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Introduction

Nucleic acids, lipids, proteins and sugars. These are the major biological
macromolecules that interact together to form and sustain living organisms.
Among all these players, proteins deserve a particular prominence because
they are heavily involved in almost all biological processes, such as reaction
catalysis, signalling and cell structure formation. Proteins are unbranched
chains of amino acids, whose length ranges from few to tens of thousands
of elementary units. They originate in the ribosome, where a sequence of
messenger RNA is translated into a chain of amino acids that reaches its
preferred three-dimensional conformation, or native state, through the pro-
cess of protein folding. The folded protein should not be viewed as a static
structure, but rather as a dynamical entity, as it continues to change shape
in the cell.

Given their centrality in biological processes, protein structures and dy-
namics are extensively studied from both experimental and computational
perspectives. Experimental techniques are capable of determining high-
resolution native structures of proteins with a series of diverse methods, such
as solution Nuclear Magnetic Resonance (NMR) [1], X-ray crystallography
[2] and cryo-electron microscopy [3]. Since dynamical properties are more
difficult and time-consuming to infer from wet-lab experiments, computa-
tional tools have been more and more successfully employed to reconstruct
the behaviour of proteins in solution.

The most popular instrument to investigate the dynamical properties
of biomolecules at the atomic scale is all-atom molecular dynamics (MD)
[4, 5], a set of algorithms that treat the time evolution of a system with
classical mechanics and numerically solve Newton’s equations of motions of
atomic nuclei. Data from MD experiments have proved to be of invaluable
importance in a huge variety of scientific problems, such as protein folding,
protein conformational changes, protein-ligand binding, protein-membrane
interaction and many others [6, 7]. However, a major limitation of MD
resides in the multiple time scales involved in the behaviour of a protein; for
instance, the motion of hydrogen atoms is extremely fast, thus requiring a
very small integration time step (1 or 2 femtoseconds) to avoid numerical
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instabilities leading to unphysical sampling, whereas the characteristic time
scales proper of slow biological processes can exceed the millisecond. As an
example, a medium-size protein typically requires seconds or even minutes
to fold properly [8, 9]. In order to sample interesting events one has to
concatenate a huge number of short time steps. It is therefore evident how
the full potential of MD is often hampered by the sampling problem: the
biologically relevant events usually take place on a time scale that is hard to
reach with the available computational tools.

The performances of MD engines improve on a yearly basis thanks to the
tremendous technological advancements on software implementations and
hardware, allowing one to sensibly reduce the physical time required to per-
form a single integration step, thus extending the time scales reachable by
all-atom MD. Nevertheless, many interesting biological processes remain ex-
tremely challenging to tackle with unbiased MD simulations.

In this context, an approach to overcome the sampling challenge in biomolec-
ular simulations relies on a set of methods aiming at accelerating the explo-
ration of the conformational space by applying tailored modifications to the
original, reference all-atom, unbiased MD protocol. In a first class of strate-
gies, called enhanced sampling techniques, the resolution of the system is
kept fixed at the atomistic (AT) level and the Hamiltonian of the system
is modified so as to visit more frequently particularly interesting regions of
the conformational space of a molecule. Examples include the observation
of barrier crossing events (or transitions) between two metastable basins,
whose probability is exponentially vanishing in the height of the free energy
barrier. Among these methods let me cite metadynamics [10], umbrella sam-
pling [11], temperature accelerated MD [12], replica exchange MD [13] and
thermodynamic integration [14].

A second class of methods exist, which convert the highly detailed, atom-
istic description of the system into a simplified representation, or mapping, in
terms of a lower number of degrees of freedom, called sites. Once accurate ef-
fective interactions among sites are introduced, the resulting reduced system
aims at reproducing the properties of its high resolution counterpart. These
coarse-grained (CG) models have proved to be an invaluable instrument to
tackle a huge variety of biological problems ranging from protein folding
[15, 16, 17] to the dynamics of large macromolecular complexes [18, 19, 20],
which are extremely difficult to be simulated at the all-atom level.

The construction of a CG model consists of two intertwined but dis-
tinct steps, which are the definition of the CG mapping and the accurate
parametrisation of the interactions among CG sites (CG force field). While
the latter challenge has received much attention in the past, the former prob-
lem has been object of a limited number of works, and a unique strategy to
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construct the CG mapping does not exist yet. Indeed, the mapping scheme
has almost always been an ingredient, rather than an outcome of CG models
of biomolecules, imposed a priori using chemical intuition.

This thesis proposes a series of approaches to investigate and characterise
the representation problem in coarse-grained modelling of proteins. This is
achieved by employing a collection of diverse methods, including statistical
mechanics, machine learning algorithms and information-theoretical tools.

The manuscript begins with an introduction to the world of computa-
tional biophysics, highlighting the fundamental concepts of protein science
as well as the impressive advancements in the application of fully atomistic
simulations to the study of biological systems. The main families of coarse-
grained models [21] are then introduced, focusing on the fully bottom-up
approaches, that is, those strategies that exploit information retrieved from
high-resolution, atomistic simulations to construct accurate low-resolution
models. The four major algorithmic procedures that have been proposed in
the literature to determine accurate coarse-grained effective potentials are
discussed. Among these, the relative entropy protocol [22] is described with
a high level of detail.

The second chapter of the thesis is devoted to a comprehensive review
of the coarse-grained representations that have been employed in the low-
resolution modelling of proteins. In the first part of the the chapter the
several levels of resolution that can be used to describe a biomolecule are
discussed; then, the focus is shifted to the enumeration and discussion of
models that treat a biomolecular system with a non-uniform level of detail.
I conclude with a comprehensive analysis of the methods that have been
proposed to optimize the choice of the coarse-grained mapping of a protein
in an automated manner. The chapter should be considered as a personal
summary of Ref. [23].

The reader that is not interested in this quite broad and comprehensive
introduction to the mapping problem in coarse-graining can immediately
jump from this introduction to Chapter 3, which is entirely devoted to a
mathematical object called mapping entropy, that can be used to measure
the quality of a reduced representation of a biomolecule. More specifically,
the mapping entropy quantifies the loss of information arising from the re-
moval of degrees of freedom from a fully atomistic structure operated by the
coarse-grained mapping. The theoretical calculations connecting the relative
to the mapping entropy are shown in detail, together with the approxima-
tions allowing the computation of the latter. Subsequently, I describe the
numerical implementation of the mapping entropy minimisation scheme, an
unsupervised procedure whose aim is to identify optimal, reduced represen-
tations of the molecule of interest. The last part of the chapter presents the
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application of this protocol to three model proteins, heterogeneous in terms
of size, shape and biological role. The chapter is entirely based on Ref. [24].

The computation and, consequently, the minimisation of the mapping en-
tropy are particularly onerous from a computational point of view. The ac-
celeration of these tasks lies at the core of the fourth chapter, which presents
a protein-specific, graph-based machine learning algorithm able to speed-up
the computation of the mapping entropy by several orders of magnitude. The
novel combination of the trained neural network with the Wang-Landau en-
hanced sampling scheme allows the quasi-exhaustive exploration of the space
of available reduced representations of a protein, providing the correct, un-
biased, mapping entropy density of states. Ref. [25] is employed as reference
for this chapter.

Given the possibility of exploring the huge space of coarse-grained map-
pings, it is instructive to investigate its structure and metric properties. This
analysis is the subject of the fifth chapter of this thesis, which is based on
Ref. [26]. In this context, a purely structural notion of scalar product, norm
and distance between coarse-grained representations is introduced, and these
tools are employed to explore and characterise the immense mapping space;
such exploration leads to the emergence of qualitatively different mappings.
The notion of distance developed here allows one to assess that representa-
tions with low mapping entropy are close to each other in the mapping space,
thus proving that a geometrical similarity exists among them.

The sixth chapter of this manuscript is devoted to the analysis of the rela-
tionships between the mapping entropy and two other information-theoretical
quantities, namely the resolution and the relevance [27]. Their properties are
exploited to provide an unsupervised strategy to extract microstates out of
molecular dynamics trajectories, each one weighted with its frequentist, non-
Boltzmann, probability. This algorithmic procedure is then used to provide
an alternative method to compute the mapping entropy of a coarse-grained
representation. In the last sections of the chapter, resolution, relevance and
mapping entropy are calculated for CG representations of two discrete sys-
tems, namely a set of non-interacting spins and a simple model of the Nasdaq
stock market. The mapping entropy proves to be an extremely precise and
useful tool to pinpoint the features providing an optimal coarse-graining of
the system of interest.

The calculation of the mapping entropy, norm, and distance is imple-
mented and freely available in the EXtensible COarse-GraIning TOol (EX-
COGITO), a fast and flexible software suite, whose algorithmic and numer-
ical details are explained and reviewed in the last chapter of the thesis.

The manuscript ends with a brief, critical discussion about the relevance
of the presented methodologies, together with some personal perspectives.



Chapter 1

Modelling of proteins

In this chapter I first summarize few fundamental concepts about the struc-
tural and chemical properties of proteins. Then, I go through a concise
overview of the basic strategies underlying MD simulations, with a focus on
the semi-empirical potentials employed in the MD Hamiltonian. The major
advancements achieved and challenges faced by the field of plain, all-atom
MD simulations of protein systems are discussed. The chapter proceeds with
a long introduction to low-resolution models, focusing on bottom-up coarse-
graining strategies.

Proteins are unbranched, heterogeneous polymers constituted by a long
sequence of elementary units, namely the twenty-one proteinogenic amino
acids. These are chemical entities that share the same backbone structure,
with an amino (NH2) and a carboxyl (COOH) group on the two sides, both
connected to a central Cα atom via single covalent bonds (C-C and C-N).
The Cα carbon is involved in other two covalent interactions, namely one
with a hydrogen atom and one with the R group, or side chain, which is
the variable region of amino acids. Side chains differ immensely in size and
chemical composition; for instance, glycine (m ∼ 75 Daltons) is the only
achiral amino acid, having an R group with only one hydrogen atom, while
tryptophan (m ∼ 204 Daltons) contains two aromatic rings in the side chain,
which amounts at more than a half of its molecular weight. Two consecutive
amino acids are patched together thanks to the formation of a peptide bond,
with carboxyl and amino groups that lose an oxygen and two hydrogen atoms,
respectively, thus resulting in the expulsion of a water molecule as a reaction
byproduct. The properties of amino acids in solution are determined by the
chemical features of their side chains, as schematically illustrated in Fig. 1.1.

The sequence of amino acids, also called primary structure of the protein,
is univocally determined by the mRNA chain translated inside the ribosome.
Once the amino acid sequence is translated by the ribosomal complex, local
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Figure 1.1: The proteinogenic amino acids, divided in groups according to
the properties of their side chains. Charged residues tend to be located
in regions that are exposed to the solvent, while hydrophobic amino acids
cluster together and are usually buried in the core of the structure. Source:
Wikimedia Commons
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segments of the protein start to assume a specific three-dimensional arrange-
ment, dictated by the surrounding, intramolecular hydrogen bond network.
The set of local structural arrangements defines the secondary structure of
the protein. There exist eight different secondary structure elements accord-
ing to the DSSP method [28], which can be ultimately reduced to four major
categories:

• α helices : rod-like objects where the side chains of the amino acids
point towards the outside and the internal structure is stabilized by
hydrogen bonds between CO and NH groups of the backbone chain;

• β sheets : sequences of β strands, bonded to each other by hydrogen
bonds between NH groups on one strand and C=O on the other. β
strands are subregions of the protein where the backbone shows a reg-
ular, zigzagging configuration. In a β sheet, the side chains lie orthogo-
nal to the plane formed by the sheet, alternating between up and down
orientations;

• turns : small portions of the protein where the direction of the polypep-
tide chain is reversed. They occur when there is a hydrogen bond be-
tween two non-consecutive amino acids separated by few peptide bonds;

• loops : patternless regions linking two secondary structure elements.

The overall three-dimensional organisation of the polypeptide chain is called
tertiary structure, which is responsible for the basic function of the protein. In
this arrangement, hydrophobic side chains of neutral amino acids are mainly
localised in the internal region of the protein, while charged, hydrophilic
side chains tend to be highly exposed to the solvent. Furthermore, disul-
fide bonds and salt bridges are essential interactions to stabilize this native
state. Multiple tertiary structures can combine and fold into an assembly
called quaternary structure. Fig. 1.2 schematically shows this hierarchy of
structures for an example system.

Proteins are the key elements of an immense variety of biological pro-
cesses, such as enzymatic reactions, signalling cascades and the formation of
macromolecular complexes. Understanding the non-trivial structural, ther-
modynamic and energetic properties of proteins and protein assemblies is
fundamental to understand and rationalise their role in the huge zoo of cel-
lular processes.
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VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFL
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Figure 1.2: The four levels of structures for the Rubisco protein (PDB code
1BXN), namely [1]: the sequence of amino-acids, [2]: the secondary structure
elements, [3]: the tertiary, three-dimensional arrangement, [4]: the assembly
of several tertiary structures in the overall complex.

1.1 All-atom simulations

In the previous section the biochemical and structural properties of proteins
have been discussed from an empirical point of view. Let me now introduce
the key physical concepts that lie behind the field of theoretical modelling of
these complex systems.

With the notable exception of metalloproteins, proteins can be viewed as
sets of atoms with only five different atomic species (carbon, hydrogen, ni-
trogen, oxygen and sulphur) and with a very peculiar pattern of interactions.
In physiological conditions, these objects are immersed in a solution of water
and ions.

Just like any other molecular systems, proteins are composed by atoms
that follow the laws of quantum mechanics, and in principle should be mod-
elled with the corresponding tools and methods such as Density Functional
Theory [29] and Quantum Monte Carlo [30]. Nevertheless, the relatively huge
size of biomolecules and their relevant time scales cannot be approached by
such computationally heavy strategies. Therefore, it is common practice to
perform the Born-Oppenheimer approximation and to separate the motions
of the electrons from those of the nuclei. In classical all-atom molecular dy-
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namics [4, 5] calculations, the electronic degrees of freedom are not explicitly
considered, but rather implicitly integrated in the model, and the atomic
nuclei are viewed as point-like particles, whose positions and momenta are
evolved in time using the laws of classical mechanics.

The effective, interatomic potential, or force field that governs the in-
teraction between the atoms is derived both from experiments and ab-initio
calculations. It can be approximated as

VMD = Vprot−prot + Vprot−solv + Vsolv−solv, (1.1)

where Vprot−prot is the intramolecular potential describing the interactions
among the protein constituent atoms, which is often expressed in the follow-
ing, approximated form:

Vprot−prot =
∑
bonds

kb (b− b0)2 +
∑
angles

kθ (θ − θ0)2 +

+
∑

dihedrals

kθ [1 + cos (nφ− δ)] +
∑
impr

kω (ω − ω0)2 +

+
∑
ij

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
ij

qiqj
4πε0rij

. (1.2)

In Eq. 1.2, the terms associated to bonds, angles and improper dihedrals are
described by harmonic potentials, each one with a proper equilibrium value
(b0, θ0, ω0) and spring constant (kb, kθ, kω). Dihedral terms are parametrised
with a Fourier series usually truncated at the fifth or sixth term, in order to
take into account for multiple, acceptable values of the dihedral angle. Clas-
sical mechanics cannot incorporate reactive chemistry, which is intimately
quantum in nature, and therefore bonds cannot be created nor broken dur-
ing a MD simulation. The topology, defined as the set of covalent interactions
present in the system, remains constant in MD.

The last line of Eq. 1.2 contains non-bonded terms, which account for
the presence of electrostatic and van der Waals interactions between pairs of
atoms (i and j) that are not covalently bonded; these interactions are usually
treated with a sum of Coulomb and Lennard-Jones potentials, where rij is
the distance between the atoms, ε0 is the vacuum electrostatic constant, and
εij and σij are pair-specific energy and distance parameters for the Lennard-
Jones terms.

In addition to the intramolecular potential acting among the protein’s
constituent atoms, the last two terms of Eq. 1.1 account for the presence
of the solvent in the simulation. Vprot−solv is constituted by the set of non-
covalent interactions regulating the interplay between the protein structure
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and the solvent, and is therefore a sum of non-bonded terms similar to those
in the last line of Eq. 1.2. Vsolv−solv contains instead non-covalent and covalent
terms, where the latter are introduced to maintain the correct topology of
solvent molecules. As an example, almost all the existing classical, explicit
models of water [31] impose harmonic constraints on the oxygen-hydrogen
bond length and on the hydrogen-oxygen-hydrogen angle.

The accuracy of atomistic, semi-empirical force fields such as CHARMM
[32] and AMBER [33] is improving on a daily basis thanks to the huge quan-
tity of data obtained from experimental observations and quantum mechan-
ical, ab initio calculations. For instance, the accurate treatment of intrinsi-
cally disordered proteins [34, 35] and amyloid assemblies [36] has been incor-
porated in several force fields.

In parallel with the improvements on the atomistic force fields, recent
technological advancements such as GPU computing, special purpose archi-
tectures and distributed computing are steadily pushing the application of
plain, all-atom MD to the investigation of previously unconceivable timescales.
Graphic processing units find a fertile ground in the realm of biomolecular
simulations, and the GPU implementation of popular MD softwares repre-
sents a turning point for the whole field of computational biophysics [37, 38].
The supercomputer ANTON [39] is specifically tailored and optimised to
run MD simulations: in 2010 Lindorff-Larsen et al. [40] employed this archi-
tecture in the first computational experiment on protein folding that used
all-atom MD on the scale of the microseconds. The newly released version
of ANTON, ANTON 3 [41], promises to reach a performance peak such that
millisecond-long simulations are expected to be run in a workweek. With
respect to distributed computing, it is crucial to highlight the tremendous
effort carried out by the Folding@home consortium [42] in combining mil-
lions of personal computers around the globe to study protein folding and
misfolding, with a recent focus on Sars-ncov-2 viral proteins [43].

Overall, the growing accuracy of atomistic force fields combined with the
increasing computing power allows to approach relevant biological problems
that were previously thought to be impossible to tackle with plain MD sim-
ulations. As an example, in a recent paper by Singharoy et al. [44], an
atomistic model of a whole cell organelle, composed by ∼ 100 million atoms,
has been simulated in full detail. Nevertheless, the intrinsic complexity of
the majority of biological processes makes them out of reach for atomistic
simulations both now and in the foreseeable future. It is in this context
that coarse-grained models, which describe biological systems with a level of
detail lower than atomistic, can play an extremely relevant role.
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1.2 Coarse-grained modelling

This section focusses on the conceptual and theoretical basis of equilibrium
coarse-grained modelling of biomolecules. It begins with a brief introduction
of the main concepts of this field and then proceeds to a formal distinction
between the available methodologies developed to derive CG potentials, with
particular attention dedicated to bottom-up coarse-graining.

Molecular coarse-graining is defined as the effective reduction of the num-
ber of degrees of freedom of an atomistic system. This is a process that
requires two elements, namely a reduced representation of the system and
effective interactions. The former, that is, the CG mapping, fixes the level of
detail of the resulting low-resolution model and, therefore, its range of valid-
ity: for example, protein mappings that only consider the backbone atoms
cannot provide any information about the side chains. The latter, namely
the CG interactions, are introduced so as to reproduce the behaviour of the
atomistic system once observed at a CG level.

CG models span several levels of resolution, ranging from few atoms per
constituent unit (or CG site) up to few atoms per molecule and to continuous
models, where molecules are represented with continuous objects such as
density fields.

When the discussion is restricted to discrete models, the CG mapping
M specifies the position of the CG site I, RI , with a linear combination of
atomistic coordinates ri:

MI(r) = RI =
∑
i

cIiri. (1.3)

The linear coefficients cIi in Eq. 1.3 are constant, positive and subject to
the normalisation condition

∑
i cIi = 1 to preserve translational invariance.

Furthermore, in the vast majority of the cases [23], coefficients are generally
taken to be specific to each site [21], that is, an atom i taking part to the
definition of CG site I cannot be involved in the construction of another site
J (cJi = 0 ∀ J 6= I).

The vast majority of models proposed in the literature [21] consider a
given, fixed choice of the CG mapping, focusing on the problem of correctly
parametrizing effective interactions. In this respect, three main families of
methods exist 1, which differ mainly in the source of information employed
to construct the low-resolution potential.

Interactions in top-down CG models are built with the help of general
principles with no prior assumptions on the existence of a more detailed,

1I here follow the distinction between CG models operated by W. Noid in Ref. [21].
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atomistic model for the considered system. The functional form of the coarse-
grained force field usually relies on a very simple basis set, such as the har-
monic potentials, whose free parameters are determined by matching a set
of selected macroscopic properties of the system, obtained mainly from ex-
periments. These strategies always “work”, although their predictive power
is limited and dependent on the property used to build the model: there
is no guarantee that a top-down model parametrised so as to reproduce a
given structural or thermodynamic feature of the system will succeed in es-
timating another quantity that is not explicitly employed in the process of
model construction. The power of this approach shows up in the fact that the
implementation and simulation of top-down models requires limited system
knowledge and computational resources: from the analysis of the behaviour
of the CG system, one can qualitatively estimate which are the most im-
portant structural and chemical features that should be present in a more
sophisticated model.

Knowledge-based models build CG potentials using a different philosophy.
Often confused with top-down approaches, these methods rely on a dataset-
wide approach to compute the parameters of the effective CG force-field,
which are extracted from statistical analyses of local structural information
present in the literature. Like all dataset-wide methods, knowledge-based
potentials are prone to provide unphysical results when the features of the
system of interest are not well represented in the data set.

The third class of methodologies, bottom-up CG, is based on the idea
that the fundamental properties of a molecule should not be employed to
parametrise the model, but rather they are expected to emerge systematically
from an accurate coarse-graining of the fully detailed system. A bottom-up
protocol is based on the exploitation of information obtained from a high-
resolution model, that, in the case of biological molecules, is usually an atom-
istic MD simulation. If such detailed model does not exist or is not precise
enough, bottom-up strategies can possibly succeed in reproducing the low-
resolution observables of the high-resolution model, but are bound to fail in
predicting experimentally measurable, emergent properties: as an example
one can consider the case of DNA systems, which were coarse-grained us-
ing mainly top-down [45] or hybrid approaches until accurate atomistic force
fields were developed [46, 47] and the fully bottom-up approach was viable
[48].

Most of the models developed in the current days cannot be classified in
only one category, but rather they exploit the strengths of all of them in an
integrative fashion, for example by incorporating experimental information
and data set statistics into constraints for bottom-up CG models.

A prominent example of an integrative CG model that has been success-
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fully employed over the last two decades is the MARTINI CG model [49, 50],
in which the non-bonded force field (electrostatic and Lennard-Jones terms) is
determined from experimental data, while the bonded terms are constructed
using reference atomistic simulations.

The next section is devoted to a comprehensive discussion of bottom-
up strategies for coarse-grained modelling, while the interested readers are
referred to the excellent review of W. Noid [21] for an exhaustive discussion
of top-down and knowledge-based CG models.

1.2.1 Bottom-up coarse-graining

I here provide a general introduction to the main quantities that play a
relevant role in bottom-up CG, together with a brief description of some
approaches that enable to derive accurate CG potentials starting from a
fine-grained model.

Bottom-up CG of proteins aims at constructing a reduced model with
N sites exploiting information retrieved from an atomistic description of a
molecule with n ≥ N atoms. Each configuration r of the high-resolution
system is associated to its equilibrium probability that, in the case of the
canonical ensemble, takes the form of the Boltzmann distribution:

pr(r) =
1

z
e−βu(r), (1.4)

where β = 1
kBT

and u(r) is the potential energy of the system (such as the ones
in Eqs. 1.2 and 1.1). In Eq. 1.4 z is the standard atomistic configurational
partition function [51]:

z =

∫
dre−βu(r), (1.5)

where the integrals implicitly depend on the volume V , which is constant in
the canonical ensemble.

The same procedure can be employed to derive the CG equilibrium distri-
bution: upon fixing the mapping and the interactions, or CG potential U(R),
between different sites, the probability of sampling the CG configuration R
can be written as

PR(R|U) =
1

ZU
e−βU(R), (1.6)

where Z is the CG partition function ZU =
∫
dR e−βU(R). Intuitively, one

expects that the most accurate candidate CG model approximates perfectly
the atomistic equilibrium probability distribution pr. Attention must be
paid to the fact that AT and CG models live in two different configurational
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spaces, respectively with 3n and 3N dimensions: in order to compare AT and
CG probabilities it is crucial to first convert pr into its CG configurational
space analogue, pR, defined as

pR(R) =

∫
dr pr(r)δ(M(r)−R)

=
1

z

∫
dr e−βu(r)δ(M(r)−R), (1.7)

where the functional delta is employed to restrict the integral to those con-
figurations such that M(r) = R. This quantity assigns to each CG configu-
ration R a statistical weight equal to the sum of the atomistic probabilities
of the microstates r that map onto it. This definition allows to introduce
a quantity of crucial importance in bottom-up CG, that is, the multi-body
potential of mean force (MB-PMF) U0:

U0(R, T ) = −kBT ln

(∫
dr e−βu(r)δ(M(r)−R)

)
(1.8)

= −kBT ln(pR(R)) + const, (1.9)

a state-dependent free energy that samples the CG configuration space as if
it was sampled by the high-resolution model. In order words, if an atomistic
simulation of the system is observed through the degrees of freedom specified
by a CG mapping, the resulting free energy profile is identical to the one
generated by a CG model simulated employing the MB-PMF. U0 provides the
exact potential that should be utilized to describe interactions at a resolution
lower than the atomistic one. A CG model that samples the CG configuration
space with an equilibrium probability distribution equal to pR(R) is said to
be consistent with the atomistic model [52], and all the thermodynamical
properties of the original system can be recovered [53].

As for any conventional free energy, the MB-PMF can be decomposed in
an energetic and entropic contribution [54, 55]:

U0(R, T ) = E0(R, T )− TS0(R, T ), (1.10)

where the energetic component is simply a canonical, temperature-dependent
average of the atomistic potential energy function over the coarse-grained
macrostate R:

E0(R, T ) =
1

pR(R)

∫
dr pr(r)u(r)δ(M(r)−R) = 〈u(r)〉R , (1.11)

where 〈...〉R denotes a canonical average restricted to the CG configuration
R. The entropic component S0 can be expressed as the temperature variation
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of the MB-PMF [54, 56]:

S0(R, T ) = −
(
∂U0(R, T )

∂T

)
R

=
kB

pR(R)

∫
dr pr(r)δ(M(r)−R) ln

(
V NpR(R)

V npr(r)

)
(1.12)

It is important to underline that this equation for S0 does not assume that
the energetic component E0 is temperature-independent [54]. As discussed
in Chapter 3, S0(R, T ) is related to the mapping entropy, which is the crucial
quantity investigated in this thesis.

Let me conclude this brief introduction to the properties of the MB-
PMF by defining the coarse-grained force acting on site I, which can be
computed by taking the first derivative of the potential with respect to the
CG coordinate of site I:

F0
I(RI) = −∂U

0

∂RI

=
−kBT
pR(R)

∂pR(R)

∂RI

. (1.13)

It is possible to show [52, 57] that, assuming the specificity of at least one
atom per CG site, the resulting force is given by:

F0
I(RI) =

∫
dr pr(r)fI(r)δ(M(r)−R)

pR(R)
, (1.14)

where fI(r) is the AT force acting on the CG site I. Eq. 1.14 is an average
(with the usual canonical weight) of all possibles values of fI(r) over all the
atomistic configurations r that map onto R. Finally, it is possible to appre-
ciate how U0 is capable of generating mean forces thanks to this averaging
procedure over all the neglected degrees of freedom.

Unfortunately, U0 is impossible to calculate except for extremely trivial
cases because of the insurgence of many-body terms [58, 59], caused by the
effective incorporation of the eliminated degrees of freedom into CG interac-
tions operated by Eq. 1.8 [59]:

U0(R) = U0
0 (N, V ) + U0

1 (R) + U0
2 (R) + ...+ U0

N(R), (1.15)

where the subscript denotes the order of the interaction. In biomolecular
coarse-graining the zero-body potential (volume term) is simply equal to a
constant [60, 59]. The one-body term is always zero in absence of exter-
nal fields, in order to preserve the translational invariance of the system.
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In practical applications, the sum in Eq. 1.15 is usually truncated to the
second or third term, therefore losing, in principle, the possibility of being
thermodynamically consistent with the underlying atomistic model [52, 53].

A natural question arises now: once the series in Eq. 1.15 is reduced to
the truncated (to the T -order term) potential of mean force U0

T (R), can this
term be effectively calculated? In order to answer it is necessary to introduce
the approximated T -body coarse-grained potential UT (R) neglecting the first
two terms [57]:

UT (R) =
T∑
t=2

∑
k

∑
λ

V t
k (Ψk(Rλ), {αk}), (1.16)

where k represents a t-body interaction term with functional form V t
k (such

as the harmonic potential for CG bonds), which depends on a scalar variable
Ψk, function of a set of CG coordinates λ (such as the site-site distance) and
on some set of hyperparameters {αk} (such as the bond equilibrium length
and the coupling strength). The set of potentials V t

k is bound to be finite and
therefore constitutes an incomplete basis set in the space of CG force fields
[52]: reproducing the MB-PMF is practically impossible not only because
the effective potential is intrinsically multi-body in nature, but also because
the truncated T -body PMF is approximated by a necessarily inadequate CG
potential UT , built using a finite basis set.

Given the impossibility of recovering the correct MB-PMF, several strate-
gies exist whose aim is to construct simple but reliable approximations to it.
Two main families of approaches can be distinguished in this context: in
a group of methods, one first determines a set of low-resolution, structural
distribution functions; then, consistency between atomistic and CG distri-
butions is enforced by means of an iterative procedure. Notable examples of
such structure-based procedures are the Boltzmann Inversion methods [61]
and Inverse Monte Carlo [62]. Other strategies rely on the definition of a
functional to quantify the distance between fine-grained and coarse-grained
models: such functional vanishes if and only if the fully atomistic model is
considered. Upon minimisation of this object, a unique CG potential is ob-
tained, which provides an optimal approximation to the true MB-PMF U0.
The Force Matching [63, 64, 52] and Relative Entropy [22, 65, 66] frameworks
are two most prominent examples of this philosophy, which is commonly de-
fined as the variational approach to bottom-up CG.

1.2.1.1 Direct and Iterative Boltzmann Inversion

Boltzmann inversion-based methods are bottom-up strategies that aim at
determining the CG interactions by reproducing some low-resolution, struc-
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tural properties of the high-resolution system. In this context, the objective
of approximating the MB-PMF is replaced by a more modest goal, namely
the reproduction of a set of correlation functions. In the Direct Boltzmann
Inversion (DBI) scheme, each term k of the CG potential (Eq. 1.16) is cal-
culated by Boltzmann-inverting the corresponding probability distribution
pk(x):

Vk(x) = − 1

β
ln

(
pk(x)

Jk(x)

)
, (1.17)

where Jk(x) is a Jacobian factor. In protein systems, k usually refer to a
bonded or non-bonded pair potential, to an angular term (three body), or to
a dihedral potential (four body). CG potentials obtained through DBI can
possibly succeed in reproducing the atomistic distributions if the probability
distributions pk are statistically independent (uncorrelated) [67], that is:

pk1,...,kL = pk1,...,kL(x1, ..., xL)

=
∏
k

pk(xk), (1.18)

where pk1,...,kL is the joint probability associated to all L terms of the CG po-
tential and x1, ..., xL are the corresponding scalars (such as the angle between
three CG beads). Probabilities factorise as in Eq. 1.18 when CG interaction
terms are decoupled, that is, when the system is extremely dilute [68] and for
bonded terms [21], which usually do not display significant statistical depen-
dencies. In all the other cases, however, CG interactions are strongly coupled,
giving rise to non-negligible correlations: it is in this context that potentials
obtained through DBI fail to reproduce the target atomistic distributions.

The generalized Yvon-Born-Green theory developed by Noid and Mulli-
nax [69, 70] offers the mathematical tools to quantify the statistical correla-
tions that are missing in DBI potentials.

In order to reproduce the target structural property in presence of sta-
tistically dependent CG potentials, it is possible to resort to the Iterative
Boltzmann Inversion (IBI) [61, 71], which extends DBI by guaranteeing that
the target structural properties are replicated up to a pre-defined level of
accuracy. IBI iteratively corrects each CG potential Vk via the following
equation [68]:

Vk,i+1(x) = Vk,i(x) +
γ

β
ln

(
Pk,i(x)

pk(x)

)
, (1.19)

where i is the iteration index and γ is a prefactor ∈ (0, 1], introduced to avoid
numerical instabilities in the first stages of the optimisation. Pk,i(x) is the
CG distribution function obtained through a simulation of the CG system
with potential Vk,i.
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In this framework the correlations among CG interactions are treated in
an implicit way by the iterative procedure, with the advantage of having a
simple protocol to optimize each term Vk separately from the others.

1.2.1.2 Inverse Monte Carlo

A second important example of structure-based approach is the Inverse Monte
Carlo (IMC) method, introduced by Lyubartsev and Laaksonen in two pi-
oneering works [62, 72]. As in IBI, the potentials Vk are determined from
atomistic ensemble averages of the set of target structural properties, here
denoted with {〈As〉}. In IMC, the problem of finding an optimal value for
the parameters of the CG force field ({αk}, see Eq. 1.16) starting from aver-
ages is treated as a nonlinear, multidimensional equation, assuming that each
element of {〈As〉} can be influenced by each CG force field parameter αk. In
the first stage of the algorithm, the system is simulated with a reasonable
approximation to the CG potential; from this simulation one obtains a set
of averages {A0

s}, arbitrarily far from the reference values but such that the
differences ∆〈As〉 are finite. The Newton-Raphson method is employed to
iteratively solve this system of equations [73, 74]:

∆〈As〉 =
∑
k

∂〈As〉
∂αk

∆αk +O(∆α2) (1.20)

where O(∆α2) denotes a higher order term in ∆α and ∂〈As〉
∂αk

is a Jacobian
matrix that quantifies how the target average properties depend on each

parameter of the CG potential. Given that 〈As〉 =
∫
dr e−βH(r)As

Z
, one can

find a close-form for all the elements of this matrix by making use of basic
statistical mechanics. The derivative in Eq. 1.20 reads [74]:

∂〈As〉
∂αk

=
Z ∂
∂αk

(∫
dr e−βH(r)As

)
− ∂Z

∂αk

(∫
dr e−βH(r)As

)
Z2

=

〈
∂As
∂αk

〉
− β

(〈
∂H
∂αk

As

〉
−
〈
∂H
∂αk

〉
〈As〉

)
. (1.21)

The elements of the Jacobian matrix (∂〈As〉
∂αk

) can be readily calculated once
the system is simulated with the HamiltonianH, which contains the potential
parameters αk. This allows one to solve the system of equations in Eq. 1.20
and to obtain a new set of parameters {αk}, which is then employed in a new
simulation, until convergence is reached.

The major difference between IMC and IBI lies in the fact that in Eq. 1.20
the updates of different parameters of the CG potential are interdependent,
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while in Eq. 1.19 different potentials are completely decoupled, thus causing
numerical problems in the case of multicomponent systems [75, 68]. A (pos-
itive) consequence of this decoupling is that IBI calculations are faster than
IMC ones [76].

Practical applications of the IMC method range from the first, pioneering
studies on electrolite solutions to the approximate description of lipid mem-
branes [77] and DNA systems [78]. IMC and IBI are compared in a number
of different works [75, 79] and both methods are currently implemented in
several software packages for CG, such as VOTCA [75] and MagiC [80].

1.2.1.3 Force Matching

The first example of the application of a variational approach to the bottom-
up construction of a CG potential is the Multiscale Coarse-Graining method
(MS-CG), or force matching, introduced by Voth and Izvekov in 2005 [63, 64].
The central concept of MS-CG is that, for each CG site I, an accurate CG
potential U should reproduce the atomistic force acting on I (fI(r)). As it is
always the case for variational approaches, such requirement is enforced by
defining an appropriate functional:

χ2[U ] =
1

3N

〈
N∑
I=1

|fI(r)− FI(M(r)|U)|2
〉
, (1.22)

where F(RI |U) is the force generated by the approximated CG potential U
and the angular brackets denote a canonical ensemble average for the high-
resolution, atomistic model. It is instructive to introduce the force generated
by the MB-PMF (Eq. 1.13) into Eq. 1.22 [52]:

χ2[U ] =
1

3N

〈
N∑
I=1

∣∣(fI(r)− F0
I(M(r))

)
−
(
FI(M(r)|U)− F0

I(M(r))
)∣∣2〉

=
1

3N

〈
N∑
I=1

|fI(r)− F0
I(M(r))|2

〉
+

+
1

3N

〈
N∑
I=1

|FI(M(r)|U)− F0
I(M(r))|2

〉
−

− 2

3N

〈
N∑
I=1

(
fI(r)− F0

I(M(r))
)
×
(
FI(M(r)|U)− F0

I(M(r))
)〉

= χ2[U0] +
1

3N

〈
N∑
I=1

|FI(M(r)|U)− F0
I(M(r))|2

〉
. (1.23)
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The third term in the second equality is a canonical average of a product, in
which the first factor has zero average over a CG configuration R and the
second is constant on that domain [52]. Hence, this term is always zero.

In the last line of Eq. 1.23, χ2[U0] is a constant, positive-definite term
measuring the distance between the MB-PMF and the atomistic system.
Importantly, this quantity does not show any dependency upon the approxi-
mated CG potential U , which appears only in the second term of the equality.
This latter factor vanishes if and only if U = U0, thus proving that the MB-
PMF is the unique minimum of χ2[U ] [81, 52, 70, 57]. CG potentials of the
form of Eq. 1.16 can be variationally optimized to make them as close as
possible to the projection of the atomistic force field onto the subspace of
CG force fields, that is, the MB-PMF.

As the MB-PMF intrinsically depends on the choice of the CG sites
(Eq. 1.8), the term χ2[U0] changes when the mapping is modified. In this
context it is evident that a quite accurate CG force field UM ∼ U0

M may be
more distant from the atomistic force field with respect to a less sophisticated
potential UM′ 6= U0

M′ constructed upon a different mapping function M′.

Recently, Noé, Clementi and coworkers translated the MS-CG proto-
col into a machine learning problem [82, 83], demonstrating how the χ2 of
Eq. 1.22 can be employed as the loss function of a graph neural network.
Such intuition is applied to simulate the dynamics of short, coarse-grained
peptides and, more recently, to tackle the problem of implicit solvation from
a CG perspective [84]. This last contribution can be utterly beneficial for the
molecular simulation community, as a correct, molecule-independent imple-
mentation of an implicit solvent CG force field allows to considerably increase
the sampling time of MD simulations.

1.2.1.4 Relative Entropy

The functional developed by Voth and colleagues in the MS-CG strategy
(Eq. 1.22) is entirely based on the reproduction of the average atomistic
forces. Alternative variational approaches to bottom-up coarse-graining ex-
ist, such as the notable one developed by Shell and co-workers [22, 65, 66],
who combine the power of probability distribution functions and information
theory to define a new functional, called relative entropy.

In the original paper on this topic [22], Shell first introduces two ensem-
ble probabilities, pT and pM , which are related to a detailed (target) and
approximate (model) characterisation of a system, respectively. Then, as-
suming that these two descriptions possess the same number of degrees of
freedom, one can compute a discrete likelihood that n samples extracted with
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probability pM reproduce pT :

L(T |M) = n!
Nc∏
i

pM(i)npT (i)

(npT (i))!
, (1.24)

where the product runs over the available configurations Nc and n pT (i) is the
expected number of times configuration i is observed in the target ensemble.
When one considers the limit of infinite sampling (n → ∞), the (logarithm
of the) likelihood can be simplified by means of the Stirling approximation:

lnL(T |M) = −n
Nc∑
i

pT (i) ln

(
pT (i)

pM(i)

)
. (1.25)

Apart from a proportionality constant (−n), this quantity is equivalent to
a discrete Kullback-Leibler divergence [85] (or relative entropy) between the
two probability distributions:

Srel =
Nc∑
i

pT (i) ln

(
pT (i)

pM(i)

)
. (1.26)

Such formula is of limited use in the context of bottom-up CG without an
extension to the case in which the model system contains a lower number
of degrees of freedom than the target. If the probability distribution of this
model ensemble, now dubbed PM , is defined over a space constituted by a
set of NC < Nc configurations, it is necessary to back-map PM to pM , that
is, to relate PM to the configurational space of the target system; it is crucial
to keep in mind that multiple configurations of the target ensemble, i, can
map to a single one in the model ensemble, M(i). One thus introduces a
degeneracy Ω(k) associated to each model configuration k:

Ω(k) =
∑
i

δ(k,M(i)). (1.27)

The delta inside the sum filters all the target configurations i that map onto
k. In the original formulation of the method, Shell defines the back-mapped
probability pM as

pM(i) =
1

Ω(M(i))
PM(M(i)). (1.28)

The back-mapped probability in the target ensemble is given by the prob-
ability of the mapped configuration in the model ensemble divided by the
corresponding degeneracy Ω(M(i)).
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At this point, the parallelism with bottom-up coarse-graining can be ren-
dered more explicit by defining the relative entropy in the canonical ensem-
ble. In order to do so, it is necessary to translate Eq. 1.26 into its continuous
configurational space analogue and to define the target and the model prob-
abilities; the former is the properly normalized atomistic Boltzmann weight
of Eq. 1.4, while the latter is replaced with PR(R|U) (Eq. 1.6), namely the
coarse-grained probability distribution defined by the approximate model of
the high-resolution system. As in the discrete case, it is necessary to trans-
late PR(R|U) into the higher-dimensional, atomistic configurational space,
assigning a probability weight to each microscopic configuration r:

P1r(r|U) =
PR(M(r)|U)

Ω1(M(r))
(1.29)

Ω1(M(r)) =

∫
dr δ(M(r)−R). (1.30)

The reason for the subscript 1 will become clear in the following pages.
Putting all these ingredients together the relative entropy of Eq. 1.26 becomes

Srel =

∫
dr pr(r) ln

(
pr(r) Ω1(M(r))

PR(M(r)|U)

)
. (1.31)

By the Gibbs inequality the relative entropy is always non-negative, with the
value of zero that can be reached if the CG model coincides, from a proba-
bilistic perspective, with the atomistic one. Now it is possible to explicitly
write the distributions inside the logarithm of Eq. 1.31 and to decompose
Srel in several canonical averages [22]:

Srel =

∫
dr pr(r) ln

(
ZU
z

e−βu(r)

e−βU(M(r))
Ω1(M(r))

)
=

〈
ln

(
ZU
z

)〉
+

〈
ln

(
e−βu(r)

e−βU(M(r))

)〉
+ 〈ln (Ω1(M(r)))〉

= β(Ar − AU) + β 〈(U(M(r))− u(r))〉+ 〈ln (Ω1(M(r)))〉,(1.32)

where Ar and AU are the Helmholtz free energies of the atomistic and CG
model, respectively:

Ar = − 1

β
ln(z), (1.33)

AR = − 1

β
ln(ZU). (1.34)

Being uniquely determined from the partition functions, these quantities are
independent of the specific atomistic configuration r.
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The second term in Eq. 1.32 is a canonical average of a potential energy
difference between a fine-grained configuration and a CG one [65].

The third term in Eq. 1.32 corresponds to a Boltzmann-weighted average
of the degeneracy associated to each atomistic configuration r; this mathe-
matical object, called mapping entropy, is of crucial importance for this thesis
and is discussed more than extensively in the following chapters.

In 2011, Rudzinski and Noid [57] proposed a substantial modification to
the definition of the relative entropy. In their approach, the mapped coarse-
grained probability distribution (see Eq. 1.29) does not necessarily assign
equal probability weight to all the atomistic configurations that map onto
the same one:

Pr(r|U) =
g(r)

Ω(M(r))
PR(M(r)|U), (1.35)

where g(r) is a weighting factor dependent on the configuration of the atom-
istic ensemble. Ω(R) now becomes a weighted sum over all the atomistic
states r that map onto the same CG configuration R:

Ω(R) =

∫
dr g(r)δ(M(r)−R). (1.36)

In Shell’s formulation g(r) = 1 ∀ r and all the microscopic configurations
mapping onto the same coarse-grained one receive an equal a priori weight.
Rudzinski and Noid [57] propose to differentiate between configurations and
to employ the usual Boltzmann factor pr(r) as g(r) in Eqs. 1.35 and 1.36:

Ω(R) =

∫
dr p(r)δ(M(r)−R), (1.37)

which is exactly the probabilistic weight pR(R) (Eq. 1.7) assigned to the CG
configuration R by the MB-PMF. Additionally, the Boltzmann constant kB
is introduced in order to enforce consistency between the relative entropy
and the standard Gibbs formula for the entropy in statistical mechanics [86]:

S = −kB
∫
dr pr(r) ln (pr(r)) , (1.38)

thus leading to the following equation:

Srel = kB

∫
dr pr(r) ln

(
pR(M(r))

PR(M(r)|U)

)
. (1.39)

Since the two quantities inside the logarithm depend only on the low-resolution
configuration, Srel can be straightforwardly expressed as a Kullback-Leibler
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divergence over the CG configurational space [87, 57] by introducing a func-
tional delta 1 =

∫
dR δ(M(r)−R):

Srel = kB

∫
dR pR(R) ln

(
pR(R)

PR(R|U)

)
. (1.40)

Rudzinski and Noid [57] employ the argument of the logarithm, pR(R)
PR(R|U)

=

Φ(R|U), to bridge the Relative Entropy and the Force Matching variational
approaches. More specifically, they realise that the first derivative of this
mathematical quantity, namely

∂Φ(R|U)

∂RI

= β
(
F0
I(M(r))− FI(M(r)|U)

)
(1.41)

can be directly plugged into the MS-CG equation (Eq. 1.23) to obtain the
following expression:

χ2[U ] = χ2[U0] +
1

3Nβ2

〈
|∇Φ(R|U)|2

〉
, (1.42)

where ∇Φ =
∑N

I=1
Φ(R|U)
∂RI

. While a CG force field with zero relative entropy
minimises the average of Φ(R|U) (Eq. 1.40), the force matching strategy
induces the minimisation of the average of |∇Φ(R|U)|2.

As in the case of MS-CG, the relative entropy attains a (unique) global
minimum at constant mapping if the MB-PMF is employed as the poten-
tial in the model ensemble. In the context of CG force field development,
this functional is minimized with respect to each interaction parameter αk
of the CG potential U so as to maximize the consistency between the two
probability distribution functions:

∂Srel
∂αk

= 0. (1.43)

It is important to notice how the MB-PMF at the numerator of the logarithm
in Eq. 1.40 is independent of αk. Therefore, Eq. 1.43 is equivalent to the
derivative of a coarse-grained ensemble average of the (logarithm) of the
approximate PR(R|U):

∂Srel
∂αk

= −kB
∫
dR pR(R)

∂ lnPR(R|U)

∂αk

= −kB
∫
dR pR(R)β

[
− ∂U
∂αk

+

∫
dR′ pR(R′|U)

∂U

∂αk

]
=

1

T

[〈
∂U

∂αk

〉
U0

−
〈
∂U

∂αk

〉
U

]
(1.44)
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A modification of a parameter in the CG force field has two effects on the
coarse-grained probability and, therefore, on the relative entropy: it changes
the potential energy function and the Helmholtz free energy (the partition
function). The first term of Eq. 1.44 describes the first change: the deriva-
tive of the CG potential is averaged over the MB-PMF ensemble. The second
term of Eq. 1.44 accounts for the modification of the coarse-grained parti-
tion function ZU (Eq. 1.6), and is therefore weighted with the approximate
probability PR(R|U). At the relative entropy minimum these two averages
are exactly equivalent.

The relative entropy minimisation protocol is described in detail in some
excellent papers [65, 88] and is successfully applied to the coarse-graining
of water and proteins [89, 90]. Applications of this strategy in biomolecular
modelling extend beyond bottom-up CG methods, ranging from native struc-
ture prediction in atomistic protein folding [91] to the coarsening of Markov
State Models [92].
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Chapter 2

The representation problem

In the previous chapter I introduced the theoretical basis of bottom-up
coarse-graining, describing the four major methods that are routinely em-
ployed to derive CG potentials. For the sake of brevity, the discussion was
limited to classical, particle-based CG models, in which each CG site is rep-
resentative of a group of atoms of the molecular structure. The definition of
these sites is performed via the mapping operator, see Eq. 1.3. Importantly,
the mapping was considered simply an ingredient of the CG model, and no
reference was made to how its selection should be performed.

In principle, the choice of a mapping with a specific level of resolution
allows one to observe all phenomena in the system that occur at a length
scale equal to or larger than the characteristic size of the elemental CG units;
in the construction of a CG model, though, it is the choice of the interactions
that limits its ability to reproduce such phenomena. If the CG potential ac-
curately reproduces the MB-PMF (Eq. 1.8), all thermodynamical properties
and observables of the system can be obtained, even if they originate from
processes that take place at a scale below the resolution level of the model
[53, 93, 94]. However, Sec. 1.2.1 shows how, in practical applications, it
is not possible to calculate all many-body contributions that appear in the
PMF, let alone embodying them into computationally manageable functional
forms. With a limited expansion of the MB-PMF, the modeller must expect
that a reduction in the resolution level will correspond to a decrease in the
spectrum of properties and phenomena that the model is able to predict.

The interplay between resolution level and range of observable phenomena
lies at the core of the first two sections of this chapter, which describe the
most common choices to represent the atomistic protein system at lower
resolution by fixing a priori the CG mapping. In Sec. 2.3 the few existing
methods that aim at optimising the choice of the CG representation are
listed, focusing on the lack of a unique consensus among these strategies,
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which rely on different criteria.

Ref. [23] should be considered the reference article for this chapter. Once
again, the discussion is restricted to classical, particle-based coarse-grained
models of proteins, without considering the huge number of excellent works
on continuous CG models [95, 96] and hybrid quantum-classical protocols
[97].

2.1 On the choice of the resolution level

This section has been entirely written by my colleague and supervisor Roberto Menichetti,

whom I here acknowledge for his crucial contribution to this chapter.

The mapping can be interpreted as the mathematical prescription that
connects the high-resolution description of the system to the coarse-grained
one. It is evident that a first feature that is immediately determined by a
particular choice of the mapping is the resolution level of the CG model,
that is, the minimum degree of detail one can have access to in describing
the system’s properties. Once a certain level of resolution is fixed, it is
impossible to observe phenomena occurring at lower length scales, but only
at or above such level. As an example, consider the fully atomistic description
of a protein: to a certain extent, this is an already coarse-grained model of
an inherently quantum system, and processes that directly involve electrons
cannot be inspected from this perspective; nevertheless, one can hope to
reproduce the emergent properties of the system by taking into account the
implicit presence of the electronic degrees of freedom in an effective force
field. From these considerations, it follows that the choice of the appropriate
resolution level is not trivial in general, as it impacts the lower limit of the
observable length scales.

Particle-based CG models can be subdivided in three main groups accord-
ing to their resolution level. Going from the highest to the lowest detail, one
meets a first category of nearly chemically-accurate protocols, which include
an explicit description of the solvent, though treated with a detail lower than
atomistic; the second group of models, instead, rely on an implicit descrip-
tion of the solvent degrees of freedom, retaining a medium-to-high level of
chemical accuracy on the solute elements. The third class is constituted by
ultra coarse-grained (UCG) models, in which the solvent is treated implicitly
and a molecule is reduced to a set of few sites. In the following, models
belonging to these categories are outlined.
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2.1.1 Explicit solvent CG models

Within explicit solvent CG models, a quite conspicuous number of effective
interaction sites is employed to represent a single amino acid composing the
protein structure, thus resulting in a mapping rule that projects a small
chemical moiety onto a CG bead. The protein is then surrounded by a
relatively “granular” solvent, resulting in a rather moderate level of CG.
Particular attention is further paid to approximately capturing the “local”
chemical features and flexibility of amino acid side chains, so that several
beads can be employed in their description. Overall, this fairly high level
of detail can limit the computational speed-up generated by these models,
especially due to the presence of the solvent; at the same time, it often allows
an almost one-to-one reconstruction, or backmapping, of the microscopic
structure starting from the CG one [98].

Notable examples in this class of models include the popular SIRAH
[98, 99] and MARTINI [49, 50] force fields. In both cases, interactions among
the CG sites are parametrised to account for the average properties of the
atoms they enclose, and include bonded as well as non-bonded contributions.
The former are tailored so as to reproduce (a subset of) structural features,
such as bond distances and the bending and dihedral angles between consec-
utive units. Different philosophies lie instead at the core of the determination
of the non-bonded potentials: while SIRAH aims at providing an accurate de-
scription of the system’s electrostatics and sterics [98, 99], MARTINI mainly
targets experimental free energies of partitioning of small chemical fragments
between a polar and an apolar phase [49, 50]. In both cases, the result of
this overall parametrisation protocol is a “dictionary” of CG building blocks,
one per amino acid, that can be combined together to model the protein
structure of interest and investigate its behaviour.

The resolution level and chemical specificity characterising the fundamen-
tal units of SIRAH and MARTINI enables their application to the investi-
gation of large-scale conformational and/or thermodynamic properties of a
system, as well as to problems in which the local detail, down to a sub-
residue level, can play a crucial role on the system’s emergent phenomena:
among these it is important to mention the rearrangement of side chains,
hydrogen bonding, and protein-solvent, protein-protein, or protein-substrate
interactions. Despite the similar length scales characterising the elemental
units composing the two models, however, already at this limited degree of
CG the delicate interplay between resolution level and effective interactions
has a considerable impact on the spectrum of observable phenomena. As
an example, SIRAH has shown to be able to preserve the stability of pro-
teins comprising α-helix as well as β-sheet elements in absence of explicit
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topological biases [98]. On the contrary, MARTINI requires secondary struc-
ture motifs to be enforced a priori, thus preventing its application in studies
involving folding or general conformational rearrangements [50, 100, 101].
While this limitation is commonly associated to the relatively low resolution
at which the protein backbone is treated in MARTINI (one bead per pep-
tide), it should rather be considered a direct consequence of the particular
choice in the parametrisation of the interactions: in fact, effective models
exist that rely on MARTINI-like CG representations and are capable of sta-
bilising secondary structure elements without introducing ad hoc constraints
[102, 103].

2.1.2 Implicit solvent CG models

The level of resolution proper of explicit solvent CG models can be con-
sidered excessive when dealing with phenomena that take place at larger
length scales, such as protein folding, conformational rearrangements, or self-
assembly. Consider for example the case in which a net attraction/repulsion
between pairs of amino acids constitutes the driving force of the macroscopic
process; for this to emerge from the CG model, a much lower resolution than
that of SIRAH or MARTINI might be sufficient, e.g. removing the solvent
and describing each amino acid as an effective interaction unit.

In implicit solvent CG models the solvent degrees of freedom are inte-
grated out from the description, and one only accounts for the effect they
on average exert on the proteins under investigation. Such proteins, on the
other hand, are still decomposed in terms of their constituent residues, albeit
in an increasingly simpler form as the structural coarsening progresses. It is
in this context that the correlation between resolution level, CG interactions,
and range of observable phenomena becomes particularly strong: a decrease
in the first is usually not balanced by an increase in the second, which in
turn can result in a reduction of the third.

Among implicit solvent CG models, the more detailed ones aim at pre-
serving the “chemical identity” of each amino acid. Since such information
is inherently contained in the side chain, this directly translates into the
usage of one or more explicit CG beads representing it and accounting for
its chemical features, in addition to the effective sites that are employed to
describe the peptide backbone: in analogy with the case of explicit solvent
models (Sec. 2.1.1), the desired outcome is again a protocol in which the
fundamental units embodying each amino acid type can be joined together
to assemble the specific system under investigation. Examples of such in-
termediate resolution CG force fields are OPEP [104, 105, 106], the one by
Bereau and Deserno (BD) [107], PRIME [108, 109], AWSEM [110, 111], and
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UNRES [112, 113, 114].
The first model, OPEP, is characterised by a high degree of structural

detail [104, 105, 106]. All the heavy atoms composing the protein backbone
as well as the amide hydrogens are retained as CG sites, while a single bead
describes the side chain of each amino acid—except for proline, which is rep-
resented by all its heavy atoms. Interactions among these fundamental units
are then parametrised via a combination of structural, thermodynamic and
knowledge-based approaches. Interestingly, while the original version of the
model neglected the solvent degrees of freedom, hydrodynamic interactions
were later incorporated in OPEP by coupling it with a Lattice Boltzmann
representation of the solvent [115]. As for BD and PRIME, they lean on a
similar CG mapping prescription to describe each amino acid, namely three
beads for the backbone and one for the associated side chain. Notable differ-
ences exist, however, in the derivation of their constitutive interactions. In
particular, in analogy with OPEP, BD is again defined in terms of a conven-
tional basis set for the bonded and non-bonded interactions, whose funda-
mental parameters are tuned by combining structural and knowledge-based
protocols [107]. PRIME, on the other hand, resorts to a very crude interac-
tion network, in which extremely simplified potentials such as hard-sphere
and square-well functions describe steric repulsion and bonding/attractive
interactions among the effective sites, respectively [108]. This choice enables
the usage of discontinuous molecular dynamics [116, 117], further speeding
up simulations. Originally blind to the side chain chemical detail, PRIME
was later generalised via a knowledge-based approach so as to capture their
specificity [109]. In AWSEM, three CG sites, respectively located on the
Cα, Cβ, and backbone oxygen atoms, are employed to represent a single pro-
tein amino acid [110, 118, 111]. Bonded potentials among the AWSEM CG
units are then complemented with a complex network of non-bonded inter-
actions: these include hydrogen-bonding terms, bioinformatic terms biasing
the formation of local structures, nonlocal terms describing contacts—either
direct or water/protein-mediated—among distal residues along the sequence,
and burial terms that aim at accommodating an amino acid into its prefer-
ential environment—e.g. the protein bulk or surface. The corresponding
parameters are tuned via a combination of structural and knowledge-based
approaches. Finally, UNRES maps each amino acid onto three CG sites,
namely the Cα atom, the center of the peptide bond, and the side chain, the
latter being described as an ellipsoid of revolution [112]. Only the last two
elements, however, are explicit effective interaction sites, while Cα sites only
serve the purpose of tracing the protein’s geometry. Interactions among the
UNRES building blocks are then parametrised through a rigorous bottom-up
procedure: the potential of mean force of the system is expanded in a trun-
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cated series of Kubo-cluster cumulants, which enable the derivation of the
multi-body interactions acting among the CG sites in a systematic manner
[112, 113, 114].

The power of the intermediate resolution CG models lies in their trans-
ferability, that is, the possibility of employing them to provide insight on the
behaviour of systems that are not directly involved in the models’ parametri-
sation. It follows that particular care must be taken as far as meso- to
macroscopic properties are concerned; while these can be explicitly included
in the construction of the effective potential, for the latter to be transfer-
able the introduced restraints should be flexible enough so as not to bias the
model’s predictions towards very specific outcomes, associated to particular
systems. It is thus possible, and indeed often advantageous, to design trans-
ferable implicit solvent CG models tackling well-defined large-scale problems;
at the same time, one should make their constitutive ingredients as general
as possible, so as to enable the characteristic phenomenon of the system of
interest to arise from the model, without the need of imposing it a priori. On
the other hand, one might need implicit solvent CG models that are more
severely bound to a subset of known macroscopic properties associated to a
specific biomolecule. In this case, the model could be asked, e.g. to repro-
duce the experimentally resolved tertiary structure of a particular system.
The emergent property now directly represents an input of the CG protocol.

One could clearly resort to standard CG strategies and develop a dedi-
cated effective model in which these conditions are satisfied [63, 57, 66]; this
often lengthy parametrisation procedure, however, should at least in princi-
ple be repeated from the ground up every time a new system is investigated,
for which the same kind of external piece of information is available. It is
therefore highly desirable to construct CG models that rely on more “intu-
itive” interaction potentials and are easily generalisable to arbitrary systems
through a minimal fine-tuning. The particular choice of the phenomeno-
logical potential will play a pivotal role in defining the class of phenomena
the model can additionally provide insight on. The simplification of the in-
teraction network typically goes on par with an additional reduction in the
resolution level and chemical detail, with every amino acid composing the
molecule being now described as a single interaction site.

A notable example of this second class of implicit solvent CG models is
represented by structure-based ones, such as Gō-like models (GLM) [119, 120]
or elastic network models (ENM) [121, 122]. Here, the external macroscopic
input involved in the construction of the effective CG potential is the static,
either stable or metastable, three-dimensional spatial conformation assumed
by the protein of interest. Both GLM and ENM describe the interaction
among the elemental CG units in terms of very general functional forms,
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tailored to reproduce the target structure but easily applicable to arbitrary
ones; the complexity and richness of the basis set, however, significantly
decreases while moving from GLMs to ENMs, generating a crucial impact
on the spectra of phenomena these two classes of models can respectively
capture.

2.1.3 Ultra CG models

The class of models presented in the previous sections, although characterised
by a gradual decrease in the level of detail, always rely on a residue-based
decomposition of a protein, in which only one or few effective interaction
centroids describe each amino acid composing the biomolecule. To push
the applicability of particle-based CG models to the investigation of phe-
nomena occurring at even larger time and length scales, one possibility is
that of resorting to ultra coarse-graining (UCG) methods. Here, each CG
site becomes representative of larger chemical entities, be that few residues,
whole proteins or even entire molecular complexes [123, 124, 125]. Several
examples of UCG models, ranging from more “chemically accurate” to more
heuristic ones, have been presented in the literature. While more traditional
applications typically focus on single proteins [125, 126], UCG methods have
provided impressive insights into the behaviour of overwhelmingly compli-
cated macromolecular structures [127, 128], including actin filaments [123],
bacterial flagella [129], and viral capsids [130, 131, 132].

As pointed out in Ref. [133], from a conceptual point of view UCG models
pose notable additional challenges compared to their more detailed counter-
parts, which are, as it is the case for the previously discussed studies, often
overlooked in the construction of the UCG effective interaction potential of a
system. Specifically, as the structural coarsening progresses, several internal
states of the system can end up being mapped onto the same CG configu-
ration. For instance, let me consider the case of a macromolecular complex,
a whole protein of which is represented as a single UCG site. If the protein
undergoes a conformational rearrangement between two states that leave the
CG site coordinates unaltered, both states contribute to the energetic land-
scape of a single CG macrostate and, as far as the model is concerned, they
are indistinguishable. At the same time, the rearrangement could play a
key role in the generation of the macroscopic phenomenon of interest, and it
would thus be desirable to construct a UCG model able to discriminate the
two conformational basins. To tackle the problem of constructing CG mod-
els for systems possessing internal states, Voth and coworkers have recently
developed an extremely elegant Theory of Ultra Coarse-Graining (UCGT)
in a series of works [133, 134, 135]. While applications of this theory have
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been, to my knowledge, so far limited to relatively high-resolution CG rep-
resentations of liquids, UCGT represents an extremely promising framework
for the development of accurate UCG models of biologically relevant macro-
molecules.

2.2 On the choice of the resolution distribu-

tion

This section has been entirely written by my colleague Thomas Tarenzi, whom I here

acknowledge for his crucial contribution to this chapter.

The application of finer or coarser mappings to the atomistic system of
interest determines the “average” level of detail of its reduced representation.
The mapping, though, can characterise different regions of the system with
different levels of resolution, that is, with a variable density of CG beads.
In the trivial, limit case of implicit solvent CG models (Sec. 2.1.2), one can
appreciate how they imply by definition a non-uniform distribution of CG
sites, assigning significant and zero resolution to solute and solvent degrees of
freedom, respectively. Except for this peculiar case, why would one employ
a variable resolution representation of a biomolecular system?

In the context of computational simulations, the biological phenomena of
interest can be confined to a very specific area of the simulation box. This
is the case, for example, of protein-protein and protein-ligand interactions,
where the contact region usually involves a tiny fraction of the overall atoms
composing the system. If such domains involved in the interaction are known
in advance, e.g. from experimental evidence or previous computational anal-
ysis, one can additionally exploit the inherently multiscale nature of the
problem to build a hybrid atomistic/coarse-grained (AA/CG) set-up, where
the atomistic detail is retained only in the region of interest (in the above
example, the binding site of a receptor). The rest of the macromolecule is
instead treated at a lower, CG resolution, bringing the immediate advantage
of a reduced computational cost.

This general idea gave rise to a variety of approaches, where the details of
each method (namely, the resolution distribution and the parametrisation of
interactions) are specifically designed to tackle the system under investiga-
tion. Examples range from the multi-resolution model of a polyamide melt
[136], where only the amide groups involved in the formation of the hydro-
gen bonds are maintained at atomistic resolution, to multimeric complexes
including both proteins and nucleic acids, as in [137, 138, 139].

In most of AA/CG applications the size of the atomistic region is larger
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than a single chemical moiety, but substantially smaller than the protein
itself. This is the case of ligand-binding multiscale studies, where an atomistic
resolution is required for only a few protein residues [140, 141].

A hybrid method specifically designed for the study of ligand-protein
interactions is the so-called Molecular Mechanics/Coarse-Grained approach
(MM/CG) [142, 143, 144]. In the latest implementation of the method (Open
Boundary MM/CG) [145], the multi-resolution model of the protein is cou-
pled to an adaptive resolution description of the solvent through the Hamil-
tonian adaptive resolution (H-AdResS) scheme [146]. Water is modelled with
atomistic accuracy in the two hemispheres capping the intracellular and ex-
tracellular parts of the receptor, and free diffusion is ensured with a sur-
rounding reservoir of CG water molecules. The improved hydration model
leads to the simulation of a rigorous statistical ensemble and enables accurate
binding free energy calculations for a drug design purpose [147].

Moving away from the AA/CG framework, it is important to mention the
existence of multi-resolution models, where the two or more resolutions con-
currently employed are coarse-grained, that is, lower than atomistic. These
approaches aim at reproducing the large-scale conformational dynamics of
large biomolecules in a particularly efficient manner. In this context, pro-
teins have been modelled as networks of a small number of CG sites, fewer
than the total number of residues [148, 149, 150], that are further unevenly
distributed along the primary structure. The partitioning among resolution
levels can be performed on the basis of previous knowledge of the system
functions: this is the case of the multiscale network model [151]: here, the
fine-grained region is constituted by specific functional sites represented at
the residue level as an ENM; the remaining regions are described at a lower
resolution, including only a subset of the Cα atoms as interaction sites.

In other approaches, the choice of the level of resolution and its distri-
bution along the protein structure is not so obvious. This is the case of
the essential dynamics coarse-graining (ED-CG [152, 153]), where residues
undergoing collective dynamics are represented by pseudo-nodal points.

It is important to emphasise that all the hybrid multiscale models con-
sidered in this section require the definition of the resolution domains during
the phase of simulation set-up, on the basis of some previous knowledge of
the system.

2.3 Strategies for mapping optimisation

The previous sections have showed how coarse-graining techniques model soft
matter systems, proteins in particular, using a plethora of simplified repre-
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sentations, each one characterised by its level of detail. Approaches exist that
displace the same level of detail throughout the whole system; additionally,
I discussed how it is possible to concurrently employ, in the same simulation
setup, models at different resolution, so as to provide a small subregion with
an accurate description and the remainder of the system with a computa-
tionally efficient one. In both cases, the level of detail and its distribution is
usually determined a priori on the basis of various characteristics (chemical
identity, biological function, intuition), depending on the usage one does of
the model. Recently, however, interest has grown around the idea of allowing
the system itself to decide its “best” coarse-grained description. Clearly, the
notion of “best” is relative, and it necessarily has to answer to the question
best for what?

In this final section let me report on the recent attempts to find the
optimal resolution of a biomolecule, namely the “most appropriate” number
and selection of degrees of freedom to describe it, together with their spatial
distribution. These two concepts are deeply intertwined and several studies
suggest the existence of a link among the optimal resolution, the distribution
of detail assigned in the coarse-grained model, and the relevant properties
of the system of interest. This connection has its roots in the philosophy
behind bottom-up CG modelling, which assumes that the properties of a
system should emerge from the behaviour of a statistical mechanics-based,
simplified model obtained through the (exact) integration of a subset of its
degrees of freedom (see Sec. 1.2.1). Usually, this concept of “behaviour”
refers to the conformational space sampling of the simulated CG model,
which is a combination of mapping and interactions. Here, I argue that the
process of simplification (mapping) itself, acting as a filter, can provide hints
to non-trivial features of the high-resolution model. This hypothesis has
immediate consequences, such as the conversion of coarse-graining methods
into analysis tools, a change of paradigm that could constitute a valuable
instrument for the analysis of high-resolution, fully atomistic representations
of biomolecules.

In bottom-up CG modelling, the choice of the CG mapping has proved
to be critical for the properties of interest to emerge systematically [154, 57].
This idea is pushed forward by Rudzinski and Noid [155], who quantitatively
rationalise how the quality of the modelling is influenced by the quality of
the mapping. Specifically, the authors group the configurations sampled in
a MD simulation into n (resp. m) distinct molecular states of the high-
resolution (resp. low-resolution) system; as the low-resolution macrostates
clearly depend on the choice of the mapping scheme, Rudzinski and Noid
posit that the most informative CG representation should generate a bijective
correspondence between atomistic and CG molecular states. This approach
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allows, in principle, to estimate the optimal level of resolution as well as its
distribution. It is thus the system itself that informs the modeller about
its low-resolution description that maximises the consistency with the high-
resolution behaviour.

This promising paradigm is at the heart of a recent work by Fiorentini
and coworkers [141], in which a protein-ligand system is considered and the
relationship between the binding free energy and the chosen level of resolution
is quantified. The authors consider several hybrid AT-CG representations of
the protein by treating a variable number of amino acids around the binding
site at the all-atom level. The resulting values of binding free energy are
compared with the atomistic reference, showing that the accuracy of the dual-
resolution model does not necessarily increase with the spatial extension of
the atomistic region. This result suggests the existence of a system-specific,
optimal number of amino acids that should be modelled with high detail in
such hybrid schemes.

In general, then, the idea has started to emerge that a macromolecu-
lar system admits one or more optimal reduced models, that is, simplified
representations in terms of which it can be observed with a marginal loss
of information in spite of a loss of detail. Furthermore, it appears more
and more evident that such an optimal representation cannot, in general, be
uniform: the degree of fidelity with which the original, high-resolution struc-
ture is reproduced in the simplified model can vary from point to point, in
parallel with the system’s chemical, mechanical, dynamical, and functional
properties.

Foley and coworkers [54, 156] have pioneered the analysis of the CG model
spectrum in a formal and systematic way. In [54] they consider a one-bead-
per-residue Gaussian network model (GNM) of proteins as the reference,
high-resolution representation; then, taking advantage of the exact integra-
bility of GNMs, they perform a systematic decimation of the system’s beads
to investigate how reduced models at varying degrees of resolution manage
to reproduce fluctuations and correlations of the original model. In so do-
ing, they show that the information loss that is inherent in the process of
coarse-graining is not a monotonic function of the resolution, as an optimal
value of the latter was found for which the information content per CG bead
(quantified by an appropriate measure) exhibits a maximum. These works
thus highlight the relation between the informativeness of a representation
and its resolution level, that is, the number of CG sites.

The impact of resolution distribution was later studied by Koehl and
coworkers, also in this case making use of ENMs: the Decimate [157] algo-
rithm progressively reduces the resolution of a biomolecule by creating a hi-
erarchy of increasingly simplified models, in the spirit of the renormalisation
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group theory. As expected, such CG mappings show an uneven distribution
of detail: as an example, optimal models of globular proteins tend to concen-
trate atoms on the surface of the molecule, thus heavily coarse-graining the
inner region–whose mechanical properties require fewer degrees of freedom
to be aptly reproduced. A related approach is employed in a work by Diggins
et al. [158]: here, the authors identify the CG beads that produce a coarse-
grained ENM whose Hamiltonian interaction matrix is as close as possible,
measured according to an appropriate distance, to the high-resolution, atom-
istic ENM. The proposed selection of atoms proves to outperform a random
assignment in terms of several observables, such as the intra-block dynamics
fraction.

Most of the mentioned approaches can be grouped under the umbrella of
methods to optimise the representation of a biomolecule in order to improve
the capability of the reduced models to faithfully reproduce the atomistic
properties of interest. Let me now summarise the existing methods that,
acting as pure filters, focus only on the choice of the representation itself
without considering the parametrisation of the effective interactions.

The first prominent attempts at finding the most informative reduced
description of a biomolecule can be ascribed to Voth and coworkers, who em-
ployed the χ2 residual of essential dynamics to estimate the optimal number
and partitioning of coarse-grained sites for large protein complexes (ED-CG)
[153, 159, 160]. In particular, in Ref. [160] this χ2 is subject to a constrained
minimisation, in which the addition of a CG site to a simplified description
of a molecule is accepted only if there is a substantial gain in information
about the system. Related works [161, 162, 163] by Xia and colleagues take
the moves from the ED-CG method to develop several protocols for the deter-
mination of the optimal representations of biomolecules. In Ref. [161] the au-
thors introduce the stepwise optimisation with boundary constraint (SOBC)
algorithm to enhance the numerical performances of ED-CG [153, 159] on
large proteins. Subsequently they propose to maximise the ENM pairwise
fluctuations between atoms that are mapped to different CG sites (fluctuation
maximisation) [162]. The resulting reduced representations, once equipped
with simple, harmonic interactions, are capable of matching the large-scale
fluctuations of the corresponding fine-grained counterparts. More recently,
Wu et al. [163] adopt a combination of ED-CG and internal clustering valida-
tion indices to estimate the proper number of sites to coarse-grain proteins.
Their results suggest that the appropriate number of Cα atoms to be pre-
served in a simplified model should lie between one half and one fourth of
the total.

Always in the context of employing the CG mapping as a filter, multi-
ple examples of the application of CG methods to analyse simulation data
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of biomolecules rely on quasi-rigid domain decomposition [164, 165, 166].
Specifically, Polles et al. [167] employ a quasi-rigid domain decomposition of
several viral capsids to single out their fundamental mechanical blocks; once
validated on a dataset of known viruses, this method is used to formulate
predictions about structures whose mechanical subunits had not been char-
acterised yet. Following a similar approach [168], Morra et al. study MD
trajectories of three representatives of the heat shock protein 90 (Hsp90)
family, simulated with and without substrates. They observe that, when
the protein is partitioned in as few as three quasi-rigid domains, the relative
rigid-like movements of the latter can account for a significant fraction of the
system’s fluctuations, thus allowing to pinpoint two optimal axes for rigid
rotations of the domains. In turn, the position of these hinges was shown
to correspond to two interfaces: while the biological importance of one of
them had already been assessed, the other one was hitherto unknown, thus
highlighting a potentially druggable functional site.

These remarkable results prove that it is possible to exploit CG method-
ologies to perform a detailed analysis of the fundamental aspects of an atom-
istic system. Nevertheless, it is important to notice how these approaches
rely on the examination of mechanical properties of the system of interest;
although they certainly represent simple, intuitive variables to look at, such
features do not seem to be as fundamental as the underlying problem they
are applied to. Examples of more profound approaches exist that aim at
optimising the coarse-grained representation of biomolecules in a system-
atic way [169, 170, 171, 172]. Delvenne et al. [169] rank CG mappings
according to the quality of the corresponding partitioning induced on the
protein graph. Chen and Habeck [170] propose a Bayesian procedure that
extracts the optimal representation from a single macromolecule or cryo-EM
map. Boninsegna et al. [171] combine time-averaged diffusion maps [173]
and Markov State Models [174] to select groups of atoms that are mutually
close (coherent) over a conformational basin. Wang and Gómez-Bombarelli
[172] employ a variational autoencoder to learn a set of latent CG variables
(that is, a CG representation) from the atomistic configuration: in the de-
coding process the former aims at reconstructing the latter in a deterministic
procedure.

All the works showcased here reflect the emergence of a profound need in
the computational biophysics community: that of a strategy to build a faith-
ful simplified representation of a molecular system in an entirely unsupervised
manner. In standard coarse-graining recipes, such reduced descriptions must
be equipped with proper effective interactions in order to generate data. How-
ever, the impressive development of techniques to enhance the performances
of atomistic simulations is making this necessity less and less pressing. In
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contrast, the huge amount of high-resolution data produced at each MD run
these days might benefit from the capacity of CG models to serve as powerful
instruments to make sense of the data.

The next chapter focusses on the mapping entropy, a quantity that aims at
answering to these needs by considering both structural and energetic proper-
ties of a coarse-grained biomolecule at the same time. Rigorous information-
theoretical calculations allow one to compare these properties to those of the
high-resolution system, and to search for the CG reduced representation that
adheres as much as possible to the atomistic one.



Chapter 3

Mapping Entropy

In the past section I have discussed a number of different coarse-grained rep-
resentations employed in the last decades to generate low-resolution models
of proteins, highlighting the few existing methods proposed to optimize their
choice. Let me now focus on a quantity, the mapping entropy, capable of
measuring the amount of information contained in a simplified description of
a biomolecule. In the first part of the chapter I illustrate how a series of con-
trollable approximations allows one to evaluate this information-theoretical
function from a fully atomistic simulation of a biomolecule. The mapping
entropy is then used as the driving observable of an optimisation process that
leads to the identification of the most informative representations of a pro-
tein. This chapter must be considered a personal re-elaboration of Ref. [24],
that should be employed as the main reference.

In the first chapter of this thesis (see Sec. 1.2.1.4), the relative entropy
and its properties were extensively discussed. Let me recapitulate the crucial
concepts about this complex mathematical object:

Srel = kB ×DKL(pr(r)||Pr(r|U))

= kB

∫
dr pr(r) ln

[
pr(r)

Pr(r|U)

]
. (3.1)

Here the probability Pr(r|U) is considered to be equal to that defined by
Rudzinski and Noid in Ref. [57], namely

Pr(r|U) =
pr(r)

pR(M(r))
PR(M(r)|U), (3.2)

where pR(M(r)) = e−βU
0(M(r))

ZU0
is the probability assigned by the MB-PMF

to the configuration M(r). Putting this quantity into Eq. 3.1 one can ob-
tain Eq. 1.40, that is, the expression of the relative entropy over the CG

45
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conformational space:

Srel = kB

∫
dR pR(R) ln

(
pR(R)

PR(R|U)

)
. (3.3)

Importantly, the atomistic weight at the numerator of the logarithm in
Eq. 3.1 cancels out and Eq. 3.3 quantifies the distance, in the Kullback-
Leibler sense, between the MB-PMF and the approximate CG potential U .
In other words, this functional assesses the quality of the effective CG inter-
actions introduced among the CG sites in place of the exact MB-PMF.

The objective of a genuine bottom-up coarse-graining procedure should
be the minimisation of the distance between the effective model and a first
principles theory, in our case a fully atomistic, fine-grained description of
the system. Given that a CG model is the result of a combination of a
mapping M and some effective interactions, the quality of the former should
be somehow measured. In this context Eq. 3.3 is of limited help, as the
relative entropy vanishes when U coincides with the MB-PMF, irrespectively
of the selected mapping. In other words, different CG mappings can give rise
to different many-body potentials of mean force (Eq. 1.8) and Srel can only
measure the similarity between the chosen, mapping-dependent MB-PMF
and the approximate CG model.

Starting from Eq. 3.1, it is useful to keep track of the atomistic weight by
decomposing the relative entropy in two, distinct Kullback-Leibler distances:

Srel = kB

∫
dr pr(r) ln

[
pr(r)

Pr(r|U)

]
= kB

∫
dr pr(r) ln

[
V n

V N

pr(r)

PR(M(r)|U)

]
−kB

∫
dr pr(r) ln

[
V n

V N

pr(r)

pR(M(r))

]
= Stot − Smap (3.4)

where n and N denote the number of atomistic and CG sites, respectively.
Here Stot represents a KL divergence between the atomistic probability and
the CG one, that is, the most comprehensive measure of distance one can
think of in bottom-up CG. Indeed, it depends both on the mapping and on
the approximate CG potential U . The second term in Eq. 3.4, Smap, is the
mapping entropy of the CG model, which measures the distance between the
MB-PMF and the AT reference probability density, thus being completely
independent of the choice of the CG potential U .

The sign of Smap differs from the one employed in the works of Noid and
coworkers [57, 54, 56], being consistent with the convention introduced by
Shell [22] (Eq. 1.32). On one hand, this enables the mapping entropy to be



47

directly related to a loss of information in the KL sense—a positive KL diver-
gence implies a loss of information. On the other hand, it allows the relative
entropy in Refs. [57, 54] to be considered a difference of information losses—
those of U and U0, see Eq. 3.4—calculated with respect to the atomistic
system, so that the vanishing of Srel for U = U0 in Refs. [57, 54] effectively
amounts at recalibrating the zero of the relative entropy as originally defined
in Ref. [22].

It is important to notice that the mapping entropy introduced in Eq. 3.4
can be related to the entropic component of the MB-PMF, S0 (Eq. 1.12)[56]:

Smap = kB

∫
dr pr(r) ln

[
V n

V N

pr(r)

pR(M(r))

]
= −

∫
dR pR(R) S0(R) (3.5)

A mapping that possesses zero mapping entropy would thus imply, see Eq. 1.12,
that the entropic component of the MB-PMF is bound to vanish for each CG
configuration R, therefore eliminating the temperature-dependence of U0 and
making the latter transferable in temperature.

Starting from the third line of Eq. 3.4, the mapping entropy can be further
decomposed in two terms:

Smap = −kB
∫
dr pr(r) ln

[
V N

V n
Ω1(M(r))

]
+kB

∫
dr pr(r) ln

[
pr(r)

p̄r(r)

]
. (3.6)

Here Ω1(M(r)), see Eq. 1.29, is the number of atomistic configurations asso-
ciated to the CG configuration M(r).

The mapping entropy introduced here in Eqs. 3.4 and 3.6 differs substan-
tially from the object introduced by Shell in Ref. [22] (Eq. 1.32); in fact, when

considering Pr(r|U) = P1r(r|U) = PR(M(r)|U)
Ω1(M(r))

as in Eq. 1.29, the mapping en-
tropy reduces to a canonical average of the number of atomistic microstates
mapping onto the same CG macrostate.

In the decomposition of the mapping entropy presented in Eq. 3.6, the first
term possesses a purely geometrical origin, representing how well the chosen
mapping function partitions the atomistic states inside CG configurations.
The second, more interesting term accounts for the smearing of probabilities
that is inherent to the process of coarse-graining. It is still a KL divergence, in
which the atomistic reference density is compared to its smeared counterpart
p̄r(r):

p̄r(r) =
pR(M(r))

Ω1(M(r))
. (3.7)
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Mathematically speaking, Eqs. 3.6 and 3.7 do not provide any substantial
simplification to the original definition of the mapping entropy, since I only
divided and multiplied by the factor Ω1(M(r)). Nevertheless, this operation
is necessary to understand the nature of this quantity; assume that there
exists an observer living in the CG configurational space, located on the
CG macrostate R. It is known that the probability weight of sampling R
is given by the MB-PMF. Now imagine that the observer is asked to esti-
mate the probability weight associated to the AT microstates that map onto
R, which live in the reference configurational space. The observer does not
possess any detailed information about this high-resolution space, but only
a cumulative property (pR(R)): he will conclude that all the atomistic mi-
crostates mapping on R display the same weight, namely the CG probability
divided by the number of states Ω1(M(r)), which is exactly p̄r(r). In doing
so, however, the observer is neglecting the fact that microscopic probabili-
ties are indeed distinct, and even if two microstates map onto the same CG
macrostate, the associated Boltzmann weights can be substantially different.

The first, geometric term in Eq. 3.6 does not vanish in general [57]. How-
ever, a simple prescription on the functional form of the mapping allows to
set it to zero; indeed, the first logarithm in Eq. 3.6 is identically zero if the
mapping takes the form of a decimation [175, 176]:

MI(r) = σiri, σi = 1 for one I, 0 otherwise, (3.8)
n∑
i=1

σi = N.

In this context, only a subset of the atoms of the system is considered, and
the remaining ones are integrated out. A simple example of this rule is
provided by atomically detailed implicit solvent models [31, 84]. According
to this rule, the number of configurations mapping to the same CG one is:

Ω1(M(r)) = V n−N , (3.9)

which immediately leads to a simplified expression for the mapping entropy,
where only the smearing of probabilities is present:

Smap = kB

∫
dr pr(r) ln

[
pr(r)

p̄r(r)

]
. (3.10)

This quantity is always non-negative and vanishes only if, for each CG
macrostate R, the atomistic configurations r that map onto it have the
same probability. In the canonical ensemble this is equivalent to require
their isoenergeticity, i.e., they must possess the same value of the potential
energy.
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A different way of retrieving the mapping entropy involves the non-ideal
configurational entropies of the high and low-resolution systems. It is well-
known that a system of n free, non-interacting particles possesses an entropy
given by the Boltzmann formula:

Sb = −nkB
∫
V

dr1
1

V
ln

(
1

V

)
= kB ln (V n) , (3.11)

which is the sum of the ideal configurational entropies of the n particles.
Switching on some interactions between the particles causes a decrease in
entropy, as statistical dependencies among the particles are introduced and
more information about the system is readily available. In other words,
the probability of sampling a configuration r is not uniform, i.e., maximally
entropic, and equal to 1

V n
, but rather becomes the usual Boltzmann weight

of Eq. 1.4. The associated entropy S, also called Gibbs entropy (Eq. 1.38),
is always lower than its uniform counterpart [177]:

S = −kB
∫
dr pr(r) ln(pr(r)) (3.12)

The integral extends over the volume V n as usual. The non-ideal configura-
tional entropy measures the gain in information guaranteed by introducing
interactions with respect to the free-particles system:

sr = −kB
∫
dr pr(r) ln(V npr(r)) (3.13)

When, given a mapping, interactions in a CG model are described by the MB-
PMF, one can define the non-ideal configurational entropy of the atomistic
system over the CG coordinates:

sR = −kB
∫
dR pR(R) ln(V NpR(R)), (3.14)

where pR(R) is compared to the uniform distribution in the CG space ( 1
V N

).
By inserting the known expression for pR(R) (Eq. 1.7) into the previous
equation:

sR = −kB
∫
dR

[∫
dr pr(r)δ(M(r)−R))

]
ln(V NpR(R))

= −kB
∫
dr pr(r) ln(V NpR(M(r))), (3.15)
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it is possible to show that the difference between the two information gains
in Eqs. 3.15 and 3.13 is:

sR − sr = kB

∫
dr pr(r) ln

(
V n−Npr(r)

pR(M(r))

)
, (3.16)

and by virtue of Eq. 3.7 and 3.9, one finally obtains

sR − sr = Smap, (3.17)

further highlighting that the mapping entropy represents the difference in
information content between the distribution obtained by reducing the level
of resolution at which the system is observed, pR(R), and the original, mi-
croscopic reference, pr(r).

The mapping entropy provides an important link between a fully detailed
model and a reduced description of it. More specifically, this mathematical
object provides a natural tool to measure the inherent loss of information
that arises due to the process of dimensionality reduction. Still, the mapping
entropy presented in Eq. 3.10 cannot be explicitly calculated from a compu-
tational perspective. Indeed, the Kullback-Leibler divergence is a canonical
average of the logarithm of two high-dimensional probability distributions,
which is extremely hard to calculate except for very simple systems. In the
next section I investigate the nature of this canonical average, showing that
it can be approximated by a much simpler expression.

3.1 Explicit calculation of the mapping en-

tropy

In the last section I discussed how the mapping entropy of Eq. 3.10 vanishes
if and only if the atomistic configurations mapping onto each CG macrostate
possess the same potential energy. Let me make this statement more evident
by explicitly writing the probability distributions inside the logarithm:

Smap = −kB
∫
dr pr(r) ln

[
p̄r(r)

pr(r)

]
= −kB

∫
dr pr(r) ln

[
z × eβu(r) ×

∫
dr′e−β(u(r′))δ(M(r′)−M(r))

z × Ω1(M(r))

]
= −kB

∫
dr pr(r) ln

[∫
dr′e−β(u(r′)−u(r))δ(M(r′)−M(r))∫

dr′δ(M(r′)−M(r))

]
(3.18)

so that if u(r′) = u(r) ∀ r′ s.t. M(r′) = M(r), the argument of the logarithm
is unity and the right-hand side of Eq. 3.18 vanishes. Here, for the sake
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of clarity, the mapping entropy is expressed with a minus sign due to the
inversion of numerator and denominator inside the logarithm.

It is possible and convenient to express Smap as an integral over the CG
configuration space by introducing a delta 1 =

∫
dR δ(M(r)−R) in Eq. 3.18:

Smap = −kB
∫
dR

∫
dr pr(r)δ(M(r)−R)× (3.19)

ln

[∫
dr′e−β(u(r′)−u(r))δ(M(r′)−R)∫

dr′δ(M(r′)−R)

]
=

∫
dR pR(R)Smap(R), (3.20)

The total mapping entropy becomes an integral over the CG configurational
space, where each term is weighted with the probability determined by the
MB-PMF. The mapping entropy of a CG macrostate is then given by

Smap(R) = − kB
pR(R)

∫
dr pr(r)δ(M(r)−R)× (3.21)

ln

[∫
dr′e−β(u(r′)−u(r))δ(M(r′)−R)∫

dr′δ(M(r′)−R)

]
.

The integral in Eq. 3.21 runs over the microscopic configurations r and, inside
the logarithm, their energy is compared to that of all the other configurations
r′, provided that they map onto the (same) coarse-grained macrostate R. In
this way, all pairs of energies are considered.

It is useful to introduce another identity on the energies 1 =
∫
dU ′δ(u(r′)−

U ′), that fixes the energy of configuration r′. This quantity can be inserted
in the logarithm of Eq. 3.21 to switch from a configurational to an energetic
integral:

ln

[∫
dr′e−β(u(r′)−u(r))δ(M(r′)−R)∫

dr′δ(M(r′)−R)

]
= ln

∫
dU ′P (U ′|R)e−β(U ′−u(r)),

(3.22)
where

P (U ′|R) =

∫
dr′δ(M(r′)−R)δ(u(r′)− U ′)∫

dr′δ(M(r′)−R)
(3.23)

is the microcanonical (unweighted) conditional probability of possessing en-
ergy U ′ given that the CG macrostate is R. It is possible to write it as
Ω1(U ′,R)/Ω1(R), that is, the multiplicity of atomistic configurations such
that M(r) = R and u(r′) = U ′ normalised by the multiplicity of configura-
tions that map to R. A second identity 1 =

∫
dUδ(u(r)−U) on the energies
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provides the following expression for Smap(R):

Smap(R) = −kB
∫
dr

pr(r)

pR(R)
δ(M(r)−R)×

ln

[∫
dU ′P (U ′|R) exp[−β(U ′ − u(r))]

]
= −kB

∫
dU ln

[∫
dU ′P (U ′|R) exp[−β(U ′ − U)]

]
×∫

dr
pr(r)

pR(R)
δ(M(r)−R)δ(u(r)− U). (3.24)

The last integral in Eq 3.24, here dubbed Pβ(U |R),

Pβ(U |R) =

∫
dr

pr(r)

pR(R)
δ(M(r)−R)δ(u(r)− U) (3.25)

is now the canonical—i.e., Boltzmann-weighted—conditional probability of
possessing energy U provided that M(r) = R, namely pR(U,R)/pR(R). One
thus obtains:

Smap(R) = −kB
∫
dUPβ(U |R)× ln

[∫
dU ′P (U ′|R) exp[−β(U ′ − U)]

]
= −kB ln

[∫
dU ′P (U ′|R) exp[−β(U ′ − 〈U〉β|R)]

]
,

where

〈U〉β|R =

∫
dUPβ(U |R)U (3.26)

is the canonical average of the microscopic potential energy over the CG
macrostate R. A direct calculation of Smap(R) starting from the last line
of Eq. 3.26 requires to perform an average over the microcanonical distribu-
tion P (U ′|R), which is not straightforwardly accessible in NVT simulations.
However, there is a connection between P (U |R) in Eq. 3.23 and Pβ(U |R) in
Eq. 3.25: if one writes pR(R) as

∫
dU ′ exp[−β(U ′)]Ω1(U ′,R) and pR(U,R)

as exp[−β(U)]Ω1(U,R), standard reweighing provides

P (U |R) =
Pβ(U |R) exp[βU ]∫
dU ′Pβ(U ′|R) exp[βU ′]

. (3.27)

Eq. 3.27 enables one to convert the microcanonical average in Eq. 3.26 to a
canonical one, so that

Smap(R) = kB ln

[∫
dU ′Pβ(U ′|R) eβ(U ′−〈U〉β|R)

]
. (3.28)
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In principle, this equation can be employed to calculate the mapping entropy
of a coarse-grained macrostate R. Nevertheless, the average of the exponen-
tial function is usually difficult to compute from a numerical perspective. It
is indeed common practice to resort to a cumulant expansion of the logarithm
of the exponential average of an observable y [178]:

ln(E[αy]) =
∑
i

kiα
i

i!

= αE[y] +
α2

2
(E[y2]− E[y]2) + ... (3.29)

where α is a constant and ki is the i-th cumulant of the expansion, which is
equal to E[y] and E[y2]−E[y]2 for i = 1 and i = 2, respectively. Truncating
the expansion of Eq. 3.28 to the second order one obtains

Smap(R) ' kB
β2

2
〈(U − 〈U〉β|R)2〉β|R. (3.30)

Again, the mapping entropy of a CG macrostate is zero if all the microscopic
configurations mapping onto it possess the same potential energy. In the
real cases this is not true, and the information loss due to the choice of the
mapping is proportional to the variance of the energies of these microstates.

Inserting Eq. 3.30 into Eq. 3.19, one obtains the following expression for
the total mapping entropy:

Smap ' kB
β2

2

∫
dR pR(R)〈(U − 〈U〉β|R)2〉β|R, (3.31)

where each configuration-dependent component is properly weighted accord-
ing to the MB-PMF.

It is important to highlight that the expression obtained in Eq. 3.30 res-
onates with a number of articles by Noid and coworkers [53, 93, 56]. In
particular, they show how it is possible to put the energy fluctuation inter-
nal to each CG macrostate (Eq. 3.30) in relation with the atomic specific
heat at constant volume, cV , defined as:

cV =
∂

∂T
〈u(r)〉 =

σ2
u

kBT 2
, (3.32)

where σ2
u is the variance of the atomistic potential over the high-resolution

configurational space:

σ2
u =

∫
V n
dr pr(r) (u(r)− ū)2 , (3.33)
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assuming the explicit temperature-independence of the atomistic potential
u. In Ref. [93] Lebold and Noid show how this variance can be decomposed
in two terms once the energetic component of the MB-PMF of the coarse-
grained system is explicitly introduced:

σ2
u =

∫
V N

dR pR(R)
(
E0(R)− ū

)2
+

∫
V N

dR pR(R)σ2
u|R, (3.34)

where

σ2
u|R =

∫
V n
dr

pr(r)δ(M(r)−R)

pR(R)

(
u(r)− E0(M(r))

)2
. (3.35)

It is important to note that the mixed terms in Eq. 3.33 containing (u(r)−
E0(M(r))) can be safely neglected since E0(M(r)) = 〈u(r)〉R (Eq. 1.11).
The overall fluctuations of the atomistic potential are divided in the fluc-
tuations of the energetic component of the MB-PMF, E0, plus a term that
accounts for the internal deviations of u with respect to E0 within each CG
macrostate. The latter quantity measures the average energetic discrepancy
between E0(R) and u(r) for all atomistic microstates r such that M(r) = R.

σ2
u|R is related to the coarse-grained configuration-dependent specific heat:

CU0(R) =

(
∂E0

∂T

)
R,V

= T

(
∂S0

∂T

)
R,V

(3.36)

=
σ2
u|R

kBT 2
(3.37)

Realising that Smap(R) ' σ2
u|R

kBT 2 , it is possible to obtain the following approx-
imate relation between Smap and CU0(R):

CU0(R) ' 2Smap(R). (3.38)

The atomic specific heat at constant volume cV is constant at a given state
point, and it can be decomposed in two terms, as showed in Eq. 3.34; an
optimal mapping such that Smap(R) = 0 ∀R is able to concentrate the overall
contribution to cV into the inter-macrostate energetic fluctuations (first term
of Eq. 3.34), minimizing the intra-macrostate ones (second term of 3.34) and
eliminating the temperature dependence of the MB-PMF, (Eqs. 1.12 and
3.36).

Noid and coworkers employed those concepts from classical thermody-
namics to develop a dual potential approach [53] that introduces a novel
ingredient in a bottom-up CG procedure to enforce the accurate modelling
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of the atomistic energetics, and to predict the temperature-dependence of the
low-resolution model. Given a CG approximate potential U , built so as to
approximate the MB-PMF U0 at a fixed state point, it is not guaranteed that
U reproduces the underlying atomistic energetic properties [56]. Therefore,
Lebold and Noid propose an energy-matching functional to construct an en-
ergetic operator E, explicitly parametrised to variationally approximate E0

through the minimisation of an appropriate functional:

χ2
E[E] = 〈|E(M(r))− u(r)|2〉 (3.39)

This term can be further decomposed in two separated averages:

χ2
E[E] = 〈|〈u(r)〉R − u(r)|2〉+ 〈|E(M(r))− 〈u(r)〉R|2〉 (3.40)

Minimising χ2
E[E] on E(R) for a given, fixed mapping as in Refs. [53, 93] is

tantamount to minimising the second term of Eq. 3.40, with the objective
of reducing the error introduced by approximating 〈E0〉β|R through E(R).
However, a comparison of Eqs. 3.31 and 3.40 displays that Smap coincides,
up to a multiplicative factor, with the first term of Eq. 3.40. Critically, the
latter depends only on the mapping M and would be nonzero also in the case
of an exact parametrisation of E, that is, if E(R) ≡ 〈E0〉β|R. The approach
illustrated here goes in a direction complementary to that of Refs. [53, 93], as
the ultimate objective of this chapter consists of identifying those mappings
that minimise the one contribution to χ2[E] that is due to, and depends only
on, the CG representation M.

3.2 Numerical implementation

With the exception of the cumulant expansion in Eq. 3.30, the calculations
performed in the previous section are exact. I now show how the map-
ping entropy can be practically computed, provided that a certain amount
of information about the reference system is available. The latter ultimately
consists in a finite set of L fully atomistic equilibrium configurations sampled
from the canonical ensemble; these microstates must be mapped onto a cer-
tain number of CG macrostates K. In this context, the discretized mapping
entropy S̃map reads:

S̃map = kB
β2

2

K∑
i=1

pR(Ri)〈(U − 〈U〉β|Ri
)2〉β|Ri

, (3.41)
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where the sum runs over each CG configuration and each factor 〈(U −
〈U〉β|Ri

)2〉β|Ri
is weighted with a discretized probability pR(Ri):

pR(Ri) =

∫
dr pr(r)δ(M(r)−Ri) '

1

L

L∑
j=1

δ(M(rj)−Ri), (3.42)

which is exactly the fraction of atomistic configurations j mapping onto Ri.
It is important to emphasise that this is valid as long as all the atomistic mi-
crostates are sampled according to the Boltzmann statistics, which amounts
at requiring that the simulations are carried out in the canonical ensemble.

In the numerical implementation of the method the MD trajectories of
three candidate proteins are considered. They are first equilibrated in the
NVT ensemble making use of a stochastic velocity rescaling thermostat [179]
with a coupling constant τT = 0.1 ps. Then, a Parrinello-Rahman barostat
(τP = 2 ps) [180] is added to the thermostat to set the pressure of the system
in a NPT equilibration. Finally, the proteins are simulated in the NVT
ensemble for 200 nanoseconds at 300K with the Gromacs 2018 package
[181, 37] and the Amber99sb-ildn force field [182], employing a time step
of 2 femtoseconds. The LINCS algorithm is used to constrain all the covalent
bonds involving hydrogen atoms and long-range electrostatics are treated by
means of the Particle Mesh Ewald method [183].

Here I proceed to a description of the three candidate proteins, focusing
on their biological role and on the qualitative description of their simulation.
[TAM] A recently released [184] 31-residue tamapin mutant (PDB code
6D93). Tamapin is the toxin produced by the Indian red scorpion. It fea-
tures a remarkable selectivity towards a peculiar calcium-activated potassium
channel (SK2), whose potential use in the pharmaceutical context has made
it a preferred object of study during the past decade [185, 186]. Throughout
the simulation almost every residue is highly solvent-exposed. Side chains
fluctuate substantially, thus giving rise to a notable structural variability.
[AKE] Adenylate Kinase (PDB code 4AKE). It is a 214 residue-long phos-
photransferase enzyme that catalyses the interconversion between adenine
diphosphate (ADP) and monophosphate (AMP) and their energetically rich
complex, adenine triphosphate (ATP) [187]. It can be subdivided in three
structural domains, CORE, LID, and NMP [188]. The CORE domain is
stable, while the other two undergo large conformational changes. Its cen-
tral biochemical role in the regulation of the energetic balance of the cell
and relatively small size, combined with the possibility to observe confor-
mational transitions over timescales easily accessible by plain MD [189],
make it the ideal candidate to test and validate novel computational methods
[190, 191, 158, 192]. During the MD simulation the protein displays many
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rearrangements in the two motile domains, which occur to be quite close at
many points. Nevertheless, the protein does not undergo a full open↔ closed
conformational transition.
[AAT] α−1 antitrypsin (PDB code 1QLP). With 5934 atoms (372 residues),
this protein is almost two times bigger than adenylate kinase. α − 1 an-
tytripsin is a globular biomolecule and it is well known to exhibit a confor-
mational rearrangement over the timescales of the minutes [193, 194, 195].
In the course of the simulation the molecule experiences fluctuations par-
ticularly localised in correspondence of the most solvent-exposed residues.
The protein bulk appears to be very rigid, and there is no sign of major
conformational rearrangements.

The energies contained in Eq. 3.41 correspond to the atomistic intramolec-
ular potential energy of the protein, thus neglecting the solvent-solvent and
solvent-protein interaction terms. This simplification is formally wrong, as
one should consider the full system energy in the calculation, the vast ma-
jority of which is due to the solvent. Nevertheless, I deem it appropriate
to neglect such contributions since the relative fluctuations of the overall en-
ergy in a MD simulation of a protein at room temperature are negligible with
respect to those of the intramolecular energy.

3.2.1 Definition of coarse-grained macrostates

In order to construct K CG macrostates from L microstates observed with
coarse-grained glasses, it is necessary to introduce a notion of similarity be-
tween the latter. In the context of protein structures, the most intuitive
measure of pairwise similarity is the Root Mean Squared Deviation (RMSD):
given two structures x and y of the same molecule with n atoms, the RMSD
between them is defined as:

RMSD(x,y) =

√√√√ 1

n

n∑
i=1

(xi −RT yi)2, (3.43)

whereRT is the roto-translation that superimposes y to x according to some
optimality criterion, thus minimizing the overall displacement. Among the
several methods to align protein structures, I employ the one from Kabsch
[196, 197]. The CG RMSD between two atomistic structures filtered by a
decimation mapping M (Eq. 3.8) with N sites is immediately given by

RMSDCG(M(x),M(y)) =

√√√√ 1

N

N∑
I=1

(MI(x)−RT CGMI(y))2. (3.44)
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Here the sum runs over the retained CG sites and RT CG is a rigid roto-
translation that superimposes the two coarse-grained structures, without
taking into account the presence of the removed degrees of freedom.

Once a notion of similarity between coarse-grained configurations of an
atomistic trajectory is defined, it is necessary to specify a prescription to
lump them together to form CG states. This calls for the introduction of
a clustering algorithm that, upon being applied on the pairwise RMSDCG

matrix, outputs the set of desired K CG configurations, each one associated
to a certain subset of the L microstates.

I here employ the UPGMA algorithm with average linkage [198], a hier-
archical clustering procedure that iteratively aggregates configurations in a
dendrogram according to the following strategy:

1. At the first step, the minimum of the RMSDCG similarity matrix is
retrieved and the two corresponding entries x, y (the leaves) are merged
together in a new cluster k;

2. k is placed in the middle of its two constituent, meaning that the sim-
ilarity matrix is updated in order to account for the presence of the
newly formed cluster d(k, z) = (d(x, z) + d(y, z))/2, where z is another
structure;

3. Steps 1. and 2. are iterated until one root is found. The distance
among clusters k and w is generalised as follows:

d(k, w) =
∑
i∈k

∑
j∈w

d(k[i], w[j])

|k| × |w| , (3.45)

where |k| and |w| are the populations of the clusters and k[i] and w[j]
their elements;

The choice falls on this clustering algorithm because it is robust, completely
deterministic and widely applied. It is important to emphasize that different
versions of the method exist, which differ notably in the definition of the
inter-cluster distance. As an example, in the complete linkage hierarchical
clustering the distance between two clusters (Eq. 3.45) is defined as

d(k, w) = max
i∈k,j∈w

d(k[i], w[j]), (3.46)

namely the maximum value of the distance among their constituent elements.
In the context of this calculation, the average linkage criterion seems more
appropriate, since the complete linkage prescription induces a non-trivial



59

distribution in the space of frequencies, which could introduce an additional
bias in the computation of the mapping entropy.

The scipy [199, 200] implementation [201, 202] of the method is employed,
which scales with O(L2logL) with the number of atomistic configurations L.

Once the dendrogram is obtained, the actual division in clusters can be
retrieved in two different ways; in the first approach, a real number is em-
ployed as a threshold on the inter-cluster distance: when the minimum of
the reduced distance matrix exceeds this value, the agglomerative procedure
stops and the current clusters are saved. In the second strategy, the number
K of clusters is specified a priori, and the dendrogram is cut when there are
exactly K leaves. The latter criterion is selected for a practical reason con-
nected to the minimisation of the mapping entropy, as the first prescription
pushes the optimisation procedure to create as many clusters as possible, in
order to minimize the energy variance inside them. This is due to the fact
that a CG cluster containing only one microstate possesses an energy vari-
ance equal to zero and, consequently, zero mapping entropy. Since the aim
is to minimise the impact of such flaw, which is entirely due to the finiteness
of the sampling, let me fix the number of CG macrostates.

The choice of K has an impact on the overall value of the mapping en-
tropy. When K << L, few CG configurations are identified, and the energy
variance of the microstates mapping onto them is non-negligible. Instead, if
K has the same order of magnitude of L, few microstates map onto the same
CG configuration, and their energetic displacement is expected to be small.
In the first scenario, a low value of mapping entropy is reached by CG map-
pings that best account for large energetic fluctuations. In the second case,
S̃map will be in general very small, favouring those reduced representations
able to discriminate structures possessing tiny differences in energy.

This aspect is not investigated in detail here, but rather I choose to
employ five, evenly spaced values of K in the definition of an ”average”
mapping entropy:

Σ =
1

5

∑
K∈K

S̃map(K) (3.47)

The set of values K is reported in Table 3.1. In general, the number of
CG clusters ranges between 1

500
and 1

100
of the original number of atomistic

configurations.

3.3 Mapping optimisation

In the previous subsection I have introduced the necessary ingredients to
calculate the mapping entropy provided a set of atomistic configurations and
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Protein K
Tamapin {34, 48, 62, 76, 91}

Adenylate Kinase {29, 58, 87, 116, 147}
α− 1 antytripsin {7, 29, 51, 73, 96}

Table 3.1: number of clusters employed to average the mapping entropy
(Eq. 3.47).

Protein Nα Nαβ Nbkb Nheavy

Tamapin (TAM) 31 59 124 230
Adenylate Kinase (AKE) 214 408 856 1656
α− 1 antytripsin (AAT) 372 723 1488 2956

Table 3.2: Values of Nα, Nαβ, Nbkb and Nheavy (see text) for each analysed
protein.

the associated intramolecular potential energies. It is interesting to employ
this observable to explore and rank the set of coarse-grained mappings of a
protein. Unfortunately, the overall number of decimation mappings that can
be applied to biomolecules is astronomical even for the smallest peptides:

Θ =
n∑

N=1

n!

N ! (n−N)!
= 2n − 1. (3.48)

The sum is carried on over the number of CG sites N and the case with
N equal to 0 is excluded. Two approximations can be introduced to reduce
the number of mappings that are the subject of the analysis; first, only the
heavy atoms of the protein are employed as putative CG sites (n = Nheavy),
thus completely neglecting the presence of the hydrogen atoms, which are
always integrated out; second, the exploration is restricted to three fixed,
chemically-relevant values of N for each protein: (i) Nα, i.e., the number of
Cα atoms of the structure (equal to the number of amino acids); (ii) Nαβ,
the number of Cα and Cβ atoms; and (iii) Nbkb, which results from counting
all the heavy atoms belonging to the main chain of the protein. The values
of N for mappings (i)-(iii) in the case of TAM, AKE and AAT are listed in
Tab. 3.2, together with the corresponding Nheavy.

Even limiting the investigation to the aforementioned subset of CG map-
pings, an exhaustive exploration of it is not feasible. As an example, the
number of reduced representations of AAT that contain half of the heavy
atoms (Nheavy = 2956) is of the order of 10890. Hence, it is necessary to
resort to an approximate exploration of the space of reduced representations,
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which is composed by two subsequent steps; at first, a set of 500 CG map-
pings is generated by random sampling, and the corresponding values of Σ
are calculated, thus constructing a baseline, unbiased distribution to which
one can compare “peculiar” values of mapping entropy. Then, a Monte Carlo
Simulated Annealing [203, 204] minimisation of Σ is conducted to retrieve
the reduced representations that decrease as much as possible the loss of
information with respect to the fully detailed atomistic system. Specifically,
for each protein of interest and value of N , 48 independent optimisation runs
are performed, i.e., minimisations of the mapping entropy with respect to the
CG site selection; during these optimisation processes, the CG representation
characterised by the lowest value of Σ in each run is saved, thus creating a
pool of optimised representations.

The protocol is initiated with the generation of a mapping such that the
overall number of retained sites is equal to N . Then, at each SA step, the
following operations are performed:

1. swap a retained site (σi = 1) and a removed site (σj = 0) in the
mapping;

2. compute a distance matrix among CG configurations using the RMSDCG

(see Eq. 3.44);

3. apply a clustering algorithm on the RMSDCG matrix in order to identify
the CG macrostates R;

4. compute Σ using Eqs. 3.47 and 3.41.

Once the new value of Σ is obtained, the move is accepted/rejected using
a Metropolis-like rule. The overall workflow of the algorithm is schemati-
cally illustrated in Fig. 3.1. It is important to underline that, in general,
Monte Carlo Simulated Annealing is not the most efficient algorithm for an
optimisation; this technique is selected since the variable of interest, i.e.,
the mapping, is a discrete object, which renders gradient-based approaches
complicated to implement. Moreover, the non-negligible computational cost
of a single computation of Σ makes more exhaustive approaches, such as
Wang-Landau sampling [205, 206], too expensive in terms of CPU time.

For the sake of the accuracy of the optimisation, the more exhaustive the
sampling the better, hence the number of sampled atomistic configurations
should be at least of the order of the tens of thousands. However, in that case
step 2 requires to align a huge number of structure pairs for each proposed
CG mapping, which in turn would dramatically slow down the entire process.
This problem is circumvented performing a reasonable approximation in the
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Figure 3.1: Schematic representation of the algorithmic procedure employed
to minimise the mapping entropy, the latter being calculated by means of
Eq. 3.47. The full similarity matrix is computed once every TK steps, while in
the intermediate steps the approximation of Eq. 3.49 is applied. TK depends
both on the protein and on N . TMAX is the number of simulated annealing
steps, TMAX = 2× 104. Image taken from Ref. [24].

calculation of the RMSDCG matrix, that is to consider the Kabsch alignment
between two structures constant for a certain number of Simulated Annealing
steps TK . It is indeed intuitive to expect negligible variations in the Kabsch
alignment between two CG structures differing by a pair of swapped atoms.
This assumption is particularly appealing from the point of view of speed
and memory, since the expensive and relatively slow alignment procedure
produces a result (a rotation matrix) that can be stored with negligible use
of resources. After TK steps, the full Kabsch alignment is applied again.

This approximation results in a substantial reduction of the number
of operations that must be executed at each Monte Carlo step. At first,
given the initial random mapping operator M0, the overall RMSDCG ma-
trix (Eq. 3.44) is computed between every pair of aligned mapped struc-
tures, RMSDCG(M0(x),M0(y)), where x and y run over the MD configura-
tions and RT CG

0 is the corresponding optimal roto-translation (see Eq. 3.44).
Then, for all moves M → M′ within a block of TK Monte Carlo steps, M
and M′ only differing in a pair of swapped atoms, this quantity is updated
with the simple rule

MSDCG(M′(x),M′(y)) = MSDCG(M(x),M(y))−
1

N
MSD(xs,ys) +

1

N
MSD(xa,ya), (3.49)
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where s and a are the removed (substituted) and added atom, respectively,
and MSD is the Mean Squared Deviation. Importantly, all the MSD calcu-
lations employ RT CG

0 to superimpose the structures.

This approach clearly represents an approximation to the correct proce-
dure; it has to be emphasised, however, that the impact of such approxima-
tion is increasingly perturbative as the size of the system grows. Furthermore,
the computational gain that the described procedure enables is sufficient to
counterbalance the fact that the exact protocol would be so inefficient to
make the optimisation impossible when the number of sampled configura-
tions exceeds the few thousands. For example, choosing TK = 1000 for AAT
with N = Nbkb the proposed approximation gives a speed-up factor of the
order of 103.

The optimisation runs for 2× 103 MC epochs, each of which is composed
by 10 steps. This amounts at keeping the temperature constant for 10 steps
and then decreasing it according to an exponential law. For the i-th epoch

T (i) = T0 e
−i/ν . (3.50)

The choice of the hyperparameters T0 and ν are crucial for a well-behaved MC
optimisation. Let me choose ν = 300 so that the temperature at i = 2000
is approximately T0/1000. In order to feed the algorithm with reasonable
values of T0, for each of 100 random mappings 10 stochastic moves are per-
formed, measuring |∆Σ|, namely the absolute value of difference between the
observables computed at two consecutive steps. Then T0 is estimated so that
a move that leads to an increment of the observable equal to the average of
|∆Σ| would possess an acceptance probability of 0.75 at the first step, that
is, when i = 0.

3.3.1 Results

Fig. 3.2 displays, for each value of N considered, the distribution of mapping
entropies obtained from a random choice of the CG representation of TAM,
AKE, and AAT together with each protein’s optimised counterpart. For
N = Nbkb and N = Nα, Fig. 3.2 also reports the values of Σ associated to
physically-intuitive choices of the CG mapping that are commonly employed
in the literature: the backbone mapping (N = Nbkb), which neglects all atoms
belonging to the side chains; and the Cα mapping (N = Nα), in which the
Cα atoms of the structures are retained. The first is representative of united-
atom CG models, while the second is a ubiquitous and rather intuitive choice
to represent a protein in terms of a single bead per amino acid [207].
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Figure 3.2: Distributions of the values of mapping entropy Σ [kJ/mol/K] in
Eq. 3.47 for random mappings (light blue histograms) and optimised solutions
(green histograms). Dark blue dashed lines show the best fit with normal
distributions over the random cases. Each column corresponds to an analysed
protein, each row to a given number N of retained atoms. In the first and
last rows, corresponding to numbers of CG sites equal to the number of Cα

atoms and of backbone atoms, Nα and Nbkb respectively, the values of the
mapping entropy associated to the physically-intuitive choice of the CG sites
(see text) is indicated by vertical lines (red for N = Nα, purple for N = Nbkb).
Note that the Σ ranges have the same width in all plots. Image taken from
Ref. [24].
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The optimality of a given mapping with respect to a random choice of
the CG sites can be quantified in terms of the Z-score

Z =
Σopt − µ

σ
, (3.51)

where µ and σ represent mean and standard deviation of the distribution of
Σ over randomly sampled mappings, respectively. Table 3.3 summarises the
values of Z found for each N for the proteins under examination, including
Z[backbone] and Z[Cα], which are computed with respect to the random
distributions generated with N = Nbkb and N = Nα respectively.

N TAM AKE AAT

Z[Nα] −2.22± 0.06 −7.85± 1.14 −6.96± 1.03
Z[Nαβ] −2.38± 0.08 −6.09± 0.79 −6.64± 0.84
Z[Nbkb] −2.65± 0.09 −5.55± 0.62 −7.24± 0.85

Z[backbone] 4.37 5.65 4.31
Z[Cα] 0.87 3.36 3.28

Table 3.3: Table of Z scores of each analysed protein, reporting mean and
standard deviation of the distribution of Z values of the optimised solutions,
Z, for all values of N investigated. Results for the standard mappings—
Z[backbone] for backbone atoms only and Z[Cα] for Cα atoms only—are also
included.

As for the physically intuitive CG representations, Fig. 3.2 shows that
the value of Σ associated to the backbone mapping is very high for all struc-
tures. For TAM in particular, the amount of information retained is so low
that the mapping entropy falls 4.37 standard deviations higher than the ref-
erence distribution of random mappings, see Table 3.3. This suggests that
neglecting the side chains in a CG representation of a protein is detrimental,
at least as far as the structural resolution is concerned. In fact, the back-
bone of the protein undergoes relatively minor structural rearrangements
when exploring the neighbourhood of the native conformation, thereby in-
ducing negligible energetic fluctuations; for side chains, on the other hand,
the opposite is true, with comparatively larger structural variability and a
similarly broader energy range associated to it. Removing side chains from
the mapping induces the clustering of atomistically different structures with
different energies onto the same CG configuration, the latter being solely
determined by the backbone. The corresponding mapping entropy is thus
large—worse than a random choice of the retained atoms—since it is related
to the variance of the energy in the macrostate (Eq. 3.31).
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Calculations employing the Cα mapping for the three structures show
that this provides Σ values that are very close to the ones obtained with the
backbone mapping, thus suggesting that Cα atoms retain about the same
amount of information that is encoded in the backbone. This is reasonable,
given the rather limited conformational variability of the atoms along the
peptide chain. However, a comparison of the random case distributions for
a number Nα and Nbkb of retained atoms in Fig. 3.2 reveals that the former
generally has a broader spread than the latter, due to the lower number of
CG sites; consequently, the Σ of the Cα atoms mapping is closer to the bulk
of the distribution of the random case than that of the backbone mapping.

Let me now discuss the case of optimised mappings, that is, CG represen-
tations retaining the maximum amount of information about the atomistic
reference. Each of the 48 minimisation runs, which have been carried out
for each protein in the set and value of N considered, provided an optimal
solution—a deep local minimum in the space of CG mappings; the corre-
sponding Σ’s spread over a compact range of values that are systematically
lower than, and do not overlap with, those of the random case distributions
(Fig. 3.2).

Optimal solutions for AKE and AAT span a wide interval of values of Σ;
when N = Nα in particular, the support of this set and of the correspond-
ing random reference have comparable sizes. A quantitative measure of this
broadness is displayed in the distributions of Z scores of optimal solutions
presented in Table 3.3. In both proteins, the Σ’s associated to optimal map-
pings increase with the degree of CG’ing N ; this is a consequence of keeping
the number of CG configurations of each system (conformational clusters, see
Sec. 3.2.1 and Tab. 3.1) constant across different resolutions. As N increases,
the available CG conformational clusters are populated by more energetically
diverse conformations, thereby incrementing the associated energy fluctua-
tions. On the other hand, TAM shows narrowly peaked distributions of
optimal values of Σ, whose position does not vary with the amount of re-
tained sites. Both effects can be ascribed to the fact that most of the energy
fluctuations in TAM—and consequently the mapping entropy—are due to a
subset of atoms that are almost always maintained in each optimal mapping
(see Sec. 3.3.3) in contrast to a random choice of the CG representation. At
the same time, the associated Z scores are lower than the ones of the big-
ger proteins for all values of N under examination, as TAM conformations
generally feature a lower variability in energy than the other molecules.

To conclude, let me observe how the values of Σ reported in Fig. 3.2 do
not display the expected dependence on the number of CG sites N , that is,
mappings with high (resp. low) N corresponding to low (resp. high) Σ. Once
again, this is a result of fixing a priori the number of CG macrostates (see
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Sec. 3.2.1 and Tab. 3.1) for all values of N , thereby inhibiting any possible
scaling. In Sec. 3.4 this limitation is relaxed and the predicted behaviour is
finally observed.

3.3.2 Transitions between optimal mappings

For all the investigated proteins, the absence of an overlap between the dis-
tributions of Σ associated to random and optimised mappings raises some
relevant questions. First, one might wonder what kind of structure the solu-
tion space has, that is, if the identified solutions lie at the bottom of a rather
flat vessel or, on the contrary, each of them is located in a narrow well, neatly
separated one form the other.

In order to answer this question, for each structure the four pairs of
mapping operators Mopt resulting in the lowest values of Σ are selected.
Subsequently, 100 independent transitions between these solutions are per-
formed, constructing intermediate mappings by randomly swapping two non-
overlapping atoms from the two solutions at each step and calculating the
associated mapping entropy. Fig. 3.3(a-c) shows the results of this analysis
for the pair of mappings with the lowest Σ, all the other transitions being re-
ported together in Fig. 3.3(d-f). It is interesting to notice that the endpoints
(that is, the optimised mappings) correspond to the lowest values of Σ along
each transition path; by increasing the size of the proteins, the values of Σ
for intermediate mappings get closer to the average of Σrandom. The absence
of lower minima over all the possible paths cannot be ruled out, although it
seems quite unlikely given the available sampling.

This analysis shows that the deepest solutions of the optimisation proce-
dure are distinct from each other. Hence, it is impossible to (quasi) contin-
uously transform an optimal mapping into another through a series of steps
keeping the value of the mapping entropy low.

3.3.3 Properties of optimal mappings

The previous subsection shows how the optimal solutions of the mapping
entropy optimisation protocol seem to be very separated from each other in
terms of the same observable Σ. Now, the second question that arises is if
there exists some similarity among these disconnected solutions.

The degree of similarity between the optimal mappings can be assessed
by a simple average, returning the frequency Pcons with which a given atom
is retained in the 48 solutions of the optimisation problem.

Fig. 3.4 shows the value of Pcons separately for each analysed protein and
degree of coarse-graining N investigated, computed as the fraction of times
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Figure 3.3: (a-c)Values of the mapping entropy Σ [kJ/mol/K] of mappings
connecting two optimal solutions. In each plot, one per protein under exam-
ination, the two lowest-Σ mappings are taken as initial and final endpoints
(black dots) for paths constructed by swapping pairs of atoms between them
(blue dots). For each protein, 100 independent paths at given N = Nαβ

are constructed and the mapping entropy of each intermediate point is com-
puted. In each plot, horizontal lines represent the mean (red) and minimum
(green) Smap obtained from the corresponding distribution of random map-
pings presented in Fig. 3.2. (d-f) the same analysis performed for the three
next-to-lowest-Σ pairs of optimal mappings at N = Nαβ. Image adapted
from Ref. [24].

it appears in the corresponding pool of optimised solutions. One can notice
the presence of regions that appear to be more or less conserved. Quanti-
tative differences can be observed between the three cases under examina-
tion: while the heat map of TAM shows narrow and pronounced peaks of
conservation probability, optimal solutions for AKE feature a more uniform
distribution, where the maxima and minima of Pcons extend over secondary
structure fragments rather than small sets of atoms. The distribution gets
even more blurred for AAT.

As index proximity does not imply spatial proximity in a protein struc-
ture, the aforementioned probabilities are mapped on the three-dimensional
configurations. Results for TAM are shown in Fig. 3.5, while the correspond-
ing ones for AKE and AAT are displayed in Fig. 3.6. From the distribution
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Figure 3.4: Probability Pcons that a given atom is retained in the optimal
mapping at various numbers N of CG sites and for each analysed protein,
expressed as a function of the atom index. Atoms are ordered according to
their number in the PDB file. The secondary structure of the proteins is
depicted using Biotite [208]: green waves represent alpha helices and orange
arrows correspond to beta strands. Image taken from Ref. [24].

of Pcons at different number of retained sites N it is possible to infer some
relevant properties of optimal mappings.

For what concerns TAM (Fig. 3.5), it seems that, at the highest degree
of CG (N = Nα), only two sites are always conserved, namely two nitro-
gen atoms belonging to ARG6 and ARG13 residues (Pcons(NH1,ARG6) =
0.92, Pcons(NH2,ARG13) = 0.96). The atoms that constitute the only other
arginine residue, ARG7, are well conserved but with lower probability. By
increasing the resolution (N = Nαβ), i.e., employing more CG sites, it is
possible to see that the atoms in the side chain of LYS27 appear to be re-
tained more than average together with atoms of GLU24 (Pcons(NZ,LYS27)
= 0.65, Pcons(OE2,GLU24) = 0.75). At N = 124 the distribution becomes
more uniform, but still sharply peaked around terminal atoms of ARG6 and
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Figure 3.5: Structure of tamapin (one bead per atom) coloured according
to the probability Pcons for each atom to be retained in the pool of optimal
mappings. Each structure corresponds to a different number N of retained
CG sites. Residues presenting the highest retainment probability across N
(ARG6 and ARG13) are highlighted. Image taken from Ref. [24].

ARG13.

Interestingly, ARG6 and ARG13 have been identified to be the main ac-
tors involved in the TAM-SK2 channel interaction [209, 210, 211]: Andreotti
et al. [209] suggest that these two residues strongly interact with the chan-
nel through electrostatics and hydrogen bonding. Furthermore, Ramı́rez-
Cordero et al. [211] show that mutating one of the three arginines of TAM
dramatically decreases its selectivity towards the SK2 channel.

It thus appears that the mapping entropy minimisation protocol is capa-
ble of singling out the two residues that are crucial for a complex biological
process. The rationale for this can be found in the fact that such atoms
strongly interact with the remainder of the protein, so that small variations
of their relative coordinates have a large impact on the value of the over-
all system’s energy. Retaining these atoms, and fixing their position in the
coarse-grained conformation, thus enables the model to discriminate effec-
tively a macrostate from another.

Notably, this result is achieved solely relying on data obtained in stan-
dard MD simulations. This aspect is particularly relevant as the simulation
is performed in absence of the channel, whose size is substantially larger than
that of TAM. Consequently, valuable biological information, otherwise ob-
tained via large-scale, multi-complex simulations, bioinformatic approaches,
or experiments, is here retrieved by means of straightforward simulations of
the molecule of interest in absence of its substrate.

As for AKE (Fig. 3.6(a-c)), when N = Nα the external, solvent-exposed
part of the LID domain is heavily coarse-grained, while its internal region is
more conserved. The CORE region of the protein is always largely retained,
without noteworthy peaks in probability. Such peaks, on the contrary, appear
in correspondence of some terminal nitrogens of ARG36, LYS57 and ARG88
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Figure 3.6: Adenylate Kinase [(a),(b) and (c)], and α − 1 antitrypsin [(d),
(e) and (f)]: probability of conserving sites over the optimised solutions as
a function of the number N of retained sites. The residues containing those
atoms that are conserved with the highest probability (see text) have been
explicitly indicated in figure. Image taken from Ref. [24].

(Pcons(NH2,ARG36) = 0.52, Pcons(NZ,LYS57) = 0.48, Pcons(NH2,ARG88)
= 0.58). The two arginine amino acids are located in the internal region of
the NMP arm, at the interface with the LID domain. ARG88 is known to
be the most important residue for catalytic activity [212, 213], being central
in the process of phosphoryl transfer [214]. Phenylglyoxal [215], a drug that
mutates ARG88 to a glycine, has been shown to substantially hamper the
catalytic capacity of the enzyme [214]. ARG36 is also bound to phosphate
atoms [213]. Finally, LYS57 lies on the external part of NMP and has been
identified to play a pivotal role in collaboration with ARG88 to block the
release of adenine from the hydrophobic pocket of the protein [216]. More
generally, this amino acid is crucial for stabilising the closed conformation
of the kinase [217, 218], which is never observed throughout the simulation.
The overall probability pattern persists as N increases, even though less
pronounced.

Finally, in the case of AAT, Fig. 3.6(d-f) shows that the associated opti-
misations heavily coarse-grain the reactive center loop of the protein. On the
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other hand, two of the most conserved residues in the pool of optimised map-
pings, MET358 and ARG101, are central to the biological role of this serpin.
MET358 (Pcons(CE,MET358) = 0.31) constitutes the reactive site of the pro-
tein [219]. Being extremely inhibitor-specific, mutations or oxidation of this
amino acid lead to severe diseases. In particular, heavy oxidation of MET358
is one of the main causes of emphysema [220]. The AAT Pittsburgh variant
shows MET358–ARG mutation, which leads to diminished anti-elastase ac-
tivity but markedly increased antithrombin activity [221, 219, 193]. In turn,
ARG101 (Pcons(CZ,ARG101) = Pcons(NH1,ARG101) = Pcons(NH2,ARG101)
= 0.35) has a crucial role due to its connection to mutations that lead to se-
vere AAT deficiency [195, 194].

In summary, the presented approach identifies biologically relevant amino
acids in all the proteins investigated. Most notably, these residues, which are
known to be biologically active in presence of other compounds, are singled
out from substrate-free MD simulations. With the exception of MET358
of AAT, the most probably retained atoms belong to amino acids that are
charged and highly solvent-exposed. To quantify the statistical significance
of the selection operated by the algorithm, let me note that the latter detects
those fragments out of a pool of 8, 69 and 100 charged residues for TAM, AKE
and AAT, respectively. If solvent exposition is accounted for, these numbers
reduce to 7, 32 and 40 considering amino acids with solvent accessible surface
area (SASA) higher than 1 nm2.

Figure 3.7: Atom-wise comparison between RMSF and Pcons (calculated at
N = Nα) for the three proteins of interest. The most conserved atoms, for
which the RMSF is always non negligible, are highlighted in green. Highly
mobile atoms that are almost never included in the optimised solution are
pinpointed in red. Image taken from Ref. [24].

Another aspect worth mentioning is the fact that several atoms pin-
pointed as highly conserved in optimal mappings are located in the side
chains of relatively large residues, such as arginine, lysine and methionine.
It is thus legitimate to wonder whether a correlation might exist between
an amino acid size and the probability of one or more of its atoms to be
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Figure 3.8: Pcons of conserving atoms calculated taking into account only the
last 100 ns of the MD simulations. A visual comparison with Fig. 3.5 (for
TAM) and Fig. 3.6 (for AKE and AAT) can show the differences between
the two cases. Image taken from Ref. [24].

present in a low Smap reduced representation. An inspection of the RMSF
values of the three proteins’ atoms vs. their conservation probability (see
Fig. 3.7) shows no significant correlation for low or intermediate values of
Pcons; highly conserved atoms, on the other hand, tend to be located on
highly mobile residues because a relatively large conformational variability
is a prerequisite for an atom to be determinant in the mapping. In conclu-
sion, highly mobile residues are not necessarily highly conserved, while the
opposite is more likely.

3.3.4 On the sampling dependence of the protocol

How do the presented results depend on the sampling of the atomistic sys-
tem? In this subsection I briefly summarise the output of the minimisation
of the mapping entropy in all three proteins under examination, taking as
sampled structures the configurations extracted from the last 100 ns of MD
trajectories. Frames are separated by 10 ps in order to consider 104 config-
urations, as it is done in the previous sections. 5 × 103 of them are already
included in the 200 ns of sampling considered before, while the other half
of them consists of new, “intermediate” snapshots. The following analysis
represents a first assessment of how the results of the protocol illustrated in
this chapter depend on the extent of the sampling.

Fig. 3.8 shows the results of the optimisations carried out over the shorter
trajectories, restricted to the case N = Nα. Regarding the subset of atoms
that are more conserved by the optimisation procedure, let me highlight the
changes protein by protein:

• [TAM]: the terminal atoms in the arginine residues ARG6 and ARG13
are conserved with medium-to-high values of Σ (Pcons(CZ,ARG13) =
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0.58, Pcons(NH2,ARG6) = 0.46, Pcons(CZ,ARG6) = 0.42). These val-
ues are lower than the ones observed with 200 ns of conformational
sampling. Interestingly, the atoms retained with higher probabilities in
the terminal regions of these arginine residues are not the ones identified
in the main text. Overall, the atoms with highest Pcons are the terminal
oxygens of GLU24 (Pcons(OE1,GLU24) = 0.71, Pcons(OE2,GLU24) =
0.69);

• [AKE]: a visual comparison between Fig. 3.6(c) and Fig. 3.8(b) high-
lights how the external portion of the LID domain is heavily coarse-
grained. Looking at specific atoms, ARG88 is retained with values
of Pcons (Pcons(NH2,ARG88) = 0.79, Pcons(CZ,ARG88) = 0.65) even
higher than those obtained with 200 ns of sampling. Instead, ARG36
and LYS57 are well conserved but without the peaks in probability de-
scribed in the previous section. This result may suggest that, in the
full simulation, ARG88 is always involved in highly energetic medium-
to-large scale rearrangements, while the other two residues play a less
prominent role in the last 100 ns;

• [AAT]: while the residue ARG101 does not possess atoms with Pcons

higher than 0.21, MET358 terminal atoms are well conserved through-
out the optimised solutions (Pcons(SG,MET358) = Pcons(CE,MET358)
= 0.25). In the case of AAT 100 ns of MD sampling seem to be too
few to extract relevant information from the trajectory, giving rise to
a uniform conservation probability distribution.

The evaluation of the dependence of mapping entropy values on the du-
ration and other features of the employed MD trajectories is a fundamental
step to critically assess advantages and limitations of the method. It is rea-
sonable to expect that, as it is the case with any approach that relies on
MD simulations as input data, a variation of the latter induces a variation
of the results. This variation can be employed to investigate the features
of the input, e.g. in the present case different mappings can emerge from
trajectories sampling different structural basins.

The results described above suggest that several features of the optimised
mappings are retained even when a different set of configurations is employed.
The usage of the last 100 ns of the trajectories has showed small variations,
coherent with the different duration of the input and the stochastic nature of
the optimisation procedure, as well as an overall consistent pattern of results,
which demonstrates the solidity of the approach.
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3.4 Scaling with the number of coarse-grained

sites

From Fig. 3.2 it is possible to observe that the values of Σ do not seem to
show a clear dependence on the number of coarse-grained sites N . This is a
consequence of fixing the number of macrostates (Table 3.1) for all the degrees
of coarse-graining, thus ultimately constraining the mapping entropy to a
certain range of values. In Sec. 3.2.1 it is discussed how this choice is forced
by the fact that a distance-based criterion for clustering is inappropriate for
the mapping optimisation procedure, since the algorithm would be strongly
biased towards the mapping resulting in the maximum number of macrostates
at the chosen distance.

Nevertheless, such distance-based criterion can be combined with a metric
that is slightly different from the RMSDCG in order to enforce a scaling of
the values of S̃map(Eq. 3.41) with the number of coarse-grained sites N . In
this context, the unweighted CG Root-Square-Deviation (RSDCG) is used to
quantify the distance between configurations x,y in the mapped trajectory:

RSDCG(M(x),M(y)) = min
RT


√√√√ N∑

I=1

(
MI(x)−RT CGMI(y)

)2

 (3.52)

whereRT CG (see Eq. 3.43) is a rigid rototranslation that superimposes M(x)
and M(y), and the sum is performed over all retained atoms.

Now it is possible to apply average linkage bottom-up hierarchical cluster-
ing (UPGMA [198], see Sec. 3.2.1) with a distance threshold d such that d is
the minimal number such that all the atomistic configurations can be distin-

guished. If the optimal rototranslation R̂T CG solution to Eq. 3.52 does not
change when removing atoms, the RSDCG becomes an additive property on
the number of retained sites, therefore giving rise to smaller distances between
the sampled points as N decreases. Hence, in a distance-based clustering,
separated configurations start to be lumped together as the degree of CG in-
creases, thus producing the scaling observed in Fig. 3.9, where this strategy
is applied to a subset of CG mappings of TAM. Notably, Fig. 3.9 highlights
how the mapping entropy calculated with the proposed prescription is al-
ways low when N > N

2
. When N decreases, the average value of mapping

entropy increases, together with its variance at fixed N : low-resolution CG
mappings are more “diverse” than high-resolution ones, giving rise to strong
fluctuations in the observable.

As already discussed, employing the aforementioned clustering prescrip-
tion is not feasible during the optimisation process, as the procedure would
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Figure 3.9: Values of mapping entropy calculated using RSDCG (Eq. 3.52)
and distance threshold as distance between configurations and clustering cri-
terion, respectively. 100 mappings are extracted randomly for each value of
N ∈ {10, 20, ..., 220}. It is possible to see that the mapping entropy remains
quite low until N ∼ 150. Then, CG macrostates start to contain more and
more energetically diverse configurations, leading to an important increase of
Smap, which attains its maximal values when N < Nα, where the trajectory
is divided in few CG clusters. Such scaling is not observed in Fig. 3.2, where
RMSDCG and fixed number of clusters are selected as distance metric and
clustering criterion, respectively.

tend to generate an increasing number of clusters, as S̃map would (trivially)
vanish when there exists one macrostate for each atomistic configuration.

3.5 Limitations of the method

Let me conclude this long chapter with a brief critical discussion of the cur-
rent major limitations inherent to the calculation of the mapping entropy:

1. the first thing that must be mentioned is the well-known difficulty to
obtain equilibrium configurations from MD trajectories. All the calcu-
lations carried out in this chapter are rooted on the idea of possessing
a sample of uncorrelated configurations extracted at the equilibrium,
which is clearly not the situation one encounters when sampling protein
structures every 20 picoseconds, as performed in the current implemen-
tation of the method; this is the well-known sampling problem, intrinsic



77

to bottom-up CG of biomolecules;

2. an important ambiguity revolves around the choice of the energy to
be employed in the calculations. In this chapter, the intramolecular
potential energy of the protein is employed, completely neglecting sol-
vent degrees of freedom in the calculation. Alternative strategies might
involve the incorporation of (a fraction of) of solvent molecules in the
calculation of the energies, as well as the usage of an accurate implicit
solvent force field, such as Rosetta [222], to properly account for sol-
vent effects. The first section of Chapter 6 presents a different protocol
to compute the mapping entropy that eliminates this ambiguity, being
solely focused on the probability and without requiring any knowledge
on the energy;

3. the single calculation of the mapping entropy is computationally ex-
pensive when the number of available configurations exceeds the few
thousands. Chapters 4, 6 and 7 present different strategies to reduce
the computational burden associated to these computations.

3.6 Conclusions

This chapter presents an information theoretical measure, the mapping en-
tropy, to rank coarse-grained representations of biomolecules. The power
of this quantity resides in the fact that both the conformational and the
energetic variability of the high-resolution system are accurately taken into
account in the calculations.

Lowest-Smap CG mappings can be used as the starting ingredient for CG
force field development, employing one of the methods outlined in Chapter
1, Sec. 1.2.1. In this context, given a mapping associated to a negligible
value of Smap, zeroing the relative entropy is tantamount at minimizing the
overall Kullback-Leibler distance (Stot, Eq. 3.4) between atomistic and coarse-
grained models.

Importantly, optimal CG representations resulting from the mapping en-
tropy minimisation share common features, related to the function of the
selected molecule. Specifically, a high level of detail is assigned to those re-
gions that are crucial for the biological role of the protein. Notably, such
hotspots are identified by means of substrate-free MD simulations, thus im-
plying that a substantial amount of information about functional residues is
encoded in the protein structure and energetics.

This consideration paves the way for a new significance of optimal CG
mappings, that can be employed to filter the huge amount of data provided
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by atomistic simulations into few, informative messages.



Chapter 4

A Deep Graph
Network–Enhanced Sampling
Approach to Efficiently Explore
the Space of Reduced
Representations of Proteins

In the previous chapter I described in detail a strategy that aims at finding
the maximally informative reduced representations of a biomolecule through
the minimisation of the associated mapping entropy Smap (Eqs. 3.10, 3.31 and
3.41). In this chapter I illustrate how a combination of a machine learning
algorithm and an enhanced sampling method can allow an extremely fast
and accurate exploration of the space of CG mappings of a biomolecule. This
chapter has to be considered a personal re-elaboration of Ref. [25], which is
the main reference.

The method outlined in the last chapter suffers from three bottlenecks
(see Sec. 3.5): first, the protocol requires in input a set of configurations of the
high-resolution system that are sampled through an MD simulation, a task
that is well-known to be expensive; second, the determination of the mapping
entropy is per se computationally intensive: even though smart workarounds
(see Eq. 3.49 for an example) can be conceived and implemented to speed up
the calculation, its relative complexity introduces a nontrivial slowdown in
the minimisation process. Third, the sheer size of the space of possible CG
mappings of a biomolecule is so ridiculously large that it makes a random
search practically useless and an exhaustive enumeration simply impossible
(see Eq. 3.48). Hence, an optimisation procedure is required to identify the
simplified descriptions that entail the largest amount of information about

79
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the system. Unfortunately, this procedure nonetheless implies the calcu-
lation of Smap over a very large number of tentative mappings, making the
optimisation, albeit possible, computationally intensive and time consuming.

Throughout this chapter I present a protocol that suppresses the com-
puting time of the optimisation procedure by several orders of magnitude,
while at the same time boosting the sampling accuracy. This strategy re-
lies on the fruitful, and to the best of my knowledge unprecedented com-
bination of two very different techniques: graph-based machine learning
models [223, 224, 225] and the Wang-Landau enhanced sampling algorithm
[205, 206, 226, 227]. Based on a graph representation of a protein, the first
serves the purpose of reducing the computational cost associated with the
estimation of the mapping entropy; the second enables the efficient and thor-
ough exploration of the mapping space of a biomolecule.

4.1 Data sets

The machine learning-based mapping entropy prediction model developed
in this study is applied to two proteins extracted from the set investigated
in Chapter 3, namely the tamapin mutant (PDB code 6d93 ) and adenylate
kinase (PDB code 4ake).

Figure 4.1: Protein structures employed in this work: the tamapin mutant
(PDB code: 6d93) and the open conformation of adenylate kinase (PDB code:
4ake). The former, although small, possesses all the elements of proteins’
secondary structures, while the latter is bigger in size and has a much wider
structural variability. Image taken from Ref. [25].

The machine learning model of each protein is trained on a data set con-
taining the molecular structure—the first snapshot of the MD trajectory—
and many CG representations, the latter being selected with the constraint
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of having a number of retained sites equal to the number of amino acids
composing the molecule (N = Nα, see Tab. 3.2). The data sets combine to-
gether randomly selected CG mappings (respectively 4200 for 6d93 and 1200
for 4ake) and optimised ones (768 for both systems). The mapping entropy
values are calculated using the approximate expression of Eq. 3.471, and the
optimised representations are obtained through the Monte Carlo Simulated
Annealing optimisation protocol described in Sec. 3.3. More specifically, the
768 SA runs of each protein are divided in four groups of 192 elements de-
pending on their length, respectively 2×104 (full optimisation, as in Sec. 3.3
and in Ref. [24]), 1× 104, 5× 103 and 2.5× 103 steps.

Figure 4.2: Distributions of target values for both data sets, 6d93 (left) and
4ake (right). For each protein, Smap data are displayed in two distinct, non-
overlapping histograms depending on their origin: blue curves are filled with
random instances, while red histograms represent optimised CG mappings.
All values of Smap are in [kJ/mol/K]. Image taken from Ref. [25].

Fig. 4.2 displays the distribution of Smap values in the data sets separately
for the two systems, discriminating between random (blue) and optimised
(red) CG mappings. In both structures the two curves have a negligible
overlap, meaning that the set of values spanned by the optimised CG repre-
sentations cannot be reached by a random exploration of the mapping space,
i.e, this region possesses a very low statistical weight. A comparison of the
Smap distribution of the two proteins, on the other hand, highlights that the
mapping entropy increases with the system’s size: while the range of val-
ues covered has similar width in the two cases, the lower bound in mapping
entropy of 4ake differs of roughly one order magnitude from that of 6d93.

For each analysed protein, the computational time required to perform

1The numerical values reported in this chapter refer to the average mapping entropy
Σ (Eq. 3.47), as explained in Sec. 3.2.1. For the sake of clarity, this observable is here
denoted with Smap.
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Protein MD CPU time MD walltime Single measure
6d93 40.7 days 2.55 days ' 2.1 mins
4ake 153.9 days 3.20 days ' 8.0 mins

Table 4.1: Computational cost of all-atom MD simulations and mapping en-
tropy calculations for the two investigated proteins. Specifically, MD CPU
time (resp. MD walltime) represents the core time (resp. user time) nec-
essary to simulate the system for 200 ns on the GROMACS 2018 package
[181]. Both 6d93 and 4ake runs were performed on Intel Xeon-Gold 5118
processors, respectively using 16 and 48 cores. Single measure is the amount
of time that is required to compute, on a single core of the same architecture,
the Smap of a given CG mapping by relying on the algorithm introduced in
Sec. 3.2 (Fig. 3.1).

the MD simulation and a single Smap estimate is reported in Table 4.1. The
time associated with the calculation of Smap for a single CG mapping through
the algorithm discussed in Sec. 3.2 grows from 2 to 8 minutes while moving
from 6d93 to 4ake. It is worth stressing that the proteins studied here are
small, so that this value would dramatically increase in the case of bigger
biomolecules.

4.2 Data Representation and Machine Learn-

ing model

Part of this section has been written by my collaborators Federico Errica, Davide Bacciu,

and Alessio Micheli, whom I here acknowledge for their crucial contribution to this chapter.

With their long and successful story both in the field of coarse-graining
[228, 229, 230] and in the prediction of protein properties [231, 232, 233],
graph-based learning models represent a rather natural and common choice
to encode the (static) features of a molecular structure.

A graph g can be formally defined as a tuple (Vg, Eg), where Vg is the set of
vertices (i.e., the entities of interest) and Eg = {{u, v} | u, v ∈ Vg} is the set of
undirected edges (i.e., how entities are related). The neighborhood of a vertex
v is defined as the set of vertices connected to v by an edge, that is, Nv =
{u ∈ Vg | {u, v} ∈ Eg}. For the purpose of this chapter, each heavy atom
composing the molecule corresponds to a vertex, and edges connect pairs of
atoms that in the reference structure are closer than a selected threshold—in
this case, 1 nm. Information about the decimation mapping can be directly
encoded in the vertices of the protein’s graph by using a binary feature, with
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Figure 4.3: Two different mappings M and M ′ associated with the same
(schematic) protein structure. Each protein is treated as a graph where
vertices are atoms, and edges are placed among atoms closer than a given
threshold. The selected CG sites in each of the two mappings are marked in
red and encoded as a vertex feature. The goal of this chapter is to automat-
ically learn to associate both mappings to the correct values Smap and Smap

′

of mapping entropy. Image taken from Ref. [25].

different selections of CG sites—an example being provided in Fig. 4.3—
corresponding to different values of Smap. In addition, each vertex is enriched
with 10 features, summarised in Tab. 4.2, describing the physico-chemical
properties of the underlying atom; similarly, the inverse atomic distance euv
between vertices u and v is employed as an edge feature.

Once the protein structure and the CG mapping data sets (see Sec. 4.1)
are converted into this graph-like format (statistics in Table 4.3), Deep Graph
Networks (DGNs) are employed [225] with the aim of learning the desired
property, namely the mapping entropy Smap.

The main advantages of DGNs are their efficiency and the ability to learn
from graphs of different size and shape. This is possible for two reasons: first,
DGNs focus on a local processing of vertex neighbors, so that calculations
can be easily distributed; secondly, in a way that is similar to Convolutional
Neural Networks for images [234], DGNs stack multiple layers of graph con-
volutions to guarantee an efficient exchange of information between vertices.
The output of a DGN is a vector for each vertex of the graph, as sketched in
Fig. 4.4, and these can be aggregated to make predictions about a graph class
or property. The computational efficiency of the DGN is especially important
in this context, where the goal is to approximate the complex calculation of
Smap in a fraction of the time originally required.
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Feature name Description
C Carbon atom
N Nitrogen atom
O Oxygen atom
S Sulphur atom
HPhob Part of a hydrophobic residue
Amph Part of a amphipathic residue
Pol Part of a polar residue
Ch Part of a charged residue
Bkb Part of the protein backbone
Site Atom selected as a CG site

Table 4.2: Binary features (0/1) used to describe the physico-chemical prop-
erties of an atom in the protein, i.e. a vertex in the graph representation of
the latter. In this simple model, the DGN is only provided with the chemical
nature of the atom and of its residue, together with the flag Bkb that specifies
if the atom is part of the backbone of the polypeptide chain.

Protein Vertices Edges Avg. Degree Samples
6d93 230 21474 93 4968
4ake 1656 207618 125 1968

Table 4.3: Basic statistics of the data sets fed to the machine learning model.
For each protein, the table reports the number of vertices (i.e., heavy atoms)
in its graph representation, the total number of edges connecting them, and
the average number of edges per vertex (Avg. Degree). The total number
of CG representations of known mapping entropy provided in input to the
protocol (Samples) is included, including random and optimised ones.

The main building block of a DGN is the “graph convolution” mechanism.
At each layer `, the DGN calculates the new state of each vertex v, i.e., a
vector h`+1

v ∈ RK , as a function of v’s neighboring states h`Nv = {h`u ∈ RK |
u ∈ Nv}, where K ∈ N is an hyper-parameter of the model.

In general, a graph convolutional layer first applies a permutation invari-
ant function to the neighbors of each vertex, such as the sum or mean. The
resulting aggregated vector is then passed to a multi-layer perceptron (MLP)
that performs a non-linear transformation of the input, thus producing the
new vertex state h`+1

v . The graph convolutional layer can be formalised as
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Figure 4.4: High-level overview of typical deep learning methodologies for
graphs. A graph g is given as input to a Deep Graph Network, which outputs
one vector, also called embedding or state, for each vertex v of the graph.
All vertex states are aggregated via a differentiable permutation-invariant
operator, i.e., the mean, to obtain a single value that encodes the whole
graph structure. Then, the graph embedding is fed into a machine learning
regression model (a linear model in this case), to output the Smap value
associated with g. Image taken from Ref. [25].

follows:

h`+1
v = MLP`

((
1 + ε`

)
∗ h`v +

∑
u∈Nv

h`u ∗ euv,
)

(4.1)

where ∗ denotes element-wise scalar multiplication, ε` ∈ R is an adaptive
weight of the model, and euv is the scalar edge feature holding the inverse
atomic distance between two atoms u and v. A pictorial representation of
the transition between layer ` and layer `+ 1 is presented in Fig. 4.5.

A few remarks about Eq. 4.1 are in order. First, the initial layer is
implemented with a simple non-linear transformation of the vertex features,
i.e., h1

v = MLP1(xv), where xv is the vector of 10 features associated to
each node (see Tab. 4.2); secondly, at each layer `, the same non-linear
transformation MLP` is applied to all nodes (i.e., a graph traversal), thus
allowing to handle graphs with variable size. Finally, the MLP weights are
not shared across different layers, meaning that a different MLP is trained
for each layer. It is worth noting that this weight sharing scheme at each
layer resembles the one employed in Convolutional Neural Networks, where
the same adaptive filter is applied to all the pixels in an image.

When building a deep graph network, L ∈ N graph convolutional layers
are stacked, until the model produces a final state for each vertex, hv; in
addition, a global graph state hg is computed by aggregating all vertex states
(see Fig. 4.4). Being in vectorial form, hg can then be fed to standard machine
learning models to solve graph regression or classification tasks.

To produce a prediction Ŝmap one first needs to process and aggregate
all node states into a single graph representation. Here, the importance of
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Figure 4.5: A simplified representation of how a graph convolutional layer
works. First, neighboring states of each vertex v are aggregated by means of
a permutation invariant function, to abstract from the ordering of the nodes
and to deal with variable-sized graphs. Then, the resulting vector is fed into
a multi-layer perceptron that outputs the new state for node v. Image taken
from Ref. [25].

selected (resp. unselected) CG sites Vsg ⊂ Vg (resp. Vng ) is taken into account
by means of a scalar adaptive weight ws (resp. wn). The resulting formula
is:

Ŝmap = wT
out

(∑
u∈Vsg

(
[h1
u, . . . ,h

L
u ] ∗ ws

)
+
∑
u∈Vng

(
[h1
u, . . . ,h

L
u ] ∗ wn

))
, (4.2)

where wout ∈ RK∗L is a set of parameters to be learned, while square brackets
denote concatenation of the different vertex states computed at different
layers. More specifically, the models possess L = 5 layers and each MLP ` is
implemented as a one-layer feed-forward network with K = 64 hidden units
followed by an element-wise Rectifier linear unit (ReLU) activation function
[235]. As the number of weights, without considering the bias, of MLP ` is
K2 (10 ∗ K for MLP 1), the total number of weights in the architecture is
10 ∗K +K2 ∗ (L− 1) + (L ∗K) + (L− 1) + 2 = 17350.

The loss objective used to train the DGN is the Mean Absolute Error
(MAE). The optimisation algorithm is Adam [236] with a learning rate of
0.001 and no regularisation. The models are trained for a maximum of 10000
epochs with an early stopping patience of 1000 epochs and a mini-batch size
equal to 8, accelerating the training using a Tesla V100 GPU with 16 GB of
memory.

To assess the performance of the model on a single protein, the corre-
sponding data set is first divided into training, validation and test realisa-
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tions following an 80%/10%/10% hold-out strategy. Early stopping [237] is
applied to pinpoint the training epoch with the best validation score, and
the resulting, selected model is evaluated on the unseen test set. The eval-
uation metric for the regression problem is the coefficient of determination
(or R2-score), given by:

R2 = 1−
∑

M

(
Smap(M)− Ŝmap(M)

)2

∑
M

(
Smap(M)− Smap

)2 , (4.3)

where the sums run over the whole data set of mappings and Smap is the
average mapping entropy.

4.2.1 Results

Table 4.4 reports the R2 score (Eq. 4.3) and MAE in training, validation and
test for 6d93 and 4ake. It is possible to observe that the machine learning
model can fit the training set and has excellent performances on the test set.
More quantitatively, extremely low values of MAE are obtained for 6d93, with
an R2 score higher than 0.95 in all cases. The model performs slightly worse
in the case of 4ake: the result of R2 = 0.84 on the test set is still acceptable,
although the gap with the training set (R2 = 0.92) is non-negligible.

Protein TR MAE TR R2 VL MAE VL R2 TE MAE TE R2

6d93 0.13 0.99 0.33 0.95 0.33 0.96
4ake 0.91 0.92 1.2 0.85 1.35 0.84

Table 4.4: Results of the machine learning model in predicting the mapping
entropy on the training (TR), validation (VL) and test (TE) sets for the
two analysed proteins. The models are evaluated using both the R2 score
(Eq. 4.3) and the mean average error (MAE, [kJ/mol/K]). The R2 scores
range from −∞ (worst predictor) to 1 (best predictor).

Fig. 4.6 shows how predicted values for training and test samples differ
from the ground truth. Ideally, a perfect result corresponds to the points
being on the diagonal dotted line, and both training and test predictions for
6d93 are extremely close to the true target. The deviation from the ideal
case becomes wider for 4ake, but no significant outlier is present. A more
detailed inspection of the 4ake scatter plot in Fig. 4.6, on the other hand,
reveals that the network tends to slightly overestimate the value of Smap of
optimized CG mappings for Smap . 100 kJ/mol/K, whereas the opposite
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is true for Smap & 100 kJ/mol/K, where random CG mappings’ values are
mildly underestimated.

The dissimilarity in performance between the two data sets is not sur-
prising if one takes a closer look at their nature. In fact, as highlighted in
Fig. 4.1, adenylate kinase is both larger and more complex than the tamapin
mutant, and the CG mapping data sets’ sizes are very different due to the
heavy computational requirements associated with the collection of anno-
tated samples for 4ake. As a consequence, training a model for 4ake with
excellent generalisation performance becomes a harder tasks. What is re-
markable, though, is the ability of a completely adaptive machine learning
methodology to well approximate, in both structures, the long and compu-
tationally intensive algorithm for estimating Smap of Chapter 3. Critically,
this is achieved only relying on a combination of static structural information
and few vertex attributes, that is, in absence of a direct knowledge for the
DGNs of the complex dynamical behaviour of the two systems as obtained
by onerous MD simulations.

Figure 4.6: Plot of Smap target values against predictions of all samples
for 6d93 (left) and 4ake (right). Training samples are in blue, while test
samples are in orange. A perfect prediction is represented by points lying on
the red dotted diagonal line (perfect fit). A green dashed line, obtained by
fitting a linear model on the data, is introduced to show that in the case of
4ake the model slightly overestimates the Smap of optimized mappings and
underestimates the rest. All values of Smap are in [kJ/mol/K]. Image taken
from Ref. [25].

In Tab. 4.5 the computational time required by the machine learning
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model to perform a single Smap calculation is compared to the one of the
algorithm presented in Chapter 3. Overall, employing the machine learning
model for inference guarantees a substantial speed-up of mapping entropy
calculations, reaching the factor of 5 orders of magnitude when using a GPU
machine. Noteworthy, these improvements do not come at the cost of a
significantly worse performance of the machine learning model. In addition,
this methodology is easily applicable to other kinds of molecular structures,
as long as a sufficiently large training set is provided as input.

Protein Single measure Inference GPU (CPU) Time Ratio GPU (CPU)

6d93 ' 2.1 mins ' 0.9(98.7) ms ' 140000× (1276×)
4ake ' 8.0 mins ' 4.8(1103.2) ms ' 100000× (435×)

Table 4.5: Comparison between the time required to compute the Smap of
a single CG mapping through the algorithm presented in Chapter 3 (CPU
only) and the inference time of the model (CPU as well as GPU). For both
proteins, CPU calculations where performed on a single core of a Intel Xeon-
Gold 5118 processor, while GPU ones were run a Tesla P100 with 16 GB of
memory. The machine learning model generates a drastic speed-up, enabling
a wider exploration of the Smap landscape of each system.

4.3 Wang-Landau Sampling

The computational speed-up guaranteed by the DGN in the calculation of
the mapping entropy (see Tab. 4.5) allows one to employ the trained network
as a tool to identify optimal representations of the proteins, as in Chapter
3, Sec. 3.3, and, more generally, to quickly explore the immense space of
reduced CG representations.

However, Fig. 4.2 highlights how an attempt to detect the most informa-
tive CG representations of a protein—i.e., those minimising Smap—through a
completely unbiased exploration of its mapping space would prove extremely
inefficient, if not practically pointless. Indeed, such optimised CG repre-
sentations live relatively far away in the left tails of the Smap distributions
obtained from random sampling, thus constituting a region of exponentially
vanishing size within the broad mapping space. It would then be desirable to
embed the trained network in a sampling strategy in which no specific value
of Smap is preferred, but rather a uniform coverage of the spectra of possible
mapping entropies—or at least of a subset of it, vide infra—is achieved.
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To obtain this “flattening” of the Smap landscape the algorithm proposed
by Wang and Landau (WL) [205, 206, 226, 227] is exploited. In WL sam-
pling, a Markov chain Monte Carlo (MC) simulation is constructed in which
a transition between two states M and M ′—in this case, two mappings con-
taining N sites but differing in the retainment of one atom—is accepted with
probability

W (M →M ′) = min

[
1,

ΩN(Smap(M))

ΩN(Smap(M ′))

]
. (4.4)

In Eq. 4.4, ΩN(Smap) is the number of CG representations with N retained
sites exhibiting a mapping entropy equal to Smap, that is, the mapping en-
tropy density of states,

ΩN(Smap) =
∑
M

δ(N(M), N)δ(Smap(M), Smap), (4.5)

where the sum is performed over all possible CG representations with N sites
of the system.

When compounded with a symmetric proposal probability T for the at-
tempted move, T (M → M ′) = T (M ′ → M), the Markov chain defined in
Eq. 4.4 generates, at convergence, CG representations distributed according
to P (M) ∝ 1/ΩN(Smap(M)) [205, 206]. As the equilibrium probability of
visiting a mapping is proportional to the inverse of the Smap’s density of
states, the WL simulation results in a flat histogram of sampled mapping
entropies over the whole range of possible ones.

Critically, the density of states ΩN(Smap) is a priori unknown and is itself
a byproduct of the WL scheme. ΩN(Smap) is self-consistently constructed by
means of a sequence k = 0, ..., K of nonequilibrium simulations that provide
increasingly accurate approximations to the exact result, iterations being
stopped when a predefined precision is achieved.

Having divided the range of possible values of the mapping entropy in bins
of width δSmap, the WL self-consistent protocol is based on three quantities:
the overall density of states ΩN(Smap), the histogram of sampled mapping
entropies at iteration k, Hk(Smap), and the modification factor fk governing
convergence—for k = 0, one typically initialises ΩN(Smap) = 1 for each value
of Smap and f0 = e.

At the beginning of WL iteration k, the histogram Hk(Smap) is reset. Sub-
sequently, a sequence of MC moves among CG mappings driven by the accep-
tance probability presented in Eq. 4.4 is performed. If a transition between
two CG representations M and M ′—respectively with mapping entropies
Smap and S ′map predicted by the trained DGNs—is accepted, the entries of
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Parameter 6d93 4ake
ln(fend) 10−6 10−6

pflat 0.8 0.8
range [10− 22.4] [89.4− 108.6]
δSmap 0.2 0.2

Table 4.6: Set of parameters employed for the WL exploration of the map-
ping entropy space for both analysed proteins. ln(f0) and ln(fend) respec-
tively represent the modification factor at the beginning and at the end of
the self-consistent scheme in a logarithmic setup, see Sec. 4.3. pflat is the
minimal histogram flatness required to halve the modification factor: with
pflat = 0.8 all bins in the histogram H(Smap) must have a population between
0.8 and 1.2 times its average 〈H〉. range is the interval of permitted values of
the mapping entropy in the WL scheme, while δSmap is the bin size employed
for its discretisation. Both range and δSmap are expressed in [kJ/mol/K].

the histogram and density of states are updated according to

Hk(S
′
map) = Hk(S

′
map) + 1, (4.6)

ΩN(S ′map) = fk × ΩN(S ′map). (4.7)

In case the move M → M ′ is rejected, one has to replace S ′map with Smap in
Eqs. 4.6 and 4.7.

The sequence of MC moves is stopped—that is, iteration k ends—when
Hk(Smap) is “flat”, meaning that each of its entries does not exceed a thresh-
old distance from the average histogram 〈Hk〉: a typical requirement is
pflat×〈Hk〉 < Hk(Smap) < (2−pflat)×〈Hk〉 for every value of Smap, pflat be-
ing the selected flatness parameter. At this stage, WL iteration k+ 1 begins
with a reduced modification factor, namely fk+1 =

√
fk.

Convergence of the self-consistent scheme is achieved when fk ≈ 1—more
precisely, when ln(fk) becomes smaller than a predefined value ln(fend). Up
to a global multiplicative factor, the resulting density of states ΩN(Smap)
reproduces the exact result with an accuracy of order fend [238].

In order to avoid numeric overflow of ΩN(Smap) along the WL simulation
it is useful to consider its logarithm ΞN(Smap) = ln ΩN(Smap). Starting from
Eq. 4.4, the acceptance probability W (M → M ′) expressed in terms of Ξ
reads

W (M →M ′) = min [1, exp(ΞN(M)− ΞN(M ′))] , (4.8)

while within iteration k of the self-consistent scheme, the update prescription
of Ξ after an (accepted) MC move—see Eq. 4.7—becomes

ΞN(S ′map) = ΞN(S ′map) + ln(fk). (4.9)
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Finally, in a logarithmic setup the modification factor ln(fk) follows the sim-
ple reduction rule ln(fk+1) = ln(fk)/2, with ln(f0) = 1.

The WL algorithm in principle enables the reconstruction of the density of
states of an observable over the whole range of possible values of the latter; at
the same time, knowledge of the sampling boundaries proves extremely ben-
eficial to the accuracy and rate of convergence of the self-consistent scheme
[239, 240]. In this case, for each analysed protein, such boundaries would cor-
respond to the minimum and maximum achievable mapping entropies Sminmap

and Smaxmap in the space of all CG representations of the system obtained by re-
taining N of its constituent atoms. As this information is a priori unknown,
in the implementation of the WL algorithm the range of explorable values of
Smap is limited by rejecting all MC moves M → M ′ for which S ′map < Sminmap

or S ′map > Smaxmap , in each system setting Sminmap and Smaxmap as respectively the
minimum and maximum values of the mapping entropy in the corresponding
data set. Note that for each protein Sminmap is the outcome of a thorough op-
timisation procedure (see Sec. 3.3), and can thus be considered a reasonable
approximation of the system’s absolute minimum of the mapping entropy.
Imposing an upper bound on Smap through Smaxmap , on the other hand, simply
amounts at requiring the WL sampling algorithm not to visit uninteresting
regions of the mapping space of each biomolecule, that is, CG representa-
tions characterised by a huge amount of information loss with respect to
the all-atom reference. The values of Sminmap and Smaxmap employed for the two
proteins investigated in this work is presented in Table 4.6, together with
the input parameters required by the WL protocol—the bin size δSmap, the
convergence modification factor ln(fend) and the flatness parameter pflat.

4.3.1 Results

By embedding the trained networks in a Wang-Landau sampling scheme it
is possible to retrieve the density of states ΩN(Smap) defined in Eq. 4.5 for
6d93 and 4ake, that is, one can estimate the number of CG representations
throughout the mapping space of each protein that exhibit a specific amount
of information loss with respect to the all-atom reference. Let me stress that
reaching convergence of the self-consistent WL protocol required to probe
approximately 4.8× 106 and 3× 107 CG representations for 6d93 and 4ake,
respectively: such an extensive sampling is only made feasible by the compu-
tational gain provided by the trained machine learning model (see Tab. 4.5).

WL predictions for the logarithm of the density of states ΞN(Smap) =
ln ΩN(Smap) of the two proteins are presented in Fig. 4.7. As for 6d93, I
observe the presence of a steep increase of Ξ starting from low values of
the mapping entropy, followed by two main peaks respectively located at
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Smap ≈ 12.5 and 15 kJ/mol/K. After the second peak Ξ decreases exhibiting
a shoulder for high mapping entropies. On the other hand, the Ξ of 4ake
displays a relatively gradual growth towards its unique maximum, the latter
being located at Smap ≈ 105 kJ/mol/K, before starting to decrease.

Given the WL ΩN(Smap)—or equivalently ΞN(Smap)—it is possible to cal-
culate the probability P (Smap) of observing a particular mapping entropy by
performing a completely random exploration of the space of CG representa-
tions of a system,

P (Smap) =
ΩN(Smap)∑
Smap

ΩN(Smap)
. (4.10)

Figure 4.7: Comparison between the probability densities P (Smap) for the
two systems estimated via the Wang-Landau algorithm enhanced by the
DGNs (green lines) and the distributions generated by a random sampling
of mappings (blue areas). In inset the logarithm of the WL density of states,
Ξ(Smap), is reported, after a scaling that assigns to the Ξ of the most scarcely
populated bin the value of zero. All values of Smap are in [kJ/mol/K]. Image
adapted from Ref. [25].

Results for the P (Smap) of 6d93 and 4ake are shown in Fig. 4.7. In the
case of 6d93, let me note that the WL sampling scheme produces a probability
density that is fully compatible with the (normalised) histograms of Fig. 4.2.
In particular, the WL graph resembles the histograms in Fig. 4.2 if the
non-random, optimized instances are removed, whose statistical weight is
negligible. This result is highly non-trivial, as it proves that the trained
DGN of 6d93 does not overfit the training set and is able to predict the
correct population of the true mapping entropy landscape.

As for 4ake, the agreement between the two curves presented in Fig. 4.7
is still remarkable, though not as precise as in the case of 6d93. More quan-
titatively, the left tail of the probability density predicted by the WL scheme
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is shifted of roughly 1 kJ/ mol/K towards lower values of Smap with respect
to the distribution obtained from random sampling. This mismatch can be
ascribed to the mild overfitting problem observed in Fig. 4.6: the network
has the tendency to underestimate (resp. overestimate) the value of Smap
associated with random (resp. optimised) CG representations, resulting in
an increase in the predicted population of mappings at the intersection of
the two sets.

The data sets employed for this study and the code that performs the
Wang-Landau-based exploration of the mapping space are freely available at
https://github.com/CIML-VARIAMOLS/GRAWL.

4.4 Conclusions

The main outcome of this chapter is a strategy that enables an extensive
exploration of the space of possible CG mappings of a biomolecule. The
combination of trained networks and Wang-Landau sampling allows one to
characterise the mapping entropy landscape of a system with impressive ac-
curacy.

The natural following step would be to apply the knowledge acquired by
the model on different protein structures, so that the network can predict
values of Smap even in the absence of an MD simulation. As of now, how-
ever, it is difficult to assess if the information extracted from the training
over a given protein’s trajectory can be fruitfully employed to determine the
mapping entropy of another, just feeding the structure of the latter as input.
More likely one would have to resort to database-wide investigations, train-
ing the network over a large variety of different molecular structures before
attempting predictions over new data points. In other words, obtaining a
transfer effect among different structures by the learning model may not be
straightforward, and additional information could be needed to achieve it.

In conclusion, it is important to emphasise the complete generality of the
proposed approach: first, the specific nature and properties of the mapping
entropy played no special role in the construction of the deep learning scheme;
second, the DGN formalism enables one to input graphs of variable size
and shape, allowing the method to be transferred to other problems where
different selections of a subset of the molecule’s atoms give rise to different
values of a given observable, such as the example of Ref. [158]. In principle,
the combination of WL sampling and DGNs can be leveraged to recover the
correct density of states of any observable: provided that the network does
not overfit the possibly biased training set, this is a highly efficient strategy
to reconstruct the original, unbiased distribution.



Chapter 5

A journey through mapping
space

The previous chapters of this manuscript showed how different coarse-grained
prescriptions can be employed to describe a biological system with reduced
resolution, with a strong focus on decimation mappings and their information
content, as quantified by the mapping entropy. It is important to underline
that all the comparisons between coarse-grained representations presented
so far are either qualitative (see Sec. 2.3) or based on an objective function,
such as the mapping entropy (see Sec. 3.3.2), which contains more informa-
tion than the purely structural detail provided by the mapped coarse-grained
structure. Furthermore, the choice of this objective function is not unique, as
explained in Sec. 2.3, proving that the introduction of a quantitative defini-
tion of similarity between coarse-grained mappings is a crucial step towards
the understanding of the nature of reduced representations of biomolecules.

Following Ref. [26], I here introduce a general, purely geometrical notion
of scalar product, and consequently of norm and distance, between reduced
representations of a biomolecular system. As in the previous chapters, the
analysis is restricted to the discrete subspace of CG representations that can
be obtained for a system through a decimation (see Eq. 3.8) of its microscopic
degrees of freedom: a subset of N constituent atoms is retained while the
remaining ones are neglected.

Consider a protein composed by n constituent atoms; the number of rep-
resentations ΩN that can be constructed by selecting N of them as effective
CG sites is given by the binomial coefficient, so that the total number of
possible decimation mappings Ω is equal to 2n − 1 (Eq. 3.48); this number
becomes prohibitively large as the size of the system increases even if one
focusses only on the heavy atoms of the molecule, as it is done throughout
the whole chapter. This set of coarse-grained representations constitutes the
mapping space M (Fig. 5.1) of the molecule.

95
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Figure 5.1: CG mappings populate an incredibly large space, whose extension
grows exponentially with the number of atoms in the molecule. A notion of
distance is introduced that allows one to explore the mapping space and
establish relationships among them.

The investigation of the topological structure ofM calls for the introduc-
tion of a distance D(M,M ′), M,M ′ ∈M, able to quantify the “separation”
between pairs of points M and M ′ belonging to the space of decimation
mappings, that is, pairs of CG representations employed to represent the
system that differ in the choice of the retained atoms. Such distance must
be equipped with all the associated metric properties, namely identity, sym-
metry, and triangle inequality.

To construct D(M,M ′), a static configuration of the molecule is consid-
ered, namely the crystallographic one, with (heavy) atoms located in posi-
tions ri, i = 1, ..., n and a set of selection operators χM,i, i = 1, .., n defining
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mapping M ,

χM,i =

{
1 if atom i is retained,
0 if atom i is not retained,

(5.1)

n∑
i=1

χM,i = N(M), (5.2)

where N(M) is the number of retained atoms in the mapping. Taking in-
spiration from the Smooth Overlap of Atomic Positions method (SOAP)
developed by Csány et al. [241, 242], each M ∈ M is associated to an ele-
ment φM(r) of the Hilbert space of square-integrable real functions L2(R3)
as

φM(r) =
n∑
i=1

φM,i(r) =
n∑
i=1

Ce−(r−ri)2/2σ2

χM,i, (5.3)

obtained by centering a three-dimensional Gaussian—whose normalisation
factor C will be fixed in the following—on the position of each atom of the
macromolecule retained in the mapping.

The inner product 〈φM , φM ′〉 of L2(R3) between two mappings M and
M ′,

〈φM , φM ′〉 =

∫
dr φM(r)φM ′(r), (5.4)

induces a norm ||φM || for mapping M , with

E(M) = ||φM ||2 = 〈φM , φM〉, (5.5)

starting from which the distance D(M,M ′) can be defined as

D(M,M ′) = ||φM − φM ′|| = 〈φM − φM ′ , φM − φM ′〉
1
2 , (5.6)

satisfying all the aforementioned metric properties. By inserting Eq. 5.3 in
Eq. 5.4, the inner product 〈φM , φM ′〉 between mappings generated by two
distinct selection operators χM and χM ′ becomes

〈φM , φM ′〉 =
n∑

i,j=1

JijχM,iχM ′,j, (5.7)

while the associated distance D(M,M ′) in Eq. 5.6 reads

D(M,M ′) = (E(M) + E(M ′)− 2〈φM , φM ′〉)
1
2

=

(
n∑

i,j=1

JijχM,iχM,j +
n∑

i,j=1

JijχM ′,iχM ′,j− 2
n∑

i,j=1

JijχM,iχM ′,j

) 1
2

(5.8)
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where the coupling constant Jij = Jij(ri, rj) between two atoms i and j is
given by

Jij(ri, rj) = C2

∫
dr e−[(r−ri)2+(r−rj)2]/2σ2

, (5.9)

with
Jij(ri, rj) = Jij(|ri − rj|) = Jij(rij). (5.10)

due to translational and rotational invariance. By introducing polar coordi-
nates in Eq. 5.9, one has

Jij(rij) = 2πC2

∫
drdθ r2 sin θe−

1
2σ2

(2r2+r2ij−2rrij cos θ)

=
4πσ2

rij
C2e−r

2
ij/2σ

2

∫
dr re−r

2/σ2

sinh
(rrij
σ2

)
, (5.11)

and a chain of Gaussian integrals provides

Jij(rij) = π3/2C2σ3e−r
2
ij/4σ

2

= e−r
2
ij/4σ

2

, (5.12)

where the last equality is obtained by setting, without loss of generality,
C2 = 1

π3/2σ3 . Finally, by combining Eq. 5.7 and 5.12 the inner product
〈φM , φM ′〉 reads

〈φM , φM ′〉 =
n∑

i,j=1

e−r
2
ij/4σ

2

χM,iχM ′,j, (5.13)

i.e. a sum of Gaussian factors over the positions of all pairs of atoms retained
in the two mappings. Notably, the factorisation with respect to the operators
χM and χM ′ in Eq. 5.7 and 5.13 enables the inner product (and therefore
the distance D and the squared norm E) to be determined starting from a
coupling matrix Jij that can be calculated a priori over the static structure
of the molecule.

One might ask what kind of information the previously defined quantities
provide about the possible CG representations of a system. To answer this
question, let me first focus on the squared norm of a mapping E(M), see
Eq. 5.5 and 5.13,

E(M) = 〈φM , φM〉 =
n∑

i,j=1

e−r
2
ij/4σ

2

χM,iχM,j. (5.14)

Consider now two limiting cases: (i) extremely sparse and homogeneous CG
representations, in which each retained atom does not have any retained
neighbour within a radius of order

√
2σ—this condition can only be fulfilled
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provided that N is not too large, or σ is much smaller than the typical
interatomic distance. In this case, one has e−r

2
ij/4σ

2 ≈ δij and consequently
E(M) ≈ N ; (ii) globular mappings characterised by densely populated (i.e.
almost atomistic) regions of retained sites surrounded by “empty” ones. In
this case, the average number of retained atoms in the mapping that are
located within a sphere of radius

√
2σ from a CG site will roughly resemble

its atomistic value:

z̄ =
1

n

n∑
i,j=1

e−r
2
ij/4σ

2

, (5.15)

and thus E(M) ≈ Nz̄. It follows that the squared norm E(M) captures the
average homogeneity of a CG representation, that is, whether the associated
retained atoms are uniformly distributed across the macromolecule or are
mainly localised in well-defined regions of it. Fig. 5.2(a-c) reports examples
of CG mappings extracted for these two extreme categories in the case of
4ake together with a CG representation in which the retained atoms are
randomly selected.

In general, the existence of an inner product enables the definition of an
angle θM,M ′ between mappings, whose cosine reads

cos θM,M ′ =
〈φM , φM ′〉

(E(M)E(M ′))
1
2

. (5.16)

The orthogonality of mappings (cos θM,M ′ ≈ 0) has a relatively straightfor-
ward interpretation in terms of their spatial complementarity, as 〈φM , φM ′〉 ≈
0 implies that it is sufficient that each atom in mapping M does not have any
neighbour in M ′ (and vice-versa). The condition of parallelism, cos θM,M ′ ≈
1, is a bit less intuitive. If the mappings M and M ′ possess the same number
of atoms N and the same norm (E(M) = E(M ′) = E), one can see how Eq.
5.16 becomes:

cos θM,M ′ =
〈φM , φM ′〉
E =

∑n
i=1 χM,i

[∑n
j=1 e

−r2ij/4σ2

χM ′,j

]
∑n

i=1 χM,i

[∑n
j=1 e

−r2ij/4σ2
χM,j

] (5.17)

The parallelism requires that the average number of neighbors one atom of
M has from mapping M ′ has to be equal to the average number of neighbors
the atom has from itself. This means that the two mappings must place
retained atoms across the macromolecule in a similar fashion. Examples
of approximately parallel and orthogonal CG representations for 4ake are
presented in Fig 5.2(d-e).

While E(M) quantifies the average sparseness of a CG representation,
〈φM , φM ′〉—or equivalently cos θM,M ′—characterises the average degree of
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Figure 5.2: Top row : Example of possible CG representations for adenylate
kinase (PDB code 4ake) with N = 214 sites (represented as beads) charac-
terised by a low (a), intermediate (b) and high (c) mapping squared norm
E . By increasing E one moves from maximally homogeneous to extremely
globular CG representations. Bottom row : Examples of CG mappings with
N = 53 sites that are approximately parallel (d) and orthogonal (e) to a given
one. The atoms composing the reference CG representation are represented
as black beads. Parallel (resp. orthogonal) mappings tend to displace CG
sites on similar (resp. complementary) regions of the system. Image taken
from Ref. [26].

spatial similarity between two different decimations of the microscopic de-
grees of freedom of the system. The distance D(M,M ′) in Eq. 5.8 combines
these two notions to extract how “far” a pair of CG representations is in the
space of possible mappings M.

In the limiting cases of extremely sparse and globular mappings one re-
spectively obtains E(M) ≈ N and E(M) ≈ Nz̄, where z̄ is the atomistic
coordination number in Eq. 5.15. As the number of CG sites N increases,
however, it is extremely hard for a retained site not to have any retained
neighbor within a sphere of radius of order σ, so that the exact scaling of
E(M) on the degree of CG’ing N in the case of sparse mappings will be
hardly observed. Thus, it is useful to divide the inner product in Eq. 5.13 by
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the average atomistic coordination number (Eq. 5.15), and define

〈φM , φM ′〉z̄ =
1

z̄
〈φM , φM ′〉. (5.18)

Consequently, one has

Ez̄(M) =
1

z̄
E(M), (5.19)

Dz̄(M,M ′) =
1√
z̄
D(M,M ′), (5.20)

while the cosine between two mappings cos θM,M ′ is not affected by the rescal-
ing. With this choice, globular mappings are now associated to E(M)z̄ ≈ N ,
which can always be observed also in the case of low degrees of CG’ing, that
is, high N . Note that the definition of 〈φM , φM ′〉z̄ in Eq. 5.18 corresponds to
a rescaling of the coupling constant Jij in Eq. 5.12 to

Jij =
1

z̄
e−r

2
ij/4σ

2

. (5.21)

For notational convenience, in the following I omit the subscript z̄ and refer
to E(M)z̄, 〈φM , φM ′〉z̄ and Dz̄(M,M ′) as E(M), 〈φM , φM ′〉 and D(M,M ′),
respectively.

5.1 Exploration of the mapping space

Starting from the definitions introduced in the previous section, let me now
perform a quantitative analysis of the high-dimensional spaceM of CG repre-
sentations of a macromolecule that can be constructed through a decimation
of its atomistic degrees of freedom. As a testbed system the three-domain
enzyme adenylate kinase is considered, whose structure is discussed in detail
in Chapter 3, Sec. 3.2. The calculations discussed in the previous section
require in input only the value of the σ parameter and a static configuration
ri, i = 1, ..., n of the system to determine the set of Gaussian couplings Jij.
Here σ is set to 1.9Å (that is, half the separation between two consecutive
α carbons), and rely on the open crystal conformation of adenylate kinase
(PDB code 4ake), excluding from the analysis all hydrogens composing the
biomolecule, resulting in a total of 1656 heavy atoms.

5.1.1 Norm distributions

The numerical results reported in this subsection were obtained by my co-supervisor Roberto

Menichetti, whom I here acknowledge for his crucial contribution to this chapter.
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Let me first consider the squared norm E(M) of a CG representation
M , as defined in Eq. 5.19. As previously highlighted, this quantity provides
information about the spatial homogeneity of a mapping with a given degree
of CG N , thus recapitulating how the retained atoms are distributed across
the molecular structure, from uniformly scattered (E(M) ≈ N/z̄) to mainly
concentrated in well-defined, almost atomistic domains emerging out of a
severely coarse-grained background (E(M) ≈ N).

It is important to stress that mappings belonging to the two aforemen-
tioned extreme cases are routinely employed by the CG’ing community in the
description of a biomolecular system. In proteins, examples from the homo-
geneous class include physically-intuitive, residue-based CG representations
of the molecule in terms of its α carbons or backbone atoms [23, 207]; homo-
geneity, on the other hand, is often abruptly broken in chemically-informed,
multiscale mappings (see Sec. 2.2), in which a higher level of detail, up to the
atomistic one, is sharply localised on the biologically/chemically relevant re-
gions of the system—e.g. the active sites of the protein—while the reminder
is treated at extremely low resolution [23, 141].

One natural question follows: how representative are these “common”
mappings of the diversity of the space M? In other words, how spatially
homogeneous are the possible CG descriptions that can be designed for a
macromolecule when no prior knowledge about its chemical structure or bi-
ological function is exploited to guide the mapping construction?

To answer this question, let me introduce the number of mappings that
attain a particular value E of the squared norm for a given number of CG
sites N , which is given by:

ΩN(E) =
∑
M∈M

δ(N(M), N)δ(E(M), E) (5.22)

Normalizing Eq. 5.22 by the total number of mappings with N sites, ΩN , the
probability of having a mapping with given E and N is defined as:

PN(E) =
ΩN(E)

ΩN

, (5.23)

which satisfies the normalisation condition
∑
E PN(E) = 1 regardless of the

number of retained sites. By providing direct insight on the degree of spatial
uniformity characterising the ensemble of all possible CG descriptions of a
macromolecular system, PN(E) represents a first important ingredient in the
investigation of the structure of the mapping space M. The behaviour of
PN(E) is observed across the decimation mapping spaceM of 4ake for a set
of 16 values of N ranging from 53 to 1605, see Table 5.1. However, even
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〈E〉N σE,N
N RS WL-SP RS WL-SP

53 5.41 — 0.31 —
107 14.15 — 0.63 —
214 41.14 40.82 1.32 1.32
321 80.95 — 2.03 —
428 133.58 133.17 2.74 2.74
535 199.04 — 3.45 —
642 277.33 276.93 4.12 4.11
749 368.44 — 4.74 —
856 472.39 471.95 5.29 5.29
963 589.16 — 5.74 —
1070 718.76 718.29 6.06 6.07
1177 861.18 — 6.22 —
1284 1016.43 1016.14 6.16 6.17
1391 1184.51 — 5.79 —
1498 1365.42 1365.05 4.94 4.94
1605 1559.15 — 3.09 —

Table 5.1: Average mapping squared norm 〈E〉N and associated standard
deviation σE,N at different degrees of coarse-graining N , calculated over the
mapping space M of 4ake. I present random sampling results (RS), as well
as those obtained from a saddle-point approximation to the density of states
ΩN(E) determined through the Wang-Landau method (WL-SP), see text.

restricted to these cases, an exhaustive enumeration of all possible CG repre-
sentations of the system is unfeasible in practice, as extensively highlighted
in the previous chapters (see for example Eq. 3.48).

To overcome this combinatorial challenge, for each degree of CG’ing I
generate Ω̃tot = 2 · 106 uniformly distributed random mappings as strings
χi, i = 1, ..., n of zeros and ones compatible with the normalisation

∑n
i=1 χi =

N . Then the associated squared norm E is calculated. Results for each
N were then binned along the E axis in intervals of δE = 0.1, and the
corresponding PN(E) is estimated as

PN(E) =
1

δE
Ω̃N(E)

Ω̃tot

, (5.24)

where Ω̃N(E) is the number of sampled mappings with squared norm falling
between E and E+δE . In this “continuous” limit, the normalisation condition
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Figure 5.3: Probability PN(E) of the norm of the mapping E for 4ake calcu-
lated at various degrees of CG N , as obtained from a random sampling of the
mapping space M. Arrows indicate the values of N for which a reconstruc-
tion of the density of states ΩN(E) through the Wang-Landau algorithm has
been performed. Image taken from Ref. [26].

of PN(E) becomes

1 =
∑
E
PN(E)δE '

∫
dEPN(E). (5.25)

The set of distributions PN(E) obtained from the aforementioned random
sampling of the mapping space of 4ake are displayed in Fig. 5.3. One can
observe that, for each value of the CG resolution N , PN(E) is unimodal and
narrowly peaked around its average squared norm,

〈E〉N =

∫
dEPN(E)E , (5.26)

〈E〉N being an increasing function of N . On the other hand, the standard
deviation σE,N ,

σE,N =

(∫
dEPN(E)(E − 〈E〉N)2

) 1
2

, (5.27)

is non-monotonic in the degree of CG’ing: starting from extremely small
values in the case of few retained atoms (e.g. N = 53, 107 and 214), σE,N
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increases roughly up to N ≈ 3n/4 and then starts to decrease, reaching zero
for N = n.1 These features are further highlighted in Table 5.1 and Fig. 5.4,
in which the dependence of 〈E〉N and σE,N on the degree of CG’ing N is
reported as obtained from the distributions PN(E) in Fig. 5.3.
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Figure 5.4: Inset: Standard deviation σE,N of the mapping norm E as a
function of the degree of CG’ing N obtained from a random sampling of the
mapping spaceM of 4ake. Main plot: N -dependence of the average squared
norm 〈E〉N (“Random”, black line) and associated 3σE,N confidence interval
(khaki area) as obtained from a random sampling of the mapping space of
4ake, superimposed to the region covered by the set of single-window, pre-
liminary WL runs (purple area). The minimum (“WL-min”, blue line) and
maximum (“WL-max”, red line) squared norms reached by the preliminary
runs are highlighted. “WL-max” also corresponds to the scaling E ≈ N ob-
tained in the case of inhomogeneous, globular mappings. Image taken from
Ref. [26].

〈E〉N quantifies the average spatial homogeneity of the ensemble of CG
representations that can be randomly assigned to 4ake at a specific resolu-
tion. As previously discussed, maximally inhomogenous mappings, in which
a chiseled chunk of the biomolecule is treated atomistically while the re-
mainder is almost neglected, are characterised by E ≈ N . Critically, Fig. 5.4
displays that such linear scaling lies always above the average 〈E〉N for all de-
grees of coarse-graining investigated. The deviation between the two curves
is non-monotonic, with a maximum obtained for N = n/2, and only vanishes
for N → n, where mappings become very dense as they collapse towards the

1In this case only one possible mapping exists, namely the atomistic one.
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atomistic representation. As a consequence, the CG representations one en-
counters by randomly probing the mapping space M tend to be “sparse”
rather than compact. Furthermore, the difference between the squared norm
of the globular case and 〈E〉N is always (but for N ≈ n) one or two orders of
magnitudes larger than the standard deviation of the corresponding PN(E),
see Fig. 5.4. Inhomogeneous mappings lie extremely far away in the right tails
of the distributions displayed in Fig. 5.3, thus constituting an exponentially
vanishing subset of the space M.
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Figure 5.5: Left : Logarithm of the density of states ΩN(E) of 4ake, SN(E) =
ln[ΩN(E)], for N = 856. Results are obtained via (i) Wang-Landau sampling
(“WL”, red dotted line), vertically shifting the data so that the minimum
of SN over the range of investigated norms is zero; (ii) a saddle-point ap-
proximation of the WL predictions (“SP-approx”, orange dashed line); and
(iii) a random drawing of CG representations (“Random”, black line), in
this latter case shifting the curve so that its maximum coincides with the
one of the WL profile. The figure also includes the squared norm associated
to the mapping in which all the heavy atoms composing the backbone of
4ake are retained (“backbone”, dashed blue line), a CG representation that
is commonly employed when CG’ing a protein [23, 207]. Right : First (main
plot) and second (inset) derivatives S ′N(E) and S ′′N(E) of the entropy SN(E)
determined via WL sampling for N = 856. Image taken from Ref. [26].

The suppression of the statistical weight associated to high-norm, globular
CG representations of 4ake in the space of all possible ones is not surpris-
ing, and is solely dictated by entropic effects. Indeed, at least for small and
intermediate N , it is extremely unlikely that a completely random selection
of retained atoms across the biomolecule results in their dense confinement
within sharply-defined spatial domains of the system, just as it is unlikely for
a gas to occupy only a small fraction of the volume in which it is enclosed.
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Figure 5.6: For each N , the figure shows the values of the entropy SN(E) ob-
tained via (i) Wang-Landau sampling (“WL”, red dotted lines), shifting the
data so that the minimum of SN over the range of investigated norms is zero;
(ii) a saddle-point approximation of the WL predictions (“SP-approx”, or-
ange dashed lines); and (iii) a random drawing of CG mappings (“Random”,
black lines), in this latter case shifting the curve so that its maximum coin-
cides with the one of the corresponding WL profile. In the case of N = 214
(resp. N = 856), the subfigure contains the squared norm associated to the
Cα (resp. backbone) mapping (“Chem”, blue dashed line), a CG representa-
tion routinely employed in protein CG [23, 207]. Image taken from Ref. [26].
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Interestingly, this latter analogy can be pushed further by noting that the
squared norm E(M), see Eq. 5.19 and 5.14, is akin to the negative configura-
tional energy of a lattice gas living on the irregular grid defined by the protein
conformation, whose particle interact via a hard-core, short-range potential
followed by an attractive Gaussian tail. In this context, the selection opera-
tors χM,i = 0, 1, i = 1, ..., n of a mapping M with N retained atoms can be
interpreted as the set of occupation numbers describing a distribution of the
N particles of the gas on the n available lattice sites. It follows that compact
CG representations of 4ake, located in the large-E limit of PN(E), are just as
challenging to randomly sample within the space M as are the low-energy
configurations of the gas in which the N particles spontaneously occupy only
a fraction of the available volume.

The strongly entropy-driven distribution of mappings calls for the intro-
duction of enhanced sampling techniques to boost the exploration ofM, such
as the algorithm proposed by Wang and Landau (WL) [205, 206, 226, 227].
For each CG resolution N , the aim is to obtain a uniform sampling of the
possible mapping norms E across the space M, in contrast to the set of
narrowly-peaked probability distributions displayed in Fig. 5.3. In this con-
text, the acceptance probability of Eq. 4.4 is translated into the following
expression:

W (M →M ′) = min

[
1,

ΩN(E(M))

ΩN(E(M ′))

]
= min [1, exp (−[SN(E(M ′))− SN(E(M))])] , (5.28)

where ΩN(E) is the density of states defined in Eq. 5.23 while SN(E) =
ln[ΩN(E)] is the corresponding microcanonical entropy. ΩN(E) is a priori
unknown and can be determined by means of the self-consistent, iterative
procedure illustrated in Chapter 4, Sec. 4.3.

As discussed in Sec. 4.3, knowledge of the sampling boundaries proves
extremely beneficial to the accuracy and rate of convergence of the Wang-
Landau self-consistent scheme [239]. Hence, for each value of N investigated,
an exploratory, non-iterative WL run is initially performed in order to ap-
proximately locate the minimum and maximum mapping norms Emin(N) and
Emax(N) achievable at that specific CG resolution, and consequently bound
the support of the corresponding ΩN(E).

Mapping norms visited by the set of preliminary WL runs extend, for all
values of N , over a significantly wider range compared to the one obtained by
random sampling (see Fig. 5.4). Remarkably, the maximum norm Emax(N)
exhibits a linear dependence on N that is fully compatible with the one as-
sociated to globular CG representations, Emax(N) ≈ N , highlighting that
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the preliminary WL runs succeed in exploring this entropically suppressed
region of the mapping space. Furthermore, Fig. 5.4 displays that the mini-
mum norm Emin(N) identified by the preliminary runs lies always below the
average 〈E〉N for all values of N . In contrast to globular mappings, CG rep-
resentations living in this low E limit are maximally homogeneous, that is,
retained atoms are scattered throughout the molecular structure as uniformly
as possible. This class constitutes another exponentially vanishing subset of
the mapping space: in the gas picture, it would correspond to the ensemble
of configurations in which the particles are regularly distributed within the
available volume.

Having approximately identified the range of norms achievable for 4ake
at each CG resolution, the associated densities of states ΩN(E) can be de-
termined via the iterative WL scheme described in Sec. 4.3. To speed-up
convergence of the algorithm, for each N the range of norms [Emin, Emax] is
slightly reduced with respect to the one predicted by the explorative WL runs.
This interval is then divided into a set of overlapping windows in which inde-
pendent WL simulations are performed [206]. The resulting partial densities
of states are combined a posteriori to determine the cumulative ΩN(E) up to
a global multiplicative factor, or, in this case, the entropy SN(E) = ln[ΩN(E)]
up to an additive constant.

WL estimates of the entropy SN(E) are presented in Fig. 5.5 for N = 856,
while results for all the other degrees of CG are reported in Fig. 5.6. The
behaviour of SN is non-monotonic in E in all cases, exhibiting a unique max-
imum as the mapping norm moves from the left to the right boundary of the
range of investigated ones—that is, in transitioning from extremely homoge-
neous to maximally globular CG representations. As ΩN(E) = exp[SN(E)],
this result confirms how these two limiting classes of mappings constitute re-
gions of exponentially vanishing size within the broad spaceM. At the same
time, the overall shape of SN strongly depends on the degree of CG: while for
high N entropy profiles are nearly symmetric around their maximum, they
become increasingly skewed as fewer and fewer atoms are employed to repre-
sent the macromolecule. This asymmetry becomes apparent by performing,
for each CG resolution, a quadratic expansion of SN around its maximum,

SN(E) ' SN(Ẽ(N)) +
1

2
S ′′N(Ẽ(N))(E − Ẽ(N))2, (5.29)

where Ẽ(N) is the norm at which the first derivative S ′N of the entropy van-
ishes, and S ′′N(Ẽ(N)) is the corresponding second derivative—the dependence
of S ′N and S ′′N on E being displayed in Fig. 5.5 for N = 856. The accuracy of
this parabolic, symmetric approximation in reproducing the exact SN over
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the whole E-range increases with the number of retained atoms, see Fig. 5.5
and 5.6, especially as far as the limit of high mapping norms is concerned.

Finally, it is interesting to test the predictions of WL sampling against
the results obtained via a completely random exploration of the mapping
space. To this end, Fig. 5.5 and Fig. 5.6 include a comparison between the
WL entropies SN and their random counterparts SranN , the latter defined
as SranN (E) = ln[PN(E)] + CN , where PN(E) are the probability densities
presented in Fig. 5.3 and the constants CN are set so that the maxima of
SranN and SN coincide. For each value of N the two profiles are in perfect
agreement, thus confirming the accuracy of the self-consistent WL scheme
in determining the density of states of a system. Critically, results for SranN

only extend over a very narrow range of mapping norms, centered around
the value Ẽ(N) for which the maximum of the entropy is attained. It is
therefore largely unfeasible, by randomly drawing CG representations, to
exhaustively explore the mapping space M of a macromolecule. In this
respect it is worth to inspect the position, on the E axis, of the Cα and
backbone mappings (which in 4ake retain N = 214 and N = 856 sites,
respectively), two reduced representations that are routinely employed for
CG’ing proteins [23, 207]. These turn out to be located in the vicinity of
the class of “prototypical” random ones, for which the entropy SN reaches
its maximum; however, their intrinsic regularity, dictated by the position of
the retained sites on the peptide chain, makes these mappings slightly more
homogeneous than the random ones, see Fig. 5.5 and Fig. 5.6.

To provide a more quantitative measure of the consistency between ran-
dom and WL sampling results, for each degree of CG’ing the average and
variance of the mapping norm, see Eqs. 5.26 and 5.27, are recalculated start-
ing from the WL entropies SN . These are used to compute PN(E) making
use of a saddle-point approximation of Eq. 5.23, namely

PN(E) =
ΩN(E)

ΩN

=
exp[SN(E)]∫
dE exp[SN(E)]

'(
|S ′′N(Ẽ(N))|

2π

) 1
2

exp

[
1

2
S ′′N(Ẽ(N))(E − Ẽ(N))2

]
, (5.30)

where in the last step of Eq. 5.30 the quadratic expansion of SN defined in
Eq. 5.29 is used. Within the saddle point approximation, one has 〈E〉N =

Ẽ(N), Ẽ(N) being the position of the maximum of SN , and σE,N = |S ′′N(Ẽ(N))|− 1
2 :

these predictions are found to be in perfect agreement with their random
sampling counterparts, results being presented in Table 5.1.
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5.1.2 Inner product distributions

In this section, the mapping spaceM is described from the perspective of the
inner product between its elements. Following the same scheme of Sec. 5.1.1,
the analysis is restricted to the cosine between mappings that are constrained
to share the same resolution N . To fulfil this purpose one can compute
the probability PNN(cos θ) of observing a value of cos θ provided that this
constraint is satisfied:

PNN(cos θ) =
ΩNN(cos θ)

Ω2
N

, (5.31)

that is, the ratio between the number of mapping pairs whose cosine is equal
to cos θ, Ω2

NN(cos θ), and the total number of possible pairs Ω2
N . Now it

is possible to investigate how the average degree of parallelism between two
mappings changes when considering randomly selected representations or
more peculiar elements of M.

In this section two data sets are compared, each one containing 106 ele-
ments: the first is obtained by computing the cosine between two mappings
in which the retained sites have been picked randomly; the second data set
is constructed in a more sophisticated manner, making use of the WL sam-
pling scheme to collect mappings that uniformly span the range of accessible
values of E , which is known from the previous section (see Fig. 5.4). More
specifically, a non-iterative, single-window WL exploration as in Sec. 5.1.1
over this range is started and, when all the reference bins have been visited at
least once, a mapping is saved every 1656 Monte Carlo moves. Mappings are
saved in different macro-bins, each one covering an interval of amplitude 20
(in terms of units of E). Sampling ends when 5000 mappings are saved in each
box, without considering the convergence of the WL algorithm. The data
set is then generated by computing the cosine (Eq. 5.16) between randomly
selected pairs of mappings extracted through this procedure. Importantly,
the WL sampling scheme produces a pool of potentially correlated mappings
and the chance of collecting similar elements of M cannot be excluded.

Fig. 5.7(a) shows the histograms between the two data sets for N = 856.
While the random cosine distribution displays a narrow peak around its
average value, the WL histogram is more distributed, reflecting the increased
diversity of the data set. Indeed, the latter histogram spans values that
range from ∼ 1, obtained when two mappings are perfectly parallel, to 0.457,
when two mappings are as orthogonal as possible given the properties of the
lattice, defined by the protein conformation, and this number of retained
sites. Fig. 5.7(a) also includes a graphical rendering of the two maximally
orthogonal mappings, which possess a high value of E (E = 847.32 and
E = 843.82, respectively) and cover different regions of the enzyme structure.
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Figure 5.7: (a): histogram of cosine values extracted from random CG
mappings (yellow) and WL CG mappings (purple, see main text) for 4ake
with N = 856 sites. Elements of M with the lowest value of the cosine
(cos θ = 0.457) are shown; such value corresponds to an angle of 63.25 de-
grees. (b): range of cosine values covered by the two data sets when N is
changed. The dotted black line shows the average value of cos θ over the
different random data sets and the yellow region represents the points within
3σ from the mean. The red (blue) dotted lines report the maximum (min-
imum) values of cos θ inside WL data sets, respectively. Image taken from
Ref. [26].

In Fig. 5.7(b) these considerations are extended to different values of N ,
namely those employed in Sec. 5.1.1. The random distribution is always con-
fined in a narrow interval of values of cos θ, while WL data sets are capable
of spanning a much wider range. In particular, for sufficiently small values
of N , it is possible to retrieve maximally parallel (cos θ = 1) and maximally
orthogonal (cos θ = 0) mappings inside the WL dataset. Reaching orthogo-
nality is made possible by the fact that, at such low values of N , it is possible
to confine retained sites in two separate regions of the protein structure.

5.2 Lattice gas analogy and phase transitions

The numerical results reported in this section were obtained by my supervisor Raffaello

Potestio, whom I here acknowledge for his crucial contribution to this chapter.

As anticipated in Sec. 5.1, the reduced representation discussed in the
present work, in which a mapping is defined in terms of a decimation of the
atoms available on the molecular structure, suggests the analogy with a lat-
tice gas. Such analogy is a classic of statistical mechanics, which enables
one to map an Ising model to a gas of interacting particles, thus making it
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manifest that the spontaneous magnetisation in the former and the liquid-
gas phase transition in the latter belong to the same universality class [243].
Here, the consequences of the lattice gas interpretation of mappings are in-
vestigated in order to tackle the issue of characterising the mapping space
from a different perspective.

The role of the energy can be played by the norm of the mapping:

E(M) = −E(M). (5.32)

In analogy with a lattice gas, if two retained sites are close to each other,
they feel an attractive interaction, thereby reducing the energy. Making use
of Eq. 5.32 one can thus write

ΩN(E) = ΩN(−E). (5.33)

Let me now consider a system governed by the lattice Hamiltonian in Eq. 5.32
at equilibrium with a reservoir at temperature T = β−1. The partition
function of such system can be expressed in terms of ΩN(E) via

ZN(β) =

∫
dE e−βEΩN(E) ≡

∫
dE e−(βE−SN (E)), (5.34)

where the relation SN(E) = ln ΩN(E) is used to define the entropy. Eq. 5.34
allows to compute the dimensionless Helmholtz free energy as

βFN(β) = − lnZN(β) = − ln

∫
dE e−(βE−SN (E)). (5.35)

While the logarithm of the integral can be theoretically and numerically
cumbersome to compute, it is possible to obtain a reasonable estimate of
βFN through a saddle point approximation. Specifically, one can expect
that the integral is approximately equal to the largest integrand, so that∫

dE e−(βE−SN (E)) ' C max
E

(
e−(βE−SN (E))

)
, (5.36)

where C is an immaterial constant. This approximation provides a definition
of the free energy that is equivalent to the Legendre-Fenchel transform:

βFN(β) ' min
E

(βE − SN(E)) . (5.37)

The thermodynamics of the lattice gas at thermal equilibrium can thus be
retrieved computing Eq. 5.37 for a given value of N at all values of β.

It is particularly instructive to investigate the temperature dependence
of E?, defined as the value of the energy for which βE − S(E) reaches its
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Figure 5.8: (a): heat capacity CV (red circles, right ordinate) and value of
the energy E? corresponding to the minimum of the free energy (blue tri-
angles, left ordinate) as functions of β for the system with N = 214. E?

decreases monotonically with β, indicating that higher temperatures corre-
spond to higher values of the average internal energy of the lattice gas, as
expected; however, a jump discontinuity in E? appears in correspondence of
the same value βgl for which the heat capacity features a sharp peak, suggest-
ing the occurrence of a first order phase transition separating two distinct
phases: a gas (low β) from a liquid (high β) for the lattice gas model, and,
correspondingly, a sparse phase from a dense, localised phase in the case of
CG mappings. (b): Helmholtz free energy βF of the lattice gas as a function
of the energy for different values of β. The curves have, in general, a unique
absolute minimum; however, as β increases, a metastable minimum appears
that, for a particular value of β, becomes degenerate. The presence of a small
but appreciable barrier between the two minima makes the position of the
absolute minimum, E?, shift abruptly from one to the other, as can be seen
in Fig. 5.9, thus making E?(β) discontinuous. Image taken from Ref. [26].

minimum. In Fig. 5.8a (blue curve, left ordinate) this function is reported
for N = 214: note that E? = E?(β) decreases monotonically, i.e., the lower
the temperature, the lower the value of the energy–which corresponds to
higher values of the mapping norm. At a particular value βgl of the inverse
temperature, however, E? drops abruptly, thus suggesting the occurrence of
a first-order, discontinuous phase transition.

To gain further insight, the shapes of βE − S(E) for values before and
after βgl are computed. These functions, reported in Fig. 5.8b, indeed show
two minima separated by a relatively low barrier; increasing β, the absolute
minimum shifts from the right to the left, crossing a point for which the two
are essentially degenerate. This is the point of coexistence of two distinct
“phases” of this lattice gas: a low density one corresponding to distributed
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mappings (high energy), and one ascribable to more dense, compact con-
glomerates of sites (low energy). The critical nature of the transition from
one regime to the other is confirmed by the inspection of the heat capacity,
computed as

CV = −β2∂
2(βF )

∂β2
(5.38)

and reported in Fig. 5.8a (red curve, right ordinate). The sharp, asymmetric
peak in CV , located at the value βgl of the inverse temperature, shows that
the lattice gas crosses a phase transition between a gas and a liquid phase.

A crucial role in this behaviour is played by the number of coarse-grained
sites. In fact, as N increases, the system acquires the possibility of crossing
a second phase transition: for example, in the case of N = 1070, besides the
gas-liquid one, it is possible to observe a second, even sharper discontinuity
in E? for a value of the inverse temperature βls > βgl. This temperature
separates the liquid from the solid phase: when the lattice gas particles
are sufficiently many, and the temperature sufficiently low, the system can
“freeze” in particularly dense mappings with very low entropy. Also in this
case, the inspection of the heat capacity (Fig. 5.9) supports the interpretation
of this as a phase transition. Finally, if the number of sites is too large (e.g.
N = 1498) no transition is observed, see Fig. 5.9.

5.3 Topology

Here, the distance D (Eqs. 5.8 and 5.19) between members ofM is discussed
with the aim of showing, once again, that a peculiar choice of retained CG
sites, i.e., one impossible to obtain with random sampling, displays non-
trivial statistical properties that reflect in the topological organisation of the
mapping space.

5.3.1 Topology of the mapping norm space

Without loss of generality, this analysis can be restricted to the case N = 214,
which is the number of amino acids of 4ake. Here a data set of mappings
is generated via the WL sampling protocol explained in Sec. 5.1.2; in this
case, the range of values of E is narrower and only 10 macro-bins of am-
plitude 20 are explored. The data set is constructed by randomly selecting
100 elements for each of the macro-bins, resulting in 1000 CG mappings
that homogeneously span the accessible values of E . The sketch map algo-
rithm [244, 245] is employed to embed these points from the high-dimensional
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Figure 5.9: Dependence of the heat capacity CV on the inverse temperature β
for the lattice gas analogue of the mapping norm of 4ake calculated at several
degrees of CG. Sharp peaks in CV at high (resp. low) values of N suggest
the presence of a solid-liquid (resp. liquid-gas) transition in the system. It
should be noted that the scales of β and CV are the same in all plots. Image
taken from Ref. [26].
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space of mappings M into a two-dimensional plane, however preserving as
faithfully as possible the relative distances among them—that is to say that
nearby points in the mapping space are mapped onto nearby points on the
2D space, see Fig. 5.10. The two critical parameters of the algorithm are
σd and σD, which modulate how far and close points are in the low (high)
resolution space [244]. To provide the reader with a feeling of the impact
that these parameters have on the structure of the low-dimensional repre-
sentation, Fig. 5.10(a-b) reports the embeddings obtained for a low and high
value of σd and σD.

In the first case, reported in Fig. 5.10(a) and referring to low values of
the σ parameters, data points are in general very sparse and uniformly dis-
tributed on the plane, with the exception of a group of points that accumulate
in a denser cluster: these are particularly compact mappings localised in a
specific region of the molecule. Such mappings remain close to each other
even when the σ parameters are increased, thus “squeezing” all points in the
low-D embedding, see Fig. 5.10(b). In this latter scenario, points correspond-
ing to low-E , uniform mappings collapse in a small region of the embedding
space. Furthermore, a third group of points corresponding to compact map-
pings appears, distinct from the ones previously discussed, and absent in the
low-σ embedding.

The high-σ embedding thus highlights two relevant features: first, the
presence of specific regions with qualitatively distinct mapping properties;
these are either sparse, but necessarily similar one to the other (Fig. 5.10(d)),
or dense, with atoms localised in different domains of the molecule (Figs.
5.10(c,e)). The distance among the latter is necessarily large, since the re-
tained sites cover non-overlapping regions.

The second relevant feature is that different groups of points, associated
to qualitatively distinct types of mappings, can be connected one to the other
only “passing through” a third one, as in the case of mapping c going to e
through d. This is suggestive of the presence of routes in mapping space
that join points having the same value of the norm, which however cannot
be connected through “iso-E” paths: in order to transform mappings such
as that in c into that in e through a sequence of single-site changes (i.e. one
retained atom is discarded, a formerly discarded one is now retained) one
cannot but increase or decrease the value of the norm.

5.3.2 Topology of mapping entropy space

The stochastic minimisation of the mapping entropy Smap (Eq. 3.47) carried
out in Sec. 3.3 outputs a pool of optimised solutions, each one being the
result of an independent simulated annealing run. Sec. 3.3.2 shows how CG
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Figure 5.10: Top: topology of the mapping space M in 2D obtained with
the sketch map algorithm [244, 245]. The algorithm requires six parameters,
namely σd, ad, bd in the low resolution space and σD, aD, bD in the original,
high resolution one. Here σD = σd = 2 in (a) and σD = σd = 20 in (b), while
ad = bd = 2 and aD = bD = 5 in both cases. Mappings are depicted with
different colors depending on their norm E . A different choice for σD and σd
results in a completely different 2D embedding (see Ref. [244] for a detailed
explanation). Bottom: three different mappings located in three separated
regions of the plane in (a) and (b). Mappings in subfigures (c) and (e) possess
very high values of E and are localised in different domains of the protein.
Note that sparse mappings, such as the one in subfigure (d), are clustered in
the same region in (b) but not in (a). Image taken from Ref. [26].
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representations with comparable values of Smap are neatly separated from
each other, namely it is impossible to transform one mapping into another
keeping the value of Smap low. This analysis, however, does not exclude that
the selected CG representations share common structural features.

In this subsection the distance D is employed to investigate the structural
similarity between the aforementioned mappings, that is, to understand if
low-Smap representations are closer to each other than randomly selected
ones according to the newly introduced metric. More specifically, the data
set of 1968 CG mappings of 4ake with N = 214 illustrated in Sec. 4.1 is
employed, which covers a wide range of values of Smap; the relations among
these mappings are then quantified in terms of their distance D, taking the
enzyme crystal structure as a reference. With respect to this, it is worth
keeping in mind that D intimately depends on this reference, and mappings
that lie close to each other when a given structure is considered might turn
out to be closer or further away from each other when a different conformation
is used.

Figure 5.11: Application of the sketch map algorithm to a distance matrix
obtained calculating D (Eqs. 5.8 and 5.19) over the data set of 1968 mappings
described in Chapter 4. The x component separates very well the data points
according to their value of Smap, thus proving that informative mappings
can be distinguished among the elements of M according to a measure of
geometrical similarity such as D. The parameters fed to the algorithm are
the following: σD = σd = aD = bD = 5, ad = bd = 2. Image taken from
Ref. [26].

Fig. 5.11 shows that the two-dimensional embedding obtained through
the application of the sketch map algorithm separates the CG mappings ac-
cording to a gradient of Smap. In particular, the x component of the sketch
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map and the mapping entropy Smap display a clear anticorrelation. The re-
sults suggest that highly informative mappings, characterised by low values
of Smap, share geometrical features that are not present in less informative
(high-Smap) representations. In other words, the peculiar resolution distribu-
tion found in low-Smap mappings separates them from other elements ofM.
The relevant features highlighted by the mapping entropy thus reverberate
in the merely structural characterisation given by the mapping distance.

5.4 Extension of the theory to equilibrium

sampling

Insofar, the analysis of the mapping space has relied on a definition of a
scalar product between CG representations based on a single, static struc-
ture of the reference protein. However, proteins are not static objects, but
rather flexible entities which, in a typically aqueous environment, undergo
fluctuations and deformations. It is therefore natural to extend the proposed
metric to incorporate such structural variability.

The high-resolution (i.e. atomistic) system, constituted by the protein
(whose atomic coordinates are indicated with r) and its environment (indi-
cated with s), is assumed to be subject to an interaction potential u(r, s),
such as the one in Eq. 1.1. In the canonical ensemble the probability density
to sample a given configuration is proportional to the Boltzmann weight:

pr(r, s) =
e−βu(r,s)

Z
(5.39)

where Z =
∫
drds e−βu(r,s) is the configurational partition function of the

system.
The norm E of a mapping in Eq. 5.5 only depends on a single conforma-

tion of the molecule under examination; however, one can straightforwardly
extend the definition of E to account for the whole conformational space
sampled by the system:

〈E〉 =

∫
drds pr(r, s) E(r)

=

∫
drds pr(r, s)

1

z̄(r)

(
n∑

i,j=1

e−r
2
ij/4σ

2

χM,iχM,j

)

=
n∑

i,j=1

〈Jij〉χM,iχM,j. (5.40)



121

Note that the average is carried out both over the protein and environment
degrees of freedom; at the same time, for mappings that only retain protein
degrees of freedom, the couplings Jij—and thus the norm E—only depend
on the latter. The linearity of the norm with respect to the couplings allows
one to first compute their thermal average, that is,

〈Jij〉 =

∫
drds pr(r, s)Jij(r) =

∫
drds

e−βu(r,s)

Z

1

z̄(r)
e−r

2
ij/4σ

2

, (5.41)

and subsequently employ them for the calculation of norms, scalar products,
and distances, in the same manner as it was done insofar. In this case,
however, the resulting values entail information about the conformational
space sampled by the whole system, including the environment, described in
terms of a high-resolution model.

Figure 5.12: Scatter plot of the single-conformation mapping norm E , calcu-
lated on the crystal structure of 4ake, against its canonical average 〈E〉 (Eq.
5.40) for 5 × 104 CG mappings with N = 214. The red straight line with
slope one serves as a guide to the eye. The Pearson correlation coefficient is
0.9997. Image taken from Ref. [26].

Fig. 5.12 displays a comparison between the value of E computed on the
crystal structure of 4ake and its canonical average 〈E〉 obtained through MD
sampling. Each point in the plot represents a E–〈E〉 pair out of 5 × 104

mappings with N = 214 extracted so as to homogeneously span all the
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possible values of E , see Sec. 5.1.2. The ensemble average is performed over
104 configurations of the 200 ns long NVT simulation described in Sec. 3.2.

Points are very narrowly dispersed along the diagonal, with a Pearson
correlation coefficient very close to unity. This suggests that, at least in
this case, the canonical average of E is robust to structural changes: this
behaviour can be ascribed to the fact that at the outset of the simulation
the protein is in its native state and, due to the strong constraints present in
the molecule, the local environment of each atom generally performs small-
amplitude fluctuations about a well-defined average. In this particular case
the couplings computed explicitly accounting for the energetics of the system
do not induce significant deviations in the value of the norm with respect to
the static-structure values; it is hence reasonable to expect that the same
will hold for the metric and topological properties of the mapping space.

However, this consistency will not be observed when secondary and ter-
tiary structures heavily change, as in the case of protein folding: the value of
E calculated over the unfolded polypeptide chain will not match its canonical
average performed over a sample containing folded configurations.

5.5 Conclusions

This chapter aims at defining a measure of distance between two low-resolution
representations of a macromolecule, and to “explore” the metric space in-
duced by it. The metrics illustrated here has been employed to quantify
the number, dissimilarity, and structural features of different mappings of
a macromolecule in a static conformation. In this context, the proposed
tool can be leveraged to perform a molecular-wise comparison between the
several existing mapping prescriptions, that is, a quantitative version of the
qualitative analysis carried out in Chapter 2 and in Ref. [23], in which CG
representations were examined by visual inspection.

A further interesting aspect of this chapter is represented by its connec-
tions to a recent work by Foley et al. [156], in which the authors identify a
phase transition between reduced representations on the basis of their spec-
tral quality, a quantity related to the sum of the eigenvalues of the covariance
matrix obtained integrating exactly a Gaussian network model (GNM). In
the context of this chapter, the phase transition appears when looking at
the mapping norm E , which is not immediately interpretable as a measure
of quality but rather of sparsity of a CG representation. What kind of re-
lationship exist between the information entailed by these two observables?
Is it possible to observe a phase transition when considering a more complex
measure of quality, such as the mapping entropy?



Chapter 6

Resolution, Relevance and
Mapping Entropy

Chapters 3 and 4 are devoted to the mapping entropy (Eq. 3.6), an observable
capable of measuring the intrinsic information content of a coarse-grained
representation. In order for this quantity to be computed from a fully atom-
istic MD trajectory, few approximations are employed, the most important
one being the truncated cumulant expansion in Eq. 3.31.

Such approximations are necessary due to the incapacity of calculating
the ingredients involved in the definition of the mapping entropy, which is
the canonical average of the logarithm of pr/p̄r (see Eq. 3.10). Both these
probability distributions are complicated to extract because of their high
dimensionality and the numerical instabilities associated to the explicit cal-
culations of the exponentials.

This chapter shows a way to retrieve an approximate, “frequentist” ver-
sion of the atomistic probability without explicitly taking into account the
Boltzmann weight of each configuration. This is obtained relying on the
resolution-relevance framework proposed by Marsili and coworkers [246, 247,
27].

Given a trajectory of a protein containing L sampled configurations, they
are lumped into an appropriate number of microstates C (C < L), each
one populated by k atomistic configurations. Each choice of this “binning”
defines a probability distribution over the sample, whose Shannon entropy
can be immediately evaluated as:

Hs = −
C∑
i=1

ki
L

ln

(
ki
L

)
. (6.1)

This quantity, also called resolution [247], is a measure of the level of detail
employed to describe the sample. A very gross description (few microstates,

123



124

wide binning) corresponds to a sharply peaked probability distribution, i.e.,
almost all instances fall inside the same bin, thus leading to very low values
of resolution (ki ∼ L, kj = 0 ∀j 6= i). On the contrary, extremely detailed
descriptions such that each data point is associated to a different microstate
(or bin) assign a uniform probability to the bins ( 1

L
), thus leading to the

highest possible value of resolution, namely Hs ∼ lnL. Intuitively, one can
state that the featurisations of the sample corresponding to these two ex-
tremal values of resolution are not particularly informative. Nevertheless,
the resolution is, on average, monotonic with C, and it is impossible to make
sense of this intuition based only on the value of Hs.

A number of works by Marsili and coworkers [246, 247, 27] have related the
resolution to another information-theoretical quantity, that is, the entropy
of the distribution of the frequencies, or relevance:

Hk = −
∑
K

kmk

L
ln

(
kmk

L

)
(6.2)

where K is the set of unique frequencies observed in the sample of C mi-
crostates and mk is the number of times the frequency k occurs:

mk =
C∑
i=1

δk,ki . (6.3)

The relevance is a Shannon entropy that measures the information content
of the frequency distribution. In Ref. [27] Cubero et al. state that “a fea-
turisation of the sample in terms of the frequency k provides a minimally
sufficient representation of it, in the sense that the total information content
of a sample can be divided as:

Hs = Hk +Hs|k (6.4)

where Hs|k is a measure of noise:

Hs|k =
∑
K

kmk

L
lnmk (6.5)

In absence of prior information, Hk is the maximal number of bits per unit
point that has to be used to estimate the underlying generative process, and
Hs|k is a measure of noise.”

More specifically, Hs|k measures the ambiguity of the representation em-
ployed, i.e., the number of different classifications that produce the same
distribution of frequencies mk.
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The intuitive lack of information associated to the two extremal values
of resolution showcased above can be rationalised now, as they correspond
to zero relevance, since kmk = L in both cases. In particular, when the
resolution is zero all configurations are lumped inside the same microstate i,
thus implying that ki = L and mL = 1; analogously, the maximum value of
the resolution corresponds to a single configuration per microstate, namely
ki = 1 ∀ i and m1 = L. The non-negativity of the entropy combined with
Rolle’s theorem allows one to conclude that the relevance displays a maxi-
mum.

Figure 6.1: (a-c): Resolution-relevance plots for the trajectories of 6d93,
4ake, and 1qlp. Each all-atom trajectory of L = 10001 frames has been
clustered in 2000 different values of C, starting from C = 2 and ending
with C = 9997, with an intermediate step equal to 5. The usual UPGMA
algorithm (see Sec. 3.2.1) is applied over the all-atom RMSD matrix in order
to perform the clustering. Each data point is colored according to the value
of C employed to discretise the original trajectory. (d-f) : local slope µ of
the Hs-Hk curve over all the spectrum of possible values of C. µ is computed
by iteratively performing a linear regression over all values of the curve such
that the resolution falls into an interval of amplitude lnL

50
. Such resolution

window is iteratively moved from right to left by a factor lnL
1000

, until points
with Hs = Hk ∼ 0 are found.

When the resolution is low (well-sampled regime), mk is almost never
different from one, Hs|k is negligible, and the relevance is almost equal to the
resolution (Hk ∼ Hs). At high values of Hs the situation changes, as the
relevance decreases with a non-constant slope µ (µ = µ(Hs)) with increasing
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resolution. In particular, Marsili and coworkers [248, 27] identify the point
with µ = −1 as especially interesting, since it provides the optimal trade-
off between resolution and relevance. Starting from the rightmost point of
a typical Hs-Hk plot (see Fig. 6.1(a-c)), where Hs = lnL and Hk = 0, it is
possible to slowly reduce the resolution with which the system is treated, thus
increasing the relevance. Going from right to left in the plot one can observe
how, at the beginning, a reduction of one bit in resolution is compensated
by a gain higher than one bit in relevance, until the critical point µ = −1 is
reached. After µ = −1, increasing the relevance of one bit implies a major
reduction in resolution.

With the aim of exploiting this separation between the regimes of lossless
and lossy compression, I deem it appropriate to consider this critical point
as the threshold that must be employed to extract microstates from the
sample. This allows one to choose an optimal number of bins, C̄, which is
used to create an atomistic histogram of the collected configurations, where
the probability of each microstate (bin) i is now given by the number of times
it is observed in the sample:

pr(ri) =
ki
L

(6.6)

The trajectory can now be reduced to C̄ atomistic configurations, whose
probability is dictated by Eq. 6.6. A CG representation M will induce an
additional clustering on such reduced trajectory, lumping C̄ microstates in
K macrostates. At this point, the probability of a CG macrostate R (pR(R))
can be immediately calculated by inserting Eq. 6.6 into Eq. 1.7:

pR(R) =

∫
dr pr(r)δ(M(r)−R)

∼
∑
i

ki
L
δ(M(ri)−R). (6.7)

Knowing pr, pR and the multiplicity of the microstates mapping onto each
macrostate (Ω1(R) =

∑
i δ(M(ri)−R)), it is possible to calculate the map-

ping entropy in its original formulation:

SKLmap =

∫
dr pr(r) ln

[
pr(r)

p̄r(r)

]
∼

∑
i

ki
L

ln

[
ki

L p̄r(r)

]
(6.8)

where the smeared probability of the microstate, p̄r(r), is defined (Eq. 3.7)
as the CG probability of the macrostate divided by Ω1(R). For the sake of
clarity the Boltzmann constant kB is here omitted.
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Fig. 6.1(a-c) reports the Hs-Hk dependence for the 200-ns long simula-
tions discussed in Chapter 3 and in Ref. [24]. The three different proteins are
associated to markedly different plots: 6d93 trajectory displays a flat maxi-
mum of the relevance, which remains constant over a wide range of values of
Hs and C. The other two protein simulations are mapped onto a more bell-
shaped curve, with the one concerning 4ake displaying a steep decrease in Hk

right after the maximum. The nature of this difference is certainly related
to the hidden structure of the sample and to the properties of the cluster-
ing algorithm used to divide it in different bins. Further work is needed to
rationalise this observation and to value its possible “relevance” (sic).

The calculation of the optimal C̄ that separates the region with µ < −1
from that with µ > −1 is showed in Fig. 6.1(d-f). While the choice of the
trade-off point is quite unambigous for 6d93 and 1qlp, the curve of 4ake
displays several fluctuations in µ 1. In this context, let me choose the first
value of C after which µ < −1 for a consistent set of values of C. Each
trajectory of L snapshots is then converted into its reduced counterpart of
C̄ frames by choosing the first configuration of the sample belonging to each
bin.

Let me now proceed to the calculation of the mapping entropies for a set
of decimation mappings proper to the three proteins of interest, employing
the original formula with the Kullback-Leibler divergence (Eq. 6.8). At first,
the parameters reported in Chapter 3, Tab. 3.1 are employed to cluster the
reduced trajectory of each protein into CG macrostates; then, the values of
p̄r(r) are calculated for each of the C̄ atomistic microstates. Finally, it is
possible to carry out the sum in Eq. 6.8, obtaining the overall value of SKLmap.

Fig. 6.2 reports the comparison of the values of SKLmap calculated accord-
ing to this method with the ones of Σ, obtained using Eq. 3.47 for mappings
with N = Nα. The two data sets of 4968 and 1968 mappings employed in
Chapter 4 for 6d93 and 4ake, respectively (Nα = 31, Nα = 214), are taken
as reference, while for 1qlp (Nα = 372) I consider the set of 548 random
and optimised representations described in Chapter 3. Fig. 6.2 shows that a
good correspondence exists between the two data sets of values Smap for 6d93,
while the bigger proteins 4ake and 1qlp do not display any significant corre-
lation. A possible motivation for this behaviour could be the fact that the
tamapin protein is already equilibrated after 200 ns of simulation, while the
other two proteins are not sampling the equilibrium distribution. Moreover,
configurations of the tamapin protein extracted every 20 ps are more decorre-

1The reason why 4ake’s trajectory shows such a peculiar behaviour could be connected
to the fact that the enzyme is continuously transitioning between two stable states through-
out the simulation, thus inducing a peculiar frequency distribution at different values of
C.
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Figure 6.2: Comparison of the values of mapping entropy calculated using
the original Kullback-Leibler formula (SKLmap, Eq. 6.8) and the approximated
expression of Eq. 3.47 (Σ). The small protein tamapin displays a clear cor-
relation between the two expressions, which is totally absent for adenylate
kinase and weaker in the case of α− 1 antitrypsin. The Pearson correlation
coefficients for the three cases are 0.62, −0.10, and 0.21, respectively.

lated than those of 4ake and 1qlp: sampling highly correlated structures can
bias the probability distributions considered in this section. Furthermore,
it is important to underline how the nature of the energy considered in the
calculation of Σ can possibly play a role in this difference: indeed, Σ is com-
puted employing only the protein-protein interaction energy, thus neglecting
protein-solvent and solvent-solvent effects. Such approximation can give rise
to a bias towards exposed regions, where the interactions are not properly
screened. One of the strengths of SKLmap is represented by the fact that the
solvent contribution is taken into account more accurately by the probability.
Overall, further work is needed to assess the nature of this discrepancy.

To conclude this section, 48 mapping optimisations are run for the 6d93
protein, exactly as explained in Sec. 3.3 and Ref. [24], but employing SKLmap

(Eq. 6.8) as the observable to be minimised. As in Sec. 3.3.3, one can perform
a basic statistics over the pool of low-SKLmap mappings by using the conserva-
tion probability of each atom, defined as the fraction of times it is included in-
side an optimised solution. Fig. 6.3 reports a comparison between the values
of such probability distributed all over 6d93 obtained after this optimisation
(PKL

cons, Fig. 6.3(a)) or in the previous case (Pcons, Fig. 6.3(b), see Fig. 3.5).
The first thing to notice in the figure is that PKL

cons is more distributed along
the protein sequence than its energy-based counterpart, due to the fact that,
being solely based on the protein structure, the probability is smoother than
the energy, as the latter can display stronger local fluctuations. Second, it
is possible to see how the terminal atoms of the arginine residues (ARG6,
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Figure 6.3: Comparison of the values of PKL
cons (a) and Pcons (b) for mappings

obtained minimising SKLmap (a) or Σ (b). The optimised solutions employed
in (a) display an average Z score (Eq. 3.51) of −3.81 ± 0.32, more negative
than that reported in Tab. 3.3, corresponding to the low-Σ mappings used
in (b).

ARG7, ARG13) are particularly conserved: even if the energetic fluctua-
tions are not explicitly considered, the structural fluctuations proper of these
atoms make them crucial for a highly informative mapping. The side chain of
ARG6 is a paradigmatic example of this concept: in Sec. 3.3.3 (Fig. 6.3(b))
it is showed that an optimal CG mapping of 6d93 must contain the NH1
atom (Pcons(NH1,ARG6) = 0.92). Here, the atom with highest importance
is NH2 (PKL

cons(NH2,ARG6) = 0.60), but all the other atoms in the terminal
region of the arginine display a non-negligible value of PKL

cons, namely 0.10,
0.23, 0.08 for NE, CZ, and NH1, respectively. The sum of these probabili-
ties with the one associated to NH2 gives 1.02: except for two (resp. one)
cases in which there are two (resp. zero) atoms of this region in the optimal
mapping 2, all the remaining 46 optimal solutions contain exactly one atom
in the terminal region of ARG6. As for ARG7 and ARG13, they display a
similar behaviour, with the majority of the optimisations retaining one atom
of their side chain terminus. In particular, the NH2 atom of ARG7 shows
the highest value of PKL

cons (PKL
cons(NH2,ARG7) = 0.67).

Another interesting difference emerging from Fig. 6.2 concerns the re-

2By inspecting the optimisation run leading to the absence of any atom ∈
{ARG6-NE,ARG6-CZ,ARG6-NH1,ARG6-NH2}, I notice that the minimum of the map-
ping entropy is obtained in the late stage of the Simulated Annealing protocol (step number
14347 out of 20000): after that, only 113 swapping moves are proposed that contain one
of ARG6 terminal atoms. Of those, only 76 are unique, which amount at the 61% of the
possible ones (Nα×4). Therefore, it is possible that one of the remaining 48 combinations
would have led to an accepted move and, consequently, to the inclusion of one of the atoms
into the optimal mapping.
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duced values of conservation probabilities assigned to terminal atoms of
residues GLU24 and LYS27; while these atoms were usually part of low-Σ
mappings, they are almost never present in the CG representations built min-
imising SKLmap. GLU24 and LYS27 are charged residues, and the energetic
fluctuations proper to the terminal atoms can be huge, especially when the
considered energies are not screened by the solvent, as in Chapter 3. This
is a further proof that SKLmap is less biased towards solvent-exposed, charged
residues than Σ.

GLU24-CD GLU24-OE1 GLU24-OE2 LYS27-CE LYS27-NZ

Pcons 0.27 0.21 0.44 0.52 0.44
PKLcons 0.00 0.00 0.02 0.17 0.27

Table 6.1: Differences between the values of conservation probabilities for
the terminal atoms of residues GLU24 and LYS27. The difference is strik-
ing especially for GLU24, as its terminal atoms are never conserved in the
Kullback-Leibler-based optimisation.

Overall, it is possible to conclude that Fig. 6.2 (a) and Fig. 6.2 (b) are
quite similar, with PKL

cons that is, on average, more evenly distributed over
the full structure, displaying a tendency to reduce the probability weight
assigned to terminal atoms of charged residues with respect to Pcons.

In this subsection the properties of relevance and resolution are exploited
in order to extract a set of atomistic microstates out of a Molecular Dy-
namics trajectory, each one weighted with its own approximated probabil-
ity. The strategy presented here is general and unsupervised, being appli-
cable to tasks other than the calculation of the mapping entropy; in this
respect, it is worth mentioning that the proposed method can be employed
to construct microstates of Markov State Models [174, 249] in a completely
hyperparameter-free manner.

6.1 Discrete models

In the previous section I discussed how it is possible to recover an approxi-
mate atomistic probability distribution from a MD trajectory using the opti-
mal trade-off between resolution and relevance. Here, the case of two discrete
systems is analysed, in which a non-trivial, non-uniform atomistic probabil-
ity pr is immediately available, since the number of states accessible to the
system, C, is smaller than the number of sampled states L.
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6.1.1 A system of non-interacting spins

The numerical calculations associated to this model were carried out by my colleague Roi

Holtzman, whom I here acknowledge for his crucial contribution to this chapter.

The first model system contains n = 20 non-interacting spins, each char-
acterised by its probability to be in the “up” state. These spins are parti-
tioned into two subsets of biased and non-biased spins. The first 10 spins are
biased in a linear descending order according to pi(σi = 1) = 1− (i− 1)/20
for 1 ≤ i ≤ 10, while the last 10 spins are unbiased, namely pi(σi = 1) = 0.5
for 11 ≤ i ≤ 20, see Fig. 6.4.

Figure 6.4: Probability of extracting the up configuration of each spin. The
first spin is always sampled in the up state.

A simple calculation reveals how the number of possible states of the
system is 220 ∼ 6 × 106, although many of them are almost impossible to
observe due to their vanishing probability weight. As an example, half of
these states will be never accessed, since it is impossible to observe the first
spin in the down configuration. L = 105 fully atomistic configurations of
the system are extracted by sampling the state of each spin according to its
probability pi, thus obtaining an empirical atomistic probability of sampling
each state r:

pr(r) =
1

105

105∑
j=1

δ(rj − r) (6.9)

lim
L→∞

pr(r) →
n∏
i

pi

where the product in the second term represents the analytical probability,
that would coincide with the empirical one in the case of infinite sampling.
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I am now interested in the properties of the coarse-grained representations
of this simple spin system, that is, those selections of N spins out of n. For
each decimation CG representation, the corresponding resolution, relevance
and mapping entropy are calculated and reported in Fig. 6.5(a-d).

One interesting aspect revealed by Fig. 6.5(a) is the range of resolution
and relevance values for different numbers N of retained spins. CG mappings
such that N is close to n display little variations in resolution and relevance,
while an intermediate coarse-graining is associated with a wide range of val-
ues. Fig. 6.5(b) reports the results for the CG representations retaining only
N = 10 sites. Configurations are ordered in a clustered structure that can
be captured by introducing a rank for each representation, which quantifies
the balance between biased and non-biased spins. The rank of a single spin
σi is given by

r̃(σi) =

{
+1, if 1 ≤ i ≤ 10

−1, if 11 ≤ i ≤ 20,
(6.10)

and the rank for a CG representation M = (σ1, . . . , σN) is given by the
average of the rank over all retained spins, that is

r(M) =
1

N

N∑
j=1

r̃(Mj). (6.11)

The rank satisfies −1 ≤ r(M) ≤ 1, and it is r(M) = 0 when the number
of retained biased spins equals the number of retained non-biased spins; in
the limit case of r(M) = 1 (resp. r(M) = −1) all retained spins are biased
(resp. unbiased).

Fig. 6.5(b) shows that CG configurations with positive rank provide
higher relevance values, while low-rank CG configurations decrease in rel-
evance and possess a higher resolution. This is a consequence of the uniform
distribution of states induced by retaining all the unbiased spins, which is a
maximum entropy distribution (high resolution, see Eq. 6.1) associated to a
very low information content in the space of frequencies k (all the states are
sampled with more or less the same frequency). In order to have higher rele-
vance it is sufficient that the coarse-graining procedure induces macrostates
with different populations, so it is sufficient that the majority of the spins
are biased.

In Figs. 6.5(c,d) the dependence of the mapping entropy on the resolution
is investigated. In contrast to the relevance, which tends to zero in the two
limit cases of low and high resolution, the mapping entropy is monotonically
decreasing with the resolution; when all of the spins are retained the CG
probability is exactly equal to the atomistic distribution and there is no
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Figure 6.5: (a-d): resolution, relevance and mapping entropy for different
coarse-grained representations of the system of non-interacting spins. (a) and
(c) show how relevance and mapping entropy vary with increasing resolution.
Each data point is depicted according to the number of conserved sites N .
(b) and (d) report the values of relevance and mapping entropy in the case of
N = 10, respectively. Points are colored according to their rank, as defined
in Eq. 6.11.
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coarse-graining in place; on the other hand, if only one spin is retained, the
resulting CG probability is as far as it can be from the full-system probability.
For some intermediate values of N it is possible to observe a large range
of mapping entropy values, which depend on the specific choice of the CG
configuration.

Figure 6.5(d) shows that minimal entropy values are obtained for high
rank CG configurations, that is, those displaying non-uniform probabilities.
This is in contrast to the insensitivity of the relevance to the rank, as long as
it is non-negative. A closer look into the minimum mapping entropy values
of Fig. 6.5(d) allows one to observe that the CG configuration (bottom left)
with maximum rank (Mbiased) is not the absolute minimum of the mapping
entropy, being overcome by a representation with Hs ∼ 5.3, corresponding
to a CG mapping in which the first spin is replaced by the 14-th. This is
a consequence of the fact that the first spin (p1 = 1) is not informative at
all about the state of the overall system, while the 14-th spin can provide
a minimal advantage due to the finiteness of sampling. More specifically,
knowing the state of the first spin is not beneficial for decreasing the mapping
entropy, as in all the atomistic microstates it is in the up state. Knowing the
state of the 14-th spin provides a little advantage, given by the fact that it
allows to resolve 2 more states s1 and s2 (it can be either up or down): this
distinction provides an approximated p̄ for these two states that is slightly
more accurate than the (uniform) one obtained by retaining the first spin.
Put differently, the fact that finite sampling gives similar but not equivalent
probabilities for CG macrostates is tantamount to modifying the non-biased
spins to slightly biased spins. This is a manifestation of the statistical nature
of the empirical observation used to compute these quantities: in the case
of fully analytical calculations (infinite sampling, see Eq. 6.9), the values of
mapping entropy obtained by retaining all the spins from 2 to 9 and one of
the eleven others would be exactly equal (p̄(s1) = p̄(s2)).

These considerations allow one to rationalise a feature of Fig. 6.5(c),
namely the fact that the minimum value of the mapping entropy remains
constant for a wide range of numbers of sites, that is, from N = 9 to N = 16,
approximately. When N = 9, the minimum of this quantity is obtained
for the CG mapping that retains the spins with index i ∈ [2, 10], and adding
other spins to this representation does not guarantee a substantial decrease in
the mapping entropy, which is only obtained when the mapping gets closer
to the fully atomistic representation (N ≥ 17). At the same time, some
mappings with N = 18 exist such that the associated mapping entropy is
higher than the minimum value obtained when N = 9: these are coarse-
grained representations that do not retain two of the biased spins.

In conclusion, a discrete system whose constituents are completely in-
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dependent is analysed with the help of resolution, relevance and mapping
entropy. These three variables shed light on some intrinsic features of the
model, thus making them a promising candidate analysis tool for more com-
plex systems.

6.1.2 A discrete model of financial markets

In the last section of this chapter an approximate model of financial mar-
kets is considered, in which the constituent elements are certainly interacting
with a functional form that is completely unknown a priori. Common stock
market indexes, such as NASDAQ-100, FTSE MIB, DAX 30, are usu-
ally defined as a function of the value of the X most traded stocks, or the
ones with the highest market capitalisation. As an example the NASDAQ-
100 index considers the largest non-financial companies listed on the Nasdaq
stock market [250]. It is well-known [251, 252] that changes in the composi-
tion of such indexes have an impact on the stock prices, temporarily favoring
the stocks that are added to the index.

These indexes can be considered as coarse-grained mappings of the high-
resolution system, i.e., the full stock market, to a lower number of degrees
of freedom. The natural question that arises is the following: are these
indexes always appropriate to coarse-grain the full market? Can one find
a different subset of stocks that bring more information about the high-
resolution system?

The analysis is restricted to the stocks with the highest market capi-
talisation (at the date 1/10/2021) in the NASDAQ-100 index, which are
described in Tab. 6.2. The first model, m1, considers the 10 non-underlined
entries of the table as the high-resolution system, while in the second model
(m2 ), the two remaining stocks are included, namely CSCO and NTES.
The values of these stocks are investigated over a ten year time window, for
a total of 2225 days of sampling considered. For each day, a stock can assume
three discrete values (see Fig. 6.6), namely +1 if the stock value increases
during the day, 0 if it’s stationary and −1 if it decreases. In this way the full
market is mapped to a system of interacting spins with 310 (312) available
configurations. As in the non-interacting case discussed in the previous sec-
tion, many of these are impossible to observe in a pool of real configurations:
imagine for example how unlikely it is that 12 stocks of this importance are
stationary in the same day. Indeed, it is possible to observe only 630 (1148)
configurations of the system in the available sampling. As in the previous
subsection, it is possible to define the atomistic probability as the number of
times a full-system configuration is observed divided by the number of days
(Eq. 6.6).
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Figure 6.6: A pictorial representation of the prescription used to build the
data set of the discrete model of financial markets illustrated in this section.
If the stock value V grows (decreases) during the day with respect to its
starting value, that is, if Vfinal > Vstart (Vfinal < Vstart), a spin up (down)
is assigned to the company for the specific date. If the two values coincide
(Vfinal = Vstart), the date is labelled as stationary for the considered stock.

At this point one aims at exhaustively investigating the behaviour of
resolution, relevance and mapping entropy for all the 29 (211) CG decimation
mappings that can be defined on the two models. Fig. 6.7 reports the values
of these three quantities for all the coarse-grained representation of the two
high-resolution systems.

First, it is possible to notice how the baseline value of the mapping entropy
for highly coarse-grained mappings (N = 1) is higher in the case of m1. This
is a consequence of the sampling, as in the case of m1 there are fewer spins
and a lower number of atomistic configurations (630).

Second, for each value of N 6= 1, n there exist two clouds of points sep-
arated by a huge gap in resolution. A manual inspection of the data shows
that, at fixed N , the low-resolution cloud of mappings is characterised by a
common trait: all these representations retain both GOOG and GOOGL.
As expected, these two stocks are highly interacting and correlated, display-
ing the same value in the 94.3% of the selected time window. Therefore, it is
reasonable that, for each N , a representation containing both Google stocks
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Symbol Name # ↓ # → # ↑
AAPL Apple Inc. Common Stock 1060 5 1160
ADBE Adobe Inc. Common Stock 1017 5 1203
ADI Analog Devices, Inc. Common Stock 1090 13 1122
CSCO Cisco Systems, Inc. Common Stock 1022 29 1174
GOOG Alphabet Inc. Class C Capital Stock 1069 1 1155
GOOGL Alphabet Inc. Class A Common Stock 1075 2 1148
IDXX IDEXX Laboratories, Inc. Common Stock 977 8 1240
MSFT Microsoft Corporation Common Stock 1048 24 1153
NFLX Netflix, Inc. Common Stock 1110 1 1114
NTES NetEase, Inc. American Depositary Shares 1095 4 1126
NVDA NVIDIA Corporation Common Stock 1078 15 1132
TSLA Tesla, Inc. Common Stock 1111 3 1111

Table 6.2: Nasdaq stocks considered in this subsection. # ↓, # →,and # ↑
represent the number of down, stationary and up ”spins” for each stock dur-
ing the available sampling time, respectively. CSCO and NTES are absent
in m1 and are included in m2. Data were downloaded using yfinance [253],
a python package to download Yahoo! finance data. Companies for which
there are no data for all the considered dates were immediately excluded
from the analysis.

provides a low-resolution coarse-graining of the system, comparable to the
resolution of a coarse-grained representation with N − 1 stocks. In princi-
ple, this observation does not have an impact on the mapping entropy. In
Fig. 6.7(c-d) it is possible to appreciate how the choice of the model influences
the average value of mapping entropy of the two clouds. When considering m1
(Fig. 6.7(c)), mappings containing both Google stocks (on the left cloud at
constant N) display an average mapping entropy equal or lower than the one
of the other mappings. The situation changes when observing Fig. 6.7(d),
where the data come from m2 : since two additional stocks are included,
the atomistic probability is less biased by the presence of Google instances
and the mapping entropy of representations containing both GOOG and
GOOGL is consistently higher than that of the other mappings. Intuitively,
one of the two Google stocks possesses a high level of information about the
system, but the inclusion of both of them in a coarse-grained description of
the full market is redundant.

The third interesting aspect revealed by an inspection of Fig. 6.7(c-d)
is that all the mappings retaining TSLA and NVDA display a value of
mapping entropy higher than the average (see Fig. 6.8). In particular it is
possible to observe that, in both models, (i) when N = n − 2 the mapping
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with lowest mapping entropy is the one that does not contain TSLA and
NVDA; (ii) when 2 ≤ N ≤ n−2 the mapping with highest mapping entropy
retains TSLA and NVDA. Hence, retaining these two stocks is detrimental
for a correct coarse-grained description of the market. A possible explanation
to this behaviour can be found in the fact that both of them have been of
marginal importance to the market for a vast majority of the sampling time
(10 years), having experienced an exponential growth only in the latest years.
In the case of TSLA, the corresponding company operates in a field that is
neatly separated from the other stocks reported in Tab. 6.2.

As for maximally informative mappings, that is, those with minimal map-
ping entropy, it is possible to observe that GOOG, MSFT, and NFLX ap-
pear to be always conserved in particularly informative representations. In
particular, when 3 ≤ N ≤ n− 1, the mappings displaying the lowest value of
mapping entropy at fixed N always include the combination of these three
stocks in both models. The reason behind the high informativeness of these
companies can be attributed to their long-time, dominant presence in the
stock market.

Let me conclude this analysis by noting that the interacting case does
not display the flatness in the mapping entropy minima that was observed in
Fig. 6.5(c). In this context, adding a new site to an optimal coarse-grained
mapping always results in a gain of information about the high-resolution
system.

This section shows that, even considering two simple models, the map-
ping entropy proves to be an invaluable instrument for the understanding of
complex systems, being able to differentiate between informative and non-
informative features in a precise and completely unsupervised manner. It
is my opinion that this mathematical quantity can be employed in a huge
variety of scenarios, either as a feature selection and ranking algorithm or as
an analysis tool, able to provide the user with objective, unbiased data on
the information content possessed by its constituent elements.
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Figure 6.7: Resolution, relevance (a-b) and mapping entropy (c-d) for the
two models. Mappings in m2 can reach high values of resolution because
adding information (two stocks) allows to define a higher number of atomistic
configurations out of the available sampling. In (a-b) there exists a CG
mapping with N = 1 possessing a very low value of relevance (Hk ∼ 0); this
is the mapping that retains TSLA stock: by chance, the number of spins in
the up and down configurations coincide (see Tab. 6.2).
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Figure 6.8: Violin plot of the values of mapping entropy for coarse-grained
mappings that either retain (red distributions, labelled with NT ) or not
(blue distributions, labelled with NT ) both TSLA and NVDA stocks. The
number of sites N , ranging from 2 to n − 2, is indicated as a subscript of
each entry. Black bars indicate the mean values of each distribution, showing
how the combination of TSLA and NVDA is detrimental for the mapping.
The plot is created using Matplotlib [254], and distributions are smoothed
applying the “scott” criterion to Gaussian Kernel Density Estimation.



Chapter 7

EXCOGITO: an EXtensible
COarse-GraIning TOol

In this seventh and last chapter of this work I provide a brief description of
EXCOGITO, a software suite built to perform the calculations illustrated in
this thesis, especially those discussed in chapters 3, 5, and 6. EXCOGITO is
available at the following address: https://github.com/potestiolab/excogito.

Given its modular architecture, EXCOGITO is specifically designed to
be easily extensible, so as to possibly incorporate different coarse-graining
algorithms, paying special attention to those that employ a non-trivial re-
duced representation of the system. The program is entirely written in C,
with few python scripts to help the user setting up and preprocessing the
initial data. In particular, the user is guided in a step-by-step procedure
throughout the generation of a .ini parameter file containing mandatory and
optional parameters that must be provided to the core routines of EXCOG-
ITO (Tab. 7.1).

Currently, EXCOGITO contains the following nine subprograms fulfill-
ing nine different tasks:

1. optimize: a mapping optimisation run resulting in Ncores (Tab. 7.1)
local minima. The approximated mapping entropy (Eq. 3.41) is min-
imised in the space of coarse-grained mappings with the Monte Carlo
Simulated Annealing algorithm (see Sec. 3.3). The user can choose the
number of Monte Carlo steps, start temperature and decay parameter
of Eq. 3.50 (Tab. 7.1). The number of minima Ncores has to be lower
or equal to the number of CPU cores of the employed architecture,
since each of them carries out a single optimisation;

2. random: generation of n mappings (Tab. 7.1) and measurement of the
corresponding values of Smap (Eq. 3.41). This task is useful when one

141
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Parameter Description Type Mandatory
frames number of frames in the trajectory int all
atomnum number of atoms in the system int all
cgnum number of CG sites int all
nclust number of CG macrostates int C0 - C3

n mappings number of mappings int R-D
MC steps number of SA steps in task optimize int O

rotmats period SA steps between two alignments int O
t zero start temperature for task optimize float no

criterion criterion for clustering (see Sec. 7.1) int O-R-M
distance cophenetic distance threshold float C1
max nclust higher number of CG macrostates int C2
min nclust lower number of CG macrostates int C2
Ncores number of cores to employ int no

decay time temperature decay in SA float no
rsd use rsd instead of rmsd int no

stride distance between pivot points int C3

Table 7.1: List of parameters of EXCOGITO. In the “mandatory” column,
all (no) indicates parameters that are always (never) mandatory, while O,
R, and M refer to parameters that are mandatory only for optimize, random,
and measure (including the kl counterparts) tasks, respectively. C0, C1, C2,
C3, C4 correspond to the different clustering criteria (Sec. 7.1): for example,
if the selected criterion is 2, parameters min nclust and max nclust must
be present.

wants to compare the values of mapping entropy of optimal mappings
to those of coarse-grained representations randomly drawn from the
mapping space, as it is done in chapters 3 and 4;

3. measure: the user provides a mapping to EXCOGITO in the form of
a text file (a prototype is available in the examples) and the associated
mapping entropy (Eq. 3.41) is computed;

4. norm: given a mapping and a full-atom MD trajectory, the time-
evolution of the squared mapping norm (Eqs. 5.14 and 5.19) is cal-
culated;

5. cosine: given two mappings and a full-atom MD trajectory, the time-
evolution of the cosine (Eq. 5.16) between them is calculated;

6. distance: given a set of n mappings (Tab. 7.1) coarse-grained map-
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pings and a single configuration of a biomolecule, the distance matrix
between them is computed using Eq. 5.19. Such matrix can be em-
ployed for several purposes, such as the calculation of the sketch maps
as in Sec. 5.3;

7. optimize kl : analogous to optimize, but using the Kullback Leibler ver-
sion of the mapping entropy (Eq. 6.8). More specifically, the user pro-
vides EXCOGITO with a set of atomistic configurations, together
with the associated, non-uniform probabilities. A further clustering
on this set of microstates divides the conformational space in CG
macrostates, each one possessing a probability given by Eq. 6.7. For

each microstate, pr(r) ln
(
pr(r)
p̄r(r)

)
measures the discrepancy between its

probability and the smeared one;

8. random kl : the Kullback-Leibler version of task random;

9. measure kl : the Kullback-Leibler version of task measure;

7.1 Clustering the conformational space

As the computation of the mapping entropy implies the identification of
coarse-grained macrostates out of a pool of atomistic microstates, all sub-
programs except norm, cosine and distance require a prescription to perform
this clustering procedure. The latter is specified by the parameter criterion
(Tab. 7.1), which can assume four values, each one associated to a slightly
different choice for the clustering. Note that the software extensibility is
evident in this context, as one can independently choose and deploy an-
other clustering algorithm, that is incorporated in EXCOGITO specifying
another value for the criterion parameter.

All the available criteria employ average linkage (Eq. 3.45), agglomerative
hierarchical clustering (UPGMA [198], see Sec. 3.2.1) to divide the space of
configurations sampled by MD in configurational clusters. The algorithm is
written following the implementation [199, 200] provided by scipy [201, 202].
As described in chapter 3, the RMSDCG (Eq. 3.44) is used as similarity
measure between different conformations.

Essentially, these four criteria employ different prescriptions to cut the
dendrogram.

• criterion = 0 analogously to the maxclust criterion in scipy, a fixed
number of coarse-grained macrostates is retrieved. The dendrogram is
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cut when the number of clusters matches the input parameter nclust

(Tab. 7.1);

• criterion = 1, corresponding to the distance criterion in scipy : the
number of coarse-grained macrostates is not fixed, but rather deter-
mined by the cophenetic distance. More specifically, the algorithm
cuts the dendrogram when MD configurations in each cluster pos-
sess a cophenetic distance lower than the input parameter distance

(Tab. 7.1). This choice is effectively employed in Sec. 3.4 in order to
observe the scaling of Smap with the number of CG sites. In the latter
context the rsd parameter must be set to 1 to exploit the unweighted
RMSD as a similarity measure between CG structures;

• criterion = 2, that is the iteration of criterion = 0 for five inte-
gers between input parameters min nclust and max nclust (Tab. 7.1).
This prescription is used to compute Σ (Eq. 3.47) in Refs. [24, 25] (see
chapters 3 and 4), with the purpose of increasing the robustness of the
Simulated Annealing procedure devoted to the mapping optimisation.

A pictorial representation of criteria 0, 1, and 2 is sketched in Fig. 7.1.

• criterion = 3: a fast version of criterion = 0 that can be used
only when a continuous trajectory is provided in input. In this case,
the algorithm computes the pairwise RMSDCG matrix between a sub-
set of the overall configurations of the trajectory, that is, one every
stride (Tab. 7.1) configurations. For example, if frames = 101 and
stride = 50, only “pivot” configurations number 1, 51 and 101 are
considered in the pairwise alignments. Subsequently, standard hier-
archical clustering applied to this reduced matrix assigns the coarse-
grained macrostate to each pivot configuration. Then, the remaining
data points are labelled using a simple prescription: if the previous
and following pivot configurations possess the same label, the latter is
assigned to all the intermediate structures. Instead, if the two pivot
points have been labelled differently by the clustering algorithm, each
intermediate structure is assigned to the same cluster of the closer pivot,
that is, the one corresponding to the lower RMSDCG. This approxi-
mation guarantees a substantial speed-up to the overall calculation, as
the computation of the RMSDCG matrix and the following clustering
are the most cumbersome tasks, scaling quadratically with the number
of frames of the trajectory. More specifically, given a certain value of
frames, f , and stride, s, the overall number of pairwise alignments,
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Na, in the worst case scenario is given by:

Na =
Np(Np − 1)

2
+ 2(f −Np) (7.1)

where Np = f
s
+1 is the total number of pivot points. As for the cluster-

ing procedure, its high computational cost (O(f 2logf)) (see Sec. 3.2.1)
makes this criterion extremely appealing. As an example, s = 10
corresponds to a speed-up factor approximately equal to 300. This
procedure is schematically illustrated in Fig. 7.2, where the computa-
tional gain arising by employing this criterion is made evident by the
shrinkage of both RMSDCG matrix and dendrogram.
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Figure 7.1: Schematic representation of criteria 0, 1, and 2 for conformational
clustering. These are equivalent in the first stage of the procedure, where
a RMSDCG matrix is calculated between all the configurations (frames, see
Tab. 7.1) of a full-atom MD trajectory, observed through the glasses of a
CG mapping. From this typically large matrix, the full dendrogram is con-
structed using the average linkage prescription. Then, conformational clus-
ters can be selected in three manners, namely 0) cutting the dendrogram
when nclust (equal to 3 in this case) leaves are present; 1) cutting the den-
drogram when a certain value of cophenetic distance (on the ordinate) is
reached, irrespectively of the number of leaves; 2) applying the procedure 0
for a set of 5 evenly spaced values of the number of clusters ({2, 3, 4, 5, 6} in
this case), determined by parameters min nclust and max nclust (2 and 6
in this figure).
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Figure 7.2: Graphical description of criterion 3 for an accelerated cluster-
ing of the conformational space. The stride parameter (Tab. 7.1) is equal
to 2 in this case, meaning that 4 pivot points are considered. The reduced
RMSDCG matrix and dendrogram are computed taking into account only
the coordinates of the selected conformations. Upon clustering, labels of the
non-pivot points are assigned based on their proximity with respect to the
two closest pivots. If the latter share the same label, as it is for configura-
tions 5 and 7 in this example, the intermediate structures are automatically
labelled.

7.2 Usage, supported platforms, and require-

ments

The README file of EXCOGITO provides all the necessary details to
compile and run the calculations. In addition, the PDF documentation cre-
ated with doxygen is available at
https://github.com/potestiolab/excogito/blob/master/docs/refman.pdf.

EXCOGITO must be compiled with CMake (minimum version 3.15)
[255]. The software has been tested for several compilers, such as gcc [256]
(versions 4.8.5, 5.4.0, 7.5.0, and 9.1.0), Intel C compiler icc [257] (version
19.0.0.20181018) and Clang [258] (version 10.0.1.10010046). The only manda-
tory requirement is to have the openmp library [259] installed on the machine.
Openmp is already included in the majority of compilers, such as gcc and icc.



Conclusions

In this work a series of approaches have been proposed, whose aim is to
shed some new light on the concept of mapping in the field of coarse-grained
modelling of proteins.

Nowadays, low-resolution, CG models represent powerful tools to examine
biological systems whose relevant time and length scales exceed those easily
reachable by more detailed, atomistic simulations. Indeed, the reduction of
the number of degrees of freedom operated by the CG procedure guarantees a
substantial speed-up of the calculations. In this context, particular attention
has been dedicated to the construction of accurate CG force fields, that is,
effective interactions among the “survived” degrees of freedom that allow the
CG model to reproduce the properties of the high-resolution system, where
the latter is observed at low resolution. On the contrary, the choice of which
degrees of freedom “deserve” to be included in the CG model, namely the
mapping, has not been investigated with the same intensity: in most cases
the mapping is imposed by the user based on system knowledge, chemical
intuition, and trial and error procedures.

In this thesis I have illustrated the properties of the mapping entropy,
an information-theoretical measure that determines how distant the proba-
bility distribution of the low-resolution system, dictated by the choice of the
CG mapping, is from the atomistic reference. Such Kullback-Leibler distance
naturally implies a ranking among CG mappings, with the ones possessing
low mapping entropy, i.e., retaining the maximum amount of information
about the system, that should be preferred by the modeller. Following this
consideration, I have proposed a strategy to unsupervisedly optimise the CG
mapping over a small data set of candidate proteins. Importantly, the solu-
tions of this optimisation problem show significant similarities, most notably
the fact that amino acids retained with high probability are those known to
be crucial for the biological function of the protein and for the interactions
with the substrate. This amounts at saying that “I learned something about
the atomistic system thanks to (good) CG mappings”, which is something
that can be considered a change of paradigm in the field of CG modelling:
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the mapping should not be considered anymore as a mere, external prescrip-
tion fed to the model, as an astute choice of the CG representation alone
can already provide valuable information about the properties of the fully
atomistic system.

The computational burden associated to the computation of the map-
ping entropy for biomolecules makes the exhaustive exploration of this ob-
servable’s landscape hardly doable. I showed how modern deep learning
techniques allow one to accurately approximate this quantity, guaranteeing
a dramatic speed-up with respect to the reference calculations and making
a thorough exploration of the space of mappings affordable. This quasi-
comprehensive inspection of the mapping space called for the introduction
of tools to quantify the statistical properties of and the relationships among
its elements: in this thesis, a purely structural measure of distance between
CG mappings was introduced, which enables to measure and rationalise the
differences between intrinsically separated CG representations.

The mapping entropy is a powerful tool to rank reduced representations of
systems other than biological molecules. In this respect, preliminary studies
carried out on toy models of spin systems and financial markets show that,
once again, an analysis of low-mapping entropy CG representations sheds
light on the behaviour of the high-resolution systems. In this context, the in-
trinsically multi-body nature of the mapping entropy leads to the emergence
of multi-body correlations between the existing variables. These results lay
the foundations for the application of the mapping entropy in data science,
either as a feature selection algorithm or as a novel instrument of analysis of
complex data sets. The first use is analogous to the mapping definition in
CG, that is, a smart prescription to be implemented prior to the modelling.
The second application is more intriguing, as it suggests that the process of
dimensionality reduction per se can provide information on high-dimensional
data sets.

It is my opinion that the application of the mapping entropy outside
of the realm in which it was conceived could pave the way to the use of
coarse-grained methodologies as analysis tools. In a world full of data, where
the production and storage of tremendous quantities of information are in-
creasingly cheaper, the elegance and generality of CG models promise to be
extremely useful for making sense of them.



Appendix

On figures and plots

The figures reported in this manuscript have been generated using Matplotlib
[254] or gnuplot [260] for standard plots, and Visual Molecular Dynamics
(VMD) [261] for figures containing biological structures.

On the analysis of data

All the calculations reported in this thesis have been carried out using C
for data generation (see Chapter 7) and python for data analysis. In the
latter context, the packages MDAnalysis [262, 263] and MDTraj [264] have
been employed for dealing with biomolecular data, while I strongly relied on
Numpy [265], Pandas [266] and Scipy [199, 200] for pre- and post-processing
tasks.
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