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ON THE STRENGTH OF GENERAL POLYNOMIALS

ARTHUR BIK AND ALESSANDRO ONETO

Abstract. A slice decomposition is an expression of a homogeneous polynomial as a sum of forms
with a linear factor. A strength decomposition is an expression of a homogeneous polynomial as a
sum of reducible forms. The slice rank and strength of a polynomial are the minimal lengths of such
decompositions, respectively. The slice rank is an upper bound for the strength and the gap between
these two values can be arbitrary large. However, in line with a conjecture by Catalisano et al. on
the dimensions of secant varieties of the varieties of reducible forms, we conjecture that equality holds
for general forms. By using a weaker version of Fröberg’s Conjecture on the Hilbert series of ideals
generated by general forms, we show that our conjecture holds up to degree 7 and in degree 9.

1. Introduction and main results

Additive decompositions of homogeneous polynomials can be a tool to provide useful classifications. We
consider the ring S = k[x0, . . . , xn] of polynomials in n+ 1 variables with coefficients in an algebraically
closed field k, equipped with the standard gradation S =

⊕
d≥0 Sd, where Sd denotes the k-vector space

of degree-d homogeneous polynomials, or forms. Let f ∈ Sd be a form of degree d ≥ 2.

First, we consider (symmetric) slice decompositions of f ; that is, expressions of the form

(1.1) f = ℓ1g1 + . . .+ ℓrgr,

where the ℓi are linear forms. We call the smallest length of such a decomposition the (symmetric) slice
rank of f . We denote it by sl.rk(f).

From a slice decomposition such as (1.1), it is clear that the hypersurface defined by the vanishing of f
contains a linear space of codimension r. A classical example of this type of decomposition and their
relation with the geometry of linear spaces on hypersurfaces goes back to the work of Cayley and Salmon:
the properties of the celebrated 27 lines lying on a smooth cubic surface are related to the 120 ways to
write the corresponding quaternary cubic as f = ℓ1ℓ2ℓ3 +m1m2m3, where the ℓi’s and mi’s are linear
forms. See [HLV19] for a recent exposition of these equations and the related literature.

The term slice decomposition appeared in [TS16] in the context of ordinary tensors: these decompositions
have been used to study subsets of Fn

q with no three-terms arithmetic progressions [BCC+17, CLP17,
EG17]. In both settings, slice decompositions consist of sums of terms with a linear factor. However,
even when we view homogeneous polynomials as symmetric tensors, the symmetric slice rank we consider
here is different than the slice rank defined in [TS16]; see Remark 2.2.

The exact value of the slice rank for a general form of degree d in n+ 1 variables is known to be

(1.2) sl.rk◦d,n := min

{
r ∈ Z≥(n+1)/2

∣∣∣∣ r(n+ 1− r) ≥
(
d+ n− r

d

)}
;

see Corollary 2.9. It equals the smallest codimension of a linear space contained in the general hypersur-
face of degree d in Pn, i.e., the smallest r such that the Fano variety of linear spaces of codimension r
in the general hypersurface of degree d in n-dimensional projective space is nonempty. The dimension
of such Fano varieties (and therefore their non-emptiness) is well-known (see Section 2.1). We refer for
example to [Har92, Example 12.5] or the recent survey [CZ19, Section 2]. As observed in [CCG08], a
more algebraic approach involves the study of the dimension of the k-th secant variety of the variety of
forms with a linear factor in the projective space of degree-d forms: this dimension can be computed by
using a result by Hochster and Laksov [HL87, Theorem 1] showing that an ideal generated by general
forms of the same degree do not have linear syzygies.
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Slice decompositions are a special case of strength decompositions; that is, expressions of the form

(1.3) f = g1h1 + . . .+ grhr,

where deg(gi), deg(hi) > 0. The smallest length of such a decomposition is called the strength of f . We
denote it by str(f). Note that our notion of strength differs from the original one in [AH20a] by 1. The
advantage of the definition we use is that, like for other notions of rank, a form has strength ≤ r if and
only if it can be written as a sum of r forms of strength ≤ 1.

From a decomposition such as (1.3), it is clear that the variety defined by the vanishing of the gi is
contained in the hypersurface defined by the vanishing of f , but there is no reason to expect that the gi
form a complete intersection. However, this can be assumed for the general hypersurface; see [CCG08].
Strength decompositions were used by Ananyan and Hochster in [AH20a] to prove a famous conjecture
by Stillman on the existence of a uniform upper bound, independent on the number of variables, on the
projective dimension of a homogeneous ideals in polynomial rings.

Since then, the notion of strength has been prominent in several works: Ananyan and Hochster used
it to study explicit Stillman bounds [AH20b]; Erman, Sam and Snowden used it in their works on big
polynomial rings, also in connection with Hartshorne’s conjecture [ESS20]; Bik, Draisma and Eggermont
proved the universality of the notion of strength in [BDE19], generalizing previous results of Kazhdan
and Ziegler [KZ18] and of Derksen, Eggermont and Snowden [DES17]. Moreover, Ballico and Ventura
generalized the notion of strength and symmetric slice rank to sections of line bundles over algebraic
varieties [BV20].

However, the knowledge on strength of polynomials is still very limited. For example, on the space of
homogeneous polynomials of fixed degree d and fixed number of variables n+ 1, neither the general nor
the maximal value of the strength is known for arbitrary n, d. We have

general strength ≤ maximal strength ≤ maximal slice rank = general slice rank,

where the latter equality follows from the fact that the property of having bounded slice rank is a Zariski-
closed condition (see Section 2.1). In this paper, we want to address the following conjecture which states
that each of these values are equal.

Conjecture 1.1. Let f be a general form of degree d ≥ 2 in n+ 1 variables. Then str(f) = sl.rk◦n,d.

As far as we know, this conjecture has not been explicitly stated before in the literature; however, it was
implicitly given within the analysis in [CGG+19] on the dimension of secant varieties of the variety of
reducible forms. In particular, Conjecture 1.1 is implied by the following stronger conjecture.

Conjecture 1.2 ([CGG+19, Remark 7.7]). For all integers d ≥ 2 and n, r ≥ 1, the dimension of the r-th
secant variety of the variety of reducible forms of degree d in n+1 variables is equal to the dimension of
the r-th secant variety of the subvariety of forms with a linear factor.

Remark 1.3. In fact, we conjecture that the r-th secant variety of the subvariety of forms with a linear
factor is the unique component of the r-th secant variety of the variety of reducible forms of degree d in
n+ 1 variables unless (n, d, r) = (3, 4, 2). See Remark 5.15. ♣

Conjecture 1.2 implies Conjecture 1.1. Indeed, a general element of the r-th secant variety of the
variety of reducible forms (respectively forms with a linear factor) has by definition a length-r strength
decomposition (respectively slice decomposition) and the conjecture implies that the general form lies
on the r-th secant variety of the variety of reducible forms if and only if it lies on the r-th secant variety
of the variety of forms with a linear factor. Conjecture 1.1 is known to be true in some cases:
(1) If d ≥ 3

2n + 1
2 by [Sza96, Corollary A] where the author studies complete intersection curves on

general hypersurfaces. Indeed, in this range, the general slice rank is at least n− 1.
(2) If 2 · sl.rk◦n,d ≤ n+2 by [CCG08, Theorem 5.1]. Here Conjecture 1.2 is deduced from the known cases
of Fröberg’s conjecture on the Hilbert series of ideals generated by general forms.

Our main results are the following theorem and its corollary.

Theorem 1.4. Conjecture 1.2 holds for d ≤ 7 and d = 9.

Corollary 1.5. Conjecture 1.1 holds for d ≤ 7 and d = 9.
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As observed in [CCG08], the latter result can be rephrased as follows.

Corollary 1.6. Let d ∈ {2, 3, 4, 5, 6, 7, 9} and n ≥ 1 be any integers. Then the general hypersurface
in Pn

k
of degree d does not contain any complete intersection of codimension r < sl.rk◦n,d.

See Table 1 for an overview of the currently known cases.

Our approach to computing dimensions of the different components of secant varieties of the varieties
of reducible forms follows the one of [CCG08] and [CGG+19]: the tangent spaces at general points are
defined by homogeneous parts of ideals generated by general forms and, therefore, we study Hilbert
functions of general ideals. However, instead of Fröberg’s conjecture (Conjecture 4.1) we focus on the
inequality (5.5) which implies a weaker version (Conjecture 4.2) where the equality between the Hilbert
series of an ideal generated by general forms and the prescribed power series is replaced by a coefficient-
wise inequality. We show that this inequality holds in low degrees (d ≤ 7 and d = 9) for the ideals of
our interest; see Section 4. Then, after a careful and technical study of the asymptotic behaviour of
the prescribed power series, we deduce that in this numerical range Conjecture 1.2 and, consequently,
Conjecture 1.1 hold. Moreover, our analysis allows us to deduce that, for d ≤ 7 and d = 9, the r-th
secant variety of the variety of forms with a linear factor is the unique maximal-dimension component
of the r-th secant variety of the variety of reducible forms, except in the case (n, d, r) = (3, 4, 2) where
the components are all of codimension one; see Remark 5.15.

❍
❍
❍❍

n d 2 3 4 5 6 7 8 9 10 11 12 · · ·
2
3
4
5
6
7
8
... d ≥ 3

2n+ 1
2

� : [Sza96, Corollary A]
� : [CCG08, Theorem 5.1]
� : Corollary 1.5

Table 1. State-of-the-art of Conjecture 1.1.

Structure of the paper. Sections 2 and 3, go over the basic properties of the slice rank and strength
of forms, respectively. In Sections 4, we discuss Fröberg’s conjecture. In Section 5, we prove Theorem 1.4
assuming Lemma 5.1. And finally, in Section 6, we prove Lemma 5.1.

Acknowledgements. We thank Juliette Bruce for the proof of Proposition 3.2 which simplifies the proof
we had in a previous version of this paper. We thank an anonymous referee for useful comments which
helped us to improve the first version of our paper. A.O. thanks the University of Bern (Switzerland)
for its hospitality during a visit where the project of the paper was discussed. During this project,
A.B. was supported by the NWO Vici grant entitled Stabilisation in Algebra and Geometry and A.O.
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María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445) and from the Alexander
von Humboldt-Stiftung (Germany) via a Humboldt Research Fellowship for Postdoctoral Researchers
(April 2019–March 2020).

2. The slice rank of a form

As far as we know, the term slice rank for tensors was explicitly introduced by Sawin and Tao in [TS16].
Here, we consider a symmetric version of this notion.

Definition 2.1. Let f ∈ Sd. A (symmetric) slice decomposition of f is an expression

f = ℓ1g1 + . . .+ ℓrgr,

where ℓi ∈ S1, gi ∈ Sd−1. The minimal length r of a slice decomposition of f is the (symmetric) slice
rank of f . We denote it by sl.rk(f).
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Remark 2.2. If V1, . . . , Vd are k-vector spaces, the slice rank of a tensor t ∈⊗j Vj is defined as follows. For

each i ∈ {1, . . . , d}, let ⊗i : Vi×
⊗

j 6=i Vj →
⊗

j Vj be the bilinear map sending (vi, v1⊗· · ·⊗ v̂i⊗· · ·⊗vd)

to v1⊗· · ·⊗ vd. Here v̂i denotes that vi is missing from the expression. Then, the slice rank of t ∈⊗j Vj

is the smallest length r of an expression

t =

r∑

k=1

vk ⊗ik tk,

where vk ∈ Vik and tk ∈ ⊗
j 6=ik

Vj for all k. Since symmetric tensors are naturally identified with
homogeneous polynomials, we have two notions of slice rank in this case, which are very different.
Consider for example the symmetric tensor

t :=
1

d
(x0 ⊗ x1 ⊗ · · · ⊗ x1 + x1 ⊗ x0 ⊗ x1 ⊗ · · · ⊗ x1 + . . .+ x1 ⊗ · · · ⊗ x1 ⊗ x0)

corresponding to the monomial x0x
d−1
1 ∈ Sd. The slice rank from Definition 2.1 of the polynomial x0x

d−1
1

is 1, while the slice rank defined in [TS16] of the above tensor is equal to 2. It is for this reason that we
call the slice rank from Definition 2.1 the symmetric slice rank. However, in this paper we only consider
homogeneous polynomials and therefore we can call it simply the slice rank since no ambiguity occurs.

We see that the tensor t has slice rank ≤ 2 using the following decomposition

t = x0 ⊗1 (x1 ⊗ · · · ⊗ x1) + x1 ⊗1

(
x0 ⊗ x1 ⊗ · · · ⊗ x1 + x1 ⊗ x0 ⊗ · · · ⊗ x1 + . . .+ x1 ⊗ · · · ⊗ x1 ⊗ x0

)
.

To see that the tensor has slice rank > 1, we note that any tensor t ∈⊗j Vj induces natural maps

〈−, t〉i : Hom
(⊗

j 6=iVj , k
)
→ Vi, i = 1, . . . , d

with the property that the image of 〈−, v⊗i t〉i is spanned by v. For our tensor t, the images these maps
are all spanned by x0 and x1. So the tensor must have slice rank > 1. ♣

Example 2.3. By the Fundamental Theorem of Algebra, any nonzero binary form (n = 1) has slice rank
equal to 1. The slice rank is subadditive, i.e., sl.rk(

∑
i fi) ≤

∑
i sl.rk(fi). It follows that the slice rank

of a homogeneous polynomial in n+ 1 variables has slice rank ≤ n. Indeed, any polynomial f ∈ Sd can
be written as

f = f(x0, x1, 0, . . . , 0) + x2 · g2 + . . .+ xn · gn, g2, . . . , gn ∈ Sd−1.

The same bound can be explained more geometrically: any point P = {ℓ1 = . . . = ℓn = 0} on the
hypersurface {f = 0} ⊆ Pn

k
provides a slice decomposition of f with n summands. This geometric

interpretation of slice decompositions in terms of linear spaces contained in hypersurfaces is explained
in Section 2.1. ♠

Example 2.4. In the case of quadrics (d = 2), if k is a field of characteristic different than 2 and i ∈ k is
an element such that i2 = −1, then we have

ℓ1ℓ2 =

(
1

2
(ℓ1 + ℓ2)

)2

+

(
i

2
(ℓ1 − ℓ2)

)2

and ℓ21 + ℓ22 = (ℓ1 + iℓ2)(ℓ1 − iℓ2)

for all linear forms ℓ1, ℓ2. Identifying quadrics with symmetric matrices of size (n + 1) × (n + 1), it
follows that the space of polynomials of slice rank ≤ r coincides with the variety of symmetric matrices
of rank ≤ 2r. Hence, the general slice rank in S2 is

⌈
n+1
2

⌉
. ♠

2.1. Fano varieties of linear spaces and the general slice rank. Given f ∈ Sd, let Xf be the hy-
persurface {f = 0} in the n-dimensional projective space Pn

k
. From a slice decomposition of f of length r,

it is immediate that Xf contains a linear space of codimension r. Conversely, if the hypersurface Xf

contains the linear space {ℓ1 = . . . = ℓr = 0}, then f belongs to the ideal (ℓ1, . . . , ℓr), i.e., it gives rise to
a slice decomposition of f of length r. Therefore we have

(2.1) sl.rk(f) = min {codim(H) |H linear space, H ⊆ Xf} .
As a direct consequence of this interpretation of the slice rank, it is easy to prove that the set of
homogeneous polynomials of bounded slice rank is an algebraic variety. Indeed, it is enough to consider
the incidence variety Ξ = {(H, [f ]) | f |H = 0} ⊆ G(n − r, n) × P(Sd). Since the Grassmannian is a
complete variety, the projection of Ξ to the second factor is a closed map. For the same proof see
for example [TS16, Corollary 2] in the tensorial case or [DES17, Proposition 2.2] in the case of cubic
polynomials.
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It follows that:

(1) The set of forms with slice rank ≤ r is Zariski-closed.

(2) The slice rank of the general form in Sd coincides with the maximal slice rank. We denote it by
sl.rk◦n,d and simply call it the general slice rank in Sd.

We point out these two facts because they also hold for the usual rank of matrices, but fail for its higher-
order generalizations of tensor rank and symmetric rank. For this reason, there is no need to define the
border slice rank as in the case of other ranks.

By (2.1), the notion of slice rank is related to the study of the Fano varieties Fk(X) parametrizing
k-dimensional linear spaces contained in a hypersurface X . See [Har92, Example 12.5] or the recent
survey [CZ19]. Concretely, given f ∈ Sd, we have

(2.2) sl.rk(f) = min {r ∈ Z≥0 |Fn−r(Xf ) 6= ∅} .

Example 2.5. Let f = xd
0 + . . .+ xd

n be the degree-d Fermat polynomial. Then

sl.rk(f) ≤
⌈
n+ 1

2

⌉

since f can be written as the sum of the binary forms xd
2i+xd

2i+1 for i = 0, . . . , ⌊(n+1)/2⌋ together with

the binary form xd
n if n is even. Conversely, since Xf is smooth, the slice rank of f is at least (n+ 1)/2.

Indeed, any smooth nondegenerate hypersurface in Pn
k

cannot contain a linear space of dimension m such
that 2m ≥ n; see [Sta06, Proposition 1]. Therefore, sl.rk(f) =

⌈
n+1
2

⌉
. ♠

Remark 2.6. Note that, at least when also considering fields that are not algebraically closed, the slice
rank of a form can go down when we extend the ground field k. For an example of this, again consider
a Fermat polynomial f = xd

0 + . . .+ xd
n of even degree d ≥ 2. The only real point on Xf is 0, and so the

slice rank of f equals n+ 1 over R, while the slice rank of f over C equals
⌈
n+1
2

⌉
. ♣

Proposition 2.7. Let g, h be forms of degree ≥ 2 and take f = g · h. Then

sl.rk(f) = min(sl.rk(g), sl.rk(h)).

Proof. Note that Xf = Xg ∪Xh and so a linear subspace, which is always irreducible, is contained in Xf

if and only if it is contained in Xg or Xh. The proposition now follows from (2.1). �

A numerical condition to guarantee the nonemptiness of the Fano scheme is well-known.

Theorem 2.8 ([Har92, Theorem 12.8]). Let n ≥ 1, d ≥ 3 and r ≥ 0 be positive integers and take

δ(n, d, r) := (r + 1)(n− r)−
(
d+ r

d

)
.

Let f ∈ Sd be a general form.

(1) If δ(n, d, r) ≥ 0, then Fr(Xf ) is nonempty, smooth and of dimension δ(n, d, r).

(2) If δ(n, d, r) < 0, then Fr(Xf ) is empty.

Using Theorem 2.8, the general slice rank in Sd can be computed.

Corollary 2.9. Let n ≥ 1 and d ≥ 3 be integers. The general slice rank in Sd is

sl.rk◦n,d = min

{
r ∈ Z≥0

∣∣∣∣ r(n+ 1− r) ≥
(
d+ n− r

d

)}
.

Proof. Let f ∈ Sd be a general form. By Theorem 2.8, Fn−r(Xf ) 6= ∅ if and only if

(n− r + 1)r −
(
d+ n− r

d

)
≥ 0.

By (2.2), this concludes the proof. �
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Example 2.10. By [Har92, Theorem 12.8], if d > 2n − 3, then general degree-d hypersurfaces in Pn
k

contain no lines. So in this case, it follows that the general slice rank is equal to n. ♠

Remark 2.11. If we consider a family of polynomials F = {f1, . . . , fs} ∈ ∏s
i=1 Sdi , then we can ask for

the simultaneous slice rank, that is, the minimal set of linear forms {ℓ1, . . . , ℓr} such that there exist gi,j
with fi =

∑r
j=1 ℓjgi,j for all i. This is the minimal codimension of a linear space contained in the variety

XF := {f1 = . . . = fs = 0}. Generically, if s ≤ n+ 1, the forms in F may be assumed to form a regular
sequence. This means that XF is a complete intersection. Fano varieties of linear spaces in complete
intersections have also been studied extensively and we have again a result analogous to Theorem 2.8.
See for example [Bor90, Corollary 2.2] or the recent survey [CZ19, Theorem 2.6]. Consequently, the value
of the general simultaneous slice rank is known: fix positive integers d1, . . . , ds ≥ 3 and n ≥ 1, then the
simultaneous slice rank of a general family F ∈∏s

i=1 Sdi is

(2.3) sl.rk◦n,(d1,...,ds) := min

{
r ∈ Z≥0

∣∣∣∣∣ r(n + 1− r) ≥
s∑

i=1

(
di + n− r

di

)}
.

In this case, the set of polynomial vectors with bounded simultaneous slice rank is also a variety. In
particular, the right-hand-side of (2.3) is also the maximal simultaneous slice rank in

∏s
i=1 Sdi . ♣

3. The strength of a form

Slice decompositions are special examples of strength decompositions.

Definition 3.1. Let f ∈ Sd. A strength decomposition of f is an expression

f = g1h1 + . . .+ grhr,

where gi ∈ Sdi , hi ∈ Sd−di . The minimal length r of a strength decomposition of f is called the strength
of f . We denote it by str(f).

Clearly, we have str(f) ≤ sl.rk(f) for all f ∈ Sd. Moreover, when d = 2, 3 or n = 1, the strength and
slice rank coincide for every polynomial. Conjecture 1.1 says that generically this also holds for forms
of higher degree. Note however that, in any degree ≥ 4, the gap between strength and slice rank can be
arbitrarily large for particular forms.

Proposition 3.2. For integers d ≥ 4 and 2 ≤ i ≤ d − 2, the set of slice ranks of forms f · g where f, g
are forms of degrees i, d− i, respectively, is unbounded.

Proof. Consider the polynomial gn,i = fn,d ·fn,d−i, where fn,j is the degree-j Fermat polynomial in n+1
variables. As we have seen in Example 2.5, the polynomial fn,j has slice rank equal to

⌈
n+1
2

⌉
. Therefore,

while the strength of gn,i is equal to 1, we have that the slice rank is
⌈
n+1
2

⌉
by Proposition 2.7. �

Example 3.3. Again, let f = xd
0 + . . .+ xd

n be the degree-d Fermat polynomial. Then

str(f) ≤ sl.rk(f) =

⌈
n+ 1

2

⌉
.

As pointed out in the introduction of [AH20a], the partial derivatives of a polynomial f =
∑r

i=1 gihi

are contained in the ideal (g1, h1, . . . , gr, hr) with 2r generators. So we get the same lower bound for
the strength of forms defining smooth nondegenerate hypersurfaces as for the slice rank. Therefore also
str(f) =

⌈
n+1
2

⌉
. ♠

We do not know whether, like the slice rank, the strength of even degree Fermat polynomials over R and
over C differ (in even degree d ≥ 4).

The notion of strength behaves very differently than the one of slice rank. For example, if f =
∑r

i=1 gihi,
then the variety {g1 = . . . = gr = 0} is clearly contained in Xf , but there is no reason to expect that it
has codimension r since the gi might not define a complete intersection if they have degrees higher than
2. In the paper [BBO+20], together with Ballico and Ventura, we underline another big difference as we
show that the set of forms with bounded strength is not necessarily Zariski-closed.
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3.1. Secant varieties of varieties of reducible forms. In [CCG08], the authors considered strength
decompositions in order to understand which complete intersections can be contained in general hy-
persurfaces. This is motivated by the following remark obtained from a private communication with
E. Ballico and E. Ventura.

Remark 3.4. Although a decomposition f =
∑r

i=1 gihi does not always imply that the subvariety

{g1 = . . . = gr = 0} ⊆ Xf

is a complete intersection, it may be assumed if we consider a general form: let r be the general strength
and U ⊆ P(Sd) be the dense subset of forms of strength r. Let U ′ ⊆ U be the subset of forms having a
strength decomposition defined by a complete intersection. Then, U ′ is dense in U and, in particular,
the general hypersurface contains a complete intersection of codimension r. Indeed, let f =

∑r
i=1 gihi ∈

U \ U ′ with deg(gi) = di. Then, since the set of regular sequences is dense, there is a (u1, . . . , ur) ∈
Sd1 × · · · × Sdr and an ǫ > 0 such that (g1 + tu1, . . . , gr + tur) is a regular sequence for each t ∈ (0, ǫ].
In particular, we have f = limt→0 ft where

ft =

r∑

i=1

(gi + tui)hi ∈ U ′.

♣

In other words, where the general slice rank measures the smallest codimension of a linear space con-
tained in a general hypersurface, the general strength measures the smallest codimension of a complete
intersection contained in a general hypersurface.

In [CCG08], the authors approach the problem by studying secant varieties of the varieties of reducible
forms. Here, we do the same. For i = 1, . . . , ⌊d/2⌋, consider the variety of degree-d forms with a factor of
degree i, i.e., the variety X(i,d−i) := {[g · h] | [g] ∈ P(Si), [h] ∈ P(Sd−i)} ⊆ P(Sd). We define the variety

of reducible forms as their union:

Xred :=

⌊d/2⌋⋃

i=1

X(i,d−i) ⊆ P(Sd).

Note that

dimX(i,d−i) = dimP(Si) + dimP(Sd−1) =

(
n+ i

n

)
+

(
n+ d− i

n

)
− 2

and dimXred = dimX(1,d−1); see [CGG+19, Proposition 7.2].

In order to give a better geometrical description of the variety of forms of bounded (border) strength, we
recall the definitions of the join of algebraic varieties and of secant varieties. Given algebraic varieties
X1, . . . , Xr ⊆ Pn

k
, the join J(X1, . . . , Xr) of X1, . . . , Xr is the Zariski-closure of the union of all linear

spaces spanned by r-tuples of distinct points in X1 × · · · ×Xr. In the particular case where X1 = . . . =
Xr = X , the join σr(X) := J(X, . . . , X) is called the r-th secant variety of X .

By definition, we see that σr(Xred) = {[f ] ∈ P(Sd) | str(f) ≤ r} ⊆ P(Sd). The variety of reducible forms
is highly reducible: we have

(3.1) σr(Xred) =
⋃

1≤a1≤···≤ar≤⌊d/2⌋

J(X(a1,d−a1), . . . , X(ar,d−ar)).

The general strength r corresponds to the first secant variety σr(Xred) that fills the ambient space.

Remark 3.5. From the proof of Proposition 3.2, we deduce that for 1 ≤ r <
⌈
n+1
2

⌉
the variety σr(Xred)

is not contained in σr(X(1,d−1)), and hence reducible. Indeed, consider g = fn,i · fn,d−i. The slice rank

of g is equal to
⌈
n+1
2

⌉
> r and, since the set of forms of bounded rank is Zariski-closed, we deduce

g 6∈ σr(X(1,d−1)). However, the strength of g is clearly equal to 1 ≤ r; hence, we have g ∈ X(i,d−i) ⊆
σr(X(i,d−i)). This idea can be extended by considering products g · h where g, h are forms with generic
slice ranks in degrees i, d− i, respectively. Note however that this idea cannot prove the reducibility of
σr(Xred) for max{sl.rk◦2,n, . . . , sl.rk◦⌊d/2⌋,n} ≤ r < sl.rk◦d,n, which is a nonempty range in general. ♣

In [CGG+19, Remark 7.7], the authors conjecture the following.
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Conjecture (Conjecture 1.2). For every r, the dimension of the r-th secant variety of the variety of
reducible forms is equal to the dimension of the component given by the r-th secant variety of the variety
of forms with a linear factor. I.e.,

dim σr(Xred) = dimσr(X(1,d−1)).

In [CGG+19, Theorem 7.4], the authors prove this conjecture for 2r ≤ n. Conjecture 1.2 implies
Conjecture 1.1 on the general equality of slice rank and strength. Indeed, the general slice rank is equal
to r if and only if the r-th secant variety of Xred is the first one filling the ambient space and, assuming
Conjecture 1.2, this is equivalent to saying that the r-th secant variety of X(1,d−1) is the first one filling
the ambient space, i.e., the general form has slice rank equal to r.

Following a standard approach to studying dimensions of secant varieties, we look at the tangent spaces
of the components to σr(Xred) at general points. We can compute these spaces using the classical
Terracini’s Lemma.

Lemma 3.6 (Terracini’s Lemma, [Ter11]). Let X1, . . . , Xr be algebraic varieties. Let p1 ∈ X1, . . . ,
pr ∈ Xr and q ∈ 〈p1, . . . , pr〉 be general points. Then TqJ(X1, . . . , Xr) = 〈Tp1(X1), . . . , Tpr(Xr)〉.

Consider the parametrization of X(a,d−a)

ϕ : Sa × Sd−a → Sd(3.2)

(g, h) 7→ g · h
and fix a point p = (g, h) ∈ Sa × Sd−a. For a tangent direction (g′, h′), consider the line

Lp(t) = (g + tg′, h+ th′).

The tangent direction to the curve ϕ(Lp(t)) through the point ϕ(p) = gh is gh′ + g′h, indeed
(

d

dt
(g + tg′)(h+ th′)

)∣∣∣∣
t=0

= g′h+ gh′.

Therefore, the tangent space at [g · h] ∈ X(a,d−a) is T[gh]X(a,d−a) = P((g, h)d) where (g, h)d is the
homogeneous degree-d part of the ideal (g, h). Hence, by Terracini’s Lemma, if q is a general point on
J(X(a1,d−a1), . . . , X(ar,d−ar)), then

(3.3) TqJ(X(a1,d−a1), . . . , X(ar ,d−ar)) = P((g1, h1, . . . , gr, hr)d),

where the gi and hi are general. So, in order to prove Conjecture 1.2, we study the dimensions of homo-
geneous components of ideals generated by general forms or, equivalently, their Hilbert functions.

Remark 3.7. The r-th secant variety σr(X(1,d−1)) of the variety of forms with a linear factor is the
variety of forms with slice rank ≤ r. From Terracini’s Lemma, we know that the tangent space to
σr(X(1,d−1)) at a general point corresponds to (ℓ1, g1, . . . , ℓr, gr)d where the ℓi are linear and the gi have
degree d − 1. A result by Hochster and Laksov [HL87] states that ideals generated by general forms of
degree d−1 do not have linear syzygies. As a consequence of this, it is possible to compute the dimension
of (ℓ1, g1, . . . , ℓr, gr)d and hence of all secant varieties σr(X(1,d−1)); see [CCG08, Proposition 5.6]. ♣

4. Hilbert functions of general ideals and Fröberg’s conjecture

Given a homogeneous ideal I ⊆ S, the Hilbert function of S/I is the numerical function

HFS/I : Z≥0 → Z≥0(4.1)

d 7→ dim(S/I)d =: HFS/I(d)

and the Hilbert series of S/I is the generating power series HSS/I(t) :=
∑

d≥0HFS/I(d)t
d ∈ Z[[t]]. Hilbert

series are among the most interesting and well-studied algebraic invariants associated to an homogeneous
ideal since they encode a lot of information of the algebraic variety defined by it. By (3.3),

codim J(X(a1,d−a1), . . . , X(ar,d−ar)) = HFS/I(d),

where I = (g1, h1, . . . , gr, hr) is generated by general forms with deg(gi) = ai and deg(hi) = d−ai.

The Hilbert series for ideals generated by general forms is prescribed by Fröberg’s conjecture.
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Notation. Let P =
∑

i≥0 ait
i ∈ Z[[t]] and take

bi =

{
ai if aj ≥ 0, for j ≤ i

0 otherwise

for every i ≥ 0. Then we write coeffd(P ) := ad for each integer d ≥ 0 and ⌈P ⌉ :=∑i≥0 bit
i.

Conjecture 4.1 (Strong Fröberg’s Conjecture (sFC), [Frö85]). Let f1, . . . , fs be general forms in n+ 1
variables of degrees d1, . . . , ds and take I = (f1, . . . , fs) ⊆ S. Then for each integer d ≥ 0, we have

(4.2) coeffd

(
HSS/I(t)

)
= coeffd

(⌈∏s
i=1(1− tdi)

(1− t)n+1

⌉)
.

When the number of generators s is at most the number of variables n+1, a general ideal is a complete
intersection and it is an easy exercise in commutative algebra to see that the formula holds with no
need for brackets. The solution of the case s = n + 2 is attributed to Stanley; see [Iar82, Proposition
at pg. 367]. The sFC is also known in a few more cases: in two variables [Frö85]; in three variables
[Ani86]; and in degree mini{di} + 1 [HL87]. Evidence pointing towards the conjecture is also given by
an asymptotic result in [Nen17]. See [BFL18] for a recent survey on these questions.

In [Iar97], a weaker version of Fröberg’s conjecture is also considered.

Conjecture 4.2 (Weak Fröberg’s Conjecture (wFC), [Iar97]). Let f1, . . . , fs be general forms in n+ 1
variables of degrees d1, . . . , ds and take I = (f1, . . . , fs) ⊆ S. Then for each integer d ≥ 0, we have

(4.3) coeffd

(
HSS/I(t)

)
≥ coeffd

(⌈∏s
i=1(1− tdi)

(1− t)n+1

⌉)
.

Not much more is known regarding wFC compared to sFC. In [Frö85], Fröberg proved that the inequality
holds lexicographically, i.e., it holds at the first coefficient where equality fails. It is trivial to notice that
wFC holds for d < 2mini{di}, since we have no Koszul syzygies in this range. Following an idea of
Iarrobino [Iar97], our approach essentially is to prove instances of wFC from instances of sFC and wFC
for fewer generators.

5. Proof of the main results

Fix integers n ≥ 1, d ≥ 2 and ℓ1, ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0. Write r = ℓ1 + ℓ2 + . . .+ ℓ⌊d/2⌋ and

Jℓ1,...,ℓ⌊d/2⌋ := J
(
σℓ1(X(1,d−1)), σℓ2(X(2,d−2)), . . . , σℓ⌊d/2⌋(X(⌊d/2⌋,⌈d/2⌉))

)
.

Then, we want to show that

(5.1) dim Jℓ1,...,ℓ⌊d/2⌋ ≤ dimσr(X(1,d−1)).

Write m(ℓ) := n− ℓ and take

fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋) :=
∑

β∈Z
2×(⌊d/2⌋−1)
≥0

(−1)|β|
⌊d/2⌋∏

i=2

(
ℓi
β1,i

)(
ℓi
β2,i

)
·
(
m+ d− ||β||

m

)
− (n−m)(m+ 1),

where we write ||β|| :=∑⌊d/2⌋
i=2 (β1,i · i+ β2,i · (d− i)) and |β| :=∑⌊d/2⌋

i=2 (β1,i + β2,i) for all

β =

(
β1,2 β1,3 · · · β1,⌊d/2⌋

β2,2 β2,3 · · · β2,⌊d/2⌋

)
∈ Z

2×(⌊d/2⌋−1)
≥0 .

It is direct to show that

coeffd

(∏⌊d/2⌋
i=1 (1− ti)ℓi(1 − td−i)ℓi

(1− t)n+1

)
= coeffd

(
(1 − td−1)ℓ1

∏⌊d/2⌋
i=2 (1− ti)ℓi(1 − td−i)ℓi

(1− t)m(ℓ1)+1

)

= coeffd

(∏⌊d/2⌋
i=2 (1 − ti)ℓi(1− td−i)ℓi

(1− t)m(ℓ1)+1

)
− ℓ1(m(ℓ1) + 1)

= fn,d(m(ℓ1), ℓ2, . . . , ℓ⌊d/2⌋)

As explained in Remark 3.7, we have

codimσr(X(1,d−1)) = coeffd

(
(1− td−1)r

(1− t)n−r

)
.
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So in particular, we get

(5.2) codimσr(X(1,d−1)) = fn,d(m(r), 0, . . . , 0).

Now, to prove Theorem 1.4, we use the following lemma.

Lemma 5.1. Let d ≤ 10. In the same notation as above, if r = ℓ1 + . . .+ ℓ⌊d/2⌋ ≤ sl.rk◦n,d − 1, then

fn,d(m(ℓ1), ℓ2, . . . , ℓ⌊d/2⌋) ≥ fn,d(m(r), 0, . . . , 0).

If ℓ2 + . . .+ ℓ⌊d/2⌋ > 0 and (n, d, r) 6= (3, 4, 2), then the inequality holds strictly.

Before getting into the technicalities of the proof of this lemma in the next section, we show that
Theorem 1.4 follows from Lemma 5.1. The key will be to prove that

(5.3) codim Jℓ1,...,ℓ⌊d/2⌋ ≥ fn,d(m(ℓ1), ℓ2, . . . , ℓ⌊d/2⌋).

This inequality, combined with Lemma 5.1 and (5.2), shows that

(5.4) codim Jℓ1,...,ℓ⌊d/2⌋ ≥ codimσr(X(1,d−1))

whenever r = ℓ1 + . . . + ℓ⌊d/2⌋ ≤ sl.rk◦n,d − 1, i.e., the assertion of Conjecture 1.2. Note here that for

r ≥ sl.rk◦n,d the variety σr(X(1,d−1)) equals the entire space and so Conjecture 1.2 holds trivially.

Remark 5.2. In [CGG+19, Lemma 7.3], the authors prove Conjecture 1.2 when 2r ≤ n+ 1. Under this
assumption, (5.3) holds with equality (see Lemma 5.5), while for larger numbers of generators, not even
the inequality is known to be true in general. Under this numerical assumption, Lemma 5.1 also gets
easier: indeed it can be deduced from the case 2r = n + 1 where the inequality is deduced from the
immediate inequality

coeffj
(1 − ti)(1 − td−i)

(1 − t)2
≥ coeffj

(1− t)(1 − td−1)

(1− t)2
, for 1 ≤ j ≤ d/2.

Hence, we focus on proving (5.3). ♣

Let f1, . . . , fs be general forms in n + 1 variables of degrees d1, . . . , ds and take I = (f1, . . . , fs). Then
we write:

• wFCn,d(d1, . . . , ds) (resp. sFCn,d(d1, . . . , ds)) if the inequality (4.3) (resp. equality (4.2)) holds.

• Pn,d(d1, . . . , ds) to indicate that the inequality

(5.5) coeffd

(
HSS/I(t)

)
≥ coeffd

(∏s
i=1(1 − tdi)

(1 − t)n+1

)

holds.

• Qn,d(d1, . . . , ds) to indicate that the inequality

(5.6) coeffd

(
HSS/I(t)

)
≤ coeffd

(∏s
i=1(1 − tdi)

(1 − t)n+1

)

holds.

Using this notation, we want to prove instances of the property P.

Remark 5.3. Note that Pn,d(d1, . . . , ds) implies wFCn,d(d1, . . . , ds). Also, if

coeffd

(⌈∏s
i=1(1− tdi)

(1− t)n+1

⌉)
= coeffd

(∏s
i=1(1− tdi)

(1− t)n+1

)
,

then sFCn,d(d1, . . . , ds) implies Pn,d(d1, . . . , ds) and Qn,d(d1, . . . , ds). ♣

Lemma 5.4. If Qn,d−ds(d1, . . . , ds−1) and Pn,d(d1, . . . , ds−1) hold, then Pn,d(d1, . . . , ds) holds as well.
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Proof. Take I ′ = (f1, . . . , fs−1). Then we have the short exact sequence

(S/I ′)d−ds

−·gs−−−→ (S/I ′)d → (S/I)d → 0.

It follows that

coeffd

(
HSS/I(t)

)
≥ coeffd

(
HSS/I′(t)

)
− coeffd−ds

(
HSS/I′(t)

)

≥ coeffd

(∏s−1
i=1 (1− tdi)

(1− t)n+1

)
− coeffd−ds

(∏s−1
i=1 (1− tdi)

(1 − t)n+1

)

= coeffd

(∏s
i=1(1− tdi)

(1− t)n+1

)
.

�

Lemma 5.5. If s ≤ n+ 1, then Qn,d(d1, . . . , ds) and Pn,d(d1, . . . , ds) hold.

Proof. As sFC holds for s ≤ n + 1 without need for the brackets around the power series, both the
properties Q and P hold. �

In our case, many of the di are equal. So we use the following notation.

Notation. We write
(a

(m1)
1 , . . . , a(ms)

s ) := (a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , as, . . . , as︸ ︷︷ ︸
ms

)

for all a1, . . . , as ∈ N and m1, . . . ,ms ∈ Z≥0.

Let d ≥ 1 and m1, . . . ,md ∈ Z≥0 be integers and take I = I1 + . . . + Id where Ii ⊆ S is an ideal

generated by mi general forms of degree i. Our goal is to prove that Pn,d(1
(m1), . . . , d(md)) holds in the

cases we need. Note that we can always assume to have no linear generators since, by genericity, they
can always be removed in exchange for a decrease in the number of variables. More precisely, we have
S/I ∼= (S/I1)/(I2 + . . .+ Is) and

∏d
i=1(1− ti)mi

(1− t)n+1
=

∏d
i=2(1− ti)mi

(1 − t)n−m1+1
.

It follows that Pn,d(1
(m1), . . . , d(md)) and Pn−m1,d(2

(m2), . . . , d(md)) are equivalent. For the property Q,
we have the same equivalence.

Lemma 5.6. Suppose that m2 ≤
(
n+2
2

)
. Then Qn,2(2

(m2), . . . , d(md)) holds.

Proof. We have

coeff2

(
HSS/I(t)

)
= max

((
n+ 2

2

)
−m2, 0

)
=

(
n+ 2

2

)
−m2 = coeff2

(∏d
i=2(1− ti)mi

(1− t)n+1

)

since m2 ≤
(
n+2
2

)
. �

Lemma 5.7. Suppose that m2 ≤
(
n+2
2

)
and m2(n+1)+m3 ≤

(
n+3
3

)
. Then Qn,3(2

(m2), . . . , d(md)) holds.

Proof. We have

coeff1

(∏d
i=2(1− ti)mi

(1 − t)n+1

)
= n+ 1 ≥ 0, coeff2

(∏d
i=2(1− ti)mi

(1− t)n+1

)
=

(
n+ 2

2

)
−m2 ≥ 0

and

coeff3

(∏d
2=1(1− ti)mi

(1− t)n+1

)
=

(
n+ 3

3

)
−m2(n+ 1)−m3 ≥ 0.

Hence

coeff3

(⌈∏d
i=2(1 − ti)mi

(1− t)n+1

⌉)
= coeff3

(∏d
i=2(1− ti)mi

(1 − t)n+1

)
.

Since it is a consequence of [HL87, Theorem 1] that sFCn,3(2
(m2), . . . , d(md)) holds, the lemma follows. �
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Proposition 5.8. Suppose that m2 − 1 ≤
(
n+2
2

)
. Then Pn,4(2

(m2), 3(m3), 4(m4)) holds.

Proof. Write I = (f1, . . . , fm2 , g1, . . . , gm3 , h1, . . . , hm4), where deg(fi) = 2, deg(gi) = 3, deg(hi) = 4.
Then I = I ′ + J where I ′ = (f1, . . . , fm2) and J = (g1, . . . , gm3 , h1, . . . , hm4). By [HL87, Theorem 1],
dim J4 = m3(n+ 1) +m4. Therefore, we deduce that

dim I4 ≤ dim I ′4 + dim J4 = dim I ′4 +m3(n+ 1) +m4,

i.e.,

coeff4

(
HSS/I(t)

)
≥ coeff4

(
HSS/I2(t)

)
−m3(n+ 1)−m4.

So since

coeff4

(∏4
i=2(1− ti)mi

(1− t)n+1

)
= coeff4

(
(1 − t2)m2

(1− t)n+1

)
−m3(n+ 1)−m4,

it suffices to prove that Pn,4(2
(m2)) holds. We do this using induction on m2. Note that Pn,4(2

(0)) holds

and that Pn,4(2
(m2)) follows from Pn,4(2

(m2−1)) and Qn,2(2
(m2−1)) for m2 > 0 by Lemma 5.4. Since

m2−1 ≤
(
n+2
2

)
, by Lemma 5.6, the second condition is satisfied in every step. So the proposition follows

by induction. �

Proposition 5.9. Suppose that (m2 − 1)(n+ 1) ≤
(
n+3
3

)
. Then Pn,5(2

(m2), 3(m3), 4(m4), 5(m5)) holds.

Proof. With the same argument as in the previous proposition, it is enough to prove the case m4 =
m5 = 0. We prove that Pn,5(2

(m2), 3(m3)) holds using induction on m2 and m3. Note that Pn,5(2
(0))

holds and that Pn,5(2
(m2)) follows from Pn,5(2

(m2−1)) and Qn,3(2
(m2−1)) for m2 > 0 by Lemma 5.4. By

Lemma 5.7, the second condition is satisfied in every step. So Pn,5(2
(m2)) holds. Similarly, note that

Pn,5(2
(m2), 3(m3)) follows from Pn,5(2

(m2), 3(m3−1)) and Qn,2(2
(m2), 3(m3−1)) for m3 > 0 by Lemma 5.4.

By Lemma 5.6, the second condition is satisfied in every step. So the proposition follows by induction. �

Proposition 5.10. Suppose that m2 ≤ n+ 1 and m2(n+ 1) +m3 − 1 ≤
(
n+3
3

)
. Then

Pn,6(2
(m2), . . . , 6(m6))

holds.

Proof. With the same argument as in Proposition 5.8, it is enough to prove the case m5 = m6 = 0.
We prove that Pn,6(2

(m2), 3(m3), 4(m4)) holds using induction on m3 and m4. Note that Pn,6(2
(m2))

holds by Lemma 5.5, that Pn,6(2
(m2), 3(m3)) follows from Pn,6(2

(m2), 3(m3−1)) and Qn,3(2
(m2), 3(m3−1))

for m3 > 0 by Lemma 5.4 and that Pn,6(2
(m2), 3(m3), 4(m4)) follows from Pn,6(2

(m2), 3(m3), 4(m4−1)) and

Qn,2(2
(m2), 3(m3), 4(m4−1)) for m4 > 0 by Lemma 5.4. By Lemmas 5.6 and 5.7, the second condition is

satisfied in every step. So the proposition follows by induction. �

Proposition 5.11. Suppose m2 +m3 ≤ n+ 1. Then Pn,7(2
(m2), . . . , 7(m7)) holds.

Proof. With the same argument as in Proposition 5.8, it is enough to prove the case m6 = m7 = 0. We
prove that the property Pn,7(2

(m2), 3(m3), 4(m4), 5(m5)) holds using induction on m4 and m5. Note that

Pn,7(2
(m2), 3(m3)) holds by Lemma 5.5, Pn,7(2

(m2), 3(m3), 4(m4)) follows from Pn,7(2
(m2), 3(m3), 4(m4−1))

and Qn,3(2
(m2), 3(m3), 4(m4−1)) for m4 > 0 by Lemma 5.4 and that Pn,7(2

(m2), 3(m3), 4(m4), 5(m5)) fol-

lows from Pn,7(2
(m2), 3(m3), 4(m4), 5(m5−1)) and Qn,2(2

(m2), 3(m3), 4(m4), 5(m5−1)) for m5 > 0 again by
Lemma 5.4. By Lemma 5.5, the second condition is satisfied in every step. So the proposition follows by
induction. �

Proposition 5.12. Suppose that m2 +m3 +m4 ≤ n+ 1. Then Pn,9(2
(m2), . . . , 9(m9)) holds.

Proof. With the same argument as in Proposition 5.8, it is enough to prove the case m8 = m9 = 0. We
prove that Pn,9(2

(m2), . . . , 7(m7)) holds using induction on m4, m5 and m6. Note that

Pn,9(2
(m2), 3(m3), 4(m4))

holds by Lemma 5.5 and that Pn,9(2
(m2), . . . , 5(m5)) follows from

Pn,9(2
(m2), 3(m3), 4(m4), 5(m5−1)) and Qn,4(2

(m2), 3(m3), 4(m4), 5(m5−1))
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for m5 > 0, Pn,9(2
(m2), . . . , 6(m6)) follows from

Pn,9(2
(m2), . . . , 5(m5), 6(m6−1)) and Qn,3(2

(m2), . . . , 5(m5), 6(m6−1))

for m6 > 0 and Pn,9(2
(m2), . . . , 7(m5)) follows from

Pn,9(2
(m2), . . . , 6(m5), 7(m7−1)) and Qn,2(2

(m2), . . . , 6(m6), 7(m7−1))

for m7 > 0 by Lemma 5.4. By Lemma 5.5, the second condition is satisfied in every step. So the
proposition follows by induction. �

Remark 5.13. Under the assumption m2 +m3 +m4 ≤ n+1, we also have Pn,8(2
(m2), . . . , 8(m8)). We do

not state this here explicitly because it would not be enough to prove our main result (Theorem 1.4) for
d = 8; see Remark 5.14. ♣

Proof of Theorem 1.4. For d ≤ 3 there is nothing to prove. So we let d ∈ {4, 5, 6, 7, 9}.
Since by definition σsl.rk◦

n,d
(X(1,d−1)) = P(Sd), it is enough to prove that, for any (ℓ1, . . . , ℓ⌊d/2⌋) such

that r = ℓ1 + . . .+ ℓ⌊d/2⌋ < sl.rk◦n,d, we have

(5.7) dim Jℓ1,...,ℓ⌊d/2⌋ ≤ dimσr(X(1,d−1)).

Recall that the general tangent space to the join variety Jℓ1,...,ℓ⌊d/2⌋ corresponds to the projectivization

of an ideal generated by 2r general forms of degrees (1(m1), 2(m2), . . .) where:

for d = 4 : m1 = m3 = ℓ1, m2 = 2ℓ2, mi = 0 for i ≥ 4;

for d = 5 : m1 = m4 = ℓ1, m2 = m3 = ℓ2, mi = 0 for i ≥ 5;

for d = 6 : m1 = m5 = ℓ1, m2 = m4 = ℓ2, m3 = 2ℓ3; mi = 0 for i ≥ 6;

for d = 7 : m1 = m6 = ℓ1, m2 = m5 = ℓ2, m3 = m4 = ℓ3, mi = 0 for i ≥ 7; and

for d = 9 : m1 = m8 = ℓ1, m2 = m7 = ℓ2, m3 = m6 = ℓ3, m4 = m5 = ℓ4, mi = 0 for i ≥ 9.

Since d ≤ 7 or d = 9 and ℓ1 + . . . + ℓ⌊d/2⌋ < sl.rk◦n,d ≤ n, by Propositions 5.8, 5.9, 5.10, 5.11 and 5.12,
we are in a setting where the property P holds. In particular, we have

(5.8) codim Jℓ1,...,ℓ⌊d/2⌋ ≥ fn,d(m(ℓ1), ℓ2, . . . , ℓ⌊d/2⌋).

As explained in Remark 3.7, we have

codimσr(X(1,d−1)) = fn,d(m(r), 0, . . . , 0).

Hence, (5.7) follows by Lemma 5.1 and this concludes the proof. �

Remark 5.14. In degree d = 8, we would consider an ideal generated by 2r general forms of degrees
(1(m1), 2(m2), . . . , 7(m7)) where

m1 = m7 = ℓ1, m2 = m6 = ℓ2, m3 = m5 = ℓ3, m4 = 2ℓ4.

Therefore, the condition ℓ1 + . . . + ℓ4 ≤ n, which is the one we assume in the proof of Theorem 1.4, is
not enough to guarantee that m2 +m3 +m4 ≤ n+ 2 −m1, which is the condition under which we can
prove the property P as in the previous section; see Remark 5.13. ♣

Remark 5.15. From the proof of Theorem 1.4 and Lemma 5.1, we see that for d ≤ 7 and d = 9, the
variety σr(X(1,d−1)) is in fact the unique maximal-dimensional component σr(Xred) for (n, d, r) 6= (3, 4, 2).
Indeed, for n = 3 and d = 4 we have that

codimσ2(X(1,3)) = codim J(X1,3, X2,2) = codimσ2(X(2,2)) = 1.

♣

Remark 5.16. As already noticed in [CGG+19], from (5.3) we may observe that the varieties Jℓ1,...,ℓ⌊d/2⌋
are highly defective, i.e., their dimensions are strictly smaller than the one expected by a direct count
of parameters. Indeed we see that they are defective as soon as

∑
i∈α di < d for some α with |α| ≥ 2.

This is due to the presence of Koszul syzygies in degree d for a general ideal corresponding to a general
tangent space at such join variety, as considered in the proof of Theorem 1.4. ♣
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6. Proof of the key inequality

Fix integers n ≥ 1 and d ≥ 4 and write m(ℓ) := n− ℓ. For integers m, ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0, let

fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋) :=
∑

β∈Z
2×(⌊d/2⌋−1)

≥0

(−1)|β|
⌊d/2⌋∏

i=2

(
ℓi
β1,i

)(
ℓi
β2,i

)
·
(
m+ d− ||β||

m

)
− (n−m)(m+ 1),

where we write ||β|| :=∑⌊d/2⌋
i=2 (β1,i · i+ β2,i · (d− i)) and |β| :=∑⌊d/2⌋

i=2 (β1,i + β2,i) for all

β =

(
β1,2 β1,3 · · · β1,⌊d/2⌋

β2,2 β2,3 · · · β2,⌊d/2⌋

)
∈ Z

2×(⌊d/2⌋−1)
≥0 .

Our goal is to prove that

(6.1) fn,d(m(ℓ1), ℓ2, . . . , ℓ⌊d/2⌋) ≥ fn,d(m(ℓ1 + . . .+ ℓ⌊d/2⌋), 0, . . . , 0)

when ℓ1 + . . .+ ℓ⌊d/2⌋ ≤ sl.rk◦n,d − 1. Note that this is equivalent to proving that

fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋) ≥ fn,d(m− (ℓ2 + . . .+ ℓ⌊d/2⌋), 0, . . . , 0)

when m ≤ n and m− (ℓ2 + . . .+ ℓ⌊d/2⌋) ≥ n− sl.rk◦n,d + 1.

We consider the following statements: for integers 3 ≤ j ≤ ⌊d/2⌋, m ≤ n, ℓ2, . . . , ℓj−1 ≥ 0 and ℓj > 0
such that

m− (ℓ2 + . . .+ ℓj) ≥ n− sl.rk◦n,d + 1

holds, we denote by A(j)
n,d(m, ℓ2, . . . , ℓj) that the inequality

fn,d(m, ℓ2, . . . , ℓj−2, ℓj−1, ℓj, 0, . . . , 0)>fn,d(m, ℓ2, . . . , ℓj−2, ℓj−1 + 1, ℓj − 1, 0, . . . , 0)

holds and, for integers m ≤ n and ℓ > 0 such that m− ℓ ≥ n− sl.rk◦n,d+1 holds, we denote by Bn,d(m, ℓ)
that the inequality

fn,d(m, ℓ, 0, . . . , 0)>fn,d(m− 1, ℓ− 1, 0, . . . , 0)

holds. Clearly, the statements A(j)
n,d(m, ℓ2, . . . , ℓj) and the statements Bn,d(m, ℓ) together imply (6.1)

holds strictly (for the integers n, d we fixed). We will prove that these statements hold n ≫ 0.

The proof of Lemma 5.1 is divided into two parts: first,

• for d = 4 take N := 755;

• for d = 5 take N := 3056;

• for d = 6 take N := 1742;

• for d = 7 take N := 32215;

• for d = 8 take N := 1408841;

• for d = 9 take N := 73305293;

• for d = 10 take N := 4393224603;

and take N ≫ 0 when d ≥ 11.

Remark 6.1. These N have been picked to satisfy certain properties. In particular, they are higher than
the highest real roots of certain polynomials. In such cases, these real roots have been approximated
using mathematical computer software. ♣

Lemma 6.2. The statements A(j)
n,d(m, ℓ2, . . . , ℓj) and the statements Bn,d(m, ℓ) hold for all n > N .

Lemma 6.3. Assume that d ≤ 10 and n ≤ N . Then

fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋) ≥ fn,d(m− (ℓ2 + . . .+ ℓ⌊d/2⌋), 0, . . . , 0)

for all integers integers m, ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0 such that m − (ℓ2 + . . . + ℓ⌊d/2⌋) ≥ n − sl.rk◦n,d + 1. If
ℓ2 + . . .+ ℓ⌊d/2⌋ > 0 and (n, d,m− ℓ2) 6= (3, 4, 1), then the inequality holds strictly.
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Together, these lemmas imply Lemma 5.1. Our goals now are to prove these lemmas. We start by giving
some lower and upper bounds for n− sl.rk◦n,d. Recall that

sl.rk◦n,d = min

{
r ∈ Z≥0

∣∣∣∣ r(n+ 1− r) ≥
(
d+ n− r

d

)}

for d ≥ 3.

Lemma 6.4. Take p(x) := (x+ d) · · · (x+ 2)− d!(n− x).

(1) The polynomial p(x) has a unique positive root a > 0.

(2) We have a < d−1
√
d!n− 2 and n− sl.rk◦n,d = ⌊a⌋.

(3) Suppose that d ≥ 4 and that

n ≥ 1

d!
max

{
dd−1, ((d− 1)!)

d−1
d−3

}
.

Then a > d−1
√
d!n− (d+ 2).

(4) Suppose that d ≥ 5 and that

n ≥ 1

d!
max



dd−1,

(
d!

(d/2− 1)
2

) d−1
d−4



 .

Then a > d−1
√
d!n− (d/2 + 1).

Proof. Take x = n− r. Then we see that

r(n+ 1− r) ≥
(
d+ n− r

d

)

holds if and only if p(x) ≤ 0. Note that p(0) = d!− d!n ≤ 0 and that p(x) is strictly increasing on R≥0.
So p(x) has a unique positive root a > 0. So ⌊a⌋ is the maximal integer such that p(x) ≤ n and hence

⌊a⌋ = n− sl.rk◦n,d. Take x = d−1
√
d!n− 2 > 0. Then

p(x) ≥ d!n− d!(n− x) = d!x > 0

and so a < d−1
√
d!n− 2.

Assume that the conditions of (3) holds and take y = d−1
√
d!n ≥ d. Then

p(y − (d+ 2)) < yd−2(y − d)− d!(n− y) = d!y − dyd−2 = dy((d− 1)!− yd−3) ≤ 0

since (d!n)d−3 ≥ (d− 1)!d−1 and hence (d− 1)! ≤ yd−3. So a > d−1
√
d!n− (d+ 2).

Assume that the conditions of (4) holds and again take y = d−1
√
d!n ≥ d. Then

p (y − (d/2 + 1)) < (y + d/2− 1) · · · (y − (d/2− 1))− d!(n− y).

Note that

(y + d/2− 1) · · · (y − (d/2− 1)) =

{
y
∏d/2−1

i=1 (y2 − (d/2− i)
2
) if d is even∏⌊d/2⌋

i=1 (y2 − (d/2− i)
2
) if d is odd

and so this product is at most yd−3
(
y2 − (d/2− 1)

2
)
. Hence

p (y − (d/2− 1)) < yd−3
(
y2 − (d/2− 1)2

)
− d!(n− y) = y

(
d!− (d/2− 1)2 yd−3

)
≤ 0

since d! ≤ (d/2− 1)
2
yd−3. So a > d−1

√
d!n− (d/2 + 1). �
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Proof of the first lemma. Assume that n > N . If d ≤ 5, then we have chosen N such that the condition
of Lemma 6.4(3) holds and we take w := d+2. Otherwise, we have chosen N such that the condition of

Lemma 6.4(4) holds and we take w := d/2+ 1. We first prove the statements A(j)
n,d(m, ℓ2, . . . , ℓj).

Let 3 ≤ j ≤ ⌊d/2⌋, m ≤ n, ℓ2, . . . , ℓj−1 ≥ 0 and ℓj > 0 be integers such that

m− (ℓ2 + . . .+ ℓj) ≥ n− sl.rk◦n,d + 1

holds and take

g
(j)
n,d(m, ℓ2, . . . , ℓj) := fn,d(m, ℓ2, . . . , ℓj, 0, . . . , 0)− fn,d(m, ℓ2, . . . , ℓj−2, ℓj−1 + 1, ℓj − 1, 0, . . . , 0)−1;

view g
(j)
n,d as a polynomial in m, ℓ2, . . . , ℓj . Note that it has degree d− (j − 1) and that its homogeneous

part of top degree equals md−(j−1)/(d− (j − 1))!.

Lemma 6.5. Write g
(j)
n,d =

∑
i,α ci,αm

iℓα. Take

c̃i,α =

{
0 if ci,α > 0 and α 6= 0

ci,α otherwise

and g̃
(j)
n,d =

∑
i,α c̃i,αm

i+α2+...+αj . Then

g
(j)
n,d(m, ℓ2, . . . , ℓj) ≥ g̃

(j)
n,d(m)

for all 0 ≤ ℓ2, . . . , ℓj ≤ m.

Proof. This follows from the fact that ci,αm
iℓα ≥ c̃i,αm

i+α2+...+αj for all i, α. �

We have m − (ℓ2 + . . . + ℓ⌊d/2⌋) ≥ n − sl.rk◦n,d + 1 ≥ 1. Hence, by Lemma 6.5, to prove that g
(j)
n,d is

positive, it suffices to prove that g̃
(j)
n,d is positive. Note that

g̃
(j)
n,d(x) :=

∑

i,α

c̃i,αx
i+α2+...+αj

has degree d− j+1 and that its top coefficient equals 1/(d− j+1)! > 0. So, g̃
(j)
n,d(x) → ∞ as x → ∞. In

particular, we deduce that g
(j)
n,d is positive whenever m is bigger than the biggest real root x

(j)
∗ of g̃

(j)
n,d(x).

Let a be as in Lemma 6.4. Since ℓj > 0 and m− (ℓ2 + . . .+ ℓj) ≥ n− sl.rk◦n,d + 1, we have

m ≥ n− sl.rk◦n,d + 2 = ⌊a⌋+ 2 ≥ d−1
√
d!n− w + 1.

We have chosen N such that N ≥ (x
(j)
∗ +w− 1)d−1/d!. So since n > N , it follows that m ≥ x

(j)
∗ . So the

statements A(j)
n,d(m, ℓ2, . . . , ℓj) hold.

Example 6.6. For d = 6 and j = 3, we see that fn,d(m, ℓ, ℓ′) + (n−m)(m+ 1) equals
(
m+ 6

6

)
− ℓ

(
m+ 2

2

)
− ℓ

(
m+ 4

4

)
− 2ℓ′

(
m+ 3

3

)
+

(
ℓ

2

)(
m+ 2

2

)
−
(
ℓ

3

)
+ 2ℓℓ′ + ℓ2 +

(
2ℓ′

2

)

and

g
(j)
n,d(m, ℓ, ℓ′) := fn,d(m, ℓ, ℓ′)− fn,d(m, ℓ+ 1, ℓ′ − 1)−1

=
1

24
m4 +

1

12
m3 − 1

2
m2ℓ− 1

24
m2 − 3

2
mℓ+

1

2
ℓ2 − 1

12
m− 3

2
ℓ+ 2ℓ′−3.

So we get

g̃
(j)
n,d(m) =

1

24
m4 +

1

12
m3 − 1

2
m3 − 1

24
m2 − 3

2
m2 + 0− 1

12
m− 3

2
m+ 0−3.

One can verify numerically that this polynomial has highest root 13.0 < x
(3)
∗ < 13.1. ♠

Next, we prove the statements Bn,d(m, ℓ).

Let m ≤ n and ℓ > 0 be integers such that m− ℓ ≥ n− sl.rk◦n,d + 1 holds and write

fn,d(m, ℓ, 0, . . . , 0)− fn,d(m− 1, ℓ− 1, 0 . . . , 0)− 1 = gn,d(m, ℓ)− n;
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view gn,d as a polynomial in m, ℓ. Note that n ≤ (m+ w − 1)d−1/d! and again construct g̃n,d from gn,d
as in Lemma 6.5. Then we see that

fn,d(m, ℓ, 0, . . . , 0) > fn,d(m− 1, ℓ− 1, 0 . . . , 0)

holds when g̃n,d(m)− (m+w− 1)d−1/d! ≥ 0. Both g̃n,d(x) and (x+w− 1)d−1/d! have degree d− 1 in x.
The leading coefficient of g̃n,d equals 1/(d− 1)! and the leading coefficient of (m + w − 1)d−1/d! equals
1/d!. It follows that g̃n,d(x) − (x + w − 1)d−1/d! → ∞ as x → ∞. Similar to before, we have chosen N
such that the statements Bn,d(m, ℓ) hold. More precisely, we have N ≥ (x∗ + w − 1)d−1/d! where x∗ is
the biggest real root of g̃n,d(x)− (x+ w − 1)d−1/d!. This finishes the proof of Lemma 6.2.

Example 6.7. For d = 4, we have

fn,d(m, ℓ) =

(
m+ 4

4

)
− 2ℓ

(
m+ 2

2

)
+

(
2ℓ

2

)
− (n−m)(m+ 1)

and

gn,d(m, ℓ) := fn,d(m, ℓ)− fn,d(m− 1, ℓ− 1)− 1 + n

=
1

6
m3 − 2mℓ+

17

6
m+ 2ℓ− 3.

So we get

g̃n,d(x)− (x+ w − 1)d−1/d! =

(
1

6
x3 − 2x2 +

17

6
x+ 0− 3

)
− (x+ 5)3

24
.

One can verify numerically that this polynomial has highest root 21.2 < x∗ < 21.3. ♠

Proof of the second lemma. Assume that d ≤ 10. Note that, in principle, we can verify that
Lemma 6.3 holds with the support of algebra software in finite time. Below, we study the inequalities
that we need to check in more detail to make this finite time more manageable.

For all integers n ≥ 1, we need to prove that

(6.2) fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋) ≥ fn,d(m− (ℓ2 + . . .+ ℓ⌊d/2⌋), 0, . . . , 0)

for all integers m ≤ n and ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0 with m− (ℓ2 + . . .+ ℓ⌊d/2⌋) ≥ n− sl.rk◦n,d +1. We also need
to show that this inequality holds strictly when ℓ2 + . . . + ℓ⌊d/2⌋ > 0 and (n, d,m − ℓ2) 6= (3, 4, 1). We
already know that the inequality holds strictly when n > N . The following lemma shows that for fixed
m, ℓ2, . . . , ℓ⌊d/2⌋ we only need to check this inequality for the highest n such that m− (ℓ2+ . . .+ ℓ⌊d/2⌋) ≥
n− sl.rk◦n,d + 1.

Remark 6.8. Note that sl.rk◦n,d ≤ sl.rk◦n+1,d ≤ sl.rk◦n,d+1 for every n ≥ 1 since every polynomial in n+1
variables is also a polynomial in n+ 2 variables and every polynomial in n+ 2 variables can be written
as the sum of a polynomial in n + 1 variables and a multiple the remaining variable. In particular, the
expression n− sl.rk◦n,d + 1 is a non-decreasing function of n. ♣

Lemma 6.9. Let m ≤ n and ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0 be integers with

m− (ℓ2 + . . .+ ℓ⌊d/2⌋) ≥ (n+ 1)− sl.rk◦n+1,d + 1

and suppose that

fn+1,d(m, ℓ2, . . . , ℓ⌊d/2⌋) ≥ fn+1,d(m− (ℓ2 + . . .+ ℓ⌊d/2⌋), 0, . . . , 0)

holds. Then (6.2) holds as well. If in addition ℓ2 + . . .+ ℓ⌊d/2⌋ > 0, then (6.2) holds strictly.

Proof. Fix m, ℓ2, . . . , ℓ⌊d/2⌋ and view

fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋)− fn,d(m− (ℓ2 + . . .+ ℓ⌊d/2⌋), 0, . . . , 0).

as a function of n. Note that

fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋) = c− n(m+ 1),

fn,d(m− (ℓ2 + . . .+ ℓ⌊d/2⌋), 0, . . . , 0) = c′ − n(m− (ℓ2 + . . .+ ℓ⌊d/2⌋) + 1)

for some constants c, c′ (depending on only m, ℓ2, . . . , ℓ⌊d/2⌋) and have difference c−c′−n(ℓ2+. . .+ℓ⌊d/2⌋).
By assumption, we have c− c′ − (n+ 1)(ℓ2 + . . .+ ℓ⌊d/2⌋) ≥ 0 and hence c− c′ − n(ℓ2 + . . .+ ℓ⌊d/2⌋) ≥ 0
holds as well since ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0. If ℓ2 + . . .+ ℓ⌊d/2⌋ > 0, then the latter holds strictly. �
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Using induction from n = N + 1 going down, the lemma shows that it suffices to check that (6.2) holds
for all integers m ≤ n and ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0 with

n− sl.rk◦n,d + 1 ≤ m− (ℓ2 + . . .+ ℓ⌊d/2⌋) < (n+ 1)− sl.rk◦n+1,d + 1.

By Remark 6.8, we see that

n− sl.rk◦n,d + 1 < (n+ 1)− sl.rk◦n+1,d + 1.

if and only if sl.rk◦n,d = sl.rk◦n+1,d. Hence, we are left with the following cases.

Claim 6.10. Let n ≤ N be an integer such that sl.rk◦n,d = sl.rk◦n+1,d and let m ≤ n and ℓ2, . . . , ℓ⌊d/2⌋ ≥ 0

be integers with m− (ℓ2 + . . .+ ℓ⌊d/2⌋) = n− sl.rk◦n,d + 1. Then

fn,d(m, ℓ2, . . . , ℓ⌊d/2⌋) ≥ fn,d(n− sl.rk◦n,d + 1, 0, . . . , 0)

holds. If ℓ2 + . . .+ ℓ⌊d/2⌋ > 0 and (n, d) 6= (3, 4), then the inequality holds strictly.

Remark 6.11. By Lemma 6.4, we know that sl.rk◦n,d ≈ n− d−1
√
d!n. By Remark 6.8, it follows that the

number of n ≤ N such that sl.rk◦n,d = sl.rk◦n+1,d is around d−1
√
d!N ≪ N . In particular, it is not efficient

to check the condition sl.rk◦n,d = sl.rk◦n+1,d for every n ≤ N . ♣

As in the prove of the first lemma, we know that the statements A(j)
n,d(m, ℓ2, . . . , ℓj) and the statements

Bn,d(m, ℓ) hold when m ≥ max(x
(3)
∗ , . . . , x

(⌊d/2⌋)
∗ , x∗). So the cases where this holds reduce to the cases

where m ≤ ⌊max(x
(3)
∗ , . . . , x

(⌊d/2⌋)
∗ , x∗)⌋. Note that the replacements of (m, ℓ1, . . . , ℓ⌊d/2⌋) that occur here

do not change m − (ℓ2 + . . . + ℓ⌊d/2⌋). Under this addition condition, we checked the claim for d ≤ 10
using a combination of SAGE and NumPy. The files containing the code used are available as ancillary
files of the arXiv version and on the personal webpage of the first author. The running time required
was less than two minutes on a laptop. We found that the claim holds and that concludes the proof of
Lemma 6.3.
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