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Abstract The cellular adaptive immune response to influenza has been ana-4

lysed through several recent mathematical models. In particular, Zarnitsyna5

et al. (2016) show how central memory CD8+ T cells reach a plateau after6

repeated infections, and analyse their role in the immune response to further7

challenges. In this paper we further investigate the theoretical features of8

that model by extracting from the infection dynamics a discrete map that9

describes the build-up of memory cells. Furthermore, we show how the model10

by Zarnitsyna et al. (2016) can be viewed as a fast-scale approximation of a11

model allowing for recruitment of target epithelial cells. Finally, we analyse12

which components of the model are essential to understand the progressive13

build-up of immune memory. This is performed through the analysis of sim-14

plified versions of the model that include some components only of immune15

response. The analysis performed may also provide a theoretical framework16

for understanding the conditions under which two-dose vaccination strategies17

can be helpful.18

Keywords viral-immune mathematical model · secondary infections ·19

immune memory · multiscale model20

1 Introduction21

Influenza is a serious infectious disease which affects the respiratory tract22

caused by RNA viruses of the family Orthomyxoviridae, the influenza viruses.23
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Due to its easy spread, every year many people get sick or die, making flu24

a constant social problem for worldwide public health. Several recent papers25

present mathematical models for describing immune response to influenza in-26

fections.27

Many studies have focused on the role of some immune components in the28

timing and the strength of the infection (Dobrovolny et al., 2013; Iwasaki and29

Nozima, 1977; Moore et al., 2019; Wu et al., 2018). Li et al. (2021) infer the30

relationship between the level of macrophage activation and the level of viral31

shedding. However, a deficiency of several of these studies is that the authors32

have considered only the case of a single primary infection.33

Several papers have however studied the response to repeated infections,34

whether to homologous or heterologous strains. In particular, McCaw and co-35

workers have studied in a series of papers (Cao et al., 2016, 2015; Yan et al.,36

2016, 2019) how viral hierarchy and the interval between infections determine37

their outcome.38

When a short time interval separates exposures, a primary infection pro-39

tects against a subsequent infection and the target cells present a lower suscept-40

ibility to infection with other influenza viruses (Cao et al., 2015). Increasing41

the time period between two subsequent infections weakens the effectiveness42

of CD8+ T cells. This, in turn, increases the duration of a second infection43

and the achieved virus peak value (Zarnitsyna et al., 2016). Innate, humoral44

adaptive and cellular adaptive immune responses work together to control the45

infection, but epidemiological studies highlight the inability to quantify which46

of them is more dominant (Dobrovolny et al., 2013; Yan et al., 2019).47

The model by Zarnitsyna et al. (2016) centres on cellular response in48

the case of a heterologous challenge . A key feature of their model is the49

distinction between T-cells in lymph nodes and in the respiratory tract. Their50

results provide a theoretical basis for the build-up of immune response with51

repeated infections; in fact, it is shown that only after the second infection52

event, the immune memory reaches a level at which it is able to effectively53

suppress further infection challenges.54

In this note, we intend to further investigate the theoretical features of the55

model by Zarnitsyna et al. (2016), and to assess which components of the model56

allow for the progressive build-up of immune memory. A better understanding57

of different stages and components of the immune response may favour quicker58

effective treatments against viral infections and the development of vaccines.59

First (Section 2), following the informal arguments presented by Zarnitsyna60

et al. (2016), we build a discrete map that synthetizes any infection event61

as an input-output map. The shape of the map determines whether a single62

infection, or several infections, are needed to build-up an effective immune63

memory.64

We continue (Section 3) developing an extended model by allowing for65

recruitment of new target epithelial cells and several other transitions; the66

model by Zarnitsyna et al. (2016) can be viewed as a fast-scale approxima-67

tion of the extended model. In this way, the dynamics of the compartment is68

modelled also in the intervals between infections, thus allowing for a more thor-69
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ough exploration of the effect of the length of the interval between consecutive70

infections on the infection dynamics for different parameter values.71

Finally (Section 4), in order to understand which features of the model by72

Zarnitsyna et al. (2016) allow for a gradual increase of immune memory, we73

formulate very simplified versions of the model that include some compon-74

ents of immune response only, and study in which cases the immune response75

increases with every new infection, and when the opposite occurs. Indeed, in76

several simple models (Diekmann et al., 2018; Nowak and May, 2000) the lower77

the immune level is (at least, in a certain range of levels) before an infection,78

the higher it will be afterwards.79

While the model by Zarnitsyna et al. (2016) is already a big simplification80

of the underlying biology, it is way too detailed to be incorporated into a81

multiscale immuno-epidemiological model (Barbarossa and Röst, 2015; Diek-82

mann et al., 2018; Gandolfi et al., 2015; Gilchrist and Sasaki, 2002); it may83

then be useful to have a simple model, whose qualitative features resemble84

those of more realistic models.85

2 The model by Zarnitsyna et al. (2016)86

The model by Zarnitsyna et al. (2016) was developed for influenza and includes87

target cells (that may be in susceptible S, infected I or refractory R states),88

free virus V , antigens A, innate immune response M (a large compartment89

including natural killer cells, and molecules such as cytokines and interferons)90

and T-cells in different states (precursor TP , proliferating TE , resident TR91

and central memory TM ), with the transitions outlined in Fig. 1. One of its92

main aspects is the focus on the relationship between spatial heterogeneity, T93

cell differentiation and migration. The authors distinguish proliferating T cells94

in secondary lymphoid organs, such as lymph nodes, where the expansion of95

influenza-specific CD8+ T cells occurs, from T cells resident in the respiratory96

tract, the actual site of infection, where they can kill infected target cells.97

The model and its variables are graphically presented in Fig. 1, while the98

parameter values are in Table 1. Referring to the original paper (Zarnitsyna99

et al., 2016) for a detailed presentation of the model assumptions, the main100

transitions are the following:101

– Susceptible target cells are infected by free virions, and can also convert102

into a refractory state R (in which they cannot be infected) under the103

stimulus of the innate immune components, such as type 1 interferons.104

Recruitment or death of target cells, and reversion from refractory to sus-105

ceptible state are neglected, since the model is tailored for acute infections,106

and on that time scale the recruitment and reversion have a limited effect107

(Zarnitsyna et al., 2016); see Section 3 for relaxing this assumption.108

– Infected target cells die at rate δ and release free virions (possibly at cell109

rupture) at rate p. Infected cells are also killed by T - cells migrated into110

the respiratory tract. Free virions die at rate c.111
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Figure 1 Scheme and variables of the model from Zarnitsyna et al. (2016)

– The innate immune response increases towards its maximal value (set to 1),112

stimulated (according to a saturated function) by the presence of infected113

cells, while decreases to 0 in their absence.114

– Precursor T cells are recruited into proliferating cells, and these replicate,115

at rate proportional to A/(φ+A) where A is the antigen level, and φ is the116

half-saturation constant. At low antigen levels, profilerating T cells either117

die by apoptosis or differentiate into memory cells. Proliferating T cells118

in lymphoid organs migrate to the respiratory tract proportionally to the119

level of local immune response.120
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The corresponding equations are the following121 

S′(t) = −βS(t)V (t)− kMM(t)S(t)

I ′(t) = βS(t)V (t)− δI(t)− kRTR(t)I(t)

V ′(t) = pI(t)− cV (t)

A′(t) = γV (t)− dAA(t)

M ′(t) = σMI(t)
φM+I(t) (1−M(t))− dMM(t)

T ′P (t) = −ρTP (t) A(t)
φ+A(t)

T ′E(t) = ρ(TP (t) + TE(t)) A(t)
φ+A(t)

−(α+ r)TE(t)
(

1− A(t)
φ+A(t)

)
− µTE(t)M(t)

T ′R(t) = µTE(t)M(t)− dRTR(t)

T ′M (t) = rTE(t)
(

1− A(t)
φ+A(t)

)
R′(t) = kMM(t)S(t).

(1)

Table 1 Parameter definitions and default values (time units are d=days). All default
values from Zarnitsyna et al. (2016), except for δM and Vm which have been chosen by us
as reasonable values.

β virion infection rate TCID50(ml)−1d−1 3 · 10−5

kM rate of conversion to refractory state (Cells)−1 d−1 4
δ death rate of infected cells d−1 1
kR killing rate by resident T -cells (Cells)−1 d−1 7 · 10−3

p virion release rate TCID50d−1 0.04
c virion death rate d−1 3
γ antigen production d−1 0.3
dA antigen decay rate d−1 1.7
σM innate immunity growth rate d−1 1
φM half saturation constant for innate immunity Cells 1
dM decay rate of innate immunity d−1 0.2
ρ proliferation rate of T -cells d−1 2.15
φ half saturation constant for adaptive immunity TCID50( ml)−1 50
α death rate of proliferating T -cells d−1 0.4
r conversion rate into memory cells d−1 0.07
µ migration rate into respiratory tissues d−1 1.2
dR death rate of resident T -cells d−1 0.1
T0 initial and equilibrium value of target cells Cells 4 · 108

ε growth rate of target cells (model (7)) d−1 variable
η reversion from refractory state (model (7)) d−1 variable
δM decay rate of memory cells (model (7)) d−1 10−4

Vm quantity in the infection rate of target cells
(model (7))

TCID50( ml)−1 10−4

122

Since it is assumed that there is no reversion back from the refractory state,123

the equation for R(t) can be omitted.. (Zarnitsyna et al., 2016)3 It can also124

be seen that the memory cells TM do not appear to play any role in the model,125

as the right hand side of (1) does not depend on TM (t). However they play126
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a role in secondary infections, as Zarnitsyna et al. (2016) assume that they127

can play the same role as precursor cells TP ; namely, the initial value of TP128

in subsequent infections is taken as the final value of TM (or of TM + TP ) in129

previous infections, as their decay rate can be neglected.130

These considerations allow us to describe the system analysed by Zarnit-
syna et al. (2016) through a discrete map. Precisely, note that all points of the
subspace

M = {(S, TP , TM , I, V,A,M, TE , TR) ∈ R9
+ : I = V = A = M = TE = TR = 0}

are equilibria for system (1). Moreover, their stability can be recognized through131

the quantity132

R0 =
βSp

cδ
. (2)

R0 represents the average value of free virions produced throughout its life by133

infecting susceptible cells which, in turn, will release free virions. Indeed βS/c134

represents the average number of cells infected by one viral unit, and p/c the135

average number of viral units released by an infected cell.136

The stability of an equilibrium of (1) can be gathered by its Jacobian J
that has the structure

J =

01×1 B12 B13

02×1 B22 02×7
07×1 B32 B33

 with B22 =

(
−δ βS
p −c

)
.

Here 0m×n represents an m× n matrix, with all entries equal to 0, while the
other submatrices have appropriate dimensions.
Because J has recurring block triangular structure, its eigenvalues are 0, the
eigenvalues of B22 and those of B33. B33 is a triangular matrix, whose eigenval-
ues are its diagonal elements which are either 0 or negative. Both eigenvalues
of B22 have negative real part if its determinant is positive, i.e. cδ > βSp,
i.e. R0 < 1. On the other hand, if R0 > 1, one eigenvalue of B22 is positive.

Hence, if S is such that R0 > 1, i.e. S >
cδ

βp
, then the equilibrium is unstable;

if it is smaller, by looking at its centre manifold, it can be shown that the
equilibrium is attracting from the interior of R9

+. Leaving out the coordinates
equal to 0, we can identify M with R3

+, divide it into the repelling and the
attracting parts,

M+ = {(S, TP , TM ) ∈ R3
+ : S >

cδ

βp
, TP > 0}

M− = {(S, TP , TM ) ∈ R3
+ : S <

cδ

βp
}.

The solutions of (1) join a starting point P0 inM+ to a point P1 inM−, thus137

defining a map from M+ to M−.138
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In order to reduce the problem to a simpler one-dimensional map, we fix139

S(0) = T0, a level corresponding to a normal healthy individual, and V (0) =140

V0, the typical level of a virus inoculum, and define a map F : R+ → R+ as141

F (TP ) = lim
t→∞

(TP (t) + TM (t))) (3)

where TP (t) and TM (t) are the corresponding variables in the solution of (1)
with

TP (0) = TP , S(0) = T0, V (0) = V0

and all other variables equal to 0 at t = 0. The rationale for this choice is that,142

as stated above, memory cells at the end of an infection episode are taken as143

equivalent to precursor cells at the beginning of the following one.144
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Figure 2 Plot of the function F : a) over the range [0, 3 · 104]; b) over a larger range in
logarithmic scale; the dotted line is the bisectrix y = TP ; the arrows indicate the growth of
memory cells in a primary (1), secondary (2) or tertiary (3) infection. Parameter values in
Table 1.

It seems difficult to establish analytically the properties of the function F .145

Instead, we computed numerically the function F , adopting the parameter146

values used in Zarnitsyna et al. (2016), for all realistic values of TP,0; all147

computations have been performed using the ode15s function of Matlab with148

RelTol= 10−8 and AbsTol= 10−10, after having scaled all variables (except149

for M(t)) by dividing them by T0. The Matlab code used for this will be made150

available on-line.151

It has been found that F (TP,0) reaches a maximum, and then starts to152

decrease (Fig. 2a); extending the range of TP,0, one sees that for higher values153

of TP,0 F (TP,0) is again increasing, apparently to infinity (Fig. 2b). However,154

by overlaying the bisectrix y = TP (dotted line in Fig. 2b), one sees that, for155

any value of TP,0 around 1, after two iterations Fn(TP,0) will be between 105156

and 106 and will quickly converge to the point T ∗ where the function F and157

the bisectrix cross.158

In other words, for the parameter values used and for the values of TP,0159

which are reasonable for a naive individual (Zarnitsyna et al., 2016) TP,0 �160

F (TP,0) � F 2(TP,0) while F 2(TP,0) ≈ F 3(TP,0) ≈ · · · ≈ Fn(TP,0) ≈ T ∗. In161
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this notation Fn(TP,0) represents the initial value of precursor T-cells of an162

individual that has already been infected n times with the virus.163

The left panel of Fig. 3 shows how the infection pattern along the solutions164

of (1) strongly depends on the initial value TP (0), confirming what is shown165

by Zarnitsyna et al. (2016): if initially TP,0 is close to the value of TM at the166

end of a primary infection, the peak value of I and V (dashed lines in Fig. 3)167

are close to those obtained in case of a primary infection (solid lines), but the168

infection length is much shorter; if the initial value of TP is close to the value169

of TM at the end of this secondary infection (dotted lines), the peak infection170

values decrease by a couple of orders of magnitude, presumably resulting in171

negligible health effects.
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Figure 3 Left panel: I(t) and V (t) solutions of (1) for different values of TP (0): I0 and V 0
correspond to TP (0) = 1; I1 and V 1 to TP (0) = 6.26 · 102 = TP,0(∞) + TM,0(∞); I2 and
V 2 to TP (0) = 1.59 · 105 = TP,1(∞) + TM,1(∞). Right panel: Variables I(t), TR(t), S(t)
and R(t) in the same solutions of (1) as in left panel; solid lines correspond to I0 and V 0,
dotted lines to I1 and V 1, dashed lines to I2 and V 2. Other initial values and parameters
in Table 1.

172

To better understand the mechanism behind these differences, it is helpful173

to observe other variables of the system (right panel of Fig. 3). First of all,174

note that I0(t) has three different exponential phases: in the first period, its175

growth rate is close to176

r =

√
pβT0 +

(c− δ)2
4

− (c+ δ)

2
, (4)

since S(t) is close to the initial value T0. At the end of this period, S(t)177

drops around 0, since, under the action of the innate immune response, most178

target cells convert to the refractory state; hence, I0(t) decays at rate δ, as179

the resident T cells are still at low concentrations. When TR(t) reaches values180

around 102, the factor kRTR(t) is no longer negligible and the decay of I0(t)181

occurs approximately at a rate δ+kRTR where TR represents an average value182

of TR(t) in this final phase.183

In a secondary infection, because of the recruitment of memory cells, TR(t)184

reaches values of the order 102 at the same time as S(t) starts dropping from185
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the initial value T0; thus, there are only two phases in the dynamics of infected186

cells I(t), the second one being a decay with approximate rate δ+kRTR where187

TR is again the average value of TR(t) in the second phase, which is higher188

than in the case of a primary infection.189

Finally, in a tertiary infection, TR(t) reaches values of the order 102 before190

any significant decrease of S(t); this means that the phase of exponential191

growth of I(t) is shorter and the peak value lower than in the previous cases;192

correspondingly S(t) decreases much more slowly, and this in turn causes a193

slightly lower rate of decrease of I(t). Although TE(t) is initially larger, like194

TR(t), than in secondary infection, the lower values reached by A(t) make it195

increase less after the peak, so that the final value of TM (t) are comparable,196

as shown by Fig. 2b.197

Clearly, these specific results are contingent upon the parameter values198

estimated by Zarnitsyna et al. (2016). One of the most relevant ones is the199

replication rate ρ of proliferating T cells; if it were increased by 50%, one200

infection would suffice to develop enough immune memory to control all further201

infectios; if it were decreased by 50%, the adaptive immune system would not202

be effective at all, and the control of infections would be due to the innate203

system only (simulations not shown).204

3 A multiscale model205

3.1 Formulation and short-term dynamics206

In the previous Section, it was implicitly assumed that between one infection207

and the next one the target cells had recovered their initial level, through the208

production of new cells and the reversion from refractory to sensitive state,209

that all proliferating and effector T-cells had disappeared, while memory T210

cells were at the level achieved after last infection.211

In order to discuss how the length τ of the interval between infection af-212

fected the dynamics, Zarnitsyna et al. (2016) assumed that in a secondary213

infection proliferating and effector T-cell started from the level TE(τ) and214

TR(τ) reached in the primary infection, while susceptble target cells were any-215

way at the initial level T0. In this way, Zarnitsyna et al. (2016) show how an216

infection after τ = 30 days is completely controlled by resident T cells, while217

one after τ = 1 year is described by the simulations shown in Fig. 3. However,218

the assumption appears somewhat artificial, and it makes it impossible to as-219

sess for which rates of recruitment and reversion to susceptibility of target220

cells the picture is correct: if the recruitment of target cells is very slow, they221

might not have returned to the original level in 30 days, while if it is large, the222

dynamics provided by (1) may be inaccurate, since this process is neglected223

there.224

In order to address these questions, we present here a model where all225

these transitions are incorporated into the differential equations, allowing for226



10 Eleonora Pascucci, Andrea Pugliese

a continuous description of the dynamics with and without infection. We start227

from model (1), adding the necessary transitions.228

First, we assume that target cells in the refractory state, R, will revert229

to sensitive state at rate η (a small parameter). We also assume that target230

cells (both in sensitive and refractory state) will proliferate according to a231

logistic model (an assumption used in several models e.g., Cao et al. (2015);232

Yan et al. (2019) ) at rate ε
(

1− T+R+I
T0

)
, where T0 represents the healthy233

values (to which they would return after perturbations) for target cells, where234

ε is another small parameter.235

Furthemore, we assume that also memory cells will die but over a very236

long time scale, much longer than the scale over which target cells recover237

their normal density; we assume a rate δM � ε.238

These assumptions translate into the following model239 

S′(t) = −βS(t)V (t)− kMM(t)S(t) + ηR(t)

+ε(S(t) +R(t))
(

1− S(t)+R(t)+I(t)
T0

)
R′(t) = kMM(t)S(t)− ηR(t)

I ′(t) = βS(t)V (t)− δI(t)− kRTR(t)I(t)

V ′(t) = pI(t)− cV (t)

A′(t) = γV (t)− dAA(t)

M ′(t) = σMI(t)
φM+I(t) (1−M(t))− dMM(t)

T ′P (t) = −ρTP (t) A(t)
φ+A(t)

T ′E(t) = ρ(TP (t) + TE(t)) A(t)
φ+A(t)

−(α+ r)TE(t)
(

1− A(t)
φ+A(t)

)
− µTE(t)M(t)

T ′R(t) = µTE(t)M(t)− dRTR(t)

T ′M (t) = rTE(t)
(

1− A(t)
φ+A(t)

)
− δMTM (t).

(5)

If we set ε = η = δM = 0, (5) reduces to (1) that can then be considered as240

an approximation over short time scales.241

However, system (5) cannot effectively represent the long-term dynamics242

over repeated infections.243

One problem is that memory cells do not affect the dynamics of the system,244

as the equations of the other variables are independent of TM . To obviate this245

problem, we choose a simple modification of the system, in the spirit of the246

assumption by Zarnitsyna et al. (2016) that memory cells are equivalent to247

precursor cells in subsequent infections. For the sake of simplicity, we assume248

that memory cells can differentiate exactly as precursor cells at all times.249

Namely, we modify the equations for T ′E and T ′M in (5) to250

T ′E(t) = ρ(TP (t) + TE(t) + TM (t)) A(t)
φ+A(t)

−(α+ r)TE(t)
(

1− A(t)
φ+A(t)

)
− µTE(t)M(t)

T ′M (t) = rTE(t)
(

1− A(t)
φ+A(t)

)
− ρTM (t) A(t)

φ+A(t) − δMTM (t).

(6)
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To understand the other problem, note that for system (5)–(6) the subspace
of infection-free equilibria is

{(T0, TP , 0, 0, 0, 0, 0, 0, 0, 0)}

where only the coordinate TP is arbitrary.251

Such equilibria are unstable if and only if R0 > 1, independently of the252

value of TP .253

If R0 < 1, infections are impossible. If R0 > 1 (as it will always be assumed),254

solutions of (5), starting close to the equilibrium with V (0) = V0, will follow255

the path of Fig. 3 with a large increase of V (t) and I(t) followed by a quick256

decrease towards 0. However, as the solutions approach again the infection-257

free equilibrium, I(t) and V (t) start increasing again, as soon as R0
S(t)
T0

> 1,258

giving rise to a second infection episode, in absence of any reinfection, and259

possibly arriving, after several infection cycles, to a chronically infected state260

(see Hancioglu et al., 2007). We deem that for many infections (e.g. influenza,261

for which parameter values have been set) such dynamics is non-realistic. When262

the model predicts extremely low values for I(t) or V (t), that state should be263

interpreted as a virus-free host, and thus a new infection episode should require264

a reinfection.265

A possible solution is to set up a stochastic model, in which numbers of266

cells can only have integer values. A simpler solution is to modify the rule267

for infections of target cells in (5), making the equilibria stable. Precisely, the268

term βS(t)V (t) is multiplied by the factor V/(V + Vm) where Vm is a very269

small value (we choose Vm = 10−4, but the exact value is largely irrelevant);270

in this way, the dynamics is basically identical to (5) as long as V � Vm,271

but the infection-free equilibria become stable (the model becomes a so-called272

excitable system). Through this term, we are assuming that a very small virus273

inoculum is insufficient to cause an infection, although the actual mechanisms274

may be different (Li and Handel, 2014; Pugliese and Gandolfi, 2008).275
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Hence, the final system that we consider is276 

S′(t) = −βS(t) V 2(t)
Vm+V (t) − kMM(t)S(t) + ηR(t)

+ε(S(t) +R(t))
(

1− S(t)+R(t)+I(t)
T0

)
R′(t) = kMM(t)S(t)− ηR(t)

I ′(t) = βS(t) V 2(t)
Vm+V (t) − δI(t)− kRTR(t)I(t)

V ′(t) = pI(t)− cV (t)

A′(t) = γV (t)− dAA(t)

M ′(t) = σMI(t)
φM+I(t) (1−M(t))− dMM(t)

T ′P (t) = −ρTP (t) A(t)
φ+A(t)

T ′E(t) = ρ(TP (t) + TE(t) + TM (t)) A(t)
φ+A(t)

−(α+ r)TE(t)
(

1− A(t)
φ+A(t)

)
− µTE(t)M(t)

T ′R(t) = µTE(t)M(t)− dRTR(t)

T ′M (t) = rTE(t)
(

1− A(t)
φ+A(t)

)
− ρTM (t) A(t)

φ+A(t) − δMTM (t).

(7)

One may note that, if decay of memory cells is neglected (δM = 0), one can277

introduce a variable T̃P (t) = TP (t) + TM (t) instead of the two variables TP (t)278

and TM (t), obtaining an equivalent system. We prefer to keep both variables,279

in order to be able to track the dynamics of memory cells.280

Figure 4 TP (t), TE(t), TR(t) and TM (t) solutions of (1) (solid lines) and of (7) with
ε = η = δM = 0 (dashed-dotted lines). The dashed-dotted line is visible only for TM (t) and
the sum TP (t) + TM (t), as the values of the other variables are practically identical in the
two system. Parameter values in Table 1.

First of all, we wish to show how the dynamics of (7) with ε = η = δM = 0281

compares to that of (1) (Fig. 4). As can be seen, the main difference being282



Modelling immune memory development 13

the behaviour of memory cells that show a transient decrease in the increasing283

phase of infection. This is a consequence of the modified equations (6) that284

allow memory cells to form during the early phase of infection (when antigen285

concentration is low) and then immediately differentiate into proliferating cells,286

as antigen concentration increases. This phenomenon is probably not realistic,287

but its quantitative impact is small (consider the logarithmic scale in Fig. 4)288

and, since the sum TP (t) + TM (t) is very similar in the two cases at all times,289

does not affect significantly the final level of memory cells. Therefore, we avoid290

complicating the system with other stages and/or delays.291

Furthermore, we wish to see how the system is sensitive to the values of292

η and ε. In Fig. 5, we show some simulations of (7) for different levels of the293

parameters ε and η (and δM = 0), showing convergence to the corresponding294

simulation with ε = η = 0.
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Figure 5 Left panel: simulations for primary infection dynamics of system (7) for different
values of ε with η = 0: ε = 0 (solid lines) , ε = 10−4 (dotted lines), ε = 10−2 (dashed lines),
ε = 0.1 (dashed-dotted lines). Right panel: simulations for primary infection dynamics of
systems (5) for different values of ε and η: ε = η = 0 (solid lines); ε = 0, η = 10−4 (dotted
lines); ε = 0, η = 10−2 (dashed lines); ε = 0, η = 0.1 (dashed-dotted lines); ε = η = 0.1
(thick lines with symbols). In both panels, lines of different colours correspond to different
variables of the system, according to the legend. Other parameter values are in Table 1.

295

Considering the effect of the parameters ε and η, this is most visible in296

the dynamics of the infected target cells I(t); even when η or ε are equal to297

10−4, there is a noticeable difference (but remember the logarithmic scale)298

from ε = η = 0 in the values of I(t) late in the infection. The differences299

increase when η or ε are larger and, when either η or ε or both are equal300

to 0.1, a difference emerges also in the values of I(t) immediately after the301

infection peak, so that infected cells maintain values above 106 for about a302

day longer than with ε = η = 0. Minor differences appear also in the other303

variables. Still, the overall infection dynamics is very similar with η = ε = 0304

or ε = η = 0.1; the main difference is that a few more days are needed for305

complete clearance of infected cells.306

This comparison appears to justify the use of (1) to analyse the short-term307

infection dynamics, as in Zarnitsyna et al. (2016). For instance, with the values308
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Figure 6 I(t) and V (t) solutions of system (7) starting after a reinfection. Ix and Vx
represent a reinfection x days after a first infection. Isec and Vsec instead represent solutions
of system (7) starting with initial values as for the secondary infections in Fig. 3. Left panel:
ε = η = 0.01; right panel ε = η = 0.1. Other parameter values are in Table 1.

used by Cao et al. (2015) (ε = 0.8, η = 0.05), the short-term dynamics (not309

shown) is similar to that with ε = η = 0.1, though infected cells maintain high310

values a bit longer.311

3.2 Long-term dynamics and reinfections312

It seems natural asking whether reinfections in model (5) induce a similar313

pattern to what is shown in Fig. 2b. As discussed above, when reinfections314

are considered in (1), as summarized in the function F , it is assumed that315

the target cells had recovered their initial level, and that all proliferating and316

effector T-cells had disappeared. On the other hand, the interval between317

infections should have a relevant effect on infection outcome, as shown by Cao318

et al. (2015) and partly in Zarnitsyna et al. (2016).319

In Fig. 6 we show, for different values of the parameters ε and η, simulations320

of the dynamics after a reinfection, i.e. a quantity V0 is added to V (t) at some321

time t after the first infection.322

It can be seen that, if t = 30 (i,e,, a reinfection occurs 1 month after the323

first infection), the infected target cells are immediately destroyed by the T324

cells still present at high concentrations in the respiratory tissue (TR), and325

no substantial infection occurs, for all values of the parameters η and ε. This326

confirms the results shown in Zarnitsyna et al. (2016). If the second infection327

occurs later (t = 60 or t = 100), the dynamics depends on whether target cells328

have already recovered the equilibrium value T0 (right panel: ε = η = 0.1)329

or not yet (left panel: ε = η = 0.01); in any case for large delays (t = 365),330

the pattern after the second infection becomes almost identical to that of the331

second infection seen in Fig. 3.332
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4 Simplified immune models333

4.1 Base simplified model334

The simulations of the previous Section show that (1) successfully predicts the335

short-term dynamics of a primary infection in the more complex model (7);336

and that the function F built from that (Fig. 2) can be used for predicting the337

outcome of secondary (or tertiary infections), at least if the intervals between338

reinfections are long enough.339

We plan here to assess which features of the model (1) are responsible for340

the shape of the function F , connecting the number of precursor T -cells at341

the beginning of an infection to those present at the beginning of a further342

infection event. In order to do so, we analysed simplified versions of (1) that343

included or not some features. The resulting models are not expected to be344

quantitatively realistic, but their qualitative agreement with Figures 2 and 3345

is examined.346

All models considered allow for a single variable, I(t), to represent infected347

cells, assuming that viral load V (t) and antigen concentration A(t) will be348

proportional to it. This is not quite true (see for instance Fig. 3), especially349

because of the difference in decay rates, but seems to be a simplification that350

does not affect the qualitative behaviour of solutions.351

Precisely, assume in (1) V ′ = A′ = M ′ = 0. This yields352

V =
p

c
I A =

γ

dA
V =

γp

cdA
I M =

σM

σM+dM
I

I + dMφM

σM+dM

. (8)

Substituting these relations in (1), neglecting the innate immune response353

M(t) and the refractory state of target cells leads to the following model354 

S′(t) = −β′S(t)I(t)− k′MS(t) I(t)
φ′
M+I(t)

I ′(t) = β′S(t)I(t)− kRTR(t)I(t)− δI(t)

T ′P (t) = −ρTP (t) I(t)
φ′+I(t)

T ′E(t) = ρ(TP (t) + TE(t)) I(t)
φ′+I(t)

−(α+ r)TE(t)
(

1− I(t)
φ′+I(t)

)
− µ′TE(t) I(t)

φ′
M+I(t)

T ′R(t) = µ′TE(t) I(t)
φ′
M+I(t) − dRTR(t)

T ′M (t) = rTE(t)
(

1− I(t)
φ′+I(t)

)
(9)

where355

β′ =
pβ

c
k′M =

kMσM
σM + dM

µ′ =
µσM

σM + dM
φ′ =

cdAφ

γp
φ′M =

dMφM
σM + dM

.

(10)
One may notice that the action of innate immunity M(t) on target cells and356

on the migration of central effector cells to the respiratory tract has been357

substituted with the saturating function in I(t): I(t)
φ′
M+I(t) .358
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Figure 7 a) Plot of the map F resulting from (9) together with the bisectrix (dashed
line); b) the variables I(t), TR(t) and S(t), solutions of (9) for different values of TP (0): I0
correspond to TP (0) = 1; I1 to TP (0) = 834 = TP,0(∞) + TM,0(∞); I2 to TP (0) = 2023 =
TP,1(∞)+TM,1(∞). Parameter values are β′ = 2.5·10−7, k′M = 3.33, µ′ = 1, φ′ = 2.12·104,
φ′M = 0.8, kR = 0.0125, ρ = 3.5. Other parameter values are as in Table 1.

In the right panel of Fig. 7, the values of I(t) are shown for three simulations359

of model (9) corresponding to a primary, secondary or tertiary infections. Most360

parameter values are the same as for (1) from Table 1 with the conversions361

(10), but β′ was chosen a bit lower, and kR and ρ somewhat larger (see the362

caption), in order that the peak values of I(t) and TR(t) were similar to the363

simulations of Fig. 3. Anyway, the solutions with all the values as in Table 1364

(not shown) are qualitatively similar to those of Fig. 7.365

The dynamics of the infections in (9) is faster than in (1); this is expected,366

since the initial growth rate of I(t) in model (1) is r given by (4) while in (9)367

is r′ = β′T0 − δ; a simple computation shows that, if R0 > 1, r′ > r, and this368

holds even with the choice of β′ < pβ
c used in Fig. 7.369

For the rest, the qualitative behaviour of (9) appears similar to that of370

(1). For instance, the map F built from model (9) is increasing over all its371

range, and iterates Fn(TP,0) quickly converge to a limiting value (Fig. 7a).372

Conversely, F is not as flat as in the case of (1) around the limiting point;373

this means that the number of memory cells formed increases with every new374

infection, and does not plateau after the second infection.375

A second difference can be seen by looking at the development over time of376

infections started with different numbers of precursor cells: in this case, the377

peak viral load does not decrease when the number of precursor T-cells is high;378

the only effect is on the infection length (Fig. 7b). This is presumably due to379

the faster growth rate of infected cells in the first exponential phase; even in380

tertiary infections, TR(t) does not reach values of the order of 102 before a big381

drop in susceptible target cells.382

One of the properties that (9) shares with (1) is that the higher the level of383

immune response before an infection is, the more memory cells will be present384

afterwards. As discussed in the Introduction, many simple models of virus-385

immune response have instead the opposite feature: the lower the immune386
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level before an infection is, the higher it will be afterwards. In order to under-387

stand which model features favour either property, we considered two further388

simplifications of (9). In one of them we neglected depletion of target cells;389

namely, we assumed that whichever is the level of viral infection, target cells390

are promptly recruited and kept at a fixed density. In the other simplification,391

we neglected the migration of effector T-cells to the periphery, and assumed392

that effector T-cells were immediately effective against the infection.393

4.2 Model without target cell depletion394

The model is like (9), except that S(t) is fixed at the level T0. Hence395 

I ′(t) = β′T0I(t)− kRTR(t)I(t)− δI(t)

T ′P (t) = −ρTP (t) I(t)
φ′+I(t)

T ′E(t) = ρ(TP (t) + TE(t)) I(t)
φ′+I(t)

−(α+ r)TE(t)
(

1− I(t)
φ′+I(t)

)
− µ′TE(t) I(t)

φ′
M+I(t)

T ′R(t) = µ′TE(t) I(t)
φ′
M+I(t) − dRTR(t)

T ′M (t) = rTE(t)
(

1− I(t)
φ′+I(t)

)
(11)

In this case it can be seen from Fig. 8a) that the function F is decreasing over396

the relevant range: in other words, the number of memory cells is higher after397

the primary infection than after further infections.398

Correspondingly, the viral level is effectively controlled already in a second in-399

fection, slightly better than in a third infection (Fig. 8b). Fig. 8b) shows also400

that the viral dynamics consists only of two phases: exponential growth until401

the point the immune system has grown enough to bring it to anexponential402

decrease. Instead, as already discussed, in models (1) and (9) one can see (403

Figures 3 and Fig. 7b) three phases in the primary infections where viral expo-404

nential growth is first slowed down by target cells depletion, before the immune405

system sets in to cause fast exponential decrease of virus concentration.406

Note that in this simulation we decreased the value of T0 by one order407

of magnitude compared to the value used for (1) or (9); otherwise, without408

depletion of target cells, the viral density would grow to unrealistically high409

values before being contrasted by the immune system. Equivalently, we could410

have decreased the attack rate β.411

A relevant difference between the previous models (1) or (9) and the cur-
rent (11) is its long-term behaviour. Indeed, while the former systems have
only infection-free equilibria, the latter, since susceptible target cells are con-
stant, has (not considering the compartment TM ) an infected equilibrium
E∗ = (I∗, 0, T ∗E , T

∗
R) under the conditions

β′T0 > δ and ρ > 2(α+ r) + µ′.

Its coordinates are

T ∗R = (β′T0 − δ)/kR T ∗E = dRT
∗
R(φ′M + I∗)/(µ′I∗)
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Figure 8 a) Plot of the function F resulting from (11) together with the bisectrix (dashed
line); b) the variables I(t) and TR(t), solutions of (11) for different values of TP (0): V 0
correspond to TP (0) = 1; V 1 to TP (0) = 944.3 = TP,0(∞) + TM,0(∞); V 2 to TP (0) =
216.8 = TP,1(∞) + TM,1(∞). T0 = 2 · 107; other parameter values as in Fig. 7.

while I∗ is the only positive solution of

I2(ρ > 2(α+ r) +µ) + I(φ′M (ρ− 2(α+ r))−φ′(µ+α+ r))− (α+ r)φ′Mφ
′ = 0.

For the parameter values used in the simulations, this equilibrium is unstable,412

and the solutions appear to converge to a periodic solution. For other para-413

meter values E∗ is asymptotically stable.414

Since models (1), (9) and (11) make sense only for short-term dynamics,415

we are not interested in determining its exact long-term dynamics. However,416

it can provide an explanation for the shape of the function F in case of (11).417

We will examine this in the further simplified model (13).418

4.3 Model with central effector cells immediately effective419

This model is another variant of (9) in which viral cells are killed by the central420

effector cells, without need for migration to respiratory tracts.421

The simplest change is to let infected cells be killed by proliferating T -422

cells, TE(t), and, at the same time, ignoring their migration to the respiratory423

tissues. The resulting equations are424 

S′(t) = −β′S(t)I(t)− k′MS(t) I(t)
φ′
M+I(t)

I ′(t) = β′S(t)I(t)− kRTE(t)I(t)− δI(t)

T ′P (t) = −ρTP (t) I(t)
φ′+I(t)

T ′E(t) = ρ(TP (t) + TE(t)) I(t)
φ′+I(t)

−(α+ r)TE(t)
(

1− I(t)
φ′+I(t)

)
T ′M (t) = rTE(t)

(
1− I(t)

φ′+I(t)

)
.

(12)
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Figure 9 a) Plot of the function F resulting from (12) together with the bisectrix (dashed
line); b) The variables I(t), TE(t) and S(t), solutions of (12) for different values of TP (0):
I0 correspond to TP (0) = 1; I1 to TP (0) = 277.6 = TP,0(∞) + TM,0(∞); I2 to TP (0) =
403.9 = TP,1(∞) + TM,1(∞). Parameter values as in Fig. 7.

In this case, the function F is rather similar to the case of (9) (Fig. 9a), as425

is the pattern in primary, secondary and tertiary infections (Fig. 9b) , except426

that the dynamics is even faster.427

4.4 Model with central effector cells immediately effective and without target428

cell depletion429

Putting together the simplifcations of (11) and (12), we obtain430 
I ′(t) = β′T0I(t)− kRTE(t)I(t)− δI(t)

T ′P (t) = −ρTP (t) I(t)
φ′+I(t)

T ′E(t) = ρ(TP (t) + TE(t)) I(t)
φ′+I(t) − (α+ r)TE(t)

(
1− I(t)

φ′+I(t)

)
T ′M (t) = rTE(t)

(
1− I(t)

φ′+I(t)

)
.

(13)

The system is too simplistic even to yield a reasonable short-term dynamics in431

repeated reinfections. However, its analysis can provide a plausible explanation432

about why in a model without target cell depletion as (11), the higher (at least433

up to a certain level) the initial level of precursor or memory T cells, the lower434

their level will be at the end of an infection.435

Indeed in (13) (like in the previous short-term ones), memory cells play no436

role and , in presence of an infection, precursor cells turn into proliferating T437

cells. Hence, after a short transient period, we can approximate (13) with the438

2-dimensional system439 {
I ′(t) = β′T0I(t)− kRTE(t)I(t)− δI(t)

T ′E(t) = ρTE(t) I(t)
φ′+I(t) − (α+ r)TE(t)

(
1− I(t)

φ′+I(t)

)
(14)

440
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Figure 10 Some solutions of (14) for different initial values. Parameter values as in Fig. 8.

System (14) has the structure of a Lotka-Volterra predator-prey system. If

β′T0 > δ and ρ > 2(α+ r)

there exists an equilibrium

E∗ = (I∗, T ∗E) with I∗ =
φ′(α+ r)

ρ− 2(α+ r)
, T ∗E =

β′T0 − δ
kR

and the quantity

U(I, TE) =
ρ− α− r

kR
log

(
φ′ + I

φ′ + I∗

)
−a+ r

kR
log

(
I

I∗

)
+TE−T ∗E−T ∗E log

(
TE
T ∗E

)
is constant along the solutions of (14).441

Some solutions are shown in Fig. 10 from which it appears that solutions442

starting around the beginning of an infection with a lower value of TE (res-443

ulting from the conversion of a lower initial value of TP ) end up with a higher444

value of TE (a part of which will then by recruited as memory cells) at the445

end of the infection. The solutions of (14) (and presumably of (13)) continue446

to oscillate periodically, but, as already discussed, the systems in this Section447

make sense only for a single infection.448

5 Conclusions449

We have re-analysed the model proposed by Zarnitsyna et al. (2016), clarifying450

better how its behaviour in subsequent infections relates to the properties451

of the discrete map F (Fig. 2). In particular, the fact that full immunity452

is essentially acquired after two infections depends on the fact that F is an453

increasing function over an interval that includes (TP,0, F (TP,0)), where TP,0454

is the initial level of precursor T -cells, but essentially flat for larger values.455
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The conclusion seems quite robust, although the exact shape of the function456

F (and thus the build-up of memory cells) will depend on parameter values,457

and on details of the model.458

We have also shown how that model can be seen as the short time-scale459

approximation of a multi-scale model (7) that allows for recovery of target cells,460

and also for loss of memory cells. Whether reinfections can be approximated461

through the fast equations (1), connected by the discrete map F , depends on462

the interval occurring between reinfections, in agreement with the findings by463

Cao et al. (2016).464

In our view, the model may provide a theoretical framework for analysing465

when a two-dose vaccination strategy is more effective than a one-dose strategy,466

and which is the optimal interval between doses. Clearly, a realistic model467

needs to include many more compartments and complex interactions. However,468

we believe that the idea of summarising the infection process in terms of a469

discrete map, and studying the properties of the discrete map is an effective470

method to discuss the issue.471

Note that the models analysed here, like the model by Zarnitsyna et al.472

(2016), ignore antibody response. Definitely, the lack of antibody response is473

the main reason for the faster decay of infected cells than free virions when474

the adaptive immune response sets in (see the left panel of Fig. 3). From the475

biological point of view, the lack of antibody response in reinfections could476

be justified by focusing on heterosubtypic reinfections that differ substantially477

in virus proteins targeted by antibodies. Mainly, however, we believe that the478

models considered here are sufficiently complex and parameter rich; we believe479

that adding another layer of complexity would only obscure the theoretical480

conclusions. However, it could be quite interesting adapting this approach to481

models including antibody response.482

As discussed in the Introduction, simple models of immune-pathogen in-483

teractions (André and Gandon, 2006; de Graaf et al., 2014; Diekmann et al.,484

2018; Nowak and May, 2000) yield a function F that is decreasing over most485

of the realistic range (i.e. the lower is immune level before the infection, the486

higher it will be afterwards). The analysis of different submodels of (1) al-487

lowed us to elucidate the main mechanisms behind the shape of the function488

F . In particular, it has emerged that model (11) in which depletion of tar-489

get cells is neglected produces a function F that is initially decreasing, and490

is qualitatively similar to the one used by de Graaf et al. (2014). Hence, we491

believe that modelling the depletion of target cells (whether by viral infection,492

or by them turning to a refractory state) is very important in modulating the493

build-up of memory cells, and so the response of the immune system. We re-494

mark that depletion of susceptible target cells is an important component of495

the model fitted to data of experimental infection by Hadjichrysanthou et al.496

(2016). However, Moore et al. (2020) have recently examined, through the use497

of a mathematical model, data from mice infected with influenza, concluding498

that target cell depletion is unlikely to be an important factor in controlling499

influenza infections.500
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Heffernan and Keeling (2008) have analysed an immune-pathogen model501

similar to (1) and have obtained a function F (their Fig. 8) somewhat similar in502

shape to the one in Fig. 8. That model includes depletion of target cells; thus,503

one may wonder why the function F is not increasing. According to us, the504

reason lies in the large value of the recruitment parameter, λx of target cells,505

so that target cells recover their equilibrium density on the same time-scale as506

the infection, and their density decreases of a few percent at most. From this507

comparison, one concludes that target cell depletion must be substantial for508

the function F to be increasing.509

A final remark concerns the simplified systems. From the comparisons of510

Sections 4, it has emerged that system (12) yields a qualitative behaviour511

roughly consistent with that obtained from more realistic models, such as (1).512

This means that the distinction between T-cells in the lymphoid system and513

in the respiratory tract, introduced by Zarnitsyna et al. (2016), does not seem514

to be crucial for determining the qualitative patterns of reinfections, although515

it definitely affects the speed of adaptive immune response. As system (12)516

is much simpler than (1), one might be tempted to build complex immuno-517

epidemiological models that include (12) as a low-dimensional ingredient. We518

plan to explore this possibility in future work.519
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