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Abstract
In the classical contamination models, such as the gross-error (Huber and Tukey con-
tamination model or case-wise contamination), observations are considered as the
units to be identified as outliers or not. This model is very useful when the number
of considered variables is moderately small. Alqallaf et al. (Ann Stat 37(1):311–331,
2009) show the limits of this approach for a larger number of variables and introduced
the independent contamination model (cell-wise contamination) where now the cells
are the units to be identified as outliers or not. One approach to deal, at the same time,
with both type of contamination is filter out the contaminated cells from the data set
and then apply a robust procedure able to handle case-wise outliers andmissing values.
Here, we develop a general framework to build filters in any dimension based on sta-
tistical data depth functions. We show that previous approaches, e.g., Agostinelli et al.
(TEST 24(3):441–461, 2015b) and Leung et al. (Comput Stat Data Anal 111:59–76,
2017), are special cases. We illustrate our method by using the half-space depth.

Keywords Case-wise contamination · Cell-wise contamination · Filters · Robust
statistics · Statistical depth functions

Mathematics Subject Classification 62G35 · 62G05

1 Introduction

One ofmost common problems in real data is the presence of outliers, i.e., observations
that are well separated from the bulk of data, that may be errors that affect the data
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analysis or can suggest unexpected information. According to the classical Tukey–
Huber contamination model (THCM), a small fraction of rows can be contaminated
and these are the units considered as outliers. Since the 1960s, many methods have
been developed in order to be less sensitive to such outlying observations. A complete
introduction and explanation of the developments in robust statistics is given in the
book by Maronna et al. (2006).

In some application, e.g., in modern high-dimensional data sets, the entries of an
observation (or cells) can be independently contaminated. Alqallaf et al. (2009) first
formulated the independent contamination model (ICM), taking into consideration
this cell-wise contamination scheme. According to this paradigm, given a fraction ε

of contaminated cells, the expected fraction of contaminated rows is

1 − (1 − ε)p

which exceeds the 50% breakdown point for increasing value of the contamination
level ε and the dimension p. Traditional robust estimators may fail in this situation.
Furthermore, Agostinelli et al. (2015a) showed that both type of outliers, case-wise
and cell-wise, can occur simultaneously.

Gervini and Yohai (2002) introduced the idea of an adaptive univariate filter, iden-
tifying the proportion of outliers in the sample measuring the difference between the
empirical distribution and a reference distribution. Then, it is used to compute an adap-
tive cutoff value, and finally, a robust and efficient weighted least squares estimator
is defined. Starting from this concept of outlier detection, Agostinelli et al. (2015b)
introduced a two-step procedure: in the first step, large cell-wise outliers are flagged
by the univariate filter and replaced by NA’s values (a technique called snipping in
Farcomeni 2014); in the second step, a generalized S-estimator (Danilov et al. 2012)
is applied to deal with case-wise outliers. The choice of using GSE is due to the fact
that it has been specifically designed to cope with missing values in multivariate data.
Leung et al. (2017) improved this procedure proposing the following modifications:

– they combined the univariate filter with a bivariate filter to take into account the
correlations among variables;

– in order to handle also moderate cell-wise outliers, they proposed a filter as inter-
section between the univariate-bivariate filter and detect deviating cells (DDC), a
filter procedure introduced by Rousseeuw and Van Den Bossche (2018);

– finally, they constructed a generalized Rocke S-estimator (GRE) replacing the
GSE, to face the loss of robustness in case of high-dimensional case-wise outliers.

Here, we introduce a general idea of constructing filters in general dimension d,
with 1 ≤ d ≤ p, based on the statistical data depth functions, namely depth filters.
In particular, we show that the previously mentioned univariate–bivariate filter is a
special case, if an appropriate statistical depth function is used.

We develop one of these depth filters using the half-space depth, HS-filter. Thus, we
repropose the two steps procedure. In the first step, we apply the HS-filter taking d =
1, d = 2 and d = p, in sequence. As in Leung et al. (2017), the univariate and bivariate
filters are combined in order to identify outlying cells which are replaced by NA’s
values. Note that, if d = 1, we filter the cell-wise outliers considering the variables as
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independent. Finally, theHS-filter with d = p is performed on observations, so that we
can find undetected case-wise outliers. In the second step, the generalized S-estimator
is used. Therefore, we also took into account the improvements suggested by Leung
et al. (2017). Indeed, we improved our procedure following such modifications.

The rest of the work is organized as follows. Section 2 introduces the main idea on
how to construct filters based on statistical depth functions. In Sect. 3, we show that the
filters used in Agostinelli et al. (2015b) and Leung et al. (2017), namely GY-filters, are
special cases of our proposed depth-filter approach, that is, they can be written in terms
of depth functions. In order to prove that, we introduce a statistical data depth function
called Gervini–Yohai depth function and we prove that the filter based on this depth
coincides with the GY-filter. In Sect. 4, as an important example, we consider the filter
obtained by using the half-space depth function and in Sects. 4.1, we introduce the
proposed strategy tomark observations/cells as outliers. Section 5 reports the results of
a Monte Carlo experiment, while Sect. 6 illustrates the features of our approach using
a simulation example and a real data set. Concluding remarks are given in Sect. 7.
In the Supplementary Material, Section SM-1 discusses the general properties that a
statistical data depth function should satisfy. The derivation of the claim in Remark 1
is provided in Section SM-2. In Section SM-3, we prove that the general properties
introduced in SM-1 hold for the Gervini–Yohai depth. Section SM-4 illustrates the
univariate HS-filter with two-tails control, and Section SM-5 contains full results of
the Monte Carlo experiment. Finally, Section SM-6 reports the codes used for the
simulation example and for the real data set.

2 Filters based on statistical data depth function

Let X be a Rd -valued random variable and F a continuous distribution function. For
a point x ∈ R

d , we consider the statistical data depth of x with respect to F be
d(x; F), where d(·, F) satisfies the four properties given in Liu (1990) and Zuo and
Serfling (2000a) and reported in Section SM-1 of the Supplementary Material. Given
an independent and identically distributed sample X1, . . . , Xn of size n, we denote by
F̂n(·) its empirical distribution function and by d(x; F̂n) the sample depth. We assume
that d(x; F̂n) is a uniform consistent estimator of d(x; F), that is,

sup
x

|d(x; F̂n) − d(x; F)| a.s.→ 0 n → ∞,

a property enjoined bymany statistical data depth functions, e.g., among others simpli-
cial depth (Liu 1990) and half-space depth (Donoho and Gasko 1992). One important
feature of the depth functions is the α-depth trimmed region given by

Rα(F) = {x ∈ R
d : d(x; F) ≥ α}.

For any β ∈ [0, 1], Rβ(F) will denote the smallest region Rα(F) that has probability
larger than or equal to β according to F . Throughout, subscripts and superscripts
for depth regions are used for depth levels and probability contents, respectively. Let
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Cβ(F) be the complement in R
d of the set Rβ(F). Let m = maxx d(x; F) be the

maximum value of the depth (for simplicial depth m ≤ 2−p, for half-space depth
m ≤ 1/2).

Given a high-order probability β, we define a filter of dimension d based on

dn = sup
x∈Cβ (F)

{d(x; F̂n) − d(x; F)}+, (1)

where {a}+ represents the positive part of a. Then, we mark as outliers all the n0 =⌊
ndn
2m

⌋
observationswith the smallest population depth (where �a� is the largest integer

less than or equal to a). Given a depth function d(·, F), a desired property is that
n0
n → 0 as n → ∞. We recall the definition of consistent filter.

Definition 1 Consider a random sample X1, . . . , Xn , where X i are generated by the
distribution F0 and some cells can be independently contaminated. Let F be a filter,
a procedure that flags some cells as cell-wise outliers replacing them by NA’s, and let
dn be the proportion of cells flagged by the filter. A filter is said consistent for a given
distribution F0 if asymptotically it will not flag any cell if the data come from the true
distribution F0. That is,

lim
n→∞ dn → 0 a.s. [F0].

Note that a statistical depth function can assume values in R
+ ∪ {0}. Hence, in

order to be sure that the value dn is a proportion, we need to normalize this value
dividing by the maximum m of the depth. Intuitively, we can understand that the
proportion of contaminated observations cannot exceed the 50% since, in this case, it
would not be possible to distinguish between the underlying distribution of data and
the contaminating distribution. So, in addition, we divide also by 2 so that the final
proportion of flagged observations as outliers lies between 0 and 1/2.

Remark 1 We verified that the filter proposed by Leung et al. (2017) has a similar
property. In particular, the probability that dn ≥ 1

2 goes to 0 as n → ∞. The derivation
of this result is shown in Section SM-2 of the Supplementary Material.

3 Gervini–Yohai d-variate filter

In this section, we are going to show that the filters introduced in Agostinelli et al.
(2015b) and Leung et al. (2017) are a special case of our general approach to construct
filters, that is, they can be expressed in terms of a depth function. For this reason, we
are going to define a new depth, namely Gervini–Yohai depth, as follows:

dGY(t, F,G) = 1 − G(Δ(t,μ(F),Σ(F))),

where G is a continuous distribution function, μ(F) and Σ(F) are the loca-
tion and scatter matrix functionals and Δ(t, F) = Δ(t,μ(F),Σ(F)) = (t −
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μ(F))
Σ(F)−1(t − μ(F)) indicates the squared Mahalanobis distance. In the Sup-
plementary Material, Section SM-3 shows that this is a proper statistical data depth
function since it satisfies the four properties that characterize a depth function.

Let {Gn}∞n=1 be a sequence of discrete distribution functions that might depends on
F̂n and such that

sup
t

|Gn(t) − G(t)| a.s.→ 0. (2)

We might define the finite sample version of the Gervini–Yohai depth as

dGY(t, F̂n,Gn) = 1 − Gn(Δ(t,μ(F̂n),Σ(F̂n))).

However, for filtering purpose we will use two alternative definitions later on. The
use of Gn , that might depend on the data, instead of G, makes this sample depth
semiparametric.

Let j1, . . . , jd , 1 ≤ d ≤ p, be an d-tuple of the integer numbers in {1, . . . , p} and,
for easy of presentation, let Y i = (Xi j1 , . . . , Xi jd ) be a sub-vector of dimension d of
X i . Consider a pair of initial location and scatter estimators

T (d)
0n =

⎛
⎝
T0n, j1
. . .

T0n, jd

⎞
⎠ and C(d)

0n =
⎛
⎝
C0n, j1 j1 . . . C0n, j1 jd
. . . . . . . . .

C0n, jd j1 . . . C0n, jd jd

⎞
⎠ .

Now, define the squared Mahalanobis distance for a data point Y i by Δi =
Δ(Y i , F̂n) = Δ(Y i , T

(d)
0n ,C(d)

0n ). Consider G the distribution function of a χ2
d , H the

distribution function of Δ = Δ(·, F) and let Ĥn be the empirical distribution function
of Δi (1 ≤ i ≤ n). We consider two finite sample version of the Gervini–Yohai depth,
i.e.,

dGY(t, F̂n,G) = 1 − G(Δ(t, F̂n)),

and
dGY(t, F̂n, Ĥn) = 1 − Ĥn(Δ(t, F̂n)).

The proportion of flagged d-variate outliers is defined by

dn = sup
t∈A

{dGY(t, F̂n, Ĥn) − dGY(t, F̂n,G)}+.

Here, A = {t ∈ R
d : dGY(t, F,G) ≤ dGY(ζ , F,G)}, where ζ is any point in R

d

such that Δ(ζ , F) = η and η = G−1(α) is a large quantile of G. Then, we flag �ndn�
observations. It is easy to see that

dn = sup
t∈A

{[1 − Ĥn(Δ(t, F̂n))] − [1 − G(Δ(t, F̂n))]}+

= sup
t∈A

{G(Δ(t, F̂n)) − Ĥn(Δ(t, F̂n))}+

= sup
Δ≥η

{G(Δ) − Ĥn(Δ)}+
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since dGY is a non-increasing function of the squared Mahalanobis distance of the
point t .

Remark 2 In principle, Gn could be any sequence of discrete distributions and for this
reason we require that it satisfies condition (2). If Gn coincides with the empirical
distribution of G, indicated as Ĝn , such condition holds for the Glivenko–Cantelli
lemma.

Remark 3 The Mahalanobis depth is defined as (Zuo and Serfling 2000a):

MHD(x, F) = (1 + Δ(x,μ(F),Σ(F))−1 , x ∈ R
d .

Note that for a continuous distribution F , MHD is equivalent to the GY-depth. But the
Mahalanobis depth, which is completely parametric, cannot be used in our approach
to define filters.

We can rephrase Proposition 2 in Leung et al. (2017) that states the consistency
property of the filter, as follows:

Proposition 1 Consider a random vector Y = (X1, . . . , Xd) ∼ F0 and a pair of
location and scatter estimators T0n and C0n such that T0n → μ0 = μ(F0) ∈ R

d and
C0n → Σ0 = Σ(F0)a.s..Consider any continuousdistribution functionG, and let Ĥn

be the empirical distribution function ofΔi and H0(t) = Pr((Y−μ0)
tΣ−1

0 (Y−μ0) ≤
t). If the distribution G satisfies:

max
t∈A

{dGY(t, F0, H0) − dGY(t, F0,G)} ≤ 0, (3)

where A = {t ∈ R
d : dGY(t, F0,G) ≤ dGY(ζ , F0,G)}, where ζ is any point in R

d

such that Δ(ζ , F0) = η and η = G−1(α) is a large quantile of G, then

n0
n

→ 0 a.s.

where
n0 = �ndn�.

Proof . Note that

dGY(t, F̂n, Ĥn) − dGY(t, F̂n,G) = G(Δ(t, T 0n,C0n)) − Ĥn(Δ(t, T 0n,C0n))

and condition in equation (3) is equivalent to

max
Δ≥η

{G(Δ) − H0(Δ)} ≤ 0,

The rest of the proof is the same as in Proposition 2 of Leung et al. (2017). �
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4 Filters based on half-space depth

In this section, we are going to give an example of depth filter considering the half-
space depth dHS(·, F). In particular, we will prove the consistency property for this
case.

Definition 2 (Half-space depth) Let X be a Rd -valued random variable, and let F be
a distribution function. For a point x ∈ R

d , the half-space depth of x with respect to
F is defined as the minimum probability of all closed half-spaces including x:

dHS(x; F) = min
H∈H(x)

PF (X ∈ H),

where H(x) indicates the set of all half-spaces in R
d containing x ∈ R

d .

Given an independent and identically distributed sample X1, . . . , Xn , we define the
filter in general dimension d introduced previously, where here we use the half-space
depth, as

dn = sup
x∈Cβ(F)

{dHS(x; F̂n) − dHS(x; F)}+, (4)

where β is a high-order probability, F̂n(·) is the empirical distribution function and
F is a chosen reference distribution which might depends, according to the assumed
models, on unknown parameters, as in the case of location and dispersion models. In
this last case, initial location and dispersion estimators, T0n and C0n , are needed. As
usual, n0 = �ndn/2m� = �ndn� observations with the smallest population depth are
marked as outliers. Let F0 be the true distribution of X , i.e., X ∼ F0. Note that, so
far we have no conditions on F0. Here, we will prove the consistency property of the
HS-filter when X is elliptically symmetric distributed.

Definition 3 A random vector X ∈ R
d is said elliptically symmetric distributed,

denoted by X ∼ Ed(h0,μ,Σ), if it has a density function given by

f0(x) ∝ |Σ−1/2|h0((x − μ)
Σ−1(x − μ)).

where the density generating function h0 is a non-negative scalar function, μ is the
location parameter vector and Σ is a d × d positive definite matrix.

Let X ∼ Ed(h0,μ,Σ). Denote by F0 its distribution function and by Δx =
(x − μ)
Σ−1(x − μ) the squared Mahalanobis distance of a d-dimensional point x.
By Theorem 3.3 of Zuo and Serfling (2000b), if a depth d(·, ·) is affine equivariant
(P1) and has maximum at μ (P2) (see the Supplementary Material—Section SM-1),
then the depth is of the form d(x; F0) = g(Δx) for some non-increasing function g.
In this case, we can restrict ourselves, without loss of generality, to the case μ = 0
and Σ = I , where I is the identity matrix of dimension d. Under this setting, it is
easy to see that the half-space depth of a given point x is given by

dHS(x; F0) = 1 − F0,1(
√

Δx), (5)
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942 G. Saraceno, C. Agostinelli

where F0,1 is a marginal distribution of X . Denoting the reference distribution by F ,
let f ∝ h(Δx ) be the corresponding density function. Note that if the function h is
such that

h0(Δx)

h(Δx)
→ 0 Δx → ∞, (6)

then there exists a Δ∗ such that, for all x with Δx > Δ∗

dHS(x; F) ≥ dHS(x; F0).

Hence,
sup

{x:Δx>Δ∗}
[dHS(x; F0) − dHS(x; F)] ≤ 0

and therefore, for all β > 1 − 2F0,1(−
√

Δ∗),

sup
Cβ(F)

[dHS(x; F0) − dHS(x; F)] ≤ 0.

In order to compute the value dn , we have to identify the set Cβ(F) = {x ∈ R
p :

dHS(x, F) ≤ dHS(ηβ, F)} where ηβ is such that the probability of Cβ(F) is equal to
1 − β. In case we use the normal distribution as reference distribution, that is F =
N (T0n,C0n), then, by Corollary 4.3 in Zuo and Serfling (2000b), the computation of
Cβ(F) is particularly simple. In fact, denotingwithΔx = (x−T0n)


C−1
0n (x−T0n) the

squared Mahalanobis distance of x using the initial location and dispersion estimates,
the set Cβ(F) can be rewritten as:

Cβ(F) = {x ∈ R
p : Δx ≥ (χ2

d )−1(β)}, (7)

where (χ2
d )−1(β) is a large quantile of a Chi-squared distribution with d degrees of

freedom. Now, we can state the consistency property for the HS-filter.

Proposition 2 Consider a random vector (X1, . . . , Xn) ∼ F0(μ0,Σ0) and suppose
that F0 is an elliptically symmetric distribution. Also consider a pair of location and
dispersion estimators T0n and C0n such that T0n → μ0 and C0n → Σ0 a.s.. Let F
be a chosen reference distribution and F̂n the empirical distribution function. Assume
that F(μ,Σ) is continuous with respect to μ and Σ . If the reference distribution
satisfies

sup
x∈Cβ(F)

[dHS(x; F0) − dHS(x; F)] ≤ 0 (8)

where β is some large probability, then

n0
n

→ 0 as n → ∞

where n0 = �ndn�.

123



Robust multivariate estimation based on statistical… 943

Proof In Donoho and Gasko (1992), it is proved that for X1, X2, . . . , Xn i.i.d. with
distribution F0, as n → ∞

sup
t∈Rd

|dHS(t, F0) − dHS(t, F̂n)| → 0 a.s.

Note that, by the continuity of F, F(T0n,C0n) → F(μ0,Σ0) a.s.. Hence, for each
ε > 0 there exists n∗ such that for all n > n∗, we have

sup
x∈Cβ (F)

{dHS(x; F̂n) − dHS(x; F(T0n,C0n))}

≤ sup
x∈Cβ (F)

{dHS(x; F̂n) − dHS(x; F0(μ0,Σ0))}

+ sup
x∈Cβ (F)

{dHS(x; F0(μ0,Σ0)) − dHS(x; F(μ0,Σ0))}

+ sup
x∈Cβ (F)

{dHS(x; F(μ0,Σ0)) − dHS(x; F(T0n,C0n))}

≤ ε

2
+ 0 + ε

2
= ε

which implies that dn = supx∈Cβ (F){dHS(x; F̂n) − dHS(x; F(T0n,C0n))}+ goes to
zero as n → ∞. Hence, n0

n → 0 as n → ∞. �
Remark 4 Weshowed that if condition (6) holds, then assumption (8) ofProposition2 is
satisfied. In other words, even if the actual distribution is unknown, asymptotically, the
filter will not wrongly flag any outlier when the tail of the chosen reference distribution
is heavier than that of the actual distribution. In case F coincides to F0, assumption
8 is clearly satisfied. We suggest to use for F the same distribution assumed for the
model of the data.

Remark 5 When the underlying F0 distribution is elliptical, a natural choice for T0n
and C0n is as follows. For an univariate filter, d = 1, T0n and C0n might be, for
example, the median and the MAD. In our study, when d > 1, as T0n and C0n we
adopted the observation with maximum half-space depth, since the half-space depth
corresponds to a generalization of the median in multivariate space, and the estimate
given by a generalized S-estimator, respectively. Notice that these initial estimates
satisfy the almost sure convergence assumption, under the nominal model F0.

In Section SM-4 of the Supplementary Material, we added an example which illus-
trates the filter based on half-space depth for d = 1. In this case, it is possible to
control independently the left and the right tail of the distribution and equation (4)
assumes a simpler form. However, in our implementation, we always use the general
formulation that does not make this distinction.

On the other hand, the computation of the sample half-space depth is demanding
for d > 1, even in low dimensions, since it is based on all possible one-dimensional
projections. Here, we decided to use the random Tukey depth introduced by Cuesta-
Albertos and Nieto-Reyes (2008), a random approximation of the exact sample half-
space depth, implemented in the R (R Core Team 2019) package ddalpha (Lange
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944 G. Saraceno, C. Agostinelli

et al. 2012). The reason is that approximate algorithms seem to be promising and, as
pointed out in Cuesta-Albertos and Nieto-Reyes (2008), they may outperform exact
algorithms in terms of computational time.Note that, the randomTukey depth is able to
handle also the case d = 50, even if the computational time slightly increases. More
information about exact algorithms can be found in Dyckerhoff and Mozharovskyi
(2016). These algorithms allow the exact computation of half-space depth formoderate
dimensions and sample sizes.

4.1 A consistent univariate, bivariate and p-variate filter

Consider a sample X1, . . . , Xn where X i ∈ R
p, i = 1, . . . , n. In this subsection, we

describe a filtering procedure which consists in applying the d-dimensional HS-filter
given in equation (4) three times in sequence, using d = 1, d = 2 and d = p.

We first apply the univariate filter to each variable separately. Let X( j) =
{X1 j , . . . , Xnj }, j = 1, . . . , p, be a single variable. The univariate filter will flag
�ndnj� observations as outliers, where dnj is as in equation (4), and these values are
replaced by NA’s values. Note that the initial location and variance estimators used
here are the median and the MAD of X( j). Filtered data are indicated through an
auxiliary matrix U of zeros and ones, with zero corresponding to a NA value.

Next, we identify the bivariate outliers by iterating the filter over all possible pairs
of variables. Consider a pair of variables X( jk) = {(Xi j , Xik), i = 1, . . . , n}. The
initial location and dispersion estimators are, respectively, the observation with max-
imum depth and the 2× 2 covariance matrix estimate S computed by the generalized
S-estimator on non-filtered data X( jk). For bivariate points with no flagged compo-
nents by the univariate filter, we apply the bivariate filter. Given the pair of variables
X( jk), 1 ≤ j < k ≤ p, we compute the value d( jk)

n given in equation (4). In par-
ticular, to compute the sample depth dHS(·, F̂n), we use the random Tukey depth, as
mentioned before, through the function depth.halfspace implemented in the R
package ddalpha (Lange et al. 2012).

Then, n( jk)
0 couples will be identified as bivariate outliers. But, at the end, we want

to identify the cells (i, j)which have to be flagged as cell-wise outliers. The procedure
used for this purpose is described in Leung et al. (2017) and reported here. Let

J = {(i, j, k) : (Xi j , Xik) is flagged as bivariate outlier}

be the set of triplets which identifies the pairs of cells flagged by the bivariate filter
where i = 1, . . . , n indicates the row. For each cell (i, j) in the data, we count the
number of flagged pairs in the i th row in which the considered cell is involved:

mi j = #{k : (i, j, k) ∈ J }.

In the absence of contamination, mi j follows approximately a binomial distribution
Bin(

∑
k �= j U jk, δ) where δ represents the overall proportion of cell-wise outliers

undetected by the univariate filter. Hence, we flag the cell (i, j) if mi j > ci j , where
ci j is the 0.99-quantile of Bin(

∑
k �= j U jk, 0.1).
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Finally, we perform the p-variate filter to the full datamatrix. Detected observations
(rows) are directly flagged as p-variate (case-wise) outliers. We denote the procedure
based on univariate, bivariate and p-variate filters as HS-UBPF.

4.2 A sequencing filtering procedure

Suppose we would like to apply a sequence of k filters with different dimension
1 ≤ d1 < d2 < . . . < dk ≤ p. For each di , i = 1, . . . , k, the filter updates the data
matrix adding NA values to the di -tuples identified as di -variate outliers. In this way,
each filter applies only those di -tuples that have not been flagged as outliers by the
filters with lower dimension.

Initial values for each procedures rather than d1 would be obtained by using the
observation with the maximum half-space depth for location and the estimate given
by GSE for the scatter matrix.

This procedure aims to be a valid alternative to that used in the presented HS-
UBPF filter to perform a sequence of filters with different dimensions. However, this
is a preliminary idea; indeed, it has not been implemented yet.

5 Monte Carlo results

We performed a Monte Carlo simulation to assess the performance of the proposed
filter based on half-space depth. After the filter flags the outlying observations, the
generalized S-estimator is applied to the data with added missing values. Part of
our simulation study is based on the same setup described in Leung et al. (2017)
since it seems a good choice to test our filter in the presence of contamination and
the comparison with previous methods is easier. In particular, we compare the filter
introduced in Agostinelli et al. (2015b) (indicated as GY-UF in case of univariate
filter and GY-UBF for univariate and bivariate filter) and the same filter with the
improvements proposed in Leung et al. (2017) (indicated here as GY-UBF-DDC-C)
to the presented filter based on statistical data depth functions obtained using the
half-space depth (HS-UF for the univariate filter, HS-UBF for the univariate-bivariate
filter, HS-UBPF for the univariate-bivariate-p-variate filter and HS-UBPF-DDC-C for
the combination of the HS-UBPF with the modifications in Leung et al. (2017)). The
already existing filters are implemented in the R (R Core Team 2019) package GSE
(Leung et al. 2015), whereas the R code for the proposed filter based on half-space
depth is available in the R package GSEdepth provided as supplementary material.

We considered samples from a Np(0,Σ0), where all values in diag(Σ0) are equal
to 1, p = 10, 20, 30, 40, 50 and the sample size is n = 10p. Since our model is the
normal distribution, we choose the normal distribution as reference distribution. We
consider the following scenarios:

– Clean data: data without changes.
– Cell-Wise contamination: a proportion ε of cells in the data is replaced by Xi j ∼

N (k, 0.12), where k = 1, . . . , 10.
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– Case-Wise contamination: a proportion ε of cases in the data is replaced by

X i ∼ 0.5N (cv, 0.12 I) + 0.5N (−cv, 0.12 I), where c =
√
k(χ2

p)
−1(0.99), k =

2, 4, . . . , 100 and v is the eigenvector corresponding to the smallest eigenvalue of
Σ0 with length such that (v − μ0)


Σ−1
0 (v − μ0) = 1.

– Mixed contamination: case-wise and cell-wise contaminations are introduced at
the same time (after replacing a proportion of cases, a proportion of the remaining
cells is contaminated).

The proportions of contaminated rows chosen for case-wise contamination are
ε = 0.1, 0.2, and ε = 0.02, 0.05, 0.1 for cell-wise contamination. For the mixed
contamination, we combined the proportions ε = 0.05, 0.1 and ε = 0.02, 0.05 for
case-wise and cell-wise contamination, respectively. Finally, we tested the behav-
ior of the procedure for increasing n. We considered p = 5 variables and n =
(10p, 50p, 100p) observations. Case-wise contamination and cell-wise contamina-
tion scenarios, as explained above, were performed on this setting. The number of
replicates in our simulation study is N = 200.

Wemeasure the performance of a given pair of location and scatter estimators μ̂ and
Σ̂ using the mean-squared error (MSE) and the likelihood ratio test (LRT) distance:

MSE = 1

N

N∑
i=1

(μ̂i − μ0)

(μ̂i − μ0)

LRT (Σ̂,Σ0) = 1

N

N∑
i=1

D(Σ̂ i ,Σ0)

where Σ̂ i is the estimate of the i th replication and D(Σ,Σ0) is the Kullback–Leibler
divergence between two Gaussian distributions with the same mean and variances Σ

and Σ0. Finally, we computed the maximum average LRT distances and maximum
average MSE considering all contamination values k.

Table 1 shows the maximum average LRT distances under cell-wise contamination.
The univariate and univariate-bivariate filters have a similar behavior, while HS-UBPF
has a lightly better performance. GY-UBF-DDC-C and HS-UBPF-DDC-C have lower
maximum average LRT distances if the number of variables is not large, but their LRT
distances are higher with respect to the other filters for large k. This behavior is shown
in Fig. 1 (left) where the average LRT distances versus different contamination values
are displayed, with 5% of cell-wise contamination level and p = 30.

Table 2 shows themaximumaverageLRTdistances under case-wise contamination.
Overall, the GY-UBP-DDC-C and HS-UBPF-DDC-C outperform all the other filters
obtaining better results. An illustration of their behavior is given in Fig. 2 (top) which
shows the average LRT distances for different values of k, with 10% of case-wise
contamination level and p = 30.

Tables 3 and 4 show the maximum average MSE under cell-wise and case-wise
contamination, respectively. The values in the tables are theMSE values multiplied by
100 for a better visualization and model comparison. Under case-wise contamination,
the GY-UBF-DDC-C and HS-UBPF-DDC-C outperform the other filters, and have
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Table 1 Maximum average LRT distance under cell-wise contamination

p ε UF UBF HS-UBPF DDC-C MLE

GY HS GY HS GY-UBF HS-UBPF

10 0 0.8 0.7 0.9 0.7 0.8 1.0 1.0 0.6

0.02 1.2 1.1 1.3 1.1 1.1 1.1 1.1 113.0

0.05 4.6 4.8 4.6 4.9 4.8 2.4 2.5 290.5

0.1 16.4 16.7 16.4 16.9 16.8 13.3 13.2 555.3

20 0 1.3 1.2 1.4 1.3 1.3 1.8 1.8 1.1

0.02 3.9 3.8 4.2 4.0 3.8 2.5 2.5 146.4

0.05 11.0 11.3 11.3 11.6 11.4 8.2 8.3 380.8

0.1 24.4 24.6 24.5 25.1 24.7 21.6 21.8 742.7

30 0 1.9 1.8 2.0 1.9 1.9 3.4 3.4 1.6

0.02 6.0 5.8 6.5 6.1 5.8 5.0 5.1 179.5

0.05 14.5 14.7 15.1 15.3 14.9 13.4 13.4 470.5

0.1 30.5 30.6 30.5 31.4 31.0 31.1 31.5 930.4

40 0 2.4 2.3 2.6 2.4 2.5 5.8 5.8 2.1

0.02 7.5 7.4 8.2 7.8 7.4 9.2 9.2 213.2

0.05 17.4 17.7 18.1 18.3 17.9 20.0 20.1 565.0

0.1 35.6 35.7 35.6 36.5 36.1 41.4 42.4 1117.5

50 0 2.9 2.8 3.1 3.0 3.0 5.1 5.0 2.6

0.02 8.8 8.6 9.7 9.1 8.8 12.2 12.3 245.7

0.05 19.9 20.1 20.8 21.0 20.7 24.5 24.5 653.0

0.1 40.0 40.1 40.0 41.0 40.6 44.7 44.3 1291.1

Fig. 1 Average LRT (left) and average MSE (right) versus the contamination value k, for 5% cell-wise
contamination level and p = 30
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Table 2 Maximum average LRT distance under case-wise contamination

p ε UF UBF HS-UBPF DDC-C MLE

GY HS GY HS GY-UBF HS-UBPF

10 0 0.8 0.7 0.9 0.7 0.8 1.0 1.0 0.6

0.1 9.8 7.6 14.9 8.5 6.2 3.5 3.4 893.9

0.2 93.0 79.6 161.1 120.1 77.1 18.7 17.5 1593.6

20 0 1.3 1.2 1.4 1.3 1.3 1.8 1.8 1.1

0.1 25.7 21.2 38.1 27.2 26.0 6.8 6.9 894.1

0.2 368.0 322.3 428.9 441.0 373.8 19.6 20.1 1593.8

30 0 1.9 1.8 2.0 1.9 1.9 3.4 3.4 1.6

0.1 50.8 44.9 64.0 70.3 68.6 9.0 8.7 895.0

0.2 745.8 708.7 620.0 744.2 751.3 17.1 17.6 1595.1

40 0 2.4 2.3 2.6 2.4 2.5 5.8 5.8 2.1

0.1 64.2 89.8 97.0 70.7 67.7 16.2 16.3 898.0

0.2 1156.9 1112.1 852.0 1078.4 1088.0 22.7 21.4 1600.2

50 0 2.9 2.8 3.1 3.0 3.0 5.1 4.8 2.6

0.1 175.2 215.6 123.3 156.6 163.9 30.5 29.9 898.0

0.2 1528.8 1468.0 1081.6 1354.5 1364.5 21.2 20.1 1599.9

Fig. 2 Average LRT (top) and average MSE (bottom) versus the contamination value k, for 10% case-wise
contamination level and p = 30
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Table 3 Maximum average MSE distance under cell-wise contamination

p ε UF UBF HS-UBPF DDC-C MLE

GY HS GY HS GY-UBF HS-UBPF

10 0 1.1 1.1 1.1 1.1 1.1 1.3 1.3 1.0

0.02 1.3 1.3 1.3 1.3 1.3 1.5 1.5 6.8

0.05 1.9 2.0 2.0 2.0 2.0 2.0 2.0 30.2

0.1 4.8 4.9 4.8 4.9 4.9 5.0 5.0 109.2

20 0 0.5 0.5 0.5 0.5 0.5 0.7 0.7 0.5

0.02 0.7 0.7 0.7 0.7 0.7 0.8 0.8 5.4

0.05 1.5 1.5 1.5 1.5 1.5 1.6 1.6 27.8

0.1 4.4 4.5 4.5 4.6 4.6 4.6 4.7 104.7

30 0 0.3 0.3 0.4 0.3 0.4 0.6 0.6 0.3

0.02 0.5 0.5 0.5 0.5 0.5 0.7 0.7 4.9

0.05 1.3 1.3 1.3 1.4 1.4 1.5 1.5 26.8

0.1 4.3 4.3 4.3 4.4 4.4 4.5 4.7 103.2

40 0 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.2

0.02 0.4 0.4 0.5 0.4 0.4 0.7 0.7 4.7

0.05 1.3 1.3 1.3 1.3 1.3 1.5 1.6 26.4

0.1 4.3 4.3 4.3 4.4 4.4 4.5 4.6 102.5

50 0 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2

0.02 0.4 0.4 0.4 0.4 0.4 0.6 0.6 4.6

0.05 1.2 1.2 1.2 1.3 1.3 1.4 1.4 26.1

0.1 4.2 4.2 4.2 4.4 4.3 4.3 4.5 101.9

also competitive results for cell-wise contamination. In Fig. 1 (right) and Fig. 2 (bot-
tom), the average MSE versus different contamination values k are displayed, with
p = 30 and 0.05 of cell-wise contamination and 0.1 of case-wise contamination,
respectively.

The results given by the mixed contamination scenario do not show any additional
information and they are not reported.

Finally, Figs. 3 and 4 show the average LRT and averageMSEwith respect to differ-
ent value of k, for 10% of case-wise contamination and 5% of cell-wise contamination,
respectively, for p = 5 and different number of observations n. For increasing n, the
filters perform better showing smaller average LRT and average MSE values. In par-
ticular, depth filters present better improvements in case of case-wise contamination
and they seem to perform better than those in combination with DDC.

In a second Monte Carlo experiment, we use the location-scale family of multi-
variate Student’s t-distribution with 5 degrees of freedom as reference distribution F .
We consider two data generation processes: In the first case, data are simulated from
the multivariate normal distribution and in the second case, data are simulated from
a t5 distribution with 5 degrees of freedom. Apart from this, the setup of the experi-
ment is the same of the previous one. The construction of the half-space-filter for this
case follows directly from the definition given in equation (4), with just one change.
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Table 4 Maximum average MSE distance under case-wise contamination

p ε UF UBF HS-UBPF DDC-C MLE

GY HS GY HS GY-UBF HS-UBPF

10 0 1.1 1.1 1.1 1.1 1.1 1.3 1.3 1.0

0.1 2.8 2.5 3.2 2.9 1.9 1.9 1.9 21.8

0.2 15.1 14.2 20.1 16.1 9.7 2.5 2.8 84.4

20 0 0.5 0.5 0.5 0.5 0.5 0.7 0.7 0.5

0.1 3.5 2.9 4.2 4.0 2.7 0.8 0.8 10.8

0.2 28.6 25.8 34.1 25.9 21.3 1.3 1.2 41.9

30 0 0.3 0.3 0.4 0.3 0.4 0.6 0.6 0.3

0.1 5.4 4.7 5.3 5.4 3.8 0.6 0.6 7.1

0.2 50.6 46.7 37.2 46.5 48.0 0.8 0.8 27.6

40 0 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.2

0.1 7.1 6.6 6.1 6.4 4.7 0.5 0.5 5.3

0.2 41.6 38.1 34.7 38.9 39.7 0.7 0.7 20.6

50 0 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2

0.1 7.9 7.6 6.3 6.2 5.0 0.5 0.5 4.3

0.2 32.4 30.0 30.6 31.9 32.5 0.5 0.5 16.5

In particular, since the t distribution belongs to the family of elliptically symmetric
distribution, equation (5) holds and it is used to compute the theoretical depth. On
the other hand, the sample depth is again computed using the random Tukey depth.
Complete results are not reported. In this new setup, the HS-filters are still competitive
for case-wise contamination, while they outperform the GY-filters in case of cell-wise
contamination. This performance does not change if observations are sampled from a
normal distribution or a t-distribution.

6 Examples

In Sect. 6.1, we illustrate how depth-filters approach can be used in models different
from the location and scatter model with elliptical contours. In particular, we provide
details of applying such filters to multivariate Skew-Normal distributions. A real-
data application is reported in Sect. 6.2. The R package GSEdepth, available as
supplementary material, implements the new procedures and contains the used data
set.

6.1 Multivariate skew-normal distributions

In this example, we consider a p-multivariate skew-normal random variable X ∼
SNp(ξ ,Ω,α), with a location parameter ξ , a positive definite scatter matrix Ω , and a
skewness vector parameter α. We point out the reader to Azzalini (2014) for the details
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Fig. 3 Average LRT (top) and average MSE (bottom) in 0.1 case-wise contamination level versus the
contamination value k, for p = 5 and n = 50, 250, 500
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Fig. 4 Average LRT (left) and average MSE (right) in 0.05 cell-wise contamination level versus the con-
tamination value k, for p = 5 and n = 50, 250, 500
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Fig. 5 Contour plot of the density of the skew-normal (black dotted lines) and of the half-space depth (red
dashed lines). Sample observations are blue crosses (color figure online)

on multivariate skew-normal distributions. The mean vector μ and the covariance
matrix Σ do not coincide with the distribution parameters; however, they are easily
evaluated as (Azzalini 2014, formulas 2.27, 5.31 and 5.32)

μ = E(X) = ξ + ων, Σ = Cov(X) = Ω − ωνν
ω ,

where ν =
√

2
π
(1+ α
Ω̄α)−1/2Ω̄α while Ω̄ and ω are, respectively, the correlation

matrix obtained from Ω and a diagonal matrix with the square-root of the diagonal
elements ofΩ . We are going to apply the GY-filter and the HS-filter in this framework,
using as reference distribution the skew-normalmodel, evaluated at the true parameters
value. Subsection SM-6-1 of the Supplementary Material provides all the necessary
code to replicate the results and the figures.

A sample of size n = 100 is obtained, and it is represented in Fig. 5 (blue crosses)
together with the density contours (black dotted lines) and the half-space depth con-
tours (red dashed lines).

The GY-filters that are based on Mahalanobis distances need the mean vector and
the variance–covariance matrix to be computed. The half-space-depth filters work
directly with the actual parametrization of the reference distribution. While the set
Cβ(F) is always an ellipse for GY-filters, this is not the case for half-space-depth
filters, which, instead, depends on the shape of the reference distribution, and in this
case, it is able to take into account the asymmetry of the skew-normal distribution.

We are going to add artificially 20 outlying observations sampled from a
N2((−0.2,−0.25), 0.01I2) in an iterative procedure. Note that these points, with
high probability, lie inside the boundary set given by the Mahalanobis distance but
outside the boundary set computed using the half-space depth. This position is clearly
crucial; however, it is a region of low density according to the true model. In each
iteration, an outlier is added to the data set and the number of flagged observations
n0 is computed and reported in Table 5. The GY-filter is insensitive to this kind of
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Table 5 Number of flagged
observations by the GY-filter
and the HS-filter for increasing
number of added outliers placed
at N2((−0.2, −0.25), 0.01I2)

no of outliers 1 2 3 4 5 6 7 8 9 10

GY-filter 4 4 4 4 4 4 4 4 4 4

HS-filter 3 3 3 3 4 5 6 7 8 9

no of outliers 11 12 13 14 15 16 17 18 19 20

GY-filter 4 4 4 3 3 3 3 3 3 3

HS-filter 10 11 12 13 14 15 15 17 18 19

Fig. 6 Cβ(F) based on GY-filter is in solid green, while for HS-filter is in solid red. Half-space depth
contours are red dashed lines, and sample observations are blue crosses. The 20 added outliers are black
circles. Observations flagged by the GY-filter are green triangles, while those flagged by the HS-filter are
red crosses. Outliers are placed at N2((−0.2, −0.25), 0.01I2) (color figure online)

outliers; indeed, the number of detected cells is stable or decreases as the number of
added outliers increases. Vice versa, the number of detected cells by the HS-filter is
almost always equal to the amount of added outliers.

In this simulation, we are also interested in identifying such flagged points. Figure 6
shows the added outliers at the final iteration (as black circles). Observations flagged
by theHS-filter are red crosses, while those flagged by theGY-filter are green triangles.
The HS-filter correctly identifies the majority of the added cells, while these are never
detected by the GY-filter. Indeed, GY-filter flags regular observations which lead to a
more symmetric empirical distribution.

In a second experiment, we sampled the added outliers from N2((−0.5,−0.6),
0.01I2) so that with high probability, the outliers lie in a region outside the boundary
set given by the Mahalanobis distance. While in this case the GY-filter flags the right
amount of observations (see Table 6), most of them do not belong to the set of added
outliers. The only effect is, again, to reduce the asymmetry of the observed empirical
distribution. Figure 7 shows the flagged observations after 10 added outliers (left panel)
and at the final step (right panel).
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Table 6 Number of flagged
observations by the GY-filter
and the HS-filter for increasing
number of added outliers placed
at N2((−0.5, −0.6), 0.01I2)

no of outliers 1 2 3 4 5 6 7 8 9 10

GY-filter 4 5 5 6 6 7 8 9 10 10

HS-filter 3 3 3 4 5 6 6 7 8 8

no of outliers 11 12 13 14 15 16 17 18 19 20

GY-filter 11 12 13 14 15 16 17 18 19 20

HS-filter 9 10 11 12 13 13 14 15 16 17

Fig. 7 Cβ(F) based on GY-filter is in solid green, while for HS-filter is in solid red. Half-space depth
contours are red dashed lines, and sample observations are blue crosses. The added outliers are black
circles. Observations flagged by the GY-filter are green triangles, while those flagged by the HS-filter are
red crosses. Outliers are placed at N2((−0.5, −0.6), 0.01I2). Left panel: 10 added outliers, right panel: 20
added outliers (color figure online)

6.2 Small-cap stock returns

We consider the weekly returns from 01/01/2008 to 12/28/2010 for a portfolio of 20
small-cap stocks from Martin (2013). The data set is publicly available at the link
“http://www.bearcave.com/finance/smallcapweekly.csv” and can be found in the R
package GSEdepth. Subsection SM-6-2 of the Supplementary Material provides the
necessary code to replicate the results and the figures.

With this example, we want to compare the filter introduced in Agostinelli et al.
(2015b) and the same filter with the improvements proposed in Leung et al. (2017)
to the presented filter based on statistical data depth functions obtained using the
half-space depth.

Figure 8 shows the normal QQ-plots of the 20 variables. The returns in all stocks
seem to roughly follow a normal distribution, but with the presence of large outliers.
The returns in each stock that lie 3 MAD’s away from the coordinate-wise median are
displayed in green in the figure. These indicated cells, which are considered cell-wise
outliers, correspond to the 4.4% of the total cells, and they propagate to 37.6% of the
cases.

Figure 9 shows the squared Mahalanobis distances (MDs) of the weekly returns
based on the estimates given by the MLE, the GY-UF, the GY-UBF, the HS-UF, the
HS-UBF and the HS-UBPF. Observations with one or more cells flagged as outliers
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Fig. 8 Small-cap stock returns. QQ-plots of the variables, green: observations marked as outliers (color
figure online)

are displayed in green. We say that the estimate identifies an outlier correctly if the
MD exceeds the 99.99% quantile of a Chi-squared distribution with 20 degrees of
freedom. We see that the MLE estimate does a very poor job recognizing only 8 of the
59 cases. The GY-UF, HS-UF, HS-UBF and HS-UBPF show a quite similar behavior,
doing better than the MLE, but they miss about one-third of the cases. The GY-UBF
identifies all but seven of the cases.

Figure 10 shows the Mahalanobis distances produced by GY-UBF-DDC-C and
HS-UBPF-DDC-C. Here, we can see that the GY-UBF-DDC-Cmisses 13 of 59 cases,
while the HS-UBPF-DDC-C has missed 12 cases. Although they seem not to do a
better job, these two filters are able to flag some other observations, not identified
before, as case-wise outliers.

Figure 11 shows the bivariate scatter plot of WTS versus HTLD, HTLD versus
WSBC and WSBC versus SUR where the GY-UBF and HS-UBF filters are applied,
respectively. The bivariate observations with at least one component flagged as outlier
are in blue, while outliers detected by the bivariate filter, but excluded by the univariate
filter, are in orange. We see that the HS-UBF identifies less outliers with respect to the
GY-UBF.
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Fig. 9 Squared Mahalanobis distances of the weekly returns based on the MLE, the GY filters (GY-UF,
GY-UBF) and the filters based on half-space depth (HS-UF, HS-UBF, HS-UBPF). Observations with one
or more cells flagged as outliers are displayed in green. Large Mahalanobis distance are truncated for a
better visualization (color figure online)

Fig. 10 Squared Mahalanobis distances of the weekly returns based on the GY-UBF-DDC-C and the
corresponding filter based on half-space depth, HS-UBPF-DDC-C. Observations with one or more cells
flagged as outliers are displayed in green (color figure online)

7 Conclusions

Wepresented a general idea to construct filters based on statistical data depth functions,
called depth filters. We also showed that previously defined filters can be derived from
our general method. We developed one filter, belonging to the family of depth filters,
using the half-space depth, namely HS-filter. Furthermore, our filter is very versatile
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Fig. 11 Bivariate scatter plot of small-cap stock returns. In the first row, the Gervini–Yohai depth is used.
Blue: outliers detected by the GY-UF univariate filter; orange: outliers detected by the bivariate step of GY-
UBF but not in the univariate step. In the second row, the half-space depth is used. Blue: outliers detected
by the HS-UF univariate filter; orange: outliers detected by the bivariate step of HS-UBF but not in the
univariate step

since it is defined in general dimension d, 1 ≤ d ≤ p. Indeed, considering the idea of
an univariate and univariate-bivariate filter, we applied our HS-filter using both d = 1
and d = 2, and we proposed a new filtering procedure adding the case d = p, in
sequence. Finally, we combined the depth-filter HS-UBPF and DDC, as suggested
by Leung et al. (2017). After the filtering process, the generalized S-estimator was
applied, following the two-step procedure introduced in Agostinelli et al. (2015b).

The results of the simulation study show that GY-UBF and HS-UBPF, combined
with DDC, outperform the other filters in the case-wise contamination scenario. How-
ever, for small p, HS-UBPF outdoes the other filters, even if its computational time
could slightly increase, in both case-wise and cell-wise contamination, and improves
for increasing n. Finally, it is not suggested to combine any filter with DDC if cell-
wise outliers are present, indeed, even if GY-UBF-DDC-C and HS-UBPF-DDC-C
may show lower maximum average LRT and average MSE values, they do not have
the best behavior with respect different contamination values k.

Further research on this filter could be needed to explore the performance of the
estimator in different types of data, for example in flat data sets (e.g., n ≈ 2p). In
addition, different statistical data depth functions could be used in place of the half-
space depth to construct new filters. The choice of the appropriate statistical data depth
function could be helpful to analyze different types of data.

Funding Open access funding provided by Universitá degli Studi di Trento within the CRUI-CAREAgree-
ment.
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