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The multivariate stable distributions are widely applicable as they can accommodate both skewness
and heavy tails. Although one-dimensional stable distributions are well known, there are many open
questions in the multivariate regime, since the tractability of the multivariate Gaussian universe does not
extend to non-Gaussian multivariate stable distributions. In this work, we provide the Laplace transform
of a bivariate stable distributions and its certain cut in the first quadrant. Given the lack of a closed-
form likelihood function, we propose to estimate the parameters by means of Approximate Maximum
Likelihood, a simulation-based method with desirable asymptotic properties. Simulation experiments and
an application to truncated operational losses illustrate the applicability of the model.

Keywords: Characteristic function; One-sided Bivariate Laplace transform; Bivariate stable
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1. Introduction

Classical tools for the modeling of financial data in risk management or portfolio optimization are
dependent on the assumption that stock returns and risk factor returns have a normal distribu-
tion. However, both empirical evidences and further investigations by Mandelbrot (1997), Fama
(1965), DuMouchel (1973), McCulloch (1986), Cheng and Rachev (1995), Nolan et al. (2001), Cont
(2001) have well explained that many financial assets exhibit a number of features that contradict
the normality assumption, such as asymmetry, skewness and heavy tails. One can use Elliptical
distributions as one of the solutions. Multivariate Student-t and multivariate elliptical stable distri-
butions are examples of elliptical distributions, which can describe the heavy-tailedness. Although
elliptical distributions are often used for modeling of financial data, they cannot accommodate
asymmetry and, hence, it can lead to an underestimation of risks. Frahm and Jaekel (2005) use
the log-returns of the NASDAQ and S&P 500 indexes to illustrate asymmetry in financial data.
Embrechts et al. (2015, Example 6.3) obtain similar results for the Dow Jones index. To overcome
the aforementioned difficulties, two possible models are multivariate generalized hyperbolic distri-
butions (Eberlein and Keller 1995, Embrechts et al. 2015) and multivariate (non-elliptical) stable
distributions. We consider using the latter, which can describe skewed and heavy-tailed time series.

The well-known stable distribution was first introduced by Lévy (1925) during his investigations
on the behaviour of sums of independent random variables. A univariate stable distribution is pa-
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rameterized by four parameters which are location [γ,−∞ < γ < ∞], scale [λ, 0 < λ], skewness
[β,−1 ≤ β ≤ 1] and exponent [α, 0 < α ≤ 2]. The lack of closed form for the stable density and its
distribution function remain as major problems and drawbacks, but this difficulty can be solved
by numerical approximation in the univariate case (Nolan 1997). For a general multivariate stable
distribution, however, the situation is much more complex. Since the marginals do not have finite
variance, one cannot define a covariance matrix in the usual way because none of the integrals
would converge. Instead, the dependence structure of a stable distribution on Rd is determined
by an arbitrary complicated spectral measure. This possible complexity of the dependence struc-
ture is one of the main reasons why multivariate stable distributions have not been employed in
many applications, even though Embrechts et al. (2015) emphasize their application in market risk
management.

The celebrated equation in Section 7.1 in Uchaikin and Zolotarev (1999) for the Laplace trans-
form of a stable density function restricted to the positive real line has found useful applications
in univariate truncated stable densities or cut-off stable densities, according to the terminology
in Zolotarev (1986). In this work we extend the results for the truncated bivariate stable distri-
butions. Let X(α, β, γ, λ) denotes a stable random variable where its density function is denoted
by q(x;α, β, γ, λ), and q(x;α, β) stands for the case γ = 0 and λ = 1. The Laplace transform
(one-sided) of q(x;α, β), 0 < α ≤ 2, −1 ≤ β ≤ 1 is defined by

q̃(y;α, β) =

∫ ∞
0

e−yxq(x;α, β)dx, y ≥ 0, (1)

is given in Theorem 2.6.2 in Zolotarev (1986), for α 6= 1:

q̃(y;α, β) =
1

π

∫ ∞
0

e−(yu)α sin(πρ)

u2 + 2u cos(πρ) + 1
du, y ≥ 0, (2)

where ρ = (1+β)
2 . Further, q̃(y;α, β, 0, λ) = q̃(λ1/αy;α, β), where q̃(y;α, 1) = ey

α

, 0 < α < 1, and
for α > 1, q̃(y;α,−1) is expressed in terms of the Mittage-Leffler function. The factor

gρ(u) =
sin(πρ)

πρ(u2 + 2u cos(πρ) + 1)
, u > 0, 0 < ρ < 1, (3)

is the density function of a non-negative random variable that appears in characterizing geomet-
ric stable random variables (Kozubowski 2000, Tafakori and Soltani 2017). Further, Soltani and
Tafakori (2013) introduce new heavy-tailed Cauchy-type distributions based on this factor on the
positive real line to model continuous erratic data. Finally, theoretical contributions that include
introducing new one-sided kernels linked to the generalized Linnik distribution and an extension
for the mixture representation in Kotz and Ostrovskii (1996) are also considered.

A non-negative random variable X is said to be truncated strictly stable (TSS), or cut-off stable
according to Zolotarev (1986), if it possesses the density function

q?(x;α, β) = c(α, β)q(x;α, β), x ≥ 0,

where

c(α, β) =
1

1−G(0, α, β)
,

and q(x;α, β), G(x, α, β) stand for the density of a stable random variable and its distribution
function, respectively. By taking y = 0 in (2) and using (3), we observe that the normalization
factor c(α, β) is equal to 1/ρ. Therefore, the Laplace transform of a TSS random variable Y is
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given by

E(e−yY ) =
1

πρ

∫ ∞
0

e−(yu)α sin(πρ)

u2 + 2u cos(πρ) + 1
du, y ≥ 0. (4)

The class of discrete stable distributions introduced by Steutel and Van Harn (1979) is closely
related to the stable distributions. One of the main characterizations for a discrete stable random
variable is to view it as a Poisson random variable N(ν) whose mean ν is a strictly stable random
variable with characteristic exponent 0 < α < 1 and skewness parameter β = 1 (Devroye 1993).
This is the only stable random variable which is supported on the positive axis, and hence can be
taken as the mean of a Poisson distribution.

Soltani et al. (2009) consider a Poisson distribution with a random mean and take the mean to
be a truncated stable random variable. Such a construction gives a fairly general class of discrete
distributions with infinite second moments induced by stable random variables, that include discrete
stable random variables. They obtain the probability generating function of the class of discrete
distributions induced by stable laws (DIS) by using the equation in Zolotarev (1986) for the one-
sided Laplace transform of a stable random variable. That can be used as substitute for the Poisson
distributions in circumstances where arrivals or occurrences, which are rare in nature, become
frequent. They shed light on the effectiveness of these distributions in a real dataset of daily
attacks to certain computer ports, blackhole data, that is part of the Internet Motion Sensor
(IMS) project (Bailey et al. (2005)), where the IMS consists of distributed blackhole sensors, each
monitoring certain unused IP addresses. Zolotarev (1986) elegantly uses TSS to characterize certain
functionals of stable random variables and Soltani and Shirvani (2010) work on characterization
and simulation of this kind of random variables. Furthermore, the corresponding Laplace transform
of a TSS random variable X can be written as Equation (2). The work by Zolotarev (1986) in
deriving Equation (2), where complex integration is cleverly applied for real integration, is indeed
extraordinary.

Surprisingly, a formulation for the Laplace transform of the joint density function of a bivariate
stable random vector is not yet established and studied. Accordingly, the first motivation of this
paper is to focus and formalize some interesting analytical results on this matter. We use the
equation in Zolotarev (1986) for the characteristic function of a bivariate stable density, which is
given at every point in R2 in polar coordinate form.

The second motivation is related to the possibility of using the bivariate truncated stable dis-
tribution as a model in financial applications. This requires the development of an estimation
method. Given the analytical intractability of the density and the additional complications caused
by truncation, we will use the Approximate Maximum Likelihood (AMLE) estimation approach
(Rubio and Johansen 2013), a simulation-based method that exploits a frequentist interpretation
of Approximate Bayesian Computation (ABC) techniques.

The remainder of this paper is structured as follows. In Section 2, we thoroughly describe pre-
liminaries which serve as the motivation of this paper. The derivations for the Laplace transform
of the bivariate stable distributions and its truncated are presented in Section 3. Section 4 details
the AMLE method. Section 5 contains the results of simulation experiments and an empirical
application to operational risk data. Section 6 concludes the paper.

2. Preliminaries

In this section we work on the characteristic function of a bivariate stable random vector given
in Uchaikin and Zolotarev (1999). We use the notations and notions given in Zolotarev (1986). A
random vector X = (X1, . . . , Xd) is said to be a stable random vector in Rd if for any positive
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numbers A and B there is a positive number C and a vector D ∈ Rd such that

AX(1) +BX(2) = CX +D,

where X(1) and X(2) are independent copies of X. Let Z = (Z1, Z2) be a two-dimensional centered
random vector on a plane. In polar coordinates form, it is represented by (R,φ), where R is the
magnitude and φ is the phase, that is,

R =
√
Z2

1 + Z2
2 , φ = arctan

(
Z2

Z1

)
.

We denote the probability density of φ, the angle between the vector Z and the x-axis, by w(ϕ),

w(ϕ)dϕ = P (φ ∈ dϕ).

The probability that the amplitude R exceeds a value r, given a fixed φ = ϕ, is expressed by the
relation

P (R > r|φ = ϕ) = 1− F (r|φ = ϕ). (5)

Further, a two dimensional random vector Z for which this conditional distribution is indeed a
power distribution on [ε(ϕ),+∞) that is written as follows

P (R > r|ϕ) =

{
c(ϕ)r−α, r > ε(ϕ)
1, r < ε(ϕ),

(6)

where the positive α does not depend on ϕ, and ε(ϕ) is determined by the normalization, namely,

1 = P (R > ε(ϕ)|ϕ) = c(ϕ)ε(ϕ)−α,

which yields

ε(ϕ) = [c(ϕ)]
1

α .

Differentiating both sides of Equation (5) yields

P (r|ϕ) =

{
αc(ϕ)r−α−2, r > [c(ϕ)]

1

α

0, r < [c(ϕ)]
1

α .

Then a bivariate stable random vector X is the limit (in distribution) of (1/bn)
∑n

i=1Zi, bn =

bn1/α, where Z1,Z2, . . . are independent copies of Z. Moreover, Uchaikin and Zolotarev (1999)
give the characteristic function of a centered bivariate random vector, as:

g2(k;α, β(θ), λ(θ)) = e−λ(θ)kα[1−iβ(θ) tan(απ2 )], (7)

where the polar coordinates of the vector k is denoted by (k, θ),

λ(θ) = Γ(1− α) cos
(απ

2

)∫ 2π

0
W (φ) | cos(θ − φ) |α dφ,

4



February 18, 2022 Quantitative Finance FullPaperR2bibNoRed

and

β(θ) =

∫ 2π
0 W (φ) | cos(θ − φ) |α sign(cos(θ − φ))dφ∫ 2π

0 W (φ) | cos(θ − φ) |α dφ
,

with W (ϕ) ≡ w(ϕ)c(ϕ) a non-negative function integrable on [0, 2π). The functions β(.) and λ(.)
stand for the skewness and scale parameter. If we have radially symmetric assumption ((see, e.g.,
Nolan (2013)), then the spectral measure in this case is a uniform distribution on the unit sphere
in Rd and β(θ) = 0. Therefore, we note that for radially symmetric distributions, w(ϕ) = 1

2π and
c(ϕ) = c. Consequently,

λ(θ) ≡ λ = 2α+1B

(
α+ 1

2
,
α+ 1

2

)
c

4π
Γ(1− α) cos

(απ
2

)
,

and β(θ) = 0.
Equation (7) can be evaluated for a general spectral measure, as we show in the following. Denoting

λ(θ) = λ(θ) cos(β(θ)απ2 ), and β(θ) = β(θ)
tan(β(θ)απ

2
)

tan(απ
2

) , we obtain

g2(k;α, β(θ), λ(θ)) = e−λ(θ)kα[1−iβ(θ) tan(απ2 )]

= e
−λ(θ) cos(β(θ)απ

2 )kα
[
1−iβ(θ)

tan(β(θ)απ2 )
tan(απ2 )

tan(απ2 )
]

= e−λ(θ)kα[cos(β(θ)απ
2 )−iβ(θ) sin(β(θ)απ

2 )]

= e−λ(θ)kαe[−iβ(θ)απ
2 ].

In what follows, we are going to work with this representation of the characteristic function of a
bivariate stable random vector. The equation in Uchaikin and Zolotarev (1999) for the characteristic
function is not much popular and commonly used. In general, the characteristic function is in
terms of the Cartesian coordinates. The classical equation given in Kanter et al. (1975), where the
characteristic function is specified by a positive measure on the unit circle and a vector in R2 is
usually employed and applied. Nevertheless, as we will see in Section 3, the equation in Zolotarev
(1986) appears to be appropriate in derivation of the Laplace transform of the truncated density.

3. Theoretical properties of bivariate stable distributions

The characteristic functions uniquely determine the corresponding densities of stable laws; however,
it is difficult to calculate the densities by using the inversion theorem directly, because dealing with
improper integrals of oscillating functions is a challenge. We work with the Laplace transform since
the methodology of integral transforms with various kernel types is acknowledged to be among the
most powerful and efficient tools of the analysis ((Titchmarsh 1937)). The concept of stable laws
in this work extended to the case of multidimensional (and even infinite-dimensional) spaces. We
start with the consideration of strictly stable distributions as the most important for financial and
physical applications.
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Definition 3.1 The bivariate random vector X = (X1, X2) in R2 has a bivariate strictly stable
distribution in polar coordinates form if its density function satisfies the following identity

q
2
(x1, x2, α) =

1

2π2
<

 π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λ(θ)kαe
−iαβ(θ)π

2 kdkdθ


=

1

2π2
<

 π∫
0

∞∫
0

ei(x1k cos θ+x2k sin θ)−λ(θ)kαe
iαβ(θ)π

2 kdkdθ

 ,
where β(θ) and λ(θ) are defined in Section 2 and < is the real part.

Definition 3.2 The one-sided Laplace transform of the truncated bivariate strictly stable distri-
bution is defined by

q̃2(λ1, λ2;α) =

∫ ∞
0

∫ ∞
0

e−λ1x1−λ2x2q2(x1, x2, α)dx1dx2, <λi ≥ 0, i = 1, 2. (8)

Theorem 3.1 Let X = (X1, X2) be a bivariate strictly stable random vector in R2 conditioned
on both coordinates being positive, then the following statements hold.
(i) If distribution of X is also radially symmetric, then its density function based on polar coordi-
nates follows as

q
2
(x1, x2, α) =

1

2π2
<

 π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λkαkdkdθ

 , x1 > 0, x2 > 0. (9)

(ii) If distribution of X is also radially symmetric, then its Laplace transform in the first quadrant
is given by

q̃
2
(λ

1
, λ

2
, α) =

1

π2

π

2∫
0

∞∫
0

[
λ1λ2

(k2 cos2 θ + λ2
1)(k2 sin2 θ + λ2

2)

]
e−λk

α

kdkdθ

=
1

π2

∞∫
0

∞∫
0

1

(1 + k2
1)(1 + k2

2)
e−λ(λ2

1k
2
1+λ2

2k
2
2)
α
2 dk1dk2. (10)

(iii) For the general case, i.e., β(θ) 6= 0 and positive λ1 and λ2, its Laplace transform in the first
quadrant is defined by

q̃
2
(λ

1
, λ

2
, α) =

−1

2π2

π∫
0

∞∫
0

A(k, θ)

B(k, θ)
e−λ(θ)kαkdkdθ, (11)

where

A(k, θ)

B(k, θ)
=

k2 cos θ sin θ + λ1k cos θ cos
(
ρ(θ)π
α

)
+ λ2k sin θ cos

(
ρ(θ)π
α

)
+ λ1λ2 cos

(
2ρ(θ)π
α

)
(
k2 cos2 θ + 2λ1k cos θ cos

(
ρ(θ)π
α

)
+ λ2

1

)(
k2 sin2 θ + 2λ2k sin θ cos

(
ρ(θ)π
α

)
+ λ2

2

) ,
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and ρ(θ) = (1+β(θ))α
2 .

Proof: The proof is provided in Appendix A.

Definition 3.3 A non negative random vector W has truncated bivariate strictly stable distribu-
tion conditioned on both coordinates being positive and radially symmetric if the Laplace transform
of its density function is given in (10) with normalization factor equal to 1/4 which is computed by
taking λ1 = 0 and λ2 = 0 in (10).

Theorem 3.2 Let the polar coordinates of the vector X be r and φ and β(θ) 6= 0. Then
(i) The conditional one-sided Laplace transform involving the density of the truncated bivariate
strictly stable distribution is given by

q̃R|ϕ=θ0(y, r, θ0, α) =
1

2π2w(θ0)

π∫
0

∞∫
0

−C
D

e−λ(θ)kαkdkdθ,

where

C

D
=

y cos
(

2ρ(θ)π
α

)
+ k cos

(
ρ(θ)π
α

)
cos(θ − θ0)(

k2 cos2(θ − θ0) + 2yk cos(θ − θ0) cos
(
ρ(θ)π
α

)
+ y2

) .
(ii) The cuts along y = ax1 is expressed as

q̃
2
(λ

1
, α) =

1

2π2

π∫
0

∞∫
0

−
[
λ1 cos

(
2ρ(θ)π
α

)
+ k cos

(
ρ(θ)π
α

)
(cos θ + a sin θ)

]
e−λ(θ)kα

E
kdkdθ,

where

E = λ2
1+2λ1k cos

(
ρ(θ)π

α

)
(cos θ + a sin θ) +k2 (cos θ + a sin θ)2 .

Proof: The proof is provided in Appendix A.

Figure 1 shows the effects of the parameters α and λ on the shape of the bivariate Laplace
transform in the first quadrant for the radially symmetric distributions. It is well known that the
multivariate stable distributions possess certain properties that make them useful for economic
theory and probability theory. The purpose in this step is to provide certain characterizations of
the conditional one-sided Laplace transform.

4. Approximate Maximum Likelihood Estimation

Standard estimation approaches are difficult to apply in the present setup. First, even the untrun-
cated stable distribution has no explicit density; even though, at least in the univariate setup, this
problem can be overcome by numerical maximization of an approximation of the density (see, e.g.,
Nolan 1997), the complications caused by truncation seem to preclude the use of methods based on
the density function. Moreover, the general stable case has an arbitrary spectral measure, which is
usually replaced by a semi-parametric discrete spectral measure for computational reasons (Tsionas
2013, Ogata 2013, Teimouri et al. 2018). Obviously, these two features make the implementation

7
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Figure 1.: Bivariate Laplace transform plots q̃2(λ1, λ2, α). Line 1: Left: α = 1, λ = 0.3; Middle: α = 1.8, λ = 0.9; Right:

α = 0.1, λ = 0.3. Line 2: Left: α = 1, λ = 3; Middle: α = 0.4, λ = 2; Right: α = 0.8, λ = 3.

of maximum likelihood quite complicated.
To overcome these obstacles, we resort to Approximate Maximum Likelihood Estimation, a

simulation-based method that has already proved to be effective for multivariate distributions
with similar features (see Bee et al. 2015, 2017). The AMLE approach exploits the potential of
Approximate Bayesian Computation techniques in a frequentist setup. In the following we briefly
describe the algorithm, referring to Rubio and Johansen (2013) for details.

Given a sample (x1, . . . ,xn) ∈ Rd×n from a distribution with density function f(x;θ), let
L(θ;x1, . . . ,xn) be the likelihood function, where θ ∈ Θ ⊂ R

p is a vector of parameters. If
we temporarily assume a Bayesian setup and let π(θ) be the prior distribution of θ, the posterior
π(θ|x) is given by

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|t)π(t)dt
. (12)

Now consider the following approximation of the likelihood function:

f̂ε(x|θ) =

∫
Rd×n

Kε(x|z)f(z|θ)dz, (13)

where Kε(x|z) is a normalized Markov kernel and ε is a scale parameter. Plugging (13) into (12)
we can compute an approximation of the posterior:

π̂ε(θ|x) =
f̂ε(x|θ)π(θ)∫

Θ f̂ε(x|t)π(t)dt
.

8
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If we assume the prior π(θ) to be uniform, the maximization of the likelihood is equivalent to
the maximization of the posterior, provided that the latter is written in the parameterization of
interest.

Let η : Rd×n → R
s be an s × 1 vector of summary statistics. The kernel Kε is defined on the

space of these summary statistics as follows:

Kε(η(x)|η(z)) ∝

{
1 ||η(x)− η(z)|| < ε,

0 otherwise,
(14)

where || · || is a norm. The norm chosen is usually not a crucial issue, but it will be seen in the

following that in the present setup the maximum norm, defined as ||x||∞
def
= maxi=1,...,d |xi|, is more

convenient for the implementation of the algorithm. Notice also that it is used by Tsionas (2013)
in a similar setup.

On the other hand, the summary statistics play a key role: using η(x) instead of the original
sample x implies no loss of information exactly if η is a jointly sufficient statistic for the unknown
parameters of the model: in this case, L(θ;x1, . . . ,xn) = L(θ;η(x1, . . . ,xn)), that is, conditioning
upon the sufficient statistics is the same as conditioning upon the sample. Accordingly, the most
efficient summary statistics are the sufficient statistics. Unfortunately, in many cases, included the
present one, sufficient statistics are not available, so that the choice of η(x) has to be based on
different criteria, mostly on a case-by-case basis. We will study this issue in Section 4.1.

The preceding discussion motivates the following algorithm:

Algorithm 4.1 (AMLE)

(i) Obtain a sample θ∗ε = (θ∗ε,1, . . . ,θ
∗
ε,`)
′ from the approximate posterior π̂ε(θ|x); ` is commonly

called ABC sample size;
(ii) Use this sample to construct a nonparametric estimator π̂`,ε of the density π̂ε(θ|x);

(iii) Compute the maximum of π̂`,ε, θ̃`,ε. This is an approximation of the MLE θ̂.

The most common implementation of Step 1 is the ABC rejection algorithm (Beaumont 2010),
described by the following pseudo-code.

Algorithm 4.2 (ABC rejection algorithm)

(i) Simulate θ∗ from the prior distribution π(·);
(ii) Generate x = (x1, . . . , xn)′ from f(·|θ∗);

(iii) Use x to compute summary statistics η(x); accept θ∗ with probability ∝ Kε(η(x)|η(z)),
otherwise return to Step 1.

Rubio and Johansen (2013) study the asymptotic properties of θ̃`,ε. They first show that, under
a mild condition on Kε, π̂ε(θ|x) converges pointwise to π(θ|x) as ε→ 0, for any θ ∈ Θ. Moreover,
under the additional condition of equicontinuity of π̂ε(·|x) on Θ, limε→0 π̂ε(θε|x) = π(θ0|x), where
θε is the maximizer of π̂ε(·|x) for each ε > 0 and θ0 is the unique mazimizer of π(·|x).

Let now θ̃`,ε be an estimator obtained from the sample θ∗ε and such that θ̃`,ε → θε almost surely

when ` → ∞. It follows that, for any γ > 0, there exists ε > 0 such that lim`→∞ |π̂`,ε(θ̃ε|x) −
π(θ0|x)| ≤ γ almost surely. In other words, using a reasonably well-behaved density estimation
method based on Algorithm 4.2, the maximum of the AMLE approximation can be made arbitrarily
close to the maximum of the true posterior distribution, which is identical to the MLE under the
conditions in Rubio and Johansen (2013). By continuity, we can conclude that θ̃`,ε approximates
θ0 when `→∞ and ε→ 0.

9
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Having introduced the basic estimation theory, we now concentrate on its application to the
truncated bivariate stable distribution.

4.1. AMLE of the truncated bivariate stable distribution

Let X be a bivariate stable distribution conditioned on both coordinates being positive, and let’s
assume a discrete spectral measure. The parameter vector is θ = (α,γ,µ)′, where γ = (γ1, . . . , γm)′

and m the number of masses; let x1, . . . ,xn be the observed data and ηobs the corresponding
summary statistics. AMLE of the bivariate truncated stable distribution works as follows:

Algorithm 4.3 (AMLE of the bivariate truncated stable distribution)

(i) Simulate θ∗ from the prior distribution π(θ) =
∏p
i=1 π(θi), where π(θi) is U(θiL, θiU );

(ii) Generate x = (x1, . . . ,xn)′ from f(·|θ∗), where f is the bivariate truncated stable density;
(iii) Use x to compute summary statistics ηsim; accept θ∗ with probability ∝ Kε(η

obs|ηsim),
otherwise return to Step 1.

(iv) Repeat steps 1-3 until ` vectors of simulated parameter values θ∗ε = (θ∗ε,1, . . . ,θ
∗
ε,`)
′ from the

approximate posterior π̂ε(θ|x) are accepted; θ∗ε is the ABC sample.
(v) Use θ∗ε to find a nonparametric estimator π̂`,ε of the density π̂ε(θ|x);

(vi) Compute the maximum of π̂`,ε, θ̃`,ε, which is the approximate MLE.

Step (iii) above requires to select only the parameter vectors such that the norm of the difference
between the summary statistics computed on true and simulated data is smaller than ε. Typically,
instead of setting ε, whose value is difficult to guess in advance, one chooses some large integer np
and employs the following modified version of Algorithm 4.3.

Algorithm 4.4 (AMLE of the bivariate truncated stable distribution)

(i)-(ii) Same as Algorithm 4.3;
(iii) Use x to compute summary statistics ηsim;
(iv) Repat steps (i)-(iii) np times;
(v) Retain only the ` simulated parameter vectors corresponding to the ` smallest value of
||ηobs − ηsim||∞; these ` vectors θ∗1, . . . ,θ

∗
` are the ABC sample θ∗` ;

(vi) Use θ∗` to find a nonparametric estimator π̂`,ε of the density π̂ε(θ|x), where ε is a function
of ` and np;

(vii) Compute the maximum of π̂`,ε, θ̃`,ε, which is the approximate MLE.

Two issues here are the choices of

(i) the parameters θiL and θiU (i = 1, . . . , d) of the uniform distributions;
(ii) the number s and the functional forms of the summary statistics.

As for the second issue, Tsionas (2013, 2016) shows that it is convenient to use the empirical
characteristic function of univariate projections. In a Bayesian setup closely related to our approach,
Peters et al. (2012) also use univariate projections to construct summary statistics for the estimation
of the multivariate stable distribution. The key result is that the projection of X on τ ∈ Rd is
univariate stable (Nolan et al. 2001).

As suggested by Tsionas (2013), we use τ ∈ Sd, where Sd is the d-dimensional unit sphere.
Hence, ηobs and ηsim at Step 4 above are the empirical characteristic functions of certain linear
projections computed on true and simulated data respectively.

Given a random variable X, the empirical characteristic function (echf) estimation method is

10
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based on the minimization of

Q̃n(θ) =

∫
R

|ψn(r;x)− ψθ(r)|2w(r)dr, (15)

where ψn(r;x) = (1/n)
∑n

i=1 e
(irxi) and ψθ(r) = E(e(irX) are respectively the empirical and the-

oretical chfs and w is a weighting function. Typically, w(r) = e−cr
2

, c > 0. AMLE requires the
evaluation of a similar integral:

Qn(x∗,x) =

∫
R

∣∣∣∣∣∣
n∑
j=1

eirx
∗
j −

n∑
j=1

eirxj

∣∣∣∣∣∣
2

e−cr
2

dr. (16)

The integral (15) can be solved explicitly (Xu and Knight 2010, p. 45). Analogously, the solution
of (16) can be obtained in closed form (Bee and Trapin 2018):

Qn(x∗,x) =

∫
R

∣∣∣∣∣∣
n∑
j=1

eirx
∗
j −

n∑
j=1

eirxj

∣∣∣∣∣∣
2

e−cr
2

dr (17)

=
1

n2

√
π

c

 n∑
i=1

n∑
j=1

e−
1

4c
(x∗i−x∗j )2 +

n∑
i=1

n∑
j=1

e−
1

4c
(xi−xj)2 − 2

n∑
i=1

n∑
j=1

e−
1

4c
(x∗i−xj)2

 .

In the multivariate case, we can still exploit (17). Using the maximum norm, we have

||ηobs − ηsim||∞ = max
k=1,...,p

|ηobsk − ηsimk |

= max
k=1,...,p

∫
R

∣∣∣∣∣∣
n∑
j=1

eirx
∗
kj −

n∑
j=1

eirxkj

∣∣∣∣∣∣
2

e−cr
2

dr

= max
k=1,...,p

1

n2

√
π

c

 n∑
i=1

n∑
j=1

e−
1

4c
(x∗ki−x∗kj)2 +

n∑
i=1

n∑
j=1

e−
1

4c
(xki−xkj)2 − 2

n∑
i=1

n∑
j=1

e−
1

4c
(x∗ki−xkj)2

 ,

where xkj is the j-th observation of the k-th marginal. The availability of a closed-form solution
of (16) is essential for the computational feasibility of the method. Moreover, with respect to the
discrete echf, the continuous echf does not require the choice of the grid of points where the echf is
evaluated. Finally, simulation results in Xu and Knight (2010) and Bee and Trapin (2018) suggest
that the performance of continuous echf is better than its discrete counterpart.

In classical echf estimation it is in principle possible to compute the asymptotically optimal
weighting function w(r) (Carrasco and Florens 2002). However, the resulting function is not neces-
sarily exponential, so that (17) may no longer be solved in closed form. Since the explicit solution
of the integral is key to obtain a computationally efficient algorithm, we prefer to trade a small
efficiency loss for a viable computing time and use w(r) = e−cr

2

with c = 1. Since using c = 1
is equivalent to assuming unit scaling, if the dispersion of the data is very large or very small,
c = 1 may not be a good numerical value. In this case a preprocessing step, such as rescaling each
coordinate by some robust measure like the interquartile range would make c = 1 reasonable.

11
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5. Numerical results

5.1. Monte Carlo experiments

We sample n = 500 observations from the truncated bivariate stable distribution with α = 1.7, γ =
(0.1, 0.5, 0.5, 0.1)′ and µ = (0, 0)′. AMLE uses the following inputs: θL = (1.2, 0, 0, 0, 0,−0.5,−0.5)′,
θU = (2, 1, 1, 1, 1, 0.5, 0.5)′ and np ∈ {20 000, 50 000, 100 000, 200 000}. The choice of θL1 and θU1

can be based on some preliminary estimate or on a small pilot simulation. Since the latter is
the most suitable approach for the remaining parameters, we use it also for θL1 and θU1. To
simulate the distribution, we have adapted the mrstab function from the alphastable R package
(Teimouri et al. 2018), which is based on Modarres and Nolan (1994). Notice that the simulation
procedure assumes that masses are located on the unit sphere with locations τ k = (cos(2π(k −
1)/m), sin(2π(k − 1)/m)), k = 1, . . . , 4, m = 4 (Nolan et al. 2001, p. 1116).

Figure 2 shows the boxplots of the simulated parameter values corresponding to the 50 smallest
values of maxk=1,...,4 |ηobsk − ηsimk | for np ∈ {20 000, 50 000, 100 000, 200 000}, where ηk is the con-
tinuous echf of the k-th linear projection < X, τ k >. Remember that np is the total number of
parameter vectors simulated from the uniform priors (step (i) of Algorithm 4.4).

The non-parametric kernel density estimator at Step (v) of Algorithm 4.3 is computed in three
different ways, by means of: (i) the sample mean of the univariate ABC samples (M ); (ii) the
blurring mean-shift algorithm (BS ); (iii) the maximum of the product of the univariate kernel
densities (UKD). See Bee et al. (2017) for details on the three approaches. In all cases below, M
and BS yield identical results, hence BS outcomes are not reported.

Table 1 displays the outcomes with different ABC sample sizes `, for np = 200 000, where ` is the
number of simulated parameter vectors corresponding to the ` smallest values of ||ηobs − ηsim||∞
(step (v) of Algorithm 4.4). The estimates in Table 1 are in line with the true values of the

Table 1.: Estimated parameter values with different ABC sample sizes `, for np = 200 000, where ` and np are defined in

algorithms 4.3 and 4.4.

α γ1 γ2 γ3 γ4 µ1 µ2

` = 10
M 1.750 0.167 0.550 0.544 0.177 −0.136 −0.160

UKD 1.696 0.110 0.472 0.632 0.288 −0.240 −0.203

` = 15
M 1.726 0.140 0.526 0.557 0.197 −0.098 −0.177

UKD 1.696 0.110 0.472 0.632 0.288 −0.240 −0.203

` = 20
M 1.732 0.157 0.521 0.516 0.207 −0.059 −0.227

UKD 1.784 0.145 0.536 0.652 0.238 −0.230 −0.293

` = 30
M 1.726 0.152 0.508 0.504 0.208 −0.028 −0.176

UKD 1.784 0.145 0.536 0.652 0.238 −0.230 −0.293

` = 50
M 1.730 0.162 0.496 0.524 0.219 −0.075 −0.170

UKD 1.784 0.145 0.536 0.652 0.238 −0.230 −0.293

` = 100
M 1.73 0.203 0.471 0.474 0.230 −0.046 −0.121

UKD 1.768 0.161 0.452 0.523 0.219 0.116 0.002

parameters. There is a small bias in some cases, but Figure 2 suggests that, according to large
sample AMLE theory, the results improve, in terms of both bias and variance, as np increases.
Estimation seems to be more problematic for the location parameters µ1 and µ2, analogously to
the findings by Peters et al. (2012) for the bivariate stable distribution in a Bayesian setup via
ABC techniques. Note, however, that the location parameters are less important in economic and
financial applications, especially for risk management purposes.
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Figure 2.: Box-plots of the simulated parameter values corresponding to the 50 smallest values of maxk=1,...,4 |ηobsk − ηsimk |.

5.2. Empirical analysis: operational risk

As a real-data empirical application we consider operational risk losses recorded at the Italian
bank Unicredit between 2005 and 2014; for a detailed description of the data see Hambuckers et al.
(2018) and Bee et al. (2019). In the present analysis we use the losses of the “Damage to Physical
Assets” (DPA) and “Business Disruption and System Failures” (BDSF ) business lines.

The losses are left-truncated at a known threshold th. For confidentiality reasons we cannot reveal
the threshold; moreover, we have rescaled the data via multiplication by means of a constant k.
Hence, without loss of generality, the data used for estimation are given by x1 = (DPA − th)/k
and x2 = (BDSF − th)/k, so that both variables are left-truncated at zero. Finally, since the two
time series are irregularly spaced, and losses are not, in general, observed simultaneously in the
two business lines, we aggregate the losses on a monthly basis. This yields a sample size n = 114
(monthly observations from January 2005 to June 2014). A scatterplot is displayed in Figure 3.

Some pilot simulations aimed at finding initial values for θL and θU lead us to use θL =
(1.01, 0, 0, 0, 0, 1.2, 0.15)′ and θU = (1.3, 1, 1, 1, 1, 2.2, 1.1)′. Figure 4 shows the boxplots of the ABC
samples for ` ∈ {10, 20, 50, 100}, obtained with np = 50 000. Table 2 reports the estimates for
various values of `. The BS algorithm again gives the same outcomes of the sample mean, and is
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Figure 3.: Operational risk: scatterplot of the rescaled DPA and BDSF observations.

therefore omitted. For most values of np, the M and UKD estimates are also close to each other
Hence, the results seem to be quite robust with respect to the non-parametric kernel density esti-
mator used. Moreover, especially with the UKD method, the estimates corresponding to different
nps are quite similar for most parameters, at least for ` ≥ 20, suggesting that the choice of the
value of np is not critical either.

Table 2.: Operational risk: estimated parameter values with different ABC sample sizes `, for np = 50 000.

α γ1 γ2 γ3 γ4 µ1 µ2

` = 10
M 1.096 0.841 0.811 0.406 0.261 1.519 0.582

UKD 1.127 0.978 0.986 0.458 0.151 1.398 0.321

` = 15
M 1.088 0.790 0.805 0.395 0.299 1.624 0.678

UKD 1.084 0.772 0.778 0.338 0.176 1.847 0.897

` = 20
M 1.084 0.785 0.785 0.384 0.304 1.700 0.655

UKD 1.084 0.772 0.778 0.338 0.176 1.847 0.897

` = 30
M 1.083 0.783 0.791 0.415 0.290 1.698 0.592

UKD 1.084 0.772 0.778 0.338 0.176 1.847 0.897

` = 50
M 1.086 0.782 0.789 0.419 0.277 1.671 0.586

UKD 1.101 0.736 0.779 0.217 0.194 1.907 0.561

` = 100
M 1.087 0.795 0.782 0.418 0.274 1.665 0.567

UKD 1.077 0.797 0.793 0.293 0.342 1.525 0.648
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Figure 4.: Operational risk box-plots of the simulated parameter values included in the ABC sample for ` ∈ {10, 20, 50, 100}.

Tail probabilities of the joint distribution can be approximated via simulation. Table 3 shows
selected simulated joint probabilities (in percentage) along with empirical joint probabilities. The
former are obtained as pS1,2 = #{x∗i1 > x1, x

∗
i2 > x2}/B, where B = 10 000 is the number of

replications and (x∗i1, x
∗
i2)′ is the i -th bivariate observations simulated from the estimated truncated

bivariate stable distribution. The estimated parameters are the M estimates obtained with ` = 20
(see Table 2). The empirical joint probabilities are computed as pO1,2 = #{xi1 > x1, xi2 > x2}/n,
where (xi1, xi2)′ is the i -th observation.

Given the rather small sample size, the empirical estimates of the joint probabilities corresponding
to high quantiles are not very reliable. In particular, for high quantile levels it is not surprising that
pO1,2 are equal to zero, and it makes sense that pS1,2 are larger than 0. Moreover, in the bivariate
truncated stable distribution the two marginals are assumed to share the same stability parameter
α, an hypothesis that is unlikely to be exactly satisfied in practice.

Given these premises, the joint probabilities in Table 3 suggest a good fit. This is also confirmed
by the scatterplots in Figure 5, where the top panel displays the true data and the second one a
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Table 3.: Operational risk: simulated (pS12) and empirical (pO12) joint percentage tail probabilities. qγ is the quanitle at level γ.

(x1, x2) pS1,2 pO1,2
(10, 10) 3.5 7.89
(15, 15) 1.32 2.60

(q0.9, q0.9) 1.51 1.75
(q0.9, q0.95) 0.64 0
(q0.95, q0.9) 0.54 1.75
(q0.95, q0.95) 0.28 0
(q0.95, q0.99) 0.20 0
(q0.99, q0.95) 0.18 0

sample of the same size (n = 114) simulated from the fitted bivariate truncated stable. To ease the
comparison, the scales of the two scatterplots are identical.

6. Conclusion

This work illustrates some analytical results for the bivariate truncated stable distribution. The
results are particularly useful in financial and economic applications such as market and operational
risk management, where truncated random variables are used. Because the truncated bivariate
stable distribution does not have a closed-form formula for its probability density function, and since
it does not necessarily have the second or even the first moment, we estimate the parameters via
the Approximate Maximum Likelihood Estimation approach based on the empirical characteristic
functions of certain linear combinations of a truncated bivariate stable random vector.

The properties of our procedures are illustrated via simualtion and via an empirical application
on the operational risk data, which are well suited also because they are left-truncated. Given
the rather small size of our sample, the joint probabilities suggest a good fit. According to our
simulation experiments, only the estimation of the location parameter vector is less reliable. This
issue has already been noted when using other estimation techniques (Peters et al. 2012), and
would therefore deserve some additional investigation.

In future work, the theoretical results presented in this manuscript can be extended to dimensions
greater than two. Further, certain results analogous to some of the main findings presented by
Horrace (2005) such as the log-concavity, unimodality and the multivariate-totally-positive of order
2 properties can be developed for truncated bivariate stable distributions. Since estimation is
a difficult problem that requires non-standard techniques, it would be interesting to study the
performance of other approaches. In particular, a viable solution may be a technique based on
the minimization of some distance between the Laplace transform developed in this article and its
sample counterpart. Finally, applications to market risk data or to actuarial losses may provide
further insights in the potential of the model for practical purposes.
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Figure 5.: Operational risk: scatterplot of the true (top panel) and simulated bivariate truncated stable (bottom panel) data.
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Appendix A: Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1: (i) We establish the equation for the joint density function by using polar
coordinates as follows,

q
2
(x1, x2, α) =

1

4π2

 ∞∫
−∞

∞∫
−∞

e−i(x1z1+x2z2)−λ(z21+z22)αdz1dz2


=

1

4π2

 2π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λkαkdkdθ


=

1

4π2

 π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λkαkdkdθ


+

1

4π2

 2π∫
π

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λkαkdkdθ

 .
Therefore, by rewriting the sum of the last two terms in terms of I that satisfies

I =

 π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λkαkdkdθ

 ,
and the complex conjugate of I , which call it as Ī, is defined by

Ī =

 π∫
0

∞∫
0

ei(x1k cos θ+x2k sin θ)−λkαkdkdθ


=

 2π∫
π

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λkαkdkdθ

 ,
finally, the proof is completed by using the following identity

q
2
(x1, x2, α) = 2<I.

(ii) We substitute Equation (9) into the right-hand side of Equation (8), and change the integration
order (this operation is valid since the double integral converges absolutely), thus we obtain
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q̃
2
(λ

1
, λ

2
, α) =

1

2π2
<

π∫
0

∞∫
0

∞∫
0

∞∫
0

e−(λ1x1+λ2x2)−i(x1k cos θ+x2k sin θ)−λkαkdx1dx2dkdθ

=
1

2π2
<

π∫
0

∞∫
0

∞∫
0

∞∫
0

e−(λ1+ik cos θ)x1−(λ2+ik sin θ)x2−λkαkdx1dx2dkdθ

=
1

2π2
<

π∫
0

∞∫
0

1

(λ1 + ik cos θ)(λ2 + ik sin θ)
e−λk

α

kdkdθ

=
1

π2

π

2∫
0

∞∫
0

λ1λ2

(k2 cos2 θ + λ2
1)(k2 sin2 θ + λ2

2)
e−λk

α

kdkdθ

(iii) Let

J =

∞∫
0

π∫
0

e−i(x1k cos θ+x2k sin θ)e−λ(θ)kαe
−iβ(θ)απ

2 dθkdk,

and

J̄ =

∞∫
0

π∫
0

ei(x1k cos θ+x2k sin θ)e−λ(θ)kαe
iβ(θ)απ

2 dθkdk,

then by using the subsequent properties that are β(θ) = −β(θ−π), λ(θ) = λ(θ−π), J + J̄ = 2<J,
and after carrying out some algebraic calculations which yields

q
2
(x

1
, x

2
, α) =

1

4π2

 ∞∫
−∞

∞∫
−∞

e−i(x1z1+x2z2)−λ(θ)(z21+z22)α/2e
−iβ(θ)απ

2 dz1dz2


=

1

4π2

 2π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λ(θ)kαe
−iβ(θ)απ

2 kdkdθ


=

1

4π2

 π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λ(θ)kαe
−iβ(θ)απ

2 kdkdθ


+

1

4π2

 2π∫
π

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λ(θ)kαe
−iβ(θ)απ

2 kdkdθ

 ,
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Therefore,

q
2
(x

1
, x

2
, α) =

1

2π2
<

 π∫
0

∞∫
0

e−i(x1k cos θ+x2k sin θ)−λ(θ)kαe
−iβ(θ)απ

2 kdkdθ


=

1

2π2
<

 π∫
0

∞∫
0

ei(x1k cos θ+x2k sin θ)−λ(θ)kαe
iαβ(θ)π

2 kdkdθ


=
−1

2π2
=

 π∫
0

∞∫
0

e−(x1k cos θ+x2k sin θ)−λ(θ)kαe
iα(β(θ)+1)π

2 (ik)dkdθ


=

1

2π2
=

 π∫
0

∞∫
0

e−(x1k cos θ+x2k sin θ)−λ(θ)kαe
−iα(β(θ)+1)π

2 (−ik)dkdθ


=

1

2π2
=

 π∫
0

∞∫
0

e−(x1k cos θ+x2k sin θ)−λ(θ)kαe−iρ(θ)π(−ik)dkdθ

 ,
where = denote the imaginary part. Then we substitute the last equality into the right-hand side
of Equation (8) and change the integration order, hence the result implies as follows,

q̃
2
(λ

1
, λ

2
, α) =

1

2π2

∞∫
0

∞∫
0

e−(λ1x1+λ2x2)

=

 π∫
0

∞∫
0

e−(x1ke
iρ(θ)π

2α cos θ+x2ke
iρ(θ)π

2α sin θ)−λ(θ)kαe−
iρ(θ)π

2 (−ike
iρ(θ)π

2α )e
iρ(θ)π

2α dkdθ

 dx1dx2

=
1

2π2
=

π∫
0

∞∫
0

 ∞∫
0

e−(λ1+ke
iρ(θ)π

2α cos θ)x1dx1

 ∞∫
0

e−(λ2+ke
iρ(θ)π

2α sin θ)x2dx2


× e−λ(θ)kαe−

iρ(θ)π
2 (−ike

iρ(θ)π

2α )e
iρ(θ)π

2α dkdθ

=
1

2π2
=

π∫
0

∞∫
0

[
e
iρ(θ)π

2α

ke
iρ(θ)π

2α cos θ + λ1

][
e
iρ(θ)π

2α

ke
iρ(θ)π

2α sin θ + λ2

]
e−λ(θ)kαe−

iρ(θ)π
2 (−ik)dkdθ

=
1

2π2
=

π∫
0

∞∫
0

[
e
iρ(θ)π

α

ke
iρ(θ)π

α cos θ + λ1

][
e
iρ(θ)π

α

ke
iρ(θ)π

α sin θ + λ2

]
e−λ(θ)kα(−ik)dkdθ

=
1

2π2
=

π∫
0

∞∫
0

 λ1e
iρ(θ)π

α + k cos θ∣∣∣λ1 + ke
iρ(θ)π

α cos θ
∣∣∣2

 λ2e

iρ(θ)π

α + k sin θ∣∣∣ke iρ(θ)πα sin θ + λ2

∣∣∣2
 e−λ(θ)kα(−ik)dkdθ
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q̃
2
(λ

1
, λ

2
, α) =

1

2π2

π∫
0

∞∫
0

=

(−i) λ1e
iρ(θ)π

α + k cos θ∣∣∣λ1 + ke
iρ(θ)π

α cos θ
∣∣∣2

λ2e
iρ(θ)π

α + k sin θ∣∣∣ke iρ(θ)πα sin θ + λ2

∣∣∣2
 e−λ(θ)kαkdkdθ

=
−1

2π2

π∫
0

∞∫
0

A(k, θ)

B(k, θ)
e−λ(θ)kαkdkdθ,

where

A(k, θ)

B(k, θ)
=

k2 cos θ sin θ + λ2k cos θ cos ρ(θ)π
α + λ1k sin θ cos ρ(θ)π

α + λ1λ2 cos 2ρ(θ)π
α

(k2 cos2 θ + 2λ1k cos θ cos ρ(θ)π
α + λ2

1)(k2 sin2 θ + 2λ2k sin θ cos ρ(θ)π
α + λ2

2)
.

�

Proof of Theorem 3.2: One can rewrite the expression in Definition 3.1 as,

q
2
(r, ϕ, α) =

1

2π2
=

 π∫
0

∞∫
0

e−(rk cos θ cosϕ+rk sin θ sinϕ)−λ(θ)kαe−iρ(θ)π(−ik)dkdθ


=

1

2π2
=

 π∫
0

∞∫
0

e−rk cos(θ−ϕ)−λ(θ)kαe−iρ(θ)π(−ik)dkdθ

 .
Therefore, the corresponding Laplace transform is given by

q̃R|ϕ=θ0(y, r, θ0, α) =

∞∫
0

e−yrq
R|ϕ=θ0

(r, θ0, α)dr

=
1

w(θ0)

∞∫
0

e−yrq
2
(r, θ0, α)dr

=
1

2π2w(θ0)

∞∫
0

e−yr=

 π∫
0

∞∫
0

e−rk cos(θ−θ0)−λ(θ)kαe−iρ(θ)π(−ik)dkdθ

 dr
=

1

2π2w(θ0)
=

 π∫
0

∞∫
0

∞∫
0

e−r(y+k cos(θ−θ0))−λ(θ)kαe−iρ(θ)π(−ik)dkdθ

 dr
=

1

2π2w(θ0)
=

π∫
0

∞∫
0

1

y + k cos(θ − θ0)
e−λ(θ)kαe−iρ(θ)π(−ik)dkdθ

=
1

2π2w(θ0)
=

π∫
0

∞∫
0

e−λ(θ)kα

y + k cos(θ − θ0)e
iρ(θ)π

α

(−ike
iρ(θ)π

α )e
iρ(θ)π

α dkdθ,
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Finally, we observe that

q̃R|ϕ=θ0(y, r, θ0, α) =
1

2π2w(θ0)
=

π∫
0

∞∫
0

−ie
2iρ(θ)π

α

y + k cos(θ − θ0)e
iρ(θ)π

α

e−λ(θ)kαkdkdθ

=
1

2π2w(θ0)

π∫
0

∞∫
0

−C
D

e−λ(θ)kαkdkdθ,

=
1

2π2w(θ0)
=

π∫
0

∞∫
0

−ie
2iρ(θ)π

α

y + k cos(θ − θ0)e
iρ(θ)π

α

e−λ(θ)kαkdkdθ

=
1

2π2w(θ0)

π∫
0

∞∫
0

−C
D

e−λ(θ)kαkdkdθ,

where

C

D
=

y cos(2ρ(θ)π
α ) + k cos(ρ(θ)π

α ) cos(θ − θ0)

(k2 cos2(θ − θ0) + 2yk cos(θ − θ0) cos ρ(θ)π
α + y2)

.

The proof of the first part is completed. Now, in this step we continue to prove the second part of
the theorem. We have

q
2
(x

1
, ax

1
, α) =

1

2π2
=

π∫
0

∞∫
0

e−x1k cos θ−ax1k sin θ−λ(θ)kαe−iρ(θ)π (−ik) dkdθ,

where ρ(θ) is defined in Theorem 3.1, then it allows us to obtain the univariate Laplace transform
as follows,

q̃
2
(λ

1
, α) =

∞∫
0

e−λ1x1q
2
(x

1
, ax

1
, α)dx1

=
1

2π2
=
∞∫

0

e−λ1x1

π∫
0

∞∫
0

e−x1k cos θ−ax1k sin θ−λ(θ)kαe−iρ(θ)π (−ik) dkdθdx1

=
1

2π2
=

π∫
0

∞∫
0

∞∫
0

e−(λ1+k cos θ+ak sin θ)x1dx1e
−λ(θ)kαe−iρ(θ)π (−ik) dkdθ

=
1

2π2
=

π∫
0

∞∫
0

1

λ1 + k cos θ + ak sin θ
e−λ(θ)kαe−iρ(θ)π (−ik) dkdθ

=
1

2π2
=

π∫
0

∞∫
0

e
iρ(θ)π

α

λ1 + ke
iρ(θ)π

α (cos θ + a sin θ)
e−λ(θ)kα (−ik) e

iρ(θ)π

α dkdθ.
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Then by using some algebraic calculations such as,

1

λ1 + ke
iρ(θ)π

α (cos θ + a sin θ)
=
λ1 + ke

−iρ(θ)π
α cos θ + ake

−iρ(θ)π
α sin θ

E
,

where

E = λ2
1+2λ1k cos

ρ(θ)π

α
(cos θ + a sin θ) +k2 (cos θ + a sin θ)2 ,

and

ie
2iρ(θ)π

α

λ1 + ke
iρ(θ)π

α (cos θ + a sin θ)
=
iλ1e

2iρ(θ)π

α + ike
iρ(θ)π

α cos θ + iake
iρ(θ)π

α sin θ

E
,

which allows us to easily see that,

=(
e

2iρ(θ)π

α

λ1 + ke
iρ(θ)π

α (cos θ + a sin θ)
) =

λ1 cos(
2ρ(θ)π

α ) + k cos θ cos(
ρ(θ)π

α ) + ak sin θ cos(
ρ(θ)π

α )

E
.

Thus, the result is implied. �
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