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a b s t r a c t 

Representational similarity analysis (RSA) is a key element in the multivariate pattern analysis toolkit. The central construct of the method is the representational 

dissimilarity matrix (RDM), which can be generated for datasets from different modalities (neuroimaging, behavior, and computational models) and directly correlated 

in order to evaluate their second-order similarity. Given the inherent noisiness of neuroimaging signals it is important to evaluate the reliability of neuroimaging 

RDMs in order to determine whether these comparisons are meaningful. Recently, multivariate noise normalization (NN M ) has been proposed as a widely applicable 

method for boosting signal estimates for RSA, regardless of choice of dissimilarity metrics, based on evidence that the analysis improves the within-subject reliability 

of RDMs (Guggenmos et al. 2018; Walther et al. 2016). We revisited this issue with three fMRI datasets and evaluated the impact of NN M on within- and between- 

subject reliability and RSA effect sizes using multiple dissimilarity metrics. We also assessed its impact across regions of interest from the same dataset, its interaction 

with spatial smoothing, and compared it to GLMdenoise, which has also been proposed as a method that improves signal estimates for RSA (Charest et al. 2018). We 

found that across these tests the impact of NN M was highly variable, as also seems to be the case for other analysis choices. Overall, we suggest being conservative 

before adding steps and complexities to the (pre)processing pipeline for RSA. 
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. Introduction 

Primum non nocere 

– Latin translation of saying ( “first, do no harm ”) attributed to

Hippocrates (c. 460–370 bce). 

Representational similarity analysis (RSA) has become a staple of

he multivariate pattern analysis (MVPA) toolkit in cognitive neuro-

cience. Methodologically, the core construct of the approach, rep-

esentational dissimilarity matrices (RDMs), provide a common and

traightforward format for summarizing and directly comparing datasets

rom different types of modalities to evaluate their second-order sim-

larities. By converting multivariate signals in condition-rich experi-

ents into RDMs, neural data acquired with fMRI, EEG/MEG, or cel-

ular recordings can be directly compared both to each other and also

o RDMs derived from behavioral judgments and computational mod-

ls ( Kriegeskorte, Mur, Bandettini, 2008a ). Theoretically, by focusing

ttention on the “representational geometry ” of multivariate datasets

 Kriegeskorte and Kievet, 2013 ), RSA has its roots in the long tradi-

ion of psychological theories and methods that characterize the rela-

ionship between mental representations in terms of similarity structure

 Attneave, 1950 ; Shepard, 1964 ). Thus, not only does RSA provide a uni-

ed analytic framework for formating and comparing datasets; it also

romises a means for bridging the gap between psychological constructs

nd their neural implementation. 
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As with any neuroimaging method, the viability of RSA is con-

trained by data quality. Although all neuroimaging data is noisy, for

SA the issue is especially pressing in light of the massive number

f comparisons that are sometimes necessary to construct an RDM.

or example, the classic study of Kriegeskorte et al. (2008 b) included

2 image conditions, which requires calculating 4186 pairwise neural

issimilarity values to construct a single RDM. In principle, one ap-

roach to determining the reliability of an RDM would be to evalu-

te the stability of each of these comparisons individually ( Bobadilla-

uarez et al. 2019 ; Ritchie and Op de Beeck, 2019 ). However, in prac-

ice, researchers have focused on more global properties of RDMs when

valuating their within- and between-subject reliability. For example,

ince different samples for the same condition should be more similar

han samples from different conditions, if activity patterns are reliable,

 common procedure is to calculate all pairwise similarity correlations

etween independent splits of the data. If the on-diagonal correlations,

eflecting self-similarity of conditions, are greater than the off-diagonal

alues, this suggests that on average the conditions can be differenti-

ted ( Haxby et al. 2001 ; Nili et al. 2020 ; Ritchie, Bracci, and Op de

eeck, 2017 ). However, since it is the off-diagonal values that are com-

ared when carrying out RSA, another common method is to estimate

etween-subject reliability of these values by using a leave-one-subject-

ut procedure: RDMs for all but one subject are averaged and corre-

ated with that of the remaining subject. The average across folds then

ives a point estimate of the “noise ceiling ”; that is, an upper bound of
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ow much another RDM can on average correlate with individual neural

DMs ( Nili et al. 2014 ). 

The importance of reporting the reliability of neural dissimilarity has

aturally led to proposals for how it can be improved. One major focus

as been on the choice of dissimilarity metric, with different distance

etrics having been proposed as an alternative to the standard 1 – r cor-

elation distances ( Allefeld and Haynes, 2014 ; Guggenmos, Sterzer and

ichy, 2018 ; Nili et al. 2014 ; Nili et al. 2020 ). Walther et al. (2016) go

 step further, proposing not only cross-validated Mahalanobis distance

s a superior dissimilarity metric, but also recommending that within-

ubject reliability of neural RDMs can be improved by multivariate noise

ormalization (NN M 

). In standard fMRI pipelines, a GLM is fit to the

OLD signal of individual voxels and the activity patterns that are an-

lyzed with RSA are the beta estimates of this model. However, the

OLD signal can be influenced by many sources of noise, which are

ot captured by the GLM. Some of these sources of noise may have a

patial component ( Friston, Jezzard, and Turner, 1994 ), in which case,

t is possible that estimating the structure intrinsic to the noise can be

sed to improve the estimates of the signals of interest, and thereby im-

rove the reliability of the data used to construct neural RDMs. NN M 

ffers a method for improving the reliability of fMRI data by improv-

ng the estimate of beta values based on voxel noise using information

leaned from the residuals of the GLM that is standardly used in first

evel analysis ( Walther et al. 2016 ). More specifically, NN M 

normalizes

he beta weights by the covariance of the run-specific noise, in con-

rast to univariate noise normalization, which uses only the variance

 Misaki et al. 2010 ). 

Through both simulation and reanalysis of four datasets, Walther

t al. found that NN M 

improves the split-half within-subject reliabil-

ty of the off-diagonal values of neural RDMs regardless of the choice

f dissimilarity metric. Applying the NN M 

approach to MEG data,

uggenmos, Sterzer and Cichy (2018) also found a marked improve-

ent. However, not all results have been positive, running counter to the

esults of these studies. Charest, Kriegeskorte and Kay (2018) compared

he effects of NN M 

to those obtained with GLMdenoise, which estimates

he number of noise predictors using a data-driven cross-validation pro-

edure. Contrary to the previous studies, they found that NN M 

in fact

ade reliability worse, and only revealed a benefit when combined with

he noise estimates derived from GLMdenoise. Even more concerning,

iu et al. (2021) found that, after carrying out NN, an observed inter-

ction in representational dissimilarity for adjacent fingers and age was

o longer significant. Taken as a whole, these studies suggest there is

t present equivocal support for the effectiveness of NN M 

for improving

he reliability of neural RDMs. 

In the present study we revisited the issue of the effectiveness of NN M 

t improving the reliability of neural dissimilarity estimates regardless

f the choice of dissimilarity metric. First, we attempted to replicate the

ndings of Walther et al. with three fMRI datasets from previous stud-

es ( Bracci and Op de Beeck, 2016 ; Lee Masson et al. 2018 ; Ritchie and

p de Beeck, 2019 ). Second, unlike the previous work on NN M 

, we did

ot restrict ourselves to sensory-motor ROIs or a single ROI per dataset.

hird, we also evaluate the impact of NN M 

on both between-subject re-

iability, or the noise ceiling, and RSA effect sizes. Fourth, we compared

he effect of NN M 

with and without spatial smoothing, which has a mi-

or positive effect on RSA, at least when using the 1 - r correlation as

he dissimilarity metric ( Hendriks et al. 2017 ; Op de Beeck, 2010 ). Fi-

ally, we attempted to reproduce some of the findings of Charest et al.

y comparing results with NN M 

to those obtained with GLMdenoise or

N M 

when using the noise estimates of GLMdenoise. 

. Materials and methods 

.1. Datasets 

We reanalyzed fMRI datasets from three previously published stud-

es, described below. In each case, the experiments were approved by
2 
he ethics committee of UZ/KU Leuven and all methods were performed

n accordance with the relevant guidelines and regulations. All studies

ere carried out a 3T Phillips scanner with a 32-channel coil at the

epartment of Radiology of UZ Leuven. MRI volumes were collected

cho planar (EPI) T2 ∗ -weighted scans with virtually identical parame-

ers ( Table 1 ). Preprocessing, including slice time correction and mo-

ion correction, was carried out with SPM8 or 12. First level analysis

as also carried out with SPM and the GLM included all of the stimulus

onditions as well as six motion correction parameters (translation and

otation in the x,y, and z axes). We note that in a standardly constructed

LM, although a single design matrix is used to model all the data, beta

stimates are specific to each run and independent of each other. Fur-

her differences in the preprocessing of the images are noted below, and

ull details of the analysis pipelines can be found in the original stud-

es. Stimuli of the datasets, and the ROIs used in the present study, are

epicted in Fig. 1 . 

Dataset 1 (D1). The first dataset came from a study (N = 10) investi-

ating the role of abstraction in category learning behavior using activ-

ty patterns from early visual cortex ( Ritchie and Op de Beeck, 2019 ).

timuli consisted of 16 square-wave annular gratings varying in four

evels of spatial frequency and orientation ( Fig. 1 ). Subjects completed

2 runs of a rapid-event related design in which each image appeared

nd flashed for 2 s (phase reversing at 4 Hz) followed by 2 s of fix-

tion. The region of interest ( Fig. 1 ) was anatomically defined V1

 Benson et al. 2012 ). For the present study the data was also smoothed

t two levels: 6 mm and 9 mm FWHM. The original data was not nor-

alized, and analysis was carried out within the native brain space of

ndividual participants. In the present work, the data was again ana-

yzed after transforming the data to a normalized brain space. All anal-

ses on the normalized space data was identical to that carried out on

he native brain space data, except that the normalized ROI image were

hresholded to have a minimal increase of voxels within an ROI com-

ared to the ROI image in the native brain space (mean increase = 44;

D = 29). For RSA the model RDM used was based upon the pairwise

imilarity judgments for the grating stimuli from both the in-scanner

udgments of participants and a separate group of participants (N = 10)

ho performed the task off-line. 

Dataset 2 (D2). The second dataset came from a study (N = 14)

ontrasting activity patterns for object category vs shape in multiple

egions of the ventral and dorsal visual pathways ( Bracci and Op de

eeck, 2016 ). Stimuli consisted of 54 greyscale natural images of 6 ob-

ect types and 9 orthogonal shape types ( Fig. 1 ). Across two sessions,

ubjects completed 16 (in one case 14) runs of a rapid-event related de-

ign in which two repeats of each image appeared for 1.5 s followed

y 1.5 of fixation, in a pseudorandom order. The main ROI considered

as bilateral object-selective lateral occipitotemporal cortex (LOTC),

efined by a functional contrast of chairs > scrambled images based on

eparate localizer runs ( Fig. 1 ). We also consider two other ROIs from

he study: superior parietal lobe (SPL) and early visual cortex (BA17).

oth regions were defined by a contrast of all localizer conditions >

aseline. For the present study the data was smoothed at two further

evels at 6 mm and 9 mm FWHM. Data was also normalized. For RSA the

odel RDM included the similarity judgments ratings for shape based

n a multiple arrangement task. 

Dataset 3 (D3) . Data came from a study (N = 21) contrasting re-

ponse patterns for social vs non-social actions across a large num-

er of brain regions ( Lee Masson et al. 2018 ). Stimuli consisted of 75

ideos (3 s) with 39 depicting human-to-human touch interaction and

6 showing human-to-object interaction ( Fig. 1 ; Lee Masson and Op de

eeck, 2018 ). The stimulus set included 3 videos depicting the same

nteraction with different actor pairs. Here we keep these conditions

eparate, as in the original study. Subjects completed 6 long runs of a

apid-event related design in which each video was shown followed by

 s fixation in pseudorandom order. The main ROI considered was the

ilateral temporoparietal junction (TPJ), which was defined by a con-

rast of observed touch vs baseline within an anatomical mask ( Fig. 1 ).
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Table 1 

Summary of fMRI datasets. ∗ indicates the acquisition voxel size for D3. 

Dataset Number of Number of Number of Condition Number of Voxel size TR TE Flip angle Field of Volume Number of 

Subjects Conditions Repetitions per run duration (s) runs (mm) (s) (ms) (deg) view (mm) Dimensions Volumes per run 

1 10 16 2 2 12 3 2 30 90 216 72 x 72 x 37 94 

2 14 54 2 1.5 16 (or 14) 3 2 30 90 216 72 x 72 x 37 230 

3 21 75 1 3 6 2.7 ∗ 2 30 90 216 72 x 72 x 37 239 

Fig. 1. Stimuli and approximate location of ROIs of the fMRI datasets. Stimulus images for D2 and D3 reproduced. With permission from Bracci and Op de Beeck 

(2016 ) and Lee Masson et al. (2018) , respectively. For D3, only a subset of the video stimuli are depicted. 
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e also considered early visual cortex (BA17) and a lateral occipital

egion (BA37) as ROIs. Both were defined by the same contrast within

natomically defined masks. Data was normalized, and up-sampled to

 mm resolution from 2.7 mm ( Table 1 ). We also considered two levels

f smoothing: 4 mm and 6 mm FWHM. For RSA the model RDM was the

inary model matrix for the social/non-social division of the videos. 

.2. Multivariate noise normalization 

Procedurally the process of NN M 

was carried out as follows. Let Y

e a matrix of size S (number of total scans across runs) x V (number

f voxels in an ROI) consisting of the raw BOLD signal amplitudes after

reprocessing, and let X be an S x P (number of predictors) sized design

atrix from a GLM. We used the design matrix from SPM, which consists

f separate columns for each experimental condition (for each run) as

ell as run-wise nuisance predictors for the six head motion parameters

nd run-specific constants. The ordinary least square estimate for the

eta values for each predictor of X across all acquisitions in Y is then: 

 = inv 
(
𝐗 

𝑇 ∗ 𝐗 

)
∗ 𝐗 

𝑇 ∗ 𝑌 (1) 

Where B is a P x V sized matrix of the beta weights for each predictor

rows) for each voxel (columns) of the ROI. In turn, the estimate of the

esiduals of the model is then: 

 = 𝑌 − 𝑋 ∗ 𝐵 (2) 

Where R is a S x V matrix reflecting the residual information of each

can (rows) for each voxel (columns). Following Walther et al. (2016 ,

q. 4 ), the V x V variance-covariance matrix for the run k is then: 

𝑘 = 

1 
𝑆 

𝐑 

𝑇 
𝑘 
∗ 𝐑 𝑘 (3) 

Where R k is the portion of the residual matrix R corresponding to

he scans in run k. Because the number of features (voxels) may be

reater than the number of samples (scans) Σk can be rank deficient and

on-invertible. To address this, previous studies have used the optimal

hrinkage factor of Ledoit and Wolf (2004) to regularize R towards the
k 

3 
iagonal matrix. We used the oracle approximating shrinkage (OAS) fac-

or, which outperforms the method of Ledoit and Wolf when the number

f samples is much less than the number of features ( Chen et al. 2010 ).

fter shrinkage, the multivariate noise normalized versions of the beta

eights are then calculated as: 

 

∗ 
𝑘 
= 𝐁 𝑘 ∗ Σ

− 1 2 
𝑘 

(4) 

Where B k is a C (number of conditions) x V matrix corresponding

o the portion of B for run k that only includes the beta weights for the

xperimental predictors (i.e. excluding the nuisance predictors). More

enerally, B 

∗ is then a P ’ x V matrix, where P ’ is the number of conditions

ultiplied by the number of runs. As the estimates of the residuals and

N M 

are carried out independently for each run, the values in B 

∗ can

hen be used to estimate neural dissimilarity values based on the cross-

alidated metrics described below. 

This procedure for NN M 

was carried out on all three datasets for the

smoothed and unsmoothed) imaging data, which was masked to select

nly the voxels within the specified ROIs. For D1, the same analysis was

lso carried out on the first 6, 8, 10, and 12 runs of the unsmoothed

ata. 

Another option for normalizing the responses of each voxel is to

own-weight the beta estimates of noisier voxels based on the standard

eviation of their noise: 

 

+ 
𝑘,𝑝 

= 

𝑏 𝑘,𝑝 

𝜎𝑘,𝑝 
(5)

Where 𝒃 𝑘,𝑝 is the beta estimate of voxel p for some predictor, for run

 , and 𝜎𝑘,𝑝 is the standard deviation of its residual, or the square root

f the diagonal value in Σk for the voxel p ( Eq. 3 ). This univariate noise

ormalization (NN U ) is similar to using the t-values instead of beta es-

imates in order to improve classifier performance and RDM reliability

 Charest et al. 2018 ; Misaki et al. 2010 ). This alternative form of nor-

alization was also carried out on all three datasets, for the unsmoothed

ata, masked by the ROI images. 

Implementation of both NN M 

and NN U was carried out in Matlab

sing inbuilt SPM functions and custom code. 
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.4. Dissimilarity metrics 

An RDM is typically constructed as a C x C matrix of all pairwise

stimates of dissimilarity between C conditions across features (vox-

ls) based on some metric. We considered four different dissimilar-

ty metrics in our analysis, the first three of which were evaluated by

alther et al. (2016) . 

The first metric is the commonly used 1 – r , or correlation, distance

Cor), which has been a mainstay of RSA since its initial development

 Haxby et al., 2001 ; Kriegeskorte, Mur, and Bandettini, 2008 ; Op de

eeck et al., 2008 ; Kietzmann et al., 2019 ). To compute this metric, the

ortions of B for the conditions i and j are averaged across runs, and the

esulting beta row vectors b ̅i and b ̅j , are linearly correlated and the Pear-

on’s correlation coefficient, r ij , is subtracted from 1. Note that it is com-

on practice to subtract the mean from beta vectors before correlating

hem, as was the case for the study from which D3 was selected ( Lee Mas-

on et al. 2018 ). However, this has the potential to distort the relation-

hips between conditions ( Walther et al. 2016 ). We elected to not do

ean subtraction, which entails that the correlation distance can be in-

uenced by global signal differences across voxels. However, we note

hat preliminary analysis found that run-wise mean subtraction had no

ppreciable influence on the results when NN M 

was employed. It is also

ossible to utilize a cross-validated version ( Guggenmos et al. 2018 ),

owever we selected to use the simpler, and clearly most common,

ethod. 

The second metric is pairwise classifier accuracy (Cla), which is the

rst of the cross-validated metrics we consider. For this we used linear

iscriminant analysis (LDA), which maps samples onto a discriminant

xis that maximizes the between-class variance, while minimizing the

ithin-class variance. A decision values is then positioned orthogonal

o the discriminant and decisions about the label for training data are

ased on the position of a sample on the discriminant relative to the

ecision value. For LDA (and the other metrics described below) we

sed a leave-one-run-out cross-validation procedure: the data from the

raining runs were averaged and used to estimate the discriminant and

ecision value, which was then used to label the test data. This was

arried out for all cross-validation folds, and the dissimilarity metric is

hen the pairwise classifier accuracy. LDA makes an assumption of ho-

oscedasticity: that the beta weight vectors for i and j have identical

ultivariate Gaussian distributions that differ only in their mean; that

s, they have the same within-class variance-covariance matrix sigma Σ.

hese details are elaborated on below. Linear support vector machines

SVM) are also a popular algorithm that can be used to estimate neural

issimilarity ( Walther et al. 2016 ), which do not make the same distribu-

ional assumptions and in some cases may be superior in performance to

DA ( Misaki et al. 2010 ). However, we preferred LDA because it is an-

lytically simpler (and therefore computationally faster), and because

t is mathematically closely related to the other two distance metrics

e utilized, which have been emphasized in previous work on NN M 

 Diedrichsen et al. 2016 ; Guggenmos et al. 2018 ; Walther et al. 2016 ). 

The third metric was the pairwise cross-validated squared Euclidean

istance (Euc), which can be expressed as: 

 

2 
euc = 

(
𝑏 𝑖 − 𝑏 𝑗 

)
TR 

∗ 
(
𝑏 𝑖 − 𝑏 𝑗 

)𝑇 
TS 

Where b ̅i is the average beta weight vector from the training runs,

enoted TR , and b i is the beta weight vector from the test run, denoted

S . Procedurally the data for the conditions i and j was demeaned, split

nto the training and test partitions (leave-one-run-out), and the run-

ise averages were computed for the training partition, which was then

ultiplied by the transposition of the difference between the beta weight

ectors in the test partition. The final dissimilarity value was the results

f this procedure when averaged across cross-validation folds. 

Finally, when the variance-covariance matrix of the training

ata, or within-class “scatter ”, is added to Eq. 5 , we get what

alther et al. (2016) call the cross-validated squared Mahalanobis dis-
4 
ance (Mal) as a metric of dissimilarity: 

 

2 
mal 

= 

(
𝑏 𝑖 − 𝑏 𝑗 

)
TR 
Σ−1 

TR ∗ 
(
𝑏 𝑖 − 𝑏 𝑗 

)𝑇 
TS 

(6) 

The within-class scatter, ΣTR , is just the equally weighted variance-

ovariance matrices for the training samples of beta weights for condi-

ions i and j ( Misaki et al. 2010 ): 

TR = 0 . 5 ∗ cov 
(
𝐁 𝑖 

)
TR 

+ 0 . 5 ∗ cov 
(
𝐁 𝑗 

)
TR 

(7) 

Where B i is a matrix of all the samples for condition i in the training

ata. Procedurally the variance-covariance matrices can be rank defi-

ient and so they were also regularized using OAS ( Chen et al. 2010 ).

hen defined in this way, Mal is closely related to LDA since the pair-

ise difference along the discriminant, as a portion of Eq. 6 , describes

he feature weights for an LDA classifier: 

 = 

(
𝑏 𝑖 − 𝑏 𝑗 

)
TR 
Σ−1 

TR (8) 

The decision value along the discriminant can then be calculated by

umming the mean beta weight patterns for the two conditions from the

raining data: 

 = 𝑤 ∗ 1 
2 

(
𝑏 𝑖 + 𝑏 𝑗 

)
TR 

(9) 

Then for any beta weight vector from the training set b , we can com-

ute the value v: 

 = 𝑤 ∗ 𝑏 𝑇 (10) 

If v > c (or is positive), then the Fisher discriminant rule says to guess

hat b is from class i, otherwise if v < c (or is negative), then the rule

ays to guess that b is from class j . 

Two clarifications are worth making about Mal as a dissimilarity

etric, before continuing. First, Walther et al. (2016) describe their

referred metric, the linear discriminant contrast (LDC), or “crossno-

is ” distance, as identical to Mal ( Walther et al. 2016 , Eq.9 ; see also

ili et al. 2020 , p.6). This assertion is misleading, since LDC is de-

ned as the value one obtains when one first carries out NN M 

and

hen uses Euc as a dissimilarity metric ( Dierdrichsen et al. 2016 , Eq.4 ;

alther et al. 2016 , Eq.7 ;). However, the variance-covariance matri-

es used for NN M 

( Eq.3 ) and Mal ( Eq.7 ) are clearly not the same and

al can be used without NN M 

( van Meel and Op de Beeck, 2020 ;

itchie and Op de Beeck, 2019 ; Ritchie et al. 2020 ). To avoid confu-

ion, we treat Euc and Mal as wholly distinct metrics. Since the assump-

ion that NN M 

somehow converts Euc to Mal is obscure, we did not fol-

ow Guggenmos et al. (2018) in replacing the within-class scatter from

q. 7 with the identity matrix. Second, LDA is essentially a discretized

ersion of Mal, and so will necessarily contain less information than

 continuous metric ( Walther et al. 2016 ). To address this drawback,

ne possibility is to use the distance between v and c as a dissimilarity

etric, or the equivalent decision value for other classifiers, to weight

he classifier accuracies ( Guggenmos et al. 2018 , Eq. 3 ). However, it is

nclear to us what the advantage is of this metric compared to simply

alculating Mal directly and so we do not consider it in the present work.

The calculation of the dissimilarity values using all these metrics was

arried out with custom code in Matlab along with the CoSMoMVPA

oolbox ( Oosterhof et al. 2016 ). 

.4. Estimating reliability 

The reliability of individual RDMs were estimated in a number of

ays. First, following the analysis of Walther et al., our primary form of

valuation for reliability was to assess the within-subject reliability. For

his we split the data of individual subjects into the odd and even runs

nd then constructed RDMs for these partitions based on the different

etrices described above. The two RDMs were then Pearson’s r corre-

ated with each other to determine their reliability ( Charest et al. 2018 ;
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uggenmos et al. 2018 ; Walther et al 2016 ). Other measures of reliabil-

ty are possible. For example, Walther et al. (2016) propose the sum-of-

quares differences for testing the reliability between two sets of RDMs

ecause it will be influenced by scaling factors and provides a better esti-

ate for distance metrics. We opted for the Pearson’s r correlation as our

stimate of reliability for a number of reasons. First, it is the most famil-

ar method. Second, it is the same method used for estimating between-

ubject reliability. Third, unlike the sum-of-squares difference it can be

sed with Cor. And fourth it preserves continuity with the analyses that

re typically used to evaluate RSA effect sizes (e.g. multiple regression).

Second, for the between subject reliability we calculated the noise

eiling ( Cronbach, 1949 ; Nili et al. 2014 ; Op de Beeck et al. 2008 ). In-

ividual RDMs were constructed using the above dissimilarity metrics

or the full datasets, and then a leave-one-subject-out procedure was

mployed: the RDMs for all but one subject were averaged and then

Pearson’s r) correlated with the left-out subject’s RDM, and then the

oefficients were averaged across all iterations of the procedure. This

as sometimes been described as the “lower ” bound of reliability with

he upper bound defined by the same procedure except that the data of

he one subject is also included in the group average ( Nili et al. 2014 ).

owever, this latter procedure is explicitly described as generating over-

stimates of the reliability, while the former procedure is not. Since it is

ot clear how it provides an accurate description of the relevant feature,

hich is the explainable variance, we do not consider this overfitting

stimate. Crucially, while in standard applications the noise ceiling is

reated as a point estimate, there is of course a distribution based on the

eave-one-subject-out folds, which is reflected in the results to follow. 

Third, for Cor we also evaluated the relationship between the on-

nd off diagonal values, or “exemplar discriminability index ” (EDI) as

t has also been called ( Haxby et al. 2001 ; Nili et al. 2020 ). The data

f individual subjects was again split in half to odd and even runs, and

hen the pairwise correlations were performed between the two splits.

n principle, the patterns for a condition should be self-similar across

he two splits, in which case the diagonal values will be higher than the

ff diagonal values ( Ritchie, Bracci, and Op de Beeck, 2017 ). The on-

nd off-diagonal values are then averaged, and their difference score is

eported (on-minus-off). Positive values indicate that the patterns for

ach condition are on average reliably self-similar. Testing for the sig-

ificance of this index of reliability assumes that the distribution of the

ifference scores are 0-mean normal given the null hypothesis. Although

his assumption is not in fact true of the distribution, the simulations of

ili et al. (2020) suggest that the false positive rate is in fact low and so

he test remains valid. 

.5. Comparison to model RDMs 

To evaluate the impact of NN M 

on the effect sizes for RSA, we com-

ared individual subject RDMs to distinct model RDMs for each dataset

described above). The bottom half of individual RDMs (based on their

ull data, as constructed for the between-subject reliability analysis)

ere converted to column vectors and rank-order correlated (Spear-

an’s 𝜌) with the lower half of the model RDM, which was also con-

erted to a column vector. For discussion of why rank-order correlations

uch as Spearman’s 𝜌 are typically used to test RSA effects, rather than

earson’s r, see Kriegeskorte, Mur, and Bandettini (2008 , Appendix). No-

ably, when binary coding is used, as with the social/non-social touch

odel for D3, dissimilarity values in effect have a Bernoulli distribution

taking values 0 or 1 at different frequencies) and so assuming linearity

s inappropriate. 

.6. GLMdenoise 

GLMdenoise is a method that estimates beta values and automati-

ally derives nuisance predictors, and the optimal number of these pre-

ictors, directly from an fMRI dataset via cross-validation procedures
5 
 Kay et al. 2013 ). The guiding idea behind the pipeline is that this pro-

edure can improve the beta estimates by iteratively determining how

uch of the variance between conditions and noise predictors can be

aptured. Unlike SPM, GLMdenoise analyzes the data from all runs to-

ether, and so outputs only a single beta weight for each condition. Al-

hough each run has its own set of noise regressors the number of these

egressors are fixed across datasets and are determined by the steps de-

cribed below. GLMdenoise also includes a number of polynomial re-

ressors to characterize the baseline signal level, which shifts over time

n each run. Polynomials of degrees 0 to round(L/2) are included, where

 is the length of the runs in minutes. Thus, given the relatively short

un length, there were three such regressors for D1 and five for D2 and

3, which had comparatively longer run lengths. 

GLMdenoise has a number of steps, which we briefly summarize (for

ull details see Kay et al. 2013 ). First, a seed HRF for each condition is

enerated based on the stimulus durations (2, 1.5, and 3 s). Second, the

ignal estimate is determined by keeping either the HRF or nuisance re-

ressors fixed and the ordinary least squares estimate is computed until

here is a convergence of parameter estimates, based on when R 

2 is 99%

etween the current and previous HRF iteration. Third, having set the

orm of the HRF, a leave-one-run-out cross-validation procedure is used

o determine best fit of the GLM for each voxel. The predictions from

he folds are combined and the total GLM model is compared to the data

sing R 

2 . Fourth, voxels are selected for the noise pool based on R 

2 <

 as determined at the previous step. Although this step can be used

o exclude voxels outside the brain, we truncated the raw data using

he whole brain mask generated by the GLM from SPM ( Charest, Kay,

nd Kriegeskorte, 2018 ). Fifth, PCA is run on the noise pool, while pro-

ecting out the polynomial regressors. It is the resulting principle com-

onents that constitute the noise regressors for each run. Sixth, again,

ross-validation is used to evaluate the model fit while varying the num-

er of noise regressors by iteratively increasing the numbers of the prin-

iple components from the previous step that are used as predictors.

he only way this step impacts the beta estimates is if there are corre-

ations between the noise and condition regressors. This procedure also

llows for greater variance to be captured. Seventh, the number of PC is

elected based on the median of R 

2 across the runs. A final step, perform-

ng a procedure to bootstrap to estimate error bars, was not performed

o conserve computational resources. 

We used the resulting denoised data in four ways. First, we applied

he analysis separately to the odd and even splits in order to determine

he impact on within-subject reliability. Note that this allowed that the

umber of PCs would be different between the odd and even splits. Also,

ince the predictors are concatenated, resulting in a single beta esti-

ate for a condition from all runs, we could only estimate the within-

ubject reliability for the Cor measure since cross-validation was not

ossible. Second, we applied GLMdenoise to the full datasets to evalu-

te the between-subject reliability and RSA effect sizes, again only using

DMs constructed with the Cor metric. Third, we attempted to repli-

ate the analysis of Charest et al., in which the design matrix generated

y GLMdenoise is used to carry out NN, by plugging the matrix into

qs. 1 and 2 . However, this procedure required restructuring the design

atrices in order to ensure run-specific estimates of beta values for each

ondition both for NN M 

and to make utilization of the cross-validated

issimilarity metrics possible. To this end the estimates for each condi-

ion were assigned a distinct column in the design matrix (i.e. were no

onger concatenated). No other modification of the design matrices was

arried out. We note that as GLMdenoise already cross-validates across

uns the assumption of independence between runs made by NN M 

and

ross-validated metrics is violated. However, the reconfigured design

atrices were only used to evaluate the within-subject reliability, where

he cross-validation at least occurs independently for the odd and even

plits. Finally, we compared the results to those obtained when the SPM

esign matrices were split for the odd and even runs and the predictors

or the experimental conditions concatenated across runs. This allowed

s to assess whether any improvement in within-subject reliability ob-
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ained with GLMdenoise could also be achieved with SPM by changing

he design matrix to only estimate a single beta value per condition. 

.7. Statistical analyses 

To statistically assess the impact of NN M 

on reliabilities and RSA ef-

ect sizes we modeled the individual correlation coefficients using linear

ixed effects (LME) models with subject as a grouping factor and NN,

issimilarity metric, and their interaction, as fixed effects. There were

andom effects for the intercept, and NN M 

and metric for each level of

he grouping variable (that is, subject). To assess the overall fit of the

odels we report the R 

2 . Because the metric predictor included four

lasses, the LME estimates the effect of each metric and its interaction

ith NN M 

. Thus, to also assess the main effects of choice of dissimilarity

etric and the interactions we applied an ANOVA to the LME. Although

his set of statistical procedures carries the common (and commonly vi-

lated) assumption that the data is normally distributed, we utilized

ME in this case because, by grouping the data by subject, it provides

 more appropriate way of testing the impact of NN M 

and metric as the

ata for a subject across metrics and NN M 

is not independent. Rather,

t reflects the same data being analyzed in a number of different ways.

 main effect of NN M 

tells us that the mean correlation across subjects

s impacted by NN M 

across metrics, where at the individual level NN M 

enerates an increase in the correlation value, not just the population

nd of metric regardless of NN M 

. An interaction tells us that these fixed

ffects influence each other. We also tested the paired differences (or

ifference scores; see Fig. 3 C) in mean correlation coefficients for each

etric, when calculated with and without NN, using paired t-tests. 

When evaluating the impact of NN M 

when run-number was ma-

ipulated for D1, we included it as a fixed effect. When the data was

moothed, we further added level of smoothing (none, Level 1, or Level

) as a fixed effect in the LME. When evaluating the impact of NN M 

on

he EDI, the LME model only included NN M 

and smoothing as fixed ef-

ects, since only Cor was used as a dissimilarity metric. When evaluating

he impact on within-subject reliability smoothing was included along

ith NN M 

and metric as fixed effects, and therefore the model contained

ultiple two-way interactions and a three-way interaction term. As be-

ore we evaluated main effects using an ANOVA applied to the LME and

arried out paired t-tests of the mean individual correlations for each

etric, with and without NN M 

. Since for the smoothed data analysis

his resulted in far more statistical tests for each dataset, we controlled

or multiple comparisons by reporting the FDR adjusted p-values. For

LMdenoise, we carried out paired t-tests of the mean correlations ob-

ained with GLMdenoise relative to those for baseline and NN M 

. The

ame tests were performed when comparing NN M 

with the GLMdenoise

esign matrices against NN M 

with the SPM design matrices and against

aseline. 

.8. Exploratory analysis of residual variance-covariance matrices 

In an exploratory analysis we investigated the covariance structure of

he run-wise variance-covariance matrices derived from the GLM resid-

als based on the spatial distance between voxels in an ROI as well as

he goodness-of-fit (GoF) of the GLMs for each voxel. 

For each subject we constructed matrices for the initial three ROIs

ased on the pairwise Euclidean distance between voxels in voxel space.

ince plausibly covariance between voxels decreases with their distance,

e used the exponentially decaying distance between voxels as an esti-

ate of similarity in spatial position: 

 ij = exp 
(
− 𝑑 ij 

)
(11) 

Where d ij is the pairwise Euclidean distance between voxels i and

 . Van Bergen and Jehee (2018) also consider Eq. 11 as a predictor of

oise correlations between voxels and vary parameters for the rate and

tarting value of the decay in order to better fit their data. For the present
6 
reliminary analysis both values were set to 1. The off-diagonal values of

he decaying distance matrix for each subject was correlated (Pearson’s

 ) with covariance values of each of the run-specific variance-covariance

atrices and then averaged. The group averages of these correlations

ere then tested for significance with a two-sided t -test. The between-

un reliability of the run-specific covariance values was also estimated

sing a similar procedure for calculating the between-subject reliability

f neural RDMs: for each run, the off-diagonal covariance values were

orrelated with the average values of the remaining runs, and then the

cross-run average of these correlations was calculated and tested for

ignificance using a two-sided t -test. 

We considered whether the above correlations (between the decay-

ng distance matrices and variance-covariance matrices) might predict

hether NN M 

improved within-subject reliability. For this analysis we

ocused solely on Euc as a measure since, as reported below, it pro-

uced the largest improvements in within-subject reliability for D1 and

2. For all three datasets we subtracted individual within-subject relia-

ility coefficients without NN M 

from those obtained with NN M 

. We also

onsidered whether these difference scores might be predicted by the ra-

io between voxels and experimental conditions which describe the size

f the variance-covariance matrices and relate to the possibility of rank

eficiency described above. Pooling across all three datasets, we rank-

rder correlated (Spearman’s 𝜌) all three variables with each other: (i)

he average correlations between the decaying distances between voxels

nd run-specific covariance values from the residuals; (ii) the change in

ithin-subject reliability after NN M 

when using Euc as the dissimilarity

etric; and (iii) the ratio between voxels and experimental conditions. 

We also evaluated whether the GoF of the GLMs for each voxel

ight bare a relationship to the covariance between voxels and pre-

ict whether NN M 

improved within-subject reliability. The measure of

oodness-of-fit we used was the model-based SNR: 

N R 𝑚𝑏 = 

𝜎2 
𝑆 

𝜎2 
𝑁 

(12) 

Which divides the variance of the explained BOLD signal by the

ariance of the unexplained BOLD signal ( Welvaert and Rosseel, 2013 ).

alculation of the SNR mb was carried out using code adapted from the

ACS SPM toolbox ( Soch and Allefeld, 2018 ). We evaluated this GoF

easure in two ways. First, we determined the proportion of voxels in

n individual subject ROI where the explained signal was greater than

he unexplained signal (i.e. SNR mb > 1). We also made a dissimilarity

atrix based on the pairwise absolute difference in GoF, which was cor-

elated with the run-averaged residual variance-covariance matrix. Both

f these sets of values derived from the GoF were then rank-order corre-

ated (Spearman’s 𝜌) with the change in within-subject reliability after

N, when Euc was used as a metric. 

. Results 

We investigated whether NN M 

improves the estimate of condition

pecific changes in the BOLD signal of fMRI, and thereby improves the

eliability of RDMs, and whether this effect of NN M 

interacts with choice

f dissimilarity metric. We reanalyzed three datasets (D1-D3) from pre-

ious studies in order to evaluate the impact of NN M 

on the within- and

etween-subject reliability of neural RDMs constructed using four dif-

erent metrics, as well as the RSA effect sizes based on correlations with

ataset-specific model RDMs. We further evaluated the results of NN M 

or other ROIs from two of these datasets, compared its impact across

ifferent levels of spatial smoothing, and finally compared it to results

btained with GLMdenoise, which has also been suggested as a method

or improving signal estimate for the purpose of RSA. Because many

tatistical tests were performed for each portion of the results, they are

eported in accompanying tables. 
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Table 2 

Summary of linear mixed effects (LME) modeling of the results depicted in Fig. 2 . 

Dataset Effect R 2 F df 1 df 2 p 

Table 2 A: Within-subject reliability 

1 LME 0.84 29.91 7 72 9.66E-18 

NNM 19.36 1 72 3.67E-05 

Metric 11.63 3 72 2.66E-06 

Interaction 10.72 3 72 6.56E-06 

2 LME 0.92 16.56 7 104 1.63E-14 

NN 5.9 1 104 0.02 

Metric 17.7 3 104 2.37E-09 

Interaction 18.76 3 104 8.43E-10 

3 LME 0.51 3.45 7 160 0.002 

NNM 13.38 1 160 9.25E-04 

Metric 2.13 3 160 0.1 

Interaction 1.29 3 160 0.28 

Table 2 B: Between-subject reliability 

1 LME 0.88 46.78 7 72 2.64E-24 

NNM 21.5 1 72 8.37E-17 

Metric 52.53 3 72 4.22E-18 

Interaction 44.1 3 72 2.75E-16 

2 LME 0.97 93.51 7 104 5.94E-42 

NNM 81.2 1 104 1.08E-14 

Metric 138.49 3 104 3.49E-36 

Interaction 123.42 3 104 3.92E-34 

3 LME 0.65 26.81 7 160 4.36E-24 

NNM 58.58 1 160 1.73E-12 

Metric 4.31 3 160 5.90E-03 

Interaction 1.43 3 160 0.24 

Table 2 C: Effect sizes 

1 LME 0.93 28.59 7 72 2.04E-18 

NNM 23.29 1 72 7.57E-06 

Metric 41.74 3 72 9.67E-16 

Interaction 34.72 3 72 5.45E-14 

2 LME 0.9 16.22 7 104 2.84E-14 

NNM 29.94 1 104 3.10E-07 

Metric 21.91 3 104 4.48E-11 

Interaction 20 3 104 2.61E-10 

3 LME 0.93 6.79 7 160 4.61E-07 

NNM 34.7 1 160 2.20E-08 

Metric 3.86 3 160 1.06E-02 

Interaction 4.92 3 160 2.70E-03 
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.1. Multivariate noise normalization does not consistently improve the 

ithin- or between-subject reliability or RSA effect sizes 

We began with within-subject analyses following the approach of

alther et al. For each dataset we calculated the correlation between

he odd and even run RDMs of each subject both with and without NN M 

nd across dissimilarity metrics. For the four datasets they analyzed,

alther et al. considered regions from primary motor and sensory cortex

M1/S1) as well as high-level visual cortex. Thus, the choice to include

1, with V1 as a ROI and gratings as stimuli, was to have an equivalent

arly sensory area include in our analysis. Similarly, D2 was included,

ith LOTC as an ROI and natural object images as stimuli, to have a

imilar dataset to two of those considered by Walther et al. However,

alther et al. only evaluated sensorimotor or visual areas and did not

onsider any ROI that is known to be responsive to more abstract or

ognitive relationships between experimental conditions. This was our

otivation for including D3, with its large number of social/non-social

ouch videos, and to initially focus on an area like TPJ, which is known

o be recruited by social cognition and theory of mind ( Saxe and Kan-

isher, 2003 ). Inclusion of D3 was especially important for evaluating

ow well NN M 

applies more broadly. 

For D1, the results were well described by the LME model with signif-

cant main effects of NN M 

, metric, and interaction ( Table 2 A). All paired

-tests for the metrics were also significant ( Fig. 2 A). So, for D1, across

etrics, NN M 

improved within-subject reliability, though the improve-

ent tended to vary with choice of metric. For D2, the results were well

escribed by the LME model with significant main effects for NN, metric,

nd interaction ( Table 2 A). Only the paired t-tests for Euc and Mal were
7 
ignificant ( Fig. 2 A). So, for D2, NN M 

only improved within-subject re-

iability when using the two distance metrics. For D3, the results were

ell described by the LME model and there was a significant main effect

f NN, but not metric or interaction ( Table 2 A). However, the effect of

N M 

for D3 was in the wrong direction, though only the paired t -test

or Cor was significant ( Fig. 2 A). So, for D3, NN M 

made within-subject

eliability worse. 

Next, we evaluated the impact of NN M 

on the between-subject reli-

bility by calculating the noise ceiling with and without NN, for each

f the four metrics. For D1, the results were well described by the LME

odel and there were significant main effects of NN M 

, metric, and in-

eraction ( Table 2 B). Only the paired t -test for Cla was not significant

 Fig. 2 B). So, for D1, NN M 

improved between-subject reliability but the

ize of this improvement varied with metric ( Fig. 2 B). For D2, the re-

ults were well described by the LME model and there were significant

ffects of NN M 

, metric, and interaction ( Table 2 B). Only the paired t -

est for Clas was not significant ( Fig. 2 B). So, as with D1, for D2 NN M 

ended to improve between-subject reliability, but the size of this im-

rovement varied with metric ( Fig. 2 B). For D3, the results were also

ell described by the LME model, with significant effects of NN M 

and

etric, but no interaction ( Table 2 B). All paired tests were also signif-

cant, but unlike with D1 and D2, the differences were in the wrong

irection, with NN M 

consistently lowering the between-subject reliabil-

ty ( Fig. 2 B). So, for D3, NN M 

also made the between-subject reliability

orse. 

Finally, we considered how NN M 

might influence actual RSA effect

izes since it was conceivable that it might impact the explainable vari-

nce without changing the mean correlations with model RDMs. For

1, the results were well described by the LME model with significant

ain effects of NN, metric, and interaction ( Table 2 C). The paired dif-

erences were only significant for Cor and Euc ( Fig. 2 C). Although the

ean correlations were much lower for D2 than D1, the same pattern

as observed. The LME model explained most of the variance and there

ere main effects of NN, metric, and interaction ( Table 2 C). The paired

ifferences were also only significant for Cor and Euc. So, for both D1

nd D2, NN M 

only seemed to increase the RSA effect sizes when us-

ng two of the metrics. For D3, the LME model was again significant,

nd the same pattern was observed as was seen for the within- and

etween-subject reliability: there were main effects of NN, metric, and

nteraction ( Table 2 C). But this was once again in the wrong direction

or NN, with mean correlations significantly lower across all metrics

 Fig. 2 C). 

Two observations are worth making about the findings summarized

o far. First, regarding the positive results for D1 and D2, among met-

ics NN M 

had very little influence on any of the mean effect sizes when

la was used while it had the greatest impact when Euc was used. This

ubstantial improvement seemed to occur because the correlations for

uc were low to begin with. In contrast, the mean reliabilities were al-

eady much higher when Cor and Mal were used as metrics and tended

o be at least slightly improved by NN M 

. However, if one chose the met-

ic based solely on the magnitude of the baseline RSA effect sizes when

N M 

was not utilized, then Mal should be selected as NN M 

did not sig-

ificantly increase the mean correlations. Second, it is notable that the

aseline within-subject reliability is considerably lower for D3 than the

ther two datasets. This is likely the case for a number of reasons: that

t is a cognitive region; that the study included a much larger number of

onditions; and finally that there were far fewer runs (only half as many

s for D1). In part for these reasons we next considered the impact of

N M 

on other ROIs. 

.2. Univariate noise normalization has less impact on within-subject 

eliability 

We next assessed whether it was specifically the normalization by

he covariance between voxels that produced the discrepant results

cross datasets. To do this, we performed univariate noise normaliza-
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Fig. 2. Multivariate noise normalization (NN M ) does not consistently improve the reliability of neural RDMs, or effect sizes, across datasets. (A) Bars 

indicate the group mean of within-subject split-half reliabilities and error bars are the standard error of the mean. Colors indicate the different dissimilarity metrics. 

Lightened bars on the left of each pair indicate the mean value when NN M was not carried out prior to RSA, while saturated colored bars to the right indicate mean 

correlations when NN M was carried out. ∗ = p < 0.05 based on two-sided paired t-tests. Error bars are the standard error of the mean (SEM). Also depicted are scatter 

plots of all individual subject data points across all four dissimilarity metrics. (B) Bars indicate the group mean of the between-subject reliability or “noise ceiling ”. 

All conventions are the same as in (A). (C) Bars indicate the mean rank-order correlations between individual neural RDMs and target model RDMs for each dataset. 

All conventions are the same as in (A). 
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Table 3 

Within-subject reliability (# of runs). 

Dataset Effect R 2 F df 1 df 2 p 

1 LME 0.79 38.73 8 311 1.72E-42 

NNM 15.8 1 311 8.75E-05 

Metric 24.01 3 311 5.30E-14 

Runs 75.84 1 311 1.84E-16 

N x M 21.8 3 311 7.71E-13 
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ion (NN U ), and compared its impact on the within-subject reliability

cross all three datasets. 

For D1, we found that NN U also significantly improved reliability

ompared to baseline across all four of the dissimilarity metrics, but to

 significantly lesser degree than NN M 

when Euc and Mal were used to

onstruct the RDMs ( Fig. 3 A). For D2, NN U only improved reliability

hen Cor was used, with no significant difference for any of the other

etrics for which reliability was effectively unchanged from baseline.

hus, NN M 

also significantly improved reliability compared to the re-

ults with NN U , when either Euc or Mal were used as metrics. Finally,

or D3, NN U had no significant impact on the within-subject reliability,

egardless of the metric used. Crucially, unlike NN, there was no general

rend of decreasing the reliability either. 

These results suggest that the differential impact of v across datasets

nd metrics is specifically a result of applying multivariate NN M 

and

ormalizing by the run-wise covariance between residuals of the vox-

ls in an ROI, as NN U had comparatively far less influence (positive or

egative) on within-subject reliability. 

.3. The improvement in within-subject reliability from multivariate noise 

ormalization is consistent across number of runs 

Another question is whether the difference in findings we observed

etween D1 and D2 compared to D3 is a result of the difference in the

mount of data per subject. D1 and D2 contained 12 and 16 (or 14)

uns per subject, while D3 only contained 6 runs. To assess the amount
8 
f runs on within-subject reliability, we further analyzed the data of D1.

or each subject we carried out the same analysis as before, splitting the

dd and even runs, based on the first 6, 8, 10, or full 12 runs of a subject

 Fig. 3 B). 

For D1, the results were well described by the LME model with sig-

ificant main effects of NN, metric, and run number, with a significant

nteraction between NN M 

and metric ( Table 3 ). With fewer runs, there

as no significant increase in reliability when Cor was used as a met-

ic, while the reverse pattern, of decreasing differences, was suggested

hen Cla was used. Regardless of the number of runs, NN M 

resulted in a

ubstantial improvement when Euc and Mal were used as dissimilarity

etrics. Notably, the baseline reliability achieved with Cor with only

 runs, even without NN M 

, was much higher than for any of the cross-

alidated metrics. Furthermore, even with only 6 runs, the reliability

or D1, even without NN M 

, tended to be higher than for D3, and similar

r higher than what was observed for D2. 
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Fig. 3. Comparing the effects of multivariate vs univariate noise normalization, number of runs, and normalizing the brain images on within-subject 

reliability of neural RDMs. (A) – (B) Bars indicate the group mean of within-subject split-half reliabilities and error bars are the standard error of the mean. (A) 

White bars with colored outlines indicate results when carrying out univariate noise normalization (NN U ). (B) Pairs of bars indicate the results for different numbers 

of runs per subject. All other conventions are the same as in Fig. 2 A. (C) Bars indicate the difference of the within-subject reliabilities subtracting the effects observed 

based on results when data was in subjects’ native brain space vs when it was in a normalized brain space. Errors are the standard error of the mean. Scatter plot 

indicates the difference in within-subject reliability as a result of NN M either in the native subject space (Diffnative ) or the normalized space (Diffnorm ). 
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These results show that it is possible to obtain substantial improve-

ent in within-subject reliability of individua RDMs with as few as 6

uns, which was the same number of runs for D3. Thus, the discrepant

esults we observed for that dataset, are unlikely to be merely a result

f run sample size. 

.4. The improvement in within-subject reliability from multivariate noise 

ormalization is not impacted by normalizing brain space 

Another possibility is that the relatively consistent results observed

or D1 relative to D2 and D3 was a result of the fact that it was carried

ut on data in the native brain space of each individual subject and not

 normalized brain space as was the case for the other two datasets. For

t is conceivable that, to the extent that the noise information present in

he residuals has a spatial component, this might be distorted through

ormalization. 

To test this, we first normalized the data for D1 before carrying out

he exact same analyses for constructing a GLM for the data, applying

N, and evaluating the impact of the method on within-subject relia-

ility across dissimilarity metrics. When the within-subject reliabilities

btained for the normalized space data were subtracted from those for

he native space data, these difference scores were never significantly

ifferent from chance ( Fig. 2 C). The lack of influence of normalization

s also apparent when looking at individual data points which largely

all along the diagonal in Fig. 2 C, indicating that there was no apprecia-

le difference in the impact of NN M 

, whether data from a normalized or

ative brain space is used. 

These results suggest that the difference in results for D1 from D2

nd D3 are unlikely to simply be a result of whether data is analyzed in

 subject’s native brain space. 

.5. The impact of multivariate noise normalization is consistently 

nconsistent across regions of interest 

For the three datasets we considered, and the three evaluations we

erformed, the impact of NN M 

was most consistently beneficial for D1,

ore mixed for D2, and generally quite negative for D3. Unlike D1, D2
9 
nd D3 both came from studies that considered a large number of ROIs.

iven our discrepant findings, we next asked whether similar results

ight obtain for a selection of the other ROIs from these studies. Since

he ROI for D1 was a portion of V1, we also considered the equivalent

OIs for D2 and D3 to determine whether the impact of NN M 

would be

onsistently more positive in early visual cortex, across datasets. In both

ases in the original studies these regions were labeled BA17. For D3 we

nitially focused on a non-visual region, and this raised the question of

hether this might play a role in the negative influence of NN M 

we

bserved. Thus, for D2, we also considered a ROI outside of the ventral

isual pathway, SPL. For D2 we had initially focused on a high-level

isual region and so we also considered a similar ROI for D3: a portion

f lateral occipitotemporal cortex, labeled as BA37 in the original study.

or the pairs of new ROIs for D2 and D3, we then again carried out the

ame analyses as before. Results are depicted in Fig. 4 and statistical

ests are reported in Table 4 . 

For both datasets, the correlations for within-subject reliability for

eural RDMs for BA17 were well described by the LME model. There

ere significant main effects for Metric and Interaction for D2, and only

etric for D3 ( Table 4 A). However, for D2 there was only a significant

ncrease for Euc, and no significant differences in mean reliability for

3 ( Fig. 4 A). Thus, for D2, NN M 

seemed to have very little positive im-

act on the mean within-subject reliability of neural RDMs for BA17,

nd for D3, NN M 

seemed to have no impact, though there was possi-

ly a slightly trend in a positive direction. For D2 (SPL) the LME model

as significant, and there were main effects of NN M 

and metric, but

o interaction ( Table 4 A). Like with TPJ for D3, for all metrics NN M 

ecreased within-subject reliability, though only the effect for Cor was

ignificant. The results for D3 (BA37) were qualitatively similar to those

or BA17, though the LME model was not significant even though there

ere significant effects of NN, metric, and interaction, and only a sig-

ificant pairwise difference for Cor and no effect or a possible positive

rend otherwise ( Fig. 4 A). 

When it came to the results for the between-subject reliability, for

oth datasets the correlations for all ROIs were well-described by the

ME model and all main effects were significant, with the exception of

N M 

for D2 (SPL) and D3 (BA17) ( Table 4 B). For D2, for BA17 there was
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Fig. 4. Multivariate noise normalization (NN M ) does not consistently improve the reliability of neural RDMs, or effect sizes, in different ROIs. (A) Bars 

indicate the group mean of within-subject split-half reliabilities and error bars are the standard error of the mean. (B) Bars indicate the group mean of the between- 

subject reliability or “noise ceiling ”. (C) Bars indicate the mean rank-order correlations between individual neural RDMs and target model RDMs for each dataset. 

All conventions are the same as in Fig. 2 A. 
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Table 4 

Summary of linear mixed effects (LME) modeling of the results depicted in Fig. 4 . 

Table 4 A: Within-subject reliability 

Dataset Effect R 2 F df 1 df 2 p 

2 (BA17) LME 0.97 19.18 7 104 2.99E-16 

NNM 0.41 1 104 0.52 

Metric 24.51 3 104 4.49E-12 

Interaction 14.14 3 104 8.53E-08 

2 (SPL) LME 0.27 4.65 7 104 1.45E-04 

NNM 13.25 1 104 4.27E-04 

Metric 4.38 3 104 0.006 

Interaction 1.99 3 104 0.12 

3 (BA17) LME 0.7 2.93 7 160 6.50E-03 

NNM 0.92 1 160 0.340 

Metric 4.64 3 160 2.16E-05 

Interaction 2.33 3 160 0.08 

3 (BA37) LME 0.33 1.92 7 160 0.07 

NNM 10.65 1 160 0.001 

Metric 3.6 3 160 0.02 

Interaction 2.95 3 160 0.03 

Table 4 B: Between-subject reliability 

Dataset Effect R 2 F df 1 df 2 p 

2 (BA17) LME 0.94 48.87 7 104 4.35E-30 

NNM 23.4 1 104 4.58E-06 

Metric 53.5 3 104 5.34E-21 

Interaction 44.92 3 104 1.06E-18 

2 (SPL) LME 0.38 5.96 7 104 3.91E-05 

NNM 0.48 1 104 0.49 

Metric 5.23 3 104 0.002 

Interaction 3.05 3 104 0.03 

3 (BA17) LME 0.86 33.42 7 160 2.50E-28 

NNM 0.02 1 160 0.88 

Metric 56.65 3 160 5.21E-25 

Interaction 43.62 3 160 1.18E-20 

3 (BA37) LME 0.53 26.69 7 160 8.64E-16 

NNM 66.08 1 160 1.12E-13 

Metric 13.78 3 160 4.82E-08 

Interaction 9.3 3 160 1.02E-05 

Table 4 C: Effect sizes 

Dataset Effect R 2 F df 1 df 2 p 

2 (BA17) LME 0.93 14.57 7 104 4.24E-13 

NNM 17.29 1 104 6.60E-05 

Metric 14.26 3 104 7.48E-08 

Interaction 16.47 3 104 7.88E-09 

2 (SPL) LME 0.86 0.73 7 104 0.64 

NNM 0.86 1 104 0.36 

Metric 0.55 3 104 0.65 

Interaction 1.09 3 104 0.36 

3 (BA17) LME 0.83 0.89 7 160 0.42 

NNM 0.5 1 160 0.48 

Metric 0.37 3 160 0.77 

Interaction 0.46 3 160 0.71 

3 (BA37) LME 0.95 22.68 7 160 1.00E-15 

NNM 43.64 1 160 5.56E-10 

Metric 19.2 3 160 1.10E-10 

Interaction 17.27 3 160 9.12E-10 
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Table 5 

Summary of linear mixed effects (LME) modeling of the results depicted in Fig. 5 . 

Table 5 A: On-off diagonal diffrence 

Dataset Effect R 2 F df 1 df 2 p 

1 LME 0.62 9.99 3 56 2.26E-05 

NNM 8.65 1 56 0.005 

Smoothing 1.44 1 56 0.24 

Interaction 0.01 1 56 0.91 

2 LME 0.99 28.84 3 80 9.62E-13 

NNM 11.21 1 80 0.001 

Smoothing 3.52 1 80 0.06 

Interaction 4.59 1 80 0.04 

3 LME 0.97 19.41 3 122 2.36E-10 

NNM 18.08 1 122 4.180E-05 

Smoothing 29.07 1 122 3.46E-07 

Interaction 15.23 1 122 1.56E-04 

Table 5 B: Within-subject reliability (smoothing) 

Dataset Effect R 2 F df 1 df 2 p 

1 LME 0.87 27.72 15 224 4.57E-38 

NNM 32.97 1 224 2.99E-08 

Metric 20.24 3 224 1.16E-11 

Smoothing 19.28 1 224 1.73E-05 

N x M 37.03 3 224 1.62E-19 

N x S 14.74 1 224 1.60E-04 

M x S 0.26 3 224 0.85 

2 LME 0.94 33.18 15 320 2.43E-49 

NNM 6.39 1 320 0.01 

Metric 48.9 3 320 4.44E-26 

Smoothing 13.79 1 320 2.41E-04 

N x M 83.48 3 320 5.24E-40 

N x S 43.46 1 320 1.76E-10 

M x S 0.84 3 320 0.47 

3 LME 0.71 3.15 15 488 2.43E-04 

NNM 13.79 1 488 2.28E-04 

Metric 4.12 3 488 0.01 

Smoothing 5.31 1 488 0.02 

N x M 4.02 3 488 0.008 

N x S 7.86 1 488 0.005 

M x S 2.11 3 488 0.10 

T  

s  

A  

d  

w  

s  

f  

e

3

d

 

e  

E  

B  

N  

p  

p  

i  

r  

t  

i

 

w  

(  

w  

w  

N  

i  
 significant increase in mean reliability due to NN M 

when Cor and Euc

ere used as metrics. For D3, there were significant increases in mean

eliability due to NN M 

when Euc and Mal were used as metrics for BA17

 Fig. 4 B). Thus, across metrics, the impact of NN M 

on between-subject

eliability was also quite variable when considering the early visual ROIs

or D2 and D3. For D2 (SPL) there were significant main effects of metric

nd interaction, but not NN M 

( Table 4 B). Only when Euc was used as a

etric was there a significantly increased in the mean correlations due

o NN M 

. For D3 (BA37) the pattern of results was similar to those for

PJ with significant main effects, but significant decreases in reliability

or all metrics except Euc ( Fig. 4 B). 

Finally, when it came to the RSA effect sizes, the correlations for D2

BA17) and D3 (BA37) were well described by the LME model and all

ain effects were significant ( Table 4 C). For D2 (BA17) there were only

ignificant increases in the mean correlations for Cor and Euc, while for

ll metrics NN resulted in significant decreases in mean effect sizes.
M 

11 
hese results further suggest that the mixed findings we previously ob-

erved were not merely a result of the ROIs that were initially selected.

lthough the R 

2 values appeared similar for the other two ROIs, the LME

id not significantly capture any variance for D2 (SPL) or D3 (BA17) for

hich there was very little variation ( Fig. 4 C). These null findings were

omewhat expected, given the weak (D2) or non-existent (D3) findings

rom the original studies ( Bracci and Op de Beeck, 2016 ; Lee Masson

t al. 2018 ). 

.6. Multivariate noise normalization interacts with spatial smoothing in 

ifferent ways, for different datasets 

Previous work suggests that multivariate BOLD signals can be mod-

stly enhanced by levels of spatial smoothing, which can improve the

DI values and reliability of RDMs for RSA ( Hendriks et al. 2017 ; Op de

eeck, 2010 ). We also sought to evaluate how spatial smoothing and

N M 

might interact, given that the noise targeted by the method is also

resumed to be spatially distributed and so may be influenced by the

ossible enhancement of the spatially distributed signal. To this end, we

nvestigated the on-off diagonal difference (EDI) and the within-subject

eliability at different levels of smoothing (with and without NN M 

). For

he analysis we focused on the initial trio of ROIs. Results are depicted

n Fig. 5 and LME modeling statistics are summarized in Table 5 . 

For D1, the correlations were well captured by the LME model

ith a significant main effect of NN, but not smoothing or interaction

 Table 5 A). There were significant pairwise differences in the mean EDI

ith no smoothing, and at Level 1 ( Fig. 5 A). For D2, the correlations

ere well captured by the LME model with a significant main effect of

N M 

and interaction, but not smoothing ( Table 5 A). There were signif-

cant pairwise differences in the mean EDI with no smoothing and at
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Fig. 5. Multivariate noise normalization (NN M ) interacts with levels of spatial smoothing. (A) Bars indicate the mean EDI, with and without NN M , for three 

levels of spatial smoothing. Error bars are standard error of the mean. ∗ = p < 0.05 based on two-sided paired t-tests (B) Bars indicate the group mean of the split-half 

within subject reliability, with and without NN M , across all three levels of spatial smoothing. ∗ = FDR-adjusted p < 0.05 based on two-sided paired t-tests. Conventions 

are otherwise the same as in Fig. 2 A. 
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evel 1 ( Fig. 5 A). For D3, the correlations were well captured by the

ME model and all main effects were significant ( Table 5 A). There were

ignificant pairwise differences in the mean EDI at all three levels of

moothing ( Fig. 5 A). Notably, in all cases where there was a pairwise dif-

erence in mean EDI, this was because NN M 

tended to decrease the val-

es of this index of on-diagonal reliability of individual RDMs, though

his decrease tended to diminish with increased levels of smoothing. 

Next, we evaluated the impact of NN M 

and smoothing on within-

ubject reliability. For D1, the correlations were well captured by the

ME model, and there were significant main effects for all three fixed ef-

ects (NN M 

, metric, and smoothing), and the interactions between NN M 

nd metric and NN M 

and smoothing level ( Table 5 B). All pairwise tests

ere significant, with within-subject reliability appearing to decrease

ith greater levels of smoothing and NN M 

undoing this effect ( Fig. 5 B).

or D2, the correlations were well captured by the LME model, and there

ere significant main effects for all three fixed effects ( Table 5 B). The in-

eractions between NN M 

and metric and NN M 

and smoothing level were

lso significant ( Table 5 B). Once smoothing was introduced all pairwise

omparisons were significant and the pattern observed for D1 was re-

ersed; for D2, the baseline within-subject reliability was not influenced

y smoothing, but consistently increased with level of smoothing when

N M 

was performed ( Fig. 5 B). Finally, for D3, the correlations were

ell captured by the LME model with a significant main effect for all

hree fixed effects ( Table 5 B). There was also a significant interaction

etween NN M 

and metric and NN M 

and smoothing. A significant de-

N  

12 
rease in mean within-subject reliability was only observed for the first

wo levels of smoothing for Cor ( Fig. 5 B). However, smoothing seemed

o undo the negative impact of NN M 

. 

In summary, although NN M 

and spatial smoothing are in principle

otivated by similar considerations about the spatial distribution of

oise and signal, respectively, these two factors tended to interact in

ifferent ways depending on the dataset in question. We return to the

opic of the spatial properties of the residual variance-covariance matri-

es below. 

.7. GLMdenoise has a more consistently beneficial impacts on the 

eliability of neural dissimilarity and RSA effect sizes than multivariate 

oise normalization 

Charest et al. (2018) propose GLMdenoise as a method for improv-

ng signal estimates, and thus the reliability of neural RDMs. Their

esults suggest that, when preprocessing is carried out with GLMde-

oise, superior results are obtained compared to NN M 

. Furthermore,

hey found that NN M 

could be improved when using the design matrix

f GLMdenoise to estimate the residuals. We revisited both findings of

harest et al. (2018) again using the initial trio of ROIs. First, we com-

ared the results obtained with Cor for within- and between-subject re-

iability of neural RDMs and RSA effect sizes with those obtained when

mploying GLMdenoise. Second, we compared the results obtained with

N for within-subject reliability when using GLMdenoise design ma-
M 
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Fig. 6. GLMdenoise has a consistently more beneficial impact on neural RDM reliability and RSA effect sizes than multivariate noise normalization. (A) 

Bars indicate the group mean of within-subject split-half reliabilities when Cor is the dissimilarity metric either with or without NN M , or with GLMdenoise (GD). 

Error bars are the standard error of the mean. (B) Bars indicate the group mean of the between-subject reliability or “noise ceiling ”. (C) Bars indicate the mean 

rank-order correlations between individual neural RDMs and target model RDMs for each dataset. All conventions are the same as in Fig. 1 A. 

t  

f  

m  

t  

s  

 

n  

t  

S  

w  

f  

2  

u  

a  

o  

s  

c  

n  

t  

p  

n  

w  

s  

d  

f  

n  

a

 

(  

b  

m  

N  

o  

f  

D  

t  

C  

F  

i

 

s  

p  

w  

d  
rices relative to those from SPM. Since of primary interest was the dif-

erence afforded by GLMdenoise, we did not model the results with LME

odels and instead simply compared the pairwise relationships using t-

ests. The baseline and NN M 

results in the accompanying figures are the

ame as plotted in Fig. 2 and are replotted below for visual comparison.

When it came to within-subject reliability, for D1 GLMdenoise did

ot significantly increase the mean within-subject reliability relative to

he mean correlations obtained either with or without NN M 

( Fig. 6 A).

ince NN M 

did improve the within-subject reliability before ( Fig. 2 A),

e cannot entirely rule out a positive impact of GLMdenoise and a

alse negative test result ( Nieuwenhuis, Forstmann, and Wagenmakers,

011 ). For D2, and most notably for D3, the results were by comparison

nambiguously positive: GLMdenoise significantly improved mean reli-

bility compared to baseline and in contrast to NN, which had no effect

r made reliability worse ( Fig. 6 A). For both D1 and D2, GLMdenoise

ignificantly improved the between-subject reliability of neural RDMs

ompared to baseline, and to a similar level as NN M 

. For D3, GLMde-

oise again provided a substantive improvement in reliability relative

o baseline unlike NN M 

( Fig. 6 C). Finally, for RSA effect sizes, the im-

act of GLMdenoise was mixed ( Fig. 6 C). For D1 the mean effect was

ot significantly higher than baseline or lower than what was obtained

ith NN , though again, the difference between baseline and NN was
M M 

13 
ignificant ( Fig. 2 C). For D2, while the improvement afforded by GLM-

enoise was significantly higher than baseline, and not significantly dif-

erent than the mean effect obtained after NN M 

. Once more and most

otably, GLMdenoise significantly improved the effect sizes for D3 rel-

tive to the mean effect obtained with NN M 

and relative to baseline. 

When NN M 

was carried out with the GLMdenoise design matrix

 Fig. 7 A), there was still a significant increase in within-subject relia-

ility for D1 when Euc and Mal were used as metrics, but the improve-

ent was not significantly different than the mean reliabilities when

N M 

was performed with the SPM design matrix. For D2, there were

nly improvements for Euc, but these were again not significantly dif-

erent than those obtained using the SPM design matrices. Finally, for

3 reliability was not significantly higher than for the SPM design ma-

rix, while there was still a significant drop relative to baseline when

or was used as a metric. When compared to the results depicted in

ig. 6 , it is notable that for D2 and D3 there was no longer a substantial

mprovement when using Cor as a metric. 

Given that the only alteration of note to the analysis was the expan-

ion of the design matrix, these results suggests that the improvement

rovided by GLMdenoise reported above ( Fig. 6 ) may have less to do

ith the data-driven method for deriving noise regressors, and more to

o with the fact that the analysis derives single estimates per condition
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Fig. 7. Using different design matrices to assess within-subject reliability. (A) Bars indicate the group mean of within-subject split-half reliabilities either 

without NN M , or with NN M using either the SPM design matrix (Yes/ NN M ) or the GLMdenoise design matrix (Yes G /NN G ). (B) Bars indicate the group mean of 

within-subject split-half reliabilities when Cor is the dissimilarity metric either without NN M (No) with GLMdenoise (GD), or with concatenated SPM design matrices 

(CM). All conventions are otherwise the same as in Fig. 1 A. 
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ue to concatenation across runs of the experimental condition predic-

ors. For if the apparent benefit of GLMdenoise was due to the superior

oise estimates, then one would predict a similar (though perhaps di-

inished) improvement in reliability for D2 and D3 even when averag-

ng across multiple runs when using Cor as the metric. The fact that the

esults for this measure differ between Fig. 5 and Fig. 6 A suggest that

his may not the case. To test this, we altered the SPM design matrices

or the odd and even partitions so that they also concatenated across

uns, resulting in single beta estimates per condition for each partition

 Fig. 6 B. While for D1 there was again no significant increase in within-

ubject reliability relative to baseline the mean after GLMdenoise, there

as a significant increase for D2 and D3 (though in the former case, less

han what was obtained with GLMdenoise). Thus, the relative improve-

ent observed with GLMdenoise compared to the results obtained with

N M 

may partially depend on differences in the structure of the design

atrix. Though we also note that Charest et al. (2018) also concatenated

heir design matrices across runs, and still found a relative increase in

ithin-subject reliability when using GLMdenoise. 

.8. The covariance structure derived from GLM residuals is related to the 

istance between voxels, but not goodness-of-fit 

The results so far invite the question: what sort of structure do the

esidual variance-covariance matrices have and how might it predict the

mpact of NN M 

? We carried two sets of exploratory analyses as a step

owards answering this question. 

First, a fundamental assumption of NN M 

is that the noise information

ontained in the residuals of a GLM is spatially distributed, which sug-

ests that the noise covariance may reflect the relative position of vox-

ls inside a volume. Such a possibility is consistent with a high-degree

f between-run reliability, across datasets, in the residual covariance

alues for the initial trio of ROIs ( Fig. 6 A). For each subject we con-

tructed matrices of the exponentially decaying distances between vox-

ls and correlated them with the off-diagonal values of the run-specific

ariance-covariance matrices. The resulting coefficients were then av-

raged across runs. We found that for all three datasets the distances

atrices on averaged significantly correlated with the covariance values

 Fig. 8 A). This was especially true for D3, where over a third of the vari-

nce was on averaged accounted for by the distance relations between
14 
oxels. Though these correlations may be inflated due to the spatial up-

ampling that was performed for that dataset. While in all cases the ROIs

ere bilateral, the distance between the hemispheric components are

uch farther for LOTC and TPJ and as these ROIs were defined in terms

f functional contrasts, they also tended to be asymmetric. Both proper-

ies can be seen in Fig. 8 B, which depicts the mean variance-covariance

atrix for a representative subject from D1-D3 and the corresponding

ecaying distance matrix. Especially for the subjects from D2 and D3 the

patial structure component of the covariance values can be seen from

isual inspection alone. 

We next considered how the correspondence between the distance

etween voxels and the covariance of their residuals might relate to any

mprovement in within-subject reliability resulting from the application

f NN M 

. We focused on the results obtained with Euc since NN M 

pro-

uced the most substantial improvement when Euc was used as a metric

 Fig. 1 A). For each subject we calculated the change in within-subject

eliability after NN M 

by subtracting the baseline correlation values. As

nticipated by the results depicted in Fig. 2 A and 8 A, when data was

ooled across datasets the change in reliability due to NN M 

negatively

orrelated with the correspondence between voxel distance and covari-

nce ( Fig. 8 C). We also correlated the changes in within-subject reliabil-

ty with the ratio between voxels and conditions, which again showed

 negative correlation ( Fig. 8 C). Finally, when the changes in reliability

ere correlated with the voxel/condition ratios for each subject, there

as a positive correlation ( Fig. 8 C). 

Second, the structure of the residual variance-covariance matrices is

ependent on how well the constructed GLMs account for the signal fluc-

uation of each voxel. Thus, it is possible that the impact of NN M 

may be

elated to the GoF of the voxels in an ROI. For each of the initial ROIs,

e determined the proportion of voxels in an ROI where the explained

ariance of the BOLD signal was greater than the unexplained variance

SNR mb > 1). We also constructed dissimilarity values based on the ab-

olute difference in GoF between voxels, which was correlated with the

un-averaged residual variance-covariance matrix of each subject. 

For all three datasets, the proportion of voxels with greater explained

OLD signal variance was < 0.5, suggesting that for the majority of vox-

ls there was greater unexplained variance in the signal ( Fig. 8 D). How-

ver, only for D1 was there any significant positive correlation between

he dissimilarities of GoF and the pairwise residual covariance between
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Fig. 8. Exploratory analysis of the structure of residual variance-covariance matrices. (A) Mean between-run reliability of variance-covariance (var-cov) 

matrices and their mean correlation with distance metrices. ∗ = p < 0.05 based on two-sided paired t-tests. Error bars are the standard error of the mean (SEM). 

(B) Matrices for representative subjects for each dataset with correlations closest to the group average (correlations shown are for the mean var-cov matrices that 

are depicted). Matrices have been rescaled to arbitrary units (0 – 100) and scales are labeled to conceptually distinguish between them. (C) Scatter plots depicting 

the correlations between variables related to structure of var-cov matrices (data pooled across datasets D1-D3). (D) Mean values related to the model-based SNR. 

Error bars are the standard error of the mean (SEM). (E) Scatter plots depicting correlations between values related to the model-based SNR and impact of NN M on 

within-subject reliability. 
15 
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oxels ( Fig. 8 D). Nor did the proportion of voxels with SNR mb > 1 predict

ndividual variation in the change in within-subject reliability afforded

y NN M 

when pooling across datasets ( Fig. 8 E). However, there was a

ositive correlation between changes in within-subject reliability due

o NN M 

and the correlations between the variance-covariance matrices

nd SNR mb matrices. 

Although we again emphasize that these analyses were exploratory,

hese preliminary results are nonetheless still instructive. First, they con-

rm that part of the covariance structure is well captured by the simi-

arity in position of voxels within a volume. Second, they are suggestive

hat these spatial relations may be predictive of the influence of NN M 

on

ithin-subject reliability. Third, they are also suggestive that the rela-

ionship between the number of voxels and conditions, or features and

amples, which influences the invertibility of the variance-covariance

atrices, may also be predictive of whether NN M 

has a beneficial effect.

n particular, having more features per sample may partially account for

hether NN M 

improves reliability. Finally, GoF did not provide a good

redictor of either the covariance structure between voxels or the impact

f NN M 

on within-subject reliability. Based on these results, future re-

earch might more systematically investigate how the covariance struc-

ure derived from residuals may vary across datasets and ROIs within

atasets. 

. Discussion 

NN M 

has been billed as a useful method for improving the within-

ubject reliability of neural RDMs irrespective of the choice of dis-

imilarity metric ( Guggenmos et al. 2018 ; Kriegeskorte and Diedrich-

en, 2019 ; Nili et al. 2020 ; Walther et al. 2016 ). At the same time, other

esults suggest that it may be less beneficial than originally proposed

nd even inferior to GLMdenoise when it comes to boosting RDM reli-

bility ( Charest et al. 2018 ). We revisited this issue with three of our

wn datasets. We also evaluated the impact of NN M 

on between-subject

eliability, RSA effect sizes, the influence of NN M 

across ROIs, the influ-

nce of spatial smoothing when carrying out NN M 

, and finally we com-

ared the results obtained to those generated when using GLMdenoise.

he results of our investigation were mixed. Our findings have impli-

ations for: (i) whether NN M 

should be prescribed to boost reliability

hen performing RSA; (ii) whether developing pipeline tools like NN M 

s well-motivated in the first place; and (iii) how the choice of whether

o use NN M 

may depend on differing methodological and theoretical

otivations for using RSA. 

.1. Multivariate noise normalization and principles of beneficence and 

on-maleficence in data processing 

NN M 

comes strongly recommended. Walther et al. (2016,

.197) state that: “Activation patterns (usually formed by regression

oefficients) should be subjected to multivariate noise normalization

o improve RDM reliability, regardless of dissimilarity measure. ”

imilarly, Guggenmos et al. (2018, p.444) offer that for time-series

SA: “multivariate noise normalization is a highly recommended pre-

rocessing step irrespective of other analytic choices. ” Do our results

upport these prescriptions? 

Before answering this question, it is worth highlighting that any pre-

cribed intervention for data analysis should meet two normative prin-

iples, which mirror those used to evaluate the ethical implications of

iomedical research ( National Commission for the Protection of Human

ubjects of Biomedical and Behavioral Research, 1979 ). The first is one

f beneficence : does the intervention tend to improve the signal estimate

or the purpose of detecting the effects of interest? Clearly promotion

f the effectiveness of NN M 

has been largely centered on whether the

ethod is beneficial in some way. However, equally important is the

rinciple of non-maleficence : does the intervention tend to not worsen

he signal estimate for the purpose of detecting the effects of interest?

n other words, with data as with health: first, do no harm. 
16 
We believe our results call into question whether NN M 

satisfies either

rinciple. Therefore, they do not support the above prescriptions. Con-

ider beneficence first. The original finding of Walther et al. (2016) was

hat NN M 

tended to improve within-subject reliability, however, it is

nclear that such a finding provides sufficient evidence of a benefit

or RSA. First, they did not show that it had any discernable influence

n the between-subject reliability or RSA effect sizes. Second, they did

ot show that it had a consistent benefit across multiple ROIs within

he dataset, even though any use of NN M 

would presumably be ap-

lied uniformly when a study considers multiple regions throughout

he brain. When we carried out these further analyses, across just a few

dditional ROIs, we found that NN M 

was only consistently beneficial

hen using Euc, and Cor, as a metric. It has been suggested that Cla

s a less desirable metric because it is discrete ( Guggenmos et al. 2018 ;

alther et al. 2016 ). In line with previous findings we found use of

la resulted in the lower mean reliabilities and effect sizes even when

N M 

was applied. Reliabilities and effect sizes were also not consis-

ently improved when using its continuous cousin Mal as a metric. This

atter result is significant when compared to those obtained when us-

ng Euc paired with NN M 

, which is closest to the “crossnobis ” distance

hat has been promoted as the preferred metric for improving reliabil-

ty ( Diedrichsen et al. 2016 ; Guggenmos et al. 2018 ; Nili et al. 2020 ;

alther et al. 2016 ). For we found little difference in between-subject

eliability and effect sizes when using this approach vs Mal without

N M 

. Thus, our results do not support the claim that NN M 

is of clear

enefit, regardless of metric. 

However, these varied positive results were only observed for D1

nd D2. For when it comes to non-maleficence, the negative impact of

N M 

across analyses for D3 was perhaps our most consistent finding.

nly when using Euc and Mal as metrics to construct RDMs for BA17

id we see any positive impact of NN M 

for this dataset. We note that

his outcome may not be entirely surprising for some. The fundamental

ssumption of NN M 

is that the noise information in the residuals of the

LM have a spatial component, which itself may be connected to topo-

raphic organization in a region. Our exploratory analysis showed that

he structure of the covariance values for bilateral TPJ were especially

ell-captured by the distance between voxels within the ROI ( Fig. 8 A).

nd yet, NN M 

consistently reduced the reliabilities and effect sizes ob-

erved for this region. This is unlikely solely to be a result of the fact that

he hemispheric components for the bilateral ROI were far apart since

he same was true of the LOTC ROI for D2. Instead, for D3 the spatial

tructure did not appear to include information that was meaningful for

mproving BOLD signal estimation. When stimuli are videos any such

opographic response to an image frame will be combined with that for

ll of the other video frames, and so the noise may have a more complex

patiotemporal structure. So, it may be that NN M 

is less suitable when

ynamic stimuli are used in part because standard GLMs also do not cap-

ure the dynamic nature of video stimuli either. However, our results for

2 (SPL) also raise the question of whether NN M 

is suitable at all when

ne leaves the cortical realm of sensorimotor regions. Thus, it may also

e that NN M 

is not suitable for all regions one may investigate. In which

ase, if NN M 

is intended to be applied uniformly across ROIs, then it

oes not satisfy the principle of non-maleficence since there is the risk

hat in some regions one may simply be multiplying beta estimates with

patially unstructured noise. 

More cautiously, our results suggest that further analytic trials would

e required to evaluate the effectiveness of NN M 

and when and where

t should be utilized. In contrast, the results obtained with GLMdenoise

ere more reliably beneficial. Indeed, the clearest positive impact of the

pproach was seen for D3. Thus, our findings may be more consistent

ith the recommendations of Charest, Kriegeskorte, and Kay (2018) to

se this boutique approach to first-level analysis prior to carrying out

SA. However here a number of considerations suggest further analysis

s still necessary. First, we found that the positive influence of GLM-

enoise may have more to do with the single beta estimates generated

y the analysis rather than the more complex procedure for choosing
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oise regressors, as similar results are achievable simply by restruc-

uring standard design matrices so that only a single beta estimate

s produced. Second, GLMdenoise is not compatible with using cross-

alidated metrics even if one reorganizes the design matrix since the

ross-validation procedure steps it depends on violate the independence

etween runs. As an alternative to Cor, GLMdenoise would also be com-

atible with using non-cross-validated forms of either Mal and Euc as

etrics ( Guggenmos et al. 2018 ; Ritchie et al. 2020 ), However, the fact

ould remain that, if one believes cross-validation provides more accu-

ate estimates of dissimilarity relations ( Bobadilla-Suarez et al. 2019 ;

alther et al, 2016 ), then GLMdenoise is not a viable analytic op-

ion. We note that leveraging other methods, such as Bayesian RSA

 Cia et al. 2019 ) may also help to further clarify the relationship be-

ween GLMdenoise and NN M 

, and more general concerns about how

oise in BOLD signals might be estimated and exploited in the service

f carrying out RSA. 

.2. Questioning the motivation for multivariate noise normalization 

Our results provide reason to doubt whether NN M 

is as widely appli-

able as has been proposed. However, we believe that they also point to

ore fundamental issues with NN M 

, which call into question the moti-

ation for introducing, and promoting, such new analytical tonics as a

urative for the ills of noisy data. 

The first issue is that it remains not entirely clear when and why

N M 

works. The underlying assumption is that the noise structure con-

ained in the residuals will have a spatial component that can be lever-

ged to improve the estimate of condition-specific variation in the BOLD

ignal. There are parts of the brain where such an assumption seems

minently plausible, such as early visual or motor cortex, and indeed in

uch regions NN M 

seems to produce the best results. Our preliminary re-

ults also suggest that some of the structure of the variance-covariance

atrices central to NN M 

simply reflects the distance between voxels.

owever, the reality is that without further analysis the form of the

oise remains unknown, and where there is no spatial component to

e found one is again simply multiplying signal estimates with unstruc-

ured noise. In such cases, NN M 

may have all the benefit of bloodletting.

he risk posed by the unknown is not unique to NN M 

. In recommending

LMdenoise as a first level analysis for RSA, Charest et al. also acknowl-

dge that, since GLMdenoise is data driven, the noise that is removed

y the approach is left unspecified unless further analyses are taken.

hey further acknowledge that the noise may vary across experiments

nd participants. The risk with NN M 

is that, since it is not data-driven,

t may even vary across areas and stimulus types. Furthermore, whereas

LMdenoise is part of an open source Matlab toolbox, the application

f NN M 

is not as yet standardized – though one implementation can be

ound in the Decoding Toolbox ( Hebart et al. 2015 ). 

The fact that NN M 

may inject even more uncertainty into how

e interpret neuroimaging results is problematic when we consider

he trend towards more transparent, replicable processing pipelines

 Esteban et al. 2019 ). This point is well-illustrated by the results of

otvinik-Nezer et al. (2020) who investigated the effect of pipeline flex-

bility on neuroimaging findings. In their study, 70 teams analyzed the

ame neuroimaging dataset to test the same collection of hypotheses.

he variation in analysis approaches, and subsequent results, were strik-

ng: no two teams used identical pipelines, and even in cases where the

tatistical maps of the brain were correlated in some stages of the pro-

essing pipeline the reported significant results still differed. Of the nine

ypotheses tested, there was near consensus of a negative results for

hree of them ( < 10 % of teams found an effect) while there was ma-

ority agreement of a significant result for only one of them > 80 % of

eams reported an effect). For the remaining five only ∼ 20 – 40 % of

eams reported significant results. Now imagine a similar study where

SA was ultimately the method of choice. In such a case, NN M 

would in-

roduce yet another degree of freedom into the choice of pipeline where

he appropriateness of its application would still remain uncertain. 
17 
The preceding hypothetical helps to motivate the second issue, which

s whether NN M 

is intended to be a method that is supposed to impact

hat effects are detected. On the one hand, the cautious response may

e to say that it is simply intended as a method to improve within-subject

eliability. However, if NN M 

has no material impact on the explainable

ariance, then it seems we have little motivation to apply the analy-

is at all. But if the goal is to increase the explainable variance, then

his is itself only of interest because it might make a difference to what

ffects are observed. In which case, the utility of NN M 

is after all be-

ause it might change what effects are observed. On the other hand, if

he goal of NN M 

as an intervention is to possibly influence what effects

re found, then the known unknowns about NN M 

are again a source of

oncern. In our analysis we only used a single model RDM to assess the

mpact of NN M 

on RSA effect sizes. However, it is typical to test multi-

le model RDMs, with models tested against the null hypothesis, against

ach other, or jointly used to model dissimilarity values using multiple

egression or “variance partitioning ” variants such as commonality anal-

sis ( Groen et al. 2018 ; Hebart et al. 2018 ; Newton and Spurell, 1967 ).

herefore, it is as yet unknown whether carrying out NN M 

might boost

ome effects at the expense of others. 

This second issue does not mitigate against the utility of NN M 

, but

e do believe it is worth highlighting for researchers deliberating on

hether to apply the method. A different perspective is to favor carry-

ng out multiple analyses for a single dataset to show that some target

esult is robust across all of them in order to improve methodological

ransparency. For example, Steegen et al. (2016) propose a “multiverse ”

pproach where one tests for results based on all datasets that are gen-

rated across all possible combinations of data processing choices. In

ne application of this approach, Moors and Hesselmann (2019) found

hat only 14% of pipelines revealed apparent effects when analyzing a

ataset for evidence of unconscious arithmetic. Applying the same logic

o pipelines for RSA, NN M 

is again one more degree of freedom for anal-

sis pipelines that one might implement. But whether a desired effect is

bserved should not depend on whether NN M 

is carried out but instead

hould be robust across many data processing choices. If we attempt to

ollow this alternative approach, then one can again wonder whether

ven in principle prescriptions like NN M 

are well motivated. 

.3. Distinguishing “modest ” vs “ambitious ” applications of 

epresentational similarity analysis 

Despite being relatively critical of both the prescriptions to use NN M 

nd its underlying motivation, we are nonetheless reluctant to recom-

end not using NN M 

. In their discussion, Walther et al. suggest that the

hoice of dissimilarity metric may depend on the question one is ask-

ng: is the goal to determine how discriminable patterns are or their

issimilarity regardless of its shape? In the former case, it may be more

esirable to use a distance metric like Mal, in the latter, Cor. Similarly,

e believe that the choice of whether or not one should use NN M 

may

epend on the research question and the precise way in which RSA is

eing employed. 

NN M 

has been introduced as a salve for improving signal estimates

nd thus the reliability of neural RDMs. As we have seen, however,

ts effectiveness is plausibly restricted by whether we have prior rea-

on to believe that the noise contained in the residuals of a GLM is

patially structured. However, whether or not this is the case is more

kin to an issue of measurement than of reliability. As pointed out by

odadilla-Saurez et al. (2019) , when it comes to RSA, and our choice of

issimilarity metric, the issue of measurement is not the same as that of

DM reliability. Different dissimilarity metrics are not simply different

n terms of how reliable they are in their estimates, but also in terms of

hat kinds of relationships they estimate. Depending on the sort of sim-

larity structure one is hypothesizing may be latent in a brain region,

ifferent metrics will be appropriate ( Ramirez, 2017 ). This considera-

ion points to a more fundamental distinction, which is that theories

re not built upon the backs of data; rather, our choice of analyzes of



J.B. Ritchie, H. Lee Masson, S. Bracci et al. NeuroImage 245 (2021) 118686 

d  

W  

t  

l  

r  

i  

a  

b

 

R  

w  

r  

f  

d  

p  

d  

d  

i  

d  

e  

b  

g  

t  

i  

s  

m  

c  

t  

a  

t  

O  

O  

i  

j  

t  

c  

b  

t  

a  

p  

p

 

g  

s  

p  

n  

b

4

 

r  

p  

r  

d  

t  

d  

s  

s  

r  

l  

b  

t  

u  

m  

p  

c  

n  

a  

b

D

 

t  

h  

f  

D  

r

A

 

O  

v  

N  

l  

M  

a  

G  

v  

(

B

A  

A

B  

 

B  

B  

.  

 

B  

C  

 

C  

 

C  

C  

C  

 

C

D  

 

D  

.  

 

E  

F  

F  

G  

 

G  
ata are revealing of phenomenon that we wish to explain ( Bogen and

oodward, 1988 ; Woodward, 2011 ). This distinction, emphasized in

he philosophy of science, is also germane to neuroimaging methods

ike RSA ( Carlson et al. 2018 ). NN M 

is not simply method for improving

eliability but depends on assumptions about the form of the signal be-

ng detected and its spatial extent. So, whether NN M 

is applicable will,

s with choice of metric, depend on prior assumptions about the signal

eing measured and the hypotheses being tested. 

Here we believe a distinction between two types of applications of

SA may be helpful in researchers deciding whether to utilize NN M 

. As

e emphasized at the outset, RSA has both methodological and theo-

etical virtues. Many uses of RSA clearly aim to take advantage of the

ormer: comparing neural RDMs from multiple brain regions to those

erived from computational models or behavior. In such cases we sus-

ect that researchers are content to use Cor as a measure since whether

issimilarity values solely reflect pattern discriminability, or partially

epend on mean signal amplitude, may not be of interest. Instead, what

s of chief importance is that RSA allows for direct comparison of many

ifferent data types where condition rich designs are used. In such “mod-

st ” applications of RSA, where the topographic structure of a large num-

er of ROIs is likely unknown, we believe NN M 

may do more harm than

ood, and GLMdenoise may potentially be more appropriate for boosting

he estimate of signal estimates. insofar as we suspect that most stud-

es using RSA aim for such modesty, NN M 

may therefore have a limited

cope of application. However, in other cases the use of RSA is driven

ore by its theoretical benefits. For example, studies that use RDMs to

onstruct a low-dimensional representation of activity patterns in order

o directly compare models of behavior may depend on very particular

ssumptions about both dissimilarity relations, but also the structure of

he neural population code in a region ( Davis, Love, and Preston, 2012 ;

p de Beeck, Wagemans, and Vogels, 2001 ; Ramírez, 2018 ; Ritchie and

p de Beeck, 2019 ). In such “ambitious ” applications of RSA, NN M 

may

ndeed be useful insofar as the design of such studies are attentive not

ust to the reliability of neural RDMs, but also precise hypotheses about

he structure of the activation space that is being measured. Another

ase where NN M 

may be useful are studies where within-subject relia-

ility of particular importance. For example, several studies have found

hat individual differences in the structure of neural RDMs are reliable

nd meaningful ( Charest et al. 2014 ; Feilong et al. 2018 ). For such ap-

lications NN M 

may be particularly well-suited, depending on the ex-

erimental conditions and ROIs. 

In summary, the broad prescriptions supporting the use of NN M 

sug-

est it is appropriate for modest uses of RSA. We believe our results

how that such a recommendation is not yet supported. However, more

ositively we believe that it may be applicable when the underlying sig-

al, and accompanying noise, have a known structure and this fact is

eing leveraged in more ambitious uses of RSA. 

.4. Conclusion and future directions 

NN M 

has been proposed as method for boosting the reliability of neu-

al RDMs when carrying out RSA. As we have seen, this method in fact

roduces mixed results based on differences between datasets that are

elated to stimuli and choices of regions. What factors account for these

iffering results remains unclear even though the datasets and analyses

hat we performed already provide some exploration of obvious candi-

ates. Further research may clarify when NN is an appropriate analysis

tep to take. Empirically we believe promising directions for such re-

earch might include larger numbers of datasets, and comparisons of

andomly selected regions of cortex as could be achieved with search-

ight methods ( Etzel et al. 2013 ). Alternatively, important insights might

e gained from further simulation studies based on brain areas where

he spatiotemporal properties of the BOLD signal (and noise) are well

nderstood and can be compared to neural data. At the same time, such

odeling approaches can only take us so far given that the spatiotem-

oral profile of the BOLD signal is likely heterogenous throughout the
18 
ortex. Were such profiles well understood, it would likely obviate the

eed for a method like NN M 

in the first place. Furthermore, as we have

rgued, the very motivation for NN M 

and its prescriptive nature can also

e questioned. 
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