momenta polarization vectors and by
introducing second quantization relations for the latter. In practice, we solve the non-
linear eigenvalue problem 7.21 numerically, with an iterative procedure as discussed in
section 4.4.3.

7.2.2 Phonon angular momentum

The solutions yield non-adiabatic phonon frequencies ω̃qν and polarization vectors
ε̃νr(q), labeled with a branch index ν. It may seem from the properties of the curva-
ture Eq. 7.19 that the non-adiabatic frequencies are odd functions of the momentum
q, namely ω̃q = −ω̃−q, and that the phonon polarization vectors obey the condition
ε̃∗s(q) = ε̃s(−q).

Actually, the eigenvectors of the non-adiabatic dynamical matrix should be thought,
strictly speaking, as a function of the frequency ω themselves, that is ε̃∗s(q, ω). The fun-
damental relation D̃∗(q, ω) = D̃(−q,−ω) holds for the non-adiabatic dynamical matrix
(and for the hermitian part of the phonon self-energy). It follows that the eigenvectors
obey the condition ε̃∗(q, ω) = ε̃(−q,−ω). In this case, the phonon frequencies are even
function of the momentum q and the complex conjugation on the phonon polariza-
tion vectors does not in general change the sign of q, namely ε̃∗νs(q) 6= ε̃νs(−q). We
summarize this result as

ω̃qν = ω̃−qν (7.22)
ε̃∗νs(q, ωqν) = ε̃νs(−q,−ωqν). (7.23)

Consequently, a finite phonon angular momentum can arise even for non-degenerate
modes in the absence of external fields due to non-adiabatic effects. The phonon angular
momentum of the non-adiabatic mode ν with wavevector q can be calculated from the
phonon polarization vectors as

˜̀qν = −i~
∑
s

ε̃∗νs(q, ωqν)× ε̃νs(q, ωqν). (7.24)

The expectation value of the total phonon angular momentum at zero temperature
reads 〈Nph〉 = 1

2
∑

qν
˜̀qν (see Eq. 3.48). Since in this framework ε̃∗νs(q) 6= ε̃νs(−q),

the angular momentum ˜̀qν is not an even function of q and the expectation value of
the total angular momentum 〈Nph〉 can be different from zero. Once again we stress
that ˜̀qν is not the eigenvalue of the phonon angular momentum operator given that
non-adiabatic effects act locally on each atom.

The important findings of this section can be summarized as follows. The phonon
angular momentum and non-adiabatic effects are related to the electronic Kohn-Sham
Berry curvature in the low-frequency limit. The Kohn-Sham Berry curvature in Eq. 7.21
breaks time-reversal symmetry of the phonon eigenvalue problem as a result of the
electron-phonon interaction. As a result, the non-adiabatic vibrational modes are non-
linearly polarized and carry a finite angular momentum.
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7.2.3 Discussion

The limits of the present demonstration are the following. While the series expansion is
fully justified in insulators with vibrational frequencies much smaller than the bandgap,
in other materials the series expansion makes sense only if the parameter η is different
from 0. The parameter represents the inverse phonon lifetime and it is equal to few
meV in metals. This value slightly affects the phonon frequencies losing the adiabatic
limit to the non-adiabatic spectrum. In the explicit calculation, we will see that η also
affects the phonon angular momentum but does not change qualitatively the result.

Furthermore, given the series expansion for metals, we have unduly neglected higher
order terms which are not related with the Berry curvature. In insulators the linear
approximation is justified if the vibrational frequencies are much smaller than the
bandgap. When this is not the case and in metals, nonlinear ω-terms in the phonon
self-energy are not necessarily small. However we will see that, in practice, the results
obtained by approximating the non-adiabatic dynamical matrix as in Eq. 7.21 are
qualitatively the same as for the calculation with the full self-energy Eq. 7.13 even for
metals.

Having said that, the derivation of the nonlinear eigenvalue problem Eq. 7.21 was
intended to make evident the link between non-adiabatic effects due to the electron-
phonon coupling and the Berry’s theory of geometrical properties of the system. When
computing the force constant functional without series expansion, namely using the
full self-energy Eq. 7.13, the phonon polarization vectors still comply with Eq. 7.23.
non-adiabatic vibrational modes thus can host nonzero angular momenta even if they
are not related with geometrical properties of the system. The present derivation
nevertheless does not only express the linkage between low-frequency non-adiabatic
effects and topological quantities, but also it provides the basis to determine in which
systems phonons can host a sizeable angular momentum.

In section 5.2.2 we have seen that the KS Berry curvature vanishes if time-reversal
symmetry holds in molecules. Moreover the spin-orbit interaction is essential to cou-
ple the spin and orbital sectors of electronic states. In order to observe an intrinsic
phonon angular momentum we therefore need to consider systems with magnetic in-
teractions and sizeable relativistic effects. In chapter 5 we demonstrated the result in
two insulating platinum clusters with non-collinear magnetism via fully relativistic ab-
initio calculations. In the next chapter we will thus consider a metallic periodic system
with non-collinear magnetic order and large spin-orbit coupling (Mn3Pt) to show that
non-adiabatic effects due to the electron-phonon coupling are time-reversal symmetry
breaking interactions for the vibrational field and entail a nonzero angular momentum
of phonons.

7.3 Spin-dependent non-adiabatic effects in solids

We extend the spin-dependent theory of non-adiabatic effects presented in section 5.3
for molecules, to the case of insulating and metallic periodic systems.

In spin-density functional theory, the Kohn-Sham Hamiltonian H [B]
KS depends on the

exchange-correlation magnetic field B. Here, B can also be an external magnetic field.
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When the time-reversal operator is applied to the Hamiltonian, it changes the sign of
the magnetic field, namely T H [B]

KS = H
[−B]
KS T . We then consider two KS equations, one

for B and one for −B, and label the eigenvalues and eigenvectors with the superscript
[B] and [−B] respectively. By comparing the solutions of the two equations, it can be
shown that:

ε
[−B]
km = ε

[B]
−km (7.25)

|ψ[−B]
km 〉 = eiϕ|T ψ[B]

−km〉 (7.26)

where |T ψ[B]
−km〉 is the time-reversed eigenstate at B and ϕ is a k-independent phase.

In the nonmagnetic case B = 0, the Bloch wavefunction at k is related to the Bloch
wavefunction at −k via time-reversal symmetry, namely |ψkm〉 = eiϕ|T ψ−km〉, and
the pair is degenerate due to Kramers theorem, namely εkm = ε−km. In magnetic
systems, the eigenfunction at k of the KS problem with magnetic field B can only
be related to the time-reversed eigenfunction at −k of the KS problem with magnetic
field −B. When it comes to the calculation of the phonon linear response in non-
collinear magnetic solids, the calculation of the adiabatic or non-adiabatic dynamical
matrix requires both the responses at q and −q. Here we adopt the more convenient
method proposed in reference [85] based on the usage of time-reversal operator to avoid
calculation of the response at −q.

7.3.1 Time-dependent linear response

First, we need to express the phonon response functions in the time-dependent spin-
density functional perturbation theory for solids. The derivative of the four-vector spin
density in the frequency domain with respect to the phonon ionic displacement can be
written for solids (insulators and metals) in the form

∂ρµ(r, ω)
∂uI

=
Nk∑

ki,k′j

fki − fk′j
εki − εk′j + ω + iη

∑
σ1σ2

〈ψσ1
k′j |

∂V σ1σ2
KS (r, ω)
∂uI

|ψσ2
ki 〉

∑
σσ′

ψ∗kiσ(r)ψk′jσ′(r)σσσ′µ

(7.27)
where, compared to Eq. 5.20 for molecules, the KS eigenvalues and eigenvectors as well
as the Fermi occupation functions are labeled with the crystal momentum k in solids.
The phonon ionic displacement carries a cell index L in addition to the ionic index s,
namely I = {L, s}. The Cartesian index is always omitted. We recall that, in Eq. 7.27
the index µ runs from 0 to 3 where µ = 0 corresponds to the trace of the spin density
matrix, namely ρ0(r) = n(r), whereas the remaining three values of µ correspond to
the Cartesian components of the magnetization density, namely ρα(r) = mα(r). In a
similar fashion, the frequency dependent force constant matrix can be expressed for
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periodic systems as

CIJ(ω) =
Nk∑

ki,k′j

fki − fk′j
εki − εk′j + ω + iη

∑
σ1σ2

〈ψσ1
k′j |

∂V σ1σ2
KS (r, ω)
∂uI

|ψσ2
ki 〉

∑
σ3σ4

〈ψσ3
ki |
∂V σ3σ4

KS (r, ω)
∂uJ

|ψσ4
k′j〉

+
∑
λ

∫
dr∂

2Vext,λ(r)
∂uI∂uJ

ρ0
λ(r)−

∑
λµ

∫∫
drdr′∂ρλ(r, ω)

∂uI
KHxc,λµ(r, r′)∂ρµ(r′, ω)

∂uJ

(7.28)

where ρ0
λ(r) is the unperturbed spin density and KHxc,λµ(r, r′) is the Hartree and

exchange-correlation kernel defined by Eq. 5.19. The response function CIJ(ω) is a
complex function of the frequency ω. The hermitian part of the force constant matrix
in real space, defined as

CHIJ(ω) = 1
2 [CIJ(ω) + CJI(−ω)] , (7.29)

is related to the dynamical matrix in reciprocal space. It is the quantity needed to
calculate the non-adiabatic phonon frequencies and angular momenta. The dynamical
matrix

Dsr(q, ω) = 1
2
√
MsMr

[Csr(q, ω) + Crs(−q,−ω)] , (7.30)

is the Fourier transform of CHIJ(ω) divided by the square root of the masses. Csr(q, ω)
is the Fourier transform of CIJ(ω) and the same is true for the responses at −ω and
−q. We recall the relationships between complex conjugated force constant matrices
in real and reciprocal space

C∗IJ(ω) = CIJ(−ω) (7.31)
C∗sr(q, ω) = Csr(−q,−ω). (7.32)

7.3.2 First-principles scheme

Equations 7.27 and 7.28 constitute a frequency-dependent self-consistent scheme that
allows for the calculation of the non-adiabatic phonon response. The calculation is
carried out by resorting to the first-principles scheme described in Sec. 4.4 where a
stationary functional in the variation of the electronic charge density is used to avoid
the self-consistent calculation of the derivative of the KS potential as a function of
the frequency ω. Now we need to adapt the equations for the study of non-collinear
magnetic solids. In doing so, we take advantage of the properties of the time-reversal
operator essentially following the same workflow as references [21,85].

The approximate force constant matrix in frequency space reads

C̃IJ(ω) = ΠIJ(ω) + CIJ(0) (7.33)

where CIJ(0) is the standard linear-response self-consistent force constant matrix and
ΠIJ(ω) is the phonon self-energy. The latter represents the non-adiabatic effects due to



7.3. SPIN-DEPENDENT NON-ADIABATIC EFFECTS IN SOLIDS 79

the electron-phonon interaction. It can be expressed in the spin-dependent framework
as

ΠIJ(ω) =
Nk∑

ki,k′j

fki − fk′j
εki − εk′j + ω + iη

∑
σ1σ2

〈ψσ1
k′j |

∂V σ1σ2
KS
∂uI

|ψσ2
ki 〉

∑
σ3σ4

〈ψσ3
ki |
∂V σ3σ4

KS
∂uJ

|ψσ4
k′j〉

−
Nk∑

ki,k′j

fki − fk′j
εki − εk′j

∑
σ1σ2

〈ψσ1
k′j |

∂V σ1σ2
KS
∂uI

|ψσ2
ki 〉

∑
σ3σ4

〈ψσ3
ki |
∂V σ3σ4

KS
∂uJ

|ψσ4
k′j〉 (7.34)

where the static limit of the derivative of the spin-density matrix has been considered
at the cost of a negligible error in the force constant matrix. We name Π(+)

IJ (ω) the first
term in the right hand side of Eq. 7.34, and Π(−)

IJ the second term (without minus) which
is independent on the frequency ω and real (since it is hermitian and symmetric). The
phonon self-energy thus reads ΠIJ(ω) = Π(+)

IJ (ω) − Π(−)
IJ . When calculating the non-

adiabatic force constant matrix, the second term Π(−)
IJ is subtracted from the adiabatic

force constant matrix CIJ(0) and the first term Π(+)
IJ (ω) is later added17. Note that

Π(+)
IJ (ω) is not hermitian due to the small imaginary part in the denominator but still

satisfies the relation Π(+)∗
IJ (ω) = Π(+)

IJ (−ω). The hermitian part of the approximate
force constant matrix can then be written as

C̃HIJ(ω) = Π(+)H
IJ (ω)−Π(−)

IJ + CIJ(0)

= 1
2
[
Π(+)
IJ (ω) + Π(+)

JI (−ω)
]
−Π(−)

IJ + CIJ(0) (7.35)

where only the frequency dependent term Π(+)
IJ (ω) must be split into +ω and −ω

contributions. The subtracting self-energy Π(−)
IJ and the adiabatic force constant matrix

CIJ(0) are both real and symmetric under exchange of the ionic indexes. The function
Π(+)H
IJ (ω) is equal to the hermitian part of the adding self-energy Π(+)

IJ , and, in linear
response theory, reads

Π(+)H
IJ (ω) =1

2

Nk∑
ki,k′j

fki − fk′j
εki − εk′j + ω + iη

∑
σ1σ2

〈ψσ1
k′j |

∂V σ1σ2
KS
∂uI

|ψσ2
ki 〉

∑
σ3σ4

〈ψσ3
ki |
∂V σ3σ4

KS
∂uJ

|ψσ4
k′j〉

+ 1
2

Nk∑
ki,k′j

fki − fk′j
εki − εk′j − ω + iη

∑
σ1σ2

〈ψσ1
k′j |

∂V σ1σ2
KS
∂uJ

|ψσ2
ki 〉

∑
σ3σ4

〈ψσ3
ki |
∂V σ3σ4

KS
∂uI

|ψσ4
k′j〉

(7.36)

with obvious meaning of the symbols.

7.3.3 The magnetic field

So far we never made explicit the magnetic field B on KS occupations, eigenvalues,
wavefunctions and potential because it was the same for all. Let us now insert in both

17The two parts of the self-energy Π(+)
IJ (ω) and Π(−)

IJ can be evaluated at different electronic tem-
peratures and with different sampling of reciprocal space. The smearing and sampling of Π(−)

IJ must
coincide with those used for the standard linear response calculation.
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matrix elements in the second term (on the left and right side of the derivative of the KS
potential) the identity matrix T †T = I where T = iσyK is the time-reversal operator
for spin-1/2 particles. Then, by using the properties of antilinear operators and the
relation T V [B]

KS T † = V
[−B]
KS , the hermitian part of the adding self-energy can be written

as (see appendix E)

Π(+)H
IJ (ω) =1

2

Nk∑
ki,k′j

f
[B]
ki − f

[B]
k′j

ε
[B]
ki − ε

[B]
k′j + ω + iη

∑
σ1σ2

〈ψ[B]σ1
k′j |

∂V
[B]σ1σ2
KS
∂uI

|ψ[B]σ2
ki 〉

×
∑
σ3σ4

〈ψ[B]σ3
ki |∂V

[B]σ3σ4
KS
∂uJ

|ψ[B]σ4
k′j 〉

+ 1
2

Nk∑
ki,k′j

f
[−B]
−ki − f

[−B]
−k′j

ε
[−B]
−ki − ε

[−B]
−k′j − ω − iη

∑
σ1σ2

〈ψ[−B]σ1
−ki |∂V

[−B]σ1σ2
KS
∂uJ

|ψ[−B]σ2
−k′j 〉

×
∑
σ3σ4

〈ψ[−B]σ3
−k′j |

∂V
[−B]σ3σ4
KS
∂uI

|ψ[−B]σ4
−ki 〉.

(7.37)

The second part of the self-energy is now explicitly dependent on the KS occupations,
eigenvalues, eigenfunctions and potential of the KS problem with magnetic field −B.
This expression allows to calculate the non-adiabatic force constant matrix in the first-
principles scheme embodied by Eq. 7.33, in non-collinear magnetic solids.

7.3.4 Reciprocal space

In reciprocal space, analogous equations can be written out for the force constant matrix
and phonon self-energy. From Eq. 7.30, the approximate non-adiabatic dynamical
matrix as a function of the frequency ω and of the phonon quasimomentum q can be
written in the form

D̃sr(q, ω) = 1√
MsMr

[
Π(+)H
sr (q, ω)−Π(−)

sr (q) + Csr(q)
]

(7.38)

where the hermitian part of the adding self-energy in reciprocal space Π(+)H
sr (q, ω) is

given by
Π(+)H
sr (q, ω) = 1

2
[
Π(+)
sr (q, ω) + Π(+)

rs (−q,−ω)
]

(7.39)

and the hermitian matrices Π(−)
sr (q) and Csr(q) are respectively the Fourier transforms

of the subtracting self-energy and of the adiabatic force constant matrix. Taking ad-
vantage of the time-reversal operator, it is then possible to write the hermitian part of
the adding self-energy as the sum of two terms, one the time-reversed of each other,
in the same way as we did for the real space phonon self-energy. The first term will
correspond to the non-adiabatic phonon response with wavevector q and frequency ω
related with the KS problem of magnetic field B. The second term, on the other hand,
will embody the non-adiabatic phonon response with wavevector −q and frequency −ω
related with the KS problem of magnetic field −B.
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7.4 Summary
In this section we have shown how the non-adiabatic effects are related with topological
properties of the system in both insulating and metallic solids. We demonstrated that
the non-adiabatic dynamical matrix can be expressed as a Kohn-Sham Berry curvature
that plays the role of an effective magnetic field and breaks the time-reversal symmetry
of the phonon eigenvalue problem. As a consequence, the non-adiabatic vibrational
modes are nonlinearly polarized and carry a finite angular momentum. This description
provides the ingredients to understand which systems can exhibit sizeable non-adiabatic
effects and intrinsic phonon angular momentum.

The curvature vanishes when time-reversal symmetry holds. The spin-orbit coupling
also plays a role in the effect as we have seen for molecules in section 5.2.2. We therefore
need to consider systems with magnetic interactions and sizeable relativistic effects in
order to observe an intrinsic phonon angular momentum. That is why, in the second
part of the chapter we extended the spin-dependent theory of non-adiabatic effects to
calculate non-adiabatic phonons in non-collinear magnetic materials. The phonon self-
energy thus obtained can be used to evaluate non-adiabatic phonons in both insulators
and metals starting from the already existing linear response code.





Chapter 8

Antiferromagnetic metallic
manganese compound

Non-collinear magnetism in solids is often the result of competing relativistic effects
and magnetic interactions or geometrical frustration. Manganese in particular, lying
in the middle of the transition metals series, often exhibits antiferromagnetic exchange
interactions. In compounds involving elements like Ge, Sn, Ir, Pt, the manganese
atoms are often arranged in a triangular structure [100]. In these systems, the typical
magnetic arrangements are triangular textures with magnetic moments oriented at
120◦ one to the other. The spin-orbit coupling of heavy atoms is transferred to the
magnetic manganese ions through hybridisation [101]. In addition, these non-collinear
magnetic manganese alloys can have a large anomalous Hall effect driven by nonzero
Berry curvature in momentum space [23,102,103].

We demonstrate the occurence of an intrinsic phonon angular momentum in the
non-collinear antiferromagnetic manganese compound Mn3Pt driven by non-adiabatic
effects. Since this system is metallic, the theory on non-adiabatic effects for non-
collinear magnetic systems described in chapter 7 is used. We prove that non-adiabatic
effects lead to a finite angular momentum of phonons in non-collinear magnetic systems.

8.1 Structure and magnetic phase

The manganese platinum alloy Mn3Pt is a cubic antiferromagnetic compound with Néel
temperature TN ∼ 475K. It exhibits two antiferromagnetic phases [23]: a non-collinear
phase below 360 K (D phase) and a collinear phase between 360 K and TN (F phase).
The transition between the two phases is accompanied by an abrupt ∼ 0.8% lattice
expansion [104,105].

The anomalous Hall effect is strong in the low-temperature D phase but absent in
the high-temperature collinear F phase [23]. The theoretical calculation of the anoma-
lous Hall conductivity (σAHC = 98 Ω−1cm−1) [100] is in agreement with two different
experimental results on epitaxial films of Mn3Pt at room temperature [23–25].

In the D phase, the manganese and platinum atoms of Mn3Pt are arranged in a
face-centered cubic cell with platinum atoms at the vertices and manganese atoms at

83
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face centers, as shown in the left side of Fig 8.1. The crystal space group is Pm3̄m.

kz

Γ

ky
kx

R

X

M

Figure 8.1: Non-collinear magnetic phase (left) and high symmetry points in the Bril-
louin zone (right) of Mn3Pt. Blue atoms are manganese and grey atoms are platinum.
The arrows on the manganese atoms represent its magnetic moments.

Within the (111) plane, the manganese sublattice forms a Kagome lattice with
ABC-ABC stacking. In the Kagome plane, due to magneto-geometrical frustration, the
manganese magnetic moments exhibit a non-collinear antiferromagnetic order, where
the neighboring moments are aligned at a 120◦ angle (triangular spin texture) [100].
Magnetic moments of manganese atoms (3 µB/atom) all point towards or away from
the center of the triangles (orange arrows in Fig 8.1). The total magnetization is zero
while the absolute magnetization, defined as the integral of the absolute value of the
magnetization in the cell, is 9.6 µB/cell.

Mirror reflection with respect to the Kagome plane is a good symmetry of the
manganese sublattice but flips all the in-plane spin components. If combined with time-
reversal operation T , the mirror reflection therefore preserves the kagome magnetic
lattice. As a whole, Mn3Pt is invariant under inversion symmetry but lacks (111) plane
mirror symmetry due to the fcc stacking of the kagome sublattices. Heavy platinum
atoms with sizeable spin-orbit coupling, hybridize with magnetic manganese atoms
and break the mirror symmetry. As a consequence, the non-collinear antiferromagnetic
compound exhibits an anomalous Hall effects even without external magnetic field.
This topic has been investigated in Ref. [101] for the closely related material Mn3Ir.

8.1.1 Computational details

We perform fully relativistic ab-initio calculations using version 6.7.0 of the Quantum-
Espresso suite [86,87]. We use norm-conserving ONCV pseudopotentials [88,89] with
Perdew-Burke-Ernzerhof exchange-correlation functional [90] and a kinetic energy cut-
off of 90 Ry. For the electronic structure calculation, we start with a simple cubic Bra-
vais lattice with experimental lattice parameter [105,106]. Then we allow the structure
to relax with a cell-volume relaxation. The resulting lattice parameter is a = 3.76 Å.
The platinum atom is positioned at the origin while manganese atoms are located at
(1

2 ,
1
2 , 0), (1

2 , 0,
1
2) and (0, 1

2 ,
1
2) in crystal units (see Fig. 8.1). The energy of the non-
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collinear antiferromagnetic configuration is converged with respect to k-points mesh
and electronic temperature. We use a 10× 10× 10 Monkhorst–Pack k-points grid [107]
and 0.05 Ry degauss with Methfessel-Paxton smearing [108]. The convergence threshold
for the total energy is 5× 10−9 Ry.

8.1.2 Band structure

The calculated band structure of Mn3Pt is represented in Fig. 8.2 in an energy window
of 1.2 eV around the Fermi energy. The material is metallic with several crossings of
the Fermi level (red line) along the high symmetry directions. The band structure is
in agreement with results obtained in references [100] and [23], still done with fully
relativistic calculations.
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Figure 8.2: Band structure of Mn3Pt, plotted along the high-symmetry path Γ-X-M-
R-Γ. The Fermi level corresponds to the red line.

It is interesting to distinguish the contribution to the band structure from each
atomic kind. This can be calculating the projected density of states resolved in k-
space. In fig. 8.3 the band structure of Mn3Pt is represented together with the atomic
type character of the associated wave functions. The main contribution to the band
structure close to the Fermi level is due to the d-type orbitals of manganese atoms.

8.2 Adiabatic phonon response

Mn3Pt has 12 vibrational modes of which 3 acoustic and 9 optical. The adiabatic
phonon dispersion curves of Mn3Pt were obtained from a linear response calculation
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Figure 8.3: Atomic type contribution to the band structure of Mn3Pt, plotted along
the high-symmetry path Γ-X-M-R-Γ. The bands close to the Fermi level are mainly
related to the d orbitals of manganese atoms.

onto a 2×2×2 q-point grid and using the acoustic sum rule for interpolation. The
phonon bands are shown in Fig. 8.4 along the high symmetry path Γ-X-M-R-Γ in the
Brillouin zone (see the right hand side of Fig 8.1). In the right hand side panel of
Fig. 8.4, the phonon density of states is also reported.

As a result of the non-equivalence between manganese atoms in the crystal basis due
to the non-collinear magnetic configuration, the phonon branches are not degenerate
anywhere in the Brillouin zone even if some modes exhibit very close energies at the
high symmetry points. The adiabatic phonon frequencies of Mn3Pt obtained from
self-consistent linear response calculation at the high symmetry points of the Brillouin
zone are listed in Table 8.1. To our knowledge there exists no other experimental or
theoretical study on vibrational properties of non-collinear antiferromagnetic Mn3Pt in
literature.

8.3 non-adiabatic phonon response

non-adiabatic effects due to the electron-phonon coupling are now taken into consider-
ation. Using the first-principles method of section 7.3.2, we calculate the non-adiabatic
dynamical matrix in non-collinear antiferromagnetic Mn3Pt at the high symmetry
points Γ, X, M, R of the Brillouin zone. We use Eq. 7.37 to calculate the phonon
self-energy in reciprocal space as a function of the frequency ω and momentum q. Since
the material is metallic, we use a finite parameter η = 8 × 10−4 Ry ' 11 meV. The
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Figure 8.4: Phonon dispersion curves and phonon density of states (in grey) of Mn3Pt
along the high symmetry path Γ-X-M-R-Γ in the Brillouin zone.

Table 8.1: Adiabatic phonon frequencies at the high symmetry points Γ, X, M, R of
the Brillouin zone in Mn3Pt from self-consistent linear response calculation.

ν ωΓ (cm−1) ωX (cm−1) ωM (cm−1) ωR (cm−1)
1 0 107.4 117.5 107.9
2 0 108.4 117.6 108.1
3 0 134.2 126.9 109.1
4 173.9 175.1 148.8 148.7
5 174.7 175.6 193.3 150.4
6 175.8 176.2 203.5 181.2
7 221.3 228.4 206.9 181.9
8 222.9 231.4 230.6 182.6
9 223.4 233.6 231.4 238.9

10 252.6 238.2 231.7 264.4
11 252.8 238.8 232.1 264.7
12 253.9 239.8 264.2 265.0
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non-adiabatic dynamical matrix is then given by Eq. 7.38. The non-adiabatic phonon
frequencies and polarization vectors are obtained by solving the nonlinear eigenvalue
problem for each mode separately. The non-adiabatic phonon frequencies at the high
symmetry points of the Brillouin zone are listed in Tab. 8.2.

Table 8.2: Non-adiabatic phonon frequencies at the high symmetry points Γ, X, M,
R of the Brillouin zone in the non-collinear antiferromagnetic phase of Mn3Pt from
non-self-consistent linear response calculation.

ν ω̃Γ (cm−1) ω̃X (cm−1) ω̃M (cm−1) ω̃R (cm−1)
1 0.0 106.3 115.9 106.8
2 0.0 106.5 116.9 106.9
3 0.0 134.5 126.5 107.1
4 169.5 169.0 141.3 141.4
5 170.4 169.7 187.6 143.1
6 171.9 170.0 198.5 175.5
7 218.1 224.6 202.4 176.2
8 218.9 229.0 227.4 178.8
9 219.2 229.3 227.5 234.3

10 249.0 234.6 228.1 260.9
11 250.1 234.9 228.3 262.0
12 250.3 236.2 261.7 262.4

As in the case of platinum clusters, non-adiabatic effects do not significantly modify
the vibrational spectrum. As a general behavior, we observe that non-adiabatic effects
tend to decrease the phonon frequencies. The difference between adiabatic and non-
adiabatic frequencies is however, no greater than 7 cm−1 (5% of the adiabatic frequency)
for all the modes and q-points studied. Moreover, the phonon frequencies in Tab. 8.2
were obtained with a finite inverse phonon lifetime η which further sets apart adiabatic
and non-adiabatic frequencies.

Compared to the case of platinum clusters, here we do not present the vibrational
frequencies obtained from the low-frequency expansion of the phonon self-energy as
in Mn3Pt they are equal to the adiabatic frequencies even though η 6= 0. The non-
adiabatic evaluation of the phonon dispersion curves as in Fig. 8.4 has not been done yet.
It requires adapting the Wannier interpolation technique of Ref. [20] to non-collinear
magnetic solids.

8.3.1 Interpolation technique

In metals, the k-points grid used for the adiabatic phonon response usually is not dense
enough to converge the summation in the phonon self-energy Eq. 7.37. We therefore
need to run a non-self-consistent calculation of the deformation potential on a more
dense k-points grid and generate the Kohn-Sham wavefunctions and eigenvalues on the
latter. By doing so, the ω-dependent part of the self-energy can be obtained. The
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ω-independent part instead must be calculated using the same k-points grid of the
adiabatic phonon calculation.

For Mn3Pt, we employ about 12000 k-points for the calculation of the ω-dependent
part of the self-energy. The 10× 10× 10 mesh, used for adiabatic phonon response, is
not sufficient. However, the non-self-consistent calculation of the deformation potential
matrix elements on the dense k-points grid resulted to be unfeasible because of memory
shortage, already above the 15 × 15 × 15 mesh. We needed therefore to break up the
summation into separate contributions. We used a 12× 12× 12 k-points grid as a base
and shifted the grid in 6 directions identified by the labels (100), (010), (001), (110),
(101), (011) in the space of the reciprocal lattice vectors. In these labels, the 1s are
associated to a displacement by half a grid step in the corresponding direction. For
example, (010) labels the grid shifted by half a grid step in the y direction. Similarly
the others.

We evaluate the ω-dependent part of the self-energy on each grid, including the
original one, and sum the results divided by the number of grids. The matrix is subse-
quently symmetrized according to the magnetic crystal group determined by the initial
magnetic configuration. Finally the ω-independent part of the phonon self-energy is
subtracted from the adiabatic dynamical matrix and the ω-dependent part is added.
The non-adiabatic phonon frequencies are then obtained as the square root of the
eigenvalues of the dynamical matrix.

It should be pointed out that the ω-dependent part of the self-energy can also be
calculated with a different electronic temperature than the one used for the adiabatic
phonon calculation. In Mn3Pt, however, we did not change the smearing when evalu-
ating the phonon self-energy.

8.4 Phonon angular momentum

We calculate the non-adiabatic phonon polarization vectors by diagonalizing the non-
adiabatic dynamical matrix. In Mn3Pt, the adiabatic phonon polarization vectors are
real everywhere in the Brillouin zone and the angular momentum of the static modes
vanishes. When we consider non-adiabatic effects, the phonon polarization vectors
become nontrivially complex and phonons can host a finite angular momentum. The
phonon polarization vectors determine the trajectory of the ions around equilibrium
positions. Phonon with nontrivially complex polarization vectors can be understood as
collective modes in which the ions spin around the equilibrium positions giving rise to
an orbital angular momentum perpendicular to the plane of the trajectory.

8.4.1 Two zone-corner optical modes

As an illustrative example, we show in Fig. 8.5 the phonon polarization vectors of
two optical modes of Mn3Pt at q = M = (0,−1

2 ,−
1
2), namely ν = 6 and ν = 7.

Because zone-corner phonons do not have the same periodicity of the crystal lattice,
to represent the eigendisplacements we use a 2× 2 supercell in the y and z directions,
according to the coordinates of the selected q point. From left to right, in Fig. 8.5,
the adiabatic (static) polarization vectors, the real and imaginary parts of the non-
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adiabatic (dynamical) polarization vectors (green arrows) and the angular momentum
of the two modes are represented (red arrows). Since the real and imaginary parts of
the non-adiabatic modes lie in the y-z plane, the angular momentum will be parallel to
the x direction in both vibrational modes. The adiabatic and non-adiabatic vibrational
frequencies of these modes are respectively ωM6 = 203.5 cm−1, ω̃M6 = 198.5 cm−1,
ωM7 = 206.9 cm−1 and ω̃M7 = 202.4 cm−1.

y

xz

ε6 Re[ε̃6] `610× Im[ε̃6]

ε7 Re[ε̃7] `7100× Im[ε̃7]

Figure 8.5: From left to right, representation in a 2 × 2 supercell in the y and z
directions of the adiabatic (static) phonon polarization vectors εqν , of the real and
imaginary parts of the non-adiabatic (dynamical) phonon polarization vectors ε̃qν and
of the phonon angular momentum `qν for two optical modes ν = 6, 7 in the non-
collinear antiferromagnetic phase of Mn3Pt at q = M = (0,−1

2 ,−
1
2). The adiabatic

and non-adiabatic frequencies are respectively ωM6 = 203.5 cm−1, ω̃M6 = 198.5 cm−1,
ωM7 = 206.9 cm−1 and ω̃M7 = 202.4 cm−1.

In the absence of magnetic interactions, these two modes would be degenerate and
a linear combination of the eigenvectors could be used to generate a phonon angular
momentum for each mode with opposite sign. In presence of magnetic interactions
instead, the degeneracy is broken due to the sizeable spin-orbit coupling of platinum
atoms. When non-adiabatic effects are taken into consideration, the phonon angular
momenta of the two modes ν = 6, 7 are still equal and opposite on each ion (see
Fig. 8.5) but there is a gap of about 4 cm−1 between the phonon frequencies. This
result demonstrates that non-adiabatic effects due to the electron-phonon interaction
can be used to generate intrinsic angular momenta of phonons in materials with non-
collinear magnetism and sizeable spin-orbit coupling.

The imaginary parts of the phonon eigendisplacements in the non-adiabatic frame-
work are magnified in Fig. 8.5. One can object that the imaginary parts for mode
ν = 7 have smaller size than the imaginary parts for mode ν = 6 while the angular
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momentum is of the same magnitude. This is due to the fact that the imaginary parts
of the phonon polarization vectors ε̃M6 are almost parallel to the real parts, while the
imaginary parts of the polarization vectors ε̃M7 are perpendicular to the real parts on
each site. Given the definition of the angular momentum Eq. 7.24, even if the imaginary
parts for mode ν = 7 are smaller, their contribution to the cross product is larger. For
the two selected modes, the x component of the phonon angular momentum is equal to
`M6,x = −`M7,x = 0.011 ~, which is the same order of magnitude of the orbital angular
momentum of electrons in itinerant ferromagnets [26], namely few percents of ~.

8.4.2 High symmetry points of the Brillouin zone

The non-adiabatic phonon polarization vectors and phonon angular momenta have
been calculated for each mode at the high symmetry q-points Γ, X = (0, 0,−1

2), M =
(0,−1

2 ,−
1
2), R = (−1

2 ,−
1
2 ,−

1
2). The Cartesian components of `qν are listed in Tab. 8.3

in units of ~ together with the corresponding non-adiabatic phonon frequencies. Some
modes exhibit a huge angular momentum but are quasi-degenerate with other modes
that have the same angular momentum with opposite sign (see for example ν = 1,
ν ′ = 2 at X and ν = 9, ν ′ = 11 at M). This can make it difficult to distinguish them
without using a spin-polarized probe.

The most interesting result concerns those modes that are far apart enough in
energy to be distinguishable, and, at the same time, have sizeable angular momentum.
This is the case of optical modes ν = 6 and ν ′ = 7 at M, described previously. The
phonon frequencies are about 4 cm−1 far apart in energy and the angular momentum
is equal to few percent of ~. In this case, the two modes can be distinguished and the
angular momentum of each can be observed.

Another interesting result from our analysis is that angular momentum is large
particularly for vibrational modes that involve manganese atoms. This must be related
to the fact that manganese atoms determine the magnetic configuration of the system.
Therefore, the sizeable angular momentum is probably the consequence of the variation
of the magnetic moments of the ions due to the phonon ionic displacement.

When the non-adiabatic phonons are evaluated using the low-frequency expansion of
the self-energy, Eq. 7.21, the angular momentum is nonzero. The phonon polarization
vectors indeed, and the angular momentum, are affected by non-adiabatic effects at
the very first order in the low-frequency expansion. The vibrational frequencies instead
are modified only at second order. The finite angular momentum of phonons in non-
collinear antiferromagnetic Mn3Pt is therefore direct expression of the Kohn-Sham
Berry curvature Eq. 7.17 which breaks time-reversal symmetry of the phonon eigenvalue
equation.

Our results demonstrate that non-adiabatic effects due to the electron-phonon cou-
pling are time-reversal symmetry breaking interactions for the phonon field as they
can intrinsically engender a nonzero angular momentum of phonons. The study of
non-adiabatic effects and vibrational angular momentum in the non-collinear antiferro-
magnetic alloy with finite inverse phonon lifetime η confirms the validity of theoretical
predictions for metals.
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Table 8.3: Non-adiabatic phonon frequencies ω̃q (in cm−1) and phonon angular mo-
mentum (in units of ~) in the non-collinear antiferromagnetic phase of Mn3Pt at the
high symmetry points of the Brillouin zone Γ, X = (0, 0,−1

2), M = (0,−1
2 ,−

1
2),

R = (−1
2 ,−

1
2 ,−

1
2) (a,b,c,d sub-tables respectively).

ω̃Γ(cm−1) `x(~) `y(~) `z(~)
0.0 −0.004 −0.005 −0.004
0.0 0.003 0.005 0.004
0.0 0.000 0.000 0.000

169.5 −0.005 −0.004 −0.002
170.4 0.005 0.004 0.001
171.9 −0.001 0.000 0.000
218.1 0.002 0.019 0.024
218.9 0.033 −0.014 −0.027
219.2 −0.032 −0.002 0.006
249.0 −0.002 −0.002 −0.002
250.1 −0.027 −0.026 −0.029
250.3 0.027 0.026 0.029

(a)

ω̃X(cm−1) `x(~) `y(~) `z(~)
106.3 −0.011 −0.010 −0.319
106.5 0.009 0.008 0.319
134.5 0.002 0.002 0.000
169.0 0.000 0.000 0.020
169.7 0.001 0.000 0.000
170.0 0.000 0.000 −0.020
224.6 0.000 0.000 0.000
229.0 −0.003 −0.002 0.109
229.3 0.003 0.002 −0.111
234.6 −0.015 −0.045 0.007
234.9 0.004 0.045 −0.028
236.2 0.010 0.001 0.021

(b)

ω̃M (cm−1) `x(~) `y(~) `z(~)
115.9 −0.027 −0.004 −0.004
116.9 0.028 0.002 0.002
126.5 0.000 0.003 0.003
141.3 0.000 0.000 0.000
187.6 0.000 −0.001 −0.001
198.5 0.011 0.000 0.000
202.4 −0.011 0.000 0.000
227.4 0.000 −0.001 0.000
227.5 −0.122 0.004 0.003
228.1 0.000 0.001 0.000
228.3 0.121 −0.003 −0.001
261.7 0.001 0.000 0.000

(c)

ω̃R(cm−1) `x(~) `y(~) `z(~)
106.8 −0.015 −0.025 −0.035
106.9 0.007 0.023 0.039
107.1 0.007 0.002 −0.004
141.4 0.001 0.001 0.001
143.1 0.000 0.000 0.000
175.5 0.019 0.026 0.030
176.2 −0.018 −0.027 −0.032
178.8 −0.002 0.000 0.000
234.3 0.001 0.001 0.001
260.9 −0.002 0.000 0.002
262.0 0.043 0.030 0.023
262.4 −0.042 −0.031 −0.025

(d)

8.5 Summary

In this chapter we presented the results obtained in the framework of the theory dis-
cussed in chapter 7 for a metallic manganese compound in the non-collinear magnetic
phase. We performed fully relativistic ab-initio calculations of electronic properties,
of the magnetic structure and of vibrational properties in Mn3Pt. This system is
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particularly attractive because recent studies have demonstrated the existence of the
anomalous Hall effect in epitaxial films of Mn3Pt at room temperature [23–25].

The calculated results showed that this material is stable in a non-collinear anti-
ferromagnetic (D) phase with a triangular spin texture on the manganese atoms and
that d-type orbitals of manganese atoms provide the main contribution to the band
structure close to the Fermi level determining the metallic character of the system.
As for what concerns the vibrational properties, firstly the phonon dispersion curves
were calculated within the static linear response theory, using a 2 × 2 × 2 q-points
grid. Then, the non-adiabatic effects were taken into account by evaluating the phonon
self-energy in reciprocal space from Eq. 7.37 at the high symmetry point Γ, M, X, R
of the reciprocal space. The non-adiabatic phonon frequencies and polarization vectors
were obtained as solutions of the nonlinear eigenvalue problem of the dynamical ma-
trix Eq. 4.54. As a last step, the phonon angular momentum was calculated from the
phonon polarization vectors using Eq. 7.24.

It is found that some phonon modes at the high symmetry points host a finite
angular momentum driven by the non-adiabatic effects. Most interestingly, some non-
degenerate modes have equal and opposite Cartesian components of the angular mo-
mentum. When this is the case, the angular momentum of phonons can be measured via
spin-polarized spectroscopy. As the vibrational angular momentum affects the atomic
dipoles, the absorption intensities is different for left and right circular polarizations.
The phonon chirality is qualitatively different from any other study as it arise intrinsi-
cally from the non-adiabatic interaction with electrons and occurs even in the absence
of external fields and for non-degenerate phonon modes.

The results of the calculations demonstrate that non-adiabatic effects are time-
reversal symmetry breaking interactions for the phonon field and induce a nonzero
angular momentum of phonons in non-collinear magnetic materials.





Conclusions and perspectives

Non-adiabatic effects due to the electron-phonon interaction are usually investigated in
the Raman spectrum, particularly at zone center, in metallic systems. Though, they
have never been related neither to the topological properties of materials such as the
Berry curvature nor to the angular momentum of phonons. In this thesis, we demon-
strate that non-adiabatic effects due to the coupling between electrons and vibrational
modes are time-reversal symmetry breaking interactions for the vibrational field in non-
collinear magnetic molecules and non-collinear magnetic periodic systems. As in these
systems the deformation potential matrix elements cannot be real valued, a nonzero
synthetic field (Kohn-Sham Berry curvature) arises. As a result, an intrinsic nonzero
phonon angular momentum occurs even for non-degenerate modes and in the absence
of external time-reversal symmetry breaking probes.

We outlined the theoretical and experimental background in which our research has
been carried on as well as the methodological framework on which we relied to develop
our own theories. The interaction between vibrational modes and external magnetic
fields is demonstrated by the phonon Hall effect, in which a transverse thermal current
is measured, and by the phonon contribution to the gyromagnetic ratio in Einstein-
de Haas effect, where a variation of the electronic magnetization induces a mechanical
rotation of the system. When the external time-reversal symmetry breaking mechanism
is accompanied with an internal spin-phonon interaction, phonons carry an elliptical
polarization and a finite (pseudo) angular momentum. In the absence of external probes
instead, phonons are linearly polarized and a nonzero angular momentum can arise in
twofold degenerate modes through a linear combination of the phonon eigenvectors.

As a third option, we identified an intrinsic mechanism to generate nonzero phonon
angular momentum in the absence of external probes, for non-degenerate modes. In
the Born-Oppenheimer approximation, we showed that the nuclear dynamics along
the potential energy surface is governed by an effective Hamiltonian which includes the
back-interaction of electrons under the form of a synthetic gauge field, namely the Berry
curvature defined in the space of the ionic coordinates. In the harmonic approximation,
the screening of electrons therefore affects the phonon eigenvalue problem resulting in
a linear damping term in the vibrational frequency ω. In the same way as the equa-
tions of motion are handled for an ionic crystal lattice into an external magnetic field,
we separated the polarization vectors of the coordinates and momenta and diagonalize
the curvature-dependent effective Hamiltonian. The screening of electrons acts on the
nuclear dynamics as an effective magnetic field that breaks time-reversal symmetry of
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the phonon field. As a consequence, the phonons are allowed to host a finite angular
momentum which we call intrinsic because it arises from the Berry connection of elec-
trons in the absence of external probes.

We demonstrated, both at the theoretical and the numerical stage, that non-
adiabatic effects due to the electron-phonon coupling result in the aforementioned
nonlinear eigenvalue problem of lattice dynamics and hence entail an intrinsic angular
momentum of phonons.

In the Kohn-Sham formulation of density functional perturbation theory, non-
adiabatic effects can be taken into account via time-dependent linear response the-
ory. This way of proceeding is usually referred to as the dynamical Born-Oppenheimer
approximation, opposed to the more common static one. Following the approach of ref-
erence [20], we evaluated the non-adiabatic phonon response with a non-self-consistent
procedure involving the k-point grid interpolation of the adiabatic deformation poten-
tial. We generalized this first-principles method to study non-adiabatic effects, first
in insulating molecular systems, and then in periodic extended insulating and metallic
systems with non-collinear magnetic phases.

In insulators with vibrational frequencies much smaller than the electronic gap, the
phonon self-energy can be expanded in power series of the frequency ω, the linear order
coefficients being proportional to the Kohn-Sham Berry curvature of electronic eigen-
states defined in the space of the phonon ionic displacements. Since the Berry curvature
vanishes in nonmagnetic and collinear magnetic systems, because the deformation po-
tential matrix elements are real valued, we perform a first-principles calculation of
adiabatic and non-adiabatic vibrational modes in two non-collinear magnetic platinum
clusters. The large spin-orbit coupling, together with the magnetic interaction, leads to
a time-reversal symmetry breaking of the optical modes in these nanoclusters. There-
fore, a sizeable angular momentum arise especially in those modes that would have been
degenerate in the absence of the symmetry breaking, even though the non-adiabatic
correction of the vibrational frequency is negligible.

In metals, the series expansion can be carried out only by retaining the small imag-
inary part η. The parameter represents the inverse phonon lifetime and, even if small,
it cannot be neglected when the self-energy is singular. With these precuations, the
non-adiabatic force constant matrix can still be related with a generalized Kohn-Sham
Berry curvature in the low-frequency limit. Even if the higher order terms should not
in principle be neglected, in practical calculations, we show that the results obtained in
the linear approximation are qualitatively correct. The theory of non-adiabatic effects
for insulators is recovered by setting η = 0. The demonstration highlights the link be-
tween low-frequency non-adiabatic effects, due to the coupling between electrons and
vibrational modes, and topological properties of the system such as the Kohn-Sham
Berry curvature, in materials ranging from insulating molecular systems to metallic
solids.

Finally, the theoretical prediction is tested against numerical simulations in bulk
manganese alloy Mn3Pt with non-collinear antiferromagnetic order. The system is not
only suitable for our purpose, as the platinum atoms transfer the spin-orbit coupling
via hybridization to the magnetic manganese ions, but also it is known to exhibit
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topological anomalous Hall currents in its two-dimensional form [23–25]. On Mn3Pt,
we perform fully relativistic ab-initio calculations of the electronic properties, of the
magnetic structure and of vibrational modes. The material stabilizes in a non-collinear
Néel phase with the magnetic manganese atoms arranged in a Kagome sublattice with
triangular spin texture. The main contribution to the band structure close to the
Fermi level, and hence the metallic character of the compound, is determined by the
3d orbitals of manganese atoms. non-adiabatic effects and the angular momentum of
phonons are finally obtained from the nonlinear eigenvalue problem of the dynamical
matrix, with a selected value of the parameter η, at the high symmetry points Γ, M,
X, R, with and without the low-frequency linear expansion. A k-points interpolation
technique is also employed to calculate the frequency-dependent part of the phonon
self-energy.

We find that some non-degenerate phonon modes (up to 4 cm−1 far apart) host a
sizeable angular momentum driven by the non-adiabatic effects, the magnitude being
of the same order of electron orbital momenta in itinerant ferromagnets, namely few
percents of ~. Moreover, our analysis shows that the angular momentum is finite for
vibrational modes that involve primarily the magnetic manganese atoms. The effect is
probably the consequence of the variation of the magnetic moments of the ions due to
the phonon ionic displacement. The numerical simulations in Mn3Pt demonstrate that
non-adiabatic effects are time-reversal symmetry breaking interactions for the phonon
field and induce a nonzero angular momentum of phonons in non-collinear magnetic
materials.

We further pointed out that the angular momentum of non-degenerate vibrational
modes can be measured with spin-polarized Raman spectroscopy, as the absorption
intensities are different for left and right circular polarizations. The phonon chirality
hereby presented is qualitatively different from any other study as it arise intrinsically
from the non-adiabatic interaction with electrons and occurs even in the absence of
external fields.

Hopefully, our work will foster new experiments in the field aimed at measuring and
discovering new physical effects due to the occurence of a finite angular momentum of
phonons.





Appendix A

Time-reversal symmetry

Time-reversal (TR) is the operation that reverses the time, namely T : t → −t. The
TR symmetry is the property of physical laws and phenomena of being invariant under
the TR transformation. In classical mechanics, TR is equivalent to motion reversal as
typically the Lagrangian of the system is quadratic in the velocities. If the trajectory
r(t) is a solution of the Lagrangian equations, also r(−t) will be so. In quantum
mechanics the TR operator T transforms the coordinates and momenta according to

T rT −1 = r (A.1)
T pT −1 = −p (A.2)

Since the commutation relation [ri, pj ] = i~δij holds, the TR operator is antilinear,
namely it includes the action of the complex conjugation operator K. But how does
the TR operator transform the wavefunction ψ(r, t)? We must distinguish between
spinless particles, for which the wavefunction is scalar, and spinfull particles, for which
the wavefunction is a spinor.

A.1 Spinless particles

For spinless particles the time-reversed Schrödinger equation reads

− i~∂ψ(r,−t)
∂t

= Hψ(r,−t), (A.3)

which is equal to the ordinary Schrödinger equation for the complex conjugated wave-
function due to the reality of the hamiltonian. In the spinless case therefore the TR
operator is equal to the complex conjugation operator, namely T = K, and its action
on the wavefunction is simply given by T ψ(r, t) = ψ∗(r,−t).

A.2 Spinfull particles

More in general it can be shown that the TR operator must be an antiunitary operator
namely T = UK where U is a unitary operator. Notice that, even if T commutes with
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the Hamiltonian, there is no conserved quantity associated with it because it does not
commute with the evolution operator e−iHt/~. In order to derive an expression for T ,
we consider the action of the TR operator on the angular momentum. Stemming from
equations A.1, the orbital angular momentum defined as L = r× p, transforms as

T LT −1 = −L. (A.4)

As for the spin angular momentum, we require that it also changes sign under time-
reversal transformation, namely

T ST −1 = −S. (A.5)

By considering the action of a antiunitary operator on the components of the spin
angular momentum, we get

−Sx = UKSxKU = USxU (A.6)
−Sy = UKSyKU = −USyU (A.7)
−Sz = UKSzKU = USzU. (A.8)

The unitary operator U must therefore be equal to a −π spin rotation about the y
axis, namely U = eiSyπ/~. For half-integer spin particles (fermions), the TR operator
satisfies T 2 = −1 while for an integer spin particle (bosons) the TR operator satisfies
T 2 = 1. For spin-1/2 particles (like electrons) the unitary operator can be written as
U = eiσyπ/2 where σy is the Pauli matrix. Then, by writing the exponential in power
series and using the property of the Pauli matrix σ2

y = I, the unitary operator reads
U = iσy. Finally, the time-reversal operator for spin-1/2 particles can be written as

T = iσyK. (A.9)

A crucial property of TR symmetry when applied to spinfull18 electrons is the
Kramers degeneracy theorem which states that for every energy eigenstate of a TR
symmetric system there is at least one more eigenstate with the same energy. When
the spin-orbit coupling (SOC) is weak, the two degenerate states (Kramers doublet)
can be seen as spin-up and spin-down partners but when SOC is strong19 they can only
be thought of as time-reversed partners.

In magnetic materials, the TR symmetry is spontaneously broken which means
that the system finds energetically favourable a configuration in which the spin ↑ and
↓ states (or the time-reversal paired states) are not equally populated. In this case
then, the Hamiltonian is TR invariant but the ground state is not. Typically, the
magnetic moments arrange in a well defined magnetic order so as to minimize the
energy of exchange interactions between them. The most common magnetic orders
(ferro-, antiferro-, ferri- magnetism) fall within the family of collinear magnetism in
which all the spins are aligned along a preferencial direction. But there exist also
some stable configurations of noncollinear magnetic order, mostly due to geometric
frustration, as for example the Néel 120◦ structure in which the magnetic moments are
aligned with an angle of 120◦ between neighbouring magnetic moments.

18Sometimes electrons are treated as spinless particles.
19In the Hamiltonian SOC is invariant under TR.
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A.3 Bloch states
In solids, the electrons wavefunction complies with the Bloch’s theorem

ψk(r) = eik·ruk(r) (A.10)

where k is the crystal momentum of the electron and uk(r) is the periodic part of the
wavefunction which satisfies uk(r) = uk(r+R) with R lattice translational vector. The
time-independent Shrödinger equation reads

Hkuk(r) = εkuk(r) (A.11)

where Hk = e−ik·rHeik·r is a k-dependent effective Hamiltonian. Time-reversal trans-
forms k to −k in Bloch wavefunctions and Hamiltonian, namely

T ψk(r) = ψ−k(r) (A.12)
T HkT −1 = H-k. (A.13)

When k = −k + G, where G is a reciprocal lattice vector, the effective Hamiltonian
Hk commutes with time-reversal operator and the Bloch state is doubly degenerate
owing to Kramers theorem. These special wavevectors are called time reversal invariant
momenta (TRIM). When inversion symmetry is also present, the combined operator
I ∗ T maps k to itself at all k and the bands are doubly degenerate everywhere in the
Brillouin zone.

The spinor Bloch wavefunction transforms as

T
(
ψk↑
ψk↓

)
=
(
ψ−k↓
−ψ−k↑

)
. (A.14)

Applying the time-reversal transformation twice gives T 2 = −1. When time-reversal
symmetry holds, the two time-reversed states are degenerate (Kramers theorem), namely
εk↑ = ε−k↓. If also inversion symmetry holds or in the absence of spin-orbit interaction,
then εkσ = ε−kσ where σ = {↑, ↓}.





Appendix B

Berry connection in the
harmonic approximation

In the harmonic approximation, the Hamiltonian of the ionic vibrations include only
quadratic terms in the phonon displacement u and its conjugate momentum p. This
is why the Berry connection in 3.30 must be linear with u. To this end, we take
inspiration from electromagnetism. In fact, we remind that the vector potential A, in
the symmetric gauge, can be expressed in terms of the constant magnetic field B and
of the spacial coordinate as

A = 1
2B× r (B.1)

Analogously we may write the geometric vector potential in a proper gauge as

X = 1
2Y × u (B.2)

where Y is a constant vector to be determined. Again by analogy with the magnetic
field, Y is equal to the curl of the Berry connection and therefore it is related to the
Berry curvature Ω in the following way

Y = ∇×X =

Ωyz

Ωzx

Ωxy

 (B.3)

Then by replacing Eq. B.3 into Eq. B.2 we obtain the linearized Cartesian components
of the Berry connection as

Xα = −1
2
∑
β

Ωαβuβ. (B.4)
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Appendix C

Phonon angular momentum

Let us rewrite here the second quantization relation of the phonon ionic displacement

uLs =

√
~

2N
∑
k

εks
1√
Msωk

(
ake
−iωkt + a†−ke

iωkt
)
eiq·RL . (C.1)

Its time derivative is

u̇Ls =

√
~

2N
∑
k

εks
1√
Msωk

(
−iωkake−iωkt + iωka

†
−ke

iωkt
)
eiq·RL . (C.2)

The z component of the phonon angular momentum reads

Nph
z = ~

2N
∑
Ls

∑
kk′

(εksxεk′sy − εksyεk′sx) 1
√
ωk

(
ake
−iωkt + a†−ke

iωkt
)

i
√
ωk′

(
−ak′e−iωk′ t + a†−k′e

iωk′ t
)
ei(q+q′)·RL . (C.3)

We then use the relation
∑
L e

i(q+q′)·RL = Nδq,−q′ to rewrite it as

Nph
z = ~

2
∑
s

∑
kν′

(εksxε∗qν′sy − εksyε∗qν′sx) 1
√
ωk

(
ake
−iωkt + a†−ke

iωkt
)

i
√
ωqν′

(
−a−qν′e

−iωqν′ t + a†qν′e
iωqν′ t

)
. (C.4)

We consider only aa† and a†a terms because the others vanish at equilibrium. The
z-component of the phonon angular momentum can be written as

Nph
z = ~

2
∑
s

∑
kν′

(εksxε∗qν′sy − εksyε∗qν′sx)i
√
ωqν′

ωk

×
(
aka
†
qν′e

i(ωqν′−ωk)t − a†−ka−qν′e
−i(ωqν′−ωk)t

)
. (C.5)

Using the commutation relation [ak, a†k′ ] = δkk′ and changing k → −k in the last term
we obtain

Nph
z = 1

2
∑
kk′

`kk′,z

(√
ωk
ωk′

+
√
ωk′

ωk

)
δq,q′a

†
k′ake

i(ωk′−ωk)t + 1
2
∑
k

`kk,z. (C.6)
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which is Eq. 3.47 in the main text, where k = (q, ν) and `kk′,z = ~
∑
s i(εksxε∗k′sy −

εksyε
∗
k′sx). The expectation value of the phonon angular momentum is then given by

〈Nph
z 〉 =

∑
qν
`qν,z

[
b(ωqν) + 1

2

]
. (C.7)



Appendix D

Methodological framework

Some methods and techniques that are commonly used in first-principles calculations
are rapidly reviewed. From a computational point of view, the KS equations are imple-
mented with an iterative procedure known as self-consistent field (SCF) method. The
starting guess charge density n(r), obtained from atomic orbitals, is used to calculate
the Hartree and exchange-correlation functional.Then we replace the potentials into
Eq. 4.1 and diagonalize the KS Hamiltonian to obtain the eigenstates |ψi〉. Finally, the
new charge density is calculated from the eigenstates, using Eq. 4.5. The procedure is
then iterated until the difference between the input and the output charge density is
smaller than a given threshold.

D.1 Plane waves basis set
Bloch’s theorem states that the solutions of the Schrödinger equation in a periodic
potential take the form of a plane wave modulated by a periodic function, namely
ψki(r) = eik·ruki(r) where uki(r) has the same periodicity of the crystal, namely
uki(r) = uki(r + R), and k is the crystal momentum vector. In practical calculations
the wavefunction is usually expanded in a plane waves basis set as [109]

ψki(r) = 1√
V

∑
G
ck+Ge

i(k+G)·r (D.1)

where the reciprocal lattice vectors G are defined by eiG·R = 1 where R is any vector
of the Bravais lattice. The plane waves expansion of Eq. D.1 is formally exact but it
requires an infinite number of plane waves. The summation thus needs to be truncated
to include only the plane waves that have a kinetic energy smaller than a given cutoff,
namely 1

2 |k + G|2 < Ecut. This approximation affects the accuracy of the results.

D.2 Pseudopotential approximation
The core electrons do not take part in the chemical bonds as the latter is entirely de-
termined by the outermost peak of the valence electrons wavefunction. The external
potential of the nuclei Eq. 4.2 is therefore replaced, in practical calculations, by an
effective potential acting on the valence electrons [110]. As the wavefunctions of the
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valence electrons are orthogonal to the core electrons wavefunctions, they rapidly os-
cillate in the core region (r < rc, where rc is the core radius). When expanding the
wavefunctions on a plane wave basis set it is therefore extremely time-consuming to
reproduce such a behavior, as too many plane waves would be necessary.

In the pseudopotential approximation instead, we replace the core electrons and
the strong Coulomb potential with a weaker pseudopotential (PP) that acts on a set
of smooth pseudo-wavefunctions. These pseudo-wavefunctions are smooth in the core
region and they reproduce the behavior of the all-electron wavefunctions outwards. So
that the pseudo and all-electron wavefunctions coincide beyond the core radius, the
integrals of squared amplitudes of the two functions must be the same [111], namely∫ rc

0
|ψPP(r)|2dr =

∫ rc

0
|ψAE(r)|2dr. (D.2)

The PPs that fulfil Eq. D.2 are called norm-conserving (NC) PPs because the norm of
the wavefunction is conserved. This property also ensures the charge conservation in
the core region. The PP is built one and for all for each atom starting from the AE
wavefunctions. Then a parametrized form for the ionic PP is chosen and adjusted so
that the pseudo-wavefunctions match the AE wavefunctions outside the core radius and
the pseudo-eigenvalues are equal to the AE ones. The PPs thus built can then be used
reliably for any other atomic or periodic configuration. Such transferability is one of the
main benefit of the pseudopotential technique over all electron DFT implementations.

Alternative approaches to the NC scheme have been later proposed. The ultrasoft
(US) pseudopotential scheme [112] allows to relax the norm conservation condition on
the wavefunction and it introduces some localized augmentation charges (the charge
density difference between AE and pseudo wavefunction) to make up for the charge
deficit. The projector augmented wave (PAW) method [113] instead is an all-electron
technique in which some auxiliary wavefunctions are used to construct the true wave-
functions and the total energy functional is evaluated from the latter. A more complete
description of PPs techniques can be found in reference [74].

D.3 Electronic temperature
The electronic temperature is a computational artifact that improves convergence with
respect to Brillouin zone sampling in metals. At zero temperature, the occupation
function drops abruptly from 1 to 0 as the corresponding eigenvalue becomes larger
than the Fermi energy. Since key physical quantities like the charge density and the
total energy are obtained as a sum over all the occupied states, in a metal at zero
temperature we end up integrating functions that drop abruptly to zero when the
corresponding band crosses the Fermi energy. As the integration of a discontinuous
function requires a very fine mesh, we use an electronic temperature to smear the
occupation function and reduce the computational cost. The price to pay is that we
are adding an electronic entropical term to the energy. We thus have to converge the
electronic temperature with respect to k-points. Nowadays, there exist many different
kind of smearing techniques (occupation functions). An overview of the most relevant
ones together with advantages and drawbacks of each can be found in Ref. [114].



Appendix E

Properties of the approximated
force constant matrix

Let us take a closer look at the product of the deformation potential matrix elements
in real space used in the approximated force constant functional with explicit spin,
namely

dλk′kd
η
kk′ =

∑
σ1σ2

〈ψk′σ1 |
∂V σ1σ2

KS
∂uλ

|ψkσ2〉
∑
σ3σ4

〈ψkσ3 |
∂V σ3σ4

KS
∂uη

|ψk′σ4〉. (E.1)

Here the index k includes both the wavevector k and the band index i (same for k′)
and the index λ includes the ionic index I and the Cartesian index α (same for η). We
then consider a function of the kind

Fλη =
∑
kk′

W (k, k′)
∑
σ1σ2

〈ψk′σ1 |
∂V σ1σ2

KS
∂uλ

|ψkσ2〉
∑
σ3σ4

〈ψkσ3 |
∂V σ3σ4

KS
∂uη

|ψk′σ4〉 (E.2)

where W (k, k′) is some real weighting function that only depends on the indexes k and
k′. It easy to show that the matrix elements, and hence F itself, are hermitian under
exchange of the indexes λ and η, namely

Fλη = F ∗ηλ. (E.3)

Moreover, we can relate the symmetry properties of the matrix F to the symmetry
properties of the weighting function W . Indeed, if we exchange the summation indexes
k ↔ k′, σ1 ↔ σ2, σ3 ↔ σ4, we get

Fλη = Fηλ ⇐⇒ W (k, k′) = W (k′, k) (E.4)
Fλη = −Fηλ ⇐⇒ W (k, k′) = −W (k′, k) (E.5)

Together with the hermiticity condition Eq. E.3, this implies that F is real if W is
symmetric and imaginary if W is antisymmetric.

E.1 Fourier transformation
In this section we make explicit all the indexes but omit the spin as the latter case is
straightforward. The Fourier transform of the derivative of some potential V (r) with
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respect to the ionic displacement uI is given by

∂V (r)
∂uI

= 1
N

∑
q
e−iq·RL

∂V (r)
∂uqs

. (E.6)

The Fourier transform of the matrix elements given in Eq. E.1 can therefore be calcu-
lated as follows. First we rewrite the matrix element as

dIki,k′j = 〈ψki|
∂VKS(r)
∂uI

|ψk′j〉 = 1
N

∑
q
〈ψki|

∂vKS(r)
∂uqs

eiq·(r−RL)|ψk′j〉 (E.7)

where vKS(r) is the periodic part of the KS potential, namely VKS(r) = vKS(r)eiq·r.
Then we use the Bloch theorem for solids

ψki(r) = 1√
N
eik·ruki(r) (E.8)

to express the matrix element through the periodic part of the wavefunction as

dIki,k′j = 1
N

∑
q
e−iq·RL

1
N

∑
R

∫
unit
cell

dr ei(k′−k+q)·r u∗ki(r)∂vKS(r)
∂uqs

uk′j(r) (E.9)

where we made explicit the sum over lattice vectors and the integral over the unit cell.
Then we change variables r = r′+ R, exploit the periodicity of the product u∗ δvδuu and
use the relation 1

N

∑
R eik·R = δk to write

dIki,k′j = 1
N

∑
q
e−iq·RL δk,k′+q 〈uk′+qi|

∂vKS(r)
∂uqs

|uk′j〉 (E.10)

where integration in equation E.10 is understood to be on the unit cell.
The other matrix element, when multiplied by δk,k′+q, following the same procedure
as for the former, can be written as

δk,k′+qdJk′j,ki = δk,k′+q
1
N
eiq·RM 〈uk′j |

∂vKS(r)
∂u∗qr

|uk′+qi〉 (E.11)

Therefore the product dIki,k′jdJk′j,ki reads

dIki,k′jdJk′j,ki = 1
N2

∑
q
e−iq·(RL−RM )δk,k′+q〈uk′+qi|

∂vKS
∂uqs

|uk′j〉〈uk′j |
∂vKS
∂u∗qr

|uk′+qi〉

(E.12)
and the Fourier transform can be defined as

dIki,k′jdJk′j,ki
FT←→ δk,k′+qd̃

s
k′+qi,k′j(d̃

r
k′+qi,k′j)∗ (E.13)

where the Fourier transformed deformation potential matrix element is given by d̃sk′+qi,k′j =
〈uk′+qi|∂vKS

∂uqs
|uk′j〉. The function F in real space defined in Eq. E.2 can be written in

this context as
FIJ =

∑
ki

∑
k′j

W (ki,k′j)dIki,k′jdJk′j,ki (E.14)
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where the weighting function W is independent on the cell coordinates. Its Fourier
transform is therefore given by

F̃sr(q) =
∑
kij

W (k + qi,kj)d̃sk+qi,kj(d̃
r
k+qi,kj)∗. (E.15)

Following the symmetry properties of FIJ , also the Fourier transform is hermitian,
namely F̃sr(q) = F̃ ∗rs(q) and satisfies the following relations:

F̃ ∗sr(q) = F̃sr(−q) ⇐⇒ W (k, k′) = W (k′, k) (E.16)
F̃ ∗sr(q) = −F̃sr(−q) ⇐⇒ W (k, k′) = −W (k′, k). (E.17)

E.2 Deformation potentials and time-reversal symmetry

Let us consider only the matrix element in real space dI[B]
k′k with magnetic field B and

see what happens if we enforce time-reversal symmetry. We recall that T = iσyK for
spin systems. By multiplying for the identity I = T †T on both sides of the deformation
potential, one obtains

d
I[B]
ki,k′j = 〈ψ[B]

ki |
(
T †T ∂V

[B]
KS

∂uI
T †T |ψ[B]

k′j 〉
)

(E.18)

where the bracket are necessary to make clear that operators act on the right and sum-
mation over spin indexes is included in the spinor product. We then use the property
of antilinear operators 〈φ|(A|ψ〉) = [(〈ψ|A†)|φ〉]∗ = 〈ψ|(A†|φ〉) to rewrite the matrix
element as

d
I[B]
ki,k′j = 〈ψ[−B]

−k′j |T
∂V

[B]
KS

∂uI
T †|ψ[−B]

−ki 〉 (E.19)

where hermiticity of VKS has been used and |ψ[−B]
−ki 〉 is the time-reversed of |ψ[B]

ki 〉 in-
tended as a spinor. For magnetic systems, the KS potential is such that T V [B]

KS T † =
V

[−B]
KS . Therefore the matrix element at B can be related to the time-reversed matrix

element as

d
I[B]
ki,k′j = 〈ψ[−B]

−k′j |
∂V

[−B]
KS
∂uI

|ψ[−B]
−ki 〉. (E.20)

If the system is not invariant under time-reversal, as for example magnetic materials,
the Kramers degeneracy is broken and the two time-reversal pair states have different
energies.
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