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ABSTRACT Over the last two decades, scientific discovery has increasingly been driven by the large
availability of data from a multitude of sources, including high-resolution simulations, observations and
instruments, as well as an enormous network of sensors and edge components. In such a dynamic and growing
landscape where data continue to expand, advances in Science have become intertwined with the capacity
of analysis tools to effectively handle and extract valuable information from this ocean of data. In view
of the exascale era of supercomputers that is rapidly approaching, it is of the utmost importance to design
novel solutions that can take full advantage of the upcoming computing infrastructures. The convergence
of High Performance Computing (HPC) and data-intensive analytics is key to delivering scalable High
Performance Data Analytics (HPDA) solutions for scientific and engineering applications. The aim of this
paper is threefold: reviewing some of the most relevant challenges towards HPDA at scale, presenting a
HPDA-enabled version of the Ophidia framework and validating the scalability of the proposed framework
through an experimental performance evaluation carried out in the context of the Centre of Excellence in
Simulation of Weather and Climate in Europe (ESiWACE). The experimental results show that the proposed
solution is capable of scaling over several thousand cores and hundreds of cluster nodes. The proposed work
is a contribution in support of scientific large-scale applications along the wider convergence path of HPC
and Big Data followed by the scientific research community.

INDEX TERMS Extreme-scale data challenges, HPC and big data convergence, high performance data
analytics (HPDA), performance evaluation, scientific data analysis.

I. INTRODUCTION
Over the last two decades, scientific discovery has increas-
ingly been driven by the large availability of data from a
multitude of sources, including high-resolution simulations,
observations and instruments, as well as an enormous net-
work of sensors and edge components [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu .

Thanks to the data deluge that started at the beginning
of this century, data-intensive science has emerged as the
fourth scientific paradigm [2], [3] paving the way towards
the Big Data revolution, which broke up around 2010 and
led to a new awareness of the multifaceted complexity and
relevance of data. As part of this process, the term Big
Data which originally referred to just a few orthogonal
dimensions such as volume, velocity and variety [4], i.e. the
most obvious and quantitative aspects of data, was later on
further complemented and enriched with new dimensions

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 73307

https://orcid.org/0000-0002-9206-2385
https://orcid.org/0000-0002-8430-6087
https://orcid.org/0000-0001-5902-6983
https://orcid.org/0000-0001-6835-5981


D. Elia et al.: Towards HPC and BDA Convergence: Design and Experimental Evaluation of HPDA Framework for eScience at Scale

like veracity, variability and value [5], able to capture the
most qualitative and intrinsic properties of data. Big data
also meant a new set of challenges that the software com-
munity had to address to ensure efficient management of
such data at all levels and throughout the entire data lifecy-
cle [6]. As a result, the Big Data revolution led through the
years to the birth of an incredibly vast software ecosystem
able to foster a data-centric paradigm for scientific discov-
ery, while complementing and enriching the well-established
simulation-centric paradigm that is mainly adopted by the
HPC community [7].

In such a dynamic and growing landscape where the size,
rate and complexity of data continue to expand, advances
in Science are dependent on the actual capacity of analysis
tools to effectively handle and extract valuable informa-
tion from this ocean of data. By projecting these chal-
lenges a bit further, it is clear that the definition of novel
approaches and strategies is now necessary to efficiently
deal with extreme-scale data-centric scenarios [1]. Addition-
ally, from an infrastructural standpoint, it is of paramount
importance that scientific analysis can soon take advantage
of the large computing infrastructures that are expected to
come to light in the next couple of years, such as exascale
machines [8]–[10].

Therefore, in this context, it becomes critical to empower
scientists with High Performance scientific Data Analyt-
ics (HPDA) solutions capable of fully addressing scientific
discovery by leveraging technological advances in HPC,
as well as data management techniques and tools designed
to tackle Big Data challenges. In fact, in order to fully sup-
port scientific discovery at extreme scale, High Performance
Computing (HPC) and data-intensive analytics are both
deemed as fundamental and complementary aspects of this
process [11].

However, software development in the fields of Big Data
and HPC has mainly been carried on in a disjoint way,
leading to a certain divergence in terms of resulting software
ecosystems [12]. In spite of that, over the last few years,
the HPC and Big Data communities have increasingly been
looking at each other, in order to: (i) pass the technologies and
advances of one field on to the users of another field, (ii) study
viable pathways of convergence between the two approaches,
(iii) identify common challenges, and (iv) provide proper
guidelines and recommendations, with the ultimate goal
of enabling extreme-scale and High Performance Data
Analytics.

In the field of scientific data analysis, the Ophidia frame-
work1 [13] tries to address the challenges of large-scale
multi-dimensional scientific data management and analyt-
ics. The framework provides a complete environment tar-
geting the Big Data challenges at various layers with a
multi-dimensional data model, parallel and in-memory data
processing, data-driven task scheduling and service-oriented
interfaces. In the last couple of years, the Ophidia platform

1Ophidia Website: http://ophidia.cmcc.it/

has evolved to better support HPDA applications, with
the main goal of supporting large-scale data analysis in
supercomputing environments by taking advantage of the
solutions from both the Big Data and HPC software ecosys-
tems. Although some key concepts of the platform still hold,
the system has undergone an internal redesign to include
the new requirements related to extreme-scale scenarios on
supercomputing infrastructures.

In particular, this paper describes a High Performance
Data Analytics framework and how it addresses some of
the main challenges of large-scale scientific analysis, with
a focus on the proposed parallel run-time system and its
integration with HPC cluster environments. A quantitative
evaluation of a set of key analytics operators is performed
to assess the scalability of the proposed HPDA solution and,
in particular, of its runtime system on a hundred nodes and a
few thousands cores. This provided a solid reference/baseline
for future evaluation and comparison with newer versions
of the HPDA framework as well as existing state-of-the-art
tools (which is out of the scope of this paper). More in
detail, the contribution of this article is threefold, since
it:

• reviews the international context and main efforts in
the field of scientific HPDA and summarizes some of
the key challenges at the intersection of HPC and data
analytics;

• presents a HPDA-enabled version of the Ophidia frame-
work, in particular the following design aspects: (i) the
runtime system for parallel processing and (ii) the
HPC-enabled deployment and scheduling schema;

• assesses the performance and validates the scalability
of the proposed HPDA framework design through an
experimental evaluation carried out on the MareNos-
trum4 PRACE (Partnership for Advanced Computing in
Europe) Tier-0 HPC cluster, in the context of the Centre
of Excellence in Simulation of Weather and Climate in
Europe (ESiWACE).

The rest of the paper is organized as follows. Section II
presents relevant international initiatives and related work
about the convergence between HPC and Big Data Analytics
(BDA). Section III introduces the main key challenges when
addressing HPDA, while the proposed HPDA framework and
the related key implementation aspects to support large-scale
data analytics are discussed in Section IV. Section V presents
an experimental evaluation of the proposedHPDA framework
regarding system scalability and the discussion of results.
Finally, Section VI points out the main conclusions of the
paper along with some key aspects that are worth investigat-
ing in the future.

II. INTERNATIONAL CONTEXT
This section highlights some of the most important interna-
tional initiatives on the convergence between HPC and BDA
(Subsection II-A) that have been held over the past decade,
as well as a comprehensive overview of the relevant work in
this area (Subsection II-B).
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A. INTERNATIONAL LANDSCAPE AND MAIN INITIATIVES
OVER THE LAST DECADE
Initial efforts in the area of extreme-scale scientific data
processing came with the International Exascale Software
Project (IESP) [14]. The IESP’s vision of exascale computing
was a huge international effort targeting extreme parallelism,
energy consumption constraints, resilience, efficiency and
programmability. However, HPC challenges towards exa-
scale computing were primarily addressed without properly
considering the emerging interest in new Big Data solutions
and approaches to tackle large-scale data analysis in virtual-
ized environments.

As a response to that, the HPC community organized
the Big Data and Extreme-scale Computing (BDEC) ini-
tiative,2 (2013-2018, now in its second stage, BDEC2,
2018-2020) an international effort to address the disrup-
tive emergence of Big Data in the scientific and engi-
neering domains and pave the way for the convergence
between HPC and High-end Data Analysis (HDA) [7]. At EU
level, in close synergy with the BDEC, the EXDCI project3

(phase1 2015-2018, phase2 2018-2020) shifted the attention
to the convergence of extreme data and computing with
a new focus on machine learning, Big Data and Artificial
Intelligence.

As part of the same landscape, the most recent Strategic
Research Agenda (SRA) of the ETP4HPC [15] project aims
to outline the European research priorities in the area of HPC
technology and High Performance Data Analytics (HPDA) to
support the EuroHPC Joint Undertaking (EuroHPC JU)4 in
building its 2021-2024 Work Programme. On the same line,
the European Commission presented the Digital Single Mar-
ket (DSM) strategy [16] in 2015 and its mid-term review [17]
a few years later, where Big Data and HPC are considered
core components of a broader system fostering, enabling
and boosting European data economy [18]. More recently
(in 2020), the European strategy for data [19] emphasized
the importance of the connection between EU data spaces
and the existing computing capacities at EU level, including
top class HPC infrastructures, to support data processing and
computing.

Other key national initiatives in the US [20], [21], China
and Japan [22] have also highlighted the strategic value of
this convergence both from an economical and a scientific
standpoint.

All these efforts worldwide have strongly contributed
to fostering, inspiring and supporting actions on Big Data
and HPC co-existence, integration and convergence, which
further stresses the importance of HPDA in Science and
engineering and in turn, the strong impact it can have on
society.

2Big Data and Extreme-scale Computing (BDEC) project:
https://www.exascale.org/bdec/

3EXDCI/EXDCI2 project: https://exdci.eu/about-exdci
4EuroHPC Joint Undertaking: https://eurohpc-ju.europa.eu/discover-

eurohpc

B. RELATED WORK
In several large-scale scientific and engineering applications,
HPC and Big Data are currently combined into applica-
tion workflows that join simulations and experiments with
processing, analysis and visualization pipelines [23]–[26],
which leads to a unified model where computational and data
science are two orthogonal components enabling scientific
discovery. The convergence of the two ecosystems is there-
fore key for scientific research; yet, several issues must be
addressed in terms of design and skills required to overcome
the great technological and cultural differences [7], [27].
Among these, some crucial differences concern execution
models, job scheduling and management, storage systems
and hardware architectures [11], [28].

The Big Data ecosystem provides a wide set of tech-
nologies targeting every aspect of data management and
analysis. One of the most well-known solutions in this con-
text is the Apache Hadoop framework [29] and its main
modules, i.e. an implementation of the MapReduce pro-
gramming model [30] and the Hadoop Distributed File Sys-
tem (HDFS) [31]. Various other technologies have later
enriched the Apache Hadoop ecosystem [32] and solutions
for On-Line Analytical Processing (OLAP) workflows have
also been developed, such as Apache Kylin [33] and Apache
Druid [34]. Moreover, several Big Data technologies using
the main memory for data management, storage and process-
ing have also been developed [35], and Apache Spark is one
of the most popular [36], [37].

Nevertheless, general-purpose technologies are not able to
fully address scientific data analysis requirements [38], for
example in terms of support for domain-specific formats,
algorithms and metadata. To this end, scientific-oriented data
management solutions addressing multi-dimensional data
analysis have also been developed, including Database Man-
agement System technologies such as SciDB [39]–[41] and
Rasdaman [42], [43] or processing frameworks extending
Apache Spark, like the SciSpark [44], [45] and ClimateS-
park [46] frameworks addressing climate sciences require-
ments.

Yet, both these general-purpose and scientific-oriented
data analytics solutions do not target the convergence of HPC
and BDA and they have not been designed for use on HPC
systems, but mainly on commodity and virtualized resources.
As reported in literature [47], there have been efforts in trying
to port the Big Data systems to HPC infrastructures, but their
scalability can be severely limited due to the differences in
the two ecosystems, and therefore requires careful tuning and
optimizations.

Different approaches are currently being explored for the
exploitation and integration of data analytics systems with
HPC solutions, to have them complement each other while
addressing scientific application needs [48]–[51].

Moreover, solutions for scientific data analysis targeting
the integration with HPC systems, such as the Dask frame-
work [52], [53], have also been developed in the Python
ecosystem. Dask is natively integrated with the widely used
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Python data analysis solutions (e.g., NumPy [54] and Pan-
das [55]) and provides the parallel computing engine for
domain-specific modules (e.g., Xarray [56] and Iris [57]).
Another solution targeting this integration is COMP Super-
scalar (COMPSs) [58], a task-based programming model
able to parallelize applications over HPC infrastructure,
which also provides support for Python-based data analytics
applications through its PyCOMPSs module [59]. Like these
solutions, the proposed HPDA framework tries to tackle the
convergence of HPC and BDA to support extreme-scale data
analysis, though more tailored to multi-dimensional scien-
tific data analysis in the climate domain in terms of support
for: specific data formats (i.e., NetCDF [60]), conventions
(i.e., Climate and Forecast [61]), metadata management with
respect to community specific vocabularies (i.e., Coupled
Model Intercomparison Projects) and optimized I/O for fast
read/write tasks.

Additionally, with respect to traditional solutions from
the Big Data ecosystem, the proposed HPDA framework
strongly integrates its in-memory analytics capabilities with
the underlying HPC environment in terms of parallel
paradigms (i.e., Message Passing Interface [62]), parallel
shared file system, batch schedulers and hardware-optimized
libraries.

III. MAIN CHALLENGES FOR EXTREME-SCALE HPDA
This section reviews some key challenges when addressing
HPDA at scale, with specific focus in this paper on scien-
tific discovery workflow, programming models/paradigms,
storage solutions, resource management, including software
deployability and portability.

A. PARADIGM SHIFT
In several scientific domains, the commonly adopted work-
flow for scientific discovery has primarily been based on
server-side data access and client-side data analysis, often
ending up downloading large amounts of data on the user’s
desktop [63]. Scientists, for example, have mainly been
relying on client-side and sequential tools to deal with
data analysis needs in the climate domain, like Climate
Data Operators (CDO) [64], netCDF Operators (NCO) [65]
and NCAR Command Language (NCL) [66], which were
not designed to meet large-scale scenarios. Such tools,
although being optimized for domain-specific analysis, gen-
erally provide limited amounts of parallelism, i.e. multi-
threading, but no direct support for scaling the processing
outside the single node, and they might fail for the lack
of hardware resources (usually main memory) on the client
node.

This kind of workflow is simply not feasible at extreme-
scale, since:

• ever-larger scientific datasets are being generated by
experiments and simulations, thus requiring bigger com-
puting facilities for data analysis as opposed to tradi-
tional desktop machines;

• the increased scale in the Big Data Vs requires novel
approaches and tools featuring a high level of paral-
lelism to efficiently perform arbitrarily complex data
analysis;

• data download is becoming increasingly time- and
resource-consuming, in terms of both network and stor-
age, and thus represents an insurmountable barrier for
even setting up large-scale data analysis experiments on
desktop machines.

The first two points respectively relate to capacity and
capability dimensions; the third one naturally refers to capac-
ity but also more inherently to the democratization of data
analysis, which is rapidly emerging as a key challenge in
Open Science [67].

In light of the three points above, extreme-scale HPDA
requires a paradigm shift based on server-side data analysis,
HPC facilities, data and compute co-location as well as novel
scalable and programmable HPDA tools/frameworks. Such
approach greatly contributes to reducing the downloaded
data and the makespan for the analysis task, but also the
complexity related to software administration and computing
environment, that are no longer managed on the client side
but centralized on the HPC facility.

It is worth mentioning here that such paradigm shift also
calls for a cultural and methodological change for scientists
towards (i) new software ecosystems, (ii) inherently complex
and more advanced computing environments, (iii) interdis-
ciplinary teams and (iv) more collaborative ways of doing
Science.

B. BIG DATA ANALYTICS AND HPC PARADIGMS
High Performance Computing infrastructures and data ana-
lytics ecosystems (mainly cloud-based) represent two com-
pletely different target environments to run HPDA soft-
ware [11]. In the HPC case, tightly coupled approaches
mostly relying on Message Passing Interface (MPI) [62] and
OpenMP [68] represent viable solutions on HPC architec-
tures, possibly together with accelerators, such as Graphics
Processing Units (GPUs) or Field Programmable Gate Arrays
(FPGAs). In the case of data analytics ecosystems, loosely
coupled approaches, mainly based on MapReduce-like
paradigms and well-known Big Data software stacks (e.g.,
Apache Big Data Stack [69]), can support the analysis and
processing of large datasets in cloud environments. HPDA
at extreme-scale could foster the development and adop-
tion of new programming frameworks and models along
the HPC and Big Data convergence pathway [7], includ-
ing new application programming interfaces (APIs) and
paradigms [11], [70]–[73] capable of dealing with massive
parallelism through intuitive and interoperable, high-level
interfaces.

HPDA-enabled runtime systems are required to sup-
port these new programming models, as they can handle
large-scale analytics workloads and harness the comput-
ing power of supercomputing infrastructures for parallel
processing [73].
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C. STORAGE AND DATA MANAGEMENT CHALLENGES
As data grow in size and complexity, efficient storage models
and data management strategies for fast I/O are essential
to perform HPDA at extreme-scale. As mentioned in Sub-
section III-B, HPC and Big Data ecosystems are typically
organized in a very different fashion. HPC clusters exploit
parallel shared file systems (e.g., GPFS, Lustre) while Big
Data frameworks usually rely on higher-level abstractions,
loosely coupled and distributed file systems to provide high
throughput access to applications (e.g., HDFS) [28]. From
this point of view, different efforts concerning the definition
of innovative storage architectures towards ecosystems con-
vergence can be found in literature [74], [75].

D. DATA ANALYTICS-ORIENTED RESOURCE
MANAGEMENT IN HPC
In HPC, job scheduling is handled by a distributed resource
management system (DRMS), such as SLURM [76],
LSF [77] and PBS [78]. These systems are highly opti-
mized for long-running, massively parallel (mainly MPI-
based) batch applications and do not support the proper
flexibility required by data analytics workloads [79].
Data-driven workflows can in fact be composed of multiple
loosely-coupled tasks, whereas HPC applications are much
more tightly-coupled and have fixed resource requirements
throughout their execution; in this case, task-level scheduling
can improve the general application execution [28].

To this end, resource management solutions should be
extended to also include data analytics-based workloads
requirements, or else specific systems could be devised to add
support for data-aware job scheduling on top of the existing
batch schedulers [80], [81].

E. PORTABILITY AND DEPLOYABILITY OF THE SOFTWARE
SOLUTIONS
The increasing size, complexity and heterogeneity of
extreme-scale computing infrastructures require software
solutions able to both scale on the cluster size and exploit dif-
ferent hardware technologies, along with the available com-
puting devices (e.g., CPUs, GPUs, FPGAs, etc.). To this end,
deployability and software portability are two key aspects
to make sure a software solution can effectively be used on
different supercomputing platforms.

Specific HPC-oriented containerization technologies are
then good candidates for supporting the portability and
deployability of software stacks on different HPC clusters
with no major impact on performance [82], although there
are still some issues and limitations to be addressed [83].
Software containers can be thought of as OS-level virtualiza-
tion - in contrast with hypervisors that provide hardware-level
virtualization - and have become very popular in the last
few years as they provide a very convenient way to package
applications and the related dependencies, with Docker con-
tainers [84] as the most widely adopted solution. However,
the deployment of Docker containers in HPC environments

can pose some technical and security challenges; in this
respect, HPC-oriented containerization technologies, such as
Singularity [85], Shifter [86] or Sarus [87], have been pro-
posed over the last years to improve support for scientific
applications needs in HPC.

IV. THE OPHIDIA HPDA FRAMEWORK
The Ophidia framework represents an open source solution5

for scientific data analytics, joining HPC paradigms and Big
Data approaches. The framework has primarily been used
in the climate change domain, though it has also success-
fully been exploited in other domains/contexts (e.g., astron-
omy, seismology [88], smart cities [89]). Ophidia addresses
scientific data analysis on large multi-dimensional datasets,
leveraging the datacube abstraction inherited from the OLAP
data warehouse systems. In the last few years, inspired by
the challenges described in Section III, the framework has
undergone an internal redesign with respect to the initial
implementation, towards improved support of HPDA use
cases. This design activity has focused on (i) a scalable
runtime (Subsection IV-B) and on (ii) the integration with the
HPC software ecosystem at the level of deployment and job
scheduling (Subsection IV-C). Nevertheless, some core con-
cepts have been inherited from the previous design without
any change (Subsection IV-A), such as the internal storage
model and the multi-layered architecture.

A. HPDA FRAMEWORK ARCHITECTURE
The latest design of the Ophidia architecture has comprehen-
sively been presented in [90]. For the sake of clarity, a brief
and high-level description of such four-layer architecture is
summarized as follows, with specific focus on the aspects
relevant to this paper. Figure 1 shows an updated view of the
architecture.

The front-end layer is represented by the Ophidia
Server [91], which enables server-side computation by
addressing the paradigm shift challenge described in Sub-
section III-A. The Ophidia server provides an interoperable
front-end to the rest of the Ophidia software stack deployed
on the HPC infrastructure, that users can remotely connect to
either via a remote lightweight client or a Python API,6 thus
achieving a separation of concerns between the client and the
server.

The new runtime layer, described in the next section,
is responsible for running all the provided analytics operators.
Such architectural level provides datacube abstraction to the
end-user, thus completely concealing all low-level details and
the complexity related to data partitioning and distribution.
Datacube operators represent high-level OLAP functionali-
ties and include support for both (i) metadata management
(sequential), and (ii) multi-dimensional (parallel) data analyt-
ics comprising domain-oriented operators, such as import and

5Ophidia Framework source code: https://github.com/OphidiaBigData
6PyOphidia: https://github.com/OphidiaBigData/PyOphidia
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FIGURE 1. High-level architecture of the Ophidia HPDA framework,
updated from [90].

export from specific formats, and domain-agnostic operators,
like subsets and data aggregations.

The I/O & analytics layer hosts in-memory multi-threaded
servers fully devoted to data transformation tasks. Ophidia
implements a native in-memory service [90], with a
query-based interface that supports the management of
n-dimensional array structures in terms of both data type
and functionality. This support is provided by the so-called
Ophidia primitives, i.e. low-level libraries implementing spe-
cific User Defined Functions (UDF) to manipulate binary-
arrays. Nesting of primitives (which will be part of the bench-
mark in Section V) is also supported by the I/O & Analytics
servers to allow for more complex array-based transforma-
tions.

The OphidiaDB represents the Ophidia system catalog,
which stores information onto the storage system about the
system configuration and status, including the list of I/O &
Analytics servers, the job status and history, and the physical
mapping of datacube fragments.

The Ophidia storage model is designed to manage
multi-dimensional data in binary arrays. The model lever-
ages the OLAP-based datacube abstraction to handle
multi-dimensional datasets. Each datacube is flattened to a
table-like data structure and horizontally partitioned into sev-
eral fragments (i.e., chunks), which are distributed across the
available I/O & analytics nodes to enable parallel data analy-
sis. Each fragment is composed of a set of multi-dimensional
binary arrays following a data store implementation based on
a NoSQL approach. Amore detailed and rigorous description
of the storage model is provided in [92].

In terms of data management, the new design of the HPDA
framework combines approaches from the HPC and Big Data
ecosystems, by building a shared-nothing storage layer for
fast data access and computing and relying on the HPC-based

FIGURE 2. High-level representation of the proposed HPDA runtime
system for a data reduction job (HTC reduce command). Multiple
independent instances of the same operator are executed concurrently
on different datacubes. Each single operator in the bag of tasks is
implemented as an MPI+X parallel application executed at the level of
the HPDA runtime.

shared layer for data I/O. This data management architec-
ture aims to address the challenge presented in Subsec-
tion III-C.
The design is implemented through the integration of

(i) the I/O & Analytics server, which allows performing
distributed in-memory analytics by means of data locality on
the node and data re-use across subsequent operations, (ii) the
OLAP-based storage model leveraging an array-oriented data
structure for efficient multi-dimensional data management,
and (iii) the parallel file system at the storage level to address
parallel I/O on the distributed set of fragments at the initial
and final stages of an analytics experiment.

B. HPDA RUNTIME SYSTEM
To address HPDA challenges, Ophidia has evolved over
the last few years towards a multi-level parallel execution
model. The resulting new runtime system joins together the
data-driven computing paradigm and the HPC-based parallel
computing one. While the former supports High Through-
put Computing (HTC) to simultaneously act on multiple
datacubes, the latter exploits High Performance Computing
(HPC) to efficiently address parallel execution at the level of a
single datacube. The runtime system targets the challenge
related to the convergence of data analytics and HPC
techniques to provide a scalable analytics solution (Sub-
section III-B). The runtime exploits a multi-processing (i.e.,
MPI) and multi-threaded (i.e., POSIX Threads) approach
for the execution of parallel operators, moving computation
to the I/O & analytics nodes where all data fragments are
actually stored. Figure 2 provides a high-level representation
of the proposed runtime system supporting the multi-level
parallel execution model.
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As shown in the upper part of Figure 2, the first level of par-
allelism (defined as datacube-level parallelism) implements
an HTC paradigm by supporting the execution of multiple
independent instances of the same operator on different input
data, that is a parameter sweep approach applied to multi-
ple files/datacubes. From a usability perspective, it allows
end-users to submit an arbitrarily very high number of inde-
pendent analytics tasks through a single declarative HTC
statement based on user-defined filters to narrow down the
set of inputs/tasks to the desired extent.

Additionally, the runtime supports a second level of
parallelism defined as fragment-level parallelism by exploit-
ing a MPI+X model applied to the single analytics opera-
tors. In this case, each operator is implemented as a hybrid
MPI+Pthread application able to analyze multiple fragments
of the same datacube in parallel, by scaling the analyt-
ics over multiple cores and nodes, according to the avail-
able resources. In such a context, the parallel operator acts
as the coordinator of the whole analytics process by trig-
gering real data crunching on the I/O & Analytics server
side.

Figure 2 shows a concrete example of how the developed
multi-level parallelism approach works in the case of a very
common datacube reduction operation (oph_reduce operator,
average operation) applied over the time dimension on mul-
tiple inputs.

The associated HTC reduce command is:

oph_reduce operation = avg;cube = [*];

In this case, the operator oph_reduce computes a tempo-
ral average (avg) on the time series of each input datacube
(please note that cube = [*] means the input is ‘‘all the
cubes in the current directory’’) generating a new set of
output datacubes. The HTC reduce command is automati-
cally expanded by the front-end server into multiple data
reduce operators based on the input cube argument, thus
implementing the first level of parallelism of the proposed
HPDA framework; then, each single operator is executed as
an MPI+Pthread job, which corresponds to the implementa-
tion of the second level.

As it can easily be argued from the above example,
the framework exposes a declarative interface for the execu-
tion of the analytics operators hiding most of the complexity
of the architecture and the underlying computing infrastruc-
ture. For instance, in addition to our example, usersmight also
customize the parallel execution of an operator by defining
the number of threads andMPI processes to be used as well as
the data fragmentation/distribution parameters or data layout
during the import or subsequent data manipulation stages.
This gives scientists a very high degree of flexibility through
the use of the Command Line Interface (CLI), as well as
programmability to developers from an API standpoint.

Delving into the details of this second level of parallelism,
each MPI task associated with a parallel operator manages
a specific subset of the datacube fragments and it spawns
multiple concurrent threads to parallelize the management of

such fragments. MPI is mainly used for inter-process (and
inter-node) synchronization and result exchange, whereas
the multi-thread support allows for a better exploitation of
intra-node parallelism. POSIX threads have been chosen in
place of other solutions, like OpenMP, since they provide a
lower-level API, thus enabling a finer-grained control over
the tasks in terms of shared structures, locking mechanisms
and management of non-thread-safe functions. It is worth
mentioning that each MPI task does not perform any direct
computation, but rather it:

1) sets up the execution plan according to data distribu-
tion;

2) serves as coordinator to dispatch processing, in terms
of queries, to the proper I/O & Analytics servers;

3) monitors the query execution performed by the I/O &
Analytics server on each fragment;

4) performs the synchronization stages of the operator;
5) updates the relevant metadata information stored in the

system catalog (OphidiaDB).

The actual computation is performed on the I/O & Ana-
lytics servers, which are directly connected to the storage in
order to take advantage of data locality. From this perspective,
the MPI task can be considered as an I/O bound application
coordinating the whole operator process and spending most
of its time waiting for query execution on the I/O &Analytics
servers.

In such a scenario, the hybrid approach allows users to
take full advantage of resources because several queries and
connections to the I/O & Analytics servers can be handled
concurrently with multiple threads within the same process,
allocating hundreds of requests per physical core with very
limited overhead. On the other hand, the use of MPI allows
scaling up the operator over multiple nodes, thus potentially
enabling the management of large datasets partitioned into
hundreds of thousands of fragments.

Figure 3 shows a detailed view of the fragment-level par-
allelism just presented; as it can be seen in the right-side part
of the figure, each POSIX thread running within the runtime
system submits a query to the I/O & Analytics servers for the
execution of a data analytics kernel (i.e., a primitive) on the
binary arrays of a given fragment.

The following listing (Figure 4) shows a simplified
pseudo-code of the template followed by the runtime for
the implementation of each data parallel operator. To reduce
the impact on the central components, information retrieval
from the system catalog (i.e., the OphidiaDB) is performed
by the master MPI process only (lines 3-5), which in turn
broadcasts this information to all other MPI processes (line
7). Synchronization among the MPI processes is limited to a
few blocks of code to reduce locking points. Indeed, the single
process runs independently until reaching a final synchro-
nization stage used for error checking and consolidation of
metadata into the system catalog. Based on the information
provided by the master, each process (i) identifies the list of
fragments it is responsible for (line 8-9), (ii) spawns multiple
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FIGURE 3. Schematization of the HPDA framework internals for the
execution of a data analytics operator. The operator is implemented as an
MPI+X application executed at the level of the HPDA runtime, which
coordinates the parallel data analysis carried out at the level of the I/O &
Analytics servers. The interaction between the HPDA runtime and the I/O
& Analytics servers at the threads level is highlighted on the right-hand
part of the figure.

threads to concurrently submit the query to the associated set
of I/O & Analytics servers (lines 10-17) and (iii) joins the
threads at the end (line 18). The master finalizes the operator
by storing the output metadata in the system catalog.

It is worth mentioning that fragments are assigned to each
MPI process and related threads according to a spatial data
locality policy that aims to minimize the number of I/O
& Analytics servers contacted by each single thread, thus
reducing the overall connection overhead.

C. HPC-ORIENTED DYNAMIC DEPLOYMENT
The framework architecture described in Subsection IV-A
is designed to be flexible and modular enough to support
various types of deployments covering both cloud and HPC
environments.

In particular, in the current design, the HPDA framework
provides full support for on-demand dynamic deployment of
I/O & Analytics servers on different HPC infrastructures.
In this respect, the framework is currently exploited by cli-
mate scientists at CMCC on the Zeus HPC cluster with
1.2 PetaFLOPS (1015 FLoating point Operations Per Second)
of peak performance, running at the CMCC SuperComput-
ing Center.7 The framework has also been tested on larger
European supercomputing infrastructures for benchmarking
purposes, such as the MareNostrum4 supercomputer at the
Barcelona Supercomputing Center (BSC) (see Section V).

According to its deployment schema, an Ophidia instance
requires the instantiation of a front-end server, a HPDA
runtime system and a set of I/O & Analytics servers. The
deployment mechanism transparently interacts at run-time
with the underlying batch scheduling system in order to
acquire the necessary resources for the various components.

7CMCC SuperComputing Center: https://www.cmcc.it/it/super-
computing-center-scc

FIGURE 4. Pseudo-code related to the runtime system execution of the
parallel operators.

To support compatibility with different scheduling systems,
the feature has been implemented with a set of configurable
submission and deployment recipes (i.e., bash scripts), which
control the startup, status and shutdown of the framework
components. So far, the deployment has been successfully
tested on Slurm and LSF, two of the most widely used batch
scheduling systems in HPC. The deployment mechanism
described above allows tackling the challenges related to
framework deployability (Subsection III-E).

A user-friendly interface is provided by the front-end
server to manage the deployment. For instance, the following
command can be submitted to instantiate a new cluster with
10 in-memory I/O & Analytics servers:

oph_cluster action = deploy;nhost = 10;

name = clusterA;

Whereas the undeployment can easily be triggered by run-
ning the following command:

oph_cluster action = undeploy;

name = clusterA;

During a typical analysis experiment, the user can run the
deploy command at the beginning of the session and the
undeploy one at the end. It is noteworthy that the front-end
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FIGURE 5. Example of a multi-tenant deployment scenario: multiple
instances of the HPDA framework software stack can be deployed by
different users/teams on the same HPC cluster and managed
independently at the same time for different experiments.

server supports multi-tenancy, which enables users (either
individuals or teams) to deploy multiple I/O & analytics
cluster instances on top of the same HPC infrastructure and
to interact concurrently and independently with all of them in
an isolated manner, as shown in Figure 5.

Concerning resource management and job scheduling,
as stated in the challenges section, HPC job schedulers are
not suited for running fine-grained tasks typical of a data ana-
lytics workload, but they are mainly suited for running mono-
lithic parallel (MPI-based) applications, such as model sim-
ulations. To improve support for data-driven analytics work-
loads consisting of a myriad of small tasks (analytics oper-
ators), the proposed framework defines a loosely-coupled,
two-level scheduling mechanism by (i) leveraging the HPC
job scheduler as a resource manager for cluster-aware job
submission and resource allocation (as just described) and
by (ii) providing a task-based scheduler to dispatch the ana-
lytics tasks on the previously allocated framework resources.

This approach overcomes the job start delay that would be
introduced by the batch scheduler in a classic HPC scenario.
Indeed, in supercomputers, schedulers place every single
job request in a job queue waiting for available resources.
A scheduling latency is hence introduced by the scheduler
to identify, select and assign the best possible allocation
based on the job requirements and resource availability.
In the proposed approach instead, besides the initial resource
allocation, the system will rely exclusively on the second
level (task-based) scheduler for the execution of the appli-
cations/workflows.

This approach allows easy integration and seamless
execution of data-driven analytics workflows over HPC
infrastructures, addressing the challenge reported in Sub-
section III-D.

FIGURE 6. Sequence diagram of the deployment and task scheduling
over a HPC infrastructure. A two-level scheduling approach allows for
handling the interactions with the HPC scheduler (to allocate framework
resources) and the framework scheduler (to manage analytics tasks)
during a data analysis session.

An additional step forward in this solution implies the
definition of HPC-specific resource usage policies to more
efficiently support data analytics jobs requirements, thus
improving the initial allocation step. These policies could
successfully integrate the type of usage here proposed as part
of the regular workload of HPC machines. The definition of
such policies is beyond the scope of this work and will be
taken into consideration in future work.

The overall deployment and operators execution flow is
shown in the sequence diagram in Figure 6. As depicted in
the figure, both the runtime system and the I/O & Analytics
servers are initially instantiated (for the time required to run
the analytics session) by the user via the front-end server
using the deployment mechanism previously presented. After
the initial deployment of the components, the user can run an
entire analytics session submitting multiple operators to the
runtime system on the computing resources previously allo-
cated. As it can be seen in the figure, the task-based scheduler
manages the submission of jobs to the HPDA runtime system
while completely bypassing the HPC batch scheduler.

V. EXPERIMENTAL EVALUATION AND RESULTS
To analyze the scalability and performance of the pro-
posed HPDA framework, an experimental evaluation has
been conducted over a large-scale HPC cluster. A grant
of 90k core-hours allocation provided by PRACE8 through

8Partnership for Advanced Computing in Europe (PRACE): https://prace-
ri.eu
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the PRACE HPC (Call 18) resources for Centres of Excel-
lence in Computing Applications (CoE) in the context of the
ESiWACE project,9 has been used to run a comprehensive set
of tests.

More specifically, the proposed tests focus on the evalua-
tion of the strong and weak scalability of the provided HPDA
runtime system with respect to a set of real-world analytics
operations (e.g., statistics over time series, climate indices,
subsetting, regression, etc.). The experimental evaluations
aim to assess:
• to what extent the proposed HPDA in-memory parallel
runtime scales both in the strong and weak sense;

• the behaviour of the system with different array lengths;
• how far the use of multi-processing versus multi-
threading approaches in the runtime system affects the
performance of data analytics operators.

The undertaken tests focus on the execution of single
operators in order to get a better understanding of the run-
time system behaviour at the level of intra-task execution
(i.e., the fragment-level parallelism). The benchmark moves
beyond the scalability limits of a few hundreds of cores that
have already been assessed in previous work [90], [92] with
former versions of the framework. Moreover, initial experi-
ments targeting inter-task behaviour at the level of the work-
flow (already performed on former versions of the framework
as reported in [93]) will be carried out in future work after the
full characterization of the framework scalability at the level
of single operator.

The results of this benchmarking activity will be used
to identify potential performance bottlenecks to address for
enhanced scalability. Additionally, they will represent a solid
baseline for comparison with (i) future versions of the pro-
posed HPDA framework as well as (ii) existing state-of-
the-art tools in the same research area.

The following subsection describes the test environment
and deployment used formeasuring the results (SubsectionV-
A), the experiments design (Subsection V-B), the workload
used (Subsection V-C), the methodology followed to collect
results (Subsection V-D), the experimental results (Subsec-
tion V-E) and a final discussion (Subsection V-F).

A. TESTING ENVIRONMENT
The resources granted through the aforementioned PRACE
application have been allocated on theMareNostrum4 super-
computer of the Barcelona Supercomputing Center (BSC),10

which is one of the 7 Tier-0 HPC systems available in Europe.
MareNostrum4 is the fourth generation of the BSC most
powerful supercomputer consisting of multiple blocks. The
general-purpose block used for this activity, consists of 3
456 nodes with a total of 165 888 processors and 390 TB
of memory and has a peak performance of 11.15 PetaFlops.
Each compute node used in the tests is equipped with 2 Intel
Xeon Platinum 8160 (24 cores) at 2.1 GHz processors and

9ESiWACE project: https://www.esiwace.eu
10MareNostrum at BSC https://www.bsc.es/marenostrum/marenostrum

FIGURE 7. Deployment of the HPDA framework components used for the
experimental evaluation. The deployment consists of: the system catalog,
the runtime system and one or more I/O & Analytics servers. Each
component is deployed on a separate cluster compute node (yellow
boxes). Deployment recipes and the scripts for operators used in the test
are submitted to the batch scheduler from the cluster login node (blue
box).

96 GB or RAM memory (12 × 8 GB DDR4-2667 DIMMS),
whereas the operating system is SUSE Linux Enterprise
Server 12 SP2.11

In order to perform the experiments, the proposed HPDA
framework (version 1.6.0), has been deployed at BSC using
a stand-alone cluster configuration that only uses the archi-
tectural components responsible for computing. Such testing
setup allows for focusing on the single analytics operator
tests, while still retaining the same performance of the com-
plete setup. The deployment diagram in Figure 7 depicts
the setup used on the MareNostrum infrastructure. All the
needed components are deployed on the cluster compute
nodes before starting the tests. This deployment consists
of a single OphidiaDB and runtime instance and one or
more I/O & Analytics servers, according to the test being
executed; each component is running on a separate com-
pute node. Data are partitioned on multiple fragments that
are evenly distributed among the available I/O & Analytics
servers.

The deployment has dynamically been adapted to the dif-
ferent tests by increasing and reducing the number of I/O
& analytics nodes, as described in Section IV-C, through a
simple deployment recipe in the form of a Slurm submission
script. Once the deployment was ready, the actual experiment
tests were executed by means of other scripts submitted
from the login node of the MareNostrum cluster. To avoid
side-effects related to resource contention from other pro-
cesses on the node, all compute nodes have been allocated
in an exclusive fashion. As a technical note, the framework
software stack and dependencies have been compiled using

11MareNostrum technical information: https://www.bsc.es/
marenostrum/marenostrum/technical-information
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the Intel ICC compiler (intel/2017.4) with the -xHost flag,
which enables all possible optimizations available on the
target platform [94].

B. EXPERIMENTS DESIGN
‘‘Although there are diverse types of scientific big data
systems, few benchmarks are available at present’’ [95].
In addition, none of them seem to properly address the
climate-oriented features supported by the proposed HPDA
framework, hence a proto-benchmark has been defined for
the experimental evaluation. To this end, different key opera-
tions have been selected to evaluate the runtime execution in
various relevant tests scenarios.

As the HPDA runtime system provides a wide set of ana-
lytical operators and array-based primitives that, in turn, can
also be nested to perform more complex analyses, it was
decided to focus only on some of the platform’s most used
analytics functionalities. The final selected operations are
representative of real-world scientific use cases in the climate
domain and cover a significant spectrum of processing types.
In most cases, various primitives have been combined (i.e.,
nested, see Section IV-A) to be applied as a more complex
atomic operation.

The selected operations can be briefly described as follows
(the label is just a reference to the operations in the following
sections):

• REGRESSION: it computes the slope of the regression
trend line and it is based on the gsl_fit_linear function
from the GNU Scientific Library (GSL) [96]. This oper-
ation is particularly interesting because it is the only
one within the test suite that involves some kind of data
distribution from the runtime to the I/O & Analytics
servers;

• SUMMER DAYS: it computes the number of days
when the average temperature is above a given threshold
(25 ◦C) on a yearly basis. It is based on the climate index
with the same name [97];

• SUBSET: it computes the average, standard deviation,
minimum and maximum values from a subset of the
original time series; the subset limit varies according to
the time series length;

• DTR: it computes a set of 14 statistics (average, vari-
ance, skew, kurtosis, quartiles, etc.)12 on the whole
time series of daily temperature ranges (DTR), i.e. the
difference between the daily maximum and minimum
temperatures;

• T90P: it computes the number of days above the 90th
percentile (evaluated on the whole time series) on a
yearly basis. It is loosely based on the climate index
TN90p [97].

All the selected operators have been tested under the same
scenarios in order to evaluate the aforementioned key points.

12See the Ophidia documentation for the full list of statistics computed:
http://ophidia.cmcc.it/documentation/users/primitives/OPH_GSL_STATS.
html

Subsection V-D describes the various test scenarios executed
and the results measured.

C. INPUT DATA
To evaluate the performance of the proposed framework with
real climate data, a dataset from the CoupledModel Intercom-
parison Project Phase 6 (CMIP6) [98], [99] in NetCDF-CF
format [60], [61] has been used as input for the different oper-
ators; in particular, the following historical dataset produced
at CMCC with the CMCC-CM2-VHR4 model named [100]:

CMIP6.HighResMIP.CMCC .CMCC−CM2−VHR4.

hist−1950.r1i1p1f 1.6hrPlevPt.ta.gn

The dataset is distributed under an Open Data license and
can be freely downloaded through the Earth System Grid
Federation (ESGF) [101] CMIP6 data portal.13 The dataset
includes a single 4-dimensional (i.e., time× plev× lat× lon)
floating point variable called ta (i.e, air temperature):

• each variable point has a size of 4 bytes;
• the spatial grid is at 1/4 degrees (i.e., 1152 lon×768 lat),
which is among the highest resolutions currently avail-
able;

• the number of pressure levels (plev) is 7;
• the time dimensions span from January 1950 to Decem-
ber 2014, with a time frequency set at 6-hours (i.e.,
4 time steps per day). A single year (1950) was used for
the tests though.

Concerning the time dimension, the dataset is split into
multiple files, each one containing the time steps for a single
month (i.e., about 120 time steps).

The size of each (compressed) file of the dataset is roughly
around 1.5 GiB. Before executing the tests, all files were pre-
liminarily merged into a single NetCDF file with ncrcatNCO
operator and then rotated with ncpdq NCO operator [102]
(with the variable re-arranged as lat × lon × plev × time)
to reduce the import time.

It is important to mention that, since the system requires
loading data for each batch of tests, data were randomly gen-
erated for all the tests running on more than one I/O & Ana-
lytics server to reduce the time required for data import oper-
ations, which is out of the scope of this benchmark. This was
done by following the same structure of the CMIP6 dataset
just presented, by simply extending the initial time series
length (i.e., 1460) to multiple years. In particular, the syn-
thetic data were generated using a first order auto-regressive
model (AR(1)) with a configurable time step which allows for
preserving the performance behaviour of a real dataset (see
the strong scalability on single node test in Subsection V-
E1); moreover the AR(1) model enables the production of
sufficiently consistent temperature values [103].

Table 1 summarizes the data used in the various tests.

13ESGF data node search interface for CMIP6 at LLNL: https://esgf-
node.llnl.gov/search/cmip6/
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TABLE 1. List of data used for each test run in the benchmarks.

D. METHODOLOGY
The entire set of planned tests can be summarized as follows:

1) strong scalability on a single node;
2) strong scalability on multiple nodes;
3) weak scalability on multiple nodes;
4) comparison of multi-threaded versus mixed parallelism

approach.
The results of the strong scalability tests on a single node

represent the baseline for comparison with the other two
scalability tests executed over multiple nodes.

All the operators defined in Subsection V-B were run five
times for each test and the average execution time in sec-
onds was reported. Additionally, before starting to record
the execution times, warm up runs were performed for each
deployment of the I/O & Analytics servers to overcome the
initial transitory phase. All datasets were loaded or generated
as a single datacube and evenly distributed across the I/O &
Analytics servers deployed on the cluster before the execution
of the tests, so that each I/O&Analytics server wouldmanage
the same amount of data and fragments.

The processing rate, also called throughput, was computed
starting from the average execution time, with (1).

R(size, processes) =
size

T (size, processes)
(1)

Such metric represents a proxy for the speedup and it is
easy to derive, with the same formulation, for both weak and
strong scalability scenarios [104]. It is measured in GiB/s as
the ratio between the data size involved in the execution and
the wall-clock time on the given data size with the number of
processing elements.

Besides the throughput absolute value, the throughput
percentage rate with respect to the theoretical ideal value
(i.e., linear scalability) was evaluated in the results for a
better understanding of the scalability level that was actually
achieved. The theoretical ideal value is computed as the

TABLE 2. Results (average execution time in seconds) from the TEST1a.

baseline value multiplied by the number of processing units,
which, according to the specific test, correspond to either the
involved number of cores or nodes.

E. RESULTS
The following subsections report the experimental results in
terms of average execution time and throughput, according to
the test plan summarized in Subsection V-D. All plots were
generated using the Python Matplotlib library [105].

1) STRONG SCALABILITY ON SINGLE NODE
This first set of tests aims to evaluate the scalability of the
selected operators over a fixed data size while increasing
the number of threads used for the execution from 1 to 48;
i.e. the maximum number of cores available on a single node.
The number of threads was (almost) doubled on every run

following the sequence: 1 - 2 - 4 - 6 - 12 - 24 - 48. This
sequence was chosen in order to keep the number of threads
constantly even and balanced on the two node sockets.

Two different input datasets were used for this set of tests
(see Table 1 for details):
• single dataset of about 33.7 GiB of size (simulation
output from a CMIP6 experiment);

• single dataset of about 67.4 GiB of size (synthetic data
generated with time series doubled in size with respect
to the previous case).

Considering these two different datasets was useful to
understand the behaviour of the runtime system with (i) real
and synthetic data, (ii) different data sizes per node and
(iii) different array length.

In both cases, data were loaded on a single I/O &Analytics
server. For the sake of readability, these tests are referred to as
TEST1a (with 33.7 GiB dataset) and TEST1b (with 67.4 GiB
dataset) respectively.

Table 2 shows only the average execution time related to
the set of configurations considered in the first case based
on the real CMIP6 dataset. The execution times measured
for TEST1b are almost double with respect to TEST1a mea-
surements. According to their different types and complexity,
the execution times of the various operators are quite dif-
ferent, with DTR being the slowest, as it needs to compute
14 different statistics, and SUBSET being the fastest, as it
applies computation only to one fourth of input data.

The scalability of operators on a single node is close to
linear in (almost) all cases. As it can be seen in the log-log
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FIGURE 8. Log-log plot about the throughput for each operator run in TEST1a (with the CMIP6 dataset) and TEST1b (with synthetic data). The scalability
of operators on a single node is close to linear in almost all cases (the diagonal grid lines provide a guide for comparison with respect to the ideal case).
Results from TEST1a and TEST1b almost perfectly overlap, showing that there is no particular difference in the execution time when using synthetic data
in the tests in place of real data.

plots in Figure 8 - which shows the throughput (computed
as defined in (1)) for both tests - all the evaluated opera-
tions follow roughly the same behaviour, being very close
to linear scalability until at least 12-24 threads. The diago-
nal grid lines provide a guide for comparison with respect
to linear scalability. When 48 threads are used, there is a
small reduction of performance due to a higher concurrency
on resources and threads synchronization effects, although
the throughput value in all cases is over 80% for TEST1a
(and over 75% for TEST1b) of the linear scalability value.
Moreover, the throughput values from TEST1a and TEST1b
almost perfectly overlap, showing that there is no particular
difference in the execution time when using synthetic data in
the tests in place of real data.

This first batch of tests, although executed on limited
resources, are important for the benchmark because they:
(i) represent the baseline for comparison for the subse-
quent tests executed over multiple nodes and (ii) prove
that synthetic data do not affect the scalability test results;
only synthetic data were hence used in the multi-node
tests.

2) STRONG SCALABILITY ON MULTIPLE NODES
This second strong scalability scenario aims to evaluate
the scalability of the runtime system while increasing the
resources used to process a fixed data size over multiple
nodes.

In this case, the total data size was fixed throughout the
various runs while increasing the number of threads. How-
ever, with respect to TEST1a/b, data were (evenly) distributed
on the I/O & Analytics servers deployed over 48 (instead
of 1) nodes. A single randomly-generated dataset of about
3.2 TiB (see Subsection V-C for details) was used throughout
the full set of tests, resulting in about 67.4 GiB per node

TABLE 3. Results (average execution time in seconds) from TEST2.

(as in the single node strong scalability case, TEST1b). The
number of threads used to run the operators increased from
48 (i.e., the cores available on a single node) up to 2304
(i.e., the cores available on all 48 nodes). The number of
threads was (almost) doubled on every run based on the
following sequence: 48 - 96 - 192 - 288 - 576 - 1152 - 2304.
This sequence was chosen so that the cores would constantly
be multiple of 48 and well-balanced, while achieving full
resource utilization. In the rest of this document, such tests
are referred to as TEST2.

Table 3 shows the average execution time in seconds
related to this test. The execution times are very similar to
those in TEST1b. This outcome was expected since the data
size per thread follows the same sequence in both tests; on
the other hand, it also shows that the HPDA runtime is able
to effectively scale out on multiple threads and nodes without
any significant impact on performance.

Figure 9 provides a graphical representation of the scalabil-
ity of the various operations. In this log-log plot, the through-
put in GiB/s is presented; also in this case, the diagonal grid
lines provide a guide for comparison with respect to linear
scalability. It was decided to consider 48 threads as baseline,
instead of a single thread, due to the enormous amount of time
that would be required for the execution of the tests with few
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FIGURE 9. Log-log plot about the throughput for each operator run in
TEST2. The scalability of the operators remains good in almost all cases
even when using the maximum number of threads considered (the
diagonal grid lines provide a guide for comparison with respect to the
ideal case).

cores, which is not relevant at this stage, since it has already
been proven to efficiently scale in TEST1a/b.

As it can be seen from the plot, scalability remains good
even when using the maximum number of threads consid-
ered. In particular, the throughput value is at least at 83%
and 76% of theoretical linear scalability (evaluated from
the baseline case) up to 576 and 1152 threads, respec-
tively. After this point, concurrency and synchronization
effects cause a little deviation with respect to the ideal
case, although general scalability remains good (over 72%
of the linear scalability value) in all cases except for the
REGRESSION test, which is around 65% (see next subsec-
tion for more details about the decrease in performance of this
test).

It is worth noting that the highest decrease in scalabil-
ity was observed in the fastest operation, also due to the
major impact of synchronization and sequential stages on the
smaller execution time (e.g., SUBSET with 2304 cores takes
only 6 seconds), while the lowest decrease was observed in
the slowest operation (e.g., DTR with 2304 is around 88% of
the linear scalability value).

3) WEAK SCALABILITY ON MULTIPLE NODES
The third set of tests aims to evaluate the scalability of
the parallel runtime system while increasing the input data
size linearly with the resources (i.e., the number of nodes
considered); only the data size per core remains fixed.

These experiments show the runtime system performance
under weak scalability conditions: the number of threads used
to run the operators was doubled for each run, together with
the node count and the data size, from 48 (i.e., the cores
available on a single node) up to 6144 (i.e., the cores available
on 128 nodes). Data were loaded and distributed as a single
dataset on the number of I/O& analytics nodes considered for
each run. It is important to note that, although the amount of
data per node remains fixed across different configurations,
the data array length and the number of rows are multiplied

TABLE 4. Results (average execution time in seconds) from TEST3a.

and divided by two, respectively, any time the number of
nodes is doubled. When using a single node, for example,
fragments are composed of 129k arrays with 2920 elements
each; in a 2-node set up, the fragments consist of 65k arrays
with 5840 elements each, whereas with 128 nodes, each
fragment consists of around 1k arrays with 374k elements
each.

The dataset was randomly generated, according to the
structure described in Subsection V-C, to match the require-
ments of each configuration with the data size per core fixed
at about 1.4 GiB, for a total data size ranging from 67.4 GiB
to 8.4 TiB). In the rest of this document, this test is referred
to as TEST3.

Furthermore, since the proposed runtime system allows
for orchestrating operators execution by means of a hybrid
MPI+X parallel approach (as described in Section IV-B),
these tests were run by using a mixture of the two types of
parallelism, with the following configurations:
• TEST3a with the following MPI+X parallelisms setup:
1 (cores) - 48 (threads); 1 - 96; 2 - 96; 4 - 96; 8 - 96; 16
- 96; 16 - 192; 32 - 192;

• TEST3b using thread-level parallelism only (from 48 to
6144 threads).

For the sake of brevity, Table 4 shows only the average
execution time in seconds related to the various configura-
tions considered for TEST3a. Again, the case with 48 threads
(full single node utilization) is considered as a baseline for
comparison with the larger setup.

In this set of tests, scalability can be considered good
in most cases up to 64 nodes, i.e., above 79% of the the-
oretical linear scalability (evaluated from the single node
baseline case) except for the T90P and REGRESSION
cases which stop at 67% and 63% respectively. Scalability
decreases noticeably in most cases when using 128 nodes
(i.e., 6144 cores), which corresponds to the most challenging
test case for the runtime system, with 6144 threads allocated
on the same single runtime node. This can be clearly seen
in Figure 10, which shows the throughput for both TEST3a
and TEST3b for each selected operator subject to testing.

As for the previous test, this behaviour becomes more
relevant when the single-node operator execution time is
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FIGURE 10. Log-log plot about the throughput for each operator run in TEST3a (with the MPI+X parallelism) and TEST3b (with thread-only parallelism).
Scalability can be considered good up to 64 nodes except for the T90P and REGRESSION, while it decreases noticeably in most cases when using
128 nodes (the diagonal grid lines provide a guide for comparison with respect to the ideal case). Results from TEST3a and TEST3b almost perfectly
overlap, showing that there is no particular difference in the two approaches.

small and, thus, the effects of contention and synchronization
have a higher impact on the overall execution time (i.e., up to
6144 threads distributed on 128 I/O& analytics nodes have to
be managed concurrently). In the case of the REGRESSION
test, it is clear that when moving from 64 to 128 nodes,
the time basically doubles. The reason for this behaviour
is that the regression primitive requires both the array data
and the time dimension values to perform the computation.
In the current implementation, the dimension array is cen-
trally managed by a single process to limit the memory
footprint and, thus, when required for the computation, as in
the case of regression, it needs to be transferred over the
network from the runtime node to each I/O & Analytics
server. Consequently, as the array length and the number of
threads increase in the performed test, also the quantity of
data to be transferred over the network rises exponentially by
a factor of 4, from 1 MiB in the case of a single node up to
17 GiB in the case of 128 nodes. Therefore, the additional
time measured in the case of 64 and 128 nodes is mainly due
to this effect.

It is clear that following this trend any further increase
in the array length and the number of threads will severely
affect the execution time, leading to a clear performance
degradation. However, it should be underlined that this is one
of the few cases where this effect is noticed; still, the limit
is only reached under experimental conditions, since time
series with nearly 380k elements are basically unfeasible in
real scenarios. Nevertheless, the test helped to understand to
what extent the limitation can impact on performance and it
will be used for future optimizations of the proposed HPDA
framework.

Another interesting result that can be observed from the
table is that the speedup is superlinear in the majority of the
tested operators. This effect is due to the way data size is

increased throughout the various configurations, as explained
earlier in this section. The HPDA in-memory engine is in
fact highly optimized to work on array-based data, hence
having longer time series and fewer rows leads to improve
the overall execution time thanks to data locality and caching
effects. As expected, this superlinear speedup behaviour did
not manifest in the strong scalability tests since the array
length was fixed throughout the tests.

With respect to the table, the plots also show the results for
the thread-only parallel configuration (i.e., TEST3b); as it can
be observed, there is no significant difference in the execution
time of the two cases; the comparison between thread-only
and hybrid parallelism is further explored in the next test case.

4) COMPARISON OF MULTI-THREADS AND MIXED
PARALLELISM APPROACHES
This final set of tests aims to compare the performance of
data analytics operators when exploiting multi-thread and
multi-process parallelism approaches.

For these tests, both the data size and the number of
resources used (i.e., cores and nodes) was fixed throughout
the runs and only the configuration of MPI process and
Pthreads was changed, yet always retaining the same amount
of total cores used (i.e, number of MPI procs × number of
threads).

The number of nodes used in this case was set to 32 (with
a total of 1536 cores available) and the data size to 1.05 TiB
(see Subsection V-C for details) which provides a robust
setting for this test. Data were loaded and distributed evenly
over the 32 I/O & analytics nodes, resulting in 33.7 GiB per
node as in TEST1a. For each run, the product of threads
and MPI processes was constantly set to 1536, following
this sequence: 1 process × 1536 threads, 2 processes ×
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FIGURE 11. Semi-log (X-axis) plot about the execution time for each
operator run in TEST4. The execution time is not significantly affected
when threads are exchanged for MPI processes or vice versa.

768 threads, 4 processes × 384 threads, 8 processes ×
192 threads, 16 processes × 96 threads, 32 processes ×
48 threads. In the rest of this document, such tests are referred
to as TEST4.

The semi-log plot in Figure 11 shows the results from this
set of tests while changing the mix of MPI processes and
POSIX threads used for computation. The x axis in the plot
reports the configuration in terms of number of processes ×
threads used in each test. As also highlighted in the previous
test, exchanging threads for MPI processes or vice versa
does not significantly affect the execution time. Anyway, it is
important to mention that using more MPI processes in the
proposed HPDA runtime system would require allocating
more nodes for the execution of the runtime system, thus
resulting in a higher consumption of compute resources and
power without any significant benefit.

F. DISCUSSION
This benchmark has highlighted different aspects of the pro-
posed HPDA framework while scaling over multiple cores
and nodes and with different data sizes.

The main results of the benchmark can be summarized as
follows:

• the performance pattern for a particular operation is the
same with both synthetic and real data;

• on a single node, the parallel runtime system provides
good levels of performance, at least over 75% of the
linear scalability value in all cases;

• when distributing the processing on multiple nodes,
the performance of the proposed runtime system remains
good in the majority of cases until 3k cores (i.e., over
70% with regard to linear scalability) in both the weak
and strong scalability scenarios considered, although
some limitations emerged during the tests;

• with a fixed data size, the tested primitives perform
better when working on longer time series and show a
superlinear behaviour, which proves the effectiveness of
the array-based in-memory engine;

• multi-threaded and MPI+X parallelization approaches
allow less resource usage in terms of cores (and in turn
nodes) without any significant impact on performance.

Consequently, given the proposed runtime system, it is
best to rely on a higher number of threads rather than
on MPI processes, that should only be exploited to
scale over multiple nodes when it comes to larger scale
scenarios.

Overall, the proposed HPDA runtime system and deploy-
ment mechanisms have proven to scale effectively over a
large number of threads and nodes in a supercomputing envi-
ronment, overcoming by one order of magnitude the scalabil-
ity limits that affected previous releases [92]. Moreover, they
gave us better insight into the framework behaviour alongside
its new runtime system, and also helped us identify aspects
that need to be further improved and optimized in the future,
thus bringing important feedback to the software roadmap.
Besides evaluations strictly related to scalability, the bench-
marking results provide a strong baseline and reference for
future releases of the framework as well as for experimental
comparison with other tools in the HPDA area.

VI. CONCLUSION AND FUTURE WORK
This paper highlighted some of the challenges at the cross-
roads of HPC and BDA, which are key points to enable
current and future HPDA at extreme scale.

The main design aspects of the Ophidia framework have
been reviewed in light of such challenges and its redesign
targeting HPDA has been presented. Focus has been placed
on (i) the parallel runtime system, highlighting the different
levels of parallelism designed for large-scale analysis, and
on (ii) the main aspects concerning the integration of the
framework with HPC ecosystem technologies and its deploy-
ment mechanism.

A large-scale experimental evaluation on a PRACE Tier-
0 HPC cluster showed that the proposed system is able to
scale on several thousands of computing units (i.e., cores)
and on hundreds of nodes. An in-depth analysis has been
made in order to properly validate the design principles and
the implementation aspects by understanding the behaviour
of the proposed runtime at intra-task execution level. To this
end, an effort has been made to select a set of representa-
tive scientific operations and input datasets. The framework
has shown good (intra-task) scalability in both the strong
and weak sense for most of the benchmarked operations in
multi-terabyte analytics scenarios. Such experimental results
also provide a solid reference/baseline for future evaluation
and comparison with newer versions of the HPDA framework
as well as related work in the same research area.

The design and implementation aspects discussed in this
work represent a contribution towards the long-way conver-
gence path between Big Data and HPC for extreme-scale
scientific data analytics that the scientific community is cur-
rently facing.

Future work will focus on:

• extreme-scale benchmarks (from tens to hundreds of
thousands of single operators) to analyze and compare
the scalability of the proposed HPDA framework with
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respect to state-of-the-art tools on larger scientific use
cases and workflow applications developed in the con-
text of the ESiWACE Centre of Excellence as a set of
large-scale HPDA demonstrators;

• improvements at the level of the runtime system to lever-
age data-driven resource management and job schedul-
ing, as well as proactively applying optimizations to task
execution and at the level of query planning;

• power efficiency improvement, mainly by optimizing
data movement across nodes;

• including learning techniques to further extend the
provided HPDA framework towards machine and
deep learning as well as AI support to tackle
intelligence-driven data-centric scenarios.

Finally, to further address deployability, portability and
exploitability, a key development already ongoing relates
to the use of HPC-enabled containerization technologies to
target new paradigms like HPDA as a Service (HPDAaaS).
That will be key to addressing the overarching framework
vision of joining cloud computing (as enabling virtualization
technology), HPC (as software ecosystem and computing
environment) and HPDA (as data-centric paradigm) to deal
with extreme-scale Big Data applications on peta/exascale
supercomputing infrastructures.
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