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Abstract. As medical research becomes ever finer-grained, experi-
ments require healthcare data in quantities that single countries can-
not provide. Cross-jurisdictional data collection remains, however,
extremely challenging due to the diverging legal, professional, lin-
guistic, normative, and technological contexts of the participating
countries. Medical data heterogeneity, in particular, is still a largely
unsolved problem on the international level, due to the complexity of
data combined with strict precision and data protection constraints.
We propose a scalable solution based on a novel knowledge archi-
tecture and the corresponding knowledge graph integration method-
ology. Medical knowledge that drives the scalable integration pro-
cess is divided into multiple functional layers and is maintained in
a distributed manner across participating countries. We successfully
applied the approach in the context of a research experiment across
Scotland and Italy, and are currently adapting it within other initia-
tives of Europe-wide health data interoperability.

1 INTRODUCTION

Advances in medical research have led to data-intensive methods
such as stratified and precision medicine that determine fine-grained
diagnoses and therapies for specific types of patients. Such meth-
ods, however, require patient data to be collected from ever larger
pools of population in order to reach statistical significance. Despite
high public and private demand for large amounts of research data,
the overall difficulty and cost of reaching beyond populations of sin-
gle jurisdictions remain prohibitive for technological, legal, and eco-
nomic reasons.

Our paper specifically addresses data heterogeneity, a particularly
challenging problem in the context of international medical research.
Beyond the obvious (nonetheless hard) problem of working across
languages, data interoperability on an international level also needs
to align local standards and practices that may currently be codified
at varying degrees of formality. The solution must also scale with
respect both to the amount of data and the number of participating
countries. Finally, the solution must respect severe constraints on
high data accuracy and local privacy rules with respect to sensitive
medical data.

In the context of a research experiment initiated by the National
Health Services of Scotland and conducted between Scotland and
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the Italian province of Trento, we tackle cross-border data integration
through a solution based on the integration of local and international
medical knowledge. Following a divide-and-conquer approach, inte-
grated knowledge is multi-layered, with each layer addressing het-
erogeneity on a different representational level: natural language,
terminology, and schemas. Furthermore, it is distributed into local
and international knowledge bases where each such knowledge in-
stance addresses a specific subproblem of data integration, namely
the formalisation of local data as a knowledge graph and the subse-
quent mapping of local graphs across borders. The knowledge-driven
solution we propose is privacy-aware by design as, contrary to data-
driven AI approaches, it does not transfer any data across jurisdic-
tions for the purposes of integration, in respect of local laws and
regulations [17].

2 STATE OF THE ART

Among AI-based approaches to combining health data for research,
recent data-driven solutions rely on machine-learning-based analyt-
ics, such as Watson Health [10]. While efficient where the data does
not present deep problems of semantic heterogeneity—as in medical
image analysis [12], or when the system is trained and used within
the same context, such as the same hospital or country—they have
been found much less robust when transferred from one country to
another, for lack of addressing semantic heterogeneity in an explicit
and pervasive manner [19]. The lack of explainability of decisions
taken by learning algorithms is also a dissuading factor for the med-
ical community.

The standard approach to solving healthcare data heterogeneity
problems expects local data controllers to map their data to a com-
mon data model (or ‘shared ontology’ in Semantic Web terms), such
as HL7 or, more recently, OMOP and FHIR [18] on the schema
level and to standard terminologies such as SNOMED or ICD on
the data value level. While standard data models and terminologies
do address heterogeneity and are a necessary element of interopera-
ble solutions, in themselves they are not sufficient: the methodology
through which they are applied determines in a large part whether
the overall solution can scale with new countries, data providers, and
data records. Thus, solutions that leave the burden of translation and
alignment to international standards on local data controllers (hos-
pitals, labs, etc.), such as in [16], cannot scale, due to the necessity
of (constantly evolving) linguistic, standards-related, medical, and
technological expertise. Such an effort is outside the competences
and means of local data controllers, which explains the lack of large-
scale cross-border research.

The conventional solution for conversion to common data models
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is to implement ad-hoc procedural logic, as in [20] or [15]. Proce-
dural approaches, however, are onerous and inflexible on the long
term as the evolution of experiment requirements, data sources, or
the target representation inevitably leads to new software develop-
ment cycles. In order to reduce such costs, data cleaning, mapping,
and ETL tools using formal knowledge (e.g. OWL ontologies) have
been proposed, such as the domain-agnostic Karma [11]. These tools
successfully tackle schema-level heterogeneity—and we reuse them
for this purpose in our work—but have no support for multilingual
data or the mapping of large domain terminologies.

Ontology-driven approaches to biomedical data integration have
been proposed as a solution that reduces the cost of interoperability,
as shown in a recent survey [5]. UMLS has been the most complete
and well-known aggregator of multilingual medical standards [4].
While it represents medical knowledge on multiple levels (lexical,
terminological, ontological), its largest component is the Metathe-
saurus that integrates biomedical terminologies. While UMLS and
similar aggregators are used in research projects as sources of aligned
terminological knowledge [1, 5, 14], they cannot cover local knowl-
edge in sufficient detail to support a deep and comprehensive inter-
pretation of local datasets. Also, they are not under the control of ex-
perimenters or data controllers, and are inflexible and slow to adapt
to new research problems, participating countries, standards, or to
constantly changing data representations.

3 CHALLENGES OF CROSS-BORDER
RESEARCH: THE DOAC USE CASE

The research experiment introduced below, initiated and overseen
by Scottish medical researchers, highlights the major technical dif-
ficulties in cross-border data sharing. The goal of the research was
to examine, for patients having had an intracranial hæmorrhage,
the safety of taking a specific category of drugs called direct oral
anticoagulants (DOAC) with respect to more traditional treatment
(i.e. Warfarin). As the experiment could not provide statistically sig-
nificant results on data from the National Health Services of Scotland
(NSS) alone, due to the relative novelty of DOACs and the specificity
of medical conditions examined, the study also integrated data from
Italy, specifically from the Azienda Provinciale per i Servizi Sanitari
(APSS) of the province of Trento.

Cross-border experimentation, however it may be realised in prac-
tice, needs to traverse the following macro-steps: (1) experiment defi-
nition that reaches a common prior agreement among data controllers
in each country with respect to the experiment requirements, down
to the dataset and attribute level; (2) data extraction: each data con-
troller extracts from local databases all data necessary for the exper-
iment; and (3) data conversion: the conversion of extracted data to
the representation required for the experimentation.

While these steps are not specific to cross-border settings, their
complexity is greatly increased in such scenarios. Our survey, involv-
ing NHS Scotland data analysts, showed that even in a single-country
scenario, for each individual experiment, the entire pre-analytics data
provision process typically lasts between 6–24 months (!), with ac-
tual data preparation taking up to one month of actual work and up
to 10 months of elapsed time. As we show below, the considerably
higher complexity of cross-border data heterogeneity is one of the
main reasons for this situation.

Language-level heterogeneity. The use of natural language is per-
vasive through each of the macro-steps above. In step 1, the ex-
periment description needs to be understood and evaluated by data

controllers in each participating country. In step 2, datasets, data at-
tributes, and data values need to be queried and filtered in the lo-
cal language. For example, in the Italian drug product database, the
value ‘10 compresse rivestite’ (meaning ‘10 coated tablets’) contains
both the quantity of items contained in a pack and the nature of the
item, either of which may be needed to be extracted for the experi-
ment. The same description appears also as ‘compresse riv.’ and as
‘compresse rivestite con film’, which need to be understood as equiv-
alent. Finally, in step 3, data expressed in the local languages need
to be combined and then translated to the language in which the ex-
periment will be carried out, which may or may not be among the
languages of the originating countries.

Terminology-level heterogeneity. Beyond natural language, a
major difficulty resides in understanding the precise meaning of med-
ical terms or codes used within experiment descriptions, schemas,
and data values. For example, the Scottish prescription attribute
‘Quantity prescribed’ refers to the number of tablets while its Italian
counterpart ‘Quantità’ to the number of packs. Within data values,
local, national, and international codes are frequently used within
medical data and are essential for automating large-scale research.
Our experiment involved disease codes, medical procedure codes, as
well as local codes for admission type, admission reason, and socio-
economic status of deprivation. To encode diseases, Scotland uses
the ICD-10 international standard8 while Italy its previous version
ICD-9 including, however, Clinical Modifications originating from
the United States. Procedures are encoded in Scotland using the na-
tional OPCS-4 standard9 while Italy uses ICD-9-PCS.

Schema-level heterogeneity. Each local data controller—
hospital, lab, or regional/national controller—uses its own data struc-
tures for representing patients, prescriptions, visits, etc. The state-of-
the-art approach is (1) to understand in advance which local datasets
will need to be used; (2) to map these local schemas to a standard
pivot schema, such as OMOP or FHIR, using ad-hoc data conver-
sion logic at design time; and (3) to run data extraction and con-
version automatically during experiment preparation. While this ap-
proach is straightforward on paper, in practice it often proves to be
costly to maintain: firstly, the local and the pivot schemas evolve over
time, which the conversion implementation needs to follow. Sec-
ondly, new research experiments may require new and unforeseen
datasets, which again means extending the conversion logic. Thirdly,
data heterogeneity is often a problem even internally to jurisdictions
(e.g. Italian regions have a high degree of freedom in managing their
data), which makes the implementation of cross-border mapping sub-
ject to solving internal data integration problems first.

Constraint of distributedness. Several factors make fully cen-
tralised data integration approaches unsuitable. For data protection
reasons, many jurisdictions—such as the UK in our experiment—do
not allow sensitive medical data to leave the country of origin. This
constraint imposes a system architecture that performs integration in
a distributed manner. Competences are also distributed: the extrac-
tion of data from legacy DBs and the deep understanding of such
data can only be done by local data controllers that are familiar with
the local language, standards, and practices. Data conversion, on the
other hand, requires an understanding of the shared data formats, lan-
guage, terminologies, and schemas. Local and shared data represen-
tations evolve independently, the former due to changing operational
healthcare needs while the latter driven by medical research.

8 The International Classification of Diseases, 10th rev.
9 OPCS Classification of Interventions and Procedures version 4:

https://isd.digital.nhs.uk/trud3/user/guest/group/0/pack/10
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Figure 1. The distributed knowledge and data integration architecture.

4 MULTI-LAYERED AND DISTRIBUTED
KNOWLEDGE

We tackle the challenges above through multilingual, knowledge-
driven, and distributed data integration. The distributed architecture
consists of local and cross-border knowledge, as shown in Figure 1.
Local knowledge bases are under the full control of the local data
controllers participating to the cross-border experiment, such as a
hospital or a higher-level—regional or national—government institu-
tion. Their role is to formalise local data, i.e. describe them in a fine-
grained and unambiguous way. In turn, the cross-border knowledge
base, under the responsibility of a Cross-Border Federator entity, has
the role of maintaining mutually agreed shared medical knowledge
and help in performing mappings from local to shared representa-
tions. Decoupling the formalisation of local data from its mapping re-
sults in: (1) better maintainability as local and shared representations
may evolve independently; (2) a simplification of the mapping logic
as it operates over a non-ambiguous formal representation instead of
raw data, leading to easier automation and thus better scalability; and
(3) a natural separation of tasks along competences: formalisation is
in the hands of local data experts while mapping is performed by
interoperability experts.

Each knowledge base is organised into three interconnected layers
defining linguistic, terminological, and ontological medical knowl-
edge, each layer tackling a specific form of data heterogeneity.
This layered structure provides compositionality to knowledge bases,
making them easier to adapt to local needs.

The resulting knowledge architecture is thus divided into three
horizontal layers and is distributed among vertical knowledge in-
stances: in our experiment, two local ones and a cross-border one.
The three layers are built upon each other and, likewise, the knowl-
edge instances are interconnected in a hierarchical manner, realising
an integrated knowledge architecture as depicted in Figure 2.

4.1 The language layer

The language layer describes the words and expressions used within
medical data: general and domain terms, data attribute names, as well
as medical codes that we consider as part of medical language. It
is built from three principal sources: (1) the general lexicon, as it
is frequently used even in domain applications: we use wordnets of
the given languages10 [13]; (2) medical domain terminologies such
as SNOMED CT, ICD, or LOINC; and (3) other labels and terms
relevant with respect to the research experiment, encoded manually
by the maintainers of the knowledge instance.

Within local knowledge, the language layer encodes words and
terms in the local language and with local relevance. For example,

10 Wordnets are obtainable for a large number of languages from
http://globalwordnet.org/wordnets-in-the-world/.

in Figure 2, the attribute name ‘mpridia’ and the term ‘diagnosi pri-
maria’, both standing for primary diagnosis, are included in the lan-
guage layer of the Trento local knowledge. Likewise, the UK-specific
OPCS-4 procedure code ‘X39.1’ meaning ‘oral administration of
therapeutic substance’ is encoded as part of the local language.

Within cross-border knowledge, the role of the language layer is
to describe experiment data in human-readable form, in the language
of the experimenter. While in our case this language was English,
simultaneous support of multiple languages is possible by plugging
in multiple language layers.

4.2 The terminology layer

The terminology layer is composed of language-independent con-
cepts that represent the meanings of natural language words, domain
terms, or schema labels from the language layer, and concept rela-
tions that organise concepts into a graph, such as is-a and part-of.
For example, in Figure 2, ‘hæmorrhage’, ‘hemorrhage’, and ‘R58.X’
are linked to the same concept and therefore are considered as syn-
onyms. The concept of ‘intracranial hæmorrhage’, in turn, is related
to the concept of ‘hæmorrhage’ through subsumption.

Local terminology contains concepts of local relevance, repre-
senting locally used terms and schemas. Cross-border concepts,
in turn, are generated from international standards (e.g. ICD or
SNOMED CT) as a way to guarantee the highest possible level of
interoperability.

The terminology layer is a key device for tackling the hetero-
geneity of languages and medical standards alike. On the local level,
through a process of formalisation, it maps informal language-based
data representations (text within data, coded values) into a formal
graph-based representation where both schema and data elements
are represented as language-independent concepts. Local knowledge
can also be used for solving local heterogeneity issues. On the cross-
border level, the terminology layer acts as a bridge both across lan-
guages and standards. Equivalence mapping relations between lo-
cal and cross-border concepts provide ‘cross-walks’ both across lan-
guages and across local and international standards. For example, in
Figure 2, such relations assert the equivalence of the Italian concept
labelled as ‘diagnosi primaria’ with the Scottish concept of ‘main
condition’ through mapping both to the pivot SNOMED concept of
‘main diagnosis’. Likewise, the concept labelled as ‘4590’ from the
ICD-9 standard currently in use in Italy is mapped as equivalent to
the ICD-10 concept of ‘R58.X’, ICD-10 being the pivot standard in
the cross-border instance.

We build concepts and concept relations from wordnet synsets and
synset relations for general language, and from terminological units
and term relations for domain terminologies. While domain termi-
nologies may overlap with the wordnet and also among themselves
(e.g. both ICD and SNOMED define ‘cerebral hæmorrhage’), this
rarely poses a problem in practice as medical schemas usually pro-
vide context on which terminology is being used within a given data
attribute (e.g. the main condition attribute always uses ICD). In order
to favour the correctness and maintainability of knowledge, we adopt
a lightweight approach to integrating wordnets and terminologies: a
domain expert manually combines them simply by attaching the root
terms of specialised terminologies to subsumer terms within word-
nets or higher-level reference terminologies, via is-a relations. For
example, the root concept of the ICD disease hierarchy is subsumed
by the wordnet-sourced concept of ‘pathological state’.

Cross-lingual and cross-standard mappings are provided by high-
quality expert-curated resources: for general language concepts, we
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Figure 2. The three-layered knowledge structure, divided across two local and one cross-border instance.

reuse existing mappings towards the pivot Princeton WordNet En-
glish synsets provided by most wordnets, as described in [7]. For
medical concepts, cross-lingual mappings are provided by multilin-
gual domain terminologies (such as SNOMED CT, ICD, or LOINC).
Cross-standard equivalence mappings between local and pivot con-
cepts (such as from ICD-9 used locally in Italy to ICD-10 used in-
ternationally) originate either from crosswalks hand-curated by the
international medical community, or are added by local data con-
trollers. The more extensively a local controller adopts well-known
standards for local use, the smaller the manual effort needed to create
mappings. In any case, curating the mappings used by the system is
entirely under the control of experts.

4.3 The schema layer

The schema layer, described formally in our earlier work [6, 8], mod-
els data structures (data schemas, ontologies) in an entity-centric
manner. Aggregating attributes around well-known domain entities
(patient, admission, drug, prescription, etc.) as opposed to, e.g. more
normalised or triple-based schemas increases the cross-border under-
standability of data representation and, hence, interoperability. This
is why international schema-level health interoperability standards,
such as FHIR or OMOP, also follow an entity-centric approach.

Schemas, attributes, and attribute datatypes are defined via con-
cepts from the terminology layer. In the example of Figure 2,
the concept of the schema is CAdmission, the concept of its at-
tribute is Cmain diagnosis, and the concept of the attribute datatype is
Cpathological state, meaning that its values are concepts subsumed by it.
The fact that schema elements are defined through unambiguous for-
mal concepts as opposed to natural-language labels facilitates the
definition of cross-border schema mappings and also allows schemas
to be displayed in any language that experimenters wish to use and
that are supported by the language layer of cross-border knowledge.

While local schemas are defined via local concepts, schemas de-
fined within cross-border knowledge use standard schemas for inter-
operability: in our setup the schemas were defined on the basis of
OMOP, designed specifically for medical research.

5 KNOWLEDGE AND DATA INTEGRATION
METHODOLOGY

This section presents the methodology on the use of multi-layered
and distributed knowledge for enabling cross-border integration of
data. We use the DOAC experiment as an example case study to val-
idate the approach.

Figure 3. High-level steps of the experiment data preparation process.
While cross-border data mapping may take place within local jurisdictions

for privacy reasons, it remains governed by cross-border knowledge.

The high-level steps of the experiment data preparation process,
as depicted in Figure 3, are articulated as follows:

1. cross-border experiment definition;
2. local and cross-border knowledge adaptation;
3. knowledge-based data integration, consisting of local data formal-

isation followed by cross-border data mapping.

Figure 3 also shows that the experiment-specific process above is pre-
ceded by a one-time bootstrapping effort that sets up the cross-border
knowledge base as well as local knowledge bases in each participat-
ing jurisdiction. Both on the local and the cross-border levels, the
data preparation process is overseen by data scientists who have a
deep understanding of the contents of the medical datasets used, as
well as of domain knowledge and the best practices of knowledge
representation. In the experiment definition step, however, the active
participation of medical researchers is also necessary.

Below we provide details on how the DOAC experiment prepara-
tion steps were implemented using our knowledge architecture. For
the storage, creation, maintenance, and querying of multi-layered
knowledge instances we used a knowledge base technology devel-
oped at the University of Trento, described in [9]. While a full ac-
count of the automation of data integration is beyond the scope of
this paper, in sections 5.4 and 5.5 we provide a summary on the tools
and approaches used.
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5.1 One-time knowledge bootstrapping

Knowledge bootstrapping is a one-time initial effort to create the
knowledge bases that will drive data integration: one for each local
data controller and one for the cross-border integrator. At this stage
the most frequently used knowledge is set up, such as the general
vocabulary, disease and procedure codes, and the core data schemas.
It is not needed to achieve an a priori exhaustive coverage of medi-
cal data: knowledge bootstrapping is only a first step of a long-term
iterative medical knowledge management process. In subsequent ex-
periments this bootstrapping step is omitted.

In the DOAC experiment three knowledge bases were used:
two local ones for Scotland and Trento, as well as a cross-border
knowledge instance installed in Scotland. The knowledge resources
used for bootstrapping, including their sizes, are shown in Table 1.
Local knowledge was filled with locally used encoding schemes
and data labels. As shown in Table 1, English and Italian word-
nets were preloaded to cover the general lexicon, and for disease
codes we loaded ICD-10 for Scotland and ICD-9-CM for Italy.
Cross-border knowledge was populated with international standards:
SNOMED CT as a backbone reference ontology of concepts and
terms, as well as the ICD-10-CM hierarchy. These domain terminolo-
gies were attached by their root to concepts of the general lexicon by
a data scientist. Pre-loaded knowledge also included expert-curated
mappings across standards provided by the US National Library of
Medicine, NSS, and APSS.

5.2 Experiment definition

As described in section 3, experiment definition is one of the most
time-consuming phases of cross-border experimentation, as a com-
mon understanding and agreement needs to be reached among partic-
ipating humans in a context of multilingual and heterogeneous data.
Integrated formal knowledge accelerates this process by allowing im-
mediate visibility to a formal and uniform description of datasets
across jurisdictions to both experimenters and data controllers.

As our pilot DOAC experiment was conducted in parallel with
the bootstrapping of knowledge, we did not benefit of this advantage
and had to define the experiment based on human expert knowledge
alone. The initial Scottish experiment proposal was first reviewed
by the APSS data controllers and further precisions were requested
with respect to the meaning of UK-specific variables and the level of
formality in describing the cohort. Due to the physical distance and
language issues, communication was mediated by the knowledge and
data integration team. Once mutual understanding was reached about
the experiment goals and criteria, APSS reviewed each data attribute
requested by Scotland and evaluated equivalences, or lack thereof,
with Italian attributes. A number of attributes were signalled either
as having no equivalent in Italy or not being retrievable: this was the
case of admission reason, care home residency flag, cause of death,
and measure of deprivation. On the basis of this input, in the final
experiment definition, these variables were either dropped or, in the
case of cause of death, were approximated by hospital re-admission
disease codes that were deemed by experts to be strongly linked to
the cause of death.

5.3 Knowledge adaptation

Based on the experiment definition, the local and cross-border
knowledge instances were adapted to the experiment by a data sci-
entist using interactive knowledge management tools for the creation

Figure 4. Illustration of the two steps of data integration: local
formalisation (bottom layer) followed by cross-border mapping (top layer).

The two columns represent a Scottish and an Italian jurisdiction.

of new lexical items, concepts, schemas, and attributes. As the data
schemas used (see Table 1) depend on the experiment, they were cre-
ated in the adaptation phase rather than during bootstrapping. For the
design of cross-border schemas and attributes, the OMOP research
data exchange standard was used as a general reference, but the ac-
tual schemas were limited to the needs of the experiment, following
our general philosophy of extending cross-border knowledge on an
on-demand basis. The attributes of cross-border schemas were de-
fined as SNOMED CT concepts whenever available, while local ones
were represented by ad hoc concepts.

Still as part of knowledge adaptation, relevant DOAC drugs (Ri-
varoxaban, Dabigatran, Apixaban, as well as Warfarin for control)
and the corresponding drug products were imported were defined in
all three scopes, as well as the creation of pivot OMOP-based entity-
centric schemas.

5.4 Local data formalisation

Local data formalisation (bottom half of Figure 4) converts data that
is informally or semi-formally expressed, typically as relational ta-
bles containing textual and numerical values, into a formal knowl-
edge graph:

• legacy (typically relational) data schemas are formalised by map-
ping their attributes to the formal, entity-centric, language-inde-
pendent schemas defined in the local knowledge;

• data records become entities, instances of the schemas above;
• medical codes and relevant natural-language terms within at-

tribute values are formalised as concepts: either single con-
cepts, e.g. ‘tablet’→CTablet) or ‘4590’→CICD9:459.0/Hæmorrhage, or
short phrases containing multiple concepts, e.g. ‘5mg coated
tablets’→< 5, Cmg, CCoatedTablet >;

• foreign keys, numerical IDs, named entities, and other such iden-
tifiers within data are formalised as entity links;

• other (e.g. numerical) values are formalised as simple datatypes.

The resulting knowledge graph is thus constituted of entities, con-
cepts, and datatypes as nodes, and entity-to-entity, entity-to-concept,
and entity-to-datatype links as edges.

For both Scottish and Italian data, we carried out the mapping of
schemas and the underlying data records semi-automatically using
StarLinker, a semantic data transformation tool that extends Karma
[11]. The main difference of StarLinker with respect to Karma and
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Table 1. Summary of the contents of the three knowledge bases used in the case study, including knowledge sizes in terms of number of labels (for
terminologies), attributes (for schemas), and relations (for mappings).

Resource Scotland Size Italy Size Cross-border Size

general lexicon Princeton WordNet 120k labels Italian MultiWordNet 35k labels Princeton WordNet 120k labels
ref. terminology n/a n/a SNOMED CT Intl 1.2M labels
diseases ICD-10 40k labels ICD-9-CM 140k labels ICD-10-CM 70k labels
drugs BNF (part) 6 labels AIC (part) 6 labels SNOMED CT 12 labels

experiment data
schemas

SMR01/admissions,
PIS/prescriptions,
NRS death records

77 attrs
50 attrs
52 attrs

Ricoveri,
Prescrizioni

21 attrs
10 attrs

OMOP:Visit occurrence,
OMOP:Dose era,
OMOP:Death

13 attrs
9 attrs
8 attrs

terminology
mappings

BNF↔ SNOMED CT 6 rels
MWN↔ PrincetonWN,
ICD9CM↔ ICD10CM,
AIC↔ SNOMED CT

31k rels
23k rels

5 rels
SNOMED↔ ICD10CM 21k rels

schema mappings
SMR01→Visit occ.,
PIS→Dose era,
NRS DR→Death

9 rels
12 rels

7 rels

Ricoveri→Visit occ.,
Prescrizioni→Dose era,
Ricoveri→Death

5 rels
17 rels

2 rels
n/a

other ETL tools that carry out schema mappings and data transforma-
tions is the ability to disambiguate natural language text and medical
codes contained in data into unambiguous concepts. StarLinker relies
on the SCROLL multilingual NLP tool [3] and the terminology layer
of local knowledge to perform language-independent word sense dis-
ambiguation on labels in structured data (the method is described in
[2, 3]), and can reach a high precision due to the constrained nature
of the disambiguation tasks (e.g. in prescription data, it only needed
to extract concepts such as mg or capsule where disambiguation is
constrained by the subsumer SNOMED concepts of unit of measure
and dosage form, respectively).

In order to ensure the precision of data formalisation, which is of
particular importance for medical research, the initial definition of
all formalisation steps through StarLinker is overseen and validated
by a local data scientist. StarLinker then allows the fully automated
application of the same processing steps over subsequent datasets,
which is a key feature for scalability over large amounts of data (we
provide a scalability experiment in the next section, Table 4).

On the Scottish side, three datasets were formalised: Inpatient
admissions (SMR01), Prescriptions (PIS), and NRS Death Records.
Within admission data, diagnosis codes were identified using the
ICD-10 standard represented in the Scottish knowledge base. In pre-
scriptions, local BNF (British National Formulary) item codes were
referring to official textual drug descriptions (e.g. ‘5mg tablets; 10
tablets’) that we had to parse to extract drug names and prescribed
doses. Dates and causes of death, the latter as ICD-10 codes, were
extracted from the NRS Death Records dataset.

On the Italian side, in the Ricoveri (inpatient admissions) dataset,
diagnoses expressed as ICD-9-CM codes were recognised and la-
belled with the corresponding concepts using the Trento knowledge
base. For causes and dates of deaths, as it was not possible to ob-
tain Italian death records for the time period defined in the experi-
ment, hospital readmission data was used, including diagnosis (ICD)
codes. Italian prescriptions contained coded drug identifiers in the
local AIC format, that we used to retrieve dosages and prescription
models (e.g. ‘orale 0.3 grammi’, ‘5 mg 60 compresse rigide’). From
this dataset, drug names, quantities, and units of measure were ex-
tracted, normalised, and labelled with meaning.

In total, formalisation involved the definition of 37 unique data
transformation rules (e.g. for the canonical formatting of dates and
medical codes, or the splitting of columns containing complex val-
ues) and 10 unique concept extraction rules (disease codes, sex, units
of measure, dosage forms, drugs, routes of administration, etc.).

5.5 Cross-border data mapping

Cross-border data mapping (top half of Figure 4) takes a formal yet
still locally specific knowledge graph as input and maps it to the
cross-border representation. Due to data protection constraints, data
mapping typically happens independently at each data controller, us-
ing shared cross-border knowledge.

We mapped local Scottish and Italian schemas to the pivot OMOP-
based schemas semi-automatically, using the StarLinker tool. The
mapping of concepts across terminologies (see Table 1 for details)
was fully automatic whenever expert-curated one-to-one equivalence
mapping rules were available, otherwise it required the manual ex-
tension of knowledge. When mapping Italian ICD-9 codes to cross-
border ICD-10, 16 codes out of the total 23 appearing in the Italian
cohort could not be automatically mapped due to the lack of equiv-
alence mappings across the two standards. These mappings needed
to be added manually by a data scientist based on input from a re-
searcher. In general, for strongly context-specific or fine-grained in-
formation, no mapping may be possible without some level of in-
formation loss; however, such losses are detectable and manageable
prior to running the research experiment, thanks to the formal repre-
sentation. For example, in Figure 4 the Italian concept of ‘compressa
rivestita’, meaning ‘coated tablet’, is mapped to the broader concept
of tablet in case the pivot format does not represent the former: while
some detail is lost, the information remains formally correct.

In total, the two final mapped knowledge graphs consisted of
87,165 triples computed from 7,717 initial data records, not counting
the triples describing the knowledge underlying the process.

6 LESSONS LEARNT

Precision and completeness. A specificity of data integration in
the medical domain is the absolute need for precision, i.e. no infor-
mation lost or corrupted during processing. The possibility of human
supervision and the ability to explain automatically obtained results
to human experts are strong requirements of the medical commu-
nity. The knowledge-based and semi-automated method, overseen
by a data scientist, offers a workable solution: knowledge mappings,
while never complete, are transparent, immediately visible, and ex-
tensible. The fact that the Karma-based StarLinker data processing
tool is able to work in both semi-automated and fully automated
modes provides the possibility to the medical community to balance
the need for supervision with scalability at their will.
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We conducted an experiment on the precision and coverage of
the semi-automated components of the data formalisation and cross-
border mapping process. Three such components were evaluated:
(1) procedural data transformations to reduce heterogeneity in dates
or natural language labels; (2) concept extraction (that converts nat-
ural language labels into concepts); and (3) knowledge-based con-
cept mapping. The latter two were evaluated both after their initial
fully-automatic execution and after expert curation of the automatic
results. Curation included both reviewing the concept selected by the
system from multiple alternatives, and extending the knowledge in
case of missing concepts. The results in Table 2 show that preci-
sion was always very high, which is due to the relative simplicity
of labels as well as word sense disambiguation having been care-
fully constrained by attribute-specific concepts. Initial concept and
especially mapping coverage were low, which was a knowledge in-
completeness problem. Once the completeness issue addressed by
knowledge adaptation, precision and coverage could be increased to
100%. Finally, data transformations provided perfect results due to
the original data being regular with little noise.

Table 2. Size, precision, and coverage statistics of the semi-automated data
mapping process using StarLinker.

Task Nb Prec. Coverage

unique concepts extracted (auto) 63 93.7% 68.2%
unique concepts extracted (curated) 63 96.8% 100%
unique concept mappings (auto) 23 100% 26.1%
unique concept mappings (curated) 23 100% 100%
unique data transformation rules 37 100% 100%

Scalability. In order to understand the cost of the proposed method
in terms of time, in Table 3 we provide information of the effort spent
in the various steps of data preparation. 55% of the total time went
into knowledge bootstrapping, 27% into experiment definition, only
9% into actual experiment-specific knowledge and data preparation,
and another 9% into the manual validation of transformed data. Apart
from bootstrapping, not to be redone for further experiments, exper-
iment definition was the most time-consuming, as it required experts
from two countries, often not speaking the language of each other,
precisely to understand experiment requirements and the limitations
of each other’s datasets. The informal nature of both data and experi-
ment descriptions was a major stumbling block, and pointed towards
the importance of formalisation efforts.

The time-cost of the process—three person-months of one-time
bootstrapping effort followed by nine weeks for the experiment
itself—needs to be considered in the context of the usual costs of
setting up such experiments. As reported in section 3, for experi-
ments in Scotland alone, the amount of time between receiving a re-
quest for experiment data and fulfilling it varies between six months
and two years of elapsed time, with data preparation taking up to
10 months (elapsed) and one person-month of actual data processing
work. Given the considerably higher complexity of cross-border in-
tegration, the cost of our semi-automated process is perfectly within
the bounds of feasibility.

We conducted a scalability experiment on local data formalisa-
tion and cross-border mapping, which correspond to the fully auto-
mated part of the process (once the manual process definition has
been carried out by data scientists). We used synthetic (yet realis-
tic) data provided by NSS Scotland, that used the same schema as in
the real-world experiment, but randomised values. The running times
(Table 4) show a clearly regressing trend with respect to the number
of records, which is due to the complexity of data transformations be-

Table 3. Analysis of the duration of steps in terms of actual work time.

Step Agents Modality Duration

knowledge bootstrapping data scientists semi-aut. 60 p/d

experiment definition
researchers,
data scientists

manual
30 p/d

(elapsed)

knowledge adaptation
researchers,
data scientists

manual 5 p/d

local data formalisation data scientists semi-aut. 3 p/d
cross-border data mapping data scientists semi-aut. 2 p/d
validation of results data scientists manual 5 p/d

ing linear with the number of unique labels. In real-world data, there
tend to be frequent repetitions of a finite number of labels (e.g. in any
given experiment, diseases will be limited to a relatively small subset
of ICD codes). In our synthetic dataset, about 1,000 unique concepts
needed to be dealt with. For this reason, the results of computations
can be cached and reused efficiently. Note also that even for large
datasets, running times remain negligible with respect to the magni-
tude of the full data preparation effort as reported in Table 3.

Table 4. Scalability of automated formalisation & cross-border mapping:
running times on a synthetic dataset of Scottish death records.

Records Time (s) Records Time (s) Records Time (s)

500 41 2,000 101 100,000 175
1,000 63 10,000 132 200,000 212

DOAC experiment results. The combined cohort size obtained
from Scotland and Italy was 1,443. From a medical point of view, this
amount of data turned out to be sufficient to cover only a part of the
research initially planned. Meaningful results were obtained with re-
spect to gender and age bias of patients, as well as with respect to rel-
ative risks of taking oral anticoagulants. On the other hand, the data
size still was not statistically significant enough to compute compar-
ative relative risks between DOACs and Warfarin. Finally, from the
point of view of piloting the technology and methodology for cross-
border data integration, the effort was successful as it confirmed the
feasibility of our approach.

7 PERSPECTIVES

While the architecture is designed to scale with the addition of new
data controllers, the experiment presented in this paper included
only two participating data sources. The same approach, however,
is being deployed in two ongoing projects that involve more ju-
risdictions and/or data controllers within the same jurisdiction. In
the InteropEHRate EU-funded project11, the cross-border interop-
erability of health records among countries of the European Union
is solved through a FHIR-based data integration architecture. In an-
other, Scotland-specific Sprint Exemplar project funded by the UK
Health Data Research Alliance, data from multiple Scottish data con-
trollers, ‘regional Safe Havens’, are harmonised through local inte-
gration, before cross-border integration takes place.

This paper and the underlying research were supported by EIT Dig-
ital, the University of Edinburgh, as well as the European Union’s
H2020 research and innovation programme under grant agreement
No 826106, project InteropEHRate. We warmly thank Simone
Bocca, Danish Cheema, David Leoni, Clifford Nangle, and Alessio
Zamboni for their invaluable technical contributions.
11 http://www.interopehrate.eu
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