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Mathematical biology and pharmacology models have a long and rich history in the fields 
of medicine and physiology, impacting our understanding of disease mechanisms and 
the development of novel therapeutics. With an increased focus on the pharmacology 
application of system models and the advances in data science spanning mechanistic 
and empirical approaches, there is a significant opportunity and promise to leverage these 
advancements to enhance the development and application of the systems pharmacology 
field. In this paper, we will review milestones in the evolution of mathematical biology and 
pharmacology models, highlight some of the gaps and challenges in developing and 
applying systems pharmacology models, and provide a vision for an integrated strategy 
that leverages advances in adjacent fields to overcome these challenges.

Keywords: QSP modeling, systems biology, data science, systems pharmacology, bioinformatics, computational 
biology, drug development

INTRODUCTION

Mathematical biology and pharmacology models are increasingly utilized in therapeutic and 
vaccine development, recognizing the need for improving the probability of success and/or 
reducing the cost of development. Quantitative systems pharmacology (QSP) models are being 
leveraged to aid in the identification of novel targets in early research, in the translational 
medicine activities for bringing molecules into the clinic, achieving proof of mechanism, and 
understanding of the variability in response to novel compounds in later clinical development. 
Bioinformatics and systems biology models and analyses present an opportunity to leverage 
big data for informing the development of the disease model scope in QSP, in addition to 
informing genotype-phenotype disease assessment, identifying responder/non-responder patient 
segments, or the development of novel biomarkers. With the appropriate investment in a 
mechanistic computational continuum, spanning bioinformatics, systems biology, and QSP, these 
computational approaches can pave the way for efficient and effective in silico drug discovery 
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(e.g., identification of novel targets) or drug development (e.g., 
virtual human trials).

QSP is a mechanistic modeling approach that is used for 
the assessment of therapeutic intervention on a disease by 
linking descriptions of the molecular and cellular mechanisms 
of the disease and drug to system-wide dynamics, bridging 
biomarkers and clinical endpoints relevant for the disease 
(Gadkar et al., 2016; Balbas-Martinez et al., 2018; Kaddi et al., 
2018; Coletti et al., 2020). Since they represent defined biological 
mechanisms, QSP models are suited to understanding the 
system-level response to treatment across multiple 
pharmacodynamic (PD) markers and clinical endpoints and 
to assessing the mechanistic basis for patient variability. There 
have been many QSP models published that address discovery 
and development questions across a variety of therapeutic 
areas, e.g., cardiovascular, cancer, immunology, oncology, and 
rare diseases, among others (Gadkar et  al., 2016; Ming et  al., 
2017; Balbas-Martinez et  al., 2018; Kaddi et  al., 2018; Thiel 
et  al., 2018; Abrams et  al., 2020; Coletti et  al., 2020). A 
recent industry-wide survey assessed current QSP support 
across therapeutic areas and provided insight into expected 
areas of future focus, including neuroscience and autoimmune 
disorders (Nijsen et  al., 2018). Examples of the types of 
applications of QSP models across therapeutic areas include 
evaluation of the mechanism of action (MOA) of a new 
molecular entity, prediction of response in new populations 
or novel dosing paradigms, advancing hypotheses for a 
mechanistic basis of response/non-response, and exploration 
of MOA bases for synergies in combination therapy approaches 
(Ming et  al., 2017; Bradshaw, 2019; Coletti et  al., 2020).

Bioinformatics and systems biology offer a data-driven 
approach to the investigation of key mechanisms and associated 
networks implicated in disease pathophysiology that can 
subsequently inform the scope of biology represented in a 
QSP model. Moreover, the advancement of machine learning 
approaches is allowing more systematic knowledge discovery 
and extraction from the public domain, including published 
literature or public databases. The extracted knowledge base 
can be  organized into logic-based or other computational 
frameworks that allow intermediate assessment or proof of 
concept for the modeling application at hand. These intermediate 
models can subsequently be  translated into a QSP model 
framework for addressing the problems in question.

In this review, we  will discuss the origin and evolution of 
QSP modeling and provide a vision for how QSP modeling can 
leverage advances in adjacent disciplines for an enhanced data‐ 
and knowledge-driven approach to model building and simulation.

HISTORICAL PERSPECTIVE AND 
EXAMPLE

The QSP-Predecessor: Historical Overview 
of Mathematical Models of Physiology
In 2011, a National Institutes of Health (NIH) white paper 
authored by a group of scientists from the academia, industry, 
and government first coined the term quantitative and systems 

pharmacology (QSP), combining experimental and quantitative 
systems pharmacology approaches (Sorger et  al., 2011). The 
goal was to define the ongoing merging of the fields of 
pharmacology and systems biology into a new discipline that 
could be  applied across the drug discovery and development 
pipeline. The QSP proposed definition was “…an approach to 
translational medicine that combines computational and 
experimental methods to elucidate, validate and apply new 
pharmacological concepts to the development and use of small 
molecule and biologic drugs.” The QSP concept was a move 
away from the “one drug-one target-one pathway” paradigm 
to a more network-centric view of biology, with the central 
need to understand how a drug modulates molecular and 
cellular networks to impact pathophysiology. In addition, there 
was the parallel push for a quantitative framework to place 
the ever-increasing streams of biomedical data within the context 
of our current understanding of human physiology. QSP models 
are able to fulfill this need as they contain formal multiscale 
representations of human physiology and pathophysiology. These 
modeling efforts are quite valuable as they result in repositories 
of the present understanding of biological processes, and that 
can lead to identifying gaps and/or inconsistencies in our 
knowledge that require further experimental inquiry. Two recent 
reviews of QSP workflows are referenced here (Gadkar et  al., 
2016; Helmlinger et  al., 2019). Figure  1 describes the growing 
number of references to QSP modeling in the scientific literature.

However, the origin story of QSP has deeper historical roots. 
QSP, and by proxy systems biology, can be  traced back to its 
roots in classic models that pioneered the mathematical 
description of physiology. Mathematical models of disease have 
an established history in their utility for elucidating the biological 
and physiological mechanisms of disease. One of these seminal 
physiological models is Arthur Guyton’s (1919–2003) modeling 
of the circulatory system. Initially developed in the late 1960s, 
Guyton et  al. represented in mathematical terms the human 
circulatory system (Guyton et al., 1972). This effort is considered 
an integral part for understanding the physiology of the 
cardiovascular system and diseases such as hypertension and 
heart failure. Guyton introduced concepts such as the key role 
of the kidney in long-term pressure regulation and the regulation 
of cardiac output by peripheral circulation, which were quite 
controversial at the time, but which have eventually become 
accepted dogma.

Despite being one of the earliest examples of integrated 
physiological modeling, Guyton’s modeling efforts display some 
of the features still present in today’s QSP models: nonlinear, 
multiscale, and modular. In fact, a look at the model scheme 
of his seminal work in 1972 shows a complex interconnected 
web of nodes reminiscent of a QSP scheme of today. The 
model or “systems analysis” as was referred to by Guyton, 
consisted of over 100 variables and hundreds of mathematical 
equations with the aim of representing the long-term regulation 
of blood pressure and cardiac output. It contained representations 
of 18 major systems that described the mechanical, neural, 
renal, and endocrine regulations that control the cardiovascular 
system. This was accomplished by subdividing the model into 
representations of organs and major vessels—accounting for 
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fluids, electrolytes, and key hormonal regulation. Moreover, 
the model displayed emergence: the concept that high-level, 
integrative behavior of the system is not just the sum of the 
fundamental processes represented.

At the time, Guyton highlighted three points when describing 
the value of systems analysis that are still relevant when 
discussing QSP models:

 1. Not every biological detail is needed or represented in fine 
detail in a model to accurately capture the gross behavior 
of the whole system.

2. Representing the system in a model allows the understanding 
of the importance of multiple regulatory processes acting 
on a single system.

 3. Model building allows the evaluation of inconsistencies in data 
derived from different sources. In fact, Guyton’s efforts provided 
foundational experiments for understanding and elucidating 
circulatory physiology and control leveraged mathematical 
models to both understand and interpret experimental results. 
The iterative interplay between experiments and mathematical 
models exemplified by Guyton’s work is also a key feature of 
successful QSP models as new data informed mathematical 
models, which in turn were used for data interpretation and 
knowledge generation. The models are subsequently utilized 
in informing future experiments and their design in order to 
fill identified data and knowledge gaps.

Advances in Measurement Technology and 
Data Science Provide Opportunity for 
Informing QSP Models
More than half a century later, systems-level data, revealing 
the complexity and multiscale nature of human biology and 
the pathophysiology of disease, are readily available due to 

the many incremental advances we  have seen in measurement 
technology. The harnessing and contextualizing of these data 
for model development presents a significant opportunity in 
data sciences and modeling.

The advancement and maturation of measurement 
technologies, from the sequencing of the human and other 
organism’s genomes to technologies for measuring the other 
“-omes” (e.g., proteome, metabolome, epigenome, etc.), has 
had a dramatic impact on the capacity and potential of 
mechanistic biological models. Access to multiscale and 
mechanistic data enabled ambitious and forward-looking 
modeling initiatives such as the Physiome Project (Hunter and 
Borg, 2003). These efforts, in turn, have led to the establishment 
of repositories such as BioModels,1 the Physiome Model 
Repository,2 and the Drug Disease Modeling Resources 
Consortium,3 which are open to the community and host a 
variety of physiological models across scales (Le Novère et  al., 
2006; Sarwar et  al., 2019). Depending on the scope of the 
original model and the problem context, these may be valuable 
resources for the development of QSP models (Weis et  al., 
2019). A further step which has been enabled by the advances 
in measurement systems are whole cell models. Examples under 
development for single-cell organisms may have relevance in 
infectious disease therapeutic development (Karr et  al., 2012), 
and a consortium-based approach has been proposed for human 
whole-cell models (Szigeti et  al., 2018). Lastly, the Human 
Cell Atlas Project (Regev et  al., 2017) and similar disease-
specific efforts integrate relevant knowledge at the cellular scale 
on human biology and disease pathophysiology, which lends 

1 www.biomodels.net
2 https://models.physiomeproject.org/
3 www.ddmore.eu

FIGURE 1 | Review of PubMed citations by year for the search query (“systems pharmacology model”) OR (“quantitative systems pharmacology”) OR (“QSP model”).
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key enabling information for mathematical biology and 
pharmacology (QSP) model development and application.

There are several steps that are necessary in the process of 
developing a QSP model. The first stage of knowledge discovery 
is the process of identifying and integrating multiscale biological 
knowledge on the disease of interest. At this stage, the modeler 
or team of modelers would typically interface with subject 
matter experts and harness published information from the 
literature on the disease. This activity is somewhat limited by 
the modeler’s time and ability to identify relevant articles of 
interest. A data science approach for knowledge discovery casts 
a much broader net over the entire space of published knowledge, 
both in published articles as well as public databases and model 
repositories. This allows a comprehensive review and integration 
of the available knowledge space and is the subject of the 
next section.

AN INDUSTRIAL RENAISSANCE, 
OPPORTUNITIES FOR ADVANCING THE 
FIELD: TURNING KNOWLEDGE AND 
BIG DATA INTO ROBUST MODELS

Importance of Knowledge Discovery: 
Developing Initial Model Structure and 
Building Knowledge and Data Libraries
The development of a QSP model requires an extensive effort 
to define the model structure required to satisfy the modeling 
goals. This task is usually based on a labor-intensive manual 
work carried out by a multidisciplinary team that defines the 
biological scope and identifies the components and interactions 
to include in the model. The complex nature of the biological 
systems makes the definition of the model scheme particularly 
challenging. The ultimate goal is to develop a parsimonious 
mathematical description of the biology for the determined 
modeling scope, and thus it is important to select only the 
most relevant biological entities and avoid the description of 
biological processes that are not informative.

The information to include in a model can be  obtained 
from multiple sources. It can be  derived from the literature, 
from biological databases, directly from the results of experiments 
carried out by the team that develops the model or, most 
commonly, by a combination of all these sources. It is noteworthy 
that experiments carried out in different conditions or with 
different protocols can yield conflicting findings. It is the task 
of the team involved in the model scheme definition to parse 
these data and establish appropriate computational protocols 
for incorporating them and to choose commensurate results. 
Moreover, the incomplete knowledge of the biological system 
often hampers its detailed mechanistic representation in 
mathematical terms, and it is thus necessary to make assumptions 
that are later tested using the model itself.

In this context, literature mining (French et  al., 2015;  
Liu et  al., 2015; Baker et  al., 2017; Bachman et  al., 2018) is 
one of the approaches supporting the definition of the model 
diagram and the identification of data sources and volumes, 

units of measurements, as well as parameter values and 
constraints. Once the desired scope of modeling has been 
clarified in terms of conditions, biological scales, and time 
resolution, the process goes through the collection of biological 
data and information. After expert interviews, the 
multidisciplinary team has a clear idea of the current 
understanding of biology and associated information that are 
yet to be  identified. Critical information selection is important 
from this point on, and literature mining can be  used for 
different purposes.

A first target of literature mining is the identification of 
review and research articles focused on understanding and 
describing the biological problem of interest. In this context, 
semantic-based searches are advantageous, especially when 
working in large multilevel or whole-body models. In contrast 
to standard keyword-based search methods, semantic searches 
allow for querying of concepts. Ontology-based approaches 
(Smith et  al., 2007; Groß et  al., 2016; Vitali et  al., 2018), 
databases (Caspi et  al., 2016; Olsen et  al., 2017), and expert 
knowledge help craft extended domains of concepts made 
up of synonyms, alternatives, and related keywords each 
specifically addressing different areas of the modeled biology. 
Such concept-oriented approaches have been used, for example 
in (Michelini et  al., 2018; Azer et  al., 2019), allowing to 
screen for thousands of terms at once, dramatically widening 
the recall of the mining searches. At this stage, a first-pass 
screening allows the expert to identify the most promising 
literature and tune the queried concepts. The use of machine 
learning approaches for automatic annotation (Leaman et  al., 
2013, 2015; Wei et al., 2015) of the resulting queried literature 
offers new unbiased mentions of potentially relevant concepts 
appearing in the same articles.

Literature mining techniques can also be applied effectively 
to the modeling literature related to the biology of interest. 
Querying the literature for modeling concepts, along with 
any subset of the required biology, yields a corpus of modeling 
papers dealing with different subcomponents of the biological 
system. At this stage, an expanding set of text mining 
techniques greatly accelerates the extraction of mentions 
and appearances of kinetic and quantitative information 
from the modeling corpus.

The result of these two mining approaches is usually presented 
through a set of filters that identify how frequently specific 
concepts appear together and the original context where the 
concepts were found. The high levels of recall reached through 
the semantic-based search now pass through the funnel of 
natural language processing techniques to identify specific 
associations in the text. Common approaches include co-mention 
and linguistic relation analysis. Co-mention analysis can 
selectively extract the paragraphs where specific mentions of 
concepts appear. This approach may suffer from low precision 
which can be  controlled via statistical enrichment of the 
co-mentioned concepts (Chen et al., 2017), increasing the entity 
recognition precision. While readily available, co-mention analysis 
is not able to capture a meaning in the presented results, 
making it ideal for summarization and knowledge classification 
purposes. For more specific knowledge extraction tasks,  
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the linguistic relation analysis offers a more precise framework 
to analyze and mimic human language understanding of the 
text. This is done using rule-based methods and machine 
learning models to analyze the syntactic structure of the 
sentence and identify how relevant concepts relate to each 
other through meaningful linguistic structures in the sentence 
(Yu et  al., 2018; Zhang et  al., 2018).

A pair of concepts that may have been identified either 
via co-mention or relation analysis may appear multiple times 
in different contexts. By aggregating the occurrences of the 
same pair of concepts across all returned papers, it is possible 
to create a frequency map that links together concepts from 
multiple papers, offering a system view of the network connecting 
every identified concept in the literature, therefore facilitating 
the hypothesis generation process. Some of the ways of presenting 
and visualizing the concept network include:

 • Interactive histogram, aiding in the assessment of frequency 
of single and combined occurrences of the terms in the 
selected literature.

 • Network visualization. Nodes and edges represent entities 
and relations among those entities, respectively. The frequency 
of a relation among entities can be represented with a varying 
thickness (Figure 2A).

 • Evidence sentence table. Beyond the relevant evidence text, 
additional information can be provided (e.g., impact factor, 
authors, year of publication, etc.). Linking the network 
visualization with the sentence table makes it possible to filter 
and navigate the concept network and have the associated 
evidence sentences tagged with entities.

 • Bipartite information flow. This type of visualization allows 
exploring the (directed) relations between three domains of 
choice in a much more organized way than the network, 
showing the effect on varieties of cell families (Figure 2B).

The ability to leverage an evolving and advancing literature 
mining data science platform for biological modeling increases 
and improves the effectiveness of the modeling team and allows 
for a robust and data-driven knowledge discovery process of 
model development. Reutilizing previously built concept lists 
spanning diverse biological and modeling areas creates a virtuous 
feedback loop among the biological and data science team 
members. The developed text mining framework may at times 
become rich enough to evolve into stand-alone knowledge 
databases in specific areas (Azer et  al., 2019; Essack et  al., 
2019), showcasing the effectiveness of linguistic structure analysis 
in enabling the discovery and identification of biological 
associations (Kveler et  al., 2018).

As a further step toward a comprehensive knowledge of 
the biological system under investigation, the text mining-
derived knowledge can be  integrated with bioinformatics-
derived findings. The number of publicly available omics 
datasets are constantly increasing, and they can be  efficiently 
used to parameterize ordinary differential equation (ODE)-
based mechanistic models (Fröhlich et al., 2018). Bioinformatics 
data-driven approaches using omics datasets for identifying 
the most active molecular interaction topologies, useful to 

draft the early components of the model diagram, are available 
as well (Nassiri et  al., 2016).

Incorporation of Literature Knowledge Into 
Logic-Based Models—Role of Automated 
Workflows, CS Tools (Languages, 
Computing), and Boolean Models
The information retrieval phase described above usually leads 
to a high volume of data that needs to be  processed and 
organized to identify the components that are fundamental 
for modeling the biological system. The organization of the 
mined information in easily digestible ways with filters, graphical 
techniques, and accurately defined mining objectives is crucial 
to identifying the salient biological components to be modeled 
as well as the biological volumes, units of measurements, and 
parameters. Ideally, the former information represents minimal 
requirements to design and characterize a model. Moreover, 
it is important to evaluate whether there is enough data to 
parameterize the system. This review phase is fundamental 
because it unveils the knowledge gaps that need to be  filled 
with new experiments and at the same time sets the basis for 
implementing the model.

Once the available data have been retrieved, the organization 
and efficient utility of this knowledge base comes into play. 
Logic models are an important tool in storing extracted 
knowledge in a therapeutic domain and in making this extracted 
knowledge “computable” and actionable. In addition to providing 
this computable knowledge notebook capability, logic models 
become a rapid mean of early feasibility assessment when the 
team is deciphering whether to embark on a QSP model 
development effort. When a decision is made to invest in 
building a QSP model, several approaches can be implemented, 
depending on the modeling scope and the available data. An 
intermediate step toward a fully quantitative description can 
be  the implementation of or leveraging of an existing logic-
based model that does not require an advanced mechanistic 
knowledge of the interactions among the components of the 
system. Indeed, logic-based models can be  used to explore 
the qualitative properties of the behavior of a system and to 
address basic questions on the disease mechanism of therapeutic 
intervention. Agent-based models (ABMs), another example 
of a discrete modeling approach, employ a rule-based framework 
to describe the dynamics of heterogeneous systems of “agents,” 
which may represent individual cells, molecules, or other entities. 
ABMs and hybrid ABM approaches may be  used in QSP 
applications to describe the emergence of disease states and 
spatially complex compartments, such as in solid tumors and 
granulomas (Cosgrove et  al., 2015).

The simplest form of a logic model is a Boolean one in 
which the model scheme is translated into a network with 
variables that can have only two states, corresponding to the 
inactive and active conditions (Abou-Jaoudé et  al., 2016). The 
variables are then updated by means of rules that can be interpreted 
as promotion or inhibition nodes connecting the regulating 
variables to the regulated ones. In step i, a regulative node is 
activated if its source variables are in the true state; otherwise, 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Azer et al. History and Future Perspectives of QSP

Frontiers in Physiology | www.frontiersin.org 6 March 2021 | Volume 12 | Article 637999

it is inactivated. Activated nodes are used to update the next 
state of system variables according to a wide variety of simulation 
strategies. Among them, the most popular simulation strategy 
assigns at step i  +  1 a true value to all the variables that at 
step i do not have any active inhibition pointing to them and 
have at least one active promotion.

In some modeling applications, the two states offered by a 
Boolean description are not enough to provide an accurate 
qualitative representation of the system. In such cases, the 
Boolean model can be extended to a logic one, where variables 
can assume a wider range of integer values (for example three 
values, corresponding to “not expressed,” “low expression,” and 
“high expression”).

Once the logic model is constructed, it can be  used to 
qualitatively explore the system dynamics, and in some 
applications, it can even constitute the final aim of the project 
(Traynard et  al., 2017). Balbas-Martinez et  al. for example, 
developed a Boolean system pharmacology model of 
inflammatory bowel disease that was used to test the effect 
of different immunotherapies (Balbas-Martinez et  al., 2018). 
Conversely, when the final aim of the project is the development 
of a QSP model, the principal aim of logic models is to enable 
only a preliminary exploration of the model scheme and 
understand, via simulation, whether it provides a sufficiently 
accurate description of the system. In other words, it allows 

testing the reliability of the scheme and identifying possible 
knowledge gaps that could prevent the final implementation 
of the QSP model.

In addition to deterministic strategies, stochastic simulation 
strategies can be  applied, which update the state of model 
variables in an asynchronous way by randomly selecting at 
each simulation step one regulative node to apply among those 
that are activated (Abou-Jaoudé et  al., 2016). By combining 
the trajectories computed by multiple runs of stochastic 
simulations, the behavior of each variable can be  explored in 
terms of the probability of being set in a specific state. This 
can be  considered an intermediate step before a completely 
quantitative model simulation since it allows a preliminary 
comparison of the evolution of all model variables. The main 
limitation here is that the qualitative description offered by 
logic models does not allow linking the simulation step with 
a specific amount of time, and therefore the exploration of 
the model dynamics remains qualitative, mainly related to the 
analysis of the steady-state conditions, and cannot have the 
same level of detail offered by a quantitative model. Despite 
this, simulation results can be  a valuable tool for discussing 
with experts and identifying inconsistencies between the model 
behavior and the available knowledge, especially when based 
on visual, easily interpretable, and mechanistic interaction 
dynamics. Any identified inconsistency will put the model 

A

B

FIGURE 2 | (A) Network visualization of how entities (nodes) relate to each other (edges) based on relations expressed in natural language. The frequency of a 
relation among entities can be represented with a varying thickness. Red nodes are central nervous system-related entities, green ones represent gut/brain-related 
annotations, while orange nodes have been classified into the peripheral nervous system. (B) The linguistic relations from the graph can be organized into a flow 
diagram, allowing the exploration of the directed effects between biological domains. This example makes visible how families of cells are interacting onto cytokines 
(leftmost to middle layers) and then how and what cytokines related back to the host cells (middle to rightmost layers).
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scheme back under revision in order to understand with experts 
which parts to refine or extend. An additional phase of literature 
mining could also be  executed to drive the model refinement.

Whether a Boolean, logical, or a full-fledged QSP model, 
the early stages of the model construction are iterative and 
incremental by nature, and computer science tools can facilitate 
the process. Dynamic architectures support the exploration and 
revision of the biological mining scope or the presentation of 
the mined results themselves. Bioinformatics tools are then 
useful in presenting interactive biological networks (Nassiri 
et  al., 2016) that can be  used as the building blocks of the 
model. There are visual modeling platforms (Funahashi et  al., 
2007; Lombardo and Priami, 2017) that can be especially useful 
in this phase when the model diagram is framed based on 
the literature mining results, datasets, expert knowledge, and 
hypotheses. A non-mediated graphical language makes the 
communication between different stakeholders easier and less 
error-prone. To populate the model with biological interactions 
among putative proteins, there are biological interactions 
manually curated from hundreds of different databases and 
collected in a single application programming interface (API)-
based resource such as OmniPath (Türei et  al., 2016).

As we  have seen in this section, the knowledge discovery 
phase of model development can be  significantly enabled 
through advanced data science application, specifically in the 
areas of knowledge extraction, data mining, and knowledge 
organization and assimilation. Moreover, the integration, 
organization, and distillation of this knowledge base make it 
amenable for incorporation into a QSP model framework and 
strategy. In conjunction with these applied approaches in the 
knowledge discovery phase of model development, a data-
driven approach to leveraging bioinformatics data and systems 
biology networks to informing the multiscale components of 
QSP models and their associated model structure is an area 
of significant opportunity for the field. In the next section, 
we  utilize tuberculosis (TB) to illustrate the application of 
bioinformatics and systems biology and discuss potential 
approaches for harnessing the outputs from these advanced 
technologies to advance a data-driven methodology for informing 
QSP models.

Application of Bioinformatics and Systems 
Biology to Advancing QSP Modeling: An 
Example From Infectious Diseases 
Illustrating Where We Are and How Do 
We Bridge the Gap
TB, the disease caused by infection with Mycobacterium 
tuberculosis (MTB), is the leading cause of mortality from a 
single infectious agent worldwide, exceeding the mortality 
caused by HIV/AIDS. The 2019 Global Tuberculosis Report 
by the World Health Organization reported an estimated 10 
million cases and nearly 1.5 million deaths in 2018 (WHO, 
2019). While TB is treatable, the available therapies are 
burdensome. The standard regimen for a drug-sensitive disease, 
abbreviated HRZE, consists of four antibiotics taken daily 
for 6  months. The long duration of treatment makes 

non-adherence more likely, which in turn can promote the 
development of a drug-resistant disease. The development of 
shorter-duration, safe, and effective antibiotic regimens for 
TB is an urgent global need, and there are key opportunities 
for multiscale, mechanistic modeling efforts to contribute to 
this effort.

The granuloma, a hallmark of TB disease, typically contains 
a caseous core surrounded by T lymphocytes and macrophages 
(MFs) of different lineages (Flynn et  al., 2011; Pai et  al., 2016; 
Koch and Mizrahi, 2018). While the granuloma generates an 
immune microenvironment to control infection, it also provides 
MTB with a niche in which it can survive for prolonged periods 
(Ehlers and Schaible, 2012; Silva Miranda et  al., 2012; Stanley 
and Cox, 2013). In a granuloma, MTB exists intracellularly 
within the host cells of different subtypes and extracellularly 
in the caseum, here onwards referred to as “compartments.” 
Because of the distinct microenvironments within these 
granuloma compartments, the bacteria exist as heterogeneous 
subpopulations with significant variability in growth 
characteristics and drug susceptibility (Lin et al., 2014; Marakalala 
et  al., 2018; Cicchese et  al., 2020). Therefore, characterizing 
the multiple layers of information processing networks (e.g., 
transcriptional, translational, metabolic, etc.) that underlie this 
heterogeneity and the variable drug susceptibility of the 
subpopulations may provide important compartment-specific 
information that can be  used directly or aggregated to inform 
and advance multiscale QSP models that aim to simulate 
pharmacological response to combination therapy. The integration 
of molecular‐ and cellular-level modules of regulation and 
metabolism into the QSP framework may enable the rational 
formulation of effective combination drug regimens that have 
higher likelihoods of achieving clearance of heterogeneous 
populations of pathogen cells within the granuloma. We discuss 
below advances in the modeling and integration of metabolic 
and regulatory networks for MTB and the challenges in 
integrating these models with each other and within a 
QSP framework.

Constraint-based metabolic models (CBMs) enable genome-
scale modeling of metabolic networks in the absence of kinetic 
parameters and provide a platform for integrating multi-omic 
datasets (Orth et  al., 2010). While calculations from CBMs 
often result in a large solution space, which can include many 
biologically implausible solutions (Price et  al., 2004; 
Schellenberger et al., 2011), the addition of biologically relevant 
constraints can significantly improve their predictive accuracy 
(Reed, 2012). Manually curated genome-scale CBMs have been 
constructed for many organisms (Oberhardt et  al., 2009; Kim 
et  al., 2012), including MTB. Specifically, three incrementally 
better models of MTB have been constructed incorporating 
progressively larger number of genes going from 661 genes 
mapped to 1,025 reactions (model iNJ661), to 810 genes mapped 
to 938 reactions (model iSM810), and to 1,011 genes mapped 
to 1,229 reactions (model iEK1011) (Jamshidi and Palsson, 
2007; Ma et  al., 2015; Kavvas et  al., 2018). The performance 
of these models has been tested through the analysis of gene 
essentiality prediction using transposon sequencing (TNseq) 
as well as by assessing the accuracy of model-predicted growth 
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characteristics (growth rate and biomass, etc.) in different 
culture media and conditions. Bordbar et  al. introduced 
intracellular constraints on the metabolism of MTB in this 
model by limiting the nutrients accessible to the pathogen 
cells within the host environment by incorporating relevant 
nutrient exchange reactions (Bordbar et al., 2010). GranSim-CBM, 
which integrates a CBM with an ABM of granuloma formation, 
is an example of how such a multiscale approach can provide 
insight into MTB heterogeneity within the granuloma and 
provide guidance for experimental design, therapeutic selection, 
and performance targets (Pienaar et  al., 2016).

However, metabolic models by themselves do not account 
for gene regulation, which is important to characterize granuloma 
compartment-specific phenotypes of MTB. To address this 
shortcoming, information regarding differential regulation of 
genes was integrated into the iNJ661 metabolic model 
(Chandrasekaran and Price, 2010) and subsequently into the 
iSM810 metabolic model (Ma et al., 2015) using the probabilistic 
regulation of metabolism (PROM) algorithm. While this 
integrated regulatory and metabolic network model made 
reasonable advancements in predicting the environment-specific 
growth phenotypes of MTB, it was based on a static protein-DNA 
interaction map for ~180 transcription factors (TFs), constructed 
by the overexpression of each TF in standard growth conditions 
(Minch et  al., 2015). A more sophisticated approach for the 
inference and integration of a predictive gene regulatory network 
model with the metabolic model of MTB could significantly 
improve upon the performance of the PROM model to more 
accurately predict compartment-specific drug 
response phenotypes.

In order to understand how MTB responds and adapts 
to immunological attack, nutritional changes, and antitubercular 
treatment, we  reconstructed a predictive model of an 
environment and gene regulatory influence network (EGRIN) 
model of MTB using a compendium of 2,325 publicly available 
transcriptome profiles (Peterson et al., 2014; Turkarslan et al., 
2015). The microarray data were integrated with ~250,000 
functional gene associations from STRING4 and nearly 5,000 
operon prediction associations from MicrobesOnline5 using 
the cMonkey biclustering algorithm (Reiss et  al., 2006) to 
identify sets of genes that are co-regulated over subsets of 
environmental conditions via shared TF-binding sequences, 
i.e., gene regulatory elements (GREs) in their promoters. 
Altogether, cMonkey incorporated 3,922 MTB genes (98% 
gene coverage) into 598 sets of putatively co-regulated genes 
(modules) and detected 1,192 GREs. This is the most 
comprehensive transcriptional regulatory network model for 
MTB that accurately predicts TF regulatory interactions and 
their downstream consequences (Peterson et  al., 2016). This 
model represents a powerful means to uncover mechanisms 
by which MTB adapts to environmental conditions, including 
drug treatment. Further, the integrated deduced regulatory 
and metabolic (IDREAM) model was developed to integrate 
an EGRIN model with a CBM model, which has significantly 

4 https://string-db.org/
5 http://www.microbesonline.org/

improved performance in predicting environment-specific 
phenotypes (Wang et al., 2017). However, all of the previously 
developed methods [PROM (65, 68), rFBA; Covert et al., 2001, 
IDREAM; Wang et  al., 2017, etc.] do not take into account 
one or more of four key properties of gene regulatory networks 
(GRNs) and motor neurons (MNs): (i) a single TF typically 
regulates dozens to several hundred genes in the genome; (ii) 
multiple metabolic genes can encode enzymes or enzyme 
subunits that catalyze the same reaction; (iii) a metabolic gene 
can be  regulated by multiple TFs; and (iv) most importantly, 
the combinatorial regulatory scheme changes depending on 
the environmental context. Future work in integrating regulatory 
and metabolic networks will need to address these shortcomings 
to delineate how environment-specific combinatorial regulatory 
schemes constrain flux through metabolic reactions in each 
of the various compartments of the granuloma.

The integrated regulatory and metabolic network models 
can drive significant advancements of QSP models to predict 
drug effects on MTB phenotypes within granuloma 
compartments. By using a recently developed Path-seq 
technology (Peterson et  al., 2019), it is now possible to 
enrich and quantify MTB transcriptomes in the caseum and 
MFs of different lineages [alveolar MFs (AMs), monocyte-
derived MFs (MDMs), etc.] in the presence and absence 
of frontline drugs at model-predicted drug concentrations 
within each granuloma compartment. Similarly, using another 
recently developed technology, PerSort, drug-tolerant persister 
cell subpopulations can also be  sorted for transcriptome, 
metabolome, and phenotype characterization (Srinivas et al., 
2020). The nutrient composition and transcriptome profiles 
of host and pathogen populations (with and without drug 
treatment) within each granuloma compartment can then 
be used as inputs into the integrated regulatory and metabolic 
network model to predict growth rates as well as bactericidal 
and bacteriostatic drug effects on heterogeneous populations 
of pathogen cells. Finally, the differential drug effects on 
MTB cells across granuloma compartments can then 
be  applied to predict the clearance rates of the pathogen.

In summary, bioinformatics and systems biology can make 
important contributions to QSP model development and 
application, enabling a data-driven framework for distilling 
relevant genotypic and phenotypic knowledge and data on 
disease pathophysiology and patient segments. This information 
is critical for assessing the impact of therapeutic interventions 
on patients’ phenotypes of interest using a mechanism-based 
simulation approach.

Parallel to the activities of informing a disease model 
structure and knowledge base is the development of a 
physiologically based pharmacokinetic (PBPK) model (Kuepfer 
et  al., 2016). PBPK will describe the link between absorption, 
distribution, metabolism, and excretion (ADME) and the 
pharmacokinetic (PK) properties of a compound to the 
concentration of the molecular candidate in the represented 
physiological compartments of the QSP model. This allows 
the quantitative assessment and simulation of the local 
pharmacology of the therapy in each compartment represented 
in the QSP model. The development and history of PBPK 
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models as stand-alone models and their utility in conjunction 
with disease models are the subject of the next section.

LOVE-HATE RELATIONSHIP WITH PBPK

QSP and PBPK models are intimately linked as PBPK models 
provide the pathway for the navigation of active drug entities 
within the physiologic system in which they elicit their effects. 
As such, PBPK models are an important tool for QSP models 
used to drive the local pharmacological response in the respective 
physiological compartments. Even though there is expected 
synergy of the models given their common mechanistic 
underpinnings, each is typically constructed adhering to the 
usual “fit-for-purpose” approach, with goals and objectives for 
use attached to the structure of the model and the data available 
and utilized for qualification. Table  1 compares the common 
purpose and/or goals of stand-alone PBPK and QSP models 
illustrating the common features and scope and those that are 
unique to the specific model types.

Most of the current overlap (real and perceived) in purpose 
is in the context of their use in drug development and the 
evolving landscape of commercial software solutions that have 
accelerated their utilization, expanded their use and scope, 
and grew both disciplines to the point where the skill set for 
model development of these types is in demand.

The origins of both model types (PBPK and QSP) are distinct, 
as are the historical disciplines that promoted their initial use. 
The first published PBPK models were primarily developed for 
pharmaceutical compounds in the 1970s, followed by those 
for environmental chemicals in the mid-1980s (Tan et al., 2018). 
Although the number of published models for environmental 
chemicals quickly outnumbered those for drugs, the latter has 
increased sharply more recently. Of the 1,313 references describing 
PBPK models from 1977 to 2016, the majority involved 
environmental chemicals (65%), followed by drugs (31%), with 
the remaining 4% involving endogenous compounds (e.g., 
monoclonal antibodies and small peptides; Tan et  al., 2018). 
With respect to the authors of these works (PBPK models) 
the vast majority are coming from toxicology, environmental 
sciences, and pharmacy training. With respect to QSP models, 
the origins are more closely linked to pharmacology/
bioengineering and a mechanistic understanding of disease 
progression and pathophysiology. Likewise, the early QSP 
application was more focused on hypothesis generation than 
to inform a regulatory decision. There is a tendency to set 
the QSP origin to the more recent NIH white paper (Sorger 
et  al., 2011) in 2011, but this would be  overlooking a rich 
history of system pharmacology models that existed prior to 
the declaration of the discipline, as has been described and 
outlined previously. Part of this disconnect with the dating 
also has to do with the training of the model developers, their 
choice for publication, and the rebranding of the discipline. 
The system pharmacology component of a QSP model requires 
the quantitative representation of all relevant reaction kinetics 
with enough complexity to achieve the purpose for which the 
QSP model is being designed to achieve. As the QSP representation 

is inherently multiscale from the pharmacology standpoint 
(organs → tissues → cells → proteins and regulatory metabolites 
→ genes), the degree of mathematical and computational 
complexity is always understood as a key design element of 
the early-stage planning. On the PBPK side, the choice of 
complexity is also a consideration based on the expected 
physiologic space that the drug is expected to access.

Currently, both model types are actively employed to inform 
various stages of drug development and are somewhat linked 
by the commercial platforms and software utilized for their 
definition and analysis. At present, PBPK models are more 
clearly associated with regulatory deliverables having been the 
subject of regulatory guidance and advisory committees (FDA, 
2019), although there is regulatory interest and support for 
continued investment in QSP models particularly to assist with 
proof-of-mechanism (POM) evaluation and proof-of-concept 
(POC) study design and attainment, endpoint definition, and 
pediatric extrapolation. With respect to the commercial software, 
this has been a concern as modelers trained in each discipline 
seek to extend their skills. A Venn diagram of the model 
space would suggest that QSP models envelop PBPK models, 
although PBPK modelers and software manufacturers tend to 
see QSP as an extension of PBPK modeling (Geerts et  al., 
2013). As this is an issue of approach only with concerns of 
how best to expand in each arena, there should be no concern. 
Software suitability and modeling approach relative to the 
necessary functionality, however, are another matter.

The development of commercial software for PBPK modeling 
has yielded professional solutions with many embedded features 
that also represent milestones in the evaluation of the approach, 
including normalization and scaling transformations that allow 
the accommodation of differences in in vitro systems for which 
key model inputs are reliant (Edginton et  al., 2006; Rostami-
Hodjegan and Tucker, 2007), unit conversion, flexibility in 
transport models dependent on a drug substance’s physiochemical 

TABLE 1 | Typical goals and objectives for physiologically based 
pharmacokinetic (PBPK) vs. quantitative systems pharmacology (QSP) models.

Model goals and objectives
Objective class

PBPK QSP

FTIH dose prediction 1 2

DDI risk and specific drug interaction potential 
evaluation

1 N/A (PK interaction)

1 (PD interaction)
FTIP dose prediction 1 2
PK/PD evaluation 1 2
Formulation feasibility/performance evaluation 1 N/A
IVIVC 2 N/A
Biomarker-based evaluation 3 1
Weight/size impact on PK 1 3
Developmental influence on PK 1 3
Proof-of-mechanism evaluation N/A 1
Proof-of-concept evaluation N/A 1
Disease progression evaluation N/A 1

1 = primary; 2 = complementary; 3 = secondary.
FTIH, first time in human; DDI, drug-drug interaction; FTIP, first in patient; PK, 
pharmacokinetics; PD, pharmacodynamics; IVIVC, in vitro-in vivo correlation; N/A, not 
applicable.
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properties, and physiologic parameter databases underlying the 
model’s structural parameters representing different species and 
human populations (Jamei et  al., 2009; Pepin et  al., 2021). All 
of this functionality is under the hood of a graphic user 
interface (GUI) that allows modelers and scientists to more 
efficiently specify requisite model features without the necessity 
of excessive coding and model checking. Of course, this comes 
at the expense of managing the various software updates and 
revisions, as there is a dedicated team of scientists/programmers 
that support the commercial development of these solutions. 
This solution works well for tasks which do not require extensive 
reworking of the model structure, of course. To be  clear, the 
path forward when such conditions do arise is typically a 
request to the developer to expand the model structure or 
environment framework given the closed nature of the available 
solutions, necessitating time and expense to the modeler.

On the QSP front, this solution is not viable given the dynamic 
and unique nature of the models, their structure, and purpose. 
Likewise, there is less reliance on user interface-based model 
environment solutions and more utility of common programming-
based solutions such as please change to R,6 MATLAB®, and 
Symbiology™ for QSP modeling. Of course, governance of coding 
contributions and the need for debugging and compiling are 
concerns, but these are deemed necessary overhead for the approach.

Hence, PBPK and QSP models are indeed intimately linked 
and are combined to inform in silico pharmacological interrogations. 
However, they also offer unique solutions to challenging problems 
in academic research and drug development and therefore should 
be  recognized as distinct in their own right. Those who would 
embrace each model type must select the appropriate solution 
and environment to suit their purpose, as any modeler does.

MODEL CALIBRATION AND ANALYSIS: 
EVOLVING TECHNOLOGY AND 
METHODOLOGICAL ADVANCEMENT

Calibration of QSP models to data is essential to ensure that 
the model simulation outputs represent the behavior of the 
patient segment of interest and that the variability and uncertainty 
associated with the output reflect the commensurate level of 
confidence in the results. Access and availability of data, the 
size of the models, and the complexity brought about by the 
multiscale nature of the models make calibration a challenging 
task. Moreover, the disease status represented by the patient 
population reflects a steady-state condition or a point in time 
along the disease progression path. Clinical and preclinical 
data together represent key components of the disease and 
pharmacology that are necessary to capture into the QSP model.

At this point of the model development process, we  have a 
model structure in place that has been informed by the knowledge 
discovery and informatics analyses that have been completed. 
The modeler needs to evaluate the appropriate size and scope 
of the QSP model given the range of data, mode of action of 

6 https://www.R-project.org/

the therapeutic intervention, and the intended model application. 
Incorporating the mechanisms of disease that the therapeutic 
intervention is modulating aggregated to the level of the data 
available is necessary to ensure that calibration is even feasible. 
Identifying what are the system‐ vs. patient-specific parameters 
is also critical to developing a calibration strategy as well as a 
subset of parameters that will be  fitted. Fitting all or most 
parameters is a failing strategy, especially given the number of 
parameters and the interdependencies between them. Taking into 
account the parameters that govern the steady-state conditions 
which define the patient segments of interest also plays into the 
calibration strategy. This may require some advanced methodology, 
as highlighted below using the linear-in-flux-expression (LIFE) 
methodology and described in more detail in (McQuade et  al., 
2017). Once a subset of parameters are identified that can be fitted, 
a number of optimization approaches can be deployed to identify 
an appropriate fit. In this section, we  discuss the importance 
and need for evolving technology and methodological advances 
that are necessary to improve on the capability of QSP model 
optimization to clinical or preclinical data, as well as simulation 
strategies (Marchetti et  al., 2017; Simoni et  al., 2019a).

Multiscale QSP models rely on multiple sources of information 
to inform the pathophysiology, cellular, organ, and functional 
components of the disease, and its modulation under a therapeutic 
intervention. In order for QSP models to describe 
pathophysiological processes with sufficient granularity to address 
development questions, access to reliable, comprehensive, and 
open data sources to inform model parameters becomes 
increasingly essential. The availability of such domain sources 
for parameter values typically varies across modules of the overall 
QSP framework, with only some supporting high degrees of 
mechanistic detail. Access to literature-informed model parameters 
varies both across therapeutic areas and by biological scale. At 
the molecular or pathway scale, database resources like BRENDA 
(Jeske et  al., 2019; www.brenda-enzymes.org) and Sabio-RK 
(Wittig et  al., 2018) provide a wealth of information on the 
kinetics of enzyme-catalyzed reactions. Preclinical pharmacology 
data utilizing relevant disease biomarkers are often key data 
that can be  incorporated early into the model development and 
are also useful for translational modeling work. Concordance 
of the biomarkers used in animal models and in the clinic is 
an advantage for the modeling work, but is not always the case 
given the differences between animal models and human diseases.

Certain parameters may be  difficult to quantify or not 
directly measurable due to the inaccessibility of relevant samples, 
lack of assays, or because the parameters represent the lumped 
effects of processes that are not sufficiently understood. The 
latter situation is more frequently encountered at higher biological 
scales (e.g., tissue and organ levels or functional readouts like 
cognitive scores) where lack of knowledge of the many interacting 
processes encourages the use of more empirical frameworks 
to inform the organ sub-model and functional readouts 
incorporated into the multiscale model. In such situations, 
parameterization depends on the development of more effective 
optimization frameworks—for example, evolutionary approaches 
(Molina et  al., 2018). In some cases, the goals of the QSP 
modeling effort may allow for avoiding parameterization issues 
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altogether by employing network‐ or rule-based approaches 
(Bloomingdale et  al., 2018) or utilizing machine learning or 
empirical modules as part of the model components. The 
availability of individual-level clinical data from the population 
of interest is necessary to represent the clinical phenotype of 
interest in the model, both at the pathophysiological and organ 
or functional levels. Clinical biomarker data are also key here 
to link mechanisms in the QSP model to the appropriate 
response variable that can reflect improvements in a disease 
with therapy. Additional clinical data, for example from disease 
registries, reflecting the disease progression trajectories of 
patients are especially important in some applications, where 
the population of interest is not at steady state prior to treatment. 
Combining multiple sources of clinical data with other types 
of data, for example from the literature and from preclinical 
species, represents a common challenge in informing QSP 
models. Advanced optimization and sensitivity analysis tools 
can help alleviate some of these concerns (Simoni et al., 2019b, 
2020), especially as they pertain to the reproducibility of model 
outputs and model behavior (Kirouac et al., 2019). Additionally, 
tailoring and designing preclinical and clinical studies with 
the added objective of informing QSP and other models is 
also an important investment step to build increasing confidence 
in the models and the reproducibility of the model outputs.

One potentially powerful strategy that addresses some of these 
challenges is the development of disease platform QSP models—in 
other words, shifting away from the paradigm of developing 
individual models, with the associated steps, for individual 
therapeutics. A key advantage of QSP models, once developed, 
is that they serve as a repository of knowledge and data for 
the particular disease, and these knowledge and data can then 
be  reused or repurposed. For example, they may be  applied as 
a test bed for novel therapeutic or vaccine candidates for the 
same indication or, in certain cases, may be expanded to be applied 
for related diseases or patient segments. QSP modeling to support 
drug development for certain lysosomal storage diseases (LSDs) 
provides an example of the latter use case (Kaddi et  al., 2018; 
Abrams et  al., 2020). Platform model development introduces 
its own challenges and opportunities. Firstly, it can be necessary 
to reconcile alternative descriptions of processes. This is more 
prone to occur for modules at higher biological scales, such as 
the tissue or organ level, since those sub-models may not be  as 
informed by mechanistic data and thus include more empirical 
descriptions. Secondly, the process of integration may necessitate 
the development of new modules to describe intermediate processes 
that were not included in component models, e.g., connecting 
or bridging molecular-scale processes to cellular‐ and organ-level 
outcomes fate. Finally, the integrated model must be re-qualified 
against all the data used to qualify the component models. This 
can be a computationally intensive and time-consuming process. 
However, once developed, an integrated platform QSP model 
can provide utility and insights beyond those of component models.

A number of advanced tools are available to elucidate the 
dynamic behavior of the model under different conditions. One 
such valuable tool is perturbation analysis (Abou-Jaoudé et  al., 
2016), which allows testing what happens to the model when 
the model scheme is perturbed to reproduce specific scenarios 

of interest. These scenarios could be  linked to the variable state, 
for example the overexpression or knockdown of a specific model 
variable, or they can be  linked to promotion/inhibition arcs, 
for example by changing the probability of selecting a specific 
node during stochastic simulation. The final result of this kind 
of analysis is a list of in silico evidence that can be  used to 
refine the model scheme for prioritizing the next project steps. 
For example, if the perturbation analysis is showing that a 
part of the model is insensitive to any of the tested perturbations, 
then a possible model refinement is needed to obtain a simplified 
model scheme that will allow the implementation of a more 
parsimonious mathematical model while keeping similar accuracy 
in reproducing the considered simulation scenarios. On the 
other hand, if the perturbation analysis is showing that some 
variables are highly affected by the tested perturbations, these 
should be  taken into consideration for model optimization. 
Specific literature search can be  targeted to these variables in 
order to be  sure of having included in the model scheme all 
the available knowledge. Moreover, ranked lists of these variables 
can be  very valuable tools for prioritizing new experiments 
or to drive the implementation of the quantitative model, 
starting from the part of the network that shows the most 
promising and interesting behavior.

Another important component of fitting QSP models is the 
tools that elucidate the underlying relationship among the 
model parameters and quantifying the algebraic relationships 
that govern information flow in the model. QSP models are 
often used with the hidden assumption that all fluxes are 
independent or have insignificant correlations (Schmidt et  al., 
2013; Allen et  al., 2016; Hosseini and Gabhann, 2016), not 
leveraging the underlying model structure developed in the 
QSP model. Thus, the abundant know-how developed by systems 
biology (Palsson, 2015) and other research areas (Feinberg 
and Horn, 1974; Maeda et  al., 1978; Biggs and Biggs, 1993; 
Jacquez and Simon, 1993; Caughman and Veerman, 2006; 
Klinke and Finley, 2012; Mirzaev and Gunawardena, 2013) is 
not translated into a large-scale use of such models (Sorger 
et al., 2011; Friedrich, 2016) as an in silico substitute for clinical 
trials. The LIFE approach (McQuade et  al., 2017) allows the 
modeler to solve for the underlying relationship among the 
parameters in the model and quantify the flow of information 
under certain linearity criteria. This provides a subset of 
parameters at the source of these parameter networks, which 
can be  used in a subsequent optimization strategy. The LIFE 
method begins by defining a network of biochemical reactions 
(metabolism) as a graph, where the nodes are reactants/products 
of metabolic reactions; the edge labels represent the reaction 
rates. In a classical systems biology approach, such a metabolic 
system is often written as dx/dt  =  S(f)x, where x is the vector 
of metabolite concentrations, S is the stoichiometric matrix, 
and f is the vector of fluxes. In the LIFE approach, the system 
is written as dx/dt = S′(x)f. The modified stoichiometric matrix 
S′(x) is a n  ×  m matrix if the system has n metabolites and 
m fluxes, as opposed to S being m  ×  n. For fixed metabolite 
levels, the relationship among fluxes is given by the null space 
of S(x) and the biologically viable ones by its intersection with 
the positive orthant. Therefore, for a system assumed to reach 
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an equilibrium state, the positive basis vectors of the null 
space give a complete description of the flux parameters that 
maintain equilibrium. This allows both a better characterization 
of system equilibria and the possibility of simulating large 
system perturbations. An example of the LIFE approach and 
associated parameter network is shown in Figure  3.

In the previous sections, we have discussed the development 
and evolution of QSP models, with a detailed representation 
of the different phases of model building. Data science approaches 
are key to enabling the knowledge discovery phase of the 
initial phases of model development. Systems biology and 
bioinformatics provide data and context for the mechanisms 
that would subsequently be incorporated into the QSP framework. 
Novel advances and tools for analyzing QSP models and enabling 
robust model fitting to the data are essential in providing 
confidence in the model outputs and for the use of the models 
to make decisions. In this next section, we discuss the evolving 
landscape of the use of QSP models for decision making, both 
internally to an organization as well as for regulatory applications.

MILESTONE APPLICATIONS AND 
REGULATORY INTEREST AND BUY-IN

QSP modeling to inform various aspects of drug development 
is currently experiencing somewhat of a renaissance owing in 
part to the potential to link the mechanistic understanding of 
disease progression to biomarkers of interest and real-world data 
sources (e.g., various omics and patient-level clinical signs and 
symptoms) that can signal predisposition to response and may 
be  useful to understanding the adverse events and perhaps 
off-target effects. Moreover, incorporation of real-world data may 
be  useful for bridging efficacy to effectiveness assessment and 
the comparability of available therapies targeting similar patient 
populations. Further expansion and application of the discipline 
may also be  useful to guide system vaccinology in a manner 
that guides future dose selection and identifies/corroborates 
meaningful correlates of protection (Rhodes et  al., 2019). On 
the therapeutics front, there has been significant efforts in building 
and applying QSP models in the oncology and immunology 
disease areas, as triggered by industry-wide investments in these 
areas and unmet medical needs (Nijsen et al., 2018), highlighting 
the utility of QSP models to quantify the performance of 
combination pharmacology as well as for bridging pharmacology 
across adjacent yet distinct patient segments of disease.

QSP is part of the FDA’s Model-Informed Drug Development 
(MIDD) Pilot Program.7 The MIDD program is acknowledged 
in the sixth iteration of the Prescription Drug User Fee Act 
(PDUFA VI). Regulatory submissions of quantitative systems 
pharmacology modeling for applications in drug development 
have gradually increased over the past 10  years (Zineh, 2019), 
ranging from investigational new drug (IND) applications to 
new drug applications (NDAs) and biologic license applications 
(BLAs) and to efficacy supplements. QSP applications in 

7 https://www.fda.gov/drugs/development-resources/model-informed-drug- 
development-pilot-program

regulatory submissions are broad, including toxicity prediction, 
dose selection, dosing regimen optimization, trial design, and 
clinical waiver.

It is recognized that model assessment should depend on 
the context of use (Ramanujan et al., 2019). The risk associated 
with decisions made based off a model and its prediction also 
depends on the context of application (use). Developing a 
QSP model to guide the design of in vitro vs. animal studies 
renders different levels of risk, with the former involving a 
lower decision risk. As a drug candidate moves into its clinical 
phases, the decision risks increase from the perspective of 
financial investment and human safety. Modelers intuitively 
know that no model can or intends to perfectly describe any 
specific system of human biology regardless of the complexity 
and size of a model as well as the amount of in vitro and in 
vivo data. Moreover, some of the challenges discussed in this 
paper regarding model calibration and informing the models 
with diverse datasets have raised questions on model result 
reproducibility. Therefore, moving forward, the best approach 
would be  for the scientific community to address the need 
for rigorous criteria (Bai et al., 2019) and work toward common 
scientific expectations and best practices with respect to the 
assessment of QSP models and the criteria for evaluating and 
accepting their prediction in the context of various levels of 
decision risks. Moreover, additional emphasis in QSP model 
publications on model robustness, the reproducibility criteria 
utilized, and reliability of the model outputs presented can 
provide increased confidence in the community in the application 
of QSP modeling in drug research and development and 
reinforce our collective portfolio of success stories.

At the drug discovery or target validation stage, it is desirable 
for modelers to mechanistically explore to the greatest extent 
all possible pathways and feedback loops to propose and test 
a wide range of hypotheses in order to adequately capture all 
relevant human biology in as much detail as possible. Such 
efforts are made to delineate the effectiveness and toxicity 
profiles of a medical entity for the goal of minimizing the 
risk of safety issues or no clinical efficacy that would cause 
a development program to ultimately be  terminated. On the 
other hand, the goal of applying QSP models in the late stages 
of drug development would not be  to explore human biology 
associated with a target but would instead be  used as a tool 
to define the dose/responses in the context of precision medicine. 
Considering in vitro and species differences in response to a 
medical entity which is under development for treating a 
disease, a model should be  calibrated to as much its relevant 
clinical data as are available when the medical entity moves 
along its development phases. High scientific and statistical 
rigors for best practices are expected when QSP modeling is 
applied for late-stage drug development and beyond.

QSP modeling has a broad spectrum of applications, from 
discovery into late development. These applications provide a 
natural means of evolving a therapeutic area-wide QSP strategy 
that impacts discovery through development decisions within 
an organization. This strategy hinges on leveraging extensive 
knowledge discovery coupled with advanced data science and 
bioinformatics approaches in the early discovery stage of drug 
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development. These computable knowledge and data, when 
integrated into a QSP platform, can aid with target elucidation 
and validation. As molecules advance into the preclinical stage, 
honing a more fit-for-purpose QSP strategy that benefits from 
basic pharmacology studies and more specific data on the 
pathways modulated by the molecular entity under development 
is a natural transition from an all-encompassing disease platform. 
This fit-for-purpose model also provides a means of utilizing 
translational strategies as the compound moves into the clinic 
to provide decision value for project teams on the path to 
clinical proof of concept. This QSP model is informed by 
clinical data and needs to be  fitted to this data, as well as 
data that have been gleaned from earlier discovery and 
development efforts, to appropriately capture the disease trajectory 
of the relevant patient population to be  assessed in clinical 
proof of concept and in late development. Finally, as candidate 
molecules enter late development, a data-driven and informed 

QSP modeling strategy can shed light on the precision medicine 
aspects of patient segment response or non-response and provide 
mechanistic underpinnings to variability in patient sub-segments. 
As the field of QSP modeling advances and the ability to 
leverage adjacent disciplines such as data science, bioinformatics, 
and systems biology and control continues to evolve and mature, 
the acceptability of QSP models for internal and regulatory 
decision making will increase, and more case studies showcasing 
these capabilities will emerge.
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FIGURE 3 | Top left: Example of a metabolic network known as reverse cholesterol transport in humans, described in reference McQuade et al. (2017). Top right: 
Graph of flux correlations. The nodes correspond to edges from the network. The relationships between fluxes in a cholesterol metabolism model at equilibrium. 
Nodes in the graph are fluxes. Red nodes to the left indicate independent fluxes and blue nodes are dependent fluxes. An edge between a red node and another 
node indicates that the expression for the dependent flux contains the independent flux. Dependent fluxes have edges between them when they share a dependent 
flux. Middle: The matrix S is the linear-in-flux-expression (LIFE) version of the stoichiometric matrix corresponding to the top left network. x1 corresponds to v1, etc. 
Bottom: The span of the positive null space is shown. Note that the nullity of S is 4. However, the positive basis requires six positively independent elements. The 
positive basis permits choosing ai ≥0 results in flux vectors that lie in the null space of S and the positive orthant.
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