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Abstract

Extracting the number of objects in perceived scenes is a fundamental

cognitive ability. Number processing is proposed to rely on two consecutive

stages: an early object location map that captures individuated objects in a

location-specific way and a subsequent location-invariant representation that

captures numerosity at an abstract level. However, it is unclear whether this

framework applies to small numerosities that can be individuated at once

(“subitized”). Here, we reanalyzed data from two electroencephalography

(EEG) experiments using multivariate pattern decoding to identify location-

specific and location-invariant stages of numerosity processing in the

subitizing range. In these experiments, one to three targets were presented in

the left or right hemifield, which allowed for decoding target numerosity

within each hemifield separately (location specific) or across hemifields

(location invariant). Experiment 1 indicated the presence of a location-specific

stage (180–200 ms after stimulus), followed by a location-invariant stage

(300 ms after stimulus). A time-by-channel searchlight analysis revealed that

the early location-specific stage is most evident at occipital channels, whereas

the late location-invariant stage is most evident at parietal channels.

Experiment 2 showed that both location-specific and location-invariant com-

ponents are engaged only during tasks that explicitly require numerosity

processing, ruling out automatic, and passive recording of numerosity. These

results suggest that numerosity coding in subitizing is strongly grounded on an

attention-based, location-specific stage. This stage overlaps with the subse-

quent activation of a location-invariant stage, where a full representation of

numerosity is finalized. Taken together, our findings provide clear evidence

for a temporal and spatial segregation of location-specific and location-

invariant numerosity coding of small object numerosities.
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1 | INTRODUCTION

How the brain processes numerosity, for instance, during

object enumeration, has interested cognitive neuroscien-

tists for decades. According to traditional models

(Dehaene & Changeux, 1993; Meck & Church, 1983;

Verguts & Fias, 2004; Zorzi et al., 2005), numerosity cod-

ing is the result of a multistage process that transforms

the initial nonsymbolic sensory input into an abstract

representation of the number of an object set (but see

Dakin et al., 2011). These models rely on a core assump-

tion about a (broad) distinction between location-specific

and location-invariant stages of numerosity processing.

The location-specific stage (“object location map”)

represents the position of the relevant items in a

“normalized” fashion (i.e., irrespective of other physical

factors, such as size), so that their numerosity is reflected

in the number of spatially distinct positions occupied by

the elements. Psychophysical (Burr & Ross, 2008) and

computational (Stoianov & Zorzi, 2012) studies have

further supported the plausibility of a spatially selective

processing stage of numerosity coding. This stage is not

specifically tuned to numerosity but provides a represen-

tation that is shared by many visuospatial functions,

including numerosity coding (Dehaene et al., 2003). In

(a) subsequent location-invariant stage(s) of numerosity

processing, the numerosity of the set of objects is repre-

sented in an abstract way, independently of the location

in the visual field. The final output is a representation of

the specific numerical value of the object set (Verguts &

Fias, 2004).

Neuroimaging findings (Eger et al., 2009, 2015;

Roggeman et al., 2011) have lent initial support to this

distinction, in particular for the existence of location-

invariant numerosity representations in parietal areas

(Eger et al., 2015; Harvey & Dumoulin, 2017; Harvey

et al., 2015; Viswanathan & Nieder, 2020). However,

studies that aimed at providing evidence for a two-stage

model by isolating and segregating both location-specific

and location-invariant stages are scant. Additionally, ana-

tomical segregation alone could prove difficult to reach a

firm conclusion about the existence of two independent

stages of numerosity coding. For instance, whether the

stages operate simultaneously or sequentially cannot be

easily addressed on the basis of anatomical segregation.

Thus, to demonstrate the existence of a sequential two-

stage processing mode of numerosity, the higher time res-

olution provided by electroencephalography (EEG) may

offer more stringent evidence for a temporal dissociation

between location-specific and location-invariant stages of

numerosity processing.

Some previous EEG findings could be compatible

with the existence of either an object location map in

early stages of processing (although with disagreement

on the exact time window, i.e., from about 75 to 150 ms

after stimulus; see Hyde & Spelke, 2009; Park

et al., 2016, respectively) or a more abstract representa-

tion of numerosities (occurring at approximately

250–300 ms; see Libertus et al., 2007). However, there

has been no systematic attempt to directly test in a single

study the time course of location-specific versus location-

invariant components of numerosity coding. The only

recent exception in this direction (Fornaciai et al., 2017)

found an inversion of the early EEG responses in

posterior areas (100 ms after display onset) for the

numerosities in the approximate number system range

(i.e., 8–32) for upper versus lower stimulus presentations,

pointing towards location-specific numerosity coding.

This effect was followed by a second response occurring

at later time (200 ms after stimulus onset), which was

sensitive to the numerosities in a location-invariant fash-

ion. However, this is so far the only electrophysiological

support to the existence of a dual-mode coding of

numerosity, which may become problematic for the cred-

ibility of models of numerosity coding. Moreover, the

study focused on a specific numerosity range, the typical

one used in estimation tasks. Therefore, whether the

dual-mode coding of numerosity applies to all

numerosities, and to small object sets in particular, has

remained elusive.

Small object sets have a special status in enumeration

tasks, leading to the so-called subitizing effect (Kaufman

et al., 1949; Mandler & Shebo, 1982). Subitizing is the

effortless processing of a small set of items (up to three to

four elements), and it seems to be a universal trait of

humans (including infants) and several animal species

(for a review, see Feigenson et al., 2004). According to

some influential models (e.g., Feigenson et al., 2004;

Piazza, 2010; Trick & Pylyshyn, 1994), the effect is con-

sidered a main feature of exact enumeration (as opposed

to approximate enumeration that applies to larger

numerosities), wherein the visual system is capable of

individuating each element of the relevant set to

ensure that it is enumerated once and only once

(Pylyshyn, 2001). Moreover, previous studies (Ansari

et al., 2007; Cavanagh & Alvarez, 2005; Vetter

et al., 2011; Xu & Chun, 2009) have highlighted a strong

link between object individuation and attention, thus

characterizing subitizing as an attention-based effect. For

all these reasons, subitizing seems to rely on a different

mechanism with respect to enumeration or estimation

of larger quantities or to implicit (passive) numerosity

coding. Does subitizing still reflect the outcome of a

dual-mode coding of numerosity? In other words, is there

a two-stage process in subitizing, as predicted by models

of numerosity perception?
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Two studies provided an electrophysiological distinc-

tion between subitizing and the processing of

larger numerosities (Fornaciai & Park, 2017; Hyde &

Spelke, 2009), with small numerosities activating stages

in the mid-latency range (i.e., around 150–180 ms after

stimulus onset). The distinction was taken as further

support to the suggestion that the neural circuitry dedi-

cated to small numerosity coding is different from the

mechanism for estimating larger numerical quantities.

However, this distinction was not directly grounded on

the test for a location-specific versus location-invariant

component. Therefore, whether the activation of the

mid-latency stages (i.e., approximately 180 ms after

stimulus onset) found in these previous studies for

subitizing still rely on a location map has remained

elusive.

Overall, because no direct test for temporal segrega-

tion of a location-specific versus location-invariant

component in subitizing has been conducted so far, it

has remained unclear the extent to which the dual-

mode coding of numerosity applies to subitizing. Here,

we provide direct evidence for a temporal (and spatial)

segregation of the stages involved in subitizing. To

this aim, we exploited data from an EEG study on

individuation of small numerosities (Mazza &

Caramazza, 2011). This study focused on the N2pc

(Eimer, 1996) as an electrophysiological marker of

target individuation and their variation in numerosity.

The (traditional) approach for the event-related poten-

tial (ERP) analysis of lateralized responses used in that

study could not be applied to segregate location-specific

versus location-invariant stages. However, as we

elaborate below, the experimental design is optimally

suited for using multivariate pattern analysis (MVPA) to

test for a dissociation between location-specific and

location-invariant neural numerosity representations in

terms of time course and temporal order. Crucially, the

objects to be enumerated were presented in either the

left or right hemifield. By decoding target numerosity

within each hemifield separately (location specific) or

across hemifields (location invariant), we were able to

disentangle the time courses of location-specific versus

location-invariant stages: to isolate the location-specific

stage, we trained a classifier to discriminate targets

appearing in the left hemifield and tested the classifier

using targets appearing in the same hemifield. The

same was done for targets appearing in the right hemi-

field. Importantly, the location-specific stage is expected

to be processed mainly contralaterally to the hemifield.

We therefore tested for the lateralization of location-

specific numerosity decoding effects, which served as

the critical criterion for the location-specific stage: an

interaction of decoding of left versus right target

numerosities in the right versus left hemisphere can

only be explained by location-specific numerosity

representations. Testing for this interaction is crucial

because within-hemisphere decoding can also be driven

by location-invariant numerosity representations. This

approach thereby provides a highly selective test that

goes beyond previous attempts to isolate location-

specific numerosity representations. To isolate the

location-invariant stage, we trained a classifier to dis-

criminate targets appearing in the left hemifield and

tested the classifier using targets appearing in the right

hemifield (and vice versa). Thus, numerosity decoding

across hemifields can only be explained by location-

invariant numerosity representations. Taken together,

this decoding approach provides the critical selectivity

for segregating location-specific and location-invariant

stages. Finally, we performed a time-by-channel search-

light analysis for location-specific and location-invariant

numerosity decoding to thereby test for the spatial seg-

regation of the dual-mode coding of numerosity.

Following the literature on the subitizing effect in

human adults, where the relevant items have to be

enumerated (e.g., Mandler & Shebo, 1982; Trick &

Pylyshyn, 1993), Experiment 1 used an explicit enumera-

tion task requiring to report the number (or to detect a

specific numerosity) of targets presented among dis-

tracters. The use of distracting objects is not a specific

requirement for the occurrence of subitizing. In fact, in

the original study (Mazza & Caramazza, 2011), the pres-

ence of distractors was mainly motivated by the need to

have a context similar to most of the EEG studies on

attentive individuation. However, it is noteworthy that

the inclusion of distracting objects should not modify the

nature of the subitizing effect, as shown by previous

research (Mazza et al., 2013; Trick & Pylyshyn, 1993). In

addition, the use of distracter elements ensures that the

overall area occupied by the items remains constant

despite the variation in target numerosity. This allowed

us to (at least partially) exclude an explanation of the

effects in terms of sensory-based coding, namely, that

any distinction across numerosities could be exclusively

related to a passive encoding of the variation in continu-

ous magnitudes, such as overall area (namely, the area

occupied by all the objects), that typically covary with

variation in numerosity.

Experiment 2 was conducted to test the extent to

which the effects found in Experiment 1 were ascribed

to “explicit” enumeration (the typical task used to

study subitizing in human adults, e.g., Trick &

Pylyshyn, 1994), or to an automatic, passive encoding

of target numerosities and their variation, as typically

seen in studies with larger object sets (e.g., Piazza

et al., 2004).
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2 | METHODS

Data were taken from Mazza and Caramazza (2011) and

analyzed here with a multivariate decoding approach to

characterize the generalization profiles of numerosity

representations at different time points. Thus, the

research question and the results obtained by the ana-

lyses used in the present study are fully independent

from Mazza and Caramazza (2011). Data of Experiment

1 were originally collected in two separate experiments

(Experiments 1 and 3, see Mazza & Caramazza, 2011,

hereafter Experiments 1a and 1b). Because both experi-

ments rely on similar enumeration processes, as also

indicated by both behavioral and EEG results (Mazza &

Caramazza, 2011), they were collapsed to increase power

for the EEG decoding procedure. In addition, it was veri-

fied that there were no significant differences in decoding

accuracies between the two experiments (see Section 2.4

for details).

2.1 | Participants

Twenty-four right-handed volunteers, with normal or

corrected-to-normal vision and no color blindness,

recruited among students of the University of Trento,

participated in Experiment 1 (collapsed Experiments 1a

and 1b: 20 females; mean age 20.8 years) and 12 in

Experiment 2 (all right-handed, eight females; mean age

22 years). They all provided their written informed

consent. The experimental procedures were conducted in

accordance with the declaration of Helsinki guidelines

and approved by the Ethics Committee for research

involving human participants at the University of

Trento, Italy.

2.2 | Stimuli and procedure

In both Experiments 1 (Experiments 1a and 1b) and 2, on

each trial, red and green diamond shapes were presented.

The display contained 16 diamonds, eight in each hemi-

field, and appeared for 150 ms. Participants had up to

1500 ms to respond, and the intertrial interval lasted

1500 ms (Figure 1a). In each trial, in one hemifield, one,

two, or three diamonds had a unique color (either red or

green), serving as targets. Experiments 1a and 2 included

also zero-target trials, which were removed for all ana-

lyses, except for a control analysis for Experiment 2. In

Experiments 1a and 2, there were 300 and 200 trials for

each numerosity from 1 to 3 and 300 and 600 trials for

zero-target condition, respectively. In Experiment 1b,

there were 416 trials per numerosity (from 1 to 3). In

Experiment 1a, participants had to report the exact num-

ber (0/1/2/3) of targets presented. In Experiment 1b, in

each block, participants decided (Yes/No) whether a spe-

cific target numerosity (designated at the beginning of

each block) was presented. In Experiment 2, the task was

to decide (Yes/No) whether at least one target was shown

on display. For further specific details, see Mazza and

Caramazza (2011).

2.3 | EEG recording and data
preprocessing

The EEG signal was recorded with BrainAmp

system (Brain Products GmbH, Munich, Germany—

BrainVision Recorder) from 25 electrodes (including

PO7 and PO8) with a 1000-Hz sampling rate (bandpass

filter: 0.01–200 Hz). A right earlobe channel was used

as online reference, and horizontal eye movements were

recorded through two channels positioned on the outer

canthi of both eyes. The continuous EEG signal

was off-line processed using EEGLAB (Delorme &

Makeig, 2004) and ERPLab (Lopez-Calderon &

Luck, 2014). The signal was down-sampled to 250 Hz,

low-pass filtered (40 Hz), and then re-referenced to the

average of both earlobe channels. Trials yielding correct

responses were segmented from �100 to 600 ms with

respect to stimulus onset and baseline corrected over

the 100 ms preceding the stimulus. Finally, those trials

containing artifacts were removed (when HEOG

exceeded �30 μV and/or any other channel exceeded

�80 μV; on average, 8.8% of trials were excluded). After

preprocessing, in Experiment 1a, for each numerosity,

the following average number of trials was used for the

analysis: 278.75 (one target), 269.25 (two targets),

and 288.25 (three targets); in Experiment 1b: 400

(one target), 392.44 (two targets), and 405.81

(three targets); and finally, in Experiment 2: 191.83

(one target), 193.67 (two targets), 190.17 (three targets),

and 578.5 (zero target).

2.4 | Multivariate pattern classification

To decode numerosity from EEG signals, the

CoSMoMVPA Toolbox (Oosterhof et al., 2016) was used.

The procedure for Experiments 1 and 2 was identical: for

each participant, channel, and condition, we generated

pseudotrials that were used for training and testing

a linear discriminant analysis (LDA) classifier: first,

we randomly divided the data into eight chunks.

For each chunk, we then generated an equal number of

pseudotrials consisting of the average of two trials each.
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We resampled each trial with a maximum number of

three times, that is, each trial was averaged with another,

randomly selected trial maximally three times. Moreover,

the partitions for classification training and testing were

balanced in terms of trial number within each participant

(using the Matlab function cosmo_balance_partitions of

the CoSMoMVPA Toolbox) to ensure that for each condi-

tion, the same number of pseudotrials was entered into

classification. As a result, the number of trials for each

chunk and numerosity was identical. Each chunk con-

tained on average 674 pseudotrials (225 per condition;

range 184–248) for Experiment 1 and 712 pseudotrials

(237 per condition; range 112–288; ranges reflect the vari-

ance between participants) for Experiment 2. Because

resampling was done for each chunk separately, data for

training and testing classification were guaranteed to be

independent.

A temporal searchlight MVPA was performed using a

temporal radius of two time bins (one bin = 4 ms), that

is, for each time point, EEG data from 2 preceding to

2 following time points was used for classification

(covering a range of 20 ms).

Location-specific numerosity representations should

be lateralized to the contralateral hemisphere, that is,

numerosity of left targets should be represented in the

right hemisphere (and thus be decoded better from right

electrodes) and vice versa for right targets. Because

within-hemifield decoding could in principle be

driven by both location-specific and location-invariant

numerosity representations, the interaction of hemifield-

and hemisphere-specific decoding thus provides a com-

pelling proxy for location-specific coding of numerosity.

Numerosity decoding was performed using either all

EEG channels or for left and right EEG channels sepa-

rately (excluding channels along the midline), using the

following multiclass decoding schemes: (1) for the

location-specific decoding, we used all channels to decode

targets for each hemifield separately, that is, we trained

and tested the classifier on targets appearing on the

left side only, and in a separate classification, we did

the same for targets appearing on the right side.

Classification performance was assessed using leave-

one-chunk-out cross validation: the classifier was trained

to decode numerosity using data of seven out of the eight

F I GURE 1 Stimuli and behavioral results. (a) Temporal sequence of a trial. (b) Mean response times of Experiments 1 and 2. Vertical

bars represent standard error of the mean

WURM ET AL. 4975



chunks and tested on its ability to decode numerosity

using data of the held-out chunk. This was iterated eight

times, leaving out each chunk once. Resulting decoding

accuracies were then averaged across the iterations and

across hemifield. (2) For the location-invariant decoding,

we trained the classifier, using all channels, to discrimi-

nate the numerosity of left targets and tested the classifier

on its ability to decode numerosity of right targets. The

same was done vice versa, and resulting decoding accura-

cies were averaged. (3) For the location-specific/

hemisphere-specific decoding, we repeated the location-

specific decoding for left and right channels separately,

that is, for targets appearing on the left side, we used

either right (contralateral) or left (ipsilateral) channels

and vice versa for targets appearing on the right side.

Resulting decoding accuracies were averaged only across

the iterations but not across hemifield or hemisphere.

For each decoding scheme, resulting accuracy time

courses were entered into one-tailed one-sample t tests

across participants against chance (=33.3%). For the loca-

tion-specific/hemisphere-specific decoding, we also per-

formed repeated-measures ANOVA with the factors

HEMIFIELD and HEMISPHERE. To correct for multiple

comparisons, we used a cluster-based Monte Carlo simu-

lation algorithm as implemented in the CoSMoMVPA

Toolbox (Oosterhof et al., 2016). We used a threshold of

p = 0.05 (one-tailed) at the cluster level, an initial

threshold of p = 0.001 per time bin, and 10,000 iterations

of Monte Carlo simulations. Based on the initial

p threshold, it is estimated how many time bins would be

expected to pass this threshold by chance (i.e., are false

positives). Monte Carlo simulations are used to estimate

cluster sizes of temporally adjacent false positives. This is

done by randomly flipping the sign of decoding accura-

cies (over all time points, which preserves the temporal

smoothness in individual subjects) after subtracting

decoding at chance (i.e., 1/3 for numerosity decoding).

The resulting null distribution of cluster sizes is then

compared with the actually observed cluster size (at the

initial p threshold) to compute the likelihood that an

observed cluster occurs by chance (i.e., the cluster

threshold).

To test whether there were any significant differences

between Experiments 1a and 1b, we performed

independent t tests between decoding accuracy time

courses from Experiments 1a and 1b for each decoding

scheme (location-specific decoding and location-specific/

hemisphere-specific decoding). Resulting t time courses

were corrected for multiple comparisons as described

above. For all of the decoding schemes, there were no

significant differences between Experiments 1a and 1b.

Finally, we computed Bayes factors (BFs) for Experi-

ment 2 to estimate the likelihood for the presence versus

absence of decoding accuracies different from chance.

Bayesian statistical analyses were computed using the

bayesFactor toolbox for Matlab (https://github.com/

klabhub/bayesFactor), with a default Cauchy prior width

of r = 0.707 for effect size.

2.5 | Time-by-channel searchlight MVPA

To provide further evidence for a segregation between

the location-specific and location-invariant stages and to

investigate the topographical distribution of these stages

on the scalp, we performed a searchlight analysis across

time and EEG channels. This was realized by crossing

the feature neighborhoods of the temporal dimension

(radius = two time bins around each center time bin)

and the spatial dimension (radius = two EEG

channels around each center channel), resulting in

time-by-channel neighborhoods (Oosterhof et al., 2016).

For each time-by-channel neighborhood, we performed

the location-specific and location-invariant numerosity

decoding using the same parameters and procedures as

described above, except that for the location-specific

decoding, resulting accuracy maps were not averaged

across hemifields. Resulting time-by-channel maps were

corrected for multiple comparisons using cluster-based

Monte Carlo simulations as described above, with the

specification that clusters do not have to be connected

by neighboring time points, which increases the

threshold to reach significance but allows more accurate

inferences about time points of significant effects

(Oosterhof et al., 2016). The time-by-channel accuracy

maps were converted into FieldTrip structures to

generate topographical plots (Oostenveld et al., 2011) for

visualization.

3 | RESULTS

3.1 | Behavioral results

The main findings from the behavioral analyses are sum-

marized below and shown in Figure 1b. For detailed

descriptions, see Mazza and Caramazza (2011). For

Experiments 1 (a and b) and 2, proportion of correct

responses and reaction times (RTs, calculated for

correct responses between 200 and 1500 ms) were mea-

sured. As Experiments 1a and 1b yielded comparable

results, the data were collapsed. All values were submit-

ted to repeated-measures ANOVAs with numerosity

(three levels) as within-subjects factor.

In Experiment 1, the ANOVA on RTs revealed a sig-

nificant effect of Target numerosity (F(2, 46) = 40.002,
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p < 0.001, η2p ¼ 0:635). RTs were slower for two than one

and three targets (ps < 0.001). Also for accuracy, target

numerosity was significant (F(2, 46)= 21.020, p<0.001,

η
2
p ¼ 0:478 ). In line with RTs, the proportion of correct

responses was lower for two than one and three targets

(ps < 0.001). In Experiment 2, the ANOVA on RTs only

showed a trend towards significance for target

numerosity (F(3, 33)= 3.259, p= 0.053, η2p ¼ 0:229 ). RTs

were faster when two and three targets were presented

compared with one-target condition (ps < 0.039). No

effect was significant with accuracy data (p= 0.095).

3.2 | EEG results

3.2.1 | Experiment 1

To investigate the time course of location-specific and

location-invariant numerosity representations, we first

performed multivariate pattern decoding on target

numerosity (1, 2, and 3) for each hemifield separately

(within-hemifield decoding) and across hemifields,

respectively. For the location-specific decoding, we

trained and tested the classifier on targets from the same

hemifield. For the location-invariant decoding, we

trained the classifier on left targets and tested it on right

targets and vice versa. All channels were used in this

analysis. For each time point and decoding test, one-

tailed one-sample t tests were performed. Location-

specific and location-invariant decoding accuracies were

compared using paired samples t tests. We found that

location-specific numerosity representations were reliably

present from 180 ms after stimulus (peaking around

270–320 ms after stimulus onset). Location-invariant

representations started at approximately 300 ms, peaking

much later (around 550 ms after stimulus onset). Signifi-

cant differences between location-specific and location-

invariant decoding started at 184 ms after stimulus onset

(Figure 2a and Table 1).

Whereas the location-invariant decoding provides

unambiguous evidence about location-invariant numerosity

representations, the location-specific decoding could

theoretically also be driven by ipsilateral (and thus loca-

tion invariant) numerosity representations. To provide

additional, compelling evidence for the location-specific

decoding, we tested whether the location-specific

decoding is stronger for contralateral as compared with

ipsilateral channels with regard to the hemifield in

which the targets appeared. We therefore repeated the

location-specific numerosity decoding for left and

right channels separately. As predicted, we found

stronger decoding in contralateral versus ipsilateral

channels (Figure 2b and Table 1). A repeated-measures

ANOVA with the factors HEMIFIELD (left and right

targets) and HEMISPHERE (left and right channels)

revealed a significant interaction between HEMIFIELD

and HEMISPHERE after 224 ms, with a second

peak at 508 ms after stimulus onset (significant

interaction effect ranges [min–max]: F(1, 23)

= 7.9–44.4, p = 9.7e-03–8.4e-07, η2p ¼ 0:26 – 0:66).

F I GURE 2 Numerosity decoding in Experiment 1. (a) Location-specific and location-invariant decoding using all channels. The black

horizontal line indicates significant differences between location-specific and location-invariant decoding. (b) Location-specific decoding for

left and right channels separately. Black horizontal lines indicate a significant interaction between HEMIFIELD and HEMISPHERE. In both

(a) and (b), colored horizontal lines indicate significant decoding accuracies above chance. All significance tests are corrected for multiple

comparisons
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3.2.2 | Experiment 2

Experiment 2 was identical to Experiment 1 except that

participants just had to indicate the presence or absence

of targets irrespective of their numerosity. For all

numerosity decoding tests, no significant effects were

observed, and apart from trends for location-specific and

location-invariant decoding around 300 ms, decoding

accuracies fluctuated around chance (Figure 3a,b).

3.2.3 | Control analyses

Because the sample size was lower in Experiment

2 (N = 12) than in Experiment 1 (N = 24), we also tested

for the possibility that Experiment 2 did not have enough

power to detect location-specific and location-invariant

numerosity representations. We used three control ana-

lyses: first, we computed Bayesian comparisons to test

the strength of evidence for H1 and H0. This revealed

trends for location-specific and location-invariant

numerosity decoding around 300 ms and for location-

specific/hemisphere-specific decoding (right targets)

around 280–300 ms after stimulus onset (BFs > 10).

Importantly, the decoding profiles did not correspond

with the decoding profiles of Experiment 1. Moreover,

several time windows that overlapped with the location-

specific and location-invariant stages found in

Experiment 1 showed stronger evidence for H0

(BFs < 0.3), which argues against the possibility that

TAB L E 1 Statistical information about decoding onsets, peaks, and significant time windows for the different numerosity decoding

analyses in Experiment 1

Location

specific

Location

invariant

Location specific/hemisphere specific

Left

hemisphere/

left hemifield

Left

hemisphere/

right hemifield

Right

hemisphere/

left hemifield

Right

hemisphere/

right hemifield

Decoding onset (s) 0.116 0.316 0.248 0.224 0.192 0.172

Onset accuracy � SEM 0.35 � 0.0045 0.35 � 0.0056 0.35 � 0.0052 0.35 � 0.0078 0.35 � 0.0073 0.35 � 0.0057

Peak decoding (s) 0.276 0.552 0.588 0.496 0.28 0.452

Peak accuracy � SEM 0.42 � 0.0071 0.39 � 0.0081 0.39 � 0.0086 0.40 � 0.0085 0.43 � 0.0116 0.39 � 0.0086

Max–min t(23) 2.8–14.1 3.4–8.2 3.1–7.2 4.5–8.7 1.4–9.6 2.9–9.1

Min–max p 4.9e-03–3.9e-13 1.1e-03–1.3e-08 2.3e-03–1.2e-07 8.8e-05–4.6e-09 9.1e-02–8.9e-10 4.5e-03–2.1e-09

Abbreviation: SEM = standard error of mean.

F I GURE 3 Numerosity decoding in Experiment 2 (control experiment). (a) Location-specific and location-invariant decoding using all

channels. (b) Location-specific decoding for left and right channels separately. In both (a) and (b), no significant decoding accuracies above

chance or interactions were observed. To highlight trends for the presence or absence of numerosity decoding, Bayes factors (BFs) are

plotted as red/blue/gray lines (evidence for H1, BFs > 3; thick lines BFs > 10; gray lines indicate differences between location-specific and

location-invariant decoding) or black lines (evidence for H0; BFs < 0.3). (c) Decoding of each target numerosity versus zero-target trials

(task-relevant dimension). Colored horizontal lines indicate significant decoding accuracies above chance. All significance tests are corrected

for multiple comparisons
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Experiment 2 targeted similar location-specific and

location-invariant stages, and that they were not detected

because of weaker effects due to lower power. Second, to

test whether the EEG data in Experiment 2 is generally

sufficiently powerful for successful decoding, we tested

whether targets (1, 2, and 3) could be discriminated from

zero-target trials. Because this comparison targeted task-

relevant information, we would expect that each of the

numerosities can be successfully discriminated from

zero-target trials. This was the case for each numerosity.

Notably, each numerosity could be decoded equally well

from zero-target trials, further indicating that the three

numerosities were not processed differently (Figure 3c).

Third, to test whether 12 participants are generally suffi-

cient to demonstrate significant effects for location-

specific and location-invariant numerosity decoding, we

used a bootstrapping approach, in which we randomly

selected 12 participants of Experiment 1 and repeated the

statistical analysis. In each of 1000 iterations, we

replicated the significant decoding of location-specific and

location-invariant numerosity representations (for further

information on this analysis, see supporting information

and https://osf.io/kb23q/). Taken together, these results

suggest that the numerosity representations decoded in

Experiment 1 were not due to a passive processing of

object numerosity but depended on the explicit require-

ment to enumerate the relevant objects.

3.2.4 | Time-by-channel searchlight MVPA

To corroborate the identified segregation between the

location-specific and location-invariant stages and to

provide a coarse idea about the location of these stages in

channel space, we performed a time-by-channel search-

light analysis. The resulting topographical maps for the

location-specific numerosity decoding in Experiment

1 revealed classification accuracies above chance that

peaked around posterior channels of the contralateral

hemisphere from around 200 to 300 ms (Figure 4, top

and middle rows). Later decoding was more widespread

and less lateralized, peaking around central channels.

The location-invariant decoding started later (250 ms),

with bilateral peaks around more anterior parietal chan-

nels (sparing the most posterior channels that revealed

the strongest effects in the location-specific decoding;

Figure 4, bottom row), suggesting not only a temporal

but also a spatial segregation of the two stages. Experi-

ment 2 revealed no significant effects of location-specific

and location-invariant decoding.

4 | DISCUSSION

The human brain is endowed with the ability to effi-

ciently enumerate up to three to four objects, a phenome-

non known as subitizing effect (Kaufman et al., 1949).

Despite being a pervasive phenomenon, some aspects of

subitizing have remained unclear. By means of EEG

decoding, the present study addressed whether a crucial

aspect of the neural architecture of numerosity represen-

tation, namely, the presence of a dual-stage numerosity

mode, also applies to the special case of subitizing.

Specifically, decoding numerosity within each hemifield

separately and testing for significantly stronger contralat-

eral versus ipsilateral numerosity discrimination allowed

F I GURE 4 Searchlight multivariate pattern analysis (MVPA) for location-specific and location-invariant numerosity representations

in Experiment 1. For visualization purposes, time-by-channel searchlight maps were averaged across time every 50 ms. Black dots indicate

center electroencephalography (EEG) channels that revealed significant numerosity decoding accuracies above chance (corrected for

multiple comparisons) in at least one time point (i.e., 4 ms) within each 50-ms step
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us to isolate a location-specific stage of numerosity

processing. By contrast, decoding numerosity across

hemifields allowed us to isolate a location-invariant stage

of numerosity processing. In other words, by characteriz-

ing the generalization profiles and lateralization of

numerosity representations at different time points, we

provided direct evidence for a dual-stage mode of

numerosity processing in the subitizing effect.

In line with some previous neuroimaging findings

(Bankson et al., 2019; Eger et al., 2009; Eger et al., 2015;

Fornaciai & Park, 2017; Hyde & Spelke, 2009; Libertus

et al., 2007; Luyckx et al., 2019; Park et al., 2016;

Roggeman et al., 2010; Roggeman et al., 2011; Spitzer

et al., 2017; Teichmann et al., 2018), the present EEG

results lent direct support to the existence of a distinction

between location-specific and location-invariant

numerosity coding of small object numerosities. Experi-

ment 1 indicated that there are two subsequent stages of

representation: a location-specific stage that starts at

approximately 180–200 ms after stimulus and a location-

invariant stage with an onset latency of 300 ms after

stimulus. Crucially, the results of the additional analysis

on the interaction between hemisphere and hemifield

further disclosed the spatially selective organization of

the first stage of numerosity coding by pointing to

a predominant contralateral processing of the target

numerosities in this stage. This interaction provides more

selective evidence than the location-specific decoding

using all channels, which might also be driven by

location-invariant numerosity representations. We also

observed significant decoding effects in ipsilateral hemi-

spheres, starting around 250 ms. While decoding at later

time points could also be driven by location-invariant

numerosity representations, this seems unlikely for time

points earlier than 300 ms, that is, before significant

location-invariant decoding is observed. However,

ipsilateral channels might have picked up information

from the contralateral hemisphere, which could explain

the decoding around 250 ms. Importantly, potential

spread of information across hemispheres would increase

the strength of decoding in the ipsilateral hemispheres.

As a result, decoding strengths in ipsilateral and contra-

lateral hemispheres would become more similar, which

would reduce the interaction between hemisphere- and

hemifield-specific decoding and thereby bias the null

hypothesis. Potential spread is therefore not problematic

for interpreting the significance of the interaction, which

is the critical test for isolating the location-specific stage.

The nature and time course of the location-specific

stage of numerosity coding resonate with previous ERP

work on attention individuation of multiple targets in

various contexts (e.g., enumeration, multiple object track-

ing, delayed match to sample tasks; Drew & Vogel, 2008;

Ester et al., 2012; Foster et al., 2020; Mazza &

Caramazza, 2011, 2015; Pagano et al., 2014; Vogel &

Machizawa, 2004). In all these studies, a numerosity-

related contralateral ERP response with a latency of

approximately 200 ms (N2pc, Eimer, 2014; Luck, 2012)

was found, suggesting that an attention-based mecha-

nism of object individuation is a core component of the

visual system involved in processing multiple targets

(up to the three to four objects) in a variety of tasks,

including enumeration. Given the presence of distracting

elements in the present study, it may be that the

location-specific effect measured here reflects selective

tracking of relevant numerosities rather than a mecha-

nism of numerosity perception of the total set of elements

(which was kept fixed throughout the experiment).

Rather than relying on a location map of the overall

elements, the representation produced at this stage of

analysis would reflect only the location of the crucial

elements in the visual map—a representation that is

crucial for subitizing in explicit enumeration tasks.

In general, the current results are in accordance with

the idea that a spatially selective, attention-based mecha-

nism may have a first important role for numerosity cod-

ing (Dehaene et al., 2003; Stoianov & Zorzi, 2012;

Verguts & Fias, 2004, 2008). For instance, according to

some influential proposals (e.g., Dehaene et al., 2003),

the attention system could operate on numerosities as it

does for other physical dimensions, such as space or time.

There is evidence that numerosity can be encoded

independently of and in the same fashion as other

primary attributes (e.g., shape and color) (for a review,

see Anobile et al., 2016; but see Dakin et al., 2011).

Despite there has not been any previous EEG attempt

to directly test for the dissociation between location-

specific versus location-invariant stages of small

numerosity representation, the present results are in line

with some previous ERP studies that separately disclosed

stages with similar latencies (approximately 200 and

250 ms, respectively) as the ones seen here. The first stage

has been associated with the existence of an object file

system that spatially tags multiple locations at once

(Hyde & Spelke, 2009), whereas the latter has been

interpreted as evidence of abstract coding for number

(Libertus et al., 2007). However, none of these studies

have tried to investigate whether these stages were

location specific. Interestingly, recent investigations

(Fornaciai & Park, 2017; Park et al., 2016) have also

shown an early effect (approximately 75 ms) related to

the specific activation of occipital areas and interpreted

this as evidence of the location-map stage where object

locations are represented regardless of other physical

dimensions (e.g., size). This early stage would only be

activated by large numerosities (Fornaciai & Park, 2017),
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whereas a later stage (approximately 180–200 ms) would

instead be associated with a summation layer where the

results of the location-map stage are added and an

abstract representation of quantity is formed, irrespective

of the numerical range used. By identifying distinct time

ranges in which EEG patterns are sensitive to discrimi-

nate small numerosities in either a hemifield-specific and

lateralized way or across hemifields, we could here pro-

vide direct support, in a single study, to the existence of

location-sensitive versus location-invariant stages in the

subitizing range.

It is unclear why the present study (as well as previ-

ous ones, e.g., Hyde & Spelke, 2009) did not reliably find

a location-specific effect already in the early time win-

dows (<80 ms, as in Fornaciai & Park, 2017; Park

et al., 2016; although we observed significant location-

specific decoding shortly after 100 ms and a trend for a

significant interaction around the same time). Although

future research will address this aspect in more detail, we

suggest that the early effect reflects the operation of a

stage that relies on a location map of the entire set of

objects presented and of their variation in numerosity

(as in the Fornaciai & Park, 2017; Park et al., 2016),

which was not the case for the present study where the

overall number of elements did not vary across trials.

This would further reinforce the idea that the location-

specific effect measured found here reflects attention

selection of relevant numerosities rather than an early

mechanism of numerosity perception of the total set of

elements.

Finally, we found that the early location-specific and

later location-invariant stage were associated with differ-

ent topographical distributions, peaking around posterior

occipital channels and more anterior parietal channels,

respectively. This might suggest that the two stages are

processed by different neural substrates. Although the

EEG topography of the numerosity decoding effects does

not allow for a precise anatomical localization, it appears

plausible (based on related fMRI findings) that location-

specific effects originate from occipitotemporal or

occipitoparietal areas and location-invariant effects origi-

nate from more anterior, parietal areas (Eger et al., 2009;

Roggeman et al., 2011; Wurm et al., 2019).

Overall, Experiment 1 provided compelling evidence

that small numerosities are processed via an attention-

based stage that initially takes into account the location

of the to-be-enumerated elements, followed by a stage

that is invariant to the elements’ location and (likely)

represents numerosities in a more abstract way. The

location-specific stage (as identified by the more

conservative interaction, 224–380) remains activated

overlapping with the location-invariant stage (starting

around 300 ms) for at least 60 ms.

Experiment 2 further specified the nature of the

numerosity coding stages involved in the task used in

the present study. The results showed that there was no

numerosity-related modulation when numerosity was

irrelevant for the task. Importantly, we can rule out that

this null effect could be due to a lack of power: Bayesian

comparisons revealed that many points during the

location-specific and location-invariant stages identified

in Experiment 1 do not show evidence for trends or even

stronger evidence for the null hypothesis that effects are

not different than chance. Moreover, location-specific

and location-invariant stages in Experiment 1 could still

be identified after reducing the sample size to N = 12

(as in Experiment 2) using a bootstrapping approach.

Most importantly, we observed highly significant

decoding in Experiment 2 when target numerosities (one,

two, or three targets) were discriminated from zero-target

trials, that is, when the classifier could rely on the task-

relevant dimension. This finding perfectly matches the

typical context in which subitizing emerges, namely, enu-

meration tasks where the observers have to explicitly

report the numerosity of the relevant elements

(e.g., Trick & Pylyshyn, 1993). Therefore, the findings

suggest that the location-specific and location-invariant

components seen in Experiment 1 were not merely trig-

gered by an automatic, passive recording of numerosities

and their variation (as well as other, continuous magni-

tudes related to this variation). Likewise, these results

further rule out alternative explanations for the

numerosity effect observed in Experiment 1, such as

those related to passive recording of changes in continu-

ous dimensions (e.g., density and local area) that typically

correlate with variations in numerosity. The existence of

a mechanism for coding numerosity independently

of other continuous magnitudes (e.g., size and area) is

still debated (for a recent review, see Leibovich

et al., 2017). However, the results of Experiment 2

indicated that (passive) recording of continuous

magnitudes is insufficient to explain the effects found in

Experiment 1. Altogether, the results of Experiments

1 and 2 point out that the decoding of numerosity

addressed in the present study only pertains to contexts

where numerosity is task relevant, rather than to passive

viewing of numerosities.

5 | CONCLUSION

Using EEG-based MVPA, we disentangled location-

specific and location-invariant stages of small numerosity

representation in (explicit) enumeration. The results sug-

gest that numerosity coding in subitizing is strongly

grounded on an attention-based stage that operates
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according to coordinates of a location map. This stage

remains active overlapping with the subsequent

activation of a location-invariant stage, where a complete

abstract representation of numerosity is finalized by the

brain. The approach taken in the present study could

successfully be extended to larger numerosities and for

different task requirements in order to fully disclose the

neural architecture of number coding.
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