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Abstract. We produce an example of a rigid, but not infinitesimally rigid
smooth compact complex surface with ample canonical bundle using results about
arrangements of lines inspired by work of Hirzebruch, Kapovich & Millson, Manetti
and Vakil.
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1. Introduction

Let X be a compact complex space. A (small) deformation of X is a holomorphic
proper flat map π : X → T where T is a (germ of a) complex space with a marked
point o ∈ T such that π−1(o) ' X. Recall that π is called complete if every other
small deformation π′ : X ′ → T ′, o′ ∈ T ′, (π′)−1(o′) ' X, can be obtained from π
via lifting along a map ϕ : T ′ → T , ϕ(o′) = o, and that π is called semiuniversal if
it is complete and the differential dϕo′ is uniquely determined for the lifting map.
As is well known, a semiuniversal π : X → T always exists and is unique up to
isomorphism as was proven by Kuranishi [Ku62] for X a complex manifold and
Grauert [Grau74] in the general case. The base germ (T, o) is called the Kuranishi
space of X and sometimes denoted by Def(X).

It was a long-standing problem of Morrow and Kodaira [MoKo71, p. 45] if there
are compact complex manifolds X with Def(X) a non-reduced point. Such X are
called rigid, but not infinitesimally rigid. The same question was independently
recently posed in [BaCa18, Question 1.5.B)]; it was suggested there to look for
a rigid minimal surface of general type with canonical system not ample. The
first examples of such X were given in [BaPi18]; these X are minimal surfaces of
general type that arise as resolutions of certain nodal product-quotient surfaces. The
nodal product-quotient surfaces are actually infinitesimally rigid, meaning that their
Kuranishi space is a reduced point, but the Kuranishi spaces of the desingularisations
acquire a non-reduced structure due to the presence of the (−2)-curves and their
deformations.

It is therefore natural to ask if there are also minimal surfaces of general type
with K ample such that the Kuranishi space is a non-reduced point. In this article
we answer this in the affirmative. More precisely we prove the following

Theorem 1.1. There exists a compact complex surface S̃♥ with ample canonical
bundle whose Kuranishi space is isomorphic to Spec C[x]/(x2).

The surface S̃♥ has invariants

K2
S̃♥

= 1, 260, 966 χ(S̃♥) = 151, 802 q(S̃♥) = 0
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Since Def(S̃♥) is isomorphic to Spec C[x]/(x2), S̃♥ gives a minimal solution to the

problem of Morrow and Kodaira in the sense that Def(S̃♥) is a non-reduced point

of minimal length 2 and minimal embedding dimension h1(S̃♥, TS̃♥) = 1. All the

examples in [BaPi18] had h1(S̃♥, TS̃♥) = 6 and in fact every example constructed

with the same technique would have had h1(S̃♥, TS̃♥) even by [Pol10, Proposition

2.8], [BaPi16, Proposition 5.6]. We also note that the topological index τ
(
S̃♥
)

=

K2
S̃♥
−8χ(S̃) is positive, whereas the topogical index of all the examples in [BaPi18],

as well as the topological index of any surface constructed with the same technique
(see [Pig15, page158]) is negative.

We use a totally different method as the basis of our construction: we construct
a line arrangement L♥ in P2 whose associated incidence scheme is isomorphic to
Spec C[x]/(x2). We then associate a pair (S,B) to this line arrangement, where S is
the blowup of P2 in the points belonging to at least three lines of the arrangement,
and B is a simple normal crossing divisor on S consisting of the strict transforms of
the lines in L♥ and the exceptional divisors. We prove that the deformations of the
pair (S,B) are the same as the ones of L♥ given by the incidence scheme. We then

construct an abelian cover π : S̃♥ → S branched in B with group G = (Z/7)4 by a
method due to Pardini [Par91]. Finally, we slightly refine methods introduced by
Fantechi-Pardini [FaPa97] and Manetti [Man01] to prove that the Kuranishi space

of S̃♥ is the same as the one of (S,B). Moreover, we show that the canonical bundle

of S̃♥ is ample and compute its invariants.
It is not difficult to show that every rigid product-quotient surface is regular (q =

0), so this happens for all examples in [BaPi18]. Our example is also regular, and
our proof shows that this follows from a condition we imposed on the construction
to ensure that the Kuranishi space of S̃♥ is the same as the one of (S,B), and
precisely condition a) in Theorem 3.19. However, irregular rigid surfaces that are
abelian cover as above do exist, as shown in [Hir83,BaCa19], so this method could
produce irregular rigid not infinitesimally rigid surfaces, provided that one suitably
replaces that condition. We refer to [Cat17] for a rather complete treatement of
known results about the rigidity of compact complex manifolds, including a chapter
devoted to the abelian covers of the plane branched on a line configuration.

The roadmap of the paper is as follows. In Section 2 we recall the general
theory of abelian covers and their deformations from Pardini [Par91], Fantechi-
Pardini [FaPa97], Manetti [Man01]. For our purposes we need a slightly improved
version of [Man01, Corollary 3.23], which we prove in Corollary 2.13 by the same
methods.

In Section 3 we consider specifically abelian covers constructed from line arrange-
ments and their deformation theory. In this situation we translate the conditions of
Corollary 2.13 into a computationally accessible form given in Theorem 3.19. This
is rather involved and one of the main technical ingredients of the proof of the main
result.

In Section 4 we construct the line arrangement L♥ and show that the associ-
ated incidence scheme is a non-reduced point isomorphic to Spec C[x]/(x2). In Sec-

tion 5 we construct S̃♥ and show that its Kuranishi space is again isomorphic to
Spec C[x]/(x2). In Section 6 we prove that S̃♥ has ample canonical divisor and
compute its invariants in Theorem 6.5.

Finally, Appendix A contains the data needed to construct S̃♥ explicitly.
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The overall approach is inspired by [Vak06]. However, Vakil’s paper does not
imply our result since he works with so-called singularity types, which are equivalence
classes of pointed schemes for the equivalence relation generated by elementary
equivalences (X, p) ∼ (Y, q) if there is a smooth morphism (X, p) → (Y, q); thus,
loosely speaking, he only works up to addition of smooth parameters, and then
proves that every singularity type of finte type over Z can be found on some moduli
space of surfaces of general type with K ample.

Moreover, Kapovich-Millson [KaMi98] prove a version of Mnëv’s universality the-
orem used by Vakil, where it is not necessary to add smooth parameters. However,
the notion of incidence scheme used in [KaMi98] (the space of finite based realisa-
tions of an abstract arrangement) is not suited for our geometric construction since
in [KaMi98] neither points nor lines need to be distinct in the realisations they
consider.

Acknowledgments. We would like to thank Michael Kapovich for useful sug-
gestions. The third author would like to thank I. Bauer and F. Catanese for pointing
him to the question of Morrow and Kodaira and for several enlighting conversations
related to it.

2. Abelian covers and their deformations

Here we review results on abelian covers and their deformations, following Pardini
[Par91], Fantechi-Pardini [FaPa97] and Manetti [Man01].

The main goal of this section is Corollary 2.13, a variant of a criterion of Manetti
giving, for a complex manifoldX with an action of a finite abelian groupG, necessary
conditions for the small deformations of X to correspond exactly to the deformations
of the pair (Y,D) where Y = X/G is the quotient manifold and D is the branch
divisor suitably “decorated”.

We start by recalling [Par91, Definition 1.1].

Definition 2.1. Let Y be a variety. An abelian cover of Y with group G is a finite
map π : X → Y together with a faithful action of G on X such that π exhibits Y as
the quotient of X via G.

For every finite abelian group set G∗ = Hom(G,C∗) for its dual group. In the
sequel we will always make the standing assumption that

X is normal and Y is smooth.

Then π is flat and the action of G induces a splitting π∗OX =
⊕

χ∈G∗ L
−1
χ for

suitable line bundles Lχ ∈ Pic(Y ), where G acts on L−1
χ via the character χ. The

invariant summand L1 is isomorphic to OY .
Let R,D denote the ramification locus and the branch locus of π respectively. R

consists of the points of X that have nontrivial stabilizer. [Par91] associates to each
irreducible component of R and D a pair (H,ψ) where H is a cyclic subgroup and
ψ is a generator of H∗ as follows.

Definition 2.2. Let T be an irreducible component of R. Then the inertia group
H of T is defined as H = {h ∈ G|hx = x ∀x ∈ T}.

Lemma 2.3. Let T be an irreducible component of R. Then the inertia group H
of T is cyclic and there is a unique character ψ generating H∗ such that there is a
parameter t for OX,T satisfying ht = ψ(h)t for all h ∈ H.

In other words, ψ is the character by which H acts on the cotangent space mT /m
2
T ,

mT ⊂ OX,T the maximal ideal in the local ring of T in X.
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Proof. [Par91, Lemmata 1.1 and 1.2] �

Since the group G is commutative, if E is a component of D, then all the compo-
nents of π−1(E) have the same inertia group H and character ψ ∈ H∗. This splits
the branch locus as a sum of (reduced effective but still possibly reducible) divisors
D =

∑
H,ψDH,ψ.

Following [FaPa97, Section 2] we set, for all m ∈ N, ζm := e
2πi
m and we observe

that there is a bijection among G and the set of the pairs (H,ψ) where H is a cyclic
subgroup of G and ψ is a generator of H∗, the bijection being given by (H,ψ) 7→ g
where g ∈ H is the generator of H such that ψ(g) = ζ#H . This allows to set
Dg := DH,ψ and write

D =
∑
g∈G

Dg

We note D0 = 0. We find this notation more convenient than the one with the
DH,ψ so will formulate all results in this notation.

Following again [FaPa97, Section 2], for χ ∈ G∗, g ∈ G, let agχ be the unique

integer 0 ≤ agχ ≤ o(g)− 1 such that χ(g) = ζ
agχ
o(g). Here o(g) denotes the order of g.

Define εgχ,χ′ :=

⌊
agχ+ag

χ′
o(g)

⌋
∈ {0, 1}.

The following is Pardini’s structure theorem for abelian covers.

Theorem 2.4. Let G be an abelian group.
Let Y be a smooth variety, X a normal one, and let π : X → Y be an abelian

cover with group G. We have associated to π two functions

D : G→ Div+(Y ), L : G∗ → Pic(Y )(1)

where Div+(Y ) is the subset of the group Div(Y ) formed by the effective divisors.
Setting D(g) = Dg and L (χ) = Lχ we have D0 = L1 = 0 and D =

∑
Dg reduced.

Then the following set of linear equivalences is satisfied:

(2) Lχ + Lχ′ = Lχχ′ +
∑
g

εgχ,χ′Dg.

Conversely, for every smooth Y , to any two functions D : G→ Div+(Y ), L : G∗ →
Pic(Y ) satisfying (2) with D0 = L1 = 0, D :=

∑
Dg reduced, there is an abelian

cover π : X → Y with X normal with associated functions D and L .
Moreover, if Y is complete, then π : X → Y is unique up to isomorphism of Galois

covers.

Proof. [Par91, Theorem 2.1 and Corollary 3.1] �

The smoothness of X is easy to translate in this setting.

Proposition 2.5. In the situation of Theorem 2.4 X is smooth if and only if

a) the divisor D =
∑
Dg is a smooth normal crossing divisor;

b) if Dg1 ∩ Dg2 ∩ · · · ∩ Dgr 6= ∅ then the map 〈g1〉 ⊕ 〈g2〉 ⊕ · · · ⊕ 〈gr〉 → G is
injective.

Proof. [Par91, Prop. 3.1] �

Now we want to study infinitesimal deformations of π : X → Y obtained by
“moving” the branch divisors, following [Man01]. For the rest of this Section, we
assume for simplicity from now on
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X and Y are smooth and π is totally ramified

in the following sense:

Definition 2.6. A cover is said to be totally ramified if the inertia groups of all the
components of R generate G.

We introduce the following notation.

Definition 2.7. We define Sχ :=
{
g ∈ G|χ(g) 6= ζ−1

o(g)

}
.

Then G acts on π∗TX , where TX denotes the sheaves of the holomorphic vector
fields on X, splitting it as follows.

Lemma 2.8.

(π∗TX)inv ∼= TY (− logD) (π∗TX)χ ∼= TY

− log
∑
g∈Sχ

Dg

⊗ L−1
χ

Proof. [Par91, Proposition 4.1]. �

It follows among other things

Lemma 2.9. If for all χ ∈ G∗, H0(Y, TY ⊗ L−1
χ ) = 0, then H0(X,TX) = 0.

Assume H0(X,TX) = H0(Y, TY ) = 0. Let Art be the category of local Artinian
C−algebras and denote by DefX , DefY : Art → Sets the functors of deformations
of X, Y respectively. Under the assumption H0(X,TX) = H0(Y, TY ) = 0 these are
prorepresentable, and prorepresented by the Kuranishi families DefX , DefY of X,
Y respectively. Moreover for i = 1, 2

T iDefX = H i(X,TX) T iDefY = H i(Y, TY )(3)

where as usual we denote by T 1 the tangent space and by T 2 the obstruction space
arising from the cotangent complex. Please note that G acts on T i DefX and we can
write the corresponding eigenspaces as cohomology groups on Y by Lemma 2.8.

Let Def(Y,D) : Art→ Sets be the functor of deformations of the closed inclusions
Dg → Y ; more precisely for A in Art, Def(Y,D)(A) is the set of isomorphism classes
of:

a) a deformation of Y , YA → SpecA
b) for every g ∈ G a closed embedding DA,g ⊂ YA extending Dg

Note that Def(Y,D) is prorepresented by the fibre product Def(Y,D) of the corre-
sponding relative Hilbert schemes of the Kuranishi family of Y .

Lemma 2.10. For i = 1, 2, D =
∑
Dg

T iDef(Y,D)
∼= H i(Y, TY (− logD)).

Proof. This is [FaPa97, (3.5.1)], where Def(Y,D) is named DgalX . �

Comparing it with Lemma 2.8 and 3 we see that T iDef(Y,D) is isomorphic to the

invariant part of T i DefX . Indeed this corresponds to the natural relation among
the functors Def(Y,D) and DefX associating to every infinitesimal deformation of
(Y,D) the infinitesimal deformation ofX obtained by “moving” Y and the branching
divisors in it. This has been formalized as follows
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Lemma 2.11. Assume H0(X,TX) = H0(Y, TY ) = 0.
Then there is a natural transformation of functors η : Def(Y,D) → DefX acting

on the T js by mapping isomorphically T iDef(Y,D) in the invariant part of T iDefX .

Proof. This is [Man01, Theorem 3.22].
More precisely, M. Manetti states the result assuming G of the form (Z/2Z)r.

However his proof works for every abelian group. �

It follows the following

Proposition 2.12. Let π : X → Y be a totally ramified abelian cover, with X and
Y smooth and H0(X,TX) = H0(Y, TY ) = 0. If for all χ ∈ G∗ \ 1

H1

Y, TY
− log

∑
g∈Sχ

Dg

⊗ L−1
χ

 = 0

then Def(Y,D)
∼= DefX .

Proof. This is essentially explained in [Man01, page 58], we sketch the argument
here for the convenience of the reader.

The natural maps T iDef(Y,D) → T iDefX are injective by Lemma 2.11 and the

assumed cohomological vanishing ensures by Lemma 2.8 the surjectivity on T 1s. By
the standard smoothness criterion η is smooth. Since H0(X,TX) = H0(Y, TY ) = 0
then DefX is prorepresentable. Since η induces an isomorphism on T 1s the map
Def(Y,D) → DefX is an isomorphism. �

We deduce the following useful criterion, a slight modification of [Man01, Corol-
lary 3.23].

Corollary 2.13. Let π : X → Y be a totally ramified abelian cover, with X and Y
smooth. Assume

a) for all χ ∈ G∗, H0(Y, TY ⊗ L−1
χ ) = 0;

b) for all χ ∈ G∗, χ 6= 1, for all g ∈ Sχ, H0(Dg,ODg(Dg)⊗ L−1
χ ) = 0;

c) for all χ ∈ G∗, χ 6= 1, the map

H1

TY ⊗ L−1
χ →

⊕
g∈Sχ

ODg(Dg)

⊗ L−1
χ


induced by the natural maps among the tangent bundle of Y and the normal
bundles of the curves Dg, is injective.

Then Def(Y,D)
∼= DefX .

Proof. We have assumed the vanishing of H0(Y, TY ) (condition a) for χ = 1); the
vanishing of H0(X,TX) follows by Lemma 2.9.

We only need then to prove the cohomological vanishing assumed in the statement
of Proposition 2.12. This follows by considering the cohomology exact sequence
associated to the short exact sequence of OY -modules

0→ TY

− log
∑
g∈Sχ

Dg

→ TY →
⊕
g∈Sχ

ODg(Dg)→ 0

twisted by L−1
χ . �
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The main difference with [Man01, Corollary 3.23] is that our condition c) is weaker
than Manetti’s condition H1(T, TY ⊗L−1

χ ) = 0. Manetti’s condition is easier to check
but it fails in the examples in the next sections.

A second difference is that Manetti’s criterion is stated for G of the form (Z/2Z)r:
[Vak06] had already noticed that his results could be easily extended to any abelian
group. Finally, condition b) is replaced in Manetti’s criterion by some conditions on
Y that are used in his proof to show exactly the vanishing b). Since in our examples
the divisors Dg are smooth curves with all components rational, it is easier to check
directly b).

3. Properties of abelian covers from line arrangements

Now we specialize the results of the previous Section to the case of interest in the
sequel.

From now on we are going to consider only elementary p−groups: G := (Z/p)r.
For this class of abelian groups we find convenient to switch to the additive notation.
To mark this difference with the previous section, we are going to denote the dual
of G by G∨.

Definition 3.1. Denote by

〈·, ·〉 : G∨ ×G→ Z/p,

(χ, g) 7→ 〈χ, g〉 = χ(g)

the natural pairing between characters and group elements. We write

〈〈·, ·〉〉 : G∨ ×G→ {0, 1, . . . , p− 1} ⊂ Z,

(χ, g) 7→ 〈〈χ, g〉〉

for the natural lift of the preceding pairing to Z taking values in the set {0, 1, . . . , p−
1}.

The abelian covers will be constructed from certain line arrangements in P2.

Definition 3.2. a) An arrangement of lines L in P2 is simply a finite set of
lines in P2.

b) Given a line arrangement L, we call the points in P2 that lie on three or more
of the lines in L the singular points of the arrangement L.

Definition 3.3. Suppose we are given m points p1, . . . , pm and n lines L1, . . . , Ln
in P2 which we think of as being variable. Moreover, assume that we are also given
further m′ points q1, . . . , qm′ and further n′ lines M1, . . . ,Mn′ which we think of as
being fixed beforehand.

We then define a generalised incidence scheme I with associated fixed data q1, . . . , qm′
and M1, . . . ,Mn′ as a closed subscheme of

(P2)m × ((P2)∗)n

with coordinates (p1, . . . , pm;L1, . . . , Ln) defined by equations expressing the fact
that a point r ∈ {p1, . . . , pm, q1, . . . , qm′} lies on a lineN ∈ {L1, . . . , Ln,M1, . . . ,Mn′}.
Hence these equations are of bidegree (1, 1), (1, 0), (0, 1), or (0, 0) in the coordinates
on (P2)m × ((P2)∗)n.

Definition 3.4. An incidence scheme is a generalised incidence scheme associated
to fixed data the points q1 = (1 : 0 : 0), q2 = (0 : 1 : 0), q3 = (0 : 0 : 1), q4 = (1 : 1 :
1).
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Definition 3.5. Given a line arrangement L in P2 with q1 = (1 : 0 : 0), q2 = (0 :
1 : 0), q3 = (0 : 0 : 1), q4 = (1 : 1 : 1) among the intersections of lines, we define the
associated incidence scheme I(L) by associating to each line a variable line and to
each singular point different from q1, . . . , q4 of the line arrangement a variable point,
subject to the incidences given by the line arrangement.

Definition 3.6. Let L = {L1, . . . , Ln} be a line arrangement in P2, p1, . . . , pm the
singular points of L and H the class of a line in Pic(P2). Let G = (Z/p)r be an
elementary abelian p-group. We denote by G∨ its dual.

a) We denote by σ : S → P2 the blow up of P2 in p1, . . . , pm.
b) We let B be the union of the strict transforms L̄i of the Li, i = 1, . . . , n and

the exceptional divisors Eν over pν , ν = 1, . . . ,m. Let D be the set

D = {E1, . . . , Em} ∪ {L̄1, . . . , L̄n}.

Our aim is to construct a smooth abelian G-cover π : S̃ → S with branch locus
B. We now introduce a compact way to produce building data in our special case.

Definition 3.7. Let S and D be as in Definition 3.6 and let

λ : D→ G ∼= (Z/p)r

be a map (the letter λ is chosen to suggest “label”). We say that λ satisfies the
divisibility condition if for every χ ∈ G∨∑

D∈D

〈〈
χ, λ(D)

〉〉
D

is divisible by p in Pic(S). In this case we define for every χ ∈ G∨ the line bundle:

Lχ =
1

p

∑
D∈D

〈〈
χ, λ(D)

〉〉
OS(D)

on S. This uniquely determines Lχ since Pic(S) has no torsion.

Lemma 3.8. For every set of values g1, . . . , gn−1 ∈ G\{0} there exist a unique map

λ : D→ G ∼= (Z/p)r

with λ(L̄i) = gi for i ∈ {1, . . . , n− 1}, satisfying the divisibility condition.

Proof. Fix χ ∈ G∨ and let λ be a map satisfying the divisibility condition.
Recall that Pic(S) is a free Z−module of rank m+ 1, generated by the classes of

the exceptional divisors Eν and by σ∗H. To determine the divisibility of an element
of Pic(S) we calculate its coefficients with respect to this basis and we impose their
divisibility.

Since σ∗H occurs in the class of L̄i with coefficient 1 and in the class of Eν with
coefficient 0, the coefficient of σ∗H in Lχ is

1

p

n∑
i=1

〈〈
χ, λ(L̄i)

〉〉
.

In particular
n∑
i=1

〈〈
χ, λ(L̄i)

〉〉
is divisible by p. Therefore in Z/p

0 =
n∑
i=1

〈χ, λ(L̄i)〉 = 〈χ,
n∑
i=1

λ(L̄i)〉.
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Since this holds for all χ

n∑
i=1

λ(L̄i) = 0 ⇐⇒ λ(L̄n) = −
n−1∑
i=1

λ(L̄i).

Similarly, the coefficient of Eν in L̄i is −1 if pν ∈ Li and 0 otherwise. Therefore the
coefficient of Eν in Lχ is

1

p

− ∑
i|pν∈Li

〈〈
χ, λ(L̄i)

〉〉
+
〈〈
χ, λ(Eν)

〉〉 .

As above we obtain

λ(Eν) =
∑

i|pν∈Li

λ(L̄i).

Hence, all values of λ are determined by the gi, and conversely prescribing values
λ(L̄i) = gi for i ∈ {1, . . . , n−1} arbitrarily, we obtain an λ satisfying the divisibility
condition using the preceding assignments. �

Lemma 3.9. Let χ ∈ G∨. Then the coefficient of σ∗H in Lχ is⌈
1

p

n−1∑
i=1

〈〈
χ, λ(L̄i)

〉〉⌉
similarly the coefficient of Eν in Lχ is

−

1

p

∑
i|pν∈Li

〈〈
χ, λ(L̄i)

〉〉 .
In particular, the coefficient of each Eν in every Lχ is nonpositive.

Proof. By definition of Lχ the coefficient of σ∗H in Lχ is

1

p

n∑
i=1

〈〈
χ, λ(L̄i)

〉〉
.

In particular

1

p

n∑
i=1

〈〈
χ, λ(L̄i)

〉〉
=

1

p

n−1∑
i=1

〈〈
χ, λ(L̄i)

〉〉
+

〈〈
χ, λ(L̄n)

〉〉
p

and

0 ≤
〈〈
χ, λ(L̄n)

〉〉
p

< 1.

The formula of the lemma follows. Similarly, the coefficient of Eν is

−1

p

∑
i|pν∈Li

〈〈
χ, λ(L̄i)

〉〉
+

1

p

〈〈
χ, λ(Eν)

〉〉
The second formula of the lemma follows. �

Definition 3.10. In the situation of Definition 3.6 let

λ : D→ G\{0} ∼= (Z/p)r\{0}
be a map (note that we now exclude 0 ∈ G as a permissible value for λ). We say,
that λ satisfies the injectivity condition if the values of λ define distinct projective
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points in Pr−1(Fp). Also we say that λ satisfies the spanning condition if the image
of λ spans G.

If a λ (with values in G\{0}) satisfies the injectivity and divisibility conditions,
one obtains building data for an abelian G-cover in the sense of Section 2 as follows:
we get maps

D : G→ Div+(S), L : G∨ → Pic(S)

by putting D(g) = Dg = D if λ(D) = g and Dg = 0 otherwise. Moreover, L (χ) =
Lχ is then as in Definition 3.7.

Theorem 3.11. Let

λ : D→ G\{0} ∼= (Z/p)r\{0}
be a map satisfying the divisibility, injectivity and spanning conditions. Then there
exists a finite flat totally ramified Galois cover π : S̃λ → S with group G, branch
locus

∑
D∈DD, and with the covering surface S̃λ smooth, with the property that

π∗OS̃λ
=
⊕
χ∈G∨

L−1
χ .

Proof. This is a direct consequence of Theorem 2.4 and Proposition 2.5; compare also
[Par91, Prop. 2.1], [Par91, Prop. 3.1] and [Vak06, Prop. 4.1] for more details. �

From now on we assume for the rest of the section that we are given a cover
π : S̃λ → S constructed by the method in Theorem 3.11, and to simplify notation
we write S̃ = S̃λ.

Proposition 3.12. Keeping the previous assumptions of this section, the Kuranishi
space Def(S,D) of deformations of S together with the closed embeddings D ↪→ S,
D ∈ D, is locally analytically isomorphic to the germ of the incidence scheme I(L)
around the distinguished point ωL determined by L.

Proof. We follow rather closely the proof in [Vak06, Prop. 3.2]. There is a natural
morphism of germs

ψ : (I, ωL)→ Def(S,D)

and the task is to construct a local inverse to this.
Given a deformation of S over a germ ∆ together with compatible deformations

of the closed embeddings D ↪→ S, the (−1)-curves in S remain (−1)-curves under
the deformation and can be blown down in the family as shown in [Vak06, Prop.
3.2]. We can identify the blown down family with ∆×P2 by choosing the images of
the deformations of E1, . . . , E4 as a projective basis. The images of the deformations
of E5, . . . , Em give deformations of p5, . . . , pm. The images of the deformations of
the L̄i give deformations of the given lines Li in P2. Since the intersection numbers
Eν .L̄i remain constant, all incidences I(L) are satisfied for the deformations of pν ,
Li. No new incidences occur since we consider a small deformation.

Both the incidence scheme and the Kuranishi space above are universal objects
representing two deformation functors. The above reasoning shows that these two
functors are isomorphic, hence the representing germs of analytic spaces are isomor-
phic, together with their potentially nonreduced structure. �

Our ultimate goal now in the rest of the Section is to produce a computationally
checkable criterion that implies the conditions of Corollary 2.13. For this, we first
need to compute some cohomology groups.
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Lemma 3.13. Let σ : S → P2 be the blow up of P2 in points p1, . . . , pm with corre-
sponding exceptional divisors E1, . . . , Em. Let

L = O

(
−

m∑
ν=1

hνEν

)
with hν ≥ −1 for all ν. Then

Rσ∗L =
⋂

ν|hν≥1

I hν
pν

where the equality is in the derived category Db(P2), Ipν is the ideal sheaf of the
point pν , and the intersection is taken inside OP2.

Proof. Since all fibres of σ have dimension ≤ 1, Rkσ∗L = 0 for k ≥ 2 anyway.
It suffices to check the remaining assertions for the case where there is just one
exceptional divisor E mapping to one point p ∈ P2 by working stalk-wise and gluing.

We have the exact sequence

0→ OS → OS(E)→ OE(−1)→ 0.

Since h0(OE(−1)) = h1(OE(−1)) = 0, we have Rσ∗OE(−1) = 0. Therefore

Rσ∗OS(E) = Rσ∗OS = OP2 .

The fact that σ∗O(−hE) = I h
p for h ≥ 0 is a local calculation. Let us now prove

R1σ∗O(−hE) = 0 for h ≥ 0.
We prove this by induction on h, the case h = 0 being clear. The exact sequence

0→ OS(−(h+ 1)E)→ OS(−hE)→ OE(h)→ 0

gives

0→ I h+1
p → I h

p
α−→ Oh+1

p → R1σ∗OS(−(h+ 1)E)→ 0

The map α is surjective by a dimension count. Hence R1σ∗OS(−(h+ 1)E) = 0. �

Definition 3.14. In the situation of Theorem 3.11, write

Lχ ⊗KS = OS

(
dχσ∗H −

m∑
ν=1

hχνEν

)
.

Let

Iχ :=
⋂

ν|hχν≥1

I hχν
pν .

Corollary 3.15. For all i ≥ 0 we have

H i(S,Lχ ⊗KS ⊗ σ∗(aH)) = H i(P2,Iχ(dχ + a)).

Proof. By Lemma 3.9 each hχν ≥ −1 since Eν occurs with nonpositive coefficient
in Lχ and coefficient 1 in KS . The result then follows from Lemma 3.13 and the
derived projection formula

H i(S, σ∗L ⊗F ) ' H i(P2,L ⊗Rσ∗F )

for L locally free and F any coherent sheaf. �

For the following compare [Mum66, Lecture 14].
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Definition 3.16. A coherent sheaf F on Pn is called r-regular if

H i(Pn,F (r − i)) = 0

whenever i > 0. The Castelnuovo-Mumford regularity of F , denoted by reg(F ), is
the smallest integer r such that F is r-regular.

Theorem 3.17. If a coherent sheaf is r-regular then F (r) is generated by its global
sections and the natural map

H0(F (k − 1))⊗H0(O(1))→ H0(F (k))

is surjective for k > r.

Proof. This is [Mum66, Prop. on page 99, parts a) and a’)]. �

We now define, for a given χ 6= 0 two maps αχ and βχ that will later be used in
the proof of Theorem 3.19.

We first consider the following diagram for each D ∈ D that is not an exceptional
divisor:

0

��

0

��

0

��
0 // TS(−D)⊗ L−1χ //

��

σ∗TP2(−D)⊗ L−1χ //

��

O(−D)⊗
⊕

ν OEν (1)⊗ L−1χ //

ψD

��

0

0 // TS ⊗ L−1χ //

ζD

��

σ∗TP2 ⊗ L−1χ //

��

⊕
ν OEν (1)⊗ L−1χ //

ηD

��

0

0 // (TS ⊗ L−1χ ) |D
ϕD //

��

(σ∗TP2 ⊗ L−1χ ) |D //

��

⊕
ν OEν∩D(1)⊗ L−1χ //

��

0

0 0 0

(4)

The upper and middle rows are

0→ TS → σ∗TP2 →
⊕
ν

OEν (1)→ 0(5)

tensored with appropriate line bundles, and the morphism between those rows is
induced by the ideal sheaf sequence

0→ OS(−D)→ OS → OD → 0.

The left and middle columns are exact because the result from tensoring this ideal
sheaf sequence by vector bundles. Tensoring the middle row with OD gives the third
row; note that exactness on the left follows from the vanishing of Tor1(OEν ,OD)
because D and Eν intersect transversely. The snake lemma shows that the kernel
and cokernel of ϕD are the same as the kernel and cokernel of ψD, hence completes
the diagram.
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We get the commutative diagram⊕
ν H

0(OEν (1)⊗ L−1
χ )

δχ //

βD
��

H1(TS ⊗ L−1
χ )

γD

��⊕
ν H

0(OEν∩D(1)⊗ L−1
χ ) //

αD **

H1((TS ⊗ L−1
χ ) |D)

µD

��
H1(ND/S ⊗ L−1

χ )

where βD is induced by ηD, and γD is induced by ζD. The map µD is induced by
the normal bundle sequence, and αD is defined by the diagram.

Definition 3.18. Let χ ∈ G∨, χ 6= 0, be given. Let A (χ) be the set of those D ∈ D
such that 〈χ, λ(D)〉 6= p − 1 and D is the strict transform of a line and, moreover,
σ∗O(H)⊗L−1

χ is negative on D. Then we define the maps αχ, βχ as in the following
diagram: ⊕

ν H
0(OEν (1)⊗ L−1

χ )
δχ //

βχ=(βD)D∈A (χ)

��

H1(TS ⊗ L−1
χ )

γχ=(γD)D∈A (χ)

��⊕
D∈A (χ)

⊕
ν H

0(OEν∩D(1)⊗ L−1
χ ) //

αχ=⊕D∈A (χ)αD ++

⊕
D∈A (χ)H

1((TS ⊗ L−1
χ ) |D)

��⊕
D∈A (χ)H

1(ND/S ⊗ L−1
χ )

Theorem 3.19. Keeping the hypotheses of Theorem 3.11, assume the following:

(a) For all χ 6= 0
reg(Iχ) < dχ.

(b) For all D ∈ D and χ ∈ G∨, χ 6= 0, we have D · (D − Lχ) < 0.
(c) For all χ 6= 0, and for all Eν the number of D ∈ A (χ) such that D intersects

Eν is at least 2− Lχ.Eν .

Then the Kuranishi space Def(S,D) is isomorphic to the Kuranishi space Def S̃.

Proof. It follows from Corollary 2.13 that we have to check the following conditions:

(i) For all χ ∈ G∨: H0(S, TS ⊗ L−1
χ ) = 0.

(ii) For all χ ∈ G∨, with χ 6= 0 and all D ∈ D with 〈χ, λ(D)〉 6= p− 1:

H0(D,OD(D)⊗ L−1
χ )) = 0.

(iii) For all χ ∈ G∨, with χ 6= 0, the natural map

H1(S, TS ⊗ L−1
χ )→

⊕
D∈D : 〈χ,λ(D)〉6=p−1

H1(D,OD(D)⊗ L−1
χ )

induced by the natural maps TS ⊗ L−1
χ → ND|S ⊗ L−1

χ given by restricting
germs of tangent vector fields to the normal bundle of D, is injective.

We now proceed to deduce (i), (ii), (iii) from the assumptions of the Theorem.

Step 1: Proving the vanishing in (i). We have H0(S, TS) = 0 since we have
blown up p1, . . . , p4. If χ 6= 0, we use the exact sequence (5) and the Euler sequence

0→ OP2 → 3OP2(1)→ TP2 → 0.(6)
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This gives

0→ L−1
χ → 3L−1

χ (σ∗H)→ σ∗TP2 ⊗ L−1
χ → 0.(7)

We have

h0(L−1
χ (σ∗H)) = h2(Iχ(dχ − 1))

and

h1(L−1
χ ) = h1(Iχ(dχ))

by Corollary 3.15. Now H2(Iχ(dχ − 1)) = H1(Iχ(dχ)) = 0 by assumption (a).
Hence H0(σ∗TP2 ⊗ L−1

χ ) = 0, and thus H0(TS ⊗ L−1
χ ) = 0 for χ 6= 0.

Step 2: Proving the vanishing in (ii). Let χ 6= 0 be given. Then we have
H0(D,OD(D)⊗L−1

χ )) = 0 because each D ' P1 and D · (D−Lχ) < 0 for all D ∈ D
and χ 6= 0 by (b).

Step 3: Proving the injectivity of the map in (iii). This is slightly more
involved and we divide the proof into three sub-steps.

Step 3.1 We first show δχ :
⊕

ν H
0(OEν (1) ⊗ L−1

χ ) → H1(TS ⊗ L−1
χ ) is an iso-

morphism.
By the sequence (5), it is sufficient to show hi(σ∗TP2 ⊗ L−1

χ ) = 0. for i = 0, 1.

We have already proved the vanishing of h0(σ∗TP2 ⊗ L−1
χ ) in Step 1 using (7).

The same argument shows h1(L−1
χ (σ∗H)) = 0 and therefore we only need to prove

that the map

H2(L−1
χ )→ H2(3L−1

χ (σ∗H))

is injective.
By Serre duality and Corollary 3.15, this is equivalent to the surjectivity of the

map

3H0(Iχ(dχ − 1))→ H0(Iχ(dχ))

guaranteed by assumption (a) and Theorem 3.17.
Hence to prove that the map in (iii) is injective it suffices to prove that both αχ

and βχ are injective.

Step 3.2 We show that αχ is injective: It suffices to show that for a given
D ∈ A (χ), the map

αD :
⊕
ν

H0(OEν∩D)→ H1(ND/S ⊗ L−1
χ )

is injective. Let σ′ = σ |σ−1(L).
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Then we consider the diagram

0

��

0

��
TD

' //

��

(σ′)∗TL |D

��
0 // TS |D //

��

σ∗TP2 |D //

��

⊕
ν OEν∩D //

'
��

0

0 // ND/S
//

��

(σ′)∗NL/P2 |D //

��

⊕
ν OEν∩D // 0

0 0

The middle row is obtained by tensoring (5) by OD. The upper left commutative
square is obtained because σ′ restricted to D is an isomorphism onto L. Then the
first column is the normal bundle sequence of D; the second column is the normal
bundle sequence of L, pulled back via σ′ and restricted to D. The snake lemma
then completes the diagram.

Tensoring the bottom row by L−1
χ , we find that

⊕
ν H

0(OEν∩D) embeds into the

space H1((ND/S ⊗ L−1
χ ) |D) provided

H0((σ′)∗NL/P2 |D ⊗L−1
χ ) = H0(L−1

χ (σ∗H) |D) = 0.

The latter vanishing follows since D ∈ A (χ).

Step 3.3 We show that

βχ :
⊕
ν

H0(OEν (1)⊗ L−1
χ )→

⊕
D∈A (χ)

⊕
ν

H0(OEν∩D(1)⊗ L−1
χ )

is injective. Indeed, we show that for a given, but arbitrary ν

H0(OEν (1)⊗ L−1
χ )→

⊕
D∈A (χ)

H0(OEν∩D(1)⊗ L−1
χ )(8)

is injective.
Hence the left hand side in (8) will only be nonzero if either Eν occurs with

coefficient 0 in Lχ, in which case the left hand side is a two-dimensional vector space;
or if Eν occurs with coefficient −1, in which case the dimension of that vector space
is 1. By assumption (c), we have at least two D’s, D ∈ A (χ), intersecting Eν in
the first case, and at least one such D in the second case. Hence the map in (8) is
injective in both cases. �

4. An example of a rigid, but not infinitesimally rigid incidence
scheme of points and lines in P2

In this Section we show how to construct an arrangement of lines L having q1 =
(1 : 0 : 0), q2 = (0 : 1 : 0), q3 = (0 : 0 : 1), q4 = (1 : 1 : 1) as singular points, and such
that the associated incidence scheme I(L) in the sense of Definition 3.5 is a double
point.

We will first consider certain generalised incidence schemes that we call triangle
schemes. Their construction is very simple, with fixed data given by three points
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and three lines, and variable data also given by three points and three lines. We
will show that under certain conditions the triangle scheme is a double point and
we will choose a suitable triangle scheme T♥ with this property.

Then we will produce from T♥ a line arrangement L♥ with special properties,
listed in Remark 4.7. Using these properties we prove that its associated incidence
scheme I(L♥) is isomorphic to T♥, and therefore a double point as well.

At the end of the section we will discuss these special properties, and how difficult
is to find a triangle scheme such that the induced line arrangement has them.

In fact, this line arrangement does not seem to be at all unique: we believe that
via a similar construction method, many other such arrangements can be found; but
we confine ourselves to giving one particular example for the sake of definiteness and
because already that needs quite a bit of work to construct.

Definition 4.1. A triangle scheme T(P,Q,R) ⊂ (P2)3 × ((P2)∗)3 is a generalised
incidence scheme defined as follows.

We take as associated fixed data the lines LX , LY , LZ through the coordinate
points and three points P,Q,R ∈ P2.

Then, denoting the variable points by (X,Y, Z) ∈ (P2)3 and the variable lines by
(LP , LQ, LR) ∈ ((P2)∗)3 we take incidence conditions

P ∈ LP Q ∈ LQ R ∈ LR X ∈ LX Y ∈ LY Z ∈ LZ
X ∈ LP Y ∈ LR Z ∈ LQ X ∈ LQ Y ∈ LP Z ∈ LR
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P

 

 

Figure 1. Description of T(P,Q,R): the fixed data are red, the
variable data are green

Remark 4.2. For general choices of P,Q,R, the triangle scheme T(P,Q,R) consists
of two reduced points. This can be easily computed with Macaulay 2, as we did.

However, we would like to give here some geometrical interpretation of it. We
note that Z is the image of Y in LZ by the projection of center R. Similarly X is
the image of Z in LX by the projection of center Q, and Y is the image of X in
LY by the projection of center R. So Y is a fixed point for the projectivity of LY
obtained by composing these three projections, a projectivity that depends on the
choice of the points P,Q and R.

For general choice of P,Q,R we obtain a general projectivity of LY ∼= P1, as-
sociated to a general invertible 2 × 2 matrix, with two distinct eigenvalues and
then exactly two fixed points. In this case the projection (P2)3 × ((P2)∗)3 → P2
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corresponding to Y (forgetting X,Z,LP , LQ, LR) embeds T(P,Q,R) in LY , giving
exactly the reduced scheme of the fixed points of this projectivity.

However for special choice of P,Q and R the matrix may have only one eigenvalue.
For example, if we choose

P = (1 : 1 : 2)

Q = (1 : 2 : 1)

R = (2 : 1 : 1)

then we get the projectivity (a : 0 : b)→ (3b− 2a : 0 : 4b− 3a). The matrix(
−2 −3
3 4

)
has only one eigenvalue, 1, with eigenspace of dimension 1 giving a unique fixed
point Y = (1 : 0 : −1). In this case in fact T(P,Q,R) is a double point.

Remark 4.3. One can also see by intersection arguments that T(P,Q,R) is of length
2 when zero-dimensional: let P1

X ,P
1
Y ,P

1
Z be the lines on which the points X,Y, Z

lie, and let P1
P ,P

1
Q,P

1
R be the pencils of lines through P,Q,R. Then the parameter

space for (X,Y, Z, LP , LQ, LR) is

P := P1
X × P1

Y × P1
Z × P1

P × P1
Q × P1

R

Each point of P1
X determines a divisor in P, fibre of the point by the natural pro-

jection, whose class in Pic(P) do not depend on the choice of the point: we denote
it by x. Similarly we obtain classes y, z, p, q, r by considering projections on the
P1 labeled by the corresponding uppercase letter.

The locus of 6-tuples (X,Y, Z, LP , LQ, LR) with X ∈ LP is a divisor on P of class
x+ p, and similarly for the other incidences. Thus the triangle scheme has class

(x+ p)(y + p)(x+ q)(z + q)(y + r)(z + r) = 2xyzpqr.

Remark 4.4. Consider the discriminant

∆ ⊂ P2
P × P2

Q × P2
R,

the Zariski closure of the set of triples P,Q,R such that T(P,Q,R) is a double point.
One can compute that ∆ is a divisor of multidegree (2, 2, 2). If we write

P =(P0 : P1 : P2) Q =(Q0 : Q1 : Q2) R =(R0 : R1 : R2)

then

∆ = (P0Q1R2 + P1Q2R0 + P2Q0R1 − P2Q1R0)2 − 4P0P1Q0Q2R1R2

The following is the triple we chose.

Proposition 4.5. The triangle scheme T♥ := T(P,Q,R) with

P = (1 : 4 : 2)

Q = (3 : 14 : 3)

R = (14 : 25 : 1)

is a non-reduced point isomorphic to Spec C[t]/(t2).

Proof. This is checked in [BBP-M2]. �
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This is the triangle scheme we are going to use. So, from now on, we will denote
by P,Q,R ∈ P2 the points whose coordinates are given in Proposition 4.5.

We consider the two lines through P defined by the polynomial

(6x0 − 4x1 + 5x2)(6x0 − 2x1 + x2)

the two lines through Q defined by the polynomial

(5x0 − 3x1 + 9x2)(x0 − 3x1 + 13x2)

and the two lines through R defined by the polynomial

(2x0 − x1 − 3x2)(9x0 − 5x1 − x2)

These six lines form a line arrangement L′ having P,Q and R as double points.
Consider the following iterative construction of point sets and line arrangements:

a) Let P0 = {q1, q2, q3, q4}
b) Let Li be the set of lines that contain at least 2 points of Pi−1.
c) Let Pi be the set of points that lie on at least 2 lines of Li.

L1 contains 6 lines, L3 contains 25 lines and P3 contains 97 points.
From this we construct our line arrangement, by adding L′ and the triangle ar-

rangement above:

Definition 4.6. Set

L+ :=L3 ∪ L′ L♥ = L+ ∪ {LP , LQ, LR}
where

{LP , LQ, LR} := L(T♥)

is the line arrangement corresponding to the unique geometric point of T♥. Fur-
thermore let P+ be the set of intersection points of the line arrangement L+.

Remark 4.7. The explicit coordinates of all 34 lines in L♥ are listed in Table 1 of
Appendix A.

One can check that

a) the 6 lines forming L′ each pass through at least 2 points of P3.
b) two of them intersects in P , other two of them intersects in in Q and the last

two in R.
c) LP , LQ and LR contain none of the points in P+ except for P , Q and R

respectively.

see [BBP-M2] for a Macaulay2 script doing this computation.

Our goal is to show that I(L♥) ∼= T♥, For this we need the following

Lemma 4.8. Suppose that I is a generalised incidence scheme with associated fixed
data q1, . . . , qm′ and M1, . . . ,Mn′. Assume that there is a variable line Lk such that
the incidence

qi ∈ Lk, qj ∈ Lk(9)

for qi 6= qj is part of the defining set of equations.
Then I is isomorphic to the generalised incidence scheme I′ with associated fixed

data q1, . . . , qm′ and M1, . . . ,Mn′ ,Mn′+1 where Mn′+1 is the unique line passing
through the fixed points qi, qj, defined by the same set of equations as I, omitting
the incidences in (9) and replacing Lk by Mn′+1 whenever it occurs. Hence I′ is a
closed subscheme of (P2)m× ((P2)∗)n−1. We say that I′ becomes isomorphic to I by
eliminating Lk.
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A similar result holds for the elimination of a variable point that lies on two fixed
lines.

Proof. Let qi = (qi,0 : qi,1 : qi,2) and qj = (qj,0 : qj,1 : qj,2) with qi,µ, qj,µ ∈ C.
Moreover, let Lk = (Lk,0 : Lk,1 : Lk,2) where the Lk,µ is are variables. The incidences
(9) translate into the linear equations∑

µ

qi,µLk,µ = 0,
∑
µ

qj,µLk,µ = 0.

Since qi 6= qj these define a reduced point in (P2)∗ whose coordinates are Mn′+1.
Hence projecting (P2)m × ((P2)∗)n onto (P2)m × ((P2)∗)n−1 by omitting the k-th
copy of (P2)∗ gives an isomorphism between I and I′. �

Proposition 4.9. The incidence scheme I(L♥) is a double point.

Proof. We now show that I(L♥) is isomorphic to T♥.
First we recall that by Definition 3.5 the incidence scheme I(L♥) is the generalized

incidence scheme associated to, as fixed data, the set of points P0 = {q1, q2, q3, q4}
and, as variable data, the set of all the lines of the arrangement and the set of all
its singular points. In particular the variable data contain the lines {LP , LQ, LR}
and the points {X,Y, Z}.

First we observe that I(L♥) is isomorphic to the generalised incidence scheme I′

obtained from I(L♥) by adding additional variable points for each point of P+.
By Lemma 4.8 we can “eliminate” all lines in L1 since each contains two points

belonging to the fixed data. So we move the lines in L1 from the variable data to the
fixed data obtaining an isomorphic incidence scheme. Then, since the lines in L1 are
now fixed, we can apply Lemma 4.8 to eliminate the points of P1 (including those
of P0 that were already in the fixed data). By the same argument we eliminate
successively the points and lines L2,P2,L3,P3 from I′ using Lemma 4.8.

Because of condition (a) in Remark 4.7. we can now eliminate the six lines in L′,
and then all remaining points of P+.

The variable data of the resulting generalized incidence scheme I♥ is given exactly
by the variable points {X,Y, Z} and the variable lines {LP , LQ, LR} (the fixed data
being given by all the lines and points that we have eliminated). It also counts the
incidences defining T♥ among its relations. It remains to check that there are no
further incidence relations in I♥. This follows from condition (c) in Remark 4.7. �

Remark 4.10. Let’s discuss the conditions in Remark 4.7, starting from conditions
(a) and (b). The lines in L′ are chosen in such a way that the first two intersect
in P , the second two intersect in Q and the last two intersect in R. Furthermore
each of these lines contains two points of P3. Such a situation is remarkably easy
to arrange due to the following heuristic involving heights of point and lines in P2.
Here by the height of a rational point in P2 we mean the minimum absolute value
of an entry in a set of integer homogeneous coordinates for the given point that
are chosen such that their greatest common divisor is 1. Similarly the height of a
rational line in P2 is the height of the point in (P2)∨ representing the line.

First observe that the points of P3 all have height at most 5. Therefore a line
L containing two of the points of P3 has height at most 25 (the coefficients of the
equation of L are determinants of 2 × 2-matrices in the coefficients of the points).
Evaluating such a line in a point P of height h gives a number between −25h and
25h. One of these numbers is 0 so the probability of a point of height h lying on
one of these lines is approximately 1/(50h). Now we have about

(
97
2

)
' 5000 such
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lines. So if the height of P is less than 100 we have a good chance of finding one (or
sometimes 2) lines passing though P and 2 points of P3.

In other words, P4 is so big that it already contains a considerable portion of the
rational points of height at most 100 in P2.

Remark 4.11. The difficult condition for a random construction such as ours to
satisfy is condition (c). Here Remark 4.10 works against us: Since the points of
P3 ⊂ P+ have small height, the probability that one of them lies on LP , LQ or LR
is quite high. This probability is reduced if we choose P , Q and R of large height.
If the height is too large we do not get the advantages described in Remark 4.10 so
we are forced to choose P , Q and R of somewhat intermediate height (around 20)
as we have done above.

5. An example of a rigid, not infinitesimally rigid surface of general
type

We have constructed a line arrangement L♥ in the preceding Section whose as-
sociated incidence scheme I(L♥) is a nonreduced point. In this Section we show
how to associate building data for an abelian cover to the initial datum of this line
arrangement so that we can carry out the program set out in Section 3.

Definition 5.1. For our line arrangement L♥ let

λ♥ : D→ (Z/7)4

be the unique map satisfying the divisibility condition and with values λ♥(L̄i),
i = 1, . . . , 33 as depicted in Table 1 of Appendix A.

Lemma 5.2. λ♥ also satisfies the injectivity and the spanning condition.

Proof. This can be checked easily with a computer algebra program, for example
with the Macaulay 2 script available at [BBP-M2]. �

Remark 5.3. λ♥ was found by a random search. We chose the values λ(L̄i), i =
1, . . . , 33 such that they represented distinct points in P4(F7). We then computed
λ(L̄34) and λ(Ei), . . . λ(E51) using the formulas in the proof of Lemma 3.8. Finally
we checked if all 85 image points represented distinct points in P4(F7). If not we
started with new random values.

The chances of success of this scheme can be estimated by modelling the computed
values as equally distributed random variables. Since

|P4(F7)| = 74 − 1

6
= 400

the chances of success are

400− 33

400
· . . . · 400− 33− 51

400
≈ 0.000255 ≈ 1

4000

(this is a variant of the birthday-problem). Our computer took about 25 seconds
for the search.

This was one of our criteria for choosing G. For smaller groups the birthday
problem takes too long to solve. For larger groups we have to check too many χ’s
in what follows below.

Corollary 5.4. Then there exists a finite flat totally ramified Galois cover

π : S̃♥ → S
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with group G = (Z/7)4, branch locus
∑

D∈DD, and with the covering surface S̃♥

smooth, with the property that

π∗OS̃♥ =
⊕
χ∈G∨

L−1
χ .

Proof. Apply Theorem 3.11 to λ♥. �

Theorem 5.5. The Kuranishi space of S̃♥ is a non-reduced point.

Proof. By Proposition 4.9, Proposition 3.12 and Theorem 3.19, we only have to
check that

(a) For all χ 6= 0

reg(Iχ) < dχ.

(b) For all D ∈ D and χ ∈ G∨, χ 6= 0, we have D.(D − Lχ) < 0.
(c) For all χ 6= 0, and for all Eν the number of D ∈ A (χ) such that D intersects

Eν is at least 2− Lχ.Eν .

Note that (b) is automatically satisfied for D an exceptional divisor, where we use
that each exceptional divisor occurs with non-positive coefficient in Lχ by Lemma
3.9. We then check the remaining parts of all three conditions explicitly using
the computer algebra system Macaulay2. See [BBP-M2] for a script doing the
computation. �

Remark 5.6. The conditions above always turned out to be fulfilled for random
choices of building data for the group (Z/7)4. Conditions (a) and (b) were always
satisfied by a wide margin, but for condition (c) larger p’s are better than smaller
ones due to the following observation:

The condition (c) is most restrictive for triple points pν and χ ∈ G∨ such that
the coefficient of Eν in Lχ is zero. In this case we need that two of the three lines
passing through pν are in A (χ). Since the coefficient of Eν in Lχ is

−

1

p

∑
i|pν∈Li

〈〈
χ, λ(L̄i)

〉〉 .
the condition 〈χ, λ(L̄i)〉 = p − 1 can be satisfied for at most one of the three lines
passing through pν and in this case 〈χ, λ((̄L)i)〉 = 0 for the other two lines. If in this
critical case σ∗O(H) ⊗ L−1

χ is positive for one of the other two lines, the condition
(c) fails. We now compute how often this critical situation occurs:

Let D1, D2, D3 ∈ D be the strict transforms of the three lines passing through
pν . The critical situation occurs if

〈χ, λ(D1)〉 = 0

〈χ, λ(D2)〉 = 0

〈χ, λ(D3)〉 = p− 1

This is a linear system of equations in (Z/p)r and the number of solutions is pr−3,
if solutions exist. Since any of the three lines can be the one with scalar product
p − 1 we have at most 3pr−3 critical χ’s for each triple point. If we now want a
fixed number of about 400 projective points in Pr−1(Z/p) because of the birthday
problem, we have

400 ≈ pr−1 =⇒ 3pr−3 ≈ 1200

p2
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so the number of critical χ’s is reduced quickly if we increase p. The reason we
do not choose gigantic p’s, for example G = (Z/401)2 is that for fixed number of
projective points the computation times rise linearly with p. Indeed the number of
χ’s for which we have to check the conditions above is

|G∨| = pr ≈ 400p.

6. Ampleness of the canonical class

Now we show that the canonical class KS̃♥ is ample. We start by recalling the
ramification formula for the behaviour of the canonical class under a covering.

Theorem 6.1. Let π : S̃ → S be a smooth Galois cover with group G = (Z/p)r

obtained via building data as in Theorem 3.11. Set B =
∑

g∈GDg for the branch

divisor, R = π−1(B) for the ramification divisor (both effective and reduced). Then

KS̃ = π∗KS + (p− 1)R

Moreover KS̃ is numerically equivalent, as Q−divisor, to

π∗
(
KS +

p− 1

p
B

)
.

Proof. As is well known (cf. e.g. [BHH87, Anhang A.1, A.]), if π : S̃ → S is a
surjective holomomorphic mapping of smooth projective complex surfaces, then
KS̃ = π∗KS + R̄ where R̄ is the ramification or Jacobi-divisor of π (given by
the zeroes of the Jacobian determinant of the mapping π in local coordinates on
the base and covering). Now by construction, the cover is regularly ramified with
constant local ramification order p: this means that if y ∈ B and x ∈ π−1(y), then
there are local coordinates (u, v) centred at y, and local coordinates (s, t) centred
at x such that: (a) if y is a smooth point of B, then locally B = (u = 0) and
π−1(B) = (s = 0) (as sets), and π(s, t) = (sp, t); and if (b) y is a double point of
B, then B = (uv = 0), π−1(B) = (st = 0), and π(s, t) = (sp, tp). So we have p-fold
cyclic ramification for every component of the ramification locus independent of the
component. This is because the cover is smooth and Galois, and for an irreducible
component R′ of R̄, its inertia subgroup in G is cyclic, hence of order p as G is an
elementary abelian p-group.

Thus denoting by R the underlying reduced divisor of the ramification divisor,

π∗(B) = pR, (p− 1)R = R̄

whence the assertion. �

Proposition 6.2. With the notation of Definition 3.6 let µν be the number of lines
Li of the line arrangement L passing through pν . Assume that there is a λ satisfying
the hypotheses of Theorem 3.11. Assume furthermore that

a) p ≥ 3
b) [(p− 1)n− 3p]2 −

∑m
ν=1[(p− 1)µν − (2p− 1)]2 > 0

c) µν <
(2p−1)n

3p for all ν = 1, . . . ,m

d) n > 3p
p−1 .

Then the canonical bundle KS̃ is ample.

Proof. We use the fact that by Theorem 6.1

pKS̃ = π∗(pKS + (p− 1)B)
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where B ⊂ S is the branch divisor given by

B =
n∑
i=1

L̄i +
m∑
ν=1

Eν .

Moreover,

KS = σ∗(KP2) +
m∑
ν=1

Eν .

We need to show that ∆ := pKS + (p− 1)B is ample (since π is finite). We use the
Nakai-Moishezon criterion for this, meaning we will show ∆2 > 0 and ∆ · C̄ > 0 for
every irreducible curve C̄ on S. Now

B = nσ∗H −
m∑
ν=1

(µν − 1)Eν(10)

and hence

∆ = [(p− 1)n− 3p]σ∗H −
m∑
ν=1

[(p− 1)µν − (2p− 1)]Eν .(11)

Since each µν ≥ 3

(p− 1)µν − (2p− 1) ≥ p− 2 > 0

by a), hence

∆ · Eν > 0 ∀ ν.(12)

Moreover,

∆2 = [(p− 1)n− 3p]2 −
m∑
ν=1

[(p− 1)µν − (2p− 1)]2 > 0(13)

by assumption b).

If now C̄ is an irreducible curve on S that is not contracted by σ, let σ(C̄) =: C
be its image in P2. We can write

C̄ = σ∗(C)−
m∑
ν=1

sνEν(14)

where sν = C̄ ·Eν is the multiplicity with which C passes through pν . Let d be the
degree of C in P2. We compute that

∆ · C̄ = [(p− 1)n− 3p]d−
m∑
ν=1

[(p− 1)µν − (2p− 1)]sν .(15)

We need to show that this is bigger than zero, which will finish the proof. For this
consider the n×m matrix (whose rows we imagine to be indexed by the lines, and
columns indexed by the points we blow up) with entries aiν defined by

aiν =

{
0 if pν /∈ Li
sν if pν ∈ Li.
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Then we have

∀ i :
m∑
ν=1

aiν ≤ d,(16)

∀ ν :
n∑
i=1

aiν = µνsν(17)

(the first inequality because of Bezout, the latter equalities from the definition).
Hence we can estimate ∑

i,ν

aiν =
m∑
ν=1

µνsν ≤ n · d.(18)

In other words,

d ≥ 1

n

m∑
ν=1

µνsν .(19)

Using formula (15), we can use this to estimate ∆ · C̄:

∆ · C̄ ≥ [(p− 1)n− 3p]

n
·
m∑
ν=1

µνsν −
m∑
ν=1

[(p− 1)µν − (2p− 1)]sν(20)

=
m∑
ν=1

(
(2p− 1)− 3p µν

n

)
sν .

This is clearly strictly greater than zero if for all ν

µν <
(2p− 1)n

3p

(assumption c)) and one of the sν is nonzero. If all sν are zero, ∆ · C̄ > 0 by formula
(15) since in that case

∆ · C̄ = [(p− 1)n− 3p]d > 0

by assumption d). �

Theorem 6.3. The canonical class of the surface S̃♥ is ample. In particular, S̃♥

is of general type and coincides with its canonical model which is rigid, but not
infinitesimally rigid.

Proof. It suffices to check that the hypotheses of Proposition 6.2 are satisfied for L♥

and p = 7. This is done in [BBP-M2] using Macaulay2. �

As a sanity check and to locate our S̃♥ in the geography of the surfaces of general
type, we want to compute K2

S̃♥
and χ(S̃♥).

Proposition 6.4. We keep the notation of Definition 3.6 and assume that we are
given a λ satisfying the hypotheses of Theorem 3.11. Then:

K2
S̃

=
(
pKS + (p− 1)B

)2 · pr−2

and

χ(OS̃) =
∑
χ∈G∨

χ(L−1
χ )

where

χ(L−1
χ ) =

1

2
L−1
χ .(L−1

χ −KS) + 1.
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Moreover,

pg(S̃) =
∑
χ∈G∨

h0(S,KS ⊗ Lχ).

Proof. By Theorem 6.1

pKS̃ = π∗(pKS + (p− 1)B)

hence
p2K2

S̃
= deg(π)(pKS + (p− 1)B)2 = pr(pKS + (p− 1)B)2

which implies the first formula. The second formula follows since by Theorem 3.11

π∗OS̃ =
⊕
χ∈G∨

L−1
χ .

The formula for pg follows from [Par91, Prop. 4.1 (c)]. �

Theorem 6.5. We have

K2
S̃♥

= 1, 260, 966, χ(S̃♥) = 151, 851, q(S̃♥) = 0

Therefore,
K2
S̃♥
/χ(S̃♥) ' 8.3.

Proof. We compute K2
S̃♥

, χ(S̃♥), pg(S̃
♥) and q(S̃♥) in [BBP-M2] applying Propo-

sition 6.4 together with Corollary 3.15 and q = 1− χ+ pg.

We give a direct proof of the vanishing of q(S̃♥). We have already checked that,
for all χ 6= 0, reg(Iχ) < dχ, that implies by Corollary 3.15 and Serre duality that

all h1(S,L−1
χ ) vanish. Since π is finite, q(S̃♥) = h1(S, π∗OS̃) =

∑
χ∈G∨ h

1(S,L−1
χ ) =

0. �

Remark 6.6. Note that for a minimal surface X of general type over C, the dimen-
sion of the Kuranishi space of X is bounded below by 10χ(X) − 2K2

X , see [Ku65].
Moreover, any such surface satisfies K2

X ≤ 9χ(X) by the Bogomolov-Miyaoka-Yau
inequality.

Appendix A

The following examples contain some computations done by hand which we use
to test the correctness of the computer code in [BBP-M2].

Example A.1. The coordinate point (1 : 0 : 0) lies on 6 of the above lines, i.e.
those with 0 in the first component. Let E be the exceptional divisor on S over
(1 : 0 : 0). Consider now

χ = (0, 0, 0, 1) ∈
(
(Z/7)4)∨.

We have ∑
i|L̄i∩E 6=0

〈χ, λ(L̄i)〉 = 5 + 2 + 2 + 3 + 2 + 5 = 19

which is the sum of the last entries of the labels corresponding to the above 6 lines.
It follows that the coefficient of E in Lχ is

−b19/7c = −2

Furthermore we have
34∑
i=1

〈χ, λ(L̄i)〉 = 112
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i Li λ
(
L̄i

)
1

(
0 0 1

) (
2 4 3 5

)
2

(
0 1 0

) (
6 2 4 2

)
3

(
1 0 0

) (
1 2 4 1

)
4

(
0 1 −1

) (
6 5 4 2

)
5

(
1 0 −1

) (
5 1 2 6

)
6

(
1 1 −1

) (
3 0 4 3

)
7

(
1 −1 0

) (
3 2 1 0

)
8

(
1 1 0

) (
4 3 4 3

)
9

(
1 1 −2

) (
1 6 5 6

)
10

(
1 −1 1

) (
5 1 1 3

)
11

(
1 −1 −1

) (
2 1 6 1

)
12

(
0 2 −1

) (
2 2 0 3

)
13

(
2 0 −1

) (
6 1 5 6

)
14

(
1 0 1

) (
3 4 2 0

)
15

(
1 −2 1

) (
6 6 3 2

)
16

(
1 1 1

) (
3 6 6 6

)
17

(
1 −3 1

) (
3 6 4 6

)

i Li λ
(
L̄i

)
18

(
0 1 −2

) (
4 2 4 2

)
19

(
2 −1 0

) (
3 5 2 6

)
20

(
1 1 −3

) (
6 4 4 6

)
21

(
3 −1 −1

) (
2 4 0 2

)
22

(
0 1 1

) (
1 3 4 5

)
23

(
2 −1 −1

) (
3 1 4 5

)
24

(
1 0 −2

) (
3 4 2 6

)
25

(
1 −2 0

) (
3 6 3 3

)
26

(
6 −4 5

) (
5 4 6 2

)
27

(
6 −2 1

) (
3 2 1 1

)
28

(
5 −3 9

) (
5 5 4 6

)
29

(
1 −3 13

) (
6 5 6 4

)
30

(
2 −1 −3

) (
2 6 3 1

)
31

(
9 −5 −1

) (
6 4 0 4

)
32

(
8 9 −22

) (
3 5 2 0

)
33

(
20 −9 22

) (
5 2 5 0

)
34

(
20 −9 −55

) (
5 5 4 4

)
Table 1

which is the sum of the last entries of all labels in the above table. Notice that this
is divisible by 7 and the coefficient of σ∗H in Lχ is

112/7 = 16.

For χ′ = 2χ = (0, 0, 0, 2) we have∑
i|L̄i∩E 6=0

〈χ′, λ(L̄i)〉 =
∑

i|L̄i∩E 6=0

〈2χ, λ(L̄i)〉 = 3 + 4 + 4 + 6 + 4 + 3 = 24

and the coefficient of E in Lχ′ is −3.

Example A.2. Consider the point (2 : 1 : 0). It lies on three lines, namely the ones
with dual coordinates (0 : 0 : 1), (1 : −2 : 1) and (1 : −2 : 1). We want to find those
Lχ where

a) E(2:1:0) has coefficient 0 in Lχ
b) A (χ) contains only the first 2 lines.

This can happen only for those χ whose scalar product with the labels of the first
2 lines is 0 and p− 1 with the label of the third line. This gives a linear system of
equations 2 4 2 5

6 6 3 2
3 6 3 3

 · χ =

 0
0

p− 1


over Z/7. The solutions are

(5, 4, 3, 0)t + k(5, 2, 4, 1)t with k ∈ Z/7.

Example A.3. Consider χ = (0, 0, 0, 1) and the line L26 with dual coordinate
(6 : −4 : 5). This line contains only two blowup points, namely (1 : −1 : −2) and
(1 : 4 : 2). The coefficients of the corresponding exceptional divisors in Lχ are both
−1. The coefficient of σ∗H in Lχ is 16 as computed in Example A.1.
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It follows that

L̄26.(σ
∗H − Lχ) = 1 · (1− 16)H2 − E2

(1:−1:−2) − E
2
(1:4:2) = −13.

On behalf of all authors, the corresponding author states that there is no conflict
of interest.
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