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Abstract
In this paper we propose a new reformulation of the first order hyperbolic model for unsteady
turbulent shallowwater flows recently proposed in Gavrilyuk et al. (J Comput Phys 366:252–
280, 2018). The novelty of the formulation forwarded here is the use of a new evolution
variable that guarantees the trace of the discrete Reynolds stress tensor to be always non-
negative. The mathematical model is particularly challenging because one important subset
of evolution equations is nonconservative and the nonconservative products also act across
genuinely nonlinear fields. Therefore, in this paper we first consider a thermodynamically
compatible viscous extension of the model that is necessary to define a proper vanishing
viscosity limit of the inviscid model and that is absolutely fundamental for the subsequent
construction of a thermodynamically compatible numerical scheme. We then introduce two
different, but related, families of numerical methods for its solution. The first scheme is
a provably thermodynamically compatible semi-discrete finite volume scheme that makes
direct use of the Godunov form of the equations and can therefore be called a discrete
Godunov formalism. The new method mimics the underlying continuous viscous system
exactly at the semi-discrete level and is thus consistent with the conservation of total energy,
with the entropy inequality and with the vanishing viscosity limit of the model. The second
scheme is a general purpose high order path-conservative ADER discontinuous Galerkin
finite element method with a posteriori subcell finite volume limiter that can be applied to
the inviscid as well as to the viscous form of the model. Both schemes have in common
that they make use of path integrals to define the jump terms at the element interfaces. The
different numerical methods are applied to the inviscid system and are compared with each
other and with the scheme proposed in Gavrilyuk et al. (2018) on the example of three
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Riemann problems. Moreover, we make the comparison with a fully resolved solution of
the underlying viscous system with small viscosity parameter (vanishing viscosity limit). In
all cases an excellent agreement between the different schemes is achieved. We furthermore
show numerical convergence rates of ADER-DG schemes up to sixth order in space and time
and also present two challenging test problems for the model where we also compare with
available experimental data.

Keywords Godunov form of hyperbolic equations · Discrete Godunov formalism ·
Thermodynamically compatible finite volume schemes · Vanishing viscosity limit ·
Path-conservative ADER discontinuous Galerkin schemes · Unsteady turbulent shallow
water flows · Realizable Hyperbolic turbulence model

1 Introduction

In the last decades, a lot of work has been devoted to the study of shallow water flows. When
dispersive effects are negligible (this is the case, for example, for the modelling of hydraulic
jumps for large Froude numbers, or tsunami waves), one usually employs the classical Saint-
Venant (SV) or shallow water equations. The underlying hypothesis in the derivation of
the Saint-Venant equations is the flow potentiality. The horizontal vorticity (parallel to the
bottom) in the shallow water approximation is related with the horizontal velocity shear:
ω|| ≈ Vz , where V is the instantaneous (non-averaged) horizontal velocity, and the index z
means the derivative in the vertical direction. The absence of the vorticity means the absence
of the horizontal velocity shear. The shallow water equations are hyperbolic, see e.g. [116].
When discontinuous solutions to the SV equations are studied, one uses the conservation of
mass and momentum at the shocks, but the energy equation is always used as the entropy
inequality. The reason for this is the following. The fluid flow ahead of the jump front is
supercritical with respect to the front and almost potential, while behind the front it is highly
turbulent: large vortex structures are usually formed. The energy is not conserved because a
part of this energy is transformed into the energy of vortexes which is not taken into account
in the SVmodel. An ideal model of free surface shallow flows which takes into account shear
effects was recently derived by Teshukov [112]. The governing equations are obtained by
depth averaging of the multi–dimensional Euler equations [100,101,112]. The hypothesis of
smallness of the horizontal vorticity (the hypothesis of weakly sheared flows) allows us to
keep the second order depth averaged correlations in the governing equations but neglect the
third order correlations, and thus to close the governing system in the dissipationless limit.
To apply the model to the study of real flows (formation of roll waves and hydraulic jumps)
the model was complemented by dissipative source terms, see [69,80,100,101].

The corresponding multi-dimensional model of shear shallow water flows is a hyper-
bolic system of equations which is reminiscent of the Reynolds-averaged Euler equations
for barotropic compressible turbulent flows. The model has three families of characteris-
tics corresponding to the propagation of surface waves, shear waves and waves propagating
with the average flow velocity. The main difficulty in studying such a system is the highly
non-conservative nature of the governing equations: for six unknowns (the fluid depth, two
components of the depth averaged horizontal velocity, and three independent components
of the symmetric Reynolds stress tensor) one has only five conservation laws: conserva-
tion of mass, momentum, energy and mathematical “entropy". The last one determines the
evolution of the determinant of the Reynolds stress tensor. The non-conservative nature of
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the multi-dimensional equations represents an enormous difficulty from the mathematical
and numerical point of view. The definition and computation of discontinuous solutions
for non-conservative hyperbolic equations is a challenging problem, see e.g. [5,23,85]. A
numerical method (based on a splitting procedure) was recently developed for solving this
non-conservative system [69,80]. The essential ingredient was the use of the energy conser-
vation. It allowed, in particular, creation of vorticity once the jump appears. The splitting
procedure was as follows. First, a geometric splitting was applied consisting in solving the
governing equations first in x and then in y direction. Second, each one-dimensional system
was also split into two subsystems, each of which contained only one ‘sound’ speed: the
velocity of surface waves for the first sub-system, and the velocity of shear waves for the
second sub-system. Each subsystem admitted its own energy conservation law, and its own
“entropy”.However, such an operator splitting could be also a source of numerical errors. This
is why it is very important to develop also different numerical methods for solving this chal-
lenging non-conservative system, like the two new unsplit schemes proposed in this paper,
namely a completely new thermodynamically compatible unsplit finite volume scheme, as
well as a slightly modified general-purpose high order ADER discontinuous Galerkin finite
element method.

In order to put the new unsplit thermodynamically compatible finite volume scheme pre-
sented in this paper into the proper context, let us briefly review the main ideas on which it
is based. Exactly sixty years ago, in 1961, Godunov published his groundbreaking paper An
interesting class of quasilinear systems [70], in which he discovered the connection between
symmetric hyperbolicity in the sense of Friedrichs [62] and thermodynamic compatibility
(SHTC), ten years before Friedrichs and Lax [63], who independently rediscovered the same
connection again in 1971. In a subsequent series of papers,Godunov andRomenski carried out
further research on this link between symmetric hyperbolicity and thermodynamic compat-
ibility and generalized the seminal idea of Godunov to the more general SHTC framework
of symmetric hyperbolic and thermodynamically compatible systems, which includes not
only the compressible Euler equations of gasdynamics, but also the magnetohydrodynamics
(MHD) equations [71] and the equations of nonlinear hyperelasticity [74,75,77]. The findings
of Godunov and Romenski on nonlinear hyperelasticity were subsequently further employed
and extended in [1,6,14,17,47,57,59,67,72,81,87,88,91,93]. A very general class of symmet-
ric hyperbolic and thermodynamically compatible systems was presented by Romenski in
[102], which is able to describe the interaction of moving-dielectric solids with electromag-
netic fields, the dynamics of superfluid helium and also contains a hyperbolic model for heat
conduction. An extension of this class of models to compressible multi-phase flows was for-
warded in [103,104,106]. The SHTC framework remains valid even in the context of special
and general relativity, see [76,105]. Recently, a connection between the class of symmetric
hyperbolic and thermodynamically compatible systems and Hamiltonian mechanics was rig-
orously established in [92]. SHTC systems go also beyond classical continuum mechanics,
see e.g. [94] for an SHTC formulation of continuum mechanics with torsion. Despite the
mathematical beauty and rigor of the SHTC framework, up to now it was never carried over
to the discrete level. So far, most papers on on thermodynamically compatible schemes are
based on the ideas of the seminal work of Tadmor [108], in which a discrete extra con-
servation law for the entropy is obtained as a consequence of the discretization of all other
equations (including the energy conservation, which is explicitly discretized). Instead, in the
new scheme presented in this paper we are not discretizing the energy equation explicitly,
but are rather looking for a thermodynamically compatible scheme in which a discrete total
energy conservation law is obtained as direct consequence of the compatible discretization
of all the other equations. For an interesting application of entropy compatible schemes for
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the discretization of non-conservative equations, see [3,60]. The ideas presented there are
related to the new compatible scheme introduced in the present paper, though [3,60] deal
with much simpler equation systems. Recently, convergence of entropy-stable schemes was
proven in [26]. For extensions of entropy-compatible schemes to high order discontinuous
Galerkin methods, see [28,36,66,78,84] and references therein. While most of the aforemen-
tioned schemes are thermodynamically compatible only at the semi-discrete level, a fully
discrete entropy-stable scheme has been recently presented in [95]. We also would like to
point out that a very general framework for the construction of numerical schemes satisfying
additional extra conservation laws has been recently forwarded by Abgrall in [2].

As already stated above, the major difference of the thermodynamically compatible
scheme proposed in this paper with respect to previous thermodynamically compatible
schemes is its discrete compatibility with the conservation of total energy as a consequence
of all equations and not the conservation of entropy as a consequence. In other words, the
thermodynamically compatible finite volume scheme presented in this paper never explicitly
discretizes the energy equation, but total energy conservation is obtained as a mere conse-
quence of a thermodynamically compatible discretization of the other equations, including
a compatible discretization of the numerical viscosity.

The second unsplit scheme proposed in this paper is a fully-discrete one-step high
order ADER discontinuous Galerkin method (ADER-DG). Explicit discontinuous Galerkin
schemes for hyperbolic equations have been put forward by Reed and Hill in [96] introduc-
ing the use of discontinuous polynomials in a Galerkin framework to allow the jump of the
discrete solution across cell boundaries.

Then, the first extensions to multidimensional and non linear hyperbolic systems were
presented in the series of papers by Cockburn and Shu [27,30–33]. Parabolic terms have
been considered for the first time in [9,10,34,35]. The severe time step restriction induced by
the inclusion of higher order derivatives, [83,122,123], and nonlinear dispersive equations,
[51,53,54], has driven to the development of fully implicit approaches, [44], whose major
disadvantage is the solution of the resulting ill-conditioned algebraic systems. An alternative
approach recently proposed is the use of hyperbolic reformulations of dispersive models
which allow for more efficient discretizations, [7,8,18,52].

Regarding high order methods, it is important to remark that while attaining high order in
space is straightforward for DG methodologies, there are different possibilities concerning
high order time discretizations. The original DG schemes of Cockburn and Shu employed
high order Runge-Kutta schemes in time, leading to the family of RKDG schemes. An alter-
native consists in the family of fully implicit and semi-implicit space-time DG methods, see
e.g. [19,82,98,99,109–111,120,121]. Another different option that leads to high order explicit
fully-discrete one-step schemes, and which is followed in this paper, combines ideas of the
ADER approach of Toro and Titarev, originally developed within the finite volume frame-
work [20,114,117,118], with space-time DGmethods. This methodology, based on the ideas
outlined in [41,43], makes use of an element-local space-timeDG predictor, thus avoiding the
cumbersomeCauchy-Kovalevskaya procedure of classical ADER schemes and thus allowing
also the solution of complex PDEs in multiple space dimensions. Some examples of the wide
range of applicability for this approach include the compressible Euler and Navier-Stokes
equations, [40,41], compressible multi-phase flows [45], the Godunov-Peshkov-Romenski
model of continuum mechanics, [17,47,93]. Discontinuous Galerkin schemes for hyperbolic
PDE systems with non-conservative products have been proposed for the first time in [42,97],
based on the ideas of path conservative schemes [22–24,85,89], which will be also a key point
for the development of the numerical schemes proposed in this paper.
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The rest of this paper is organized as follows: in Sect. 2 we present the original model [69]
and a novel reformulation based on a decomposition of the specific Reynolds stress tensor P
as P = QQT . We furthermore introduce a viscous extension of the governing PDE system
in order to define a rigorous and thermodynamically compatible vanishing viscosity limit
of the model. We finally recall the Godunov formalism of thermodynamically compatible
systems and prove that the proposed viscous system is thermodynamically compatible with
the energy conservation law and with the entropy inequality. In Sect. 3 we present a novel
thermodynamically compatible finite volume scheme, which mimics the aforementioned
viscous extension of the system exactly at the semi-discrete level. In Sect. 4 a high order
ADER discontinuous Galerkin methodwith a posteriori subcell limiter (MOOD) is presented
for the new reformulation of themodel proposed in this paper, including its viscous extension.
Special care is taken concerning the conservation of total energy. Numerical results are shown
in Sect. 5, where first a numerical convergence study is presented for third to sixth order
ADER-DG schemes in space and time; subsequently, different schemes are compared with
each other for three Riemann problems, discussing in particular the discretization of the non-
conservative terms of the model in the context of thermodynamically compatible systems.
The end of Sect. 5 contains numerical results for some challenging test problems for which
experimental reference data are available, such as supercritical roll waves and the circular
shock instability developing in the SWASI experiment, see [61]. The paper is rounded-off
with some concluding remarks and an outlook to future work in Sect. 6.

2 Governing Equations

We consider the following overdetermined hyperbolic model for turbulent shear shallow
water flows in multiple space dimensions, which has been recently proposed in [69] and
which was also applied and studied in [11,25,80]:

∂t h + ∇ · (hv) = 0, (1)

∂t (hv) + ∇ ·
(
hv ⊗ v + 1

2
gh2I + hP

)
+ gh∇b = −C f ‖v‖ v, (2)

∂tP + v · ∇P + ∇v P + P ∇vT = −2
α

h
P, (3)

∂t b = 0, (4)

with the gravity constant g. The physical (primitive) state variables in (1)–(4) are the
following: h = h(x, t) is the water depth, b = b(x) is the known bottom topography,
v = v(x, t) is the depth-averaged flow velocity and P = P(x, t) is the specific Reynolds
stress tensor. For shallow water systems it is convenient to include the stationary bottom
profile b(x) in the set of state variables. The reason is that this allows to represent stationary
free surface waves associated with bottom jumps and to obtain well-balanced numerical
schemes, see e.g. [21,22,64,89,90] for more details. Via straightforward calculations it can
be shown that the system (1)–(4) admits the following extra conservation law

∂t (hE) + ∇ ·
(

v(hE) +
(
1

2
gh2I + hP

)
v
)

= −C f ‖v‖3 − α trP, (5)

with the total energy defined as hE = 1
2 gh

2 + hgb + 1
2h‖v‖2 + 1

2h trP.
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The bottom friction is taken into account by a coefficient C f and the dissipation function
α is given according to [69] as

α = max

(
0,Cr

trP − ϕh2

(trP)2
‖v‖3

)
. (6)

2.1 Reformulation of theModel in Terms of a New EvolutionVariable

The above model requires trP ≥ 0 for hyperbolicity. In order to guarantee this property also
at the discrete level for all times, we propose the following novel reformulation of the system
(1)–(5). For this, we consider first the homogeneous part of equation (3) for the symmetric
tensor P:

Ṗ + LP + PLT = 0. (7)

Here for shortness, for any f , ḟ means the material time derivative: ḟ = ft + v · ∇, and

L = ∂v
∂x

= ∇v. Let us replace P by P = QQT . What is the equation for Q? One obtains

from (7):

(Q̇ + LQ)QT + Q(Q̇ + LQ)T = 0. (8)

If

Q̇ + LQ = B(QT )−1 (9)

with an antisymmetric tensor B = −BT , the equation for P will be obviously satisfied. Thus,
the equation for Q is defined up to an antisymmetric tensor B taking into account a proper
rotation of the Reynolds tensor (for details, see [68]). We hypothesize that friction forces will
drastically reduce the influence of this proper rotation, i.e. we take B = 0. Such a class of
solutions is not equivalent to all solutions governed by the equation for P, but is able, as we
will show, to describe complex flow configurations.

What is a geometrical sense of such a decomposition P = QQT ? Let us recall first the
definition of the Gram matrix G (in the 2D case). Consider two vectors wi , i = 1, 2. The
Gram matrix is defined as

G =
(

w1 · w1 w1 · w2

w1 · w2 w2 · w2

)
. (10)

The ‘dot’ here is for the scalar product of vectors. It can be also written as

G = QQT (11)

with

Q =
(

wT
1

wT
2

)
, (12)

i.e. the line vectors wi are the lines of Q. Let us recall that in our case P is the correlation
tensor expressed in terms of the velocity pulsations (see [112] for details) as:

P =
(

v′2
1 v′

1v
′
2

v′
1v

′
2 v′2

2

)
(13)
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Here the averaging operation, denoted by a “bar”, is the depth averaging. The tensor P is
positive definite due to the Cauchy–Schwarz inequality. Let us show that P can be presented
in the form (10), i.e. there exist vectors wi :

P =
(

w1 · w1 w1 · w2

w1 · w2 w2 · w2

)

For this we take

w1 =
√

v′2
1 (cos θ1, sin θ1)

T , w2 =
√

v′2
2 (cos θ2, sin θ2)

T

with

cos(θ1 − θ2) = v′
1v

′
2√

v′2
1 v′2

2

.

The last relation is well defined due to the Cauchy–Schwarz inequality: |v′
1v

′
2| ≤

√
v′2
1 v′2

2 .
With Pik = QimQkm written in terms of the new evolution variable Q and the notation

∂m = ∂/∂xm the above system can be rewritten again as an overdetermined PDE system as
follows:

∂t h + ∂m(hvm) = 0, (14)

∂t (hvi ) + ∂k

(
hvivk + 1

2
gh2δik + hPik

)
+ gh∂i b = −C f ‖v‖vi , (15)

∂t Qik + vm ∂m Qik + (∂mvi ) Qmk = −α

h
Qik, (16)

∂t b = 0, (17)

with the conservative evolution variables h = h(x, t), hv = hv(x, t), Q = Q(x, t) and the
stationary bottom profile b = b(x).

It is easy to see that (3) is a consequence of (16) by simply multiplying (16) with QT from
the right and summing the transpose of (16) multiplied by Q from the left. It can be easily
checked that also the new system (14)–(17) admits an extra energy conservation law

∂t (hE) + ∂i

(
(hE)vi +

(
1

2
gh2δik + hQimQkm

)
vk

)
= −C f ‖v‖3−α trP, (18)

which can be obtained as a consequence of (14)–(17). In terms of Q the total energy reads
hE = 1

2 gh
2 + hgb + 1

2hvivi + 1
2h Qi j Qi j , which for flat bottom b = 0 is a strictly convex

function in the variables h, hvi and Si j = hQi j . It is also a convex function of (h, hvi , Qi j ), if
the turbulent energy is small compared to the gravitational potential energy (see “AppendixA”
for details). Also note that due to trP = Qi j Qi j ≥ 0 the use of Q instead of P automatically
guarantees a non-negative trace of P by construction, and hence also at the discrete level for
all times. In this sense, system (14)–(18) is analogous to a so-called realizable turbulence
model. At this point we emphasize that the thermodynamically compatible scheme proposed
later in this paper will consider only the case of a flat bottom with b = 0.

Last but not least, we would like to point out the difference in the only apparently sim-
ilar structure of PDE (16) and the governing PDE for the distortion field Aik in nonlinear
hyperelasticity [47,93], which reads

∂t Aik + vm∂m Aik + Aim (∂kvm) = − 1

θ(τ )
EAik . (19)
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As one can easily see, the order of the matrix-product in the third term on the left hand
side of (16) and (19) is exchanged. It is well-known that for hyperelasticity there is an
additional conservation law associated with the determinant of the distortion field Aik and
in the following we will show that the same applies to the determinant of the field Qik . The
time derivative of the determinant of Q can be easily obtained via the Jacobi formula, which
expresses the derivatives of the determinant of a matrix in terms of the inverse of the matrix
and the derivatives of the matrix itself:

∂t |Q| = |Q|Q−1
ki ∂t Qik, ∂m |Q| = |Q|Q−1

ki ∂mQik, (20)

where Q−1
ki is a compact notation for (Q−1)ki . Applying (20) to (16) yields

∂t |Q| + |Q|Q−1
ki vm ∂m Qik + |Q|Q−1

ki (∂mvi ) Qmk = −α

h
|Q|Q−1

ki Qik, (21)

from which one obtains

∂t |Q| + vm ∂m |Q| + |Q| (∂mvi ) δmi = −α

h
|Q|δkk, (22)

and therefore the sought additional balance law for the determinant |Q|,
∂t |Q| + ∂m (vm |Q|) = −α

h
|Q|δkk, (23)

which for α = 0 has the same structure as the mass conservation equation (14). As such, we
can assume that for h > 0 also |Q| > 0 holds.

Via straightforward calculations it can be shown that for smooth solutions the conservation
law (23) for the determinant |Q| is equivalent to the conservation law

∂t (hψ) + ∂m (vmhψ) = −4α

h3
(
P11P22 − P2

12

)
, ψ = |P|

h2
= |Q QT |

h2
(24)

already found in [69]. Assuming α = 0 it reduces to

∂t (hψ) + ∂m (vmhψ) = 0. (25)

2.2 Eigenstructure of the Reformulation

The eigenvalues of the homogeneous part of (14)–(17) in x1 direction are

λ1,7 = v1 ∓ c, λ2,6 = v1 ∓ √
P11, λ3,4,5 = v1, λ8 = 0, (26)

with c2 = gh + 3P11. The associated right eigenvectors read

r1,7 = (hK , h(v1 ∓ c)K , h(v2K ∓ 6cP12), Q11K , Q12K , 6Q11P12, 6Q12P12, 0)
T,

r2,6 =
(
0, 0,∓√

P11h, 0, 0, Q11, Q12, 0
)T

,

r3 =
(
−2hQ11,−2hv1Q11,−2hv2Q11, gh + P11, 0, Q

−1
11 (2Q12|Q| + Π1), 0, 0

)T
,

r4 =
(
−2hQ12,−2hv1Q12,−2hv2Q12, gh + P11, 0, Q

−1
11 (2Q12P12 − Π2), 0, 0

)T
,

r5 =
(
0, 0, 0, 0, 0,−Q−1

11 Q12, 1, 0
)T

,

r8 = (hM, 0, h(2v1P12 + v2M), Q11M, Q12M,−2P12Q11,−2P12Q12,Π3)
T, (27)

123



Journal of Scientific Computing (2021) 88 :28 Page 9 of 45 28

with K = 2c2 + gh, M = P11 − v21 , Π1 = Q21(P11 − gh), Π2 = Q22(P11 + gh) and
Π3 = g−1M(u2 − c2). All eigenvalues are real since h > 0 and P11 = Q2

11 + Q2
12 ≥ 0 and

there exists a full set of eigenvectors, hence the system is hyperbolic.

2.3 The Godunov Form of Nonlinear Systems of Hyperbolic Conservation Laws

In order to define the vanishing viscosity limit of system (14)–(17) and in order to introduce
the new thermodynamically compatible finite volume schemes developed later in this paper,
which are exactly compatible with the vanishing viscosity limit, it is necessary to recall the
Godunov form [70] of hyperbolic PDE systems. We first consider only hyperbolic systems
of conservation laws in two space dimensions of the type

qt + ∂kfk = 0, (28)

with flux tensor F = (f1, f2), that admit the following parametrization according to Godunov
[70]

(
Lp

)
t + ∂k

(
(vk L)p

) = 0, (29)

with the extra conservation law of the form

Et + ∂k Fk = 0, (30)

where Fk is the total energy flux in the k-th coordinate direction. Equations (29) and (30)
are in the following called the Godunov form of the conservation law (28) and constitute an
overdetermined systemofPDE.The system is thermodynamically compatible if the following
relations hold:

q = Lp, p = Eq, fk = (vk L)p, Fk = p · fk − vk L. (31)

Here, L is the so-called generating potential and E is the total energy density, which are the
Legendre transforms of each other and thus satisfy

L = p · q − E, E = p · q − L. (32)

We assume L and E to be strictly convex functions of their arguments, hence the transfor-
mation matrices between p and q variables, which are the Hessian matrices of L and E ,
respectively, verify

∂p
∂q

= Eqq > 0,
∂q
∂p

= Lpp > 0, Lpp = (Eqq
)−1

, (33)

Lpp = LT
pp, Eqq = ET

qq. (34)

It is easy to check that (30) is a consequence of (29), since scalar multiplication of (29) with
p = Eq yields

p · (Lp)t + p · ∂kfk = Et + ∂k (p · fk) − (∂kp) · fk
= Et + ∂k (p · fk) − ∂kp · (vk L)p

= Et + ∂k (p · fk) − ∂k (vk L) ,

= Et + ∂k Fk = 0, (35)
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which is the sought form of the total energy conservation law (30). For details on the class of
symmetric hyperbolic and thermodynamically compatible (SHTC) systems and their appli-
cation, see [17,47,70,71,73–75,93,102]. The shallow water subsystem for flat bottom

∂t h + ∂k (hvk) = 0, (36)

∂t (hvi ) + ∂k

(
hvivk + 1

2
gh2δik

)
= 0, (37)

∂tE + ∂k

(
Evk + 1

2
gh2vk

)
= 0, (38)

contained in (14)–(18) falls into the class of PDE (28)–(30). The corresponding potentials
are

E = 1

2
gq21 + 1

2

q22 + q23
q1

(39)

and

L = 1

2g

(
p1 + 1

2

(
p22 + p23

))2

, (40)

with the vectors q = (h, hv1, hv2)
T and p = (gh − 1

2 (v
2
1 + v22), v1, v2)

T . The associated
Hessian matrices are

Eqq = 1

h

⎛
⎝ gh + v21 + v22 −v1 −v2

−v1 1 0
−v2 0 1

⎞
⎠ (41)

and

Lpp = 1

g

⎛
⎝ 1 v1 v2

v1 gh + v21 v1v2
v2 v1v2 gh + v22

⎞
⎠ . (42)

It is easy to see that with (40) and the flux tensor F = (hvk, hvivk + 1
2 gh

2δik)
T the energy

fluxes (31) in (30) are

Fk = p · fk − vk L = Evk + 1

2
gh2vk, (43)

which corresponds to the energy flux in (38).

2.4 Thermodynamically Compatible VanishingViscosity Limit

In order to defineweak solutions for system (14)–(17), we define an associated thermodynam-
ically compatible viscous system that satisfies at the same time an entropy-type inequality, as
well as the total energy conservation law. In this section we assume a flat bottom with b = 0
for simplicity, as well as α = C f = 0, while a small parabolic dissipation term with dissi-
pation coefficient ε > 0 is added to the equations. In order to guarantee exact total energy
conservation, a non-negative production term Tik must be added to the governing PDE for
Q:
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∂t h + ∂m(hvm) = ∂mε∂mh, (44)

∂t (hvi ) + ∂k

(
hvivk + 1

2
gh2δik + hPik

)
= ∂mε∂m(hvi ), (45)

∂t Qik + vm ∂m Qik + (∂mvi ) Qmk = ∂mε∂mQik + Tik, (46)

∂tE + ∂i

(
(E1 + E2)vi +

(
1

2
gh2δik + hPik

)
vk

)
= ∂mε∂mE, (47)

with the total energy E = hE = E1 + E2 that can be decomposed into two contributions
with E1 = hE1 = 1

2 gh
2 + 1

2hvivi and E2 = hE2 = 1
2hQik Qik . Here, E1 is the total energy

potential of the shallow water subsystem (36)–(37) and E2 is the total energy associated with
the new object Qik . In what follows, we will denote the inviscid part of the total energy flux
in (47) by

F = (E1 + E2)vi +
(
1

2
gh2δik + hPik

)
vk = FG + E2vi + hPikvk, (48)

with the abbreviation

FG = E1vi + 1

2
gh2vi (49)

that will be used later and which corresponds to the energy flux related to the shallow water
subsystem, see also (43).

The production term, Tik , which is needed to achieve the consistency of (44)–(46) with
the total energy conservation law (47) reads

Tik = ε
Qik

h trP
∂mqi

(Eqi q j

)
∂mq j . (50)

The consistency with physics and experimental observations requires total energy conser-
vation, see [68,69,80,100,101] for a more detailed discussion. In (50) the vector q = qi =
(h, hvi , Qik) indicates the vector of primary state variables and Eqi q j is the Hessian matrix of
the total energy potential with respect to these state variables. One can show that the Hessian
matrix is positive definite for small turbulent kinetic energy Qi j Qi j compared to gh, see
“Appendix A” for details.

Theorem 1 (Energy conservation) The energy conservation law (47) is a consequence of
equations (44)–(46).

Proof The shallow water subsystem (36)–(37) related to E1, which are the black terms in
(44)–(45), directly falls into the general class of PDE (29)–(30) found by Godunov, hence
the compatibility of the shallow water subsystem with the energy conservation law with
energy potential E1 is obvious. It is therefore enough to consider only the remaining terms
associated with the quantity Qik (red) and the viscous terms on the right hand side (blue).

We first show compatibility of the red terms: Since (E2)h = E2 = 1
2Qik Qik = 1

2 trP,
Ehvi = vi , EQik = (E2)Qik

= h (E2)Qik
= hQik summation of (44)–(46) with the thermo-

dynamic dual variables and considering only new contributions that are not yet contained in
the Godunov-form yields
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E2 (∂t h+∂m(hvm))+vi∂k(hPik)+hQik (∂t Qik+vm∂mQik+(∂mvi ) Qmk)

= E2∂t h + h∂t

(
1

2
Qik Qik

)
+ E2∂m(hvm) + hvm∂m

(
1

2
Qik Qik

)

+vi∂k(hQimQkm) + hQik Qmk∂mvi

= ∂t (hE2) + ∂m (hvmE2) + ∂k (vi hQimQkm)

= ∂t (hE2) + ∂m (vmE2) + ∂k (vi hPik) . (51)

After simple renaming of indices this proves the thermodynamic compatibility of the red
terms contained in the left hand side of (44)–(46) with the red terms on the left hand side of
the energy equation (47).

We now consider the right hand side (blue terms): We define a viscous flux tensor gk as

gm = ε ∂mq (52)

and a production term T that is equal to zero for all PDE apart from the non-zero production
term Tik in the PDE for Qik , see (46) and (50). Summation of the right hand sides of (44)–(46)
with the thermodynamic dual variables p = Eq yields

Eq · ∂mgm + Eq · T = Eq · ∂mε ∂mq + Eq · T

= ∂m
(
ε Eq · ∂mq

) − ε ∂mEq · ∂mq + Eq · T

= ∂mε ∂mE − ε
(Eqq∂mq

) · ∂mq + Eq · T

= ∂mε ∂mE − ε ∂mqi
(Eqi q j

)
∂mq j + Eq · T

= ∂mε ∂mE, (53)

where −ε ∂mqi
(Eqi q j

)
∂mq j + Eq · T = 0 since EQik = hQik and

Eq · T = hQikTik = ε
hQik Qik

htrP
∂mqi

(Eqi q j

)
∂mq j = ε∂mqi

(Eqi q j

)
∂mq j . (54)

The combination of the right hand sides of (44)–(46) therefore yields the right hand side of
(47), which completes the proof. 
�

Theorem 2 (Entropy-type inequality) A direct consequence of the PDE (46) without the
parabolic dissipative term, i.e. of the equation

∂t Qik + vm ∂m Qik + (∂mvi ) Qmk = Tik, (55)

is an entropy-type inequality

∂t |Q| + ∂m (vm |Q|) = ε
|Q|δkk
h trP

∂mqi
(Eqi q j

)
∂mq j ≥ 0, (56)

with {i, j} ∈ {1, 2, 3}.

Proof To see that the entropy inequality is a direct consequence of (55) we apply the Jacobi
identity (20) to (55), which leads to

∂t |Q| + |Q|Q−1
ki vm ∂m Qik + |Q|Q−1

ki (∂mvi ) Qmk = |Q|Q−1
ki Tik, (57)

from which one obtains

∂t |Q| + ∂m (vm |Q|) = |Q|Q−1
ki Tik . (58)

123



Journal of Scientific Computing (2021) 88 :28 Page 13 of 45 28

With

|Q|Q−1
ki Tik = ε

|Q|Q−1
ki Qik

h trP
∂mqiEqi q j ∂mq j = ε

|Q|δkk
h trP

∂mqiEqi q j ∂mq j ≥ 0 (59)

one obtains the following entropy-type inequality associated with system (44)–(46):

∂t |Q| + ∂m (vm |Q|) = ε
|Q|δkk
h trP

∂mqi Eqi q j ∂mq j ≥ 0, (60)

where {i, j} ∈ {1, 2, 3}. 
�
Throughout this paper, we will consider entropy solutions of (14)–(18) that satisfy (44)–(47)
in the limit ε → 0. As shown later, the thermodynamically compatible scheme proposed
in Sect. 3 of this paper is provably compatible with this vanishing viscosity limit, since it
mimics the above viscous system exactly at the semi-discrete level. In the section containing
the numerical results, we provide numerical evidence that also the high order ADER-DG
schemes proposed in Sect. 4 of this paper as well as the numerical scheme already developed
in [69] are compatible with this vanishing viscosity limit.

The meaning of Theorem 2 is the following. The evolution equation for the tensor P
(or for Q) is responsible for the vorticity transport, dissipation and production. While the
transport and dissipation terms are clearly identified in previous works, it is not the same
for the production terms. In the one- dimensional case the energy equation is equivalent
to the ‘entropy’ equation and the ’entropy’ (or vorticity) production is a consequence of
the energy conservation. In the multi-dimensional case, the situation is completely different
because the governing equations cannot be written in conservative form (the proof is given
in [69]). So, the definition of weak solutions for such a non-conservative hyperbolic system
which is compatible with the entropy production, should be given. In particular, such a
definition was proposed in [69]. The Theorem 2 can be seen as a compatible alternative
approach for the definition of weak solutions : the ’viscous’ terms playing a major role in
shocks guarantee the vorticity production. Moreover, the ’viscous’ terms are consistent with
the energy conservation law (Theorem 1) that is a necessary condition for all physically
reasonable mathematical models.

3 Thermodynamically Compatible Finite Volume Scheme

In order to derive our new thermodynamically compatible finite volume scheme for system
(14)–(18) that mimics the structure of the viscous system (44)–(47) exactly at the semi-
discrete level, we proceed in a similar way as on the continuous level. First, a compatible
scheme for the shallowwater subsystem (36)–(38) is derived, based on a semi-discrete version
of the Godunov form of (29)–(30). This corresponds to the discretization of the black terms in
(44)–(47). Then, numerical viscosity together with an appropriate entropy production term
is added to the scheme, which corresponds to the discrete analogue of the blue terms in
(44)–(47). Last but not least the discretization of the red terms in (44)–(47) is discussed.
To keep the presentation simple, we restrict ourselves to the one-dimensional case, but the
generalization to multiple space dimensions is straightforward. To avoid confusion in the
notation throughout this section we will use the lower case subscripts i, j, k, l,m for tensor
indices and the lower case superscript r for the spatial discretization index. We emphasize
again that the scheme proposed in this section is only valid for the flat bottom case with
b = 0.

123



28 Page 14 of 45 Journal of Scientific Computing (2021) 88 :28

3.1 Compatible SchemesWithout Dissipation Applied to the Godunov Form

A semi-discrete conservative finite volume scheme for system (28) in one space dimension

based on the spatial control volume Ωr = [xr− 1
2 , xr+ 1

2 ] reads
d

dt
qr = − fr+ 1

2 − fr− 1
2

Δx
. (61)

By adding and subtracting fr = f(qr ) we get

d

dt
qr = − (fr+ 1

2 − fr ) − (fr− 1
2 − fr )

Δx
. (62)

We now try to obtain a discrete form of the total energy conservation law (30) also as a
consequence of the discrete equations (62). For this purpose, we multiply (62) with pr =
Eq(qr ) from the left and get

pr · d

dt
qr = d

dt
Er = −pr · (fr+ 1

2 − fr ) + (fr − fr− 1
2 )

Δx
:= − 1

Δx

(
D
r+ 1

2 ,−
E + D

r− 1
2 ,+

E

)
,

(63)

where the fluctuations D
r+ 1

2 ,−
E = pr · (fr+ 1

2 − fr ) and D
r− 1

2 ,+
E = pr · (fr − fr− 1

2 ) have been

introduced for convenience. Obviously, D
r+ 1

2 ,+
E = pr+1 · (fr+1 − fr+ 1

2 ). We now compute
the temporal rate of change of the sum of the total energy in cell r and r + 1, which yields

Δx
d

dt

(Er + Er+1) = −
(
D
r− 1

2 ,+
E + D

r+ 1
2 ,−

E + D
r+ 1

2 ,+
E + D

r+ 3
2 ,−

E

)
. (64)

It is clear that in order to obtain a flux conservative form of the discrete energy conservation
equation we must require that the contribution of the left and the right fluctuation at the
interface r + 1

2 is a flux difference, i.e.

D
r+ 1

2 ,−
E + D

r+ 1
2 ,+

E := Fr+1 − Fr , (65)

where Fr must be a consistent approximation of the total energy flux F . Inserting the defi-
nitions of the fluctuations into (65) yields

pr · (fr+
1
2 − fr ) + pr+1 · (fr+1 − fr+

1
2 ) =

−fr+
1
2 · (

pr+1 − pr ) + pr+1 · fr+1 − pr · fr := Fr+1 − Fr . (66)

Using the parametrization (29) and the associated relations (31) we get

−(vL)
r+ 1

2
p · (

pr+1 − pr ) + pr+1 · fr+1 − pr · fr :=
pr+1 · fr+1 − (vL)r+1 − pr · fr + (vL)r , (67)

with Fr = pr · fr − (vL)r and thus the sought relation that the numerical flux fr+ 1
2 must

satisfy is

fr+
1
2 · (

pr+1 − pr ) = (vL)
r+ 1

2
p · (

pr+1 − pr ) = (vL)r+1 − (vL)r . (68)

The condition (68) above is like a Roe-type property, but only for the vector fr+ 1
2 instead of

an entire Roe matrix. Based on the ideas of path-conservative schemes of Castro and Parés
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[22,89] we thus define the numerical flux via a path-integral in phase-space, since by the
fundamental theorem of calculus we have

(vL)r+1 − (vL)r =
pr+1∫
pr

(vL)p · dp =
1∫

0

(vL)p · ∂ψ

∂s
ds (69)

for any path ψ = ψ(s) connecting pr with pr+1, see also the pioneering work of Tadmor
[108] for a similar construction of an entropy-conservative flux at the aid of a path integral.
The last equality in (69) means a concrete parametrization of the chosen integration path
using integration by substitution and a dimensionless integration parameter s in the range
0 ≤ s ≤ 1. In the following we choose two different parametrizations based on the simple
straight-line segment path. Note that the choice of the path is arbitrary, hence we are free to
choose a path that is somehow convenient for our purposes.

1. Segment path in the p variables (p-scheme). In the p-scheme, the path between pr and
pr+1 is directly given by the straight line segment

ψ(s) = pr + s
(
pr+1 − pr ) , 0 ≤ s ≤ 1. (70)

We thus obtain

∂ψ

∂s
= pr+1 − pr , (71)

and therefore relation (69) results in

(vL)r+1 − (vL)r =
pr+1∫
pr

(vL)p · dp =
1∫

0

f(ψ(s)) · ∂ψ

∂s
ds

=
⎛
⎝

1∫
0

f(ψ(s))T ds

⎞
⎠ · (

pr+1 − pr ) . (72)

By comparison with (68) we find that the thermodynamically compatible numerical flux
of the p-scheme is therefore given by

f
r+ 1

2
p =

1∫
0

f(ψ(s))ds, (73)

which by construction satisfies
(
pr+1 − pr

) · fr+
1
2

p = (vL)r+1−(vL)r and thus condition
(68). The problem with the p-scheme is that it requires f in terms of p variables, which
in general is very cumbersome, since usually f is easier known in terms of q rather than
in terms of p.

2. Segment in the q variables (q-scheme). To avoid the above-mentioned problem, in the
q-scheme the path between pr and pr+1 is now defined in terms of a straight line segment
in the q variables, whichmeans in terms of p variables the path is in general not a segment.
We set

ψ̃(s) = p
(
qr + s

(
qr+1 − qr )) , 0 ≤ s ≤ 1. (74)
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Here, we only use the notation ψ̃(s) to avoid confusion with the path used before in the
p-scheme. We therefore have

∂ψ̃

∂s
= ∂p

∂q
· (

qr+1 − qr ) = Eqq · (
qr+1 − qr ) , (75)

and thus condition (69) results in

(vL)r+1 − (vL)r =
pr+1∫
pr

(vL)p · dp =
1∫

0

f(ψ̃(s)) · ∂ψ̃

∂s
ds

=
⎛
⎝

1∫
0

Eqqf(ψ̃(s))T ds

⎞
⎠ · (

qr+1 − qr ) . (76)

If we now check again condition (68) we still need to transform the jump in p variables
into a jump in q variables. For that purpose, we define a Roe-type matrix L̃qq that satisfies
the Roe property

L̃
r+ 1

2
pp · (

pr+1 − pr ) = qr+1 − qr , (77)

which can be easily achieved by construction by the means of a path integral. In practice

we first define the inverse of the Roe matrix L̃
r+ 1

2
pp as

Ẽr+
1
2

qq =
1∫

0

Eqq

(
ψ̃(s)

)
ds, (78)

which is again a Roe matrix, but which is easy to compute, and which can be checked to
satisfy

Ẽr+
1
2

qq · (qr+1 − qr ) = pr+1 − pr (79)

by construction. We thus obtain

L̃
r+ 1

2
pp =

(
Ẽr+

1
2

qq

)−1

=
⎛
⎝

1∫
0

Eqq

(
ψ̃(s)

)
ds

⎞
⎠

−1

, (80)

which finally yields the desired thermodynamically compatible numerical flux of the q
scheme as

f
r+ 1

2
q = L̃

r+ 1
2

pp

1∫
0

Eqqf(ψ̃(s))ds =
⎛
⎝

1∫
0

Eqq

(
ψ̃(s)

)
ds

⎞
⎠

−1⎛
⎝

1∫
0

Eqqf(ψ̃(s))ds

⎞
⎠ . (81)

Note that if f is only easily known in terms of q variables, one can directly plug the
straight segment path in terms of the q variables into the function f and into the Hessian
Eqq, without needing to compute p(q) at all!

In practical calculations, we approximate all path integrals by numerical quadrature, which
can be done up to any desired level of accuracy, see also [42,45,48,49] where this strategy
has already been successfully used.
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3.2 Compatible Schemewith Dissipation Applied to the Godunov Form

The above schemes are compatible with the parametrization (29) of the system (28) and also
satisfy the extra conservation law (30). However, to obtain a dissipative scheme, we still need
to add a compatible numerical dissipation. For that purpose we write a dissipative scheme
for (28) of the form

d

dt
qr + fr+ 1

2 − fr− 1
2

Δx
= gr+ 1

2 − gr− 1
2

Δx
+ Tr , (82)

with the compatible flux fr+ 1
2 as defined before and the additional dissipative numerical flux

gr+ 1
2 given by

gr+
1
2 = μr+ 1

2
qr+1 − qr

Δx
= μr+ 1

2
Δqr+ 1

2

Δx
, (83)

where μr+ 1
2 ≥ 0 is a scalar numerical dissipation. Henceforth we simply set

μr+ 1
2 = 1

2

(
1 − ϕr+ 1

2

)
Δx s

r+ 1
2

max ≥ 0, (84)

with s
r+ 1

2
max an estimate for the maximum signal speed at the interface. For ϕr+ 1

2 = 0 this
choice corresponds to a classical first order Rusanov-type scheme, see [107,115]. To reduce

numerical dissipation in smooth regions, a TVDminbee flux limiter ϕr+ 1
2 is employed, which

is defined as follows, see the second order TVD SLIC scheme described by Toro in [115],

ϕr+ 1
2 = min

(
ϕ
r+ 1

2− , ϕ
r+ 1

2+
)

, with ϕ
r+ 1

2± = max

(
0,min

(
1, ρ

r+ 1
2±
))

, (85)

with the ratios of subsequent slopes of the total energy potential defined as

ρ
r+ 1

2− = Er − Er−1

Er+1 − Er , and ρ
r+ 1

2+ = Er+2 − Er+1

Er+1 − Er . (86)

Note that in regions of ϕr+ 1
2 = 1 the scheme exhibits no numerical viscosity at all. The

production term Tr will be defined later. Computing the dot product of (82) with pi yields

d

dt
Er + Fr+ 1

2 − Fr− 1
2

Δx
= pr · gr+ 1

2 − gr− 1
2

Δx
+ pr · Tr , (87)

where we denote the inviscid numerical flux for the total energy by Fr+ 1
2 . Since the

dissipation-free scheme has already been shown to be compatible with the energy conserva-

tion law, in what follows, the explicit expression for Fr+ 1
2 is not needed, but is given here

for completeness:

Fr+ 1
2 = D

r+ 1
2 ,−

E + Fr = pr · (fr+
1
2 − fr ) + Fr . (88)
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We now rewrite the right hand side of (87) as

pr · gr+ 1
2 − gr− 1

2

Δx
+ pr · Tr

= pr · Tr + 1

Δx

(
1

2
pr · gr+

1
2 + 1

2
pr+1 · gr+

1
2 + 1

2
pr · gr+

1
2 − 1

2
pr+1 · gr+

1
2

)

− 1

Δx

(
1

2
pr · gr−

1
2 + 1

2
pr−1 · gr−

1
2 + 1

2
pr · gr−

1
2 − 1

2
pr−1 · gr−

1
2

)

= pr · Tr + 1

2

pr+1 + pr

Δx
· gr+

1
2 − 1

2

pr + pr−1

Δx
· gr−

1
2

−1

2

pr+1 − pr

Δx
· gr+

1
2 − 1

2

pr − pr−1

Δx
· gr−

1
2

= pr · Tr + 1

2

pr+1 + pr

Δx
· μr+ 1

2
qr+1 − qr

Δx
− 1

2

pr + pr−1

Δx
· μr− 1

2
qr − qr−1

Δx

−1

2

pr+1 − pr

Δx
· μr+ 1

2
qr+1 − qr

Δx
− 1

2

pr − pr−1

Δx
· μr− 1

2
qr − qr−1

Δx
. (89)

The total energy flux including the dissipative terms thus reads as follows

F
r+ 1

2
d = Fr+ 1

2 − 1

2
(pr+1 + pr ) · μr+ 1

2
Δqr+ 1

2

Δx

≈ Fr+ 1
2 − μr+ 1

2
ΔEr+ 1

2

Δx
, (90)

since the expression 1
2 (p

r+1 + pr ) · Δqr+ 1
2 is an approximation of the path integral

qr+1∫
qr

p · dq =
qr+1∫
qr

ET
q · dq = Er+1 − Er := ΔEr+ 1

2 (91)

using the simple trapezoidal quadrature rule. Making again use of the symmetric Roe matrix

Ẽr+
1
2

qq , which satisfies Ẽr+
1
2

qq (qr+1 − qr ) = pr+1 − pr , the semi-discrete total energy conser-
vation law takes the form

d

dt
Er + F

r+ 1
2

d − F
r− 1

2
d

Δx
= pr · Tr −

−1

2
μr+ 1

2
qr+1 − qr

Δx
· Ẽr+

1
2

pp
qr+1 − qr

Δx
− 1

2
μr− 1

2
qr − qr−1

Δx
· Ẽr−

1
2

qq
qr − qr−1

Δx
. (92)

By requiring that

pr · Tr := 1

2
μr+ 1

2
Δqr+ 1

2

Δx
· Ẽr+

1
2

qq
Δqr+ 1

2

Δx
+ 1

2
μr− 1

2
Δqr− 1

2

Δx
· Ẽr−

1
2

qq
Δqr− 1

2

Δx
, (93)

we finally obtain the sought conservation form of the discrete total energy equation (87):

d

dt
Er + F

r+ 1
2

d − F
r− 1

2
d

Δx
= 0. (94)
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The term Tr is set identically to zero in all its components, apart from the equations that
are needed for the entropy inequality, which are the nonconservative evolution equations for
Qik . Therefore, the term Tr will be discussed later.

To summarize, the thermodynamically compatible dissipative numerical flux of the q
scheme for (28) reads

f
r+ 1

2
q,d =

⎛
⎝

1∫
0

Eqq

(
ψ̃(s)

)
ds

⎞
⎠

−1 ⎛
⎝

1∫
0

Eqqf(ψ̃(s))ds

⎞
⎠

−1

2
s
r+ 1

2
max

(
1 − ϕr+ 1

2

) (
qr+1 − qr ) . (95)

3.3 Thermodynamically Compatible Discretization of the Terms Related toQik

We now present the discretization of the Reynolds stress tensor Rik = hPik in themomentum
equation that is thermodynamically compatible with the term (∂mvi )Qmk in (46) and the term
hPikvk in the energy equation. To ease notation, we present the discretization only for the one-
dimensional case in x1 direction. Extension to multiple space dimensions is straightforward.
For the term (∂mvi )Qmk we a priori choose the following discretization:

Δx(∂1vi )Q1k ≈ Q
r+ 1

2
1k

(
vr+1
i − vri

)
, with Q

r+ 1
2

1k = 1

2

(
Qr

1k + Qr+1
1k

)
. (96)

Multiplication of the momentum equation (45) with the dual variable Ehvi = vi and of PDE
(46) with the dual variable EQik = hQik and requiring thermodynamic compatibility with
total energy equation leads to the following requirement that needs to be fulfilled by the yet

unknown discretization of the Reynolds stress tensor R
r+ 1

2
i1 :

vri

(
R
r+ 1

2
i1 − Rr

i1

)
+ vr+1

i

(
Rr+1
i1 − R

r+ 1
2

i1

)

+hr Qr
ik
1

2
Q

r+ 1
2

1k

(
vr+1
i − vri

)
+ hr+1Qr+1

ik
1

2
Q

r+ 1
2

1k

(
vr+1
i − vri

)

= hr+1Qr+1
im Qr+1

1m vr+1
i − hr Qr

imQ
r
1mvri . (97)

Using Rik = hQimQkm and collecting terms leads to

− R
r+ 1

2
i1

(
vr+1
i − vri

)
+ Q

r+ 1
2

1k
1

2

(
hr Qr

ik + hr+1Qr+1
ik

) (
vr+1
i − vri

)
= 0. (98)

Since Q
r+ 1

2
1k = 1

2

(
Qr

1k + Qr+1
1k

)
, we obtain the following compatible discretization for the

numerical flux of the Reynolds stress tensor in x1 direction:

R
r+ 1

2
i1 = 1

2

(
Qr

1k + Qr+1
1k

) 1

2

(
hr Qr

ik + hr+1Qr+1
ik

)
, (99)

which needs to be added to the compatible dissipative flux (95) in the semi-discrete momen-
tum equation, which then takes the form

d

dt
(hvi ) = − 1

Δx

(
f
r+ 1

2
hvi ,d

− f
r− 1

2
hvi ,d

)
− 1

Δx

(
R
r+ 1

2
i1 − R

r− 1
2

i1

)
, (100)
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where f
r+ 1

2
hvi ,d

is the part of the dissipative flux in x1 direction (95) that refers to the momentum
equation.

The last term in (46) that needs to be discretized is the convective term vm∂mQik , which
requires compatibility with the mass conservation law (44) and the energy conservation
(47). To achieve such a compatible discretization, the mass conservation equation needs to
be multiplied with the remaining contribution E2,h = E2 and the PDE for Qik is again
multiplied with EQik , and the following condition must be satisfied:

Er
2

(
(hv)

r+ 1
2

1 − (hv)r1

)
+ Er+1

2

(
(hv)r+1

1 − (hv)
r+ 1

2
1

)

+hr Qr
ik
1

2
ṽ
r+ 1

2
1

(
Qr+1

ik − Qr
ik

)
+ hr+1Qr+1

ik
1

2
ṽ
r+ 1

2
1

(
Qr+1

ik − Qr
ik

)

= (hv)r+1
1 Er+1

2 − (hv)r1E
r
2, (101)

with the yet unknown average velocity ṽ
r+ 1

2
1 at the cell interface. Note that the numerical

mass flux (hv)
r+ 1

2
1 is the known compatible inviscid mass flux of the numerical flux f

r+ 1
2

q of
the q-scheme according to the semi-discrete Godunov formalism, see (81). Collecting terms
leads to

(hv)
r+ 1

2
1

(
Er+1
2 − Er

2

)
= ṽ

r+ 1
2

1

(
hr+1Er+1

2 − hr Er
2 − 1

2
Qr

ik Q
r+1
ik

(
hr+1 − hr

))
, (102)

from which we obtain the sought expression for the average velocity at the interface as

ṽ
r+ 1

2
1 =

(hv)
r+ 1

2
1

(
Er+1
2 − Er

2

)

hr+1Er+1
2 − hr Er

2 − 1
2Q

r
ik Q

r+1
ik

(
hr+1 − hr

) . (103)

In case the denominator is zero, we simply set the velocity to the arithmetic average ṽ
r+ 1

2
1 =

1
2

(
ṽr1 + ṽr+1

1

)
.

In order to get compatibility with the total energy conservation law also in the presence
of numerical viscosity, we need to add the discrete production term to the PDEs of Qik at
the right and left element interface, according to the condition (93) already derived before:

T
r+ 1

2 ,−
ik = μr+ 1

2
1

2

Qr
ik

(htrP)r

Δqr+ 1
2

Δx
· Ẽr+

1
2

qq
Δqr+ 1

2

Δx
(104)

and

T
r− 1

2 ,+
ik = μr− 1

2
1

2

Qr
ik

(htrP)r

Δqr− 1
2

Δx
· Ẽr−

1
2

qq
Δqr− 1

2

Δx
. (105)

The physical entropy production is always non-negative, since we assume μr+ 1
2 ≥ 0 and

Ẽr+
1
2

qq ≥ 0. It is obvious that (105) and (104) are discrete analogues of the continuous
production term (50).

The final semi-discrete scheme for Qik in one space dimension reads:

d

dt
Qr

ik = −1

2
ṽ
r+ 1

2
1

Qr+1
ik − Qr

ik

Δx
− 1

2
· Q

r
1k + Qr+1

1k

2
· vr+1

i − vri

Δx

+μr+ 1
2

Δx
· Q

r+1
ik − Qr

ik

Δx
+ T

r− 1
2 ,+

ik + T
r+ 1

2 ,−
ik . (106)
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3.4 Summary of the Scheme and Stability Proof

For completeness, we nowgather together all equations of the thermodynamically compatible
scheme, thus obtaining

dhr

dt
= − 1

Δx

(
D
r+ 1

2 ,−
h + D

r− 1
2 ,+

h

)
+ 1

Δx

(
g
r+ 1

2
h − g

r− 1
2

h

)
, (107)

dhvri

dt
= − 1

Δx

(
D
r+ 1

2 ,−
hvi

+ D
r− 1

2 ,+
hvi

)
− 1

Δx

(
R
r+ 1

2 ,−
i,1 − R

r− 1
2 ,+

i,1

)

+ 1

Δx

(
g
r+ 1

2
hvi

− g
r− 1

2
hvi

)
, (108)

dQr
ik

dt
= − 1

Δx

(
D
r+ 1

2 ,−
Qik

+ D
r− 1

2 ,+
Qik

)
+ 1

Δx

(
g
r+ 1

2
Qik

− g
r− 1

2
Qik

)

+T
r+ 1

2 ,+
ik + T

r+ 1
2 ,−

ik , (109)

with the fluctuations

D
r+ 1

2 ,−
q = f

r+ 1
2

q − f rq , and D
r+ 1

2 ,+
q = f r+1

q − f
r+ 1

2
q , (110)

where f rq denotes the physical flux evaluated in cell r and f
r+ 1

2
q is the compatible flux for

depth andmomentum, i.e. for q ∈ {h, hvi }. Recall that the flux vector in the previous notation
reads

f
r+ 1

2
q =

(
f
r+ 1

2
h , f

r+ 1
2

hvi
, 0

)
(111)

and is computed according to the q-scheme of the semi-discrete Godunov formalism pre-
sented previously. We have also introduced the fluctuations

R
r+ 1

2 ,−
i,1 =

(
R
r+ 1

2
i,1 − Rr

i,1

)
, R

r+ 1
2 ,+

i,1 =
(
Rr+1
i,1 − R

r+ 1
2

i,1

)
, (112)

with R
r+ 1

2
i,1 being the compatible discretization of the Reynolds stress tensor in x1 direction

given in (99), and

D
r+ 1

2 ,±
Q1k

= 1

2
ṽ
r+ 1

2
1

(
Qr+1

1k − Qr
1k

)
+ 1

2
Q̃

r+ 1
2

1k

(
vr+1
i − vri

)
. (113)

Let us also recall that the dissipative fluxes, g
r± 1

2
q , have been defined in (83).

Theorem 3 The semi-discrete scheme (107)–(109) admits the semi-discrete energy conser-
vation equation

dEr
dt

= − 1

Δx

(
D
r+ 1

2 ,−
E + D

r− 1
2 ,+

E

)
+ 1

Δx

(
g
r+ 1

2
E − g

r− 1
2

E

)
(114)

with

D
r+ 1

2 ,−
E + D

r+ 1
2 ,+

E = Fr+1 − Fr . (115)
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As a result the scheme is energy conserving and therefore marginally stable in the energy
norm, i.e. the scheme satisfies ∫

Ω

dE
dt

dx =
∑
r

Δx
dEr
dt

= 0. (116)

Proof We first demonstrate that (114) is a direct consequence of (107)–(109). To this end we
proceed as in the continuous case, i.e. we start by considering the time derivatives and we
sum the contributions coming from equations (107)–(108) multiplied by Erh , Erhv1

and ErQik
,

respectively, thus obtaining

Erh
dhr

dt
+ Erhv1

dhvri

dt
+ ErQik

dQr
ik

dt
= Erq · dqr

dt
= dEr

dt
. (117)

For the convective terms, the Reynolds stress tensor and the PDE related to Q we define

D
r+ 1

2 ,−
E := Er1,h D

r+ 1
2 ,−

h + Er2,h D
r+ 1

2 ,−
h + Erhv1

(
D
r+ 1

2 ,−
hvi

+ R
r+ 1

2 ,−
i,1

)
+ ErQik

D
r+ 1

2 ,−
Qik

,

D
r+ 1

2 ,+
E := Er+1

1,h D
r+ 1

2 ,+
h + Er+1

2,h D
r+ 1

2 ,+
h + Er+1

hv1

(
D
r+ 1

2 ,+
hvi

+ R
r+ 1

2 ,+
i,1

)
+ Er+1

Qik
D
r+ 1

2 ,+
Qik

.

(118)

Let us remark that the definitions of the fluctuations in (118) differ from the ones given in
Sect. 3.1, where the terms related to the total energy E2 associated with Qik were not yet
included. Finally, the dot product of pr by the vector of the blue terms in (107)–(109) yields

pr · gr+ 1
2 − gr− 1

2

Δx
+ pr · Tr = pr · μr+ 1

2 Δqr+ 1
2 − μr− 1

2 Δqr− 1
2

Δx2
+ pr · Tr . (119)

Taking into account (104)–(105) in pr · Tr = pr · Tr− 1
2 ,+ + pr · Tr+ 1

2 ,− we get (93).
Substitution of this result in (119) and making use of the developments in (89) gives

pr · gr+ 1
2 − gr− 1

2

Δx
+ pr · Tr = 1

Δx2

(
μr+ 1

2 ΔEr+ 1
2 − μr− 1

2 ΔEr− 1
2

)

= 1

Δx

(
g
r+ 1

2
E − g

r− 1
2

E

)
. (120)

Gathering (117), (120) and (118), we get (114):

dEr
dt

+ 1

Δx

(
D
r+ 1

2 ,−
E + D

r− 1
2 ,+

E

)
= 1

Δx

(
g
r+ 1

2
E − g

r− 1
2

E

)
. (121)

Let us now consider the discrete equation for the total energy, (114). Integrating it on a
computational domain, Ω , we get∫

Ω

dE
dt

dx =
∑
r

∫
Ωr

dEr
dt

dx =
∑
r

Δx
dEr
dt

= −
∑
r

Δx

Δx

(
D
r+ 1

2 ,−
E + D

r− 1
2 ,+

E

)
+

∑
r

(
g
r+ 1

2
E − g

r− 1
2

E

)
. (122)

Recalling that D
r± 1

2 ,∓
E represent the jumps of the energy flux at the interfaces and assuming

the solution on the boundaries of Ω to tend to a constant value, the jumps of q are zero at the
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boundaries of Ω and then the boundary contributions of DE and also the contribution of the

dissipation terms vanish. Hence, reordering the pairs of D
r± 1

2 ,∓
E to consider couples related

to the interfaces instead of pairs corresponding to the cells yields

∫
Ω

dE
dt

dx = −
∑
r

(
D
r+ 1

2 ,−
E + D

r+ 1
2 ,+

E

)
+

∑
r

(
g
r+ 1

2
E − g

r− 1
2

E

)
. (123)

Note that the summation over the blue dissipative fluxes is obviously a telescopic sum that
vanishes. On the other hand, we can also prove that the contributions of the fluctuations at
the interfaces reduce to a flux difference of the form

D
r+ 1

2 ,−
E + D

r+ 1
2 ,+

E = Fr+1 − Fr . (124)

To this end, we simply develop the fluctuations related to the total energy
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2 ,+

E = Erh D
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2 ,−
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)
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(
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i,1 − R

r+ 1
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)
+ ErQik

D
r+ 1
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Qik
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Qik
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2 ,+
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. (125)

Reordering black terms and using (97) and (113) for the red ones, we obtain
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(126)
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Finally, taking into account (101) with (103) in the above expression and the discretization

of f
r+ 1

2
q given in (68), (81), we conclude

D
r+ 1

2 ,−
E + D

r+ 1
2 ,+

E = −(vL1)
r+1 + (vL1)

r + pr+1 · fr+1 − pr · fr

+(hv)r+1
1 Er+1

2 − (hv)r1E
r
2

+hr+1Qr+1
im Qr+1

1m vr+1
i − hr Qr

imQ
r
1mvri

= (
pr+1 · fr+1 − (vL1)

r+1) − (
pr · fr − (vL1)

r )
+(hv)r+1

1 Er+1
2 − (hv)r1E

r
2

+hr+1Qr+1
im Qr+1

1m vr+1
i − hr Qr

imQ
r
1mvri

= Fr+1
G − Fr

G + (hv)r+1
1 Er+1

2 − (hv)r1E
r
2

+hr+1Qr+1
im Qr+1

1m vr+1
i − hr Qr

imQ
r
1mvri

= Fr+1 − Fr , (127)

which is the sought total energy flux difference. Therefore, under the hypothesis that the total
energy fluxes on the boundary are zero, we have

∫
Ω

dE
dt

dx =
∑
r

Δx
dEr
dt

= −
∑
r

(
Fr+1 − Fr ) +

∑
r

(
g
r+ 1

2
E − g

r− 1
2

E

)
= 0, (128)

hence the scheme is marginally stable in the energy norm. 
�

4 Path-Conservative ADER Discontinuous Galerkin Schemes

In this sectionwe briefly recall ADER-DGschemes on rectangular equidistant Cartesian grids
with a posteriori subcell finite volume limiter (SCL). The governing PDE system (14)–(17)
can be cast into the following general form

∂q
∂t

+ ∇ · F(q,∇q) + B(q) · ∇q = S(q,∇q), (129)

withx = (x1, x2) ∈ Ω the coordinate vector in the two-dimensional domainΩ ⊂ R
2, t ∈ R

+
0

the time, the state vector q ∈ Ωq ⊂ R
m , the state space or phase-space Ωq ⊂ R

m , the flux
tensor F(q,∇q) = (f, g), the nonconservative product B(q) · ∇q = B1(q)∂xq + B2(q)∂yq
and the source term S(q,∇q), which may also depend on gradients of the state vector.
The general structure (129) is needed if we want to discretize also directly the underlying
thermodynamically compatible viscous system (44)–(47), including the production term Tik .

In order to solve very general nonlinear time-dependent PDE systems like (129)
numerically, in this paper we employ the family of high order accurate fully-discrete
path-conservative one-step ADER discontinuous Galerkin schemes supplemented with an
a posteriori subcell finite volume limiter, see e.g. [17,41,42,50,56,124]. In the next sections
we provide a brief description of the method and the reader is referred to the above references
for more details. Concerningmore details on the framework of a posteriori limiting (MOOD),
the reader is referred to [29,38,39].
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4.1 Unlimited High Order ADER-DG Schemes

The system (129) is discretized on a domain Ω making use of a uniform Cartesian grid

with elements Ωi = [
xi − Δx

2 , xi + Δx
2

] ×
[
yi − Δy

2 , yi + Δy
2

]
. Here, xi = (xi , yi ) is the

barycenter of Ωi and Δx and Δy are the the mesh spacings in the x and in the y direction,
respectively. The numerical solution of (129) is defined in the space of piecewise polynomials
of degree N and is denoted by uh(x, tn). For each element Ωi it is sought under the form

uh(x, tn) = ϕl(x) ûn
l,i , x ∈ Ωi . (130)

Here, ϕl(x) = ϕl1(ξ)ϕl2(η) are the basis or ansatz functions, which are tensor products of
one-dimensional ansatz functions ϕlm (χ) on the unit reference element χ ∈ Ωref = [0, 1].
The mapping from the reference element to the physical one reads x = xi − 1

2Δx + ξΔx
and y = yi − 1

2Δy + ηΔy with 0 ≤ ξ, η ≤ 1. The multi-index l = (l1, l2) refers to the one-
dimensional basis functions ϕlm that are employed in the tensor product. The basis functions
on the reference element are defined as the Lagrange interpolation polynomials that pass
through the Gauss-Legendre quadrature nodes of a Gaussian quadrature formula with N + 1
quadrature points. This choice automatically leads to an orthogonal nodal basis.

Multiplication of (129) by test functions ϕk , which according to the Galerkin approach
are chosen identical to the ansatz functions, and integration over Ωi × [tn, tn+1] leads to

tn+1∫
tn

∫
Ωi

ϕk (∂tq + ∇ · F(q,∇q) + B(q) · ∇q) dx dt =
tn+1∫
tn

∫
Ωi

ϕk S (q,∇q) dx dt . (131)

Using (130) and integration by parts yields⎛
⎜⎝

∫
Ωi

ϕkϕl dx

⎞
⎟⎠(

ûn+1
l,i − ûn

l,i

)
+

tn+1∫
tn

∫
∂Ωi

ϕk
(G (

q−
h , q+

h

) + D (
q−
h , q+

h

)) · n dSdt

−
tn+1∫
tn

∫
Ωi

∇ϕk · F(qh,∇qh) dx dt +
tn+1∫
tn

∫
Ω◦

i

ϕkB(qh) · ∇qh dx dt =

∫
Ωi

ϕkS(qh,∇qh) dx dt, (132)

where n is the outward-pointing unit normal vector at the cell boundary ∂Ωi , and qh is a
local space-time predictor, the computation of which will be briefly explained later. Since in
the DG framework the discrete solution is allowed to jump between two neighboring cells, a
numerical flux is required on the boundary. For an exhaustive overview of numerical fluxes
and Riemann solvers, see [115]. In this paper, we use the simple Rusanov-type flux

G (
q−
h , q+

h

) · n = 1

2

(
F(q+

h ,∇q+
h ) + F(q−

h ,∇q−
h )

) · n − 1

2
smax I

(
q+
h − q−

h

)
, (133)

with smax = max(|λk(q−
h )|, |λk(q+

h )|) + ε(2N + 1)/Δx being an estimate of the maximum
signal speed at the interface, including also the viscous terms with viscosity coefficient ε, see
[65]. In (133) q−

h and q+
h denote the boundary-extrapolated values of the space-time predictor

from within the element and its neighbor, respectively. The non conservative products are

123



28 Page 26 of 45 Journal of Scientific Computing (2021) 88 :28

discretized via a path conservative scheme, as forwarded by Castro, Parés and collaborators
in [21–24,86,89] and which are based on the theory established in [85]. The termD (

q−
h , q+

h

)
contains the jump in the non-conservative product and is computed at the aid of a path integral
in phase space between the states q−

h and q+
h . Using the simple segment path

 = (q−
h , q+

h , s) = q−
h + s

(
q+
h − q−

h

)
, s ∈ [0, 1], (134)

the path integral reduces to

D (
q−
h , q+

h

) · n = 1

2

⎛
⎝

1∫
0

B
(
 (q−

h , q+
h , s)

) · n ds

⎞
⎠ · (

q+
h − q−

h

)
. (135)

The integral (135) is approximated via a simple trapezoidal quadrature rule. The use of
path integrals based on the straight-line segment path is the common point between the
path-conservative ADER-DG scheme presented here and the thermodynamically compatible
semi-discrete finite volume method presented in the previous section.

Following [17,41,43,50] the predictor qh(x, t) is obtained at the aid of a weak formu-
lation of (129) in space-time, which allows to completely avoid the Cauchy-Kovalewskaya
procedure that was originally employed in ADER schemes, see [20,113,114,118,119].

The predictor solution is defined at the aid of space-time ansatz functions θl = θl(x, t) =
ϕl0(τ )ϕl1(ξ)ϕl2(η), which are again tensor products of the 1D basis functions ϕlm (χ) and
where now an additional temporal basis function is included, with t = tn + τΔt :

qh(x, t) = θl(x, t) q̂n
l,i , (136)

Multiplication of (129) by θk and integration over Ωi × [
tn, tn+1

]
yields

tn+1∫
tn

∫
Ωi

θk ∂tqh dx dt +
tn+1∫
tn

∫
Ωi

θk ∇ · F(qh,∇qh) dx dt

+
tn+1∫
tn

∫
Ω◦

i

θkB(qh) · ∇qh dx dt =
∫
Ωi

θkS(qh,∇qh) dx dt (137)

and after intergration by parts one obtains the final weak form in space-time:

∫
Ωi

θk(x, tn+1)qh(x, tn+1) dx −
∫
Ωi

θk(x, tn)uh(x, tn) dx −
tn+1∫
tn

∫
Ωi

∂tθk qh dx dt +

tn+1∫
tn

∫
Ωi

θk ∇ · F(qh,∇qh) dx dt
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+
tn+1∫
tn

∫
Ω◦

i

θkB(qh) · ∇qh dx dt =

∫
Ωi

θkS(qh,∇qh) dx dt .

(138)

Equation (138) is a nonlinear element-local algebraic system in the unknowns q̂n
l,i , while the

coefficients ûn
l,i are the known from uh(x, tn) at the previous time. The solution of (138) is

obtained by an iterative algorithm, whose convergence was proven in [17] for the case of
hyperbolic conservation laws without non-conservative products and without source terms.
Concerning the choice of a suitable initial guess for the unknown space-time coefficients q̂n

l,i ,
the reader is referred to [55,79]. This completes the description of the unlimited ADER-DG
scheme.

4.2 A Posteriori Subcell Finite Volume Limiter

The numerical scheme presented above is high order accurate and linear in the sense of
Godunov, hence it will inevitably generate spurious oscillations in the vicinity of shock
waves and discontinuities according to the well-known Godunov theorem. In [12,46,50,124]
a new a posteriori subcell limiter was introduced for ADER-DG schemes, using the ideas of
the MOOD paradigm forwarded in [29,38,39] for finite volume schemes.

At the beginning of each time step, the unlimited scheme described in the previous section
is run on the entire computational domain. This produces a so-called candidate solution, in
the following denoted by u∗

h(x, tn+1). Next, the candidate solution is a posteriori checked
against different numerical and physical detection criteria, such as the positivity of the water
depth and of the determinant of Q. Furthermore, the absence of floating point errors (NaN) is
required and we also require a discrete maximum principle (DMP) to be satisfied, see [50].
If any of these numerical or physical detection criteria is violated, a high order DG cell is
marked as troubled and is scheduled for the a posteriori subcell finite volume limiting.

The cells Ωi that have been scheduled for subcell finite volume limiting are now split
into (2N + 1)d finite volume subcells, which are denoted by Ωi,s with Ωi = ⋃

s Ωi,s . This
subdivision of a high order DG element into many small finite volume subcells does not
reduce the time step of the DG scheme because the CFL number of explicit discontinuous
Galerkin schemes scales with 1/(2N + 1), while for the finite volume scheme used on the
subgrid cells, the maximum Courant number allowed is of the order of unity. At time tn the
numerical solution in the finite volume subcells Ωi,s is represented as usual via piecewise
constant cell averages denoted by ūn

i,s and which are obtained from the high order DG
polynomials uh(x, tn) as

ūn
i,s = 1

|Ωi,s |
∫

Ωi,s

uh(x, tn) dx. (139)

These subcell averages are nowevolved in time at the aid of a second orderMUSCL-Hancock-
type TVD finite volume scheme with minmod limiter, which is also a predictor-corrector
method and thus looks quite similar to the ADER-DG scheme. The main difference is that
now the test function is unity, hence the volume integral over the flux term disappears, and
the spatial control volumes Ωi are replaced by the sub-volumes Ωi,s :
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∣∣Ωi,s
∣∣ (ūn+1

i,s − ūn
i,s

)
+

tn+1∫
tn

∫
∂Ωi,s

(G (
q−
h , q+

h

) + D (
q−
h , q+

h

)) · n dS dt

+
tn+1∫
tn

∫
Ω◦

i,s

(B(qh) · ∇qh) dx dt =
tn+1∫
tn

∫
Ωi,s

S(qh,∇qh) dx dt , (140)

where the local space-time predictor qh is now easily obtained from the Cauchy-
Kovalewskaya procedure, see [115]. Once the cell averages ūn+1

i,s of all subcells contained

within cell Ωi have been computed at the new time tn+1 according to equation (140), the
limited DG polynomial u′

h(x, tn+1) at time tn+1 can be simply obtained via a constrained
least squares reconstruction. For this we require that

1

|Ωi,s |
∫

Ωi,s

u′
h(x, tn+1) dx = ūn+1

i,s ∀Ωi,s ∈ Ωi , (141)

and ∫
Ωi

u′
h(x, tn+1) dx =

∑
Ωi,s∈Ωi

|Ωi,s |ūn+1
i,s . (142)

The constraint (142) means conservation of the solution within the element Ωi . In addition
to the coefficients ûn+1

i,l of the limited DG polynomial, in all limited DG cells we also keep

in memory the finite volume subcell averages ūn+1
i,s , since they serve as initial condition for

the subcell finite volume limiter in the case when a cell is troubled also in the next time step,
see [50]. This completes the description of the a posteriori subcell finite volume limiter. For
more details, the reader is referred to [46,50,124].

4.3 Renormalization of Q

In order tomaintain a strict compatibility of the discrete energy conservation law (18)with the
discrete trace of P, for the inviscid case ε = 0 we proceed as follows: at the end of each time
step, we compute in each degree of freedom of the DG scheme and in each control volume of
the subcell finite volume limiter the trace of P from the total energy and subsequently rescale
Q according to

(trP)n+1
l = 2(hE)n+1

l /hn+1
l − ghn+1

l − ‖vn+1
l ‖2, (143)

Q̃n+1
l = Qn+1

l

√√√√ (trP)n+1
l

tr(QQT )n+1
l

, (144)

where the subscript l denotes a generic degree of freedom, Qn+1
l is the preliminary value as

computed from the numerical scheme described previously and Q̃n+1
l is the final result of Q

after rescaling at the end of each time step.
We stress that the above renormalization (143)–(144) is not performed for the case of a

viscous system, i.e. when ε > 0, since for sufficiently fine meshes (well-resolved viscous
flow), the compatibility with the energy conservation law (47) must hold automatically up to
the order of accuracy of the numerical scheme, since Theorem 1 establishes the compatibility
of (44)–(46) with (47) at the continuous level.
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5 Numerical Tests

Throughout this section the gravity constant is set to g = 9.81. Moreover, we will use SI
units : m, s, etc. without writing them explicitly.

5.1 Test Problemwith Exact Solution

In the following we solve a test problem suggested in [69], which has an exact solution of
the PDE system (1)–(5) that reads

h(x, t) = h0
1 + β2t2

, v(x, t) = β

1 + β2t2

(+y + βt x
−x + βt y

)
, (145)

P(x, t) = 1

(1 + β2t2)2

(
λ + γβ2t2 (λ − γ )βt
(λ − γ )βt γ + λβ2t2

)
. (146)

In our setup we choose the above exact solution at time t = 0 as initial condition for h and
v, while Q is initialized as Q = diag(

√
P11,

√
P22). Our numerical simulations are run until

a final time of t = 1 in the computational domain Ω = [−1, 1]2 with β = λ = γ = 0.1
and h0 = 1. A third order ADER-DG scheme (N = 2) is run on a sequence of successively
refinedmeshes of Nx = 5, 10, 15, 20 elements. Since the exact solution is a global polynomial
of degree one in space, the spatial discretization is exact for this test problem. Since time
variations in this test problem are also quite small and since the high order DG schemes
require a rather small time step for stability, the overall error that is observed on all meshes,
see Fig. 1, is of the order of machine accuracy, as expected.

Nx

L
in

f 
er

ro
rs

5 10 15 20
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

Linf(u)
Linf(v)
Linf(trP)

Fig. 1 Test case with exact solution: observed errors in L∞ norm for the velocity components u and v and
for trP obtained on different meshes

123



28 Page 30 of 45 Journal of Scientific Computing (2021) 88 :28

5.2 Numerical Convergence Study

Aiming at assessing the behaviour of the ADER-DG methodology, we now consider a man-
ufactured solution test given by

h(x, t) = h0, hv(x, t) =
(

sin(x) cos(y) cos(t)
− cos(x) sin(y) cos(t)

)
,

Q(x, t) = q0

(
sin(x) cos(y) cos(t) − sin(x) cos(y) cos(t)

− cos(x) sin(y) cos(t) cos(x) sin(y) cos(t)

)
(147)

with corresponding total energy,

hE(x, t) = g
h20
2

+
(

2

h0
+ h0q

2
0

) (
sin2(x) cos2(y) + cos2(x) sin2(y)

)
cos2(t). (148)

Moreover, the former expression for Q(x, t) yields a stress tensor of the form

P(x, t) = 2q20

(
sin2(x) cos2(y) cos2(t) − sin(x) cos(y) cos2(t)cos(x) sin(y)

− sin(x) cos(y) cos2(t) cos(x) sin(y) cos2(x) sin2(y) cos2(t)

)
.

(149)

To complete the definition of the problem we set h0 = 1, q0 = 0.5 and C f = Cr = 0.
Let us remark that to get the sought solution, (147)–(148), a set of analytical source terms,
calculated by substitution of (147)–(148) in (14)–(17), must be added to the right hand side
of the original system. The simulation is run until t = 0.25 using ADER-DG schemes of
polynomial degrees N ∈ {2, 3, 4, 5}. The errors in L2 norm obtained for h, u and Q11 are
reported in Table 1. Overall, the expected order of accuracy is reached, see bold numbers in
Table 1.

5.3 Riemann Problems

It is well-known that the numerical discretization of nonconservative hyperbolic PDE is
notoriously difficult, see e.g. [4,23] for a more detailed discussion. This is particularly true
when the nonconservative product is acting across genuinely nonlinear waves. This situation
is usually the case in the nonconservative equation (16), which makes its numerical dis-
cretization particularly difficult. In [69] a special split scheme was developed, splitting the
original system (1)–(5) into two quasi-conservative subsystems and during the solution of
each of the subsystems, energy conservation was rigorously enforced. In this paper, two new
unsplit schemes have been proposed for the discretization of (14)–(18). In the case of the
path-conservative ADER-DG scheme described in Sect. 4, the total energy conservation law
is explicitly discretized and for the inviscid case ε = 0 the object Qik is renormalized at the
end of each time step according to (143)–(144), in order to maintain discrete compatibility
with total energy conservation for each degree of freedom of the DG scheme and for each
subcell average in case of the subcell FV limiter. Instead, when the path-conservative ADER-
DG scheme is applied to the viscous system with ε > 0 then no renormalization is carried
out and the compatibility with the total energy conservation law must be guaranteed by the
high order of accuracy of the scheme in combination with a sufficiently fine mesh alone,
without any renormalization of Qik . As such, the fully resolved direct numerical solution
(DNS) of the viscous system (44)–(46), which also includes the production term, with small
but not vanishing ε > 0, constitutes the highest level of fidelity concerning the discretization
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Table 1 L2 errors and convergence rates for the manufactured test obtained using the ADER-DGmethod with
N ∈ {2, 3, 4, 5}. The simulations were run on Cartesian meshes of Nx × Nx elements up to time t = 0.25

Nx = Ny L2(h) O(h) L2(u) O(u) L2(Q11) O(Q11)

ADER-DG N = 2

8 1.5643E-03 9.2605E-03 6.8172E-03

16 1.9587E-04 3.00 1.5629E-03 2.57 1.3400E-03 2.35

32 2.3442E-05 3.06 2.8002E-04 2.48 2.4678E-04 2.44

64 3.1021E-06 2.92 5.4213E-05 2.37 4.3402E-05 2.51

ADER-DG N = 3

8 8.8166E-05 2.5480E-04 1.1146E-04

16 5.6738E-06 3.96 1.5191E-05 4.07 5.4435E-06 4.36

24 1.1747E-06 3.88 2.9993E-06 4.00 1.0004E-06 4.18

32 4.0746E-07 3.68 1.0391E-06 3.68 3.3417E-07 3.81

ADER-DG N = 4

8 3.8841E-06 2.6818E-05 1.8500E-05

16 1.2852E-07 4.92 1.1450E-06 4.55 9.0778E-07 4.35

24 1.6424E-08 5.07 1.9105E-07 4.42 1.4928E-07 4.45

32 3.7032E-09 5.18 5.4539E-08 4.36 4.1229E-08 4.47

ADER-DG N = 5

4 1.2340E-05 6.1955E-05 2.5864E-05

8 1.5933E-07 6.28 9.8471E-07 5.98 2.2857E-07 6.82

12 1.1618E-08 6.46 8.5429E-08 6.03 1.4666E-08 6.77

16 2.0895E-09 5.96 1.4195E-08 6.24 2.2897E-09 6.46

of the non-conservative product since the solution can be considered as smooth and therefore
there are no ambiguities concerning the proper definition of the non-conservative product
at all. Instead, the compatible HTC scheme, which implements a semi-discrete Godunov
formalism, does not directly discretize the energy equation at all, but total energy conserva-
tion is a mere consequence of all the other equations at the semi-discrete level. In this case,
the discretization of the nonconservative products, of the Reynolds stress tensor and of the
viscous terms (the red and blue terms in (44)–(46)) is carried out in such a manner that at the
semi-discrete level total energy conservation is automatically ensured.

In the following we solve three Riemann problems on the domain Ω = [0, 1] × [0, 0.5]
with initial condition

q(x, 0) =
{

qL if x ≤ 0.5,
qR if x > 0.5.

(150)

The left and right initial states, as well as the final simulation times tend, are summarized in
Table 2. The values of the state variables not indicated in the table are set to zero, i.e. v1 = 0,
Q12 = 0 and Q21 = 0. The simulations are run with four different numerical schemes S1-S4:

(S1) The split scheme ofGavrilyuk et al. [69], using a very finemesh in one space dimension,
which serves as a reference solution. This scheme makes explicit use of the total energy
conservation law in each subsystem used in the splitting approach.

(S2) A high order unsplit ADER-DG scheme (132) with polynomial approximation degree
N = 3 and 11, 200 × 4 elements, applied to the viscous system (44)–(46) with small
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Table 2 Initial left and right states for the Riemann problems RP1-RP3

Test hL hR vL2 vR2 QL
11 QR

11 QL
12 QR

12 QL,R
22

RP1 0.02 0.01 0 0 0.01 0.01 0 0 10−4

RP2 0.01 0.01 +0.01 −0.01 0.02 0.02 0 0 0.02

RP3 0.01 0.01 0 0 0.01 0.01 0.02 0.01 0.01

but positive viscosity parameter ε > 0 (vanishing viscosity limit). Since ε > 0 we
do not solve the energy equation (47) explicitly and apply no renormalization to Qik .
To obtain the discrete compatibility with the energy conservation law (47) and for the
proper definition of the nonconservative products, only a sufficiently finemesh is needed
in combination with the high order DG scheme (fully resolved DNS). This approach
serves to generate an additional and totally independent reference solution.

(S3) The new unsplit thermodynamically compatible HTC scheme based on the semi-
discreteGodunov formalismdescribed in Sect. 3. This scheme is by construction exactly
compatible with the viscous system (44)–(46) at the semi-discrete level and therefore
the semi-discrete energy conservation law is a direct consequence of the discretization
of all the other equations and thus does not need to be discretized explicitly again.

(S4) The high order unsplit ADER-DG scheme applied to the inviscid system, setting ε = 0
in (44)–(47). In this case, the energy equation (47) is explicitly discretized and the
object Qik is renormalized at the end of each timestep according to (143)–(144).

We emphasize that in all four schemes, discrete compatibility with the total energy conserva-
tion law is always assured in one way, or in another: either by directly using the total energy
conservation equation within the numerical scheme (S1 and S4), or by achieving compati-
bility exactly at the discrete level (S3). In S2 the compatibility is merely achieved at the aid
of negligible discretization errors by using a very high order scheme applied to the viscous
system with ε > 0 and using a sufficiently fine mesh (fully resolved DNS).

The computational results obtained for the three Riemann problems are shown in Figs. 2, 3
and 4, where also the exact mesh resolution is given for each scheme, together with the choice
of the viscosity parameter ε in the case of the simulation of the vanishing viscosity limit. For
all Riemann problems one can note an excellent agreement between the numerical solutions
obtained with all four schemes (S1–S4) listed above.

This clearly highlights that discrete thermodynamic compatibility is a key feature for the
correct discretization of nonconservative products that are acting across genuinely nonlinear
fields, like the ones present in (16).

5.4 One Dimensional Brock Profile

Here we repeat the numerical experiment concerning one-dimensional roll waves proposed
in [69] and compare the obtained numerical results with the experimental data provided by
Brock in [15,16]. The initial condition is given according to [69] by h = h0(1+a sin(2πx/L)

with a = 0.05, v1 = √
gh0 tan θ/C f , v2 = 0 and Q =

√
1
2ϕh

2I. The bottom slope angle
of this test problem is θ = 0.05011 with ∂xb = tan(θ), the still water depth is set to
h0 = 0.00798, the bottom friction coefficient is chosen as C f = 0.0036, the parameter Cr

is set to Cr = 0.00035 and ϕ = 22.76, see [69].
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Fig. 2 Numerical solution of the Riemann problem RP1 obtained with different numerical schemes at time
t = 0.5: split scheme of [69] on 250,000 elements (S1, solid black line); vanishing viscosity limit of the
viscous system (44)–(47) with ε = 2 · 10−6 using a fourth order ADER-DG scheme (N = 3) on 11,200
elements (S2, dashed blue line); unsplit thermodynamically compatible q-scheme on 56,000 elements (S3,
dashed red line); fourth order ADER-DG scheme (N = 3) applied to the inviscid model (14)–(18) using 1,400
elements (S4, squares) (Color figure online)
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Fig. 3 Numerical solution of the Riemann problem RP2 obtained with different numerical schemes at time
t = 10: split scheme of [69] on 100,000 elements (S1, solid black line); vanishing viscosity limit of the viscous
system (44)–(47) with ε = 1 · 10−6 using a fourth order ADER-DG scheme (N = 3) on 10,200 elements
(S2, dashed blue line); unsplit thermodynamically compatible q-scheme on 28,000 elements (S3, dashed red
line); fourth order ADER-DG scheme (N = 3) applied to the inviscid model (14)–(18) using 1,000 elements
(S4, squares) (Color figure online)
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Fig. 4 Numerical solution of the Riemann problem RP3 obtained with different numerical schemes at time
t = 0.5: split scheme of [69] on 250,000 elements (S1, solid black line); vanishing viscosity limit of the
viscous system (44)–(47) with ε = 2 · 10−6 using a fourth order ADER-DG scheme (N = 3) on 10,200
elements (S2, dashed blue line); unsplit thermodynamically compatible q-scheme on 56,000 elements (S3,
dashed red line); fourth order ADER-DG scheme (N = 3) applied to the inviscid model (14)–(18) using 1,400
elements (S4, squares) (Color figure online)
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The computational domain is Ω = [0, L] × [0, 0.5] with L = 1.3 and is discretized
with 104 × 20 ADER-DG elements of polynomial approximation degree N = 3. Periodic
boundary conditions are applied in x1 and x2 direction. Simulations are run for system
(14)–(16) until a final time of t = 12.5. For this test, the bottom slope term is simply
implemented as an algebraic source term in order to be compatiblewith the periodic boundary
conditions. The numerical results obtained with the path-conservative ADER-DG scheme
and the experimental profile of Brock are depicted in the left panel of Fig. 5. Overall, we can
note a very good agreement between the numerical results and the experimental reference
data. In the right panel of Fig. 5 a visualization of the a posteriori subcell limiter is shown
(red cells are highlighted in red, while unlimited cells are plotted in blue). It can be noticed
that the limiter is only active at the shock wave.

5.5 Numerical Simulation of the SWASI Experiment

In this last and most complex numerical test we carry out the simulation of the SWASI
experiment proposed by Foglizzo et al. in [61] and which was numerically investigated
in [80]. The flow field is turbulent and turbulence is responsible for the developing flow
structures. The computational domain is Ω = [−1,+1]2 and is discretized with a uniform
Cartesian mesh composed of 256 × 256 ADER-DG elements of polynomial approximation
degree N = 3.

The bottom topography of this test is given according to [80] by

b(r) =
{

A
L4
1

((
r − R− − L1

)2 − L2
1

)2
if R− ≤ r ≤ 2L1 + R−,(

r − R− − 2L1
)
tan β if r > 2L1 + R−,

(151)

with r = ‖x‖, L1 = 0.02, A = 0.005, β = 0.07, R− = 0.08 and R1 = √
2. The model

parameters for this test are set to C f = 0.0036, Cr = 1 and ϕ = 2. The reference inflow
discharge is chosen as q0 = 1.2 · 10−3, while the reference water depth at R1 is set to
h0 = 0.003.
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Fig. 5 Two-dimensional numerical simulation of the roll wave experiment of Brock [15,16] at time t =
12.5. Left: comparison of a 1D cut through the numerical simulation with the experimental profile. Right:
computational grid with troubled cells highlighted in red and unlimited cells colored in blue (Color figure
online)
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In contrast to [80], in this paper the initial velocity field is chosen to be the stationary
equilibrium between bottom slope and bottom friction and which satisfies the following
ODE in radial direction:

dur
dr

= u
C f |u|u3r3 − ugq0r2 tan β − q20g

q0r(ru3 + q0g)
(152)

with initial condition ur (R1) = −q0/(h0R1) for both regions, r ≤ R1 and r > R1. This
ODE is solved once at the beginning of the simulation at the aid of a classical fourth order
Runge-Kutta scheme. Once the radial velocity ur is known, the water depth can be easily
computed as h = q0/(rur ) and the final velocity field is given by the equilibrium solution
plus a sinusoidal perturbation as follows:

v1 = ur cos θ (1 + d sin(16θ)) , v2 = ur sin θ (1 + d sin(16θ)) , (153)

with d = 0.005. We furthermore set Q =
√

ϕh20 I as initial condition for the object Q. The

outflow through the central hole is generated by a sink term, setting h = 10−2, v = 0 and
Q = 10−5 I for r < 0.075 at all times.

The numerical simulations are carried out until a final time of t = 57. Figure 6 shows the
computational results obtained for the water depth, the Froude number, the angular velocity
and the instantaneous a posteriori subcell limiter map, in which red cells are highlighted
in red, while unlimited cells are plotted in blue. The limiter is essentially activated along
the moving shock front. The obtained numerical results agree qualitatively very well with
experimental observations made in [61] and with the numerical results previously presented
in [80]. In particular, one can note the characteristic cusp in the shock front that is visible in
both, the experiment [61] as well as in the numerical results of [80]. At this point we would
like to emphasize that the model formulation as well as the numerical scheme used in this
paper are completely different compared to the model formulation and the scheme employed
in [80]. While in [80] the problem was solved after rewriting the governing PDE system in
polar coordinates, here we solve the problem directly in Cartesian coordinates on a Cartesian
mesh. Furthermore, the model used in [80] was based on the temporal evolution equation of
P, while here we use the new model formulation in terms of the object Q that guarantees
trP ≥ 0 by construction. Last but not least, in [80] a split finite volume scheme was used,
while the present paper employs an unsplit high order ADER-DG scheme. The fact that the
numerical results obtained with different models and different schemes agree well with each
other and with experimental observations shows the validity of the different mathematical
model formulations as well as of the chosen numerical discretizations. As already pointed
out in [80], the same simulation run with the same model parameters (C f = 0.0036) and
the same numerical method on the same mesh applied to the simple shallow water equations
leads only to a steady circular shock wave, without developing any shock instability and
without showing the typical cusp of the SWASI experiment, see Fig. 7.

6 Conclusion

In this paper we have introduced a new reformulation of the first order hyperbolic model for
unsteady turbulent shallowwater flows introduced and studied in [11,69,80]. Themain idea of
the model reformulation proposed in this paper is the decomposition of the specific Reynolds
stress tensor P at the aid of a new object Q so that P = QQT . This guarantees that trP ≥ 0 by
construction also at the discrete level for all times, since in terms ofQ the trace of theReynolds
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Fig. 6 Numerical simulation of the SWASI experiment with a fourth order ADER-DG scheme at time t = 57
s applied to the model for unsteady turbulent shallow water flows (14)–(18). Water depth (top left), Froude
number (top right), angular velocity (bottom left) and limiter map with limited cells highlighted in red and
unlimited cells plotted in blue (bottom right) (Color figure online)

Fig. 7 Numerical simulation of the SWASI experiment with a fourth order ADER-DG scheme at time t = 57
s applied to the classical shallow water equations. Water depth (left) and Froude number (right). With the
classical shallow water model no shock wave instability develops
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stress tensor, i.e. the turbulent kinetic energy, can be written as trP = Qi j Qi j ≥ 0. Compared
to the previousmodel used in [11,69,80]we also add a thermodynamically compatible viscous
flux and an associated entropy production term that together guarantee the compatibility of
the viscous system with the total energy conservation law and with the entropy inequality,
which in the new reformulation can be simply expressed in terms of an extra conservation law
for the determinant of Q. Based on theGodunov form of hyperbolic conservation laws found
by Godunov in his groundbreaking work An interesting class of quasilinear systems [70],
we have derived a new thermodynamically compatible semi-discrete finite volume scheme
that mimics the Godunov form of the inviscid conservative part of the system exactly at
the semi-discrete level. The proposed schemes can therefore be called a discrete Godunov
formalism, or a hyperbolic and thermodynamically compatible (HTC) finite volume scheme.
Subsequently, also a thermodynamically compatible viscous extension of the schemehas been
proposed, together with the thermodynamically compatible discretization of the remaining
nonconservative terms and of the Reynolds stress tensor, which do not fit into the original
Godunov formalism. At this point we stress again that the proposed scheme mimics the
underlying viscous system of the mathematical model exactly at the semi-discrete level
and as such also falls into the class of structure-preserving schemes, since all properties
of the thermodynamic structure of the governing PDE system are properly maintained by
the numerical scheme. The paper also considers high order path-conservative fully-discrete
one-step ADER discontinuous Galerkin schemes with a posteriori subcell limiter that can be
applied to both, the viscous and the inviscid formof themathematicalmodel. The performance
and accuracy of all schemes is carefully assessed at the aid of three Riemann problems, where
also a direct comparison with the scheme introduced in [69] has been shown. An excellent
agreement between all different methodswas observed in all cases. For the high order ADER-
DG schemes a numerical convergence study was carried out at the aid of a manufactured
solution, since the analytic solution used in [69] was too simple for a high order DG scheme.
The newmodel was applied to the simulation of roll waves, comparing with the experimental
data of Brock and obtaining an excellent level of agreement between the numerical and the
experimental results. As a last test problem the we have carried out a numerical simulation
of the SWASI experiment of Foglizzo et al. [61], using the computational setup proposed
in [80]. Our simulations show the same cusp in the moving shock front that was already
observed in the experiments and in the numerical simulations shown in [80].

In the future we plan to extend the new family of thermodynamically compatible
schemes to the equations of nonlinear hyperelasticity [14,67,75,77,87,102] and to the uni-
fied hyperbolic model of continuum mechanics [13,17,47,93,102], as well as to hyperbolic
reformulations of dispersive systems [7,18,37,58]. Further work will also concern the exten-
sion of the discrete Godunov formalism presented in this paper to higher order semi-discrete
discontinuous Galerkin finite element schemes, see e.g. [36].

Another open challenge remains the development of thermodynamically compatible
schemes like those presented in this paper that also maintain curl and divergence involution
constraints exactly at the semi-discrete level, similar to the structure-preserving semi-implicit
method recently proposed in [13], but which was not thermodynamically compatible.
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Appendix A: Convexity of the Energy

Consider the total energy as a function of s = (h, ri = hvi , Si j = hQi j )
T :

E = gh2

2
+ r21 + r22

2h
+ S211 + S212 + S221 + S222

2h
.

We denote Esi s j the Hessian matrix with respect to s:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g + r21+r22
h3

+ S211+S212+S221+S222
h3

− r1
h2

− r2
h2

− S11
h2

− S12
h2

− S21
h2

− S22
h2− r1

h2
1
h 0 0 0 0 0

− r2
h2

0 1
h 0 0 0 0

− S11
h2

0 0 1
h 0 0 0

− S12
h2

0 0 0 1
h 0 0

− S21
h2

0 0 0 0 1
h 0

− S22
h2

0 0 0 0 0 1
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (154)

Using Sylvester’s criterion, on can easily show that Esi s j is positive definite, if h > 0. Hence,
the energy is a convex function of s.

Let us remark that if one considers E as a function of q = (h, ri = hvi , Qi j )
T , the energy

E = gh2

2
+ r21 + r22

2h
+ h

Q2
11 + Q2

12 + Q2
21 + Q2

22

2

is not, a priori, a convex function of q. Indeed, in this case the Hessian matrix Eqi q j reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g + r21+r22
h3

− r1
h2

− r2
h2

Q11 Q12 Q21 Q22

− r1
h2

1
h 0 0 0 0 0

− r2
h2

0 1
h 0 0 0 0

Q11 0 0 1
h 0 0 0

Q12 0 0 0 1
h 0 0

Q21 0 0 0 0 1
h 0

Q22 0 0 0 0 0 1
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (155)

We now use again Sylvester’s criterion. The first three principal minors are positive. One can
show that if the determinant of Eqi q j is positive, the other principal minors are also positive.
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It is equivalent to the inequality gh − Q2
11 − Q2

12 − Q2
21 − Q2

22 > 0. Thus the determinant is
positive if the ‘turbulent’ energy is small compared to gh. In practice, it is always the case. In
the following, for convenience, we consider the energy as a function of q = (h, hvi , Qi j )

T .
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