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Abstract—A general framework for change detection is proposed
to analyze multimodal remotely sensed data utilizing the Kronecker
product between two data representations (vectors or matrices).
The proposed method is sensor independent and provides compara-
ble results to techniques that exist for specific sensors. The proposed
fusion technique is a pixel-level approach that incorporates inputs
from different modalities, rendering enriched multimodal data
representation. Thus, the proposed hybridization procedure helps
to assimilate multisensor information in a meaningful manner.
A novel change index (ζ) is defined for the general multimodal
case. This index is then used to quantify the change in bitem-
poral remotely sensed data. This article explores the usability,
consistency, and robustness of the proposed multimodal fusion
framework, including the change index, with proper validation on
two multimodal cases: 1) the dual-frequency (C- andL-band) fully
polarimetric Danish EMISAR data and 2) the dual-polarimetric
synthetic aperture radar and Sentinel-2 multispectral data. De-
tailed analysis and validation using extensive ground-truth data
are presented to establish the proposed framework.

Index Terms—Change detection (CD), dual-frequency PolSAR,
Kronecker product of matrices, multimodal data, synthetic
aperture radar (SAR) optical fusion.

I. INTRODUCTION

I
N 2009–2010, the Data Fusion Contest organized by the

Data Fusion Technical Committee of the IEEE Geoscience

and Remote Sensing Society focused its attention on detecting

flooded areas using multitemporal and multimodal images. The

performance of various approaches was evaluated based on

Cohen’s Kappa (κ) statistic. The best-ranked algorithm was the
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one that used data from both synthetic aperture radar (SAR) and

optical sensors [1]. This outcome is indicative of a paradigm shift

toward utilizing data from various sensors to perform decision

fusion.

On the one hand, multitemporal remote sensing (RS) images

from multiple sensors are becoming widely available, making

it useful for researchers across various fields to develop change

detection (CD) techniques catering to multimodal data [2], [3].

In contrast, a simple yet generic multimodal algorithm seems

challenging due to varying changes of patterns inherent to dif-

ferent sensors and different spatial resolution [4].

While pixel-level multimodal fusion methods mainly focus

on multispectral (MS) data fusion, high-level fusion includes

feature-level and decision-level fusion of multisource data, such

as SAR, MS, LiDAR, and other types of data [2]. Multimodal

RS data have been integrated for land-cover CD [5] and classifi-

cation of ecological zones [6]. A drought monitoring model has

also been proposed using multisource RS data recently [7].

CD using single-mode RS data, such as MS image, is a

mature area of research with techniques ranging from simple im-

age differencing and rationing to advanced deep-learning-based

ones [8]–[10]. Similar is the case with multitemporal SAR-based

CD algorithms [11], [12].

Due to the increased availability of polarimetric SAR (Pol-

SAR) data from various satellites, CD techniques on such

datasets have also become vital to the RS community in recent

years. CD using PolSAR images has been performed using

hypothesis testing with a suitably defined test statistic on either

the covariance (C) or coherency (T) matrices [13]–[16].

Beyond binary CD, the change vector analysis (CVA) or

compressed CVA (C 2 VA) has been used for multiclass CD [17],

[18]. However, due to the speckle noise and the presence of

complex scattering of electromagnetic waves from targets, the

performance of CVA for SAR modality necessitates further

assessment. A geodesic-distance-based approach between the

Kennaugh matrices for a fully polarimetric (FP) SAR image for

CD has been proposed in [19].

Although general fusion techniques have been well devel-

oped and widely applied for single modalities, they remain

challenging for multisource data with varying spatial, spectral,

and temporal characteristics. Multimodal data include, but are

not limited to, dual-frequency PolSAR or SAR-MS images from

sensors with different spectral channels and resolutions. Various

techniques for the fusion of SAR-optical and subsequent CD

algorithms have been reported in [20].
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Quite a few among them show anomalies in the fused product

while using conventional methods [21]. The grayscale difference

is attributed to the significantly different imaging mechanisms of

SAR and optical RS. Here, the SAR image is acquired as a high-

resolution panchromatic image. Its spatial information is fused

with the spectral information of the relatively low-resolution MS

image. Fusion of SAR and MS images using Random Forest

regression has also been recently proposed [22].

Meanwhile, a plethora of applications via fusion of SAR and

optical images, such as annual crop inventories, urban land cover

mapping, etc., are reported in the literature [23]–[27]. Bayesian

statistical approaches to multimodal CD include works based on

the Markov random field model [28] or fractal-projection- and

Markovian-segmentation-based approaches [29]. Techniques

based on the projection of multimodal data into a common

feature space, on which one can apply well-known monomodal

CD techniques, are also popular in the literature [30]–[32]. For

multifrequency PolSAR data, the joint covariance-matrix-based

techniques were introduced, which extends the CD techniques

on single-frequency PolSAR data [33].

A framework for multiscale, multipolarization, and multi-

frequency SAR image preparation has also been introduced in

recent times, which employs weighted-averaged Kennaugh ele-

ments (using Kennaugh matrices of individual frequencies) [34].

Fusion of P -band and L-band PolSAR and PolInSAR data for

landcover classification has also been reported in [35].

Multimodal CD using direct learning from the training data

has been reported in [36]–[39]. Furthermore, an unsupervised

nonparametric method without requiring a training phase is

proposed in [40]. Fusion of a hyperspectral image and data

from multiple sensors, such as light detection and ranging, has

been recently investigated with a convolutional neural network

(CNN) framework [41]. Intending to provide land cover map-

ping through the fusion of multitemporal high-spatial-resolution

and very-high-spatial-resolution satellite images, an end-to-end

deep learning framework, M3 fusion, was proposed in [42].

The dilemma of semisupervised transfer learning with limited

cross-modality data in RS has been recently addressed using a

deep learning framework, called X-ModalNet [43]. A general

multimodal deep learning framework has also been proposed,

which is not only limited to pixelwise classification tasks, but is

also suitable to spatial information modeling with CNNs [44],

[45].

This article proposes a generic and a simple framework for

CD from multimodal data using the Kronecker product of fea-

ture vectors (or matrices) representing each data modality. This

technique is sensor independent and requires no prior knowledge

of the data distribution. A new change index (ζ) is defined, and

detailed experiments demonstrate its usage. The proposed fusion

technique is a pixel-level technique, which incorporates inputs

from different modalities into single-resolution data, rendering

enriched multimodal data representation.

The Kronecker product scheme adopted in our methodology

is a robust mechanism to fuse information from various bands of

multimodal data. The resulting representation is more practical

and sensitive to changes due to the assimilation of information

from two different modalities. This method is equally suitable

for dual-frequency SAR data, where we utilize the Kennaugh

matrix representation or vectors in MS images. Moreover, ex-

tension to more than two sources of information is relatively

straightforward.

In this study, we provide a detailed analysis by demonstrating

two experiments as examples of multimodal data. The first

experiment uses multifrequency (C- and L-band) FP SAR data,

while the second uses C-band dual-pol SAR and MS images.

The wide range of applicability of the proposed framework em-

phasizes its universality. The hybridization of information from

different sensors opens up new avenues for target identification,

discrimination, and classification from remotely sensed data.

The contributions of this article are summarized as follows.

1) A pixel-level data fusion scheme is proposed for data

from multiple sources, which uses a Kronecker product

to combine information from individual modalities.

2) We propose a novel change index (ζ) with several desirable

properties for binary CD.

3) We show the sensitivity of the derived ζ index under

different change conditions, using statistical analysis of

median and interquartile range (IQR).

4) We perform comparative analysis with state of the art

for two experiments with multimodal RS data: a) dual-

frequency PolSAR data and b) dual-pol SAR and MS data.

5) The proposed framework satisfies the need for a generic

and pixel-level analysis that is simple to implement for

multisource RS data fusion and CD. One should note

that existing methods are either sensor specific or require

learning techniques to achieve data fusion.

II. METHODOLOGY

Let t1 and t2 denote the prechange and postchange data

acquisition instances, respectively. Let the single-modality re-

motely sensed data (for example, from SAR or MS sensors) be

represented by X(tk) and Y(tk), for k = 1, 2. The prechange

Kronecker product representation is denoted by A(t1). In con-

trast, the postchange representation is denoted by B(t2). The

representation (i.e., matrix or vector) is mode (i.e., SAR or opti-

cal) dependent. Subsequent sections provide relevant examples

of the proposed framework.

A. Change Index Using the Kronecker Product of Matrices

The pre- and postchange fused data representations of mul-

timodal data, i.e., A(t1) and B(t2), are formed by using the

Kronecker product of their single-modality representations, X

and Y (we omit time information for simplicity). The Kro-

necker product of the two matrices, X = (xij) ∈ Mm×n and

Y = (yij) ∈ Mp×q , is denoted as X⊗Y and is defined as

X⊗Y =

⎡

⎢

⎣

x11Y x12Y . . . x1qY
...

...
. . .

...

xp1Y xp2Y . . . xpqY

⎤

⎥

⎦
∈ Mmp×nq. (1)

The matrix block xijY is of the same dimension of Y. The

matrices X and Y are the original representations of the data
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in their respective modalities. Some of the properties of the

Kronecker product of two matrices are as follows [46].

1) Noncommutative, i.e., X⊗Y �= Y ⊗X.

2) Each entry of X⊗Y (or Y ⊗X) is of the form xijbkl (or

bklxij).

3) Y ⊗X can be obtained by permuting the entries of

X⊗Y, i.e., Y ⊗X = P(X⊗Y)Q, where P and Q are

permutation matrices.

One can note that the noncommutative property of the Kro-

necker product distinguishes pseudogroups from groups.

Therefore, using the concept of the Kronecker product, we

represent prechange information from multimodal sources at

time t1 as

A(t1) = X(t1)⊗Y(t1). (2)

The original representation (i.e., matrix or vector) of the multi-

modal data will vary according to the source of acquisition. Sim-

ilarly, we represent postchange information from multimodal

sources at time t2 as

B(t2) = X(t2)⊗Y(t2). (3)

We propose a new change index (ζ) utilizing A(t1) and B(t2)
as

ζ(A(t1),B(t2)) =
||A−B||F

||A||F + ||B||F
(4)

where ||A||F is the Frobenius norm of the matrix defined as

||A||F =
√

Tr(A†A), where Tr is the matrix trace (i.e., sum of

the diagonal elements) and the superscript † denotes the matrix

conjugate transpose. The following properties can be attributed

to ζ.

1) ζ ∈ [0, 1].
2) High values of ζ indicate larger change between A and B.

3) ζ is unitarily invariant.

We can perform change analysis using either simple thresh-

olding techniques or CVA. The elements of the Kronecker

product are considered individually before taking the norm for

CVA. In contrast, one can apply thresholding techniques directly

on the change index, ζ.

In this work, we performed change analysis using thresh-

olding techniques. Global [47] or adaptive thresholding [48]

techniques can be applied to ζ for binary CD. Adaptive thresh-

olding considers the spatial variations in the neighborhood of

each pixel to define a local threshold. The thresholded ζ image

divides pixels into those belonging to change ωc and no-change

ωnc classes. We present a flowchart of the complete fusion

methodology in Fig. 1.

B. Case I: Dual-Frequency PolSAR Data

In FP SAR, the 2 × 2 complex scattering matrix S encom-

passes complete polarimetric information about backscattering

from targets for each pixel. It is expressed in the backscatter

alignment convention in the linear horizontal (H) and linear

vertical (V) polarization basis as

S =

[

SHH SHV

SVH SVV

]

⇒ k = V ([S]) =
1

2
Tr(SΨ) (5)

where k is the scattering vector, V (·) is the vectorization oper-

ator on the scattering matrix, and Ψ is the corresponding basis

matrix. Each element of the matrix represents the backscattering

response of the target at a specific polarization. In the monos-

tatic backscattering case, the reciprocity theorem constrains the

scattering matrix to be symmetric, i.e., SHV = SVH.

The multilooked Hermitian positive-semidefinite 3× 3 co-

herency matrix T is obtained from the averaged outer product

of the target vector kP (derived using the Pauli spin matrix basis

set, ΨP ) with its conjugate, i.e., T = 〈kP k
∗T
P 〉. Similarly, the

3× 3 covariance matrix C is obtained from the averaged outer

product of the target vector kL (derived using the Lexicographic

matrix basis set, ΨL) with its conjugate, i.e., C = 〈kL k
∗T
L 〉.

In this study, we utilize the 4× 4 real matrix representation

to describe backscattering in terms of the Kennaugh matrix K.

We can represent the Kennaugh matrix in terms of the elements

of the T matrix as

K =

⎡

⎢

⎢

⎢

⎣

T11+T22+T33

2
ℜ(T12) ℜ(T13) ℑ(T23)

ℜ(T12)
T11+T22−T33

2
ℜ(T23) ℑ(T13)

ℜ(T13) ℜ(T23)
T11−T22+T33

2
−ℑ(T12)

ℑ(T23) ℑ(T13) −ℑ(T12)
−T11+T22+T33

2

⎤

⎥

⎥

⎥

⎦

(6)

where Tii for i = 1, 2, 3 are the diagonal elements and Tij for

i �= j : i, j = 1, 2, 3 are the off-diagonal elements of T. ℜ and

ℑ denote the real and imaginary parts of a complex number,

respectively.

The Kennaugh matrixK provides a convenient representation

of PolSAR data in terms of real quantities. TheKmatrix for two

frequencies (Kν1
(t1) and Kν2

(t1)) represents matrices X and

Y defined in Section II-A, where ν1 and ν2 correspond to SAR

acquisitions in two different frequencies (in this case L- and

C-bands).

To compute the index, ζ(A(t1),B(t2)), for analyzing change

using dual-frequency PolSAR modality, we constructA(t1) and

B(t2) as follows:

1) A(t1) = Kν1
(t1)⊗Kν2

(t1);
2) B(t2) = Kν1

(t2)⊗Kν2
(t2);

where the images are acquired by two frequencies ν1 and ν2
at time t1 and similarly at time t2. The Kronecker product of

the two 4× 4 Kennaugh matrices will produce a matrix of size

16× 16 corresponding to the matrices A and B.

C. Case II: Dual-Pol SAR and MS Data

For the fusion of dual-pol SAR and MS image, we considered

four suitable bands from the MS images and the four elements

of the Kennaugh matrix corresponding to the dual-pol SAR

data [34]. The four elements of the K matrix can be written

in terms of the elements of C2 matrix as

k11 = C11 + C22 (7)

k22 = C11 − C22 (8)

k13 = ℜ(C12) (9)
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Fig. 1. Graphical workflow for the proposed Kronecker product formalism. The images shown are for illustrative purpose only.

k24 = ±ℑ(C12) (10)

where± corresponds to the VV-VH and HH-HV modes, respec-

tively.

We construct the prechange vector A(t1) by using the Kro-

necker product of the vector for the MS bands XMS(t1) =
[x1, x2, x3, x4]

T and the vectorized Kennaugh matrixKν(t1) =

[k11, k22, k13, k24]
T as

A(t1) =

⎡

⎢

⎢

⎣

k11
k22
k13
k24

⎤

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

(11)

where ν is the frequency of the SAR data acquisition. Similarly,

we can construct the postchange vector B(t2).
Therefore, following (4), the change index, ζ(A(t1),B(t2))

is defined for the fusion of dual-pol SAR and MS modality as
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Fig. 2. RGB color composite (using diagonal elements of the C matrix) of the Foulum agricultural study area. (a) L-band image of the EMISAR dataset for May
20, 1998. (b) C-band image of the same dataset.

1) A(t1) = Kν(t1)⊗XMS(t1);
2) B(t2) = Kν(t2)⊗XMS(t2).
In general, the selection of MS bands depends on the CD

situation. For vegetated terrain, it is helpful to use the near-

infrared (NIR) band (i.e., 770–895 nm). Vegetation reflectance

in the NIR band and the indices derived from this spectrum range

have been thoroughly investigated for plant canopies [49]. In this

aspect, the normalized difference vegetation index is commonly

used [50]. Therefore, we can use such indices to construct XMS

preferably than the primary MS bands.

D. Change Index for Single-Modality Data

One can note that the definition of ζ, as in (4), is directly

applicable for single-source data as well. We will use such an

index to compare the output from the multimodal fused data to

that from a single-channel data in Section IV. For single-source

data, we have the native data representations in the form ofX(t1)
and X(t2) for the pre- and postchange acquisitions. We define

ζ as follows:

ζ(X(t1),X(t2)) =
||X(t1)−X(t2)||F

||X(t1)||F + ||X(t2)||F
. (12)

III. DATASETS, STUDY AREA, AND GROUND TRUTH

A. Experiment I: Dual-Frequency PolSAR Data

We demonstrate the dual-frequency case utilizing the FP

multifrequency Danish airborne EMISAR data. The EMISAR

system operates at two frequencies: C-band at 5.3 GHz (5.7-cm

wavelength) and L-band at 1.25 GHz (24-cm wavelength) [51].

The spatial resolution of the nominal one-look image is 2m ×
2m (one-look) with a ground range swath of approximately

12 km. The processed data are fully calibrated by using an

advanced internal calibration system. For this study, we used

the L- and C-band data simultaneously acquired on March 21,

May 20, June 16, and July 15, 1998. All acquisitions were coreg-

istered by identifying ground control points in the images and

using an interferometric DEM acquired by the EMISAR system.

Before resampling, we transformed the original one-look scat-

tering matrix data to the covariance matrix representation. These

data were averaged to reduce the speckle by a cosine-squared

weighted 9× 9 filter. The new pixel spacing in the images is

5m × 5m, and the effective spatial resolution is approximately

8m × 8m at mid-range.

The study area is located at the Foulum Research Centre of

the Danish Institute of Agricultural Sciences, Jutland, Denmark.

The test site contains many agricultural fields with different

crops, lakes, forests, natural vegetation, grasslands, and urban

areas. The area is relatively flat, and the local incidence angle

corrections due to terrain slope are redundant. Spring crop types

include beets, peas, potatoes, maize, spring barley, and oats.

Winter crops include rye, winter barley, winter wheat, winter

rape, and grass. An RGB color composite (using diagonal ele-

ments of the covariance matrix of each frequency) of the study

area is given in Fig. 2, where (a) is the study area imaged in the

L-band and (b) is the study area imaged in the C-band for May

20, 1998.1

For each acquisition date, a land cover map was provided,

including more than 350 test areas. The individual development

stage of crops is described by the BBCH decimal scale ranging

from 0 to 99. The first digit is the main development stage.

The second digit is a subdivision of the main stage, e.g., for

cereal crops, 0–9 corresponds to germination, 10–19 to leaf

development (the second digit is the number of leaves unfolded),

20–29 to tillering (the second digit is the number of tillers

detectable), 30–39 to stem elongation, 40–49 to booting, 50–59

1The EMISAR data are available to scientific partners and, to a limited extent,
for customers. (One should contact Prof. Erik Lintz Christensen for further
information on costs and availability.)
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TABLE I
GROUND TRUTH OF SELECTED CROP FIELDS FOR THE FOULUM IMAGE OF 1998 FOR MAY, JUNE, AND JULY

We consider only a small subset of the fields in this work. Note that data for some dates were not available.

to heading, 60–69 to flowering, 70–79 to development of fruit,

80–89 to ripening, and 90–99 to senescence. Similar definitions

are available for other crops. For a detailed description of the

ground-truth (GT) data, refer to [13]. The details of the four fields

mentioned in this work are given in Table I . One can observe that

over the considered period, as expected for agricultural crops,

the change is continuous and pervasive. Under this condition,

the proposed change index is validated in terms of sensibility to

the change (see Section IV-A) rather than on the binary CD map

quality.

B. Experiment II: Dual-Pol SAR and MS Data

We demonstrate this case by using Sentinel-1 SAR and

Sentinel-2 MS Instrument bands. The Sentinel constellation

data are freely available from the Copernicus open access

hub. Further preprocessing is required for the SAR-MS fusion

as compared to dual-frequency SAR (the flowchart shown in

Fig. 3). We considered the Junagadh district of Gujarat, Western

India, as the study area. Here, groundnut is widely cultivated,

along with cotton being the only major competing crop. The

district has a tropical wet and dry climate with three seasons:

mild winter, hot summer, and monsoon. In the summer months,

the temperature ranges between 28 and 38 ◦C, while in winter, it

ranges between 10 and 25 ◦C with an average annual rainfall of

827 mm. Usually, the sowing of groundnut starts with the onset

of the monsoon. But where irrigation facilities are available,

premonsoon sowing is arranged during the last week of May or

during the first week of June with presowing irrigation, which

increases the yield.

We conducted a field survey in August 2019 to collect GT

samples of groundnut and cotton fields. An app-based approach

was adopted, allowing polygons to be specified, often covering

the whole field over the required area. Traditional methods

usually take a single latitude/longitude point measurement using

a handheld GPS. Collecting GT based on polygons can offset

any error in GPS readings, while also allowing the collection of

samples from inaccessible areas. As many fields are protected

using fencing, this method improves the number and quality of

GT samples. Fig. 4(a) and (b) shows photographs of a typical

groundnut field and cotton field, respectively, taken during the

field survey. We collected 32 polygons of groundnut and 21

polygons of cotton during the survey.

We make use of the bitemporal Sentinel-1 and Sentinel-2

(L2A product) images. For MS bands, we use Sentinel-2’s MS

imager, blue (B2 at 490 nm), green (B3 at 560 nm), red (B4 at

Fig. 3. Workflow shows the proposed framework for the specific case of
SAR-MS fusion. As compared to the standard workflow described in Fig. 1,
there are additional preprocessing steps.

665 nm), and NIR (B8 at 842 nm) bands, all at 10-m resolution.

So, the feature vector XMS defined in Section II-C would be for

Sentinel-2 data as

XMS =

⎡

⎢

⎢

⎣

B2

B3

B4

B8

⎤

⎥

⎥

⎦

. (13)

Apart from the primary color bands, we considered the NIR

band at 842 nm because of the agricultural study area, and thus,

the B8 band is sensitive to vegetation. Preprocessing involves
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Fig. 4. (a) Photograph of a typical groundnut field taken during the field survey
in August 2019. (b) Photograph of a typical cotton field.

converting L1C to L2A (if required), resampling to SAR reso-

lution, and reprojection to a common projected geometry (see

Fig. 3 for details). The L1C products provide “the top of at-

mosphere” reflectance in fixed cartographic geometry, whereas

L2A products provide the “bottom of atmosphere” reflectance

in the same geometry.

The bitemporal Sentinel-2 L2A data used in this study are

on April 6 and October 8, 2019, which are close to the SAR

acquisition dates. The details of the SAR data are given in

Table II. Like Dataset I, we observe that change is prevalent

in a crop area considering acquisition dates with a long time

gap. Accordingly, the proposed change index will be validated

in terms of its sensitivity to the change (see Section IV-A) rather

than its performance for binary CD.

IV. RESULTS AND DISCUSSIONS

A. Experiment I: Dual-Frequency SAR Modality

In this section, we demonstrate the sensitivity of the novel

ζ index to various kinds of changes in the Foulum agricultural

fields. As mentioned, the Foulum study area is an agricultural

TABLE II
SPECIFICATIONS OF DUAL-POL SENTINEL-1 INTERFEROMETRIC WIDE SWATH

(IW) MODE DATA USED FOR THE STUDY

site, where most of the pixels belong to the change class (ωc).

Thus, the sensitivity is evaluated using the statistical variables

of median and IQR. This analysis is performed in a multidate

setup computing ζ between every subsequent couple of images.

This allows studying the behavior of ζ under varying change

conditions as the crops evolve toward their phenological season.

As an example of the possible outcome of the detection step,

binary change maps for one couple of dates are provided for

qualitative comparison.

The change index, ζ, for the dual-frequency (L- andC-bands)

EMISAR data via the proposed method is demonstrated in

Fig. 5(a). The change index shown in the figure is between

March and May 1998 acquisitions over the agricultural site. We

compared the results with CD techniques tailored explicitly for

the multitemporal PolSAR data proposed by Nielsen et al. [33].

The PolSAR covariance matrices are Wishart distributed,

which generalizes the gamma distribution to multiple di-

mensions. The multifrequency covariance matrices also fol-

low Wishart distribution if constructed directly from the six-

component Lexicographic target vector. But even in cases where

they are built out of C matrices of individual frequencies as

block-diagonal matrices, it is possible to derive the same formula

for the test statistic as in the case of the full multifrequency

covariance matrix. The test statistic “− lnQ” is defined as [33]

ln Q = n(2p ln 2 + ln |A|+ ln |B| − 2 ln |A+B|) (14)

where A and B are the 6× 6 joint covariance matrices (block-

diagonal) of the dual-frequency PolSAR data for the pre- and

postchange dates, p = 6 for our case, n is the number of looks,

and |A| is the determinant of A. The probability of finding a

value smaller than the observed value (z), P (−2ρ lnQ < z),

can also be derived, which involves calls to incomplete gamma
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Fig. 5. Groundnut and cotton fields of the Junagadh district of Gujarat state in India are imaged by Sentinel-1 and Sentinel-2 satellites. (a) RGB representation
(pseudocolor composite) of the first and second elements of the Kennaugh feature vector for the dual-pol Sentinel-1 A SAR image on October 11, 2019. The third
band is a reinsertion of the first band. (b) Natural color composite of the Sentinel-2B satellite image was acquired on October 8, 2019. The bands are B2, B3, and
B4, respectively, for the RGB bands. The field boundaries are well delineated in the MS image, whereas the dual-pol SAR image reveals other characteristics.

function (ρ = 0.8910) [33]. The probabilities are then thresh-

olded to make a change map.

The comparison of ζ with the test statistic, − lnQ, is given in

Fig. 5(a) and (b). One should note that the test statistic, unlike ζ,

is not normalized between 0 and 1. Both change indexes show

brighter areas (higher values) as the change intensity increases.

Apart from the difference in dynamic range, it is clear from

Fig. 5(a) and (b) that both the methods can capture changes

associated with crop growth. The probability of observing a

value less than −2ρ lnQ is calculated for the test statistic, and

we prepare a change map by thresholding probability at 0.9999.

To detect changes in ζ, we have used an adaptive thresholding

technique. The binary change images are shown for qualitative

analysis in Fig. 6(a) and (b) for ζ and the test statistic, respec-

tively. ζ shows more changes in the waterbody as compared to

the test statistic in these figures.

It is interesting to note that some changes are appropriately

captured by the proposed method (such as the field marked as “1”

in Fig. 5), whereas they are less evident using the test statistic.

The opposite is true for other fields, such as the one marked “2”

in the same figure. We can analyze the sensitivity of the change

index to the growth stages of the crops to gain more insight.

For this, the change index (and the test statistic) is calculated

between pairs of acquisitions for March–May, May/June, and

June/July, corresponding to the dates “d1,” “d2,” and “d3” on

the x-axis of the Fig. 7. The field marked “1” in Fig. 5 is a

winter wheat field that starts at 14-cm height (BBCH—29) in

April and grows to 90 cm by July (BBCH—81).

In May, the field records an average height of 39 cm (BBCH—

78), while it was 78 cm (BBCH—58) in June. This growth is

recorded better with ζ compared to the test statistic, as can be

seen in Fig. 7(a) and (b). Note that we calculated the change

indices among each subsequent couple of dates and not w.r.t the

start date. Hence, once the growth speed reduces relative to the

first pair of dates, the corresponding value of ζ drops (despite

growth between dates). Also, the index captures the changing

intensity and not its direction; thus, growth and decay reflect

similarly in it. The red lines mark the median values and the box

edges for the first and third quartile (thus giving the IQR). While

both parameters record a similar trend of progressive saturation

(as the crop achieves the phenological peak), the sensitivity is

more in the ζ parameter than in the statistic. The separability

of the ωc (here the winter wheat) and ωnc classes are better

in the new index as compared to the test statistic (14). This is

conspicuous in Fig. 7(a) and (b) boxplots. The gray plots are

for ωnc (here a waterbody marked “W” in Fig. 5), which gives

the baseline median values when there is little or no change

between acquisitions (0.21, 0.20, and 0.18 for the three pair of

acquisitions as given in Table III). The blue plots are for ωc

and show relatively high ζ values (compared to ωnc baseline

ones) for all the dates. The difference between ωc and ωnc is

less pronounced in − lnQ.

For the peas field marked “2,” the changes are captured better

in the test statistic [see Fig. 7(c) and (d)]. The peas field has an

average height of 12 cm in May (BBCH—14), 42 cm in June

(BBCH—52), and 69 cm in July (BBCH—71). Again, both the

indexes show a very similar trend, but the test statistic shows

higher sensitivity to change. The median values of ζ are all

close together (0.37, 0.41, and 0.37), while the values of − lnQ
are scattered (see Table III). The lack of change for the peas

field is clear from the binary change map (see Fig. 6) too. The

histograms of ζ for these two fields of interest are shown in

Fig. 8. The peak of the peas field histogram is shifted toward

lower values than the winter wheat, again confirming the earlier
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Fig. 6. Inferring change from the dual-frequency EMISAR data over the Foulum agricultural fields in Denmark for March and May 1998 images. (a) Normalized
change index (ζ) using both L- and C-bands. (b) Test statistic, − lnQ, as proposed in [52] for CD on dual-frequency PolSAR data. (Inset) Zoomed-in portion for
the Peas field marked “2.” “W” is representative of the “no-change” class (ωnc), here depicting a waterbody.

Fig. 7. (a) ζ image thresholded using adaptive method based on local statistics. (b) P (−2ρ lnQ ≤ z) between March and May 1998 thresholded at 0.9999.
In binary change map, white pixels are labeled “change,” whereas black pixels are labeled “no change.”

observations. However, interestingly, the separability w.r.t the

ωnc baseline is still consistent, for all dates, in the proposed

formalism [see Fig. 7(c) and (d)]. Again, this is not true for the

test statistic, where the separability is very poor for the last pair

of acquisitions (d3).

It is also worth seeing the advantages of hybridizing the

information in L and C channels compared to using them

individually. It is known that L- and C-bands have different

responses to different crops, which is expected given their differ-

ent wavelengths [53], [54]. Fig. 9(a) and (b) depicts normalized



10674 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE III
MEDIAN AND IQR OF VARIOUS CHANGE INDICES FOR THE WINTER WHEAT AND PEAS FIELDS

Fig. 8. Box and whisker plot of the change indices for the winter wheat field marked “1” and the peas field marked “2.” The change indices are calculated between
March–May, May–June, and June–July. (a) and (c) ζ parameter for winter wheat and peas, respectively, for the aforementioned dates. The dots and asterisks are
the median values of ζ only using the L- or C-band. (b) and (e) Test statistic, − lnQ, for winter wheat and peas for the same dates. The gray boxplots (without
whiskers and outliers) are for the waterbody class (as depicted in Fig. 5) representative of the no-change (ωnc) class.

change index using bitemporalL- andC-band only, respectively,

over the Foulum agricultural fields. We make use of (12) here to

derive the single channel ζ.

It is evident that, while changes in agricultural fields are

captured better in the L-band, specific changes in the waterbody

are adequately reflected in the C-band. This also provides better

flood monitoring of vegetated areas with an integrated L- and

C-band approach [55]. In the C-band, many agricultural fields

report hardly any growth at all, as evidenced by missing bright

areas in Fig. 9(b). However, an average of these two behaviors

is observed in the fused ζ image, as depicted in Fig. 5(a). An

exception to this rule cab is noticed in the field labeled by id
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Fig. 9. Normalized change index using (a) L-band (ζL) and (b) C-band (ζC ) only.

“3,” a Rye field. This crop changes from BBCH 22 to 88 by

July. Irrespective of this growth, the difference in ζL using the

L-band alone is much less than that using only C-band (ζC).

See Table III for the comparison of the magnitude of change

index. Recall that lighter tones indicate more change and darker

tones indicate less change in ζ images. Rye field has a darker

shade in the L-band as compared to the lighter shade in the

C-band [see Fig. 5(a) and (b)]. Interestingly, an average of these

two behaviors is observed in the new change index, which is of

moderate light shade.

The opposite behavior is observed for the fields labeled “4”

(spring oats). Here, the change in the L-band is considerable,

while the C-band registers much less change. ζ from the fu-

sion product again reflects the combined effect of both these

frequencies.

Furthermore, the change index defined via the Kronecker

product formalism captures the growth of the crops with rea-

sonable sensitivity, whereas the changes captured in either fre-

quency alone are less. In Fig. 5(a) and (c), the median values

of the L- and C-bands are depicted as dot and asterisks, re-

spectively. The L-band performs relatively better in capturing

changes in agricultural fields than the C-band, which saturates

quite quickly. This is to be expected due to the shorter wave-

length of the C-band as compared to the L-band. The median

values and the IQR of various change indices (both multimodal

and single modality) are summarized in Table III.

As our methodology does not involve any learning-based

approaches, the process takes short computational time. For the

1024× 1024 tiles used in the dual-frequency PolSAR fusion, the

entire process finishes within 4 min in the python3 framework

on a workstation with 64-GB RAM and Intel Xeon processor.

We obtain 256 elements by vectorizing the Kronecker product,

which provides us with C(256,2) combinations for the CVA.

This in itself is a robust area of research, and many techniques

of dimensionality reduction can be applied here, including C 2

VA [18].

Fig. 10. Histograms of change index for winter wheat field as well as peas
field [numbered “1” and “2” in Fig. 5(a) and (b), respectively].

B. Experiment II: Dual-Pol SAR—MS Modality

The Junagadh district of Gujarat can be seen, with its abundant

groundnut and cotton fields, in the postmonsoon image of Sen-

tinel 2B for October 8, 2019 [see Fig. 10(b)]. Most of the fields

have fully grown groundnut or cotton and look identical in the

natural color composite optical images as both fields have very

similar signatures in these bands. But the growth characteristics

of cotton and groundnut (groundnut being a much shorter crop

even at full growth) are distinct. For CD analysis, we used

premonsoon data from April 2019.

At this time, all the fields in the area shown in Fig. 10(b) are

fallow (refer to Section III for a detailed exposition of data used

in the experiment). ζ shows characteristics of both modalities,

as seen in Fig. 11(a). Again, higher values of ζ correspond to

detectable changes between the acquisitions. While waterbody

shows considerably small changes, most agricultural fields show
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Fig. 11. (a) ζ image for the dual-pol SAR—MS fused data. The field boundaries visible in the optical data have been blurred in the process, but more information
is now available for CD analysis compared to each modality taken alone. The red outline is a waterbody. The filled in red polygons are groundnut fields, and the
cyan polygons are cotton fields sampled during the GT campaign. (b) Binary change image using local adaptive thresholding on ζ. (Inset) (a) Zoomed-in ζ image
containing a groundnut field. (b) Zoomed-in image around the waterbody.

TABLE IV
MEDIAN AND IQR OF VARIOUS CHANGE INDICES FOR THE GROUNDNUT

AND COTTON FIELDS

the change (bright areas in the ζ image). This is visible from the

binary change map in Fig. 11(b).

Like in the case of dual-frequency SAR modality, the ζ

index is sensitive to a different rate of crop growths and aids

in discrimination between groundnut and cotton. The median

value for the cotton crop is much lower (0.38 with an IQR of

0.16) as compared to that of the groundnut crop (0.69 with IQR

of 0.19). Even though this is true for single-modality indices

(ζOpt and ζSAR), the relative difference is higher in the new index

(see Table IV). Fig. 11 also depicts cotton and groundnut fields

sampled during the field survey. The red polygons represent

groundnut fields, whereas the cyan ones are cotton fields. Ac-

cording to Fig. 12(c), the cotton crop has undergone less change

as compared to the groundnut crop. However, both the fields look

very similar in the optical regime (ζ consistently registers higher

values for groundnut crop). We can use this to differentiate two

kinds of changes via simple thresholding.

Cotton grows slower than groundnut, and the magnitude of

change index also reflects the difference in the relative growth.

From the boxplots of Fig. 12, one can note that the dispersion in ζ

is less while using optical bands alone as compared to SAR. This

is due to less system noise in the optical imaging system than

the speckle noise in coherent SAR. One should note that, due to

monsoon growth, most of the agriculture pixels have changed,

so our methodology of using a single ζ parameter may not be

optimal for multiclass CD. However, we can utilize the extra

information in the change vectors (before taking the Frobenius

norm) via CVA for multiclass CD.

The sensitivity to crop growth (for the case of groundnut as

well as cotton) is much higher in the proposed index as compared

to either modality taken alone, as can be easily noticed from

Fig. 12(c). Single modality ζ is computed using (12), just as in

the previous example. The MS-only index has a lower magnitude

of change than the SAR-only case (median of 0.43 with IQR

of 0.06), but the crops are separable. However, SAR only ζ

has overlapping boxes for cotton and groundnut, making the

separability difficult (median of 0.45 but with an IQR of 0.22).

As expected, the fused ζ has more robust information assimilated

from both sources.

We can make a direct comparison with the stacking tech-

nique, a popular way of pixel-level fusing data from different

sensors [20]. Direct stacking of bands can be used to derive

ζ (without the Kronecker product). But this provides a less

sensitive change index that saturates quickly. Fig. 12(b) gives

the output from such a scheme, which looks very much like

the change index from optical bands alone [see Fig. 12(a)].

This is why the median value of stacked ζStack and IQR closely

matches ζOpt for cotton and groundnut crops in the boxplot.

It is clear from Fig. 12(c) that the optical bands or a direct

stacking method registers a much lower median change for both

the crops as compared to the proposed method, while crops are
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Fig. 12. (a) ζ image using only the MS bands. (b) ζ image for the dual-pol SAR—MS fused data using band stacking. This image closely resembles that of
(a) despite the band stacking. (c) Box plot of the change index for a sample cotton and groundnut field (black boxes represent groundnut, whereas blue boxes
represent cotton field). (d) Box plot of the change index for the marked waterbody registers sufficient change in the MS image and very little change in the SAR
image.

less separable in SAR only ζSAR. The fused ζ not only registers

much bigger change for both crops, but is also well separable.

We have tabulated results in Table IV for quick reference.

Furthermore, direct stacking of SAR and MS bands has not

brought about any new dimension to the ζ index beyond what

was possible with MS bands alone. This is not the case with

the proposed method. To illustrate this point, let us consider the

waterbody in the image marked by the red polygon. As evident

from Fig. 12(a), this feature registers drastic change between

the pre- and postmonsoon MS acquisitions (as evidenced by

the bright tone within the red polygon in the MS-only change

index). But the change is not high in the SAR acquisitions

[see the ζSAR boxplot in Fig. 12(d)]. Interestingly, the SAR-MS

stacking-based ζ mimics the behavior of the MS-only index, as

shown in Fig. 12(b).

Visually, the changes in water bodies are generally suppressed

in the new index [the darker areas in Fig. 11(a)]. This observation

is made concrete in the boxplot depicted in Fig. 12(d). The

median value for the new change index (for waterbody outlined

by red polygon) is much less than optical bands or stacking. The

SAR-only ζ also shows lower values as the fused ζ. This directly

demonstrates that the proposed method achieves a proper fusion

of information available in either modality. In contrast, direct

stacking of bands biases the fused data properties toward the MS

bands. The widening IQR can also see the proper hybridization

of information in the fused ζ modalities compared to the MS

case. This is absent again in the stacking technique.

For the 3272 × 4734 tiles used in the dual-pol SAR-MS

fusion, the process finishes within 25 min in the python3

framework on a workstation with 64-GB RAM and Intel Xeon

processor. In this experiment, we made no prior assumption

about the data distribution, which we could easily extend to

other RS data modalities. Combined with the simplicity of

implementation, this formalism can be of great importance while

tackling multimodal CD problems.

V. CONCLUSION

In this article, we proposed a general framework for CD

utilizing the Kronecker product between two vectors/matrices

to analyze multimodal data. The framework is sensor indepen-

dent and provides results with statistical techniques specifically

tailored to particular sensor data. We showcased two experi-

ments, one with dual-frequency PolSAR data and the other with

dual-pol SAR and MS data, with validation using extensive

GT. We obtained the FP dual-frequency PolSAR data from

the Danish airborne SAR system, EMISAR. We obtained the

dual-pol SAR and the MS data from the Sentinel constellation

of satellites. We showed that the proposed novel change index, ζ,

adapts diverse information from L- and C-bands and correlates
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better with various crops growth stages. The method also gave

similar performance to that of techniques tailored explicitly to

PolSAR data. We reached a similar conclusion for the dual-pol

SAR and MS modality, where we performed a direct comparison

with the data stacking method. All results were strongly sup-

ported by extensive GT data collected synchronously with the

acquisitions. Our studies aim toward a worthwhile direction for

multimodal (multifrequency, multisensor, etc.) data assimilation

and CD studies. Vectorizing the Kronecker product for the

CVA yields many exciting properties yet to be exploited for

a multiclass CD framework.
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