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Abstract: Microring resonators (MRRs) are a key photonic component in integrated devices,
due to their small size, low insertion losses, and passive operation. While the MRRs have been
established for optical filtering in wavelength-multiplexed systems, the nonlinear properties that
they can exhibit give rise to new perspectives on their use. For instance, they have been recently
considered for introducing optical nonlinearity in photonic reservoir computing systems. In this
work, we present a detailed numerical investigation of a silicon MRR operation, in the presence
of external optical feedback, in a time delay reservoir computing scheme. We demonstrate
the versatility of this compact, passive device, by exploiting different operating regimes and
solving computing tasks with diverse memory requirements. We show that when large memory
is required, as it occurs in the Narma 10 task, the MRR nonlinearity does not play a significant
role when the photodetection nonlinearity is involved, while the contribution of the external
feedback is significant. On the contrary, for computing tasks such as the Mackey-Glass and the
Santa Fe chaotic timeseries prediction, the MRR and the photodetection nonlinearities contribute
both to efficient computation. The presence of optical feedback improves the prediction of the
Mackey-Glass timeseries while it plays a minor role in the Santa Fe timeseries case.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Microring resonators (MRRs) have emerged as fundamental building blocks in photonics due
to their compact footprint, high bandwidth, large third-order nonlinearities, and the possibility
to be integrated into various material substrates. They are used in a range of applications [1],
exploiting their resonance nature, including optical filtering [2], optical switching [3], optical
sensing [4,5] and complex integration of optical signals [6]. The common MRR operation in
these applications is to tune the resonance wavelength, by modifying its refractive index. This
change can be triggered in different ways. For example, by electro-optic modulation [7], where
a p-i-n junction is embedded in the ring and operates in an alternating forward and reverse
bias condition, or by engineering the ring surface with an adsorbed layer for specific external
detection [5]. Another possibility is to vary the temperature of the MRR waveguide, exploiting
its thermo-optic coefficient [8]. Variations of the refractive index in silicon MRRs can be also
induced by the propagating optical signal when the optical power circulating the device is high
enough to activate two-photon absorption (TPA) and free-carrier dispersion (FCD) [9]. In
this case, additional free carriers and phonons are generated, resulting in a passive nonlinear
operation. These nonlinear effects have been explored in applications such as memory storage
[10], all-optical modulation [11] and all-optical logic operations [12]. Recently, MRRs were
considered in neuromorphic photonics as promising candidates for optical nodes in computing
structures, due to several dynamical features common to biological neurons such as self pulsations,
excitability, and inhibitory spiking behavior [13,14]. They were also proposed as nonlinear
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optical elements in photonic reservoir computing (RC) concepts [15,16], in integrated platforms
[17] and for applications in transmission channel equalization [18].

In this work, we investigate and evaluate the performance of MRRs in the context of a time
delay RC, a simplification of the RC concept which was initially introduced in [19]. In this
approach, only one nonlinear (real) node is used to emulate the reservoir, in presence of a time
delay that introduces recurrent connectivity between time-delayed node responses. In this way, a
set of virtual nodes can be defined in a time-multiplexed form. Several implementations adopting
this approach have been numerically and experimentally investigated, including electronic and
optoelectronic devices [19,20], all-optical devices [21–23] and also photonic integrated circuits
based on semiconductor lasers with optical feedback [24,25]. Recently, a single silicon MRR in
absence of feedback has also shown the potentiality to solve memory demanding tasks, based on
its own nonlinear memory and virtual nodes defined by time multiplexing [26]. In this study, we
specifically consider a silicon MRR subject to delayed optical feedback and we exploit the free
carrier nonlinearity effects while introducing memory through the external cavity. We investigate
the computational consistency and the memory properties of the overall system, by directly
evaluating its performance on benchmark tasks that are known to require different compromises
between memory and nonlinearity. Our findings, which are precursory to an experimental
investigation, suggest that both the MRR and the external feedback are memory sources of
the system. For computing tasks that demand memory that exceeds the one provided by the
MRR, we show that the external feedback significantly improves the computing performance.
The manuscript is structured as follows: the model of the MRR in presence of external optical
feedback is described in section 2. In section 3 we describe its implementation in a time-delay
RC scheme and finally, in section 4 we present and analyze the results obtained for the Narma 10,
Mackey-Glass, and Santa Fe chaotic timeseries prediction tasks.

2. MRR with optical feedback

The MRR structure in presence of external optical feedback is illustrated in Fig. (1). It operates
in an add-drop filter configuration, with symmetric coupling in the interconnection with the two
straight waveguides. It receives the input signal Einp from the input port and provides an output
signal Edrop at the drop port. An external optical feedback link connects the through and the add
port with time delay τF, under specific feedback strength ηF and phase (ϕF) conditions.

Fig. 1. MRR structure in an add-drop filter configuration with external optical feedback. γe
represents the MRR extrinsic losses due to the coupling with the straight waveguides, while
Einp, Eth, Eadd and Edrop represent the electric field amplitudes in the correspondent ports.

The temporal dynamics of the MRR is commonly described, within the coupled-mode theory
framework, by the following set of coupled differential equations [9]:

dU(t)
dt
=

[︃
−i(ωp − ωo(t)) − γ(t)

]︃
U(t) + i

√︁
2γe(Einp(t) + Eadd(t)). (1)
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d∆N(t)
dt

= −
∆N(t)
τFC

+ GTPA |U(t)|4 . (2)

d∆T(t)
dt

= −
∆T(t)
τTH

+
Pabs

mcp
. (3)

Equation (1) describes the variation of the optical energy amplitude U(t) within the MRR,
when considering an input electrical field Einp and a feedback field Eadd, at the same frequency
ωp = 2πc/λp. Equation (2) describes the excess of the free carrier density (∆N) within the MRR,
that is generated by TPA, at a rate of GTPA, and is recombined with a decay constant τFC. Both
the creation and the recombination of free carriers are assisted by the emission of phonons in
the silicon waveguide, with a consequent variation ∆T of the mode-averaged temperature. This
is described as Newton’s law in Eq. (3), where Pabs is the absorbed power by the material that
causes heating, m indicates the mass of the ring, cp is the silicon specific heat and τTH indicates
the thermal decay time due to the heat dissipation with the surrounding medium.

Thermal and free carrier changes modify the refractive index of the MRR, introducing
nonlinear effects, as it emerges from Eq. (1) through the terms ωo(t) and γ(t). The first term
ωo(t) is described by ωo(t) = ωo + δωnl(t), with ωo being the resonance frequency in absence of
nonlinearities and δωnl(t) the nonlinear contribution:

δωnl(t) =
Γc

nSi

(︃
dnSi

dT
∆T(t) +

dnSi

dN
∆N(t)

)︃
. (4)

In Eq. (4), Γc is the modal confinement factor and nSi the Silicon refractive index. The second
term γ(t) includes the losses that are present in the linear operation γlin and the losses induced by
TPA and free carrier absorption (FCA):

γ(t) = γlin + ηFCA∆N(t) + ηTPA |U(t)|2 , (5)

where γlin = γi + 2γe accounts for the MRR intrinsic losses rate γi (due to material absorption,
scattering, bending) and the extrinsic losses rate 2γe (due to the symmetric coupling with the
two straight waveguides). The characteristic timescale of a MRR in linear regime is related to
the photon lifetime of the cavity τph = γ

−1
lin , when δωnl(t) = 0 and γ(t) = γlin, and represents the

decay rate of the MRR’s internal optical power. In a nonlinear regime, activated by the TPA,
τFC and τTH become also important for the dynamics. In a rough approximation, τFC ≈ 10−2τTH .
Thus, depending on the temporal scale of the input signal, the MRR can exhibit dynamics that
are influenced by only one of these nonlinear effects. In the current work, we focus on the
nonlinear effects triggered by the free carriers excited in the MRR waveguide, as we aim to
process information that is encoded at this time scale.

We compute the electric field using a scattering matrix approach at the through and drop ports
of the MRR (Eth, Edrop), while at the add port we feed the delayed signal from the through port
(Eadd), after tuning its amplitude and phase:

Eth(t) = trEinp(t) +
√︁

2γeU(t). (6)

Edrop(t) =
√︁

2γeU(t) + trEadd(t). (7)

Eadd(t) =
√
ηFe−iφF Eth(t − τF). (8)

tr indicates the field amplitude transmission from the input (add) port to the through (drop) port
(see Appendix). In Eq. (8), τF is the delay introduced by the feedback line, while ηF and ϕF
modify the through signal before re-entering the MRR. ηF varies in the range [0 , 1], with 0
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representing a completely attenuated signal and 1 being a lossless re-injection of the through
signal in the add port. The coupling phase condition ϕF is expressed as:

ϕF = βF ∗ LF + ∆ϕF, (9)

where βF = 2πnF
λp

is the propagation constant along the feedback line, nF is the refractive index
of the feedback line, and ∆ϕF is an external phase shift that ranges in [0 - 2π]. Dispersion and
nonlinear effects on light propagating along the feedback line are not here considered. For the
dynamical investigation of the system, we define a starting wavelength detuning between the
laser wavelength and the MRR resonance equal to: ∆λs = λp − λo, and a resonance shift induced
by nonlinear effects ∆λo(t) = λo(t) − λo, where λo(t) = 2πc/wo(t) and λo = 2πc/wo. The set of
Eq. (1)-(3) are numerically integrated using a Runge–Kutta method, with an integration step of
2 ps, which is sufficient to account for the lowest timescale effects (τph ≈ 50 ps). The model
considers only a unidirectional propagation and the values of the parameters are reported in
Table 1, in the appendix.

3. MRR in time delay RC

The scheme of our time-delay RC follows the typical formulation, consisting of an input layer,
the reservoir, and an output layer (Fig. 2). At the input layer, we introduce into the system the
information to be processed. As discussed in [19], the input information can be continuous in
time or with discrete values. In both cases, sampled values xi from the sequence are extracted
and codified in bit of duration bw and amplitude bh,i (X(t)). Every bit is masked with a set of
random values M(t) taken from a uniform distribution. The size of the mask set M(t) is equal
to the number or virtual nodes Nv that are defined in the reservoir [19] and is periodic, with
period bw. Thus, M(t) = M(t + bw), with an intra-mask temporal distance between its values
equal to θ, with θ being lower than all the characteristic times of the MRR. The resulting signal
modulates the optical carrier emitted by a laser, with maximum optical power Pmax, and at an
emission wavelength detuned by ∆λs with respect to the initial MRR wavelength resonance.
Then, the optical signal enters the input port of the MRR system and propagates both along the
MRR and the feedback line. The received optical signal at the drop port is photodetected and
synchronously sampled at the masking sampling distance θ. We also include noise in the optical
system, with 40dB signal to noise ratio for the Pmax operation. The nonlinear transformation
of the input signal occurs at both the MRR system and the photodetection stage. Eventually,
each uni-dimensional input information is projected through this physical system into a higher
dimensional space defined by the number of virtual nodes Nv =

bw
θ . By defining Nj,i as the jth

virtual node response associated with the ith processed element xi, we represent numerically the
above operation, by considering the corresponding electric field of the optical signal:

Einp(t) = [X(t)M(t)]1/2 = [ximj]
1/2 , for bw(i − 1) + θ(j − 1) ≤ t ≤ bw(i − 1) + θj, (10)

Nj,i = |Edrop(bw(i − 1) + θj) |2, (11)

where mj indicates the jth mask value with j = 1, . . . , Nv and i indicates the index of the input
element that is processed. Finally, at the output layer, we obtain a unique value estimator oi,
related to the input xi, given as a linear combination of the corresponding virtual nodes’ responses:

oi =

Nv∑︂
j=1

WjNj,i, (12)

where Wj is a Nv-dimensional vector of the readout weights, which are trained via a linear
regression algorithm to minimize the normalized mean square error (NMSE) between oi and an
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expected value yi:

NMSE =
∑︁

i(oi − yi)
2

Ndσ
2
y

. (13)

In Eq. (13), the sum includes all the elements of the dataset Nd. These weights are then used
to evaluate the operation of the system on independent testing datasets. The lower the NMSE is,
the better the system predicts the expected output series.

Fig. 2. Schematic of time delay RC with an MRR subject to optical feedback. The encoded
information X(t) is masked with a sequence M(t) and modulates the optical power from
the laser (LAS) emission. At the drop port, the photodetected (PD) signal provides the
time-multiplexed output states of the reservoir, which are weighted and linearly combined to
compute the predicted value oi. The weight optimization is performed via a linear classifier,
with supervised learning over the expected values yi data set.

3.1. Characteristic timescales and nonlinearity

The MRR has a quality factor of Q = 3.19 × 104 and can exhibit self-pulsation dynamics, a
phenomenon that relies on a free carrier concentration variation in the waveguide [13]. As
discussed in section 2, three different timescales characterize the MRR operation: the photon
lifetime (here τph ≈ 50 ps), the free carrier lifetime (here τFC ≈ 3ns) and the thermal lifetime
(here τTH ≈ 83 ns), with the last two being associated with the MRR nonlinearity. Here the
masking samples are applied every θ = 40 ps < τph; in this way, the fastest characteristic time
response of the MRR τph - associated with the photon lifetime - is also exploited to keep the
system’s operation in a transient state. The MRR does not completely discharge the internal field,
when the next mask sample is applied. This allows to retain information of previous states (short
memory) and in this way neighboring virtual nodes are coupled through inertia. In our approach,
we exploit the free carrier nonlinearity, which has a faster time response and allows for faster
computations. Here we select an information encoding duration of bw = 1 ns ≈ τFC. This allows
each encoded input bit xi to trigger a measurable change of the free carriers inside the MRR - in
presence of high values of bh,i. Consequently, Nv = 25 virtual nodes are defined within a duration
of bw. This number of virtual nodes allows computations at GHz rates and is also compatible with
delays provided by integrated silicon feedback waveguides [25]. In Fig. 3 we show the response
of neighboring virtual nodes (green line), strongly coupled to the previous states. We also show
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the contribution of the free carriers (blue dashed line) and the thermal effects (red dashed line)
to the resonance shift. The optical input after masking (black line) enters into the MRR and
drives the generation of the free carriers that shift the resonance by ∆λFC. At the same time,
thermal effects cause a shift by ∆λTH , but they are too slow compared with the input changes, so
that they do not contribute to the nonlinear transformation of the optical signal and only add a
positive bias to the resonance position. Thermal effects become important - particularly for high
quality-factor MRRs - when the optical power within the MRR is high enough to activate self
pulsations. By adopting smaller information encoding durations (e.g. bw<1ns) we further limit
the number of virtual nodes and the computational power of the reservoir becomes limited. On
the other hand, by adopting larger information encoding durations (e.g. bw>1ns) we are able to
introduce a larger number of virtual nodes and improve the performance of some computational
tasks (see section 5) but by reducing the computational speed.

Fig. 3. Dynamical response of an MRR to a fast modulating signal at the input port,
based on the input layer concept of a time delay RC scheme. X(t) (black dashed line) and
X(t)M(t) (black continuous line) represent the input information before and after the masking,
respectively. The response of the MRR is obtained at the drop port (green line), while the
green circles indicate the sampled response of the virtual nodes of the reservoir, separated
in time by θ = 40 ps (one virtual node per mask node). The blue and red dashed lines
show the contribution of the free carrier (∆λFC) and the thermal (∆λTH) nonlinear effects,
respectively, to the wavelength resonance shift (shown in the right y-axis).

4. Results

Under the above conditions, the MRR with optical feedback system is tested on three different
benchmark computational tasks, that have different requirements for signal processing. The
NARMA 10 belongs to the category of nonlinear system identification tasks and requires explicitly
10 memory steps to be solved. The Mackey-Glass and the Santa Fe are benchmark one-step-ahead
chaotic time-series prediction tasks where the system has to predict a future value xi+1 of the
input series, while processing xi.

Since the performance of every task relies on a characteristic trade-off between a nonlinear
transformation of the input information and the system’s linear memory [27], an estimation of
these two quantities is addressed below. The former is evaluated indirectly, via the standard
deviation of the wavelength resonance shift σ(λo(t)). A higher standard deviation indicates
higher MRR nonlinearity. The latter is evaluated by the linear memory capacity (MC) task, as
we present it here. MC is traditionally calculated by using as an input series a random sequence
of bits, with values taken from a uniform distribution [28]. However, there is an inconsistency
in this method when one tries to evaluate the response of a nonlinear system to an input with
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specific spectral properties. The linear memory capacity of the system can be different when
entering into the system either a random sequence or a sequence with correlated temporal profiles.
This stands also in our case, where different input series may lead the MRR operation under
different nonlinear dynamics, even for the same operating parameters. For this reason, in this
work, the MC task is solved for the actual timeseries of the benchmark tasks we will evaluate.
The system is trained to remember the lth previous input element of the used series, by exploiting
the information that is still present in the system. It is computed as:

MC =
lmax∑︂
l=0

m(l), with m(l) =
cov2(o(n), x(n − l))

σ2
oσ

2
x

. (14)

m(l) measures the normalized linear correlation between the predicted (o(n)) and delayed (x(n− l))
input series, with cov2() indicating the covariance between two vectors and σ2 the variance.
When this correlation is very small (<<1), the system is unable to preserve any information of l
past input. On the contrary, when m(l) approximates one, the system remembers the exact value.
For the MC computation, we also consider the case of l = 0 that refers to the capability of the
system to retrieve the actual input.

We investigate the performance of the MRR system on the selected tasks, for different
configurations, by tuning the critical operational parameters, such as the starting wavelength
detuning ∆λs, the maximum input optical power Pmax, the feedback phase ∆ϕF and the feedback
strength ηF . All these parameters affect the optical power circulating within the MRR and thus its
nonlinear operation. We select the following range values for these parameters: ∆λs ∈ [−50 pm,
50 pm], with step of 10 pm, so that all the MRR resonance (having Full Width at Half Maximum
FWHM = 48pm) is covered; Pmax ∈ [1 mW, 8 mW], with step of 1 mW, including also the value
0.1 mW where the MRR operates in a linear regime; ∆ϕF ∈ [0, 2π]; ηF ∈ [0, 1]. For training
the MRR system to the different tasks, we use 1000 input data values to drive the system in a
working regime and eliminate any oscillatory operation due to the inclusion of the input. Then
we use the next 2000 input data values for training and the next 1000 data for testing the system
on previously unseen entries. The same random mask M(t) is used in all the simulations that
involve the same number of virtual nodes, which is fixed to 25 unless differently specified. The
ridge regression parameter of the RC’s output layer linear classifier is set to 10−4.

4.1. Narma 10 benchmark test

In the Narma 10 task, our system is trained to predict the response of a discrete-time tenth order
nonlinear auto-regressive moving average (NARMA) system [29], described by:

ri+1 = 0.3ri + 0.05ri(

9∑︂
j=0

ri−j) + 1.5xi−9xi + 0.1, (15)

where xi represents the ith element of the input series uniformly distributed in the range [0 , 0.5]
and ri+1 is the correspondent expected target (yi in Fig. 3). This task requires explicitly at least 10
values (the current one and 9 in the past) to be considered to predict the next value. In Fig. 4(a)
we show the NMSE performance of the MRR system, versus the feedback parameters ηF and
∆ϕF. In parallel, we show the linear MC of the MRR system for this task in Fig. 4(b). While
for the performance optimization we use the 4-dimensional parameter manifold (Pmax, ∆λs, ηF,
∆ϕF), we provide our results in two dimensions, while fixing the rest of the parameters of the
complete manifold. We find that the parameter space for which we observe the lowest values
of NMSE is where the MC approaches its maximum value. In absence of the external optical
feedback (ηF = 0), the MC value is only around 2. This very limited memory emerges from the
single MRR operation and the inertia between the last virtual nodes’ responses of the input value
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xi−1 and the first virtual nodes’ responses of the next input value xi. In this case, the system can
remember the input xi−1 from the actual input xi (Fig. 4(c), blue line). This can be verified by the
computed weight values of the RC linear classifier, as shown in Fig. 4(d). When we train our
classifier to provide as an output the previous value of the series, by considering the response
of the reservoir to the actual input xi, only the response of the first virtual nodes is important
for computation (Fig. 4(d), blue line). But when activating the feedback (Fig. 4(c), red line), all
virtual nodes contribute to the task computation (Fig. 4(d), red line). To obtain an extended linear
memory, a strong feedback parameter ηF is required, under an appropriate phase condition at the
add port of the MRR.

Fig. 4. Performance of the Narma 10 benchmark task. (a) NMSE and (b) MC, versus
optical feedback strength ηF and phase ∆ϕF . Red circle denotes the conditions with the
lowest NMSE. (c) Memory function m(l), for the cases without feedback (blue line) and with
feedback conditions that result in the lowest NMSE (red line). (d) Readout weights for a task
to remember the previous input value xi−1, for the cases without feedback (blue line) and
with feedback conditions that result in the lowest NMSE (red line). MC is computed using
lmax = 19. The initial wavelength shift is ∆λs = −10pm and the MRR is operating in the
linear regime, with bw = 1 ns.

For the NARMA 10 task, the minimum error NMSEmin = 0.204 ± 0.026 is found at ηF = 0.9,
and ∆ϕF/2π = 0.55, for Pmax = 0.1mW and a starting wavelength detuning of ∆λs = −10pm.
Thus, the MRR is operating in a linear regime. The combination of a linear MRR with an optical
feedback delay, acts like a linear analog shift register. If the MRR is in resonance, part of the
feedback signal is coupled back to the MRR. Thus, an input light pulse can propagate multiple
times through the MRR system, providing a linear optical memory to the system. According to
[27], a worse performance is expected when the MRR operates in a nonlinear regime, since it
progressively distorts the information. The lowest obtained NMSE value is even higher than
the one expected from a linear shift register (NMSESR = 0.16) [19]. The reason for which we
get a higher NMSE is due to the small number of virtual nodes. But since in this task the MRR
dynamics is not bounded to its nonlinearity, a longer bit duration bw can be considered while
preserving the same dynamical response and the same virtual node time separation θ = 40ps.
For example, when Nv = 200 and bw = 8 ns, we obtain NMSE = 0.010 ± 0.009, an equivalent
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performance with the one reported in [19]. This improvement, compared to the linear shift
register performance, is attributed to the square-law nonlinearity of the photodetection, since
both cases exploit the same linear memory. This operation is consistent with the one presented in
[30], where a linear external cavity with an optical fiber loop was used and from which the output
optical signal was photodetected. For comparison, the use of the MRR in absence of optical
feedback, results in NMSE = 0.545 ± 0.001, for Pmax = 2 mW and ∆λs = 20 pm.

In conclusion, the single MRR operating in the linear regime without feedback can preserve
the previous value of input information, through inertia, at MRR photon lifetime time scales.
This memory, along with the photodetection nonlinearity, is sufficient to solve one-step-before
memory tasks. For the Narma 10 task, which has longer memory requirements, the external
cavity is the main contributor to the linear memory capacity of the computing system.

4.2. Mackey-Glass benchmark test

The Mackey-Glass input series is obtained by integrating in time the following equation:

dx(t)
dt
=
αx(t − τ)

1 + x(t − τ)β
− γx(t). (16)

Equation (16) can provide a rich variety of periodic, aperiodic, and chaotic solutions. It was
initially used in [31] to describe physiological diseases in the human body and later, in recurrent
neural networks [15], as a benchmark timeseries for prediction. In the last case, a weakly chaotic
behaviour is obtained, by numerically solving Eq. (16) with an integration step of 0.1, and the
following parameter values: α = 0.2, β = 10, γ = 0.1, and τ = 17. In our investigation, we apply
an oversampling of 3, similarly to [23].

The lowest NMSE value for this prediction task is obtained for Pmax = 5 mW,∆λs = −30 pm and
for feedback conditions that are shown in Fig. 5(a) - black circle (ηF = 0.85 and ∆ϕF/2π = 0.6).
These conditions result in an NMSEmin = 0.0053 ± 0.0005, lower than NMSESR = 0.01 obtained
by a linear shift register. Differently from the NARMA 10 task, the optimal computing conditions
exploit the MRR nonlinearity, as indicated by the corresponding standard deviation value of
the MRR’s resonance shift ∆λo(t) (Fig. 5(b)). Nevertheless, the initial resonance shift must be
constrained within some boundaries, so that the MRR does not get out of resonance. The external
cavity, besides its contribution to the extended fading memory, is beneficial in the following sense:
different ηF and ∆ϕF values result in different interference conditions between the feedback signal
and the internal field of the MRR. Thus, the feedback conditions also determine the circulating
internal optical power in the MRR and eventually its nonlinearity. For example, when ηF>0.3 and
0<∆ϕF/2π<0.45, a constructive interference is observed in the MRR, leading to higher values of
∆λo(t), thus higher MRR nonlinearity (Fig. 5(b)) and degraded performance (Fig. 5(a)). Under
this configuration, the MRR system is driven out of resonance. This is illustrated in Fig. 5(c,
upper panel, red line) from the evolution of the resonance shift ∆λo(t) in time, while executing
the computation. For the conditions indicated with the red circle in Fig. 5(a), a series of bursting
spikes in the wavelength resonance shift is observed, followed by a thermal warming and then a
thermal cool-down. This dynamical behavior resembles self pulsations, where the oscillation
occurs whenever the resonance becomes too detuned with respect to the pump wavelength (out
of resonance condition). In these time intervals, light mainly propagates through the external
cavity (Fig. 5(d, path 2)) and is not susceptible anymore to the MRR nonlinearity. At the same
time, as the feedback signal bypasses the MRR, it is not coupled back and does not iterate further.
In this way, the system loses also the feedback memory. These conditions result in degraded
performance, as it is indicated by the corresponding higher prediction error in Fig. 5(c, bottom
panel, red line). As a comparison, the lowest NMSE configuration is also reported in Fig. 5(c,
black line). In this case ∆λo(t) oscillates in phase with the input optical peaks (Fig. 5(c, upper
panel, blue line)) and with lower amplitudes. In a comparison with the NARMA 10 task, we
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observe that the region with worst NMSE performance (Fig. 5(a)) – where the MRR transition
to self-sustained oscillations occurs, due to the competition between thermal and free carrier
nonlinearities – differs from the one in Fig. 4(a). In the latter, the linear MRR operation does
not induce self-sustained oscillations. In a comparison with the linear shift register, neither the
single MRR in absence of the feedback (NMSE = 0.015± 0.002), nor the linear MRR in presence
of feedback (NMSE = 0.0095 ± 0.0009) provide an improved performance. This can be only
obtained by combining the MRR nonlinearities with the memory provided by the external cavity.

Fig. 5. Performance of the Mackey-Glass benchmark task. (a) NMSE and (b) standard
deviation of the resonance wavelength shift σ(λ0), versus optical feedback strength ηF
and phase ∆ϕF of the MRR system. Black (red) circle denotes the conditions with the
lowest (highest) NMSE. (c) Temporal evolution of the resonance shift and the bit error
|oi − yi | during the task for two feedback conditions: the black line corresponds to the lowest
NMSE (black circle, (a)), and the red line corresponds to the highest NMSE (red circle,
(a)). (d) Dynamical operation of the MRR with optical feedback under self pulsations:
light occasionally enters (path 1, upper) or bypasses (path 2, lower) the MRR. The initial
wavelength shift is ∆λs = −30pm, the maximum launched optical power at the input is
Pmax = 5 mW and bw = 1 ns.

4.3. Santa Fe benchmark test

The Santa Fe benchmark test is the second one-step-ahead time series prediction task we
investigate. In this task, the input series is the optical power emitted by a far-infrared laser that
operates in a chaotic regime [32]. This publicly available dataset has experimental noise in its
values, in contrast to the Narma 10 and the Mackey-Glass timeseries.

Processing this dataset with a linear shift register results in a value of NMSESR = 0.2. By
considering MRR-based processing, this error is significantly reduced. This is shown in Fig. 6(a),
where we plot the best NMSE for each pair (∆λs, Pmax) investigated. We find an NMSE as low
as 0.038 ± 0.008, for the following parameters’ configuration: ∆λs = 10 pm, Pmax = 2 mW,
ηF = 0.55 and ∆ϕF = 0 ((Fig. 6(a), black circle, with feedback parameters not displayed). We
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also monitor the standard deviation of the resonance shift σ(λ0) (Fig. 6(b)) and the feedback
strength ηF (Fig. 6(c)), related to the configurations with the lower error in Fig. 6(a).

Fig. 6. Performance of the Santa Fe benchmark task, by using a single MRR with external
feedback. (a) NMSE, (b) standard deviation of the resonance wavelength shift σ(λ0), and
(c) strength of the feedback, versus the starting detuning ∆λs and the maximum incident
power Pmax. The quantities refer to the feedback configuration with the lower error achieved
at each (∆λs, Pmax). The black circle indicates the conditions for which we obtain the lowest
NMSE.

While all the displayed configurations achieve errors lower than NMSESR, a joint evaluation
of the three figures suggests the mechanisms behind the choice of the nonlinearity leading to
these performance. At Pmax = 0.1mW, the MRR works in a linear regime, as also indicated by
the small values of σ(λ0) at this power (Fig. 6(b)). In this condition the feedback strength ηF is
maximized (Fig. 6(c), at Pmax = 0.1mW). Doing so, the recursivity of the feedback signal in
the system is increased and, consequently, the detection nonlinearity acts on a larger number of
feedback delayed terms. This suggests that when the MRR is forced in a linear regime, due to
the limited input optical power, the system enhances the linear memory using higher feedback
strengths, to effectively solve the task. The best performance for this processing scheme results
NMSE = 0.042±0.008. At higher maximum incident power Pmax>0.1mW, the MRR nonlinearity
becomes also accessible, but still not mandatory. As illustrated in the previous task, the feedback
phase ∆ϕF can still be tuned such to minimize the optical power inside the MRR (destructive
interference), and thus minimize its nonlinearity. Nevertheless, Fig. 6(b) shows that for these
incident optical powers, the standard deviation of the resonance shift, σ(λ0), is higher with
respect to the linear case (Fig. 6(b), at Pmax = 0.1mW), so that the system is actually exploiting the
MRR nonlinearity. In particular, a region of lower NMSEs in Fig. 6(a) is related to intermediate
values of σ(λ0). In parallel, the strength of the feedback is reduced with respect to the linear
case (Fig. 6(c)). These results suggest that, under these conditions, the MRR contributes to the
overall nonlinearity of the system and improves the prediction performance. Alternatively, the
detection nonlinearity is also sufficient to solve the task, once enhanced by a stronger external
optical feedback.
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The previously identified parameter set is not the only one that results in low NMSEs. An
interesting operating condition is when we eliminate the external feedback cavity and evaluate
the performance of the single MRR, by only adjusting its operating parameters ∆λs and Pmax.
In Fig. 7(a) we show the NMSE performance, versus these two MRR parameters. The lowest
error we obtain is NMSEmin = 0.045 ± 0.002, and it is achieved for Pmax = 7 mW and ∆λs = −40
pm (Fig. 7(a), black circle). This NMSE value is only slightly higher than the one obtained
from the MRR system with external optical feedback, indicating that the contribution of the
extended external memory is not so critical for this task. To investigate further the conditions
that lead to this performance, we map the standard deviation of the resonance wavelength shift
σ(λ0), which indicates the strength of the MRR nonlinearity (Fig. 7(b)), and the change in the
MC (∆MC), as shown in Fig. 7(c). Here ∆MC = MC − MClin, where MClin is the linear memory
capacity when the MRR operates in the linear regime. In both plots, the investigated parameter
space is again Pmax versus ∆λs. When the MRR works in the linear regime (i.e. for low optical
power Pmax = 0.1 mW), the NMSE we obtain is as high as 0.13 (Fig. 7(a)). In this case, the
MRR has only access to an inertia memory of one step, while the output undergoes a nonlinear
transformation through the square-law photodetection. This is the reason why we obtain a NMSE
value lower than the NMSESR. By increasing Pmax and the nonlinear contribution of the MRR, the
NMSE is significantly reduced (Fig. 7(a)). However, this happens only for those ∆λs conditions
that preserve the free carrier nonlinearity of the MRR in a specific range of values (Fig. 7(b)).
Specifically, the σ(λo) should be not very low - which would mean an absence of nonlinear effects
- but also less than few pm. In addition, we observe that these conditions also favor a higher MC
(Fig. 7(c)). For conditions that lead to self pulsation dynamics (e.g. for high Pmax, detuning
dependent), the capability of the system to retain the memory is lower, the nonlinearity of the
system is very high, and the overall capability for computation becomes limited. These findings
are in agreement with [26], where a single MRR in the absence of feedback is able to solve both

Fig. 7. Performance of the Santa Fe benchmark task, by using a single MRR without
external feedback. (a) NMSE, (b) standard deviation of the resonance wavelength shift
σ(λ0), and (c) change of MC (∆MC), versus the starting wavelength shift ∆λs and the optical
power Pmax. The black circle indicates the conditions for which we obtain the lowest NMSE.
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the 1-bit delayed XOR task and the classification of Iris flowers, exploiting a combination of
free-carrier and thermal nonlinear memories.

5. Discussion

In the RC implementation we propose, we process one piece of input information per time delay
(τF), while exploiting the free-carrier nonlinearity of the MRR. By considering in this study only
25 virtual nodes and a temporal spacing of θ = 40 ps, the time delay of the feedback cavity is
τF = 1 ns. In tasks that might require a significantly higher number of nodes, this can be achieved
by increasing the feedback delay up to several ns. In parallel, the temporal spacing θ can be
further reduced. For example, with τF = 5 ns and θ = 20 ps, one can define 250 virtual nodes in
the time-delay RC scheme, while still exploiting the free-carrier nonlinearity of the MRR (here
τFC ≈ 3 ns). But, as the delay time becomes larger, the thermal effects’ contribution to the MRR
nonlinearity also increases, as more free carriers are generated per input pulse. Thermal effects
may either degrade the computing performance or contribute positively by acting as a secondary
source of large-scale nonlinear memory. In another consideration, one can exploit the MRR
nonlinearity through only the thermal effects. The time delay can be then further expanded to
τF = 100 ns. However, the task performances that we presented in this study will differ, due to
the different nonlinear signal transformations. By changing the design and material parameters of
the MRR, we can change the dynamical properties of the system. For example, an increase of the
free carrier lifetime by silicon doping [33], allows a larger τF . In an RC topology, this translates
into a larger number of virtual nodes that exploit the free carrier nonlinearity. For example,
in [26], an unusually large free carrier recombination lifetime (τFC = 45 ns) was exploited for
computation. On the other hand, a reduction of the free carrier lifetime increases the processing
speed and can be realized with a p-i-n junction embedded in the MRR [7]. The limited number
of virtual nodes defined in this case can be partially compensated by adopting a smaller θ.

From an experimental point of view, for short delays – e.g. the one discussed above with
τF = 5 ns – an integrated solution with the MRR can be considered. For longer delays – e.g. the
one discussed above with τF = 100 ns – which are beyond the photonic integration capabilities,
an optical fiber that is coupled to the MRR’s "through" and "add" ports may be considered.
In both cases, for getting access to strong feedback conditions, an optical amplification unit
is required in the feedback path to compensate for the coupling and propagation losses. The
introduced optical noise can have an impact on the final performance. An optical attenuator may
be also used to further tune the feedback strength at lower values. Finally, a critical parameter to
control is the feedback signal’s phase (∆ϕF). This can be experimentally realized via fine tuning
of the laser emission wavelength or by using a piezo-driven phase-shifter within the feedback
path. In fiber-based feedback delay lines, it is necessary to compensate for thermal variations and
mechanical vibrations, which may otherwise lead to phase drift in time. A PID controller can be
used for this purpose [30].

6. Conclusions

Here we investigated numerically the capability of a passive silicon MRR with delayed optical
feedback to operate as a versatile computational unit in time-delay RC. This work is in line
with other time-delayed passive reservoirs already studied [30,34]. While in those works the
virtual nodes were coupled exploiting a temporal mismatch between the mask duration and the
cavity delay, in our approach the virtual nodes are coupled via both the MRR dynamics and the
feedback connectivity. MRRs have a very small footprint, which makes them ideal candidates
for scalable photonic RC integrated configurations. Designs with multiple coupled elements
appear very prominent for enhanced dynamical response [35]. Moreover, by exploiting different
resonant conditions, wavelength division multiplexing can be also supported. In the present
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study, we exploited the free carrier nonlinearity timescales, by selecting an external cavity delay
and an encoding information duration of the same time scale (1 ns). This delay can be tuned
to lower values to speed up computations, or to higher values to increase the number of virtual
nodes. To test the computational properties of MRR in time-delay RC, we computed various
benchmark tasks that have memory requirements. We showed that Narma 10 task can be solved
efficiently, by operating the MRR in a linear regime and presence of strong feedback, while using
photodetection as the only source of signal nonlinear transformation. For the Mackey-Glass
prediction task, we exploited both the MRR nonlinearity and the external cavity memory, to
obtain the lowest prediction error. Finally, for the Santa Fe prediction task, we demonstrated that
the MRR nonlinearity acts as a sufficient source of memory, eliminating the need for the external
cavity, in agreement with the experimental results found in [26].

Appendix: parameters for numerical modeling the MRR system

Most of the ring parameters we consider are reported in [36]. p is the MRR perimeter, k2 is the
power coupling coefficient between the MRR and the straight waveguides (here set to 0.01, which
is slightly lower than [36], to improve the enhancement factor and increase the nonlinear effects
of the MRR), art is the MRR roundtrip field transmission coefficient, Q is the MRR quality factor,
dnSi/dT is the thermo-optic coefficient in silicon at 300K, dnSi/dN is the free carrier dispersion
coefficient, Veff is the mode effective volume, βTPA is the TPA coefficient of silicon, and Pabs is
the total absorbed power (which includes linear absorption, TPA and FCA) within the MRR. The
corresponding parameters used in the numerical simulations are provided in Table 1.

Table 1. Parameter values used in the numerical simulations
in the model of Section 2.

Parameter Value parameter Value

p 2π × 6.75µm λo 1549.66nm

γi 1.68GHz γe 17.2GHz

k2 =
2γepng

c 0.01 (ng=4.1) t2r = 1 − k2 0.99

art e
−

cp
4ngγi Q πngptr

√art
(1−t2r art)λo

dnsi/dT 1.86 × 10−4K−1 dnsi/dN −4.2 × 10−27m3

nF 1.4682 τph 52.81ps

τTH 83.3ns τFC 3.3ns

Γc 0.9 Veff 5.331 × 10−18m3

σFCA 1.45 × 10−21m2 ηFCA
σFCAΓcc

2nSi

βTPA 0.79 × 10−11m/W Pabs 2γ(t) |U(t) |2

GTPA
c2βTPA
2Veff n2

Si
FWHM λo

Q
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