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Brain mapping across 16 autism mouse models reveals a
spectrum of functional connectivity subtypes
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Autism Spectrum Disorder (ASD) is characterized by substantial, yet highly heterogeneous abnormalities in functional brain
connectivity. However, the origin and significance of this phenomenon remain unclear. To unravel ASD connectopathy and relate it
to underlying etiological heterogeneity, we carried out a bi-center cross-etiological investigation of fMRI-based connectivity in the
mouse, in which specific ASD-relevant mutations can be isolated and modeled minimizing environmental contributions. By
performing brain-wide connectivity mapping across 16 mouse mutants, we show that different ASD-associated etiologies cause a
broad spectrum of connectional abnormalities in which diverse, often diverging, connectivity signatures are recognizable. Despite
this heterogeneity, the identified connectivity alterations could be classified into four subtypes characterized by discrete signatures
of network dysfunction. Our findings show that etiological variability is a key determinant of connectivity heterogeneity in ASD,
hence reconciling conflicting findings in clinical populations. The identification of etiologically-relevant connectivity subtypes could
improve diagnostic label accuracy in the non-syndromic ASD population and paves the way for personalized treatment approaches.
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INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental condi-
tion marked by social, communication and behavioral challenges
often accompanied by additional co-morbidities that together
negatively impact the quality of life of affected individuals and
their families. The high heterogeneity of clinical presentation and
underlying pathophysiology pose a substantial challenge for early
diagnosis and effective treatments [1, 2]. Among the multiple and
diverse etiological factors associated with ASD [3], genetic
alterations appear to be by far the largest contributors to ASD
risk [4]. Several studies have revealed that genetic variants
associated with ASD cause cellular alterations linked to abnormal
neuronal circuit wiring and function, leading to aberrant devel-
opmental trajectories (reviewed by [5]). Hence, circuit and network
dysfunctions are thought to directly underlie onset and severity of
ASD symptoms.
Within this framework, abnormalities in the coordinated

functional interactions of brain networks, or brain connectivity,
might therefore represent a defining hallmark of ASD. This
theoretical view was first inferred from fMRI measurements of

cortical activation collected during different cognitive tasks [6].
Since then, a growing number of studies in idiopathic [7, 8] as well
as syndromic forms of ASD [9–12] has suggested that aberrant
connectivity in ASD could be detected by resting-state fMRI
(rsfMRI). However, whilst a recent aggregate analysis has revealed
a putatively reproducible mosaic pattern of atypical connectivity
in ASD [13], the heterogeneity in rsfMRI connectivity findings
across ASD cohorts is considerable, and unlikely to reflect
technical or procedural discrepancies in imaging acquisitions
and analysis [2, 12, 14]. Hence, one outstanding question in the
field is whether ASD can be associated with a univocal, diagnosis-
specific signature of dysfunctional brain connectivity that is
common to the whole spectrum, or whether clinical heterogeneity
is the sum of distinct and separable signatures of network
dysfunction.
rsfMRI connectivity studies in etiologically homogeneous ASD

populations have started to link disease-causing genetic altera-
tions to specific functional connectivity aberrancies, highlighting
putatively distinguishable, etiology-specific connectivity changes.
For example, subpopulations harboring well-characterized genetic
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mutations such as chromosome 16p11.2 deletion [11], neurofi-
bromatosis type 1 mutations (Nf1) [15] or Fragile-X (Fmr1)
syndrome [9, 16] are characterized by non-overlapping patterns
of dysconnectivity. Similarly, mTOR-related synaptic surplus has
been recently linked to a specific cortico-striatal hyper-connectiv-
ity signature [17]. These observations suggest an interpretative
framework in which ASD-relevant etiological and genetic risk
factors could lead to distinct network signatures of brain
dysfunction, thus explaining heterogeneous connectivity altera-
tions observed in clinical cohorts. Crucially, this model would also
explain why so far, no unequivocal ASD-specific signature of
abnormal connectivity has been identified.
To test this hypothesis, we introduce the Autism Mouse

Connectome (AMC) study, a bi-center initiative dedicated to
collecting and analyzing rsfMRI in multiple ASD-relevant mouse
mutants under well-controlled and highly reproducible experi-
mental conditions [18–20]. Our work leverages recent advances in
cross-species rsfMRI imaging, revealing that rsfMRI is exquisitely
sensitive to network alterations caused by ASD-related etiologies,
reconstituting patterns of network dysfunction in corresponding
human ASD cohorts [11, 16], [21–26], [17, 21–26]. By comparing
connectivity alterations caused by 16 ASD-related genetic and
etiological factors, we found that ASD etiologies cause a wide
spectrum of connectivity abnormalities that can be clustered into
a discrete set of prevailing subtypes. Our results underscore a
pivotal contribution of etiological variability to connectivity
heterogeneity in ASD and reveal a set of prominent cross-
etiological network dysfunction modes of high translational
relevance for ASD.

RESULTS
Animal models
The AMC collection includes scans from published literature that
have been retrospectively aggregated and additional unpublished
work (see Table 1). The data were all acquired following strict
anesthesia procedures under mechanical ventilation which are
documented elsewhere [19, 27–29]. Our previous work shows that
these procedures preserve heart rate and blood oxygenation

within a physiological range throughout the experiment. Impor-
tantly, the employed regimens have been shown to produce
rsfMRI networks that are topographically indistinguishable [30],
tightly related to the underlying axonal architecture of the mouse
brain [31, 32] and characterized by rich dynamics [33, 34]. In total,
it contains resting-state fMRI scans of 350 mice from 16 distinct
cohorts. Ten cohorts were collected at ETH Zürich (Switzerland)
and six cohorts were collected at IIT Rovereto (Italy). Data from
two independent cohorts of CNTNAP2 were collected at both
sites.
All mouse mutants fulfilled the following criteria: (1) the genetic

modification resembles/relates to a genetic alteration found in
individuals with ASD as listed in the SFARI gene database (https://
gene.sfari.org/autdb/); (2) the mouse strain has been shown to
mimic at least one of the core behavioral phenotypes of ASD; (3)
mice are inbred with C57BL/6 J or /6 N mice as control strain to
reduce genetic heterogeneity across models; (4) each cohort
included mice with the genetic alteration and wild-type control
littermates. In addition, we included: (i) a model for environmental
ASD risk factor, i.e., maternal exposure to interleukin-6 (IL-6); the
maternal injection of IL-6 at later stages of pregnancy (E12,5-E15)
is a well-established model of Maternal Immune Activation (MIA),
and the relative offspring show major behavioral defects which
include alterations in sensory-motor gating, attention and
sociability, all clear hallmarks of ASD; [35, 36] (ii) a model for
TREM2 deficiency; TREM2KO mice are characterized by defects in
microglia-dependent synaptic pruning activity which results in
excessive glutamatergic synaptic connections accompanied by
autistic-like behavioral phenotype [37] (iii) a model of congenital
agenesis of the corpus callosum, a neuroanatomical trait
associated with increased prevalence of ASD; [38] inbred BTBR
mice are often employed as a rodent model for “idiopathic” ASD
and exhibit profound behavioral and neurofunctional alterations
of high translational relevance [39–41].

Between-cohorts and between-sites connectome consistency
in control animals
rsfMRI data from all cohorts were commonly preprocessed using a
standard minimal-preprocessing pipeline and normalized to the

Table 1. Available datasets.

ASD mouse model Control strain Sex Age (weeks) Behavioral traits* Construct validity† References Scan site

16p11.2 (df/+) 129/C57BL6J males 18–20 3, 5 c [11] IIT

BTBR T+tf/J C57BL/6 J males 26 1, 2, 3, 4, 5 d [34] IIT

CDKL5 KO C57BL/6 J males 23–25 3, 5 b, f – ETH

CDKL5 Het (+/−) C57BL/6 J females 17–19 3, 5 b, f – ETH

CHD8 C57BL/6 J mixed 15–18 3, 4, 5 a [26] IIT

CNTNAP2_ETH (−/−) C57BL/6 J mixed 14–16 1, 4, 5 a, f [16] ETH

CNTNAP2_IIT (−/−) C57BL/6 J males 13–14 1, 4, 5 a, f [23] IIT

En2 (−/−) C57BL/6 J mixed 12–16 1, 4, 5 a, e, d [24] ETH

FMR1.1 (−/y) C57BL/6 J males 14–16 1, 2, 3, 4 b, f [16] ETH

FMR1.2 (−/y) C57BL/6 J males 13–15 1, 2, 3, 4 b, f [35] ETH

IL6 C57BL/6 J mixed 14 1, 4 d [76] ETH

Mecp2 Het (+/−) C57BL/6J females 12–14 1, 4, 5 b, f – ETH

SGSH (−/−) C57BL/6 N mixed 20–22 5 b – ETH

SHANK3b ex4-9 C57BL/6 J males 19–21 1, 2, 3, 4, 5 a, f [25] IIT

Syn2 C57BL/6 J males 25–31 f [36] IIT

TREM2 (−/−) C57BL/6 J mixed 12–15 3, 4 d [29] ETH

*Behavioral traits related to ASD reported by others in selected models: (1) social behavior deficits; (2) reduced vocalizations; (3) repetitive behavior; (4)
cognitive behavior; (5) motor performance.
†Construct validity includes: (a) Genetic association; (b) Related syndrome; (c) Autism copy number variants; (d) Autistic-like behavior; (e) Serotonin-related
phenotype; (f ) Synapse related.
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Allen Mouse Brain Common Coordinate Framework (CCFv3)
(Fig. 1A). Our first goal was to test the assumption that scans
from wild-type (WT) control animals would show comparable
functional connectome characteristics, so that data from the two
sites and different cohorts can be directly compared. In order to
ensure an unbiased edge selection across sites and cohorts, we
selected an equal amount of data from the two sites (n= 112)
randomly taken from the different cohorts and computed an
averaged mouse functional connectome template. This template
is then used to select relevant edges (i.e., sparsity mask) for
subsequent analyses (Fig. 1B).
The similarity between the connectome representation of each

individual WT mouse and the group average template—expressed
by Spearman’s ranking coefficient (Rho)—is used to quantify
consistency of the data (larger Rho refers to larger similarity
between WTs). This parameter was evaluated for a range of
sparsity levels taken from the functional connectome template,
which varied from keeping only the top 1% of the strongest and
positively correlated edges to keeping up to 50%. Maximum
similarity between datasets was obtained at 4% sparsity (545
edges) (Fig. 1C). This indicates that the functional connectome in
the mouse is maximally similar between all data sets when
considering the 4% strongest and positively correlated edges. This
level of sparsity was applied to all subsequent analyses. Similarity
indexes between the individuals of each cohort and the group

average of all WTs are shown in Fig. 1D. The results show a marked
resemblance across animals (mean Spearman’s rho: 0.699 ± 0.06)
and low variability between cohorts.
Next, we tested whether the data across the two sites exhibit

significant differences, for example, due to differences in
environmental conditions in which mice were raised, experimental
protocols including anesthesia or data acquisition hardware.
Importantly, we found no significant differences in mean similarity
between data collected at the two sites (Wilcoxon matched-pairs
signed rank test, p= 0.2749, Fig. 1E). In addition, Bayesian
repeated-measures ANOVAs revealed a Bayes Factors in favor of
the null hypothesis (BF-H0, i.e., data from the two sites are not
different) of 7.57 versus a BF that rejects the null hypothesis of
0.13 (BF-H1, i.e., data from the two sites are different). We next
used a machine learning (ML) approach to assess whether a
classifier trained with half of the WT data (train-set) could
distinguish the site of origin in the other half of the data (test-
set). Our logic is that if the datasets of the two sites are similar, a
ML classifier should not be able to distinguish the site of origin
and the test predictions should be close to random predictions.
The train-test process was repeated 100 times at multiple sparsity
levels (2–20%). Supplementary Fig. 1 shows that a linear support
vector machine (LSVM) failed to predict the site of origin of the
test dataset above chance level, for all sparsity levels and across a
broad range of parameters. Overall, these data clearly indicate that

Fig. 1 WT datasets show comparable connectome representation across recording sites. A Schematic of the experimental pre-processing
and processing pipeline. An arbitrary sparsity thresholding is taken from the averaged template connectome and then applied to each
cohort’s Cohen’s D matrix. B Circos plot of the mouse brain connectome from 112 rsfMRI wildtype datasets, 4% sparsity threshold, highlights a
complex network of distributed short- and long-range connections (number of edges= 545). C Quantification of similarity across all WT mice
at different sparsity levels (1–50%). Maximum averaged Spearman’s rho was found at 4% sparsity. D Distributions of ranked similarity in
connectome representation (Spearman’s rho) between wildtype of each cohort and the group average. E Same data as in (D) but grouped
within each of the two measurement sites (ETH, IIT). Both nonparametric testing and Bayesian repeated-measures ANOVAs show that datasets
from WT mice exhibit comparable connectome representation independently from recording site. Wilcoxon matched-pairs signed rank test,
p= 0.2749. Bayesian factor BF-H0 (null)= 7.57.

V. Zerbi et al.

3

Molecular Psychiatry



the connectome representation is comparable in WT animals
irrespective of which site performed the rs-fMRI measurements
(ETH and IIT).

Low-dimensional representation of connectivity changes in
individual animals reveals a wide spectrum of alterations
Autism is commonly defined as a “spectrum” of neurodevelop-
mental disorders, owing to the wide range of etiologies and
pathophysiological factors that has been associated with this
condition. It is, however, unclear whether abnormal functional
connectivity faithfully mirrors the ASD etiological variability or
converges onto a single common signature of circuit dysfunction.
To disambiguate these two opposing possibilities, we implemen-
ted a dimensionality reduction algorithm and mapped individual
mouse connectivity data into the same coordinate system. After
determining connectivity deviations in the ASD mutants relative
to their own WT controls, connectivity abnormalities of each
animal were projected onto a low-dimensional space using an
unsupervised manifold learning technique (Uniform Manifold
Approximation and Projection, UMAP), which preserves the global
data structure and the local neighbor relations better than other
existing methods such as Principal Components or t-distributed
Stochastic Neighbor Embedding (t-SNE) [42]. Point-to-point
distances in UMAP plots were then used to interpret the
continuity of the data subsets and identify similarities in
“connectopathy” between individual animals.
Notably, the resulting map revealed a continuous spectrum of

connectivity abnormalities across which individual etiological
clusters could be located and identified (2D representation,
Fig. 2A). This is in stark contrast to the UMAP representation of
wild type animals, in which no cluster between cohorts of animals
is visible (Fig. 2B). The analysis of the Euclidian distance between
points in the low-dimensional embedded space (corresponding to
the (dys)connectivity profiles of individual animals) revealed that
distances were shorter between individuals of the same ASD
cohort (reflecting more similar connectivity alterations) than
between individuals of different ASD cohorts (for 2D embedding,
Euclidean distance within-groups= 1.5 ± 0.56; between groups=
2.49 ± 0.45, T test p= 2.55e−8, Supplementary Fig. 2). This feature
was preserved when using a higher number of dimensions in the
embedding space (three to ten dimensions) and was not present

in the analysis of Euclidean distances in wildtype animals
(Supplementary Fig. 2). Importantly, the overall distribution of
subjects across this low-dimensional space defined a cross-
etiological continuum within which some ASD etiologies appeared
to be clustered and distinguishable (e.g., FMR1, IL-6, CDKL5, BTBR)
while others were widespread and partly overlapping (CHD8,
CNT2, 16p11). Taken together, these results suggest that (i) the
underlying etiology determines the similarity in connectopathy
between individual animals and their position in the embedded
space; (ii) the resulting distribution of connectivity profiles defines
a continuous landscape of connectivity alterations, arguing
against the idea of a common pattern of connectivity abnorm-
alities across all the probed models. Importantly, dimensionality-
reduction method such as UMAP supports an inverse transform
that can approximate how a new sample—or new animal model
—would connect to a specific position in the embedding space.
This feature is particularly interesting for future research that aims
to compare new genetic models within the two-dimensional
reference framework of this first AMC study.

ASD-specific connectivity signatures can be segregated into
cross-etiological clusters
In the previous analysis, we have shown that different autism-
associated genetic etiologies define a pseudo-continuous land-
scape of connectivity alterations. However, one outstanding
question is how well a “categorical” diagnostic approach, for
example based on quantitative and robust clustering methods,
can effectively model this complexity and define common
connectivity signatures across mutants [43]. To answer this, we
first assessed the deviations in connectivity strength for each of
the edges between the mutant mice and their control littermates
by their effect size, i.e., Cohen’s D. The Cohen’s D was then entered
into a matrix (545 edges × 16 cohorts) representing connectivity
alterations for each of the 16 models (Fig. 3A). In keeping with the
results of our low dimensional mapping, a visual inspection of the
obtained matrix revealed the presence of different connectivity
profiles, entailing spatially distributed rather than focal patterns of
abnormal connectivity. Some of the abnormal patterns exhibited
opposing features, such as over- and under-connectivity within
the same pair of nodes (see top left and bottom left section of
matrix in Fig. 3A). The resulting matrix was fed into an

Fig. 2 ASD-related etiologies define a continuous connectivity landscape. A Uniform manifold approximation and projection (UMAP)
2-dimensional embedding of the connectome data from 176 individual ASD-related model animals of the AMC dataset. Individual data are Z
scored and normalized to the average cohort’s WT control population. B UMAP embedding using data from 174 wildtype animals did not lead
to clear clusters across both groups and site/anesthesia. The color of the elements represents the model’s cohort. uMAP parameters:
n_neighbours= 10min_dist= 0.1.
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unsupervised Gaussian Mixture Model (GMM) clustering algorithm
to determine the general structure of the data and to establish
putative similarities between the different mouse cohorts. In order
to verify the reproducibility and stability of these clusters, we
measured the proportion of time that two cohorts were clustered
together using a bootstrap procedure (Fig. 3B). Therefore, we
randomly selected 80% of the data within each cohort, calculated
the Cohen’s D for all edges, and applied the clustering algorithm
(1000 times). We also determined a null distribution by repeating
this procedure on data that were randomly shuffled between
mutants and WT (also 1000 times, Fig. 3C). To determine the
optimal number of clusters, we computed the silhouette score for
a number of possible cluster solutions (ranging from 2 to 16) using
GMM. The silhouette score considers the distance between one
and all other cohorts within the same cluster (cohesion), and the
distance between one and all other cohorts in the next nearest
cluster (separation). High silhouette values reflect high cohesion
and high separation indicate that cohorts are well matched to
their own cluster and poorly matched to neighboring clusters.
Since the GMM procedure is not deterministic, we ran 1000 fits for
each number of clusters. The difference in silhouette scores
between the bootstrapped and the null model was used to
determine the best cluster solution(s). The bar plot in Fig. 3D
shows a high difference score for two, three and four-cluster
solutions. In order to preserve most of the complexity in the data,

we kept the four-cluster solution for the following analyses. Next,
we calculated the connection strength probability between each
pair of cohorts (i.e., how often they have been assigned to the
same cluster during bootstrapping; Fig. 3B, E). When grouping the
cohorts into four clusters, the cluster with the strongest within-
cohort connections is formed by TREM2 and both Fmr1 cohorts,
which were grouped together on average 74% of the time. This
was followed by a cluster that includes CNTNAP2, Shank3b, and
SGSH (on average grouped 73% of the time). The two CNTNAP2
models scanned at different institutes were clustered together
75% of the time. The other two clusters include (i) CDKL5 KO,
CDKL5 Het, Mecp2 Het and EN2 (59%, with CDKL5 KO and CDKL5
Het being clustered together 67% of the time) and (ii) BTBR, IL6,
16p11 and CHD8 (on average grouped 51% of the time). The
hierarchical representation of the clustering connections between
cohorts is shown in Fig. 3E. UMAP representation of individual
animals color-coded by their respective cluster is shown in
Supplementary Fig. 3. Taken together, these findings suggest that
ASD-specific connectivity signatures can be segregated into
distinguishable cross-etiological clusters.

Cross-etiological cluster stability
In order to evaluate the stability of the identified clusters, we
reanalyzed the data with a wide range of experimental
parameters. First, we computed the clustering probabilities across

Fig. 3 Functional connectivity signatures can be grouped into four cross-etiological clusters. A Functional connectivity aberrances in the
16 ASD mouse cohorts. The heatmap displays the effect size (Cohen’s D) differences in connectivity strength between the 16 different mouse
models and their specific WT controls for each of the 545 different edges across the connectome. Red represents over-connectivity compared
to control and blue represents under-connectivity. The dendrogram on the x axis represents the correlation between edges. B Gaussian
Mixture Model revealed similarities across mouse cohorts. Clustering probability (%) is measured based on the proportion of time that two
cohorts belong within the same cluster over the 1000 bootstrapped samples using the leave-20%-out criteria. C Clustering probability of the
null model generated by randomly assigning knockout and wildtype labels in each cohort 1000 times. D Silhouette score measured mean
intra-cluster distance and the mean nearest-cluster distance in both the real and null distributions for different cluster solutions (n= 2, 3, …
16). High silhouette score differences are found in the 2, 3 and 4 cluster solutions. E The hierarchical clustering using 4-cluster solution
segregated the models into specific groups depending on their connectivity similarity.
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the models at multiple sparsity levels (2%, 3%, 5%, 6%, 10% and
20%). For each level, we calculated the probabilities for each pair
of models to be clustered together using our GMM approach
repeated 1000 times. The clustering probabilities were compared
against an appropriate null model of data with the same sparsity
level but with randomly shuffled labels. Overall, we found strong
consistency between cluster probabilities obtained using a 4%
sparsity threshold and the other levels (Pearson’s rho ranged
between 0.962 and 0.878, Supplementary Fig. 4). These results
suggest that our clustering probabilities are reliable and robust
against this parameter.
We then verified whether different ROI sizes could have

influenced our results, as larger regions can lead to stronger
connectivity, such that connectivity between smaller regions
could be disproportionately affected. Therefore, we conducted a
new analysis using 165 ROIs with equal size (i.e., a sphere of 3
voxels in diameter) and centered on the coordinates of the center
of gravity of each region of the Allen Brain atlas. The results of this
re-analysis led to a very similar clustering probability between the
two parcellation schemes (Pearson’s r of 0.9620, p < 0000,
Supplementary Fig. 5).
Finally, we re-evaluated the presence of clusters between

models considering ROIs from both cerebral hemispheres. In
previous analyses, we focused on intrahemispheric connectivity
and averaged BOLD signals between homologous ROIs of both
hemispheres to increase the signal-to-noise ratio. Our rationale for
this choice is that there is a strong symmetry between the
connectivity profiles in the two hemispheres in wildtype mice (as
reported in a recent meta-analysis by Grandjean et al., 2020).
However, it is possible that some transgenic models suffer from
interhemispheric connectivity deficits, which could lead to an
asymmetry in connectivity abnormalities. To check if this is
relevant, we performed an additional analysis using a new
parcellation scheme of 165 ROIs taken separately in each
hemisphere (i.e., 330 ROIs in total). First, connectome analysis in
wild type mice confirmed that the similarity between the data sets
is maximal for a sparsity of 4% (Supplementary Fig. 6A). Next, we
applied our clustering approach and found a strong consistency
with the previously described clustering results, with the only
difference evident in the BTBR model. Namely, inclusion of inter-
hemispheric edges revealed that BTBR mice are less likely to be
grouped with any other mouse model, including IL6, CHD8, and
16p11 as we previously reported (Supplementary Fig. 6B–F). This is
likely due to the fact that the new parcellation scheme includes
cortico-cortical interhemispheric connections, which are known to
be severely compromised in acallosal BTBR mice.

Common connectome deviations across etiologies define
distinguishable ASD connectivity subtypes
Our results so far indicate that mutations in different ASD-related
genes are associated with distinctive connectivity aberrances.
Some of these ASD mouse models, however, exhibited similar
profiles of abnormal connectivity that can be grouped and
categorized into a small number of cross-etiological subtypes. To
further pinpoint the spatial location of these connectivity
alterations within each subtype, we used a general linear model
(GLM) with nonparametric permutation testing to evaluate for
connectivity abnormalities when all mice within one cluster were
pooled. The results are shown in their anatomic structure (node-
level comparison, Fig. 4A). The original structure (edge-edge
comparison) and their macro-area (parent-level comparison) are
shown in Supplementary Fig. 7.
As expected, the distribution of significant over- and under-

connected edges (p < 0.05) varied across the four clusters, defining
four distinct connectivity signatures (Fig. 4A). The first cluster was
characterized by under-connectivity in insula, somato-motor
cortices, anterior cingulate, caudoputamen, hippocampus, collicu-
lus and increased connectivity between areas in prefrontal,

orbitofrontal, piriform, visual cortices, amygdala, ventral poster-
olateral thalamus and pontine nuclei. The second cluster showed
under-connectivity between cortico-striatal areas and inferior
colliculus but increased connectivity between ventral orbital,
lateral septal nuclei cortex and hippocampus. The third cluster
displayed under-connectivity of anterior cingulate, insula, hippo-
campus and thalamic VPM and only a moderate over-connectivity
in the accumbens shell and hypothalamus. The fourth cluster
exhibited under-connectivity between piriform and olfactory-
related areas, striatum and thalamus (polymodal-associated areas)
and over-connectivity in hippocampus and hypothalamus.
Across all clusters, the regions showing higher vulnerability to

abnormal connectivity (independent of directionality, i.e., over- or
under-connectivity) were the somatomotor regions, olfactory and
cortical subplate. Pallidum, hypothalamus and pons were the least
affected areas (Fig. 4B). Interestingly, some of the observed
connectivity features across clusters appeared to exhibit opposing
configurations. Such effect was apparent in Clusters 1 and 4,
where diverging connectivity alterations in cortical and hippo-
campal areas were observed. This notion was quantitatively
corroborated by formal testing of the independence of the
clusters, in which we compared the connectivity profiles in all four
clusters using ranked statistics (Fig. 4C). This analysis revealed no
correlation among the cluster, with the predicted exception of a
strong negative correlation between edges in clusters 1 and 4
(Spearman’s rho=−0.48, p= 1.96e−157), i.e., edges that were
over-connected in cluster 4 were under-connected in cluster 1
(and vice versa). This data suggests that these etiologies affect the
same networks, but connectivity deviates in opposite directions
(Fig. 4D).
The previous analysis described which anatomical networks

exhibited connectivity abnormalities in either of the four clusters.
Next, we sought to identify whether we could isolate aberrant
connectivity patterns that are unique for a given cluster, hence
defining which anatomical connections are preferentially affected
in each subtype. To this end, we grouped the animals belonging
to each cluster and compared them with the animals belonging to
the other clusters using non-parametric permutation tests. In line
with the results of our regional mapping, this analysis confirmed
the presence of functional connectivity alterations that are unique
to each cluster (Supplementary Fig. 8).
Finally, we probed the presence of a connectivity signature that

could emerge at the population level, across all the etiologies
tested in our study. This was done by testing all genetic models
against all wild-type littermates. Consistent with the large
heterogeneity in the (dys)connectivity signatures mapped, this
analysis revealed only a small number of connections (n= 24,
4.4% of the selected edges) that survived correction for multiple
comparisons (Supplementary Fig. 9). Under-connectivity was
observed between somatomotor areas, anterior insula, caudoputa-
men, fundus of striatum, endopiriform nucleus and claustrum,
including a set of substrates that is not representative of the wide
area of substrates identified in our cluster analysis. These results
seem to indicate that there are only very few connectivity deficits
that are common among the models, arguing against the
presence of a common brain signature of dysfunction that is
characteristic of the autism spectrum.

DISCUSSION
The absence of reliable and specific cross-etiological molecular or
genetic biomarkers for ASD [1, 44] have prompted research into
the use of functional neuroimaging readouts as possible point of
convergence for a diagnostic or prognostic characterization of
ASD. However, until now connectivity studies in ASD patients have
revealed highly heterogeneous and inconsistent results, which has
fueled discussion regarding the clinical utility of imaging markers
in ASD [45]. Here, we capitalized on recent advances in rodent
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rsfMRI [19, 20, 28, 46–48] to measure connectivity across 16
different ASD mouse models. We aimed to coarsely approximate
the heterogeneity and etiological complexity of ASD, with the
advantage of having a tight control of environmental factors, a
priori information on the nature of these etiologies, and a well-
matched reference population for connectivity mapping (i.e., WT
littermate mice), hence controlling for major confounding factors
in clinical neuroimaging research.
Our approach resulted in three important findings that bear

high translational relevance for ASD research. First, we found that
all models are characterized by significant alterations in brain
functional connectivity entailing multiple, spatially distributed
patterns of abnormal connectivity, rather than focal atypicalities.
This finding is consistent with human literature [2], and suggests
that altered large-scale inter-areal communication is a hallmark
endophenotype in ASD across etiologies, substantiating prior
conceptualizations of ASD as a brain “connectopathy” [49, 50].
Second, our data exhibited a broad spectrum of connectivity
aberrancies even when mapped onto a low-dimensional land-
scape, indicating the absence of a prominent consensus pattern of
abnormal connectivity across etiologies. This observation is of
great importance in light of the ongoing debate as to the origin
and significance of connectivity changes described in rs-fMRI of
ASD individuals. Together with the results of analogous cross-
etiological clustering of brain structure in rodent ASD models [51],
our data argue against the existence of a reliable and specific
autism-specific brain signature, and suggest that the substantial
heterogeneity underling the neurobiology is a plausible key driver

for the multiple inconsistent connectivity findings in clinical ASD.
Finally, a third central conclusion of our analysis is that different
ASD etiologies can be grouped into a small number of “families” or
“clusters” which exhibit common atypicality in specific brain
connections, defining a putative set of network dysfunction ASD
subtypes [2]. Importantly, these patterns (Fig. 4, Supplementary
Fig. 7) are not identifiable when analyzed across all mouse models
(Supplementary Fig. 9), corroborating the notion that the ASD
connectivity landscape is composed of a set of etiology-specific
connectivity aberrances converging onto a small set of common
networks dysfunction modes. These findings strongly support
current efforts of using neuroimaging per se [2] or as part of
multidimensional decompositions [52], to deconstruct ASD
heterogeneity into homogenous subtypes, and suggests that
rsfMRI is sufficiently sensitive to ASD-related pathology to serve as
a reliable categorization axis in these efforts.
Interestingly, we found that connectivity aberrations in two of

these clusters affect similar networks, but are opposite in
direction, i.e., networks that are over-connected in one cluster
are under-connected in the other. As discussed above, this finding
may be critical for explaining inconsistencies in human studies
that consider all ASD subjects as a single group, without
considering the underlying etiological variability. It is indeed
conceivable that the combined effect of these two opposite
subtypes may reduce—if not cancel out entirely—the ability of
rsfMRI to identify significant group-level changes. The exact
clinical significance and occurrence of these subtypes remain to
be established. However, it is tempting to speculate that such a

Fig. 4 Anatomical representation of connectivity deficits in the four subtypes. A Rendering of regional connectivity deficits in the four
clusters at the node level, revealing a heterogeneous set of brain areas with prominent over- and under-connectivity. Data are visualized in
Allen Mouse reference space. B Number of connections (displayed as stacked frequencies) that exhibited abnormalities at the parent level.
C Correlation matrix between all clusters, considering all 545 edges. D A significant negative correlation was found between Cluster 1 and
Cluster 4. Spearman’s rho=−0.48, p= 1.96e−157.
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scenario may partly account for previous reports hinting at the
lack of robust connectivity alterations in ASD cohorts [12, 53].
Prior structural and functional investigations in some of the

models we imaged here suggest a non-dyadic relationship between
morphoanatomical changes and rsfMRI connectivity, preventing a
direct comparison between our findings, and those obtained using
morphoanatomical imaging by Ellegood and colleagues [51]. For
example, 16p11.2 del mice exhibit basal forebrain and hippocampal
gray matter volume reductions [54, 55], but preserved connectivity
in these areas, and altered functional coupling in fronto-cortical
regions [11]. Similarly, functional connectivity alterations in SynII
knockouts are not associated with any discernible morphoanatomi-
cal volumetric changes [56], and acallosal BTBR mice exhibit
widespread reduction in cortical thickness but largely preserved
cortico-cortical connectivity [21, 57]. These results argue against a
direct contribution of structural neuroimaging alterations to our
connectivity findings, and suggest that functional and morpho-
metric readouts represent two distinct and complementary dimen-
sions for autism sub-typing.
While the relatively low number of mutations examined here does

not permit speculation about the significance of the etiological
groups identified in terms of molecular pathways, transductional
cascade and common behavioral deficits, it is encouraging to note
that some associations may be mechanistically meaningful. These
include, for example, the observation that both homozygous and
heterozygous CDLK5 mutants were grouped together with MECP2,
consistent with the hypothesis that these models share the same
molecular dysfunction since CDKL5 is a kinase able to mediate
MeCP2 phosphorylation [58, 59]. However, for the most part, the
group of mutations clustered together are highly heterogeneous
and do not appear to represent any obvious signaling or molecular
cascade. This finding is, however, not surprising, as temporal
pleiotropy and developmental timing are essential factors which
might cause similar patterns of network dysfunction even if the
affected molecular mechanisms are seemingly distinct [5]. Notably,
our clustering approach did not distinguish between mutants with a
clear genetic association with ASD versus mutants that code for
syndromes which are only partially related to autism. This indicates
that the mapping between distinct ASD etiologies and the brain
connectivity subtype is complex and most likely driven by a
multitude of different biological, environmental and developmental
factors. Future expansions of our dataset to a sufficiently large
number of genetic etiologies which are more representative of the
complex genetic landscape of ASD [60] may be envisaged to further
explore whether alterations in known molecular pathways converge
on similar network alterations. The expansion of the AMC database
might not be limited to ASD mutants but could also include mouse
models of other neurodevelopmental disorders to identify whether
similar alterations of brain connectivity manifest across diagnostic
categories. Similarly, the addition of multidimensional phenotyping
data to include behavioral readouts may help to assess the
translational significance of the mapped brain (dys)connectivity
signatures, as it might reveal their relationship with core deficits that
characterize ASD. It should, however, be noted that the relationship
between connectivity findings and ASD-behavioral traits remains
contentious: while prior mouse work has revealed a possible link
between network-specific dysconnectivity and specific ASD-related
behavioral traits, recent clinical meta-analyses suggest that rsfMRI
connectivity is a poor predictor of ASD symptomatology [13]. Our
observation of diverging connectivity across models characterized
by partly-concordant behavioral deficits is consistent with the notion
that ASD-related behavioral dysfunction cannot be monotonically
represented in connectional terms. This aspect, however, does not
diminish the mechanistic relevance of our connectivity endophe-
notypes for functional sub-typing and cross-etiological clustering.
Further investigations are required to clarify the significance of our
connectivity fingerprints and their relationship with ASD-related
behavioral dysfunction.

In this respect, it is interesting to note that somato-motor,
insular and striatal networks appeared to be among the most
frequently affected substrates across mutations and clusters. This
finding is not surprising in light of the sensory perception and
motor-related impairments commonly described in many of the
examined models. For example, both Engrailed 2 and Fmr1
knockout mice are characterized by blunt encoding of tactile
stimulation frequency, increased sensitivity to somatosensory
stimuli and larger size of receptive fields in the somatosensory
cortex [24, 61, 62]. Similarly, hyperactivity and excessive self-
grooming have been described in many models included in this
study, most notably Shank3 [63] and CNTNAP2 [64], and
repetitive/restricted behavior has also been observed in En2,
Fmr1, BTBR and MECP2 mutants [65], recapitulating hallmark ASD
symptoms commonly related to compromised fronto-striatal-
motor signaling [66–68]. Future research employing targeted
cellular and circuit manipulations in rodents combined with
similar fMRI recordings [69, 70] may crucially uncover the bases of
these network-level alterations, their behavioral significance, and
their translational relevance with respect to analogous measure-
ment in clinical populations [11, 71].
In conclusion, our cross-etiological analyses of functional

connectivity in 16 ASD models revealed a broad spectrum of
functional connectivity aberrancies. Even though there was
convergence towards a single signature, several connectivity
subtypes were identified. Our results define four prominent
network dysfunction modes of cross-etiological relevance for
ASD, and highlight a pivotal contribution of etiological variation to
connectivity heterogeneity in autism as hinted by previous human
studies [72, 73].

MATERIALS AND METHODS
Ethical statement
All study procedures were approved by the institutional review board at
the involved medical centers and are in accordance with the ethical
standards of the Declaration of Helsinki of 1975, as revised in 2008. All
experiments performed at ETH Zürich were in accordance with the Swiss
federal guidelines for the use of animals in research, and under licensing
from the Zürich Cantonal veterinary office. All experiments performed at IIT
Rovereto were conducted in accordance with the Italian Law (DL 27/1992
and DL 26/2014, EU 63/2010, Ministero della Sanità, Roma to A.Go.) and the
recommendations in the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. Animal research protocols were also
reviewed and consented to by the respective animal care committees.

Magnetic resonance imaging
Data acquisition was performed in both sites on a Biospec 70/16 small
animal MR system (Bruker BioSpin MRI, Ettlingen, Germany). Scans from
ETH Zürich were obtained with a cryogenic quadrature surface coil (Bruker
BioSpin AG, Fällanden, Switzerland). Scans from IIT Rovereto were obtained
with a 72mm birdcage transmit coil and a custom-built saddle-shaped
four-element coil for signal reception. Common standard adjustments
included calibration of the reference frequency power and the shim
gradients using MapShim (Paravision v6.1). BOLD rsfMRI time series were
acquired using an Echo Planar Imaging (EPI) sequence, harmonized
between the two sites. Sequence details from different sites/models are
described in the appropriate references from Table 1. In all datasets, mild
anesthesia levels were maintained using either isoflurane (0.5%) +mede-
tomidine (0.05mg/kg) for data acquired at ETH or halothane (0.75%) for
data acquired at IIT and were based on published protocols optimized for
maintaining physiological stability, and include intubation and mechanical
ventilation [19, 27–29].

Data preprocessing and connectome construction
Resting-state fMRI datasets were commonly preprocessed using a standard
minimal-preprocessing pipeline [30]. Briefly, the nuisance model used for
signal regression includes six head motion parameters and ventricle
signals. No global signal regression was used, as this pre-processing step
introduces spurious anti-correlations and strongly blunts long-range
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functional connectivity in rodents [30]. Thereafter, datasets were de-spiked,
band-pass filtered, skull-stripped and normalized first to an EPI study-
specific template and then to the Allen Brain Institute reference atlas
(http://mouse.brain-map.org/static/atlas) using ANTs v2.1 (http://picsl.
upenn.edu/software/ants/). BOLD time series were extracted using the
Allen Reference Atlas ontology and their connectivity couplings were
measured using Z scored regularized Pearson’s correlation coefficient
(FSLNets). 165 ROIs in both hemispheres were included in the rsfMRI
analysis. This included regions in isocortex, olfactory areas, hippocampal
formation, cortical subplate, striatum, pallidum, thalamus, hypothalamus,
midbrain and pons (Fig. 1A).

Cluster definition and verification
All statistical analyses and clustering were performed using Matlab
(R2019a) and Python (Scikit-learn, UMAP) [74, 75]. We first sought to
reduce the complexity of the full connectome (165 × 165 ROIs resulting in
13530 edges) by considering only the strongest, positively-correlated
edges. We therefore applied a sparsity threshold to the connectivity matrix.
This strategy therefore does not take into account anticorrelated regions.
Based on an analysis in non-transgenic mice (see “Results”), we choose a
sparsity of 4% because that ensures high similarity across the different
cohorts. This level of sparsity led to the inclusion of 545 connections (i.e.,
edges). For each of these edges and in each of the 16 ASD mouse models,
we quantified deviations from the wildtype’s littermate mean connectivity
strength in form of Cohen’s d effect size estimates.
The effect size vectors were then fed into a Gaussian Mixture Model

(GMM) clustering algorithm to establish the links between mouse cohorts
based on their effect sizes. GMM treats the data as a superimposition of
multiple Gaussian distributions and it applies the Expectation-
Maximization (EM) algorithm to determine the mean and the variances
of these distributions (the latter distinguishes GMM from other clustering
algorithms, such as k-means).
To determine the consistency of the clustering, we used a bootstrapping

procedure to generate a distribution of the real data which we obtained by
applying the GMM after randomly removing 20% of the data in each
cohort. We compared this against a null model, which was obtained by
randomly shuffling the labels of mutant versus WT mice of each cohort.
This operation was repeated 1000 times to determine the consistency of
the clustering (1000 times). For each iteration, we calculated the effect-size
in every edge and applied GMM clustering as described above. The
proportion of time (using 1000 repeats) that two mouse cohorts were
grouped together was compared between the bootstrapped and null
distributions and used to determine similarity across cohorts in the
clusters.
To establish the best cluster solution, we computed the silhouette value.

The silhouette value ranges from −1 to 1. A high silhouette value indicates
that models are well matched to their own cluster, and poorly matched to
other clusters. We measured silhouette scores for different numbers of
clusters (repeated 1000 times) and compared the values between
bootstrapped and null distributions.
To assess connectivity profiles on a mid-level scale, the number of edges

that turned significant (randomized, nonparametric statistics, p < 0.05) in/
out of a given anatomic structure were summed (node-level comparison).
Finally, for the coarsest-scale analysis, anatomic regions were collapsed
(summed) into their parent structures according to the Allen Mouse Brain
Common Coordinate Framework (CCFv3) ontology (parent-level
comparison).
For statistical analysis of connectome edge-strength distributions, we

used a non-parametric permutation test using FSL randomize (n= 5000
repeats) corrected for multiple comparisons using false detection rate
(FDR).

CODE AVAILABILITY
Raw data and codes used to generate the findings of this study are available from the
first author VZ, corresponding author AG, and NW on request.
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