
ESAIM: M2AN 55 (2021) 833–885 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2021014 www.esaim-m2an.org

STABLE APPROXIMATIONS FOR AXISYMMETRIC WILLMORE FLOW FOR
CLOSED AND OPEN SURFACES ⋆

John W. Barrett1, Harald Garcke2 and Robert Nürnberg3,*

Abstract. For a hypersurface in R3, Willmore flow is defined as the 𝐿2-gradient flow of the clas-
sical Willmore energy: the integral of the squared mean curvature. This geometric evolution law is
of interest in differential geometry, image reconstruction and mathematical biology. In this paper, we
propose novel numerical approximations for the Willmore flow of axisymmetric hypersurfaces. For the
semidiscrete continuous-in-time variants we prove a stability result. We consider both closed surfaces,
and surfaces with a boundary. In the latter case, we carefully derive weak formulations of suitable
boundary conditions. Furthermore, we consider many generalizations of the classical Willmore energy,
particularly those that play a role in the study of biomembranes. In the generalized models we in-
clude spontaneous curvature and area difference elasticity (ADE) effects, Gaussian curvature and line
energy contributions. Several numerical experiments demonstrate the efficiency and robustness of our
developed numerical methods.
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1. Introduction

Geometric functionals involving the principal curvatures of a two-dimensional surface play an important role
in mechanics, geometry, imaging and biology. In plate and shell theories such functionals go back to the work
of [22, 26, 31]. In geometry, an energy given by the integrated square of the mean curvature has been studied
intensively since the pioneering work of [36]. Especially variational problems are of interest and the famous
Willmore conjecture, which states that the minimizer among genus 1 surfaces is given by the Clifford torus, was
only solved recently by [28]. In imaging, boundary value problems involving the Willmore functional have been
used in problems related to image inpainting and surface restoration, see [12, 15]. In the theory of biological
membranes and vesicles, side constraints on surface area and enclosed volume, and more general curvature
functionals play a role. In a work of [13] a possible explanation of the shape of the human red blood was given
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using a curvature functional together with volume and area constraints. In this approach the membrane is
modeled as a two-dimensional surface. Later [23], in a seminal paper, introduced the energy

𝛼
2

∫︁
𝒮

(𝑘𝑚 − κ)2 dℋ2 + 𝛼𝐺

∫︁
𝒮

𝑘𝑔 dℋ2, (1.1)

for a surface 𝒮 in R3, where 𝑘𝑚 is the mean curvature, 𝑘𝑔 is the Gaussian curvature, dℋ2 stands for integration
with respect to the two-dimensional surface measure and 𝛼, 𝛼𝐺 are so-called bending rigidities. The important
new ingredient is the term κ, the so-called spontaneous curvature, which reflects a possible asymmetry in
the membrane. In biological applications, membranes in equilibrium minimize (1.1) under volume and area
constraints on the surface 𝒮.

The simplest evolution law which decreases the energy (1.1), and which can be used to obtain minimizers, is
the 𝐿2-gradient flow

𝒱𝒮 = −𝛼 ∆𝒮 𝑘𝑚 + 2𝛼 (𝑘𝑚 − κ) 𝑘𝑔 − 𝛼
2

(︀
𝑘2

𝑚 − κ2
)︀

𝑘𝑚, (1.2)

where 𝒱𝒮 is the normal velocity of an evolving surface (𝒮(𝑡))𝑡∈[0,𝑇 ]. The above formula shows that the Gauss
curvature term 𝛼𝐺

∫︀
𝒮 𝑘𝑔 dℋ2 does not give a contribution to the flow, which is due to the fact that for closed

surfaces
∫︀
𝒮 𝑘𝑔 dℋ2 is a topological invariant. For surfaces with boundary, however, the term

∫︀
𝒮 𝑘𝑔 dℋ2 enters

the 𝐿2-gradient flow via boundary conditions. The equation (1.2) also shows that the 𝐿2-gradient flow is highly
nonlinear and for open surfaces also highly nonlinear boundary conditions have to be considered.

It is the goal of this paper to introduce variational discretizations for an axisymmetric formulation of (1.2),
and to show stability estimates in a semi-discrete setting. The main contributions of this paper are as follows.

– Using a Lagrangian calculus we derive two mixed formulations of (1.2), which can be used for all boundary
conditions which appear in geometry and applications.

– The derivation of continuous-in-time, discrete-in-space formulations for which stability bounds can be shown.
– A proof of an equidistribution property for one of the schemes, which relies on an implicit tangential motion

of vertices and leads to a uniform distribution of vertices on the polygonal curve everywhere where the
curve is not locally flat. We refer to our review article [11] for more information on the background of this
tangential motion.

– For fully discrete variants, existence and uniqueness results are shown under mild assumptions.
– Numerical computations show the efficiency of the approach.

To our knowledge, this is the first time that weak formulations involving general boundary conditions are
derived in the axisymmetric setting.

To describe earlier literature in more detail let us discuss the geometry under consideration. We consider
the case that 𝒮(𝑡) is an axisymmetric surface, which is rotationally symmetric with respect to the 𝑥2-axis,
see Figure 1. Besides the geometry of a closed surface, we allow for open surfaces, i.e. the boundary of the
rotationally symmetric surface can consist of either one or two circles. Altogether four different topologies can
be considered: surfaces of spherical topology, surfaces of toroidal topology, surfaces suspended between two rings
and surfaces suspended at one ring. We have to compute the evolution of a curve which then has to be rotated
around the 𝑥2-axis. For boundary points on the 𝑥2-axis, singular and degenerate behaviour in the resulting
equations appear, which makes the analytical and numerical treatment difficult. At other boundary points,
which correspond to a boundary ring of the surface 𝒮(𝑡), one has to describe further conditions, which can be
of the following form:

– Clamped boundary conditions (position and angle fixed at the boundary).
– Navier boundary conditions (position fixed and a natural boundary condition involving the mean curvature).
– Semifree boundary conditions, i.e. the boundary is free to move on a plane.
– Free boundary conditions, for which several natural boundary conditions have to hold.

The motivation behind considering axisymmetric geometries is clear: a vastly more efficient numerical method,
compared to truly three-dimensional computations. On the other hand, many situations of interest in practice
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Figure 1. Sketch of Γ and 𝒮, as well as the unit vectors 𝑒⃗1, 𝑒⃗2 and 𝑒⃗3.

do have rotational symmetry. Moreover, some qualitative aspects of the considered evolution equations, or
the impact of certain physical parameters, can often be studied in the axisymmetric setting. For example, in
Figure 24 of [7], we numerically studied the onset of a singularity for Willmore flow for a surface of genus 0,
and we perform an analogous investigation for genus-1 surfaces in Appendix B of this paper. The axisymmetric
setting is hence very popular in the (bio-)physics literature and we refer to [14, 25, 34] for a derivation of the
equilibrium equations for axisymmetric open membranes.

Earlier results on the numerical approximation of geometric evolution problems in the axisymmetric setting
can be found in [7, 9], as well as on the surprisingly closely related problem of curve evolutions in Riemannian
manifolds, see [8,10]. There appears to be little numerical analysis for such evolution problems in the literature.
In the case of Willmore flow, we refer to [7,16,20,29] for existing numerical approaches. The present paper fills the
gap left by [7], where two schemes for axisymmetric Willmore flow of closed surfaces were considered, for which
no stability proofs appear to exist. The numerical analysis will share certain features with our earlier works [3–
6,8], work that has been critically influenced and inspired by the seminal works [19,21]. However, as mentioned
already above, the axisymmetry introduces additional difficulties due to degenerate or singular coefficients that
have to be taken care of in the analysis and in the numerical treatment. For numerical approaches of the flow
(1.2) for open membranes without the restriction of axisymmetry, we refer to [6, 35], where the latter authors
use a phase field approach.

The rest of the paper is organized as follows. In Section 2 we postulate the mathematical problems we would
like to consider, and in Section 3 we state suitable weak formulations for the evolution problems. Based on these
weak formulations we introduce two types of semidiscrete schemes in Section 4 and prove their stability. We also
consider approximations for the area and volume preserving variants of Willmore flow. The corresponding fully
discrete schemes are presented in Section 5, and numerical results are shown in Section 6. Finally, in Appendix A
we prove the consistency of the weak formulations introduced in Section 3, including the considered boundary
conditions, while in Appendix B we present numerical evidence for the onset of a singularity for Willmore flow
of genus-1 surfaces.

2. Mathematical formulation

2.1. Generating curve

Let R/Z be the periodic interval [0, 1], and set

𝐼 = R/Z, with 𝜕𝐼 = ∅, or 𝐼 = (0, 1), with 𝜕𝐼 = {0, 1}.
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We consider the axisymmetric situation, where 𝑥⃗(·, 𝑡) : 𝐼 → R≥0 ×R is a parameterization of Γ(𝑡). Throughout
Γ(𝑡) represents the generating curve of a surface 𝒮(𝑡) that is axisymmetric with respect to the 𝑥2-axis, see
Figure 1. In particular, on defining Π⃗3

3(𝑟, 𝑧, 𝜃) = (𝑟 cos 𝜃, 𝑧, 𝑟 sin 𝜃)𝑇 for 𝑟 ∈ R≥0, 𝑧 ∈ R, 𝜃 ∈ [0, 2𝜋] and
Π3

2(𝑟, 𝑧) = {Π⃗3
3(𝑟, 𝑧, 𝜃) : 𝜃 ∈ [0, 2𝜋)}, we have that

𝒮(𝑡) =
⋃︁

(𝑟,𝑧)𝑇∈Γ(𝑡)

Π3
2(𝑟, 𝑧) =

⋃︁
𝜌∈𝐼

Π3
2(𝑥⃗(𝜌, 𝑡)). (2.1)

Here we allow Γ(𝑡) to be either a closed curve, parameterized over R/Z, which corresponds to 𝒮(𝑡) being a
genus-1 surface without boundary. Or Γ(𝑡) may be an open curve, parameterized over [0, 1]. If both ends of Γ(𝑡)
are attached to the 𝑥2-axis, then 𝒮(𝑡) is a genus-0 surface without boundary. If only one end of Γ(𝑡) is attached
to the 𝑥2-axis, then 𝒮(𝑡) is an open surface with boundary, where the boundary consists of a single connected
component. If no endpoint of Γ(𝑡) is attached to the 𝑥2-axis, then 𝒮(𝑡) is an open surface with boundary, where
the boundary consists of two connected components. On the boundary we either prescribe clamped boundary
conditions, or Navier boundary conditions, or semifree boundary conditions, or free boundary conditions. For
clamped and Navier boundary conditions, the boundary point is fixed in space, while for the semifree boundary
conditions the boundary point is allowed to move on a line parallel to one of the two axes. As the name for
the free boundary condition suggests, the endpoint is free to move in space. In order to define the different
boundary conditions, we let 𝜕0𝐼∪𝜕𝐶𝐼∪𝜕𝑁𝐼∪𝜕1𝐼∪𝜕2𝐼∪𝜕𝐹 𝐼 be a disjoint partitioning of 𝜕𝐼, with 𝜕0𝐼 denoting
the subset of boundary points of 𝐼 that correspond to endpoints of Γ(𝑡) attached to the 𝑥2-axis. Moreover,
𝜕𝐶𝐼, 𝜕𝑁𝐼, 𝜕𝑆𝐹 𝐼 = 𝜕1𝐼 ∪ 𝜕2𝐼 and 𝜕𝐹 𝐼 correspond to clamped, Navier, semifree and free boundary conditions,
respectively. See Table 1 for a visualization of the different types of boundary nodes.

Hence, we always assume that, for all 𝑡 ∈ [0, 𝑇 ],

𝑥⃗(𝜌, 𝑡) · 𝑒⃗1 > 0 ∀𝜌 ∈ 𝐼 ∖ 𝜕0𝐼, (2.2a)
𝑥⃗(𝜌, 𝑡) · 𝑒⃗1 = 0 ∀𝜌 ∈ 𝜕0𝐼, (2.2b)

𝑥⃗𝑡(𝜌, 𝑡) = 0⃗ ∀𝜌 ∈ 𝜕𝐶𝐼 ∪ 𝜕𝑁𝐼, (2.2c)
𝑥⃗𝑡(𝜌, 𝑡) · 𝑒⃗𝑖 = 0 ∀𝜌 ∈ 𝜕𝑖𝐼, 𝑖 = 1, 2. (2.2d)

We will discuss the additional boundary conditions to (2.2b)–(2.2d) later in this section.
On assuming that |𝑥⃗𝜌| ≥ 𝑐0 > 0 in 𝐼 × [0, 𝑇 ], we introduce the arclength 𝑠 of the curve, i.e. 𝜕𝑠 = |𝑥⃗𝜌|−1 𝜕𝜌,

and set

𝜏⃗(𝜌, 𝑡) = 𝑥⃗𝑠(𝜌, 𝑡) =
𝑥⃗𝜌(𝜌, 𝑡)
|𝑥⃗𝜌(𝜌, 𝑡)|

and 𝜈⃗(𝜌, 𝑡) = −[𝜏⃗(𝜌, 𝑡)]⊥ in 𝐼, (2.3)

where (·)⊥ denotes a clockwise rotation by 𝜋
2 .

On recalling (2.1), we observe that the normal 𝑛⃗𝒮 on 𝒮(𝑡) is given by

𝑛⃗𝒮(Π⃗3
3(𝑥⃗(𝜌, 𝑡), 𝜃)) =

⎛⎝(𝜈⃗(𝜌, 𝑡) · 𝑒⃗1) cos 𝜃
𝜈⃗(𝜌, 𝑡) · 𝑒⃗2

(𝜈⃗(𝜌, 𝑡) · 𝑒⃗1) sin 𝜃

⎞⎠ for 𝜌 ∈ 𝐼, 𝑡 ∈ [0, 𝑇 ], 𝜃 ∈ [0, 2𝜋). (2.4)

Similarly, the normal velocity 𝒱𝒮 of 𝒮(𝑡) in the direction 𝑛⃗𝒮 is given by

𝒱𝒮 = 𝑥⃗𝑡(𝜌, 𝑡) · 𝜈⃗(𝜌, 𝑡) on Π3
2(𝑥⃗(𝜌, 𝑡)) ⊂ 𝒮(𝑡), ∀𝜌 ∈ 𝐼, 𝑡 ∈ [0, 𝑇 ]. (2.5)

For the curvature κ of Γ(𝑡) it holds that

κ 𝜈⃗ = κ⃗ = 𝜏⃗𝑠 =
1
|𝑥⃗𝜌|

[︂
𝑥⃗𝜌

|𝑥⃗𝜌|

]︂
𝜌

in 𝐼. (2.6)
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Table 1. The different types of boundary nodes enforced by (2.2b)–(2.2d), and their effect on
the possible movement of the boundary circles 𝜕𝒮. Here the boundary circles in R3 are shown
with the help of an oblique projection.

We recall that the so-called mean curvature, i.e. the sum of the principal curvatures, and Gaussian curvature
of 𝒮(𝑡) are given by

κ𝒮 = κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
and 𝒦𝒮 = −κ

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
= κ (κ𝒮 − κ) in 𝐼, (2.7)

respectively; see e.g. (2.11) of [7]. More precisely, if 𝑘𝑚 and 𝑘𝑔 denote the mean and Gaussian curvatures of
𝒮(𝑡), then

𝑘𝑚 = κ𝒮(𝜌, 𝑡) and 𝑘𝑔 = 𝒦𝒮(𝜌, 𝑡) on Π3
2(𝑥⃗(𝜌, 𝑡)) ⊂ 𝒮(𝑡), ∀𝜌 ∈ 𝐼, 𝑡 ∈ [0, 𝑇 ]. (2.8)

In the literature, the two terms making up κ𝒮 in (2.7) are often referred to as in-plane and azimuthal curvatures,
respectively, with their sum being equal to the mean curvature. We note that combining (2.7) and (2.6) yields



838 J.W. BARRETT ET AL.

that

κ𝒮 𝜈⃗ =
1
|𝑥⃗𝜌|

[︂
𝑥⃗𝜌

|𝑥⃗𝜌|

]︂
𝜌

− 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜈⃗ in 𝐼. (2.9)

Weak formulations of (2.6) and (2.9) will form the basis of our approximations for Willmore flow. Clearly, for
a smooth surface with bounded curvatures it follows from (2.7) that

𝜈⃗(𝜌, 𝑡) · 𝑒⃗1 = 0 ∀𝜌 ∈ 𝜕0𝐼, 𝑡 ∈ [0, 𝑇 ], (2.10)

which is clearly equivalent to
𝑥⃗𝜌(𝜌, 𝑡) · 𝑒⃗2 = 0 ∀𝜌 ∈ 𝜕0𝐼, 𝑡 ∈ [0, 𝑇 ]. (2.11)

A precise derivation of (2.11) in the context of a weak formulation of (2.9) can be found in Appendix A of [9].
We note that for the singular fraction in (2.7) it follows from (2.11) and (2.10), on recalling (2.6), that

lim
𝜌→𝜌0

𝜈⃗(𝜌, 𝑡) · 𝑒⃗1

𝑥⃗(𝜌, 𝑡) · 𝑒⃗1
= lim

𝜌→𝜌0

𝜈⃗𝜌(𝜌, 𝑡) · 𝑒⃗1

𝑥⃗𝜌(𝜌, 𝑡) · 𝑒⃗1
= 𝜈⃗𝑠(𝜌0, 𝑡) · 𝜏⃗(𝜌0, 𝑡) = −κ(𝜌0, 𝑡) ∀𝜌0 ∈ 𝜕0𝐼, 𝑡 ∈ [0, 𝑇 ]. (2.12)

2.2. Willmore flow

We now define the generalized Willmore energy of the surface 𝒮(𝑡) as

𝐸(𝑡) = 1
2𝛼

∫︁
𝒮(𝑡)

(𝑘𝑚 − κ)2 dℋ2 = 𝜋 𝛼

∫︁
𝐼

𝑥⃗ · 𝑒⃗1 (κ𝒮 − κ)2 |𝑥⃗𝜌| d𝜌, (2.13)

where we have recalled (2.8); see also (6) and (7) of [16]. Here 𝛼 ∈ R>0 and κ ∈ R are given constants, with
κ denoting the so-called spontaneous curvature. On 𝒮(𝑡), Willmore flow, i.e. the 𝐿2-gradient flow for (2.13), is
given by

1
𝛼
𝒱𝒮 = −∆𝒮 𝑘𝑚 + 2(𝑘𝑚 − κ) 𝑘𝑔 − 1

2

(︀
𝑘2

𝑚 − κ2
)︀

𝑘𝑚 on 𝒮(𝑡), (2.14)

recall (2.5) for the definition of 𝒱𝒮 , see e.g. [2]. Here ∆𝒮 = ∇𝒮 · ∇𝒮 is the Laplace–Beltrami operator on 𝒮(𝑡).
Associated with (2.14) are boundary conditions, but we will discuss these once we have generalized the energy
(2.13).

For applications to biomembranes, and for surfaces with boundary, the considered energy can be more general
than (2.13). In particular, surface area constraints, area difference elasticity (ADE) effects, Gaussian curvature
contributions and line energy now also play a role. Hence, we adapt (2.13) to

𝐸(𝑡) = 1
2𝛼

∫︁
𝒮(𝑡)

(𝑘𝑚 − κ)2 dℋ2 + 𝜆ℋ2(𝒮(𝑡)) + 𝛽
2 𝒜

2
𝒮(𝑡) + 𝛼𝐺

∫︁
𝒮(𝑡)

𝑘𝑔 dℋ2 + 𝜍ℋ1(𝜕𝒮(𝑡)) (2.15)

with 𝒜𝒮(𝑡) =
∫︀
𝒮(𝑡)

𝑘𝑚 dℋ2−𝑀0, and given constants 𝛽 ∈ R≥0, 𝑀0, 𝛼𝐺, 𝜍 ∈ R, see e.g. [5,6,13,14,23,24,30,33,34]
for more details. In addition, 𝜆 ∈ R is a constant that can penalise or encourage surface area growth. If chosen
time-dependent, it can act as a Lagrange multiplier for a surface area constraint. We make this more explicit
later on, see Section 2.4 below. We remark that the contributions 1

2𝛼
∫︀
𝒮(𝑡)

𝑘2
𝑚 dℋ2 + 𝛼𝐺

∫︀
𝒮(𝑡)

𝑘𝑔 dℋ2 to the
energy 𝐸(𝑡) are positive semidefinite with respect to the principal curvatures only if 𝛼𝐺 ∈ [−2𝛼, 0]. We note that
this constraint is likely to have implications for the existence and regularity of the corresponding 𝐿2-gradient
flow.

Noting the Gauss–Bonnet theorem, see [27],∫︁
𝒮

𝑘𝑔 dℋ2 = 2𝜋𝑚(𝒮) +
∫︁

𝜕𝒮
𝑘𝜕𝒮,𝜇 dℋ1, (2.16)
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where 𝑚(𝒮) ∈ Z denotes the Euler characteristic of 𝒮 and 𝑘𝜕𝒮,𝜇 is the geodesic curvature of 𝜕𝒮, we can rewrite
(2.15) as

𝐸(𝑡) = 1
2𝛼

∫︁
𝒮(𝑡)

(𝑘𝑚 − κ)2 dℋ2 + 𝜆ℋ2(𝒮(𝑡)) + 𝛽
2 𝒜

2
𝒮(𝑡) + 𝛼𝐺

[︃∫︁
𝜕𝒮(𝑡)

𝑘𝜕𝒮,𝜇 dℋ1 + 2𝜋𝑚(𝒮(𝑡))

]︃
+ 𝜍ℋ1(𝜕𝒮(𝑡)).

(2.17)
In order to define 𝑘𝜕𝒮,𝜇, we first define the conormal, 𝜇⃗𝜕𝒮 , to 𝒮(𝑡) on 𝜕𝒮(𝑡) to be

𝜇⃗𝜕𝒮 = ± 𝑛⃗𝒮 × i⃗d𝑠 on 𝜕𝒮(𝑡), (2.18)

where i⃗d denotes the identity in R3 and 𝑠 denotes arclength on the curve 𝜕𝒮(𝑡) ⊂ R3, so that i⃗d𝑠 is its unit tangent
vector. The sign in (2.18) is chosen so that 𝜇⃗𝜕𝒮 points out of 𝒮(𝑡). It holds that i⃗d𝑠𝑠 = 𝑘⃗𝜕𝒮 = 𝑘𝜕𝒮,𝑛 𝑛⃗𝒮+𝑘𝜕𝒮,𝜇 𝜇⃗𝜕𝒮

on 𝜕𝒮(𝑡), where 𝑘⃗𝜕𝒮 is the curvature vector on 𝜕𝒮(𝑡), and where 𝑘𝜕𝒮,𝑛 is the normal curvature and 𝑘𝜕𝒮,𝜇 is the
geodesic curvature of 𝜕𝒮(𝑡).

Similarly to (2.8), it is easily seen that

𝑘𝜕𝒮,𝑛 = − 𝜈⃗(𝜌, 𝑡) · 𝑒⃗1

𝑥⃗(𝜌, 𝑡) · 𝑒⃗1
and 𝑘𝜕𝒮,𝜇 = − 𝜇⃗(𝜌, 𝑡) · 𝑒⃗1

𝑥⃗(𝜌, 𝑡) · 𝑒⃗1
on Π3

2(𝑥⃗(𝜌, 𝑡)) ⊂ 𝜕𝒮(𝑡), ∀𝜌 ∈ 𝜕𝐼 ∖ 𝜕0𝐼, 𝑡 ∈ [0, 𝑇 ], (2.19)

where 𝜈⃗(·, 𝑡) is the unit normal on Γ(𝑡) as defined in (2.3) and (2.4) and

𝜇⃗(𝑝, 𝑡) = (−1)𝑝+1 𝜏⃗(𝑝, 𝑡) ∀𝑝 ∈ 𝜕𝐼, 𝑡 ∈ [0, 𝑇 ], (2.20)

denotes the corresponding conormal of Γ(𝑡) at the endpoint 𝑥⃗(𝑝, 𝑡), for 𝑝 ∈ 𝜕𝐼. Here, we have recalled that the
conormal 𝜇⃗𝜕𝒮 points out of 𝒮(𝑡).

Hence, an energy equivalent to (2.17), for flows of axisymmetric surfaces without topological changes, can be
written as ̃︀𝐸(𝑡) = 𝐸(𝑡)− 2𝜋𝛼𝐺 𝑚(𝒮(𝑡))

= 𝜋 𝛼

∫︁
𝐼

𝑥⃗ · 𝑒⃗1 [κ𝒮 − κ]2 |𝑥⃗𝜌| d𝜌 + 2𝜋𝜆

∫︁
𝐼

(𝑥⃗ · 𝑒⃗1) |𝑥⃗𝜌| d𝜌 + 𝛽
2𝒜

2
𝒮(𝑡)

− 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝐼∖𝜕0𝐼

[︂
𝑥⃗ · 𝑒⃗1

𝜇⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

]︂
(𝑝) + 2𝜋𝜍

∑︁
𝑝∈𝜕𝐼∖𝜕0𝐼

𝑥⃗(𝑝) · 𝑒⃗1

= 𝜋 𝛼

∫︁
𝐼

𝑥⃗ · 𝑒⃗1 [κ𝒮 − κ]2 |𝑥⃗𝜌| d𝜌 + 2𝜋𝜆

∫︁
𝐼

(𝑥⃗ · 𝑒⃗1) |𝑥⃗𝜌| d𝜌 + 𝛽
2𝒜

2
𝒮(𝑡)

− 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝐼∖𝜕0𝐼

𝜇⃗(𝑝) · 𝑒⃗1 + 2𝜋𝜍
∑︁

𝑝∈𝜕𝐼∖𝜕0𝐼

𝑥⃗(𝑝) · 𝑒⃗1, (2.21)

where
𝒜𝒮(𝑡) = 2𝜋

∫︁
𝐼

𝑥⃗ · 𝑒⃗1 κ𝒮 |𝑥⃗𝜌| d𝜌−𝑀0. (2.22)

In this general situation, (2.14) is replaced by

𝒱𝒮 = −𝛼 ∆𝒮 𝑘𝑚 + 2 [𝛼 (𝑘𝑚 − κ) + 𝛽𝒜𝒮 ] 𝑘𝑔 −
[︀
1
2𝛼
(︀
𝑘2

𝑚 − κ2
)︀
− 𝜆

]︀
𝑘𝑚 on 𝒮(𝑡), (2.23)

see e.g. (1.21) of [6]. A strong formulation for the flow (2.23) on 𝐼, on recalling (B.3) of [7], as well as (2.5) and
(2.8), is given by

(𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗ = −𝛼 [𝑥⃗ · 𝑒⃗1 (κ𝒮)𝑠]𝑠 + 2𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ]𝒦𝒮 − 𝑥⃗ · 𝑒⃗1

[︀
1
2𝛼 (κ2

𝒮 − κ2)− 𝜆
]︀
κ𝒮 in 𝐼. (2.24)

Next we discuss the boundary conditions associated with (2.23) and (2.24).
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2.3. Boundary conditions

We recall from [6] the following boundary conditions one can consider for 𝒮(𝑡) on 𝜕𝒮(𝑡). A connected com-
ponent of the boundary can either move freely, or move along the boundary of a fixed domain 𝒟, or it will
be fixed. For the latter case two types of boundary conditions arise: clamped and Navier. Corresponding to
(2.2b)–(2.2d), we now partition 𝜕𝒮 into 𝜕𝐶𝒮 ∪ 𝜕𝑁𝒮 ∪ 𝜕1𝒮 ∪ 𝜕2𝒮 ∪ 𝜕𝐹𝒮, and we also set 𝜕𝑆𝐹𝒮 = 𝜕1𝒮 ∪ 𝜕2𝒮. In
the free boundary case, the three natural boundary conditions are, for 𝑡 ∈ (0, 𝑇 ], given by

𝛼 (∇𝒮 𝑘𝑚) · 𝜇⃗𝜕𝒮 + 𝜍 𝑘𝜕𝒮,𝑛 = 0 on 𝜕𝐹𝒮(𝑡), (2.25a)

− 1
2𝛼 (𝑘𝑚 − κ)2 − 𝛽𝒜𝒮 𝑘𝑚 + 𝜍 𝑘𝜕𝒮,𝜇 − 𝛼𝐺 𝑘𝑔 = 𝜆 on 𝜕𝐹𝒮(𝑡), (2.25b)

𝛼 (𝑘𝑚 − κ) + 𝛽𝒜𝒮 + 𝛼𝐺 𝑘𝜕𝒮,𝑛 = 0 on 𝜕𝐹𝒮(𝑡). (2.25c)

In general, the term 𝛼𝐺 t𝑠 features on the right hand side of (2.25a), where t = −(𝑛⃗𝒮)𝑠 · 𝜇⃗𝜕𝒮 denotes the torsion
of 𝜕𝒮(𝑡), see (1.15) and (1.22) of [6]. However, in the axisymmetric case 𝜕𝒮(𝑡) is made up of circles, and so the
torsion is zero. For the semifree case, when 𝜕𝑆𝐹𝒮(𝑡) ⊂ 𝜕𝒟 for all 𝑡 ∈ [0, 𝑇 ], where 𝜕𝒟 is the boundary of a fixed
domain 𝒟 ⊂ R3, we let 𝜕𝒟 be given by a function 𝐹 ∈ 𝐶1(R3) such that

𝜕𝒟 =
{︀
𝑧⃗ ∈ R3 : 𝐹 (𝑧⃗) = 0

}︀
and |∇𝐹 (𝑧⃗)| = 1 ∀𝑧⃗ ∈ 𝜕𝒟,

and we denote the normal to 𝒟 on 𝜕𝒟 by 𝑛⃗𝒟 = ∇𝐹 . For the special axisymmetric setting considered here, recall
(2.2d), we restrict ourselves to the two cases

𝑛⃗𝒟 = 𝑛⃗1 =
i⃗d−

(︁
i⃗d · 𝑒⃗2

)︁
𝑒⃗2

|i⃗d−
(︁

i⃗d · 𝑒⃗2

)︁
𝑒⃗2|

on 𝜕1𝒮(𝑡), 𝑛⃗𝒟 = 𝑛⃗2 = 𝑒⃗2 on 𝜕2𝒮(𝑡). (2.26)

The semifree boundary conditions are, for 𝑡 ∈ (0, 𝑇 ], then

𝜕𝑆𝐹𝒮(𝑡) ⊂ 𝜕𝒟 (2.27a)

− [− 1
2𝛼 (𝑘𝑚 − κ)2 − 𝛽𝒜𝒮 𝑘𝑚 + 𝜍 𝑘𝜕𝒮,𝜇 − 𝛼𝐺 𝑘𝑔 − 𝜆] (𝑛⃗𝒮 · 𝑛⃗𝑖) + [𝛼 (∇𝒮 𝑘𝑚) · 𝜇⃗𝜕𝒮 + 𝜍 𝑘𝜕𝒮,𝑛] (𝜇⃗𝜕𝒮 · 𝑛⃗𝑖) = 0

on 𝜕𝑖𝒮(𝑡), 𝑖 = 1, 2, (2.27b)
𝛼 (𝑘𝑚 − κ) + 𝛽𝒜𝒮 + 𝛼𝐺 𝑘𝜕𝒮,𝑛 = 0 on 𝜕𝑆𝐹𝒮(𝑡) = 𝜕1𝒮(𝑡) ∪ 𝜕2𝒮(𝑡). (2.27c)

Note that compared to (1.17) and (1.22) of [6], we have once again omitted the vanishing torsion term. Clamped
boundary conditions are, for 𝑡 ∈ (0, 𝑇 ], given by

𝜕𝐶𝒮(𝑡) = 𝜕𝐶𝒮(0) and 𝜇⃗𝜕𝒮(𝑡) = 𝜁𝒮 on 𝜕𝐶𝒮(0), (2.28)

where 𝜁𝒮 ∈ 𝐶0(𝜕𝐶𝒮(0), S2), with S2 := {𝑧⃗ ∈ R3 : |𝑧⃗| = 1}, needs to be axisymmetric. Similarly, Navier boundary
conditions are, for 𝑡 ∈ (0, 𝑇 ], given by

𝜕𝑁𝒮(𝑡) = 𝜕𝑁𝒮(0) and 𝛼 (𝑘𝑚 − κ) + 𝛽𝒜𝒮 + 𝛼𝐺 𝑘𝜕𝒮,𝑛 = 0 on 𝜕𝑁𝒮(0). (2.29)

We now translate the above boundary conditions to the axisymmetric case. On noting (2.25), (2.20), (2.19)
and (2.8), we obtain, for 𝑡 ∈ (0, 𝑇 ], the free boundary conditions

(−1)𝑝+1 𝛼 (κ𝒮)𝑠 − 𝜍
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
= 0 on 𝜕𝐹 𝐼, (2.30a)

− 1
2𝛼 (κ𝒮 − κ)2 − 𝛽𝒜𝒮 κ𝒮 − 𝜍

𝜇⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− 𝛼𝐺𝒦𝒮 = 𝜆 on 𝜕𝐹 𝐼, (2.30b)
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𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 − 𝛼𝐺
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
= 0 on 𝜕𝐹 𝐼. (2.30c)

Similarly, (2.27), (2.26), (2.20), (2.19) and (2.8) yield, for 𝑡 ∈ (0, 𝑇 ], the semifree boundary conditions

𝑥⃗(·, 𝑡) · 𝑒⃗𝑖 = 𝑥⃗(·, 0) · 𝑒⃗𝑖 on 𝜕𝑖𝐼, 𝑖 = 1, 2, (2.31a)

−
[︂
− 1

2𝛼 (κ𝒮 − κ)2 − 𝛽𝒜𝒮 κ𝒮 − 𝜍
𝜇⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− 𝛼𝐺𝒦𝒮 − 𝜆

]︂
(𝜈⃗ · 𝑒⃗𝑖) +

[︂
(−1)𝑝+1 𝛼 (κ𝒮)𝑠 − 𝜍

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

]︂
(𝜇⃗ · 𝑒⃗𝑖) = 0

on 𝜕𝑖𝐼, 𝑖 = 1, 2, (2.31b)

𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 − 𝛼𝐺
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
= 0 on 𝜕𝑆𝐹 𝐼 = 𝜕1𝐼 ∪ 𝜕2𝐼. (2.31c)

Taking into account the clamped boundary conditions (2.28), we define, similarly to (2.4),

𝜁𝒮

(︁
Π⃗3

3 (𝑥⃗(𝑝, 0), 𝜃)
)︁

=

⎛⎝𝜁(𝑝) · 𝑒⃗1 cos 𝜃

𝜁(𝑝) · 𝑒⃗2

𝜁(𝑝) · 𝑒⃗1 sin 𝜃

⎞⎠ for 𝑝 ∈ 𝜕𝐶𝐼, 𝜃 ∈ [0, 2𝜋), (2.32)

to be the conormal of 𝒮(𝑡) on 𝜕𝐶𝒮(0) = 𝜕𝐶𝒮(𝑡). Here 𝜁(𝑝), for 𝑝 ∈ 𝜕𝐶𝐼, are given unit vectors that prescribe the
clamping direction for the conormals 𝜇⃗(𝑝, 𝑡) of Γ(𝑡) at the endpoints 𝑥⃗(𝑝, 𝑡) = 𝑥⃗(𝑝, 0), for 𝑝 ∈ 𝜕𝐶𝐼. In particular,
for clamped boundary conditions we will enforce, for 𝑡 ∈ (0, 𝑇 ], on recalling (2.20),

𝑥⃗(𝑝, 𝑡) = 𝑥⃗(𝑝, 0) for 𝑝 ∈ 𝜕𝐶𝐼, (2.33a)

(−1)𝑝+1 𝜏⃗(𝑝, 𝑡) = 𝜇⃗(𝑝, 𝑡) = 𝜁(𝑝) for 𝑝 ∈ 𝜕𝐶𝐼. (2.33b)

Similarly, for Navier boundary conditions we will enforce, for 𝑡 ∈ (0, 𝑇 ], on recalling (2.29), (2.8) and (2.19),

𝑥⃗(𝑝, 𝑡) = 𝑥⃗(𝑝, 0) for 𝑝 ∈ 𝜕𝑁𝐼, (2.34a)

𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 − 𝛼𝐺
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
= 0 on 𝜕𝑁𝐼. (2.34b)

Finally, we impose the following boundary conditions on 𝜕0𝐼

𝑥⃗ · 𝑒⃗1 = 0 on 𝜕0𝐼, for 𝑡 ∈ [0, 𝑇 ], (2.35a)
𝑥⃗𝜌 · 𝑒⃗2 = 0 on 𝜕0𝐼, for 𝑡 ∈ [0, 𝑇 ], (2.35b)
(κ𝒮)𝜌 = 0 on 𝜕0𝐼, for 𝑡 ∈ (0, 𝑇 ]. (2.35c)

Here (2.35c) ensures that the radially symmetric function 𝑘𝑚 on 𝒮(𝑡) induced by κ𝒮 , recall (2.8), is differentiable,
while (2.35b) is the same as (2.11). It is natural to ask for differentiability of 𝑘𝑚 due to the regularisation property
of parabolic equations. We also remark that ∆𝒮 𝑘𝑚 in (1.2), for radially symmetric solutions, is only defined
even in the weak sense if (2.35c) holds. We note that the boundary conditions (2.2b)–(2.2d) are incorporated
in (2.35a), (2.33a), (2.34a) and (2.31a), respectively.

We now introduce an energy equivalent to (2.21), which takes into account the clamped, (2.33), Navier,
(2.34a), and semifree, (2.31a), boundary conditions,̂︀𝐸(𝑡) = ̃︀𝐸(𝑡) + 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝐶𝐼

𝜁(𝑝) · 𝑒⃗1 − 2𝜋𝜍
∑︁

𝑝∈𝜕𝐶𝐼∪𝜕𝑁 𝐼∪𝜕1𝐼

𝑥⃗(𝑝) · 𝑒⃗1

= 𝜋 𝛼

∫︁
𝐼

𝑥⃗ · 𝑒⃗1 [κ𝒮 − κ]2 |𝑥⃗𝜌| d𝜌 + 2𝜋𝜆

∫︁
𝐼

(𝑥⃗ · 𝑒⃗1) |𝑥⃗𝜌| d𝜌 + 𝛽
2𝒜

2
𝒮(𝑡)

− 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝜇⃗(𝑝) · 𝑒⃗1 + 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗(𝑝) · 𝑒⃗1, (2.36)

where 𝒜𝒮 is defined in (2.22) and
𝜕𝑀𝐼 = 𝜕𝑁𝐼 ∪ 𝜕𝑆𝐹 𝐼 ∪ 𝜕𝐹 𝐼. (2.37)
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2.4. Conserved flows

In a number applications, such as biomembranes, the 𝐿2-gradient flow of (2.15) is considered under conser-
vation of the total surface area and, in the case of a closed surface, conservation of the enclosed volume. Before
we state these variants, we recall the following useful results. We have, similarly to (2.21), that

d
d𝑡
ℋ2(𝒮(𝑡)) =

d
d𝑡

2𝜋

∫︁
𝐼

𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌| d𝜌 = 2𝜋

∫︁
𝐼

[𝑥⃗𝑡 · 𝑒⃗1 |𝑥⃗𝜌|+ (𝑥⃗ · 𝑒⃗1) (𝑥⃗𝑡)𝜌 · 𝜏⃗ ] d𝜌. (2.38)

In the case of a closed surface 𝒮(𝑡), we have from (2.5) that

d
d𝑡
ℒ3(Ω(𝑡)) =

∫︁
𝒮(𝑡)

𝒱𝒮 dℋ2 = 2𝜋

∫︁
𝐼

(𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗ |𝑥⃗𝜌| d𝜌, (2.39)

where ℒ3 denotes the Lebesgue measure in R3, 𝒮(𝑡) = 𝜕Ω(𝑡), and where we assume from now on that 𝑛⃗𝒮 is the
outer or inner normal to Ω(𝑡) on 𝒮(𝑡), recall (2.4) and (2.3).

Generalized Helfrich flow is the surface area and volume conserving variant of (2.23), and its strong form can
be stated as

𝒱𝒮 = −𝛼 ∆𝒮 𝑘𝑚 + 2 [𝛼 (𝑘𝑚 − κ) + 𝛽𝒜𝒮 ] 𝑘𝑔 −
[︀
1
2𝛼
(︀
𝑘2

𝑚 − κ2
)︀
− 𝜆

]︀
𝑘𝑚 + 𝜆𝐴 𝑘𝑚 − 𝜆𝑉 on 𝒮(𝑡), (2.40)

where (𝜆𝐴(𝑡), 𝜆𝑉 (𝑡))𝑇 ∈ R2 are chosen such that

d
d𝑡
ℋ2(𝒮(𝑡)) = 0,

d
d𝑡
ℒ3(Ω(𝑡)) = 0. (2.41)

For axisymmetric surfaces the flow (2.40) with (2.41) can be equivalently formulated as

(𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗ = −𝛼 [𝑥⃗ · 𝑒⃗1 (κ𝒮)𝑠]
𝑠

+ 2𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ]𝒦𝒮 − 𝑥⃗ · 𝑒⃗1

[︀
1
2𝛼
(︀
κ2
𝒮 − κ2

)︀
− 𝜆

]︀
κ𝒮

+ 𝜆𝐴 𝑥⃗ · 𝑒⃗1 κ𝒮 − 𝜆𝑉 𝑥⃗ · 𝑒⃗1 in 𝐼, (2.42)

where (𝜆𝐴(𝑡), 𝜆𝑉 (𝑡))𝑇 ∈ R2 are chosen such that∫︁
𝐼

[𝑥⃗𝑡 · 𝑒⃗1 |𝑥⃗𝜌|+ (𝑥⃗ · 𝑒⃗1) (𝑥⃗𝑡)𝜌 · 𝜏⃗ ] d𝜌 = 0,

∫︁
𝐼

(𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗ |𝑥⃗𝜌| d𝜌 = 0, (2.43)

where we recall (2.24), (2.38) and (2.39).

3. Weak formulations

On recalling (2.3), we have for all 𝑎⃗, 𝑏⃗ ∈ R2 that

𝑎⃗ · 𝑏⃗⊥ = −𝑎⃗⊥ · 𝑏⃗, (3.1a)

𝑎⃗⊥ =
(︀
𝑎⃗⊥ · 𝜏⃗

)︀
𝜏⃗ +

(︀
𝑎⃗⊥ · 𝜈⃗

)︀
𝜈⃗ =

(︀
𝑎⃗⊥ · 𝜈⃗⊥

)︀
𝜏⃗ −

(︀
𝑎⃗⊥ · 𝜏⃗⊥

)︀
𝜈⃗ = (⃗𝑎 · 𝜈⃗) 𝜏⃗ − (⃗𝑎 · 𝜏⃗) 𝜈⃗. (3.1b)

We define the first variation of a differentiable quantity 𝐵(𝑥⃗), in the direction 𝜒⃗ as[︂
𝛿

𝛿𝑥⃗
𝐵(𝑥⃗)

]︂
(𝜒⃗) = lim

𝜀→0

𝐵(𝑥⃗ + 𝜀 𝜒⃗)−𝐵(𝑥⃗)
𝜀

· (3.2)

For later use, on noting (3.2) and (2.3), we observe that[︂
𝛿

𝛿𝑥⃗
|𝑥⃗𝜌|

]︂
(𝜒⃗) =

𝑥⃗𝜌 · 𝜒⃗𝜌

|𝑥⃗𝜌|
= 𝜏⃗ · 𝜒⃗𝜌 = 𝜏⃗ · 𝜒⃗𝑠 |𝑥⃗𝜌|, (3.3a)
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𝛿

𝛿𝑥⃗
𝜏⃗

]︂
(𝜒⃗) =

[︂
𝛿

𝛿𝑥⃗

𝑥⃗𝜌

|𝑥⃗𝜌|

]︂
(𝜒⃗) =

𝜒⃗𝜌

|𝑥⃗𝜌|
− 𝑥⃗𝜌

|𝑥⃗𝜌|2
𝑥⃗𝜌 · 𝜒⃗𝜌

|𝑥⃗𝜌|
= 𝜒⃗𝑠 − 𝜏⃗ (𝜒⃗𝑠 · 𝜏⃗) = (𝜒⃗𝑠 · 𝜈⃗) 𝜈⃗, (3.3b)[︂

𝛿

𝛿𝑥⃗
𝜈⃗

]︂
(𝜒⃗) = −

[︂
𝛿

𝛿𝑥⃗
𝜏⃗⊥
]︂

(𝜒⃗) = −(𝜒⃗𝑠 · 𝜈⃗) 𝜈⃗⊥ = −(𝜒⃗𝑠 · 𝜈⃗) 𝜏⃗ , (3.3c)[︂
𝛿

𝛿𝑥⃗
𝜈⃗ |𝑥⃗𝜌|

]︂
(𝜒⃗) = −

[︂
𝛿

𝛿𝑥⃗
𝑥⃗⊥𝜌

]︂
(𝜒⃗) = −𝜒⃗⊥𝜌 = −𝜒⃗⊥𝑠 |𝑥⃗𝜌|, (3.3d)

where we always assume that 𝜒⃗ is sufficiently smooth so that all the quantities are defined almost everywhere;
e.g. 𝜒⃗ ∈ [𝑊 1,∞(𝐼)]2. In addition, we note that[︂

𝛿

𝛿𝑥⃗
𝐵(𝑥⃗)

]︂
(𝑥⃗𝑡) =

d
d𝑡

𝐵(𝑥⃗). (3.4)

Let

𝑉 𝜕0
=
{︀
𝜂⃗ ∈ [𝐻1(𝐼)]2 : 𝜂⃗(𝜌) · 𝑒⃗1 = 0 ∀𝜌 ∈ 𝜕0𝐼

}︀
, (3.5a)

X =
{︁

𝜂⃗ ∈ 𝑉 𝜕0
: 𝜂⃗(𝜌) = 0⃗ ∀𝜌 ∈ 𝜕𝐶𝐼 ∪ 𝜕𝑁𝐼, 𝜂⃗(𝜌) · 𝑒⃗𝑖 = 0 ∀𝜌 ∈ 𝜕𝑖𝐼, 𝑖 = 1, 2

}︁
. (3.5b)

Here X is the space of all directions in which we can vary a given curve. For a given 𝑧⃗ ∈ R2, on recalling (2.37),
we define

Y(𝑧⃗) =
{︀
𝜂⃗ ∈ 𝑉 𝜕0

: 𝜂⃗(𝜌) = 𝑧⃗ ∀𝜌 ∈ 𝜕𝑀𝐼
}︀

. (3.6)

On recalling (2.37), we note that
if 𝜕𝐶𝐼 = ∅ then Y(⃗0) ⊂ X. (3.7)

Let (·, ·) denote the 𝐿2-inner product on 𝐼. We now consider the following weak formulation of (2.6) with
𝑥⃗ ∈ 𝑉 𝜕0

and κ ∈ 𝐿2(𝐼) such that

(κ 𝜈⃗, 𝜂⃗ |𝑥⃗𝜌|) + (𝜏⃗ , 𝜂⃗𝜌) =
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[𝑚⃗ · 𝜂⃗] (𝑝) ∀𝜂⃗ ∈ 𝑉 𝜕0
, (3.8)

where we recall (2.3). We note that (3.8) weakly imposes (2.35b) and (2.33b), where 𝜁(𝑝) ∈ S1, 𝑝 ∈ 𝜕𝐶𝐼,
are given data. However, (3.8) also yields that 𝑚⃗(𝑝) = 𝜇⃗(𝑝) ∈ R2, 𝑝 ∈ 𝜕𝑀𝐼. This will not be the case under
discretization, where 𝑚⃗(𝑝) ∈ R2, 𝑝 ∈ 𝜕𝑀𝐼, are approximations to the conormals 𝜇⃗(𝑝), 𝑝 ∈ 𝜕𝑀𝐼.

Similarly, we consider the following weak formulation of (2.9) with 𝑥⃗ ∈ 𝑉 𝜕0
and κ𝒮 ∈ 𝐿2(𝐼) such that

(𝑥⃗ · 𝑒⃗1 κ𝒮 𝜈⃗ + 𝑒⃗1, 𝜂⃗ |𝑥⃗𝜌|)+((𝑥⃗ · 𝑒⃗1) 𝜏⃗ , 𝜂⃗𝜌) =
∑︁

𝑝∈𝜕𝐶𝐼

[︁
(𝑥⃗ · 𝑒⃗1) 𝜁 · 𝜂⃗

]︁
(𝑝)+

∑︁
𝑝∈𝜕𝑀 𝐼

[(𝑥⃗ · 𝑒⃗1) 𝑚⃗ · 𝜂⃗] (𝑝) ∀𝜂⃗ ∈ 𝑉 𝜕0
. (3.9)

It is shown in Appendix A of [9] that, despite the degenerate weight, (3.9) weakly imposes (2.11). In addition,
(3.9) weakly imposes (2.33b).

3.1. Based on ~

We begin with a weak formulation based on (3.8). Finite element approximations based on this weak formu-
lation will exhibit an equidistribution property.

On recalling (2.36), (2.22), (2.7), (3.8) and that 𝜇⃗ = 𝑚⃗ on 𝜕𝑀𝐼, we define the Lagrangian

ℒ (𝑥⃗, κ⋆, 𝑚⃗, 𝑦⃗) = 𝜋

(︃
𝛼

[︂
κ⋆ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂2
+ 2𝜆, 𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

)︃
+ 𝛽

2

[︂
2𝜋

(︂
κ⋆ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
, 𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

)︂
−𝑀0

]︂2
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− (κ⋆ 𝜈⃗, 𝑦⃗ |𝑥⃗𝜌|)− (𝜏⃗ , 𝑦⃗𝜌) + 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗(𝑝) · 𝑒⃗1 +
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝑦⃗

]︁
(𝑝)

+
∑︁

𝑝∈𝜕𝑀 𝐼

[𝑚⃗ · (𝑦⃗ − 2𝜋𝛼𝐺 𝑒⃗1)] (𝑝), (3.10)

for 𝑥⃗ ∈ 𝑉 𝜕0
, κ⋆ ∈ 𝐿2(𝐼), 𝑚⃗ : 𝜕𝑀𝐼 → R2 and 𝑦⃗ ∈ 𝑉 𝜕0

. Here, we recall from (2.2b) and (2.12) that on the
continuous level the Lagrangian (3.10) is well-defined for curves generating a smooth surface also in the case
𝜕0𝐼 ̸= ∅.

Taking variations 𝜂⃗ ∈ 𝑉 𝜕0
in 𝑦⃗, and setting

[︁
𝛿
𝛿𝑦⃗ ℒ

]︁
(𝜂⃗) = 0 we obtain

(κ⋆ 𝜈⃗, 𝜂⃗ |𝑥⃗𝜌|) + (𝜏⃗ , 𝜂⃗𝜌) =
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[𝑚⃗ · 𝜂⃗] (𝑝) ∀𝜂⃗ ∈ 𝑉 𝜕0
, (3.11)

and so combining with (3.8) yields that κ⋆ = κ. We are going to use this identity from now on. Taking variations
𝜒 ∈ 𝐿2(𝐼) in κ⋆ and setting

[︀
𝛿

𝛿κ⋆ ℒ
]︀

(𝜒) = 0 we obtain, on using κ⋆ = κ, that

2𝜋

(︂
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂
+ 𝛽𝒜, 𝑥⃗ · 𝑒⃗1 𝜒 |𝑥⃗𝜌|

)︂
− (𝜈⃗ · 𝑦⃗, 𝜒 |𝑥⃗𝜌|) = 0 ∀𝜒 ∈ 𝐿2(𝐼), (3.12)

where

𝒜(𝑡) = 2𝜋

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
, 𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

)︂
−𝑀0 = 2𝜋 (𝑥⃗ · 𝑒⃗1 κ − 𝜈⃗ · 𝑒⃗1, |𝑥⃗𝜌|)−𝑀0. (3.13)

We note that[︂
𝛿

𝛿𝑥⃗
𝒜(𝑡)

]︂
(𝜒⃗) = 2𝜋

(︂
κ,

[︂
𝛿

𝛿𝑥⃗
𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

]︂
(𝜒⃗)
)︂
− 2𝜋

(︂
𝑒⃗1,

[︂
𝛿

𝛿𝑥⃗
𝜈⃗ |𝑥⃗𝜌|

]︂
(𝜒⃗)
)︂

∀𝜒⃗ ∈ X. (3.14)

Taking variations in 𝑚⃗, and setting them to zero, yields that

𝑦⃗ = 2𝜋𝛼𝐺 𝑒⃗1 on 𝜕𝑀𝐼. (3.15)

Taking variations 𝜒⃗ ∈ X in 𝑥⃗, and setting 2𝜋((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) = −
[︀

𝛿
𝛿𝑥⃗ ℒ

]︀
(𝜒⃗) we obtain, on noting (3.14)

and (3.5b), that

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) = − 𝜋

(︃
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂2
+ 2𝜆 + 2𝛽𝒜κ,

[︂
𝛿

𝛿𝑥⃗
(𝑥⃗ · 𝑒⃗1) |𝑥⃗𝜌|

]︂
(𝜒⃗)

)︃

+ 2𝜋𝛼

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ, 𝑥⃗ · 𝑒⃗1

[︂
𝛿

𝛿𝑥⃗

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

]︂
(𝜒⃗) |𝑥⃗𝜌|

)︂
+
(︂

κ 𝑦⃗ + 2𝜋𝛽𝒜 𝑒⃗1,

[︂
𝛿

𝛿𝑥⃗
𝜈⃗ |𝑥⃗𝜌|

]︂
(𝜒⃗)
)︂

+
(︂

𝑦⃗𝜌,

[︂
𝛿

𝛿𝑥⃗
𝜏⃗

]︂
(𝜒⃗)
)︂

− 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 ∀𝜒⃗ ∈ X. (3.16)

Choosing 𝜒⃗ = 𝑥⃗𝑡 ∈ X in (3.16) yields, on noting (3.4), that

2𝜋
(︀
𝑥⃗ · 𝑒⃗1 (𝑥⃗𝑡 · 𝜈⃗)2, |𝑥⃗𝜌|

)︀
= − 𝜋

(︃
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂2
+ 2𝜆 + 2𝛽𝒜κ, [(𝑥⃗ · 𝑒⃗1) |𝑥⃗𝜌|]𝑡

)︃

+ 2𝜋𝛼

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ, 𝑥⃗ · 𝑒⃗1

[︂
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

]︂
𝑡

|𝑥⃗𝜌|
)︂

+
(︀
κ 𝑦⃗ + 2𝜋𝛽𝒜 𝑒⃗1, [𝜈⃗ |𝑥⃗𝜌|]𝑡

)︀
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+ (𝑦⃗𝜌, 𝜏⃗𝑡)− 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗𝑡(𝑝) · 𝑒⃗1. (3.17)

Differentiating (3.11) with respect to time, and then choosing 𝜂⃗ = 𝑦⃗, on recalling κ⋆ = κ and 𝜁 is independent
of 𝑡, yields that

(κ𝑡, 𝑦⃗ · 𝜈⃗ |𝑥⃗𝜌|) +
(︀
κ 𝑦⃗, [𝜈⃗ |𝑥⃗𝜌|]𝑡

)︀
+ (𝜏⃗𝑡, 𝑦⃗𝜌) =

∑︁
𝑝∈𝜕𝑀 𝐼

[𝑚⃗𝑡 · 𝑦⃗] (𝑝). (3.18)

It follows from (3.18), (3.15) and (3.12) with 𝜒 = κ𝑡 ∈ 𝐿2(𝐼) that(︀
κ 𝑦⃗, [𝜈⃗ |𝑥⃗𝜌|]𝑡

)︀
+ (𝜏⃗𝑡, 𝑦⃗𝜌) = − (κ𝑡, 𝑦⃗ · 𝜈⃗ |𝑥⃗𝜌|) + 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑡(𝑝) · 𝑒⃗1

= −2𝜋

(︂
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂
+ 𝛽𝒜, 𝑥⃗ · 𝑒⃗1 κ𝑡 |𝑥⃗𝜌|

)︂
+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑡(𝑝) · 𝑒⃗1. (3.19)

Combining (3.17) and (3.19) yields that

2𝜋
(︀
𝑥⃗ · 𝑒⃗1 (𝑥⃗𝑡 · 𝜈⃗)2, |𝑥⃗𝜌|

)︀
= − 𝜋

(︃
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂2
+ 2𝜆 + 2𝛽𝒜κ, [(𝑥⃗ · 𝑒⃗1) |𝑥⃗𝜌|]𝑡

)︃

+ 2𝜋𝛼

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ, 𝑥⃗ · 𝑒⃗1

[︂
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

]︂
𝑡

|𝑥⃗𝜌|
)︂

+ 2𝜋𝛽𝒜
(︀
𝑒⃗1, [𝜈⃗ |𝑥⃗𝜌|]𝑡

)︀
− 2𝜋

(︂
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂
+ 𝛽𝒜, 𝑥⃗ · 𝑒⃗1 κ𝑡 |𝑥⃗𝜌|

)︂
+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑡(𝑝) · 𝑒⃗1

− 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗𝑡(𝑝) · 𝑒⃗1

= − 𝜋
d
d𝑡

[︃
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂2
+ 2𝜆, 𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

]︃
− 𝛽

2

d
d𝑡
𝒜2 − 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗𝑡(𝑝) · 𝑒⃗1

+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑡(𝑝) · 𝑒⃗1

= − d
d𝑡
̂︀𝐸(𝑡), (3.20)

where we have recalled (2.36), (2.22), (2.7), (3.13) and that 𝜇⃗ = 𝑚⃗ on 𝜕𝑀𝐼.

Remark 3.1. The property d
d𝑡
̂︀𝐸(𝑡) + 2𝜋(𝑥⃗ · 𝑒⃗1 (𝑥⃗𝑡 · 𝜈⃗)2, |𝑥⃗𝜌|) = 0 shown in (3.20) demonstrates the gradient

flow property of the derived weak formulation.

We now return to (3.16), which, on recalling (3.3), can be rewritten as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) = − 𝜋

(︃
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂2
+ 2𝜆 + 2𝛽𝒜κ, 𝜒⃗ · 𝑒⃗1 |𝑥⃗𝜌|+ (𝑥⃗ · 𝑒⃗1) 𝜏⃗ · 𝜒⃗𝜌

)︃

− 2𝜋𝛼

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ,

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒⃗ · 𝑒⃗1 |𝑥⃗𝜌|

)︂
− 2𝜋𝛼

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ, (𝜒⃗𝜌 · 𝜈⃗) 𝜏⃗ · 𝑒⃗1

)︂
−
(︀
κ 𝑦⃗ + 2𝜋𝛽𝒜 𝑒⃗1, 𝜒⃗

⊥
𝜌

)︀
+
(︀
𝑦⃗𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
− 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 ∀𝜒⃗ ∈ X. (3.21)
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Our finite element approximation is going to be based on the following formulation, on combining (3.21),
(3.12), (3.11), (3.15) and (3.13), and on recalling κ⋆ = κ, (3.1a) and (2.3).

(𝒫) Let 𝑥⃗(·, 0) ∈ 𝑉 𝜕0
and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺, 𝜆, 𝜍 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be given. For 𝑡 ∈ (0, 𝑇 ], find

𝑥⃗(·, 𝑡) ∈ 𝑉 𝜕0
, with 𝑥⃗𝑡(·, 𝑡) ∈ X, κ(·, 𝑡) ∈ 𝐿2(𝐼), 𝑦⃗(·, 𝑡) ∈ Y(2𝜋𝛼𝐺 𝑒⃗1) and 𝑚⃗(·, 𝑡) : 𝜕𝑀𝐼 → R2 such that

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|)−
(︀
𝑦⃗𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
= −𝜋

(︃
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂2
+ 2𝜆 + 2𝛽𝒜κ, 𝜒⃗ · 𝑒⃗1 |𝑥⃗𝜌|+ (𝑥⃗ · 𝑒⃗1) 𝜏⃗ · 𝜒⃗𝜌

)︃

− 2𝜋𝛼

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ,

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒⃗ · 𝑒⃗1 |𝑥⃗𝜌|

)︂
− 2𝜋𝛼

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ, (𝜏⃗ · 𝑒⃗1) 𝜒⃗𝜌 · 𝜈⃗

)︂
+
(︀
κ 𝑦⃗⊥ − 2𝜋𝛽𝒜 𝑒⃗2, 𝜒⃗𝜌

)︀
− 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 ∀𝜒⃗ ∈ X,

(3.22a)

2𝜋

(︂
𝛼

[︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
− κ

]︂
+ 𝛽𝒜, 𝑥⃗ · 𝑒⃗1 𝜒 |𝑥⃗𝜌|

)︂
− (𝜈⃗ · 𝑦⃗, 𝜒 |𝑥⃗𝜌|) = 0 ∀𝜒 ∈ 𝐿2(𝐼), (3.22b)

(κ 𝜈⃗, 𝜂⃗ |𝑥⃗𝜌|) +
(︀
𝑥⃗𝜌, 𝜂⃗𝜌 |𝑥⃗𝜌|−1

)︀
=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[𝑚⃗ · 𝜂⃗] (𝑝) ∀𝜂⃗ ∈ 𝑉 𝜕0
, (3.22c)

where 𝒜(𝑡) is given by (3.13). We note that the number of unknowns fixed via 𝑦⃗ ∈ Y(2𝜋𝛼𝐺 𝑒⃗1) on 𝜕𝑀𝐼 is
matched by the new degrees of freedom arising from {𝑚⃗(𝑝)}𝑝∈𝜕𝑀 𝐼 .

We remark that (3.22) is independent of the tangential part 𝑦⃗ · 𝜏⃗ of 𝑦⃗. To see this, we note that it follows
from (2.3) and (2.6) that

(𝑦⃗𝑠 · 𝜈⃗) 𝜈⃗ = (𝑦⃗ · 𝜈⃗)𝑠 𝜈⃗ − (𝑦⃗ · 𝜈⃗𝑠) 𝜈⃗ = (𝑦⃗ · 𝜈⃗)𝑠 𝜈⃗ + κ (𝑦⃗ · 𝜏⃗) 𝜈⃗ in 𝐼. (3.23)

Hence the only terms involving 𝑦⃗ in (3.22a) are

κ 𝑦⃗⊥ + (𝑦⃗𝑠 · 𝜈⃗) 𝜈⃗ = κ (𝑦⃗⊥ + (𝑦⃗ · 𝜏⃗) 𝜈⃗) + (𝑦⃗ · 𝜈⃗)𝑠 𝜈⃗ = κ (𝑦⃗ · 𝜈⃗) 𝜏⃗ + (𝑦⃗ · 𝜈⃗)𝑠 𝜈⃗ in 𝐼, (3.24)

where we have recalled (3.1b). This shows that (3.22) only depends on 𝑦⃗ · 𝜈⃗, and not on 𝑦⃗ · 𝜏⃗ . We refer to
Appendix A.1, where we show that (3.22) for a sufficiently smooth solution gives rise to the strong form (2.24)
and (2.6).

3.1.1. Conserved flows

In this subsection we present a weak formulation for the conserving flow (2.40). To this end, we assume that
the hypersurface 𝒮(𝑡) has no boundary, and so

𝜕𝐼 = 𝜕0𝐼 =⇒ X = 𝑉 𝜕0
. (3.25)

Then, on writing (3.22a) as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|)−
(︀
𝑦⃗𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
=
(︁
𝑓, 𝜒⃗ |𝑥⃗𝜌|

)︁
∀𝜒⃗ ∈ X,

a weak formulation of (2.42) and (2.43) is given by (3.22), with (3.22a) replaced by

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|)−
(︀
𝑦⃗𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
=
(︁
𝑓, 𝜒⃗ |𝑥⃗𝜌|

)︁
− 2𝜋𝜆𝐴 [(𝑒⃗1, 𝜒⃗ |𝑥⃗𝜌|) + ((𝑥⃗ · 𝑒⃗1) 𝜏⃗ , 𝜒⃗𝜌)]− 2𝜋𝜆𝑉 ((𝑥⃗ · 𝑒⃗1) 𝜈⃗, 𝜒⃗ |𝑥⃗𝜌|) ∀𝜒⃗ ∈ X, (3.26)
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where (𝜆𝐴(𝑡), 𝜆𝑉 (𝑡))𝑇 ∈ R2 are chosen such that (2.43) holds.
Choosing 𝜂⃗ = (𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 ∈ X = 𝑉 𝜕0

in (3.22c) and noting (2.3) yields that

(𝑒⃗1, 𝑥⃗𝑡 |𝑥⃗𝜌|) + ((𝑥⃗ · 𝑒⃗1) 𝜏⃗ , (𝑥⃗𝑡)𝜌) = − ((𝑥⃗ · 𝑒⃗1) κ, 𝑥⃗𝑡 · 𝜈⃗ |𝑥⃗𝜌|) + (𝑥⃗𝑡 · [𝑒⃗1 − (𝑒⃗1 · 𝜏⃗) 𝜏⃗ ] , |𝑥⃗𝜌|)

= −
(︂

𝑥⃗ · 𝑒⃗1

(︂
κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

)︂
, 𝑥⃗𝑡 · 𝜈⃗ |𝑥⃗𝜌|

)︂
. (3.27)

Now choosing 𝜒⃗ =
(︁
κ − 𝜈⃗·𝑒⃗1

𝑥⃗·𝑒⃗1

)︁
𝜈⃗ ∈ X = 𝑉 𝜕0

and 𝜒⃗ = 𝜈⃗ ∈ X = 𝑉 𝜕0
in (3.26), recall (2.10), (3.25) and (3.5a), we

see that the two side constraints in (2.43) will be satisfied if (𝜆𝐴(𝑡), 𝜆𝑉 (𝑡))𝑇 ∈ R2 solve the symmetric system

2𝜋

⎛⎜⎝
(︂

𝑥⃗ · 𝑒⃗1,
(︁
κ − 𝜈⃗·𝑒⃗1

𝑥⃗·𝑒⃗1

)︁2

|𝑥⃗𝜌|
)︂ (︁

𝑥⃗ · 𝑒⃗1,
(︁
κ − 𝜈⃗·𝑒⃗1

𝑥⃗·𝑒⃗1

)︁
|𝑥⃗𝜌|

)︁
(︁
𝑥⃗ · 𝑒⃗1,

(︁
κ − 𝜈⃗·𝑒⃗1

𝑥⃗·𝑒⃗1

)︁
|𝑥⃗𝜌|

)︁
(𝑥⃗ · 𝑒⃗1, |𝑥⃗𝜌|)

⎞⎟⎠(︂𝜆𝐴

𝜆𝑉

)︂

=

⎛⎜⎝
(︂

𝑦⃗𝜌 · 𝜈⃗,
[︁(︁

κ − 𝜈⃗·𝑒⃗1
𝑥⃗·𝑒⃗1

)︁
𝜈⃗
]︁

𝜌
· 𝜈⃗ |𝑥⃗𝜌|−1

)︂
+
(︁
𝑓,
(︁
κ − 𝜈⃗·𝑒⃗1

𝑥⃗·𝑒⃗1

)︁
𝜈⃗ |𝑥⃗𝜌|

)︁
(︁
𝑓, 𝜈⃗ |𝑥⃗𝜌|

)︁
⎞⎟⎠ . (3.28)

The matrix in (3.28) is symmetric positive semidefinite, and it is singular if and only if κ𝒮 = κ − 𝜈⃗·𝑒⃗1
𝑥⃗·𝑒⃗1

is
a constant. It can be shown that this is equivalent to 𝒮(𝑡) being a sphere and hence to Γ(𝑡) being an open
halfcircle. Choosing 𝜒⃗ = 𝑥⃗𝑡 ∈ X = 𝑉 𝜕0

in (3.26) and noting (2.43) proves the stability result (3.20) for the weak
formulation of the conserved flow, on recalling (3.17), (3.19) and (3.22a).

An alternative formulation of the two conservation side constraints can be obtained by observing that (2.41)
is equivalent to

ℋ2(𝒮(𝑡)) = ℋ2(𝒮(0)), ℒ3(Ω(𝑡)) = ℒ3(Ω(0)).

In order to formulate (2.41) in terms of 𝑥⃗, we define, on recalling (2.38),

𝐴(𝑥⃗(𝑡)) = 2𝜋 (𝑥⃗ · 𝑒⃗1, |𝑥⃗𝜌|) = ℋ2(𝒮(𝑡)) (3.29)

and, see e.g. (3.10) of [7],
𝑉 (𝑥⃗(𝑡)) = 𝜋

(︀
(𝑥⃗ · 𝑒⃗1)2, 𝜈⃗ · 𝑒⃗1 |𝑥⃗𝜌|

)︀
= ℒ3(Ω(𝑡)). (3.30)

Hence (𝜆𝐴(𝑡), 𝜆𝑉 (𝑡))𝑇 ∈ R2 in (3.27) will be such that (2.43) holds, which is equivalent to

𝐴(𝑥⃗(𝑡)) = 𝐴(𝑥⃗(0)), 𝑉 (𝑥⃗(𝑡)) = 𝑉 (𝑥⃗(0)). (3.31)

Our discretization in Section 3.1.1 will be based on (3.27) and (3.31).

3.2. Based on ~𝒮

A drawback of the formulation used in Section 3.1 is that in the case 𝜕0𝐼 ̸= ∅ the integrals featuring the
singular fraction 𝜈⃗·𝑒⃗1

𝑥⃗·𝑒⃗1
in the Lagrangian (3.10) are not well-defined on the discrete level, and so an appropriate

interpretation of these terms is needed. An alternative is to use the mean curvature of the surface as a variable
in the weak formulation, i.e. to use a formulation that features (3.9). Then the discretization follows naturally,
and a similar approach has been followed by the present authors for flows in Riemannian manifolds in [8].

On recalling (2.36), (2.22), (3.9) and that 𝜇⃗ = 𝑚⃗ on 𝜕𝑀𝐼, we define the Lagrangian

ℒ𝒮 (𝑥⃗, κ⋆
𝒮 , 𝑚⃗, 𝑦⃗𝒮) = 𝜋

(︁
𝛼 [κ⋆

𝒮 − κ]2 + 2𝜆, 𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|
)︁

+ 𝛽
2 [2𝜋 (𝑥⃗ · 𝑒⃗1 κ⋆

𝒮 , |𝑥⃗𝜌|)−𝑀0]2 − (𝑥⃗ · 𝑒⃗1 κ⋆
𝒮 𝜈⃗ + 𝑒⃗1, 𝑦⃗𝒮 |𝑥⃗𝜌|)

−
(︁

(𝑥⃗ · 𝑒⃗1) 𝜏⃗ , (𝑦⃗𝒮)𝜌

)︁
+ 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗(𝑝) · 𝑒⃗1 +
∑︁

𝑝∈𝜕𝐶𝐼

[︁
(𝑥⃗ · 𝑒⃗1) 𝜁 · 𝑦⃗𝒮

]︁
(𝑝)



848 J.W. BARRETT ET AL.

+
∑︁

𝑝∈𝜕𝑀 𝐼

[𝑚⃗ · ((𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 − 2𝜋𝛼𝐺 𝑒⃗1)] (𝑝), (3.32)

for 𝑥⃗ ∈ 𝑉 𝜕0
, κ⋆

𝒮 ∈ 𝐿2(𝐼), 𝑚⃗ : 𝜕𝑀𝐼 → R2 and 𝑦⃗𝒮 ∈ 𝑉 𝜕0
.

Taking variations 𝜂⃗ ∈ 𝑉 𝜕0
in 𝑦⃗𝒮 , and setting

[︁
𝛿

𝛿𝑦⃗𝒮
ℒ𝒮
]︁

(𝜂⃗) = 0, we obtain

(𝑥⃗ · 𝑒⃗1 κ⋆
𝒮 𝜈⃗ + 𝑒⃗1, 𝜂⃗ |𝑥⃗𝜌|) + ((𝑥⃗ · 𝑒⃗1) 𝜏⃗ , 𝜂⃗𝜌) =

∑︁
𝑝∈𝜕𝐶𝐼

[︁
(𝑥⃗ · 𝑒⃗1) 𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[(𝑥⃗ · 𝑒⃗1) 𝑚⃗ · 𝜂⃗] (𝑝) ∀𝜂⃗ ∈ 𝑉 𝜕0
,

(3.33)
and so combining with (3.9) yields that κ⋆

𝒮 = κ𝒮 . We are going to use this identity from now on. Taking

variations 𝜒 ∈ 𝐿2(𝐼) in κ⋆
𝒮 , and setting

[︁
𝛿

𝛿κ⋆
𝒮
ℒ𝒮
]︁

(𝜒) = 0, we obtain, on using κ⋆
𝒮 = κ𝒮 , that

2𝜋 (𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 , 𝑥⃗ · 𝑒⃗1 𝜒 |𝑥⃗𝜌|)− ((𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 , 𝜒 𝜈⃗ |𝑥⃗𝜌|) = 0 ∀𝜒 ∈ 𝐿2(𝐼), (3.34)

where
𝒜𝒮(𝑡) = 2𝜋 (κ𝒮 , 𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|)−𝑀0. (3.35)

We note that [︂
𝛿

𝛿𝑥⃗
𝒜𝒮
]︂

(𝜒⃗) = 2𝜋

(︂
κ𝒮 ,

[︂
𝛿

𝛿𝑥⃗
𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

]︂
(𝜒⃗)
)︂

∀𝜒⃗ ∈ X. (3.36)

Taking variations in 𝑚⃗, and setting them to zero, yields that

(𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 = 2𝜋𝛼𝐺 𝑒⃗1 on 𝜕𝑀𝐼. (3.37)

Taking variations 𝜒⃗ ∈ X in 𝑥⃗, and setting 2𝜋((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) = −
[︀

𝛿
𝛿𝑥⃗ ℒ𝒮

]︀
(𝜒⃗) we obtain, on noting (3.36),

(3.5b) and (2.37), that

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) = − 𝜋

(︂
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮 ,

[︂
𝛿

𝛿𝑥⃗
𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

]︂
(𝜒⃗)
)︂

+
(︂

κ𝒮 𝑦⃗𝒮 ,

[︂
𝛿

𝛿𝑥⃗
(𝑥⃗ · 𝑒⃗1) 𝜈⃗ |𝑥⃗𝜌|

]︂
(𝜒⃗)
)︂

+
(︂

𝑒⃗1 · 𝑦⃗𝒮 ,

[︂
𝛿

𝛿𝑥⃗
|𝑥⃗𝜌|

]︂
(𝜒⃗)
)︂

+
(︂

(𝑦⃗𝒮)𝜌,

[︂
𝛿

𝛿𝑥⃗
(𝑥⃗ · 𝑒⃗1) 𝜏⃗

]︂
(𝜒⃗)
)︂
−

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[[2𝜋𝜍 + 𝑚⃗ · 𝑦⃗𝒮 ] 𝜒⃗ · 𝑒⃗1] (𝑝) ∀𝜒⃗ ∈ X.

(3.38)

Choosing 𝜒⃗ = 𝑥⃗𝑡 ∈ X in (3.38), and recalling (3.4), yields

2𝜋
(︁
𝑥⃗ · 𝑒⃗1 (𝑥⃗𝑡 · 𝜈⃗)2 , |𝑥⃗𝜌|

)︁
= − 𝜋

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮 , [𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|]𝑡

)︁
+
(︀
κ𝒮 𝑦⃗𝒮 , [(𝑥⃗ · 𝑒⃗1) 𝜈⃗ |𝑥⃗𝜌|]𝑡

)︀
+
(︀
𝑒⃗1 · 𝑦⃗𝒮 , [|𝑥⃗𝜌|]𝑡

)︀
+ ((𝑦⃗𝒮)𝜌, [(𝑥⃗ · 𝑒⃗1) 𝜏⃗ ]𝑡)−

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[[2𝜋𝜍 + 𝑚⃗ · 𝑦⃗𝒮 ] 𝑥⃗𝑡 · 𝑒⃗1] (𝑝).

(3.39)

Differentiating (3.33) with respect to 𝑡 and then choosing 𝜂⃗ = 𝑦⃗𝒮 ∈ 𝑉 𝜕0
, on recalling κ⋆

𝒮 = κ𝒮 , 𝑥⃗𝑡 ∈ X and 𝜁
is independent of 𝑡 and so the term on 𝜕𝐶𝐼 vanishes, yields that

((κ𝒮)𝑡, (𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 · 𝜈⃗ |𝑥⃗𝜌|) +
(︀
κ𝒮 𝑦⃗𝒮 , [𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌| 𝜈⃗]𝑡

)︀
+
(︀
𝑒⃗1, 𝑦⃗𝒮 [|𝑥⃗𝜌|]𝑡

)︀
+ ([(𝑥⃗ · 𝑒⃗1) 𝜏⃗ ]𝑡 , (𝑦⃗𝒮)𝜌)

=
∑︁

𝑝∈𝜕𝑀 𝐼

[(𝑥⃗𝑡 · 𝑒⃗1) 𝑚⃗ · 𝑦⃗𝒮 + (𝑥⃗ · 𝑒⃗1) 𝑚⃗𝑡 · 𝑦⃗𝒮 ] (𝑝). (3.40)
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It follows from (3.40), (3.37) and (3.34) with 𝜒 = [κ𝒮 ]𝑡 that(︀
κ𝒮 𝑦⃗𝒮 , [(𝑥⃗ · 𝑒⃗1) 𝜈⃗ |𝑥⃗𝜌|]𝑡

)︀
+
(︀
𝑒⃗1 · 𝑦⃗𝒮 , [|𝑥⃗𝜌|]𝑡

)︀
+ ((𝑦⃗𝒮)𝜌, [(𝑥⃗ · 𝑒⃗1) 𝜏⃗ ]𝑡)

= − ([κ𝒮 ]𝑡, (𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 · 𝜈⃗ |𝑥⃗𝜌|) +
∑︁

𝑝∈𝜕𝑀 𝐼

[(𝑥⃗𝑡 · 𝑒⃗1) 𝑚⃗ · 𝑦⃗𝒮 + 2𝜋𝛼𝐺 𝑚⃗𝑡 · 𝑒⃗1] (𝑝)

= −2𝜋 (𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 , 𝑥⃗ · 𝑒⃗1 [κ𝒮 ]𝑡 |𝑥⃗𝜌|) +
∑︁

𝑝∈𝜕𝑀 𝐼

[(𝑥⃗𝑡 · 𝑒⃗1) 𝑚⃗ · 𝑦⃗𝒮 + 2𝜋𝛼𝐺 𝑚⃗𝑡 · 𝑒⃗1] (𝑝). (3.41)

Combining (3.39) and (3.41) yields that

2𝜋
(︀
𝑥⃗ · 𝑒⃗1 (𝑥⃗𝑡 · 𝜈⃗)2, |𝑥⃗𝜌|

)︀
= − 𝜋

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮 , [𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|]𝑡

)︁
− 2𝜋 (𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 , 𝑥⃗ · 𝑒⃗1 [κ𝒮 ]𝑡 |𝑥⃗𝜌|)− 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗𝑡(𝑝) · 𝑒⃗1

+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑡(𝑝) · 𝑒⃗1

= − 𝜋
d
d𝑡

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆, 𝑥⃗ · 𝑒⃗1 |𝑥⃗𝜌|

)︁
− 𝛽

2

d
d𝑡
𝒜2
𝒮 − 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑥⃗𝑡(𝑝) · 𝑒⃗1

+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑡(𝑝) · 𝑒⃗1

= − d
d𝑡
̂︀𝐸(𝑡), (3.42)

where we have recalled the definition (2.36). Of course, Remark 3.1 also applies to (3.42).
In order to derive a suitable weak formulation, we now return to (3.38). Using (3.3) and noting (2.3), (3.38)

can be rewritten as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) = −
(︁
𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1, 𝜒⃗𝜌 · 𝜏⃗

)︁
−
(︁[︁

𝜋 [𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮 ]− κ𝒮 𝑦⃗𝒮 · 𝜈⃗
]︁
|𝑥⃗𝜌| − (𝑦⃗𝒮)𝜌 · 𝜏⃗ , 𝜒⃗ · 𝑒⃗1

)︁
−
(︀
𝑥⃗ · 𝑒⃗1 κ𝒮 𝑦⃗𝒮 , 𝜒⃗⊥𝜌

)︀
+
(︀
(𝑥⃗ · 𝑒⃗1) (𝑦⃗𝒮)𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
−

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[[2𝜋𝜍 + 𝑚⃗ · 𝑦⃗𝒮 ] 𝜒⃗ · 𝑒⃗1] (𝑝) ∀ 𝜒⃗ ∈ X. (3.43)

Overall, we obtain the following weak formulation from (3.43), (3.34), (3.33), (3.37) and (3.35), on recalling
κ⋆
𝒮 = κ𝒮 , (3.1a) and (2.3).

(𝒫𝒮) Let 𝑥⃗(·, 0) ∈ 𝑉 𝜕0
and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺, 𝜆, 𝜍 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be given. For 𝑡 ∈ (0, 𝑇 ],

find 𝑥⃗(·, 𝑡) ∈ 𝑉 𝜕0
, with 𝑥⃗𝑡(·, 𝑡) ∈ X, κ𝒮(·, 𝑡) ∈ 𝐿2(𝐼), 𝑦⃗𝒮(·, 𝑡) ∈ 𝑉 𝜕0

, with [(𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 ](·, 𝑡) ∈ Y(2𝜋𝛼𝐺 𝑒⃗1), and
𝑚⃗(·, 𝑡) : 𝜕𝑀𝐼 → R2 such that

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|)−
(︀
(𝑥⃗ · 𝑒⃗1) (𝑦⃗𝒮)𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
= −

(︁
𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1, 𝜒⃗𝜌 · 𝜏⃗

)︁
−
(︁[︁

𝜋 [𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮 ]− κ𝒮 𝑦⃗𝒮 · 𝜈⃗
]︁
|𝑥⃗𝜌| − (𝑦⃗𝒮)𝜌 · 𝜏⃗ , 𝜒⃗ · 𝑒⃗1

)︁
+
(︀
𝑥⃗ · 𝑒⃗1 κ𝒮 𝑦⃗⊥𝒮 , 𝜒⃗𝜌

)︀
−

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[[2𝜋𝜍 + 𝑚⃗ · 𝑦⃗𝒮 ] 𝜒⃗ · 𝑒⃗1] (𝑝) ∀ 𝜒⃗ ∈ X, (3.44a)

2𝜋 (𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ] , 𝜒 |𝑥⃗𝜌|)− ((𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 , 𝜒 𝜈⃗ |𝑥⃗𝜌|) = 0 ∀𝜒 ∈ 𝐿2(𝐼), (3.44b)
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(𝑥⃗ · 𝑒⃗1 κ𝒮 𝜈⃗ + 𝑒⃗1, 𝜂⃗ |𝑥⃗𝜌|) +
(︀
(𝑥⃗ · 𝑒⃗1) 𝑥⃗𝜌, 𝜂⃗𝜌 |𝑥⃗𝜌|−1

)︀
=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
(𝑥⃗ · 𝑒⃗1) 𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[(𝑥⃗ · 𝑒⃗1) 𝑚⃗ · 𝜂⃗] (𝑝) ∀𝜂⃗ ∈ 𝑉 𝜕0
,

(3.44c)

where 𝒜𝒮(𝑡) is given by (3.35). Similarly to (3.22), we note that the number of unknowns fixed via (𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 ∈
Y(2𝜋𝛼𝐺 𝑒⃗1) on 𝜕𝑀𝐼 is matched by the new degrees of freedom arising from {𝑚⃗(𝑝)}𝑝∈𝜕𝑀 𝐼 .

Similarly to (3.23) and (3.24), one can show that (3.44) is independent of the tangential part 𝑦⃗𝒮 · 𝜏⃗ of 𝑦⃗𝒮 .
We refer to Appendix A.2, where we show that (3.44) for a sufficiently smooth solution gives rise to the strong
form (2.24) and (2.9).

Remark 3.2. Similarly to the procedure in Section 3.1.1, we can state a weak formulation for the conserving
flow (2.42). In particular, on writing (3.44a) as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|)−
(︀
(𝑥⃗ · 𝑒⃗1) (𝑦⃗𝒮)𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
=
(︁
𝑓𝒮 , 𝜒⃗ |𝑥⃗𝜌|

)︁
∀𝜒⃗ ∈ X,

we can formulate the conserving flow as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|)−
(︀
(𝑥⃗ · 𝑒⃗1) (𝑦⃗𝒮)𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
=
(︁
𝑓𝒮 , 𝜒⃗ |𝑥⃗𝜌|

)︁
− 2𝜋𝜆𝐴 [(𝑒⃗1, 𝜒⃗ |𝑥⃗𝜌|) + ((𝑥⃗ · 𝑒⃗1) 𝜏⃗ , 𝜒⃗𝜌)]− 2𝜋𝜆𝑉 ((𝑥⃗ · 𝑒⃗1) 𝜈⃗, 𝜒⃗ |𝑥⃗𝜌|) ∀𝜒⃗ ∈ X,

where (𝜆𝐴(𝑡), 𝜆𝑉 (𝑡))𝑇 ∈ R2 are chosen such that (2.43) holds.

4. Semidiscrete schemes

Let [0, 1] =
⋃︀𝐽

𝑗=1 𝐼𝑗 , 𝐽 ≥ 3, be a decomposition of [0, 1] into intervals given by the nodes 𝑞𝑗 , 𝐼𝑗 = [𝑞𝑗−1, 𝑞𝑗 ].
For simplicity, and without loss of generality, we assume that the subintervals form an equipartitioning of [0, 1],
i.e. that

𝑞𝑗 = 𝑗 ℎ, with ℎ = 𝐽−1, 𝑗 = 0, . . . , 𝐽. (4.1)

Clearly, if 𝐼 = R/Z we identify 0 = 𝑞0 = 𝑞𝐽 = 1. In addition, we let 𝑞𝐽+1 = 𝑞1.
The necessary finite element spaces are defined as follows:

𝑉 ℎ =
{︀
𝜒 ∈ 𝐶0(𝐼) : 𝜒 |𝐼𝑗

is linear, 𝑗 = 1, . . . , 𝐽
}︀

, 𝑉 ℎ
0 = 𝐻1

0 (𝐼) ∩ 𝑉 ℎ and 𝑉 ℎ =
[︀
𝑉 ℎ
]︀2

, 𝑉 ℎ
0 =

[︀
𝑉 ℎ

0

]︀2
.

In addition, we define 𝑉 ℎ
𝜕0

= 𝑉 ℎ ∩ 𝑉 𝜕0
, 𝑊ℎ = 𝑉 ℎ, 𝑊ℎ

𝜕0
= {𝜂 ∈ 𝑉 ℎ : 𝜂(𝜌) = 0 ∀𝜌 ∈ 𝜕0𝐼}, Xℎ = X ∩ 𝑉 ℎ

and, for a given 𝑧⃗ ∈ R2, Yℎ(𝑧⃗) = Y(𝑧⃗) ∩ 𝑉 ℎ. Let {𝜒𝑗}𝐽
𝑗=𝑗0

denote the standard basis of 𝑉 ℎ, where 𝑗0 = 0 if
𝐼 = (0, 1) and 𝑗0 = 1 if 𝐼 = R/Z. We also set 𝑗1 = 𝐽 −1 if 𝐼 = (0, 1) and 𝑗1 = 𝐽 if 𝐼 = R/Z. For later use, we let
𝜋ℎ : 𝐶0(𝐼) → 𝑉 ℎ be the standard interpolation operator at the nodes {𝑞𝑗}𝐽

𝑗=0, and similarly 𝜋ℎ
𝜕0

: 𝐶0(𝐼) → 𝑊ℎ
𝜕0

,
as well as 𝜋⃗ℎ : [𝐶0(𝐼)]2 → 𝑉 ℎ.

Let (·, ·) denote the 𝐿2-inner product on 𝐼, and define the mass lumped 𝐿2-inner product (𝑓, 𝑔)ℎ, for two
piecewise continuous functions, with possible jumps at the nodes {𝑞𝑗}𝐽

𝑗=1, via

(𝑓, 𝑔)ℎ = 1
2ℎ

𝐽∑︁
𝑗=1

[︀
(𝑓 𝑔)

(︀
𝑞−𝑗
)︀

+ (𝑓 𝑔)
(︀
𝑞+
𝑗−1

)︀]︀
, (4.2)

where we define 𝑓(𝑞±𝑗 ) = lim
𝛿↘0

𝑓(𝑞𝑗 ± 𝛿). The definition (4.2) naturally extends to vector valued functions.

Let (𝑋⃗ℎ(𝑡))𝑡∈[0,𝑇 ], with 𝑋⃗ℎ(·, 𝑡) ∈ 𝑉 ℎ
𝜕0

, be an approximation to (𝑥⃗(𝑡))𝑡∈[0,𝑇 ] and define Γℎ(𝑡) = 𝑋⃗ℎ(𝐼, 𝑡). A
natural discrete analogue of the well-posedness assumptions for the continuous solution 𝑥⃗ is given as follows.
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Assumption 4.1. Let
𝑋⃗ℎ(𝜌, 𝑡) · 𝑒⃗1 > 0 ∀𝜌 ∈ 𝐼 ∖ 𝜕0𝐼, 𝑡 ∈ [0, 𝑇 ]. (4.3)

In addition, let 𝑋⃗ℎ(𝑞𝑗 , 𝑡) ̸= 𝑋⃗ℎ(𝑞𝑗+1, 𝑡), 𝑗 = 0, . . . , 𝐽 − 1, for all 𝑡 ∈ [0, 𝑇 ].

Then, similarly to (2.3), we set

𝜏⃗ℎ = 𝑋⃗ℎ
𝑠 =

𝑋⃗ℎ
𝜌

|𝑋⃗ℎ
𝜌 |

and 𝜈⃗ℎ = −(𝜏⃗ℎ)⊥ in 𝐼, (4.4)

which is well-defined if Assumption 4.1 holds. We note that (4.3) implies 𝜏⃗ℎ · 𝑒⃗1 ̸= 0 on elements touching the
𝑥2-axis, and so

𝜈⃗ℎ · 𝑒⃗2 ̸= 0 on 𝜕0𝐼,

compare also with (2.10) and (2.11).

Assumption 4.2. Let Assumption 4.1 hold and let 𝑋⃗ℎ(𝑞𝑗−1, 𝑡) ̸= 𝑋⃗ℎ(𝑞𝑗+1, 𝑡), 𝑗 = 1, . . . , 𝑗1, for all 𝑡 ∈ [0, 𝑇 ].

We note that Assumption 4.2 is only violated if two neighbouring elements of Γℎ(𝑡) lie identically on top of
each other. For our fully discrete schemes, this never happens in practice. For later use, we let 𝜔⃗ℎ ∈ 𝑉 ℎ be the
mass-lumped 𝐿2-projection of 𝜈⃗ℎ onto 𝑉 ℎ, i.e.(︁

𝜔⃗ℎ, 𝜙⃗ |𝑋⃗ℎ
𝜌 |
)︁ℎ

=
(︁
𝜈⃗ℎ, 𝜙⃗ |𝑋⃗ℎ

𝜌 |
)︁

=
(︁
𝜈⃗ℎ, 𝜙⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

∀𝜙⃗ ∈ 𝑉 ℎ. (4.5)

Combining (4.5), (4.2) and (4.4) yields that

𝜔⃗ℎ(𝑞𝑗) =

⎧⎪⎪⎨⎪⎪⎩−
(︁
𝑋⃗ℎ(𝑞𝑗+1)− 𝑋⃗ℎ(𝑞𝑗−1)

)︁⊥
|𝑋⃗ℎ(𝑞𝑗+1)− 𝑋⃗ℎ(𝑞𝑗)|+ |𝑋⃗ℎ(𝑞𝑗)− 𝑋⃗ℎ(𝑞𝑗−1)|

𝑞𝑗 ∈ 𝐼 ∖ 𝜕𝐼,

𝜈⃗ℎ(𝑞𝑗) 𝑞𝑗 ∈ 𝜕𝐼.

It follows that 𝑣⃗ℎ ∈ 𝑉 ℎ, defined by

𝑣⃗ℎ = 𝜋⃗ℎ

[︂
𝜔⃗ℎ

|𝜔⃗ℎ|

]︂
, (4.6)

is well-defined if Assumption 4.2 holds. We also define 𝑄ℎ ∈ [𝑉 ℎ]2×2 defined by

𝑄ℎ(𝑞𝑗) =

{︃
Id 𝑞𝑗 ∈ 𝜕𝐼 ∖ 𝜕0𝐼,

𝑣⃗ℎ ⊗ 𝑣⃗ℎ 𝑞𝑗 ∈ 𝐼 ∪ 𝜕0𝐼.
(4.7)

Later on we will describe the evolution of Γℎ(𝑡) through 𝜋⃗ℎ[𝑄ℎ 𝑋⃗ℎ
𝑡 ], for 𝑋⃗ℎ

𝑡 ∈ Xℎ. This will allow tangential

motion for interior nodes, because we will only let a discrete normal component of 𝑋⃗ℎ
𝑡 be specified through

an appropriate variation of the discrete energy. But crucially, we will specify the full velocity 𝑋⃗ℎ
𝑡 through this

energy variation at boundary nodes 𝑞𝑗 ∈ 𝜕𝐼 ∖ 𝜕0𝐼. This is because at these boundary nodes we cannot allow an
arbitrary tangential motion, as this would affect the evolution of Γℎ(𝑡) itself, and not just the evolution of its
parameterization 𝑋⃗ℎ. A similar strategy has been pursued by the authors in (3.19) of [6].

Similarly to (3.3), on noting (3.2) and (4.4), we have for all 𝜒⃗ ∈ Xℎ on 𝐼𝑗 , 𝑗 = 1, . . . , 𝐽, that[︂
𝛿

𝛿𝑋⃗ℎ
|𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗) =
𝑋⃗ℎ

𝜌 · 𝜒⃗𝜌

|𝑋⃗ℎ
𝜌 |

= 𝜏⃗ℎ · 𝜒⃗𝜌, (4.8a)
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𝛿

𝛿𝑋⃗ℎ
𝜏⃗ℎ

]︂
(𝜒⃗) =

[︃
𝛿

𝛿𝑋⃗ℎ

𝑋⃗ℎ
𝜌

|𝑋⃗ℎ
𝜌 |

]︃
(𝜒⃗) =

𝜒⃗𝜌

|𝑋⃗ℎ
𝜌 |
−

𝑋⃗ℎ
𝜌

|𝑋⃗ℎ
𝜌 |2

𝑋⃗ℎ
𝜌 · 𝜒⃗𝜌

|𝑋⃗ℎ
𝜌 |

= 𝜒⃗𝑠 − 𝜏⃗ℎ (𝜒⃗𝑠 · 𝜏⃗ℎ) = (𝜒⃗𝑠 · 𝜈⃗ℎ) 𝜈⃗ℎ, (4.8b)[︂
𝛿

𝛿𝑋⃗ℎ
𝜈⃗ℎ

]︂
(𝜒⃗) = −

[︂
𝛿

𝛿𝑋⃗ℎ
(𝜏⃗ℎ)⊥

]︂
(𝜒⃗) = −(𝜒⃗𝑠 · 𝜈⃗ℎ) (𝜈⃗ℎ)⊥ = −(𝜒⃗𝑠 · 𝜈⃗ℎ) 𝜏⃗ℎ, (4.8c)[︂

𝛿

𝛿𝑋⃗ℎ
𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗) = −
[︂

𝛿

𝛿𝑋⃗ℎ
(𝑋⃗ℎ

𝜌 )⊥
]︂

(𝜒⃗) = −𝜒⃗⊥𝜌 . (4.8d)

In addition to (4.8), we will require
[︁

𝛿

𝛿𝑋⃗ℎ
𝜔⃗ℎ
]︁

(𝜒⃗). It follows from (4.5), (4.8) and (4.4) that

(︂[︂
𝛿

𝛿𝑋⃗ℎ
𝜔⃗ℎ

]︂
(𝜒⃗), 𝜙⃗ |𝑋⃗ℎ

𝜌 |
)︂ℎ

=
(︂[︂

𝛿

𝛿𝑋⃗ℎ
𝜈⃗ℎ

]︂
(𝜒⃗), 𝜙⃗ |𝑋⃗ℎ

𝜌 |
)︂ℎ

−
(︂

𝜔⃗ℎ − 𝜈⃗ℎ, 𝜙⃗

[︂
𝛿

𝛿𝑋⃗ℎ
|𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗)
)︂ℎ

= −
(︀
(𝜈⃗ℎ · 𝜒⃗𝜌) 𝜏⃗ℎ, 𝜙⃗

)︀ℎ − (︀𝜏⃗ℎ · 𝜒⃗𝜌 (𝜔⃗ℎ − 𝜈⃗ℎ), 𝜙⃗
)︀ℎ ∀𝜙⃗ ∈ 𝑉 ℎ

𝜕0
. (4.9)

4.1. Based on 𝜅ℎ

As the discrete analogue of (3.8), we let 𝑋⃗ℎ ∈ 𝑉 ℎ
𝜕0

, 𝜅ℎ ∈ 𝑉 ℎ and 𝑚⃗ℎ : 𝜕𝑀𝐼 → R2 be such that

(︁
𝜅ℎ 𝜈⃗ℎ, 𝜂⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

+
(︀
𝜏⃗ℎ, 𝜂⃗𝜌

)︀
=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︀
𝑚⃗ℎ · 𝜂⃗

]︀
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
, (4.10)

where we recall (4.4).
We would like to mimic on the discrete level the procedure in Section 3.1. However, a naive discretization of

(3.10) will not give a well-defined Lagrangian, since a discrete variant of (2.12) will in general not hold. To over-
come the arising singularity in a discretization of (3.10), we now introduce the following discrete approximation
of κ𝒮 , which will be based on 𝜅ℎ. In particular, on recalling (2.12) and (4.5), we introduce, given 𝑋⃗ℎ ∈ 𝑉 ℎ

𝜕0
and

𝜅ℎ ∈ 𝑉 ℎ, the function Kℎ(𝑋⃗ℎ, 𝜅ℎ) ∈ 𝑉 ℎ such that

[Kℎ(𝑋⃗ℎ, 𝜅ℎ)](𝑞𝑗) =

⎧⎪⎨⎪⎩𝜅ℎ(𝑞𝑗)− 𝜔⃗ℎ(𝑞𝑗) · 𝑒⃗1

𝑋⃗ℎ(𝑞𝑗) · 𝑒⃗1

𝑞𝑗 ∈ 𝐼 ∖ 𝜕0𝐼,

2𝜅ℎ(𝑞𝑗) 𝑞𝑗 ∈ 𝜕0𝐼.

(4.11)

Clearly, using 𝜈⃗ℎ in place of 𝜔⃗ℎ in (4.11) would not be well-defined for interior nodes. For later use we also
define Zℎ ∈ 𝑉 ℎ such that

Zℎ(𝑞𝑗) =

{︃
1 𝑞𝑗 ∈ 𝐼 ∖ 𝜕0𝐼,

2 𝑞𝑗 ∈ 𝜕0𝐼.
(4.12)

On noting (4.11), we define the discrete analogue of the energy (2.36)

̂︀𝐸ℎ(𝑡) = 𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁2
+ 2 𝜆, 𝑋⃗ℎ · 𝑒⃗1 |𝑋⃗ℎ

𝜌 |
)︂ℎ

+ 𝛽
2

(︀
𝒜ℎ(𝑡)

)︀2
− 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗ℎ(𝑝) · 𝑒⃗1 + 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ(𝑝) · 𝑒⃗1, (4.13)

where

𝒜ℎ(𝑡) = 2𝜋
(︁(︁

𝑋⃗ℎ · 𝑒⃗1

)︁
𝜅ℎ − 𝜈⃗ℎ · 𝑒⃗1, |𝑋⃗ℎ

𝜌 |
)︁ℎ

−𝑀0. (4.14)
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Remark 4.3. We observe that the energy ̂︀𝐸ℎ(𝑡) does not depend on the values of 𝜅ℎ on 𝜕0𝐼. We will thus
fix these values to be zero from now on. A welcome side effect of this procedure is that on assuming that
e.g. 0 ∈ 𝜕0𝐼, then choosing 𝜂⃗ = 𝜒0 𝑒⃗2 in (4.10) yields that (𝑋⃗ℎ(𝑞1) − 𝑋⃗ℎ(𝑞0)) · 𝑒⃗2 = 0. Similarly we get
(𝑋⃗ℎ(𝑞𝐽)− 𝑋⃗ℎ(𝑞𝐽−1)) · 𝑒⃗2 = 0 if 1 ∈ 𝜕0𝐼.

Without fixing 𝜅ℎ to be zero on 𝜕0𝐼, we observe numerical difficulties in practice for fully discrete variants
of the semidiscrete approximation that we are going to derive.

Similarly to (3.10), we define the discrete Lagrangian

ℒℎ(𝑋⃗ℎ, 𝜅ℎ, 𝑚⃗ℎ, 𝑌⃗ ℎ) = 𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁2
+ 2 𝜆, 𝑋⃗ℎ · 𝑒⃗1 |𝑋⃗ℎ

𝜌 |
)︂ℎ

+ 𝛽
2

[︁
2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝜅ℎ

− 𝜈⃗ℎ · 𝑒⃗1, |𝑋⃗ℎ
𝜌 |
)︁ℎ

−𝑀0

]︂2
−
(︁
𝜅ℎ 𝜈⃗ℎ, 𝑌⃗ ℎ |𝑋⃗ℎ

𝜌 |
)︁ℎ

−
(︁
𝜏⃗ℎ, 𝑌⃗ ℎ

𝜌

)︁
+ 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ(𝑝) · 𝑒⃗1

+
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝑌⃗ ℎ

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
𝑚⃗ℎ ·

(︁
𝑌⃗ ℎ − 2𝜋𝛼𝐺 𝑒⃗1

)︁]︁
(𝑝),

for the minimization of the energy (4.13) subject to the side constraint (4.10), where 𝑋⃗ℎ ∈ 𝑉 ℎ
𝜕0

, 𝜅ℎ ∈ 𝑊ℎ
𝜕0

,
𝑚⃗ℎ : 𝜕𝑀𝐼 → R2 and 𝑌⃗ ℎ ∈ 𝑉 ℎ

𝜕0
.

Taking variations 𝜂⃗ ∈ 𝑉 ℎ
𝜕0

in 𝑌⃗ ℎ, and setting
[︁

𝛿

𝛿𝑌 ℎ
ℒℎ
]︁

(𝜂⃗) = 0 we obtain (4.10), similarly to (3.11). Taking

variations 𝜒 ∈ 𝑊ℎ
𝜕0

in 𝜅ℎ and setting
[︀

𝛿
𝛿𝜅ℎ ℒℎ

]︀
(𝜒) = 0 we obtain

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1

(︁
𝛼 [Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ] + 𝛽𝒜ℎ

)︁
, 𝜒 |𝑋⃗ℎ

𝜌 |
)︁ℎ

−
(︁
𝑌⃗ ℎ, 𝜒 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
)︁ℎ

= 0 ∀𝜒 ∈ 𝑊ℎ
𝜕0

, (4.15)

where we have recalled (4.11). Taking variations in 𝑚⃗ℎ, and setting them to zero, yields, similarly to (3.15),
that

𝑌⃗ ℎ = 2𝜋𝛼𝐺 𝑒⃗1 on 𝜕𝑀𝐼. (4.16)

Taking variations 𝜒⃗ ∈ Xℎ in 𝑋⃗ℎ, and setting 2𝜋((𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |)ℎ = −
[︁

𝛿

𝛿𝑋⃗ℎ
ℒℎ
]︁

(𝜒⃗) we obtain

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

= − 𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁2
+ 2𝜆 + 2𝛽𝒜ℎ 𝜅ℎ,

[︂
𝛿

𝛿𝑋⃗ℎ

(︁
𝑋⃗ℎ · 𝑒⃗1

)︁
|𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗)
)︂ℎ

− 2𝜋𝛼

(︂[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁
,

[︂
𝛿

𝛿𝑋⃗ℎ
Kℎ(𝑋⃗ℎ, 𝜅ℎ)

]︂
(𝜒⃗) (𝑋⃗ℎ · 𝑒⃗1) |𝑋⃗ℎ

𝜌 |
)︂ℎ

+
(︂

𝜅ℎ 𝑌⃗ ℎ + 2𝜋𝛽𝒜ℎ 𝑒⃗1,

[︂
𝛿

𝛿𝑋⃗ℎ
𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗)
)︂ℎ

+
(︂

𝑌⃗ ℎ
𝜌 ,

[︂
𝛿

𝛿𝑋⃗ℎ
𝜏⃗ℎ

]︂
(𝜒⃗)
)︂

− 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 ∀𝜒⃗ ∈ Xℎ. (4.17)

Choosing 𝜒⃗ = 𝑋⃗ℎ
𝑡 in (4.17) yields, on noting (3.4), the discrete analogue of (3.17)

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

= − 𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁2
+ 2𝜆 + 2𝛽𝒜ℎ 𝜅ℎ,

[︁
(𝑋⃗ℎ · 𝑒⃗1) |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︂ℎ

− 2𝜋𝛼

(︂
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ,

[︂
𝜔⃗ℎ · 𝑒⃗1

𝑋⃗ℎ · 𝑒⃗1

]︂
𝑡

(Zℎ − 2) (𝑋⃗ℎ · 𝑒⃗1) |𝑋⃗ℎ
𝜌 |
)︂ℎ
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+
(︁
𝜅ℎ 𝑌⃗ ℎ + 2𝜋𝛽𝒜ℎ 𝑒⃗1,

[︁
𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁ℎ

+
(︁
𝑌⃗ ℎ

𝜌 , 𝜏⃗ℎ
𝑡

)︁
− 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ
𝑡 (𝑝) · 𝑒⃗1.

(4.18)

Differentiating (4.10) with respect to 𝑡, and then choosing 𝜂⃗ = 𝑌⃗ ℎ ∈ 𝑉 ℎ
𝜕0

yields, similarly to (3.18), that(︁
𝜅ℎ

𝑡 , 𝑌⃗ ℎ · 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |
)︁ℎ

+
(︁
𝜅ℎ 𝑌⃗ ℎ,

[︁
𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁ℎ

+
(︁
𝜏⃗ℎ
𝑡 , 𝑌⃗ ℎ

𝜌

)︁
=

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
𝑚⃗ℎ

𝑡 · 𝑌⃗ ℎ
]︁

(𝑝). (4.19)

It follows from (4.19), (4.16) and (4.15) with 𝜒 = 𝜅ℎ
𝑡 ∈ 𝑊ℎ

𝜕0
that(︁

𝜅ℎ 𝑌⃗ ℎ,
[︁
𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁ℎ

+
(︁
𝜏⃗ℎ
𝑡 , 𝑌⃗ ℎ

𝜌

)︁
= −

(︁
𝜅ℎ

𝑡 , 𝑌⃗ ℎ · 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |
)︁ℎ

+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

[︀
𝑚⃗ℎ

𝑡 · 𝑒⃗1

]︀
(𝑝)

= −2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1

(︁
𝛼 [Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ] + 𝛽𝒜ℎ

)︁
, 𝜅ℎ

𝑡 |𝑋⃗ℎ
𝜌 |
)︁ℎ

+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

[︀
𝑚⃗ℎ

𝑡 (𝑝) · 𝑒⃗1

]︀
. (4.20)

Combining (4.18) and (4.20) yields, on recalling (4.13), the discrete analogue of (3.20)

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

= − 𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁2
+ 2𝜆 + 2𝛽𝒜ℎ 𝜅ℎ,

[︁
(𝑋⃗ℎ · 𝑒⃗1) |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︂ℎ

− 2𝜋𝛼

(︂
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ,

[︂
𝜔⃗ℎ · 𝑒⃗1

𝑋⃗ℎ · 𝑒⃗1

]︂
𝑡

(Zℎ − 2) (𝑋⃗ℎ · 𝑒⃗1) |𝑋⃗ℎ
𝜌 |
)︂ℎ

− 2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1

(︁
𝛼 [Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ] + 𝛽𝒜ℎ

)︁
, 𝜅ℎ

𝑡 |𝑋⃗ℎ
𝜌 |
)︁ℎ

+ 2𝜋𝛽𝒜ℎ
(︁
𝑒⃗1,
[︁
𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁ℎ

+ 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

[︀
𝑚⃗ℎ

𝑡 (𝑝) · 𝑒⃗1

]︀
− 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ
𝑡 (𝑝) · 𝑒⃗1

= − d
d𝑡
̂︀𝐸ℎ(𝑡). (4.21)

We now return to (4.17), which, on recalling (4.8), (4.11), (4.12) and (4.9), can be rewritten as

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

= − 𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁2
+ 2𝜆 + 2𝛽𝒜ℎ 𝜅ℎ, 𝜒⃗ · 𝑒⃗1 |𝑋⃗ℎ

𝜌 |+ (𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ · 𝜒⃗𝜌

)︂ℎ

+ 2𝜋𝛼

(︂[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁
(Zℎ − 2),

𝜔⃗ℎ · 𝑒⃗1

𝑋⃗ℎ · 𝑒⃗1

𝜒⃗ · 𝑒⃗1 |𝑋⃗ℎ
𝜌 |
)︂ℎ

+ 2𝜋𝛼
(︁[︁

Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ
]︁

(Zℎ − 2) 𝑒⃗1, (𝜈⃗ℎ · 𝜒⃗𝜌) 𝜏⃗ℎ + (𝜏⃗ℎ · 𝜒⃗𝜌) (𝜔⃗ℎ − 𝜈⃗ℎ)
)︁ℎ

−
(︁
𝜅ℎ 𝑌⃗ ℎ + 2𝜋𝛽𝒜ℎ 𝑒⃗1, 𝜒⃗

⊥
𝜌

)︁ℎ

+
(︁
𝑌⃗ ℎ

𝜌 · 𝜈⃗ℎ, 𝜒⃗𝜌 · 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |−1

)︁
− 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 ∀𝜒⃗ ∈ Xℎ. (4.22)

Combining (4.22), (4.15), (4.10), (4.16) and (4.14), our semidiscrete approximation based on 𝜅ℎ is given, on
noting (3.1a) and (4.4), as follows.
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(𝒫ℎ)ℎ Let 𝑋⃗ℎ(·, 0) ∈ 𝑉 ℎ
𝜕0

and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺, 𝜆, 𝜍 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be given. Then, for 𝑡 ∈ (0, 𝑇 ]
find 𝑋⃗ℎ(·, 𝑡) ∈ 𝑉 ℎ

𝜕0
, with 𝑋⃗ℎ

𝑡 (·, 𝑡) ∈ Xℎ, 𝜅ℎ(·, 𝑡) ∈ 𝑊ℎ
𝜕0

, 𝑌⃗ ℎ(·, 𝑡) ∈ Yℎ(2 𝜋 𝛼𝐺 𝑒⃗1) and 𝑚⃗ℎ(·, 𝑡) : 𝜕𝑀𝐼 → R2 such
that

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

−
(︁
𝑌⃗ ℎ

𝜌 · 𝜈⃗ℎ, 𝜒⃗𝜌 · 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |−1

)︁
= −𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁2
+ 2𝜆 + 2𝛽𝒜ℎ 𝜅ℎ, 𝜒⃗ · 𝑒⃗1 |𝑋⃗ℎ

𝜌 |+ (𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ · 𝜒⃗𝜌

)︂ℎ

+ 2𝜋𝛼

(︂[︁
Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ

]︁
(Zℎ − 2),

𝜔⃗ℎ · 𝑒⃗1

𝑋⃗ℎ · 𝑒⃗1

𝜒⃗ · 𝑒⃗1 |𝑋⃗ℎ
𝜌 |
)︂ℎ

+ 2𝜋𝛼
(︁[︁

Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ
]︁

(Zℎ − 2) 𝑒⃗1, (𝜈⃗ℎ · 𝜒⃗𝜌) 𝜏⃗ℎ + (𝜏⃗ℎ · 𝜒⃗𝜌) (𝜔⃗ℎ − 𝜈⃗ℎ)
)︁ℎ

+
(︁
𝜅ℎ (𝑌⃗ ℎ)⊥ − 2𝜋𝛽𝒜ℎ 𝑒⃗2, 𝜒⃗𝜌

)︁ℎ

− 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 ∀𝜒⃗ ∈ Xℎ, (4.23a)

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1

(︁
𝛼 [Kℎ(𝑋⃗ℎ, 𝜅ℎ)− κ] + 𝛽𝒜ℎ

)︁
, 𝜒 |𝑋⃗ℎ

𝜌 |
)︁ℎ

−
(︁
𝑌⃗ ℎ, 𝜒 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
)︁ℎ

= 0 ∀𝜒 ∈ 𝑊ℎ
𝜕0

, (4.23b)(︁
𝜅ℎ 𝜈⃗ℎ, 𝜂⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

+
(︁
𝑋⃗ℎ

𝜌 , 𝜂⃗𝜌 |𝑋⃗ℎ
𝜌 |−1

)︁
=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︀
𝑚⃗ℎ · 𝜂⃗

]︀
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
, (4.23c)

where 𝒜ℎ(𝑡) is given by (4.14).

Theorem 4.4. Let Assumption 4.2 be satisfied and let (𝑋⃗ℎ(𝑡), 𝜅ℎ(𝑡), 𝑌⃗ ℎ(𝑡), 𝑚⃗ℎ(𝑡))𝑡∈(0,𝑇 ] be a solution to (4.23).
Then the solution satisfies the stability bound

d
d𝑡
̂︀𝐸ℎ(𝑡) + 2𝜋

(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

= 0.

Proof. The desired result follows as (4.23) is just a rewrite of (4.17), (4.15), (4.10) and (4.14), and then noting
(4.18)–(4.21). �

Remark 4.5. We note that on choosing 𝜂⃗ = 𝜒𝑗 [𝜔⃗ℎ(𝑞𝑗)]⊥, for 𝑗 ∈ {1, . . . , 𝑗1} so 𝜂⃗ ∈ 𝑉 ℎ
𝜕0

, in (4.23c) we obtain
that

|𝑋⃗ℎ(𝑞𝑗)− 𝑋⃗ℎ(𝑞𝑗−1)| = |𝑋⃗ℎ(𝑞𝑗+1)− 𝑋⃗ℎ(𝑞𝑗)| or 𝑋⃗ℎ(𝑞𝑗)− 𝑋⃗ℎ(𝑞𝑗−1) ‖ 𝑋⃗ℎ(𝑞𝑗+1)− 𝑋⃗ℎ(𝑞𝑗)

for 𝑗 = 1, . . . , 𝑗1. See Remark 2.4 of [1] for details. Hence the curve Γℎ(𝑡) will be equidistributed where-ever two
neighbouring elements are not parallel. This aspect of the solution for the semidiscrete problem (4.23) means
that it can be viewed as a highly nonlinear and degenerate system of differential-algebraic equations, see also
Remark 81 of [11] for a related discussion. In particular, at present we are unable to prove the existence of
solutions to (4.23). In addition, an error analysis for our semidiscrete approximations also appears to be out of
reach.

Remark 4.6. We now revisit the discussion in Remark 4.3. Assuming that e.g. 0 = 𝑞0 ∈ 𝜕0𝐼, then choosing
𝜂⃗ = 𝜒0 𝑒⃗2 in (4.23c) yields that 𝜅ℎ(𝑞0) 𝜈⃗ℎ(𝑞0) · 𝑒⃗2 = 2 (𝑋⃗ℎ(𝑞1)−𝑋⃗ℎ(𝑞0))·𝑒⃗2

|𝑋⃗ℎ(𝑞1)−𝑋⃗ℎ(𝑞0)|2
, and so

𝜏⃗ℎ(𝑞0) · 𝑒⃗2 = 1
2 |𝑋⃗

ℎ(𝑞1)− 𝑋⃗ℎ(𝑞0)|𝜅ℎ(𝑞0) 𝜈⃗ℎ(𝑞0) · 𝑒⃗2, (4.24)

where we have noted (4.4). Clearly, (4.24) is a discrete approximation of (2.11), which stipulates a 90∘ degree
contact angle between Γ(𝑡) and the 𝑥2-axis.

For the scheme (4.23) we fix 𝜅ℎ ∈ 𝑊ℎ
𝜕0

, and so the right hand side in (4.24) is zero. For a more general scheme,
where we allow 𝜅ℎ ∈ 𝑉 ℎ and let 𝜒 ∈ 𝑉 ℎ in (4.23b), the right hand side in (4.24) is still of order 𝑂(𝐽−1) on
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assuming that 𝜅ℎ(𝑞0) is bounded. However, we observe that 𝜅ℎ(𝑞0), if 0 ∈ 𝜕0𝐼, only appears in (4.23c) for this
more general scheme. Hence there is no reason to assume that 𝜅ℎ(𝑞0) should remain bounded. In fact, 𝜅ℎ(𝑞0)
simply acts as a register for the value 𝜏⃗ℎ(𝑞0)·𝑒⃗2

𝜈⃗ℎ(𝑞0)·𝑒⃗2

2𝐽
ℋ1(Γℎ(𝑡))

. Moreover, a fully discrete variant of the discussed more
general version of (4.23) leads to incorrect contact angles at the 𝑥2-axis and to the numerical breakdown of the
scheme. This is the main reason why we consider the scheme (4.23) as it is.

4.1.1. Conserved flows

We rewrite (4.23a) as

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

−
(︁
𝑌⃗ ℎ

𝜌 · 𝜈⃗ℎ, 𝜒⃗𝜌 · 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |−1

)︁
=
(︁
𝑓ℎ, 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

∀𝜒⃗ ∈ Xℎ.

Then the natural generalization of (𝒫ℎ)ℎ, (4.23), that approximates the weak formulation (3.26), (3.22b), (3.22c)
and (3.31) is given by (4.23), with (4.23a) replaced by

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

−
(︁
𝑌⃗ ℎ

𝜌 · 𝜈⃗ℎ, 𝜒⃗𝜌 · 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |−1

)︁
=
(︁
𝑓ℎ, 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

− 2𝜋𝜆ℎ
𝐴

[︁(︁
𝑒⃗1, 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁

+
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ, 𝜒⃗𝜌

)︁]︁
− 2𝜋𝜆ℎ

𝑉

(︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜈⃗ℎ, 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁

∀𝜒⃗ ∈ Xℎ, (4.25)

where (𝜆ℎ
𝐴(𝑡), 𝜆ℎ

𝑉 (𝑡))𝑇 ∈ R2 are such that

𝐴(𝑋⃗ℎ(𝑡)) = 𝐴(𝑋⃗ℎ(0)) and 𝑉 (𝑋⃗ℎ(𝑡)) = 𝑉 (𝑋⃗ℎ(0)). (4.26)

Here, on recalling (3.29) and (3.30), we note that 𝐴(𝑋⃗ℎ(𝑡)) denotes the surface area of 𝒮ℎ(𝑡), where, similarly
to (2.1), we set

𝒮ℎ(𝑡) =
⋃︁
𝜌∈𝐼

Π3
2(𝑋⃗ℎ(𝜌, 𝑡)).

Moreover, 𝑉 (𝑋⃗ℎ(𝑡)) is the volume of the domain Ωℎ(𝑡) with 𝜕Ωℎ(𝑡) = 𝒮ℎ(𝑡) in the case that 𝒮ℎ(𝑡) has no
boundary. We remark that

𝐴(𝑍⃗ℎ) = 2𝜋
(︁
𝑍⃗ℎ · 𝑒⃗1, |𝑍⃗ℎ

𝜌 |
)︁

𝑍⃗ℎ ∈ 𝑉 ℎ
𝜕0

and
𝑉 (𝑍⃗ℎ) = −𝜋

(︁
(𝑍⃗ℎ · 𝑒⃗1)2, [𝑍⃗ℎ

𝜌 ]⊥ · 𝑒⃗1

)︁
𝑍⃗ℎ ∈ 𝑉 ℎ

𝜕0
,

recall (3.29), (3.30) and (4.4). Moreover, we recall from (3.7) and (3.11) of [7] that, similarly to (2.38) and
(2.39), it holds that

d
d𝑡

𝐴(𝑋⃗ℎ(𝑡)) = 2𝜋
[︁(︁

𝑒⃗1, 𝑋⃗
ℎ
𝑡 |𝑋⃗ℎ

𝜌 |
)︁

+
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ, (𝑋⃗ℎ
𝑡 )𝜌

)︁]︁
(4.27)

and
d
d𝑡

𝑉 (𝑋⃗ℎ(𝑡)) = 2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝜈⃗ℎ, 𝑋⃗ℎ
𝑡 |𝑋⃗ℎ

𝜌 |
)︁

. (4.28)

Theorem 4.7. Let Assumption 4.2 be satisfied and let (𝑋⃗ℎ(𝑡), 𝜅ℎ(𝑡), 𝑌⃗ ℎ(𝑡), 𝑚⃗ℎ(𝑡), 𝜆ℎ
𝐴(𝑡), 𝜆ℎ

𝑉 (𝑡))𝑡∈(0,𝑇 ] be a solu-
tion to (4.25), (4.23b), (4.23c), (4.26). Then the solution satisfies the stability bound

d
d𝑡
̂︀𝐸ℎ(𝑡) + 2𝜋

(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

= 0.

Proof. Differentiating the two equations in (4.26) with respect to 𝑡, noting (4.27), (4.28), and choosing 𝜒⃗ = 𝑋⃗ℎ
𝑡

in (4.25) yields

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

−
(︁
𝑌⃗ ℎ

𝜌 · 𝜈⃗ℎ, (𝑋⃗ℎ
𝑡 )𝜌 · 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |−1
)︁

=
(︁
𝑓ℎ, 𝑋⃗ℎ

𝑡 |𝑋⃗ℎ
𝜌 |
)︁ℎ

,

which is equivalent to (4.18). Hence the stability result follows as in the proof of Theorem 4.4. �
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4.2. Based on 𝜅ℎ𝒮

The approach in Section 4.1 required the introduction of the auxiliary finite element function (4.11) in order
to be able to obtain a well-defined Lagrangian. An alternative is to define the Lagrangian in terms of 𝜅ℎ

𝒮 , a
direct discrete analogue of κ𝒮 . Then it is possible to repeat the proof of (3.42) on the discrete level.

As the discrete analogue of (3.9), we let 𝑋⃗ℎ ∈ 𝑉 ℎ
𝜕0

, 𝜅ℎ
𝒮 ∈ 𝑊ℎ

(𝜕0)
and 𝑚⃗ℎ : 𝜕𝑀𝐼 → R2 be such that(︁

𝑋⃗ℎ · 𝑒⃗1 𝜅ℎ
𝒮 𝜈⃗ℎ, 𝜂⃗ |𝑋⃗ℎ

𝜌 |
)︁(ℎ)

+
(︁
𝑒⃗1, 𝜂⃗ |𝑋⃗ℎ

𝜌 |
)︁

+
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ, 𝜂⃗𝜌

)︁
=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝑚⃗ℎ · 𝜂⃗

]︁
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
. (4.29)

Here, and throughout, we use the notation ·(ℎ) to denote an expression with or without the superscript ℎ,
and simultaneously for the notation with subscripts ·(𝜕0). i.e. we consider two separate situations: either mass
lumping is used on the first integral, and then we let 𝜅ℎ

𝒮 ∈ 𝑊ℎ
𝜕0

, or true integration is employed and we let
𝜅ℎ
𝒮 ∈ 𝑊ℎ. We define the discrete analogue of (2.36)

̂︀𝐸ℎ
𝒮(𝑡) = 𝜋

(︁
𝛼 [𝜅ℎ

𝒮 − κ]2 + 2𝜆, 𝑋⃗ℎ · 𝑒⃗1|𝑋⃗ℎ
𝜌 |
)︁(ℎ)

+ 𝛽
2 (𝒜ℎ

𝒮(𝑡))2 − 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗ℎ(𝑝) · 𝑒⃗1 + 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ(𝑝) · 𝑒⃗1,

(4.30)
where

𝒜ℎ
𝒮(𝑡) = 2𝜋

(︁
𝑋⃗ℎ · 𝑒⃗1 𝜅ℎ

𝒮 , |𝑋⃗ℎ
𝜌 |
)︁(ℎ)

−𝑀0. (4.31)

Similarly to (3.32), we define the discrete Lagrangian

ℒℎ
𝒮

(︁
𝑋⃗ℎ, 𝜅ℎ

𝒮 , 𝑚⃗ℎ, 𝑌⃗ ℎ
𝒮

)︁
= 𝜋

(︁
𝛼
[︀
𝜅ℎ
𝒮 − κ

]︀2
+ 2𝜆, 𝑋⃗ℎ · 𝑒⃗1|𝑋⃗ℎ

𝜌 |
)︁(ℎ)

+ 𝛽
2

[︂
2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1 𝜅ℎ

𝒮 , |𝑋⃗ℎ
𝜌 |
)︁(ℎ)

−𝑀0

]︂2
−
(︁
𝑋⃗ℎ · 𝑒⃗1 𝜅ℎ

𝒮 𝜈⃗ℎ + 𝑒⃗1, 𝑌⃗
ℎ
𝒮 |𝑋⃗ℎ

𝜌 |
)︁(ℎ)

−
(︂(︁

𝑋⃗ℎ · 𝑒⃗1

)︁
𝜏⃗ℎ,
(︁
𝑌⃗ ℎ
𝒮

)︁
𝜌

)︂
+ 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ(𝑝)

· 𝑒⃗1 +
∑︁

𝑝∈𝜕𝐶𝐼

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜁 · 𝑌⃗ ℎ

𝒮

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
𝑚⃗ℎ ·

(︁(︁
𝑋⃗ℎ · 𝑒⃗1

)︁
𝑌⃗ ℎ
𝒮 − 2𝜋𝛼𝐺 𝑒⃗1

)︁]︁
(𝑝),

(4.32)

for 𝑋⃗ℎ ∈ 𝑉 ℎ
𝜕0

, 𝜅ℎ
𝒮 ∈ 𝑊ℎ

(𝜕0)
, 𝑚⃗ℎ : 𝜕𝑀𝐼 → R2 and 𝑌⃗ ℎ

𝒮 ∈ 𝑉 ℎ
𝜕0

. Here we observe that in the case of numerical
integration, we fix 𝜅ℎ

𝒮 to be zero on the boundary 𝜕0𝐼, as the Lagrangian (4.32) does not depend on these
boundary values at all.

Taking variations 𝜂⃗ ∈ 𝑉 ℎ
𝜕0

in 𝑌⃗ ℎ
𝒮 , and setting

[︁
𝛿

𝛿𝑌 ℎ
𝒮
ℒℎ
𝒮

]︁
(𝜂⃗) = 0 we obtain (4.29), similarly to (3.33). Taking

variations 𝜒 ∈ 𝑊ℎ
(𝜕0)

in 𝜅ℎ
𝒮 and setting

[︁
𝛿

𝛿𝜅ℎ
𝒮
ℒℎ
𝒮

]︁
(𝜒) = 0 we obtain, similarly to (3.34),

2𝜋
(︁
𝛼 (𝜅ℎ

𝒮 − κ) + 𝛽𝒜ℎ
𝒮 , 𝑋⃗ℎ · 𝑒⃗1 𝜒 |𝑋⃗ℎ

𝜌 |
)︁(ℎ)

−
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑌⃗ ℎ
𝒮 , 𝜒 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
)︁(ℎ)

= 0 ∀𝜒 ∈ 𝑊ℎ
(𝜕0)

. (4.33)

Taking variations in 𝑚⃗ℎ, and setting them to zero, yields, similarly to (3.37), that

(𝑋⃗ℎ · 𝑒⃗1) 𝑌⃗ ℎ
𝒮 = 2𝜋𝛼𝐺 𝑒⃗1 on 𝜕𝑀𝐼. (4.34)

Taking variations 𝜒⃗ ∈ Xℎ in 𝑋⃗ℎ and setting 2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

= −
[︁

𝛿

𝛿𝑋⃗ℎ
ℒℎ
𝒮

]︁
(𝜒⃗) we obtain, simi-

larly to (3.38), that

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

= − 𝜋

(︂
𝛼
[︀
𝜅ℎ
𝒮 − κ

]︀2
+ 2𝜆 + 2𝛽𝒜ℎ

𝒮 𝜅ℎ
𝒮 ,

[︂
𝛿

𝛿𝑋⃗ℎ
(𝑋⃗ℎ · 𝑒⃗1) |𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗)
)︂(ℎ)
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+
(︂

𝜅ℎ
𝒮 𝑌⃗ ℎ

𝒮 ,

[︂
𝛿

𝛿𝑋⃗ℎ
(𝑋⃗ℎ · 𝑒⃗1) 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗)
)︂(ℎ)

+
(︂

𝑒⃗1 · 𝑌⃗ ℎ
𝒮 ,

[︂
𝛿

𝛿𝑋⃗ℎ
|𝑋⃗ℎ

𝜌 |
]︂

(𝜒⃗)
)︂

×
(︂

(𝑌⃗ ℎ
𝒮 )𝜌,

[︂
𝛿

𝛿𝑋⃗ℎ
(𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ

]︂
(𝜒⃗)
)︂

−
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[︁[︁
2𝜋𝜍 + 𝑚⃗ℎ · 𝑌⃗ ℎ

𝒮

]︁
(𝜒⃗ · 𝑒⃗1)

]︁
(𝑝) ∀ 𝜒⃗ ∈ Xℎ. (4.35)

Choosing 𝜒⃗ = 𝑋⃗ℎ
𝑡 ∈ Xℎ in (4.35), on noting (3.4), yields the discrete analogue of (3.39)

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

= − 𝜋
(︁
𝛼
[︀
𝜅ℎ
𝒮 − κ

]︀2
+ 2𝜆 + 2𝛽𝒜ℎ

𝒮 𝜅ℎ
𝒮 ,
[︁(︁

𝑋⃗ℎ · 𝑒⃗1

)︁
|𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁(ℎ)

+
(︁
𝜅ℎ
𝒮 𝑌⃗ ℎ

𝒮 , [(𝑋⃗ℎ · 𝑒⃗1) 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |]𝑡
)︁(ℎ)

+
(︁
𝑒⃗1 · 𝑌⃗ ℎ

𝒮 , (|𝑋⃗ℎ
𝜌 |)𝑡

)︁
+
(︁

(𝑌⃗ ℎ
𝒮 )𝜌,

[︁(︁
𝑋⃗ℎ · 𝑒⃗1

)︁
𝜏⃗ℎ
]︁

𝑡

)︁
−

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[︁[︁
2𝜋𝜍 + 𝑚⃗ℎ · 𝑌⃗ ℎ

𝒮

]︁ (︁
𝑋⃗ℎ

𝑡 · 𝑒⃗1

)︁ ]︁
(𝑝).

(4.36)

Differentiating (4.29) with respect to 𝑡, and then choosing 𝜂⃗ = 𝑌⃗ ℎ
𝒮 ∈ 𝑉 ℎ

𝜕0
, we obtain, on recalling that

𝑋⃗ℎ
𝑡 ∈ Xℎ, (︁

(𝜅ℎ
𝒮)𝑡 𝑌⃗ ℎ

𝒮 , (𝑋⃗ℎ · 𝑒⃗1) 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |
)︁(ℎ)

+
(︁
𝜅ℎ
𝒮 𝑌⃗ ℎ

𝒮 ,
[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁(ℎ)

+
(︁
𝑒⃗1 · 𝑌⃗ ℎ

𝒮 ,
[︁
|𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁
+
(︁

(𝑌⃗ ℎ
𝒮 )𝜌,

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ

]︁
𝑡

)︁
=

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗ℎ

𝑡 · 𝑒⃗1) 𝑚⃗ℎ · 𝑌⃗ ℎ
𝒮 + (𝑋⃗ℎ · 𝑒⃗1) (𝑚⃗ℎ)𝑡 · 𝑌⃗ ℎ

𝒮

]︁
(𝑝). (4.37)

It follows from (4.37), (4.34) and (4.33) with 𝜒 = (𝜅ℎ
𝒮)𝑡 ∈ 𝑊ℎ

(𝜕0)
that

(︁
𝜅ℎ
𝒮 𝑌⃗ ℎ

𝒮 ,
[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁(ℎ)

+
(︁
𝑒⃗1 · 𝑌⃗ ℎ

𝒮 ,
[︁
|𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁
+
(︁

(𝑌⃗ ℎ
𝒮 )𝜌,

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜏⃗ℎ

]︁
𝑡

)︁
= −

(︁
(𝜅ℎ
𝒮)𝑡, (𝑋⃗ℎ · 𝑒⃗1) 𝑌⃗ ℎ

𝒮 · 𝜈⃗ℎ |𝑋⃗ℎ
𝜌 |
)︁(ℎ)

+
∑︁

𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗ℎ

𝑡 · 𝑒⃗1) 𝑚⃗ℎ · 𝑌⃗ ℎ
𝒮 + 2𝜋𝛼𝐺 𝑚⃗ℎ

𝑡 · 𝑒⃗1

]︁
(𝑝)

= −2𝜋
(︁
𝛼 (𝜅ℎ

𝒮 − κ) + 𝛽𝒜ℎ
𝒮 , 𝑋⃗ℎ · 𝑒⃗1 (𝜅ℎ

𝒮)𝑡 |𝑋⃗ℎ
𝜌 |
)︁(ℎ)

+
∑︁

𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗ℎ

𝑡 · 𝑒⃗1) 𝑚⃗ℎ · 𝑌⃗ ℎ
𝒮 + 2𝜋𝛼𝐺 𝑚⃗ℎ

𝑡 · 𝑒⃗1

]︁
(𝑝). (4.38)

Combining (4.36) and (4.38) yields the discrete analogue of (3.42)

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

= −𝜋
(︁
𝛼
[︀
𝜅ℎ
𝒮 − κ

]︀2
+ 2𝜆 + 2𝛽𝒜ℎ

𝒮 𝜅ℎ
𝒮 ,
[︁
𝑋⃗ℎ · 𝑒⃗1 |𝑋⃗ℎ

𝜌 |
]︁

𝑡

)︁(ℎ)

− 2𝜋
(︁
𝛼 (𝜅ℎ

𝒮 − κ) + 𝛽𝒜ℎ
𝒮 , 𝑋⃗ℎ · 𝑒⃗1 (𝜅ℎ

𝒮)𝑡 |𝑋⃗ℎ
𝜌 |
)︁(ℎ)

− 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ
𝑡 (𝑝) · 𝑒⃗1 + 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗ℎ
𝑡 (𝑝) · 𝑒⃗1

= −𝜋
d
d𝑡

(︁
𝛼
[︀
𝜅ℎ
𝒮 − κ

]︀2
+ 2𝜆, 𝑋⃗ℎ · 𝑒⃗1 |𝑋⃗ℎ

𝜌 |
)︁(ℎ)

− 𝛽
2

d
d𝑡

(𝒜ℎ
𝒮)2 − 2𝜋𝜍

∑︁
𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗ℎ
𝑡 (𝑝) · 𝑒⃗1 + 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗ℎ
𝑡 (𝑝) · 𝑒⃗1

= − d
d𝑡
̂︀𝐸ℎ
𝒮(𝑡), (4.39)

where we have recalled the definition (4.30).
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In order to derive a suitable semidiscrete approximation, we now return to (4.35). Substituting (4.8) into
(4.35) yields that

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

= −
(︁
𝜋 𝑋⃗ℎ · 𝑒⃗1

[︀
𝛼 [𝜅ℎ

𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜ℎ
𝒮 𝜅ℎ

𝒮
]︀
− 𝑌⃗ ℎ

𝒮 · 𝑒⃗1, 𝜒⃗𝜌 · 𝜏⃗ℎ
)︁(ℎ)

−
(︁[︁

𝜋
[︁
𝛼
[︀
𝜅ℎ
𝒮 − κ

]︀2
+ 2𝜆 + 2𝛽𝒜ℎ

𝒮 𝜅ℎ
𝒮

]︁
− 𝜅ℎ

𝒮 𝑌⃗ ℎ
𝒮 · 𝜈⃗ℎ

]︁
|𝑋⃗ℎ

𝜌 |

− (𝑌⃗ ℎ
𝒮 )𝜌 · 𝜏⃗ℎ, 𝜒⃗ · 𝑒⃗1

)︁(ℎ)

−
(︁
𝑋⃗ℎ · 𝑒⃗1 𝜅ℎ

𝒮 𝑌⃗ ℎ
𝒮 , 𝜒⃗⊥𝜌

)︁(ℎ)

+
(︁

(𝑋⃗ℎ · 𝑒⃗1) (𝑌⃗ ℎ
𝒮 )𝜌 · 𝜈⃗ℎ, 𝜒⃗𝜌 · 𝜈⃗ℎ|𝑋⃗ℎ

𝜌 |−1
)︁

−
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[︁[︁
2𝜋𝜍 + 𝑚⃗ℎ · 𝑌⃗ ℎ

𝒮

]︁
(𝜒⃗ · 𝑒⃗1)

]︁
(𝑝) ∀𝜒⃗ ∈ Xℎ. (4.40)

On combining (4.40), (4.33), (4.29), (4.34) and (4.31), on noting (3.1a) and (4.4), our semidiscrete approxi-
mation based on 𝜅ℎ

𝒮 is given as follows.

(𝒫ℎ
𝒮)(ℎ) Let 𝑋⃗ℎ(·, 0) ∈ 𝑉 ℎ

𝜕0
and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺 𝜆, 𝜍 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be given. For 𝑡 ∈ (0, 𝑇 ]

find 𝑋⃗ℎ(·, 𝑡), with 𝑋⃗ℎ
𝑡 (·, 𝑡) ∈ Xℎ, 𝜅ℎ

𝒮(·, 𝑡) ∈ 𝑊ℎ
(𝜕0)

, 𝑌⃗ ℎ
𝒮 (·, 𝑡) ∈ 𝑉 ℎ

𝜕0
, with 𝜋⃗ℎ

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝑌⃗ ℎ

𝒮

]︁
(·, 𝑡) ∈ Yℎ(2𝜋𝛼𝐺 𝑒⃗1),

and 𝑚⃗ℎ(·, 𝑡) : 𝜕𝑀𝐼 → R2 such that

2𝜋
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑄ℎ 𝑋⃗ℎ
𝑡 , 𝜒⃗ |𝑋⃗ℎ

𝜌 |
)︁ℎ

−
(︁

(𝑋⃗ℎ · 𝑒⃗1) (𝑌⃗ ℎ
𝒮 )𝜌 · 𝜈⃗ℎ, 𝜒⃗𝜌 · 𝜈⃗ℎ|𝑋⃗ℎ

𝜌 |−1
)︁

= −
(︁
𝜋 𝑋⃗ℎ · 𝑒⃗1

[︀
𝛼 [𝜅ℎ

𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜ℎ
𝒮 𝜅ℎ

𝒮
]︀
− 𝑌⃗ ℎ

𝒮 · 𝑒⃗1, 𝜒⃗𝜌 · 𝜏⃗ℎ
)︁(ℎ)

−
(︁[︁

𝜋
[︁
𝛼
[︀
𝜅ℎ
𝒮 − κ

]︀2
+ 2𝜆 + 2𝛽𝒜ℎ

𝒮 𝜅ℎ
𝒮

]︁
− 𝜅ℎ

𝒮 𝑌⃗ ℎ
𝒮 · 𝜈⃗ℎ

]︁
|𝑋⃗ℎ

𝜌 | − (𝑌⃗ ℎ
𝒮 )𝜌 · 𝜏⃗ℎ, 𝜒⃗ · 𝑒⃗1

)︁(ℎ)

+
(︁
𝑋⃗ℎ · 𝑒⃗1 𝜅ℎ

𝒮 (𝑌⃗ ℎ
𝒮 )⊥, 𝜒⃗𝜌

)︁(ℎ)

−
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[︁[︁
2𝜋𝜍 + 𝑚⃗ℎ · 𝑌⃗ ℎ

𝒮

]︁
(𝜒⃗ · 𝑒⃗1)

]︁
(𝑝) ∀ 𝜒⃗ ∈ Xℎ, (4.41a)

2𝜋
(︁
𝑋⃗ℎ · 𝑒⃗1

[︀
𝛼 (𝜅ℎ

𝒮 − κ) + 𝛽𝒜ℎ
𝒮
]︀
, 𝜒 |𝑋⃗ℎ

𝜌 |
)︁(ℎ)

−
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑌⃗ ℎ
𝒮 , 𝜒 𝜈⃗ℎ |𝑋⃗ℎ

𝜌 |
)︁(ℎ)

= 0 ∀𝜒 ∈ 𝑊ℎ
(𝜕0)

, (4.41b)(︁
𝑋⃗ℎ · 𝑒⃗1 𝜅ℎ

𝒮 𝜈⃗ℎ, 𝜂⃗ |𝑋⃗ℎ
𝜌 |
)︁(ℎ)

+
(︁
𝑒⃗1, 𝜂⃗ |𝑋⃗ℎ

𝜌 |
)︁

+
(︁

(𝑋⃗ℎ · 𝑒⃗1) 𝑋⃗ℎ
𝜌 , 𝜂⃗𝜌 |𝑋⃗ℎ

𝜌 |−1
)︁

=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗ℎ · 𝑒⃗1) 𝑚⃗ℎ · 𝜂⃗

]︁
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
, (4.41c)

where 𝒜ℎ
𝒮(𝑡) is given by (4.31).

Theorem 4.8. Let Assumption 4.2 be satisfied and let (𝑋⃗ℎ(𝑡), 𝜅ℎ
𝒮(𝑡), 𝑌⃗ ℎ

𝒮 (𝑡), 𝑚⃗ℎ(𝑡))𝑡∈(0,𝑇 ] be a solution to (4.41).
Then the solution satisfies the stability bound

d
d𝑡
̂︀𝐸ℎ
𝒮(𝑡) + 2𝜋

(︁
𝑋⃗ℎ · 𝑒⃗1 |𝑄ℎ 𝑋⃗ℎ

𝑡 |2, |𝑋⃗ℎ
𝜌 |
)︁ℎ

= 0.

Proof. The desired result follows as (4.41) is just a rewrite of (4.35), (4.33), (4.29) and (4.31), and then noting
(4.36)–(4.39). �

Remark 4.9. For the scheme (𝒫ℎ
𝒮)ℎ we note that if 0 ∈ 𝜕0𝐼, then choosing 𝜂⃗ = 𝜒0 𝑒⃗2 in (4.41c) yields that

(𝑋⃗ℎ(𝑞1) − 𝑋⃗ℎ(𝑞0)) · 𝑒⃗2 = 0, recall also Remark 4.6. While the same is not true for the scheme (𝒫ℎ
𝒮), a weaker

form of these constraints is still enforced via (4.41c), leading to a nearly 90∘ degree contact angle on the 𝑥2-axis
in practice for fully discrete variants based on (𝒫ℎ

𝒮).
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5. Fully discrete scheme

Let 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑀−1 < 𝑡𝑀 = 𝑇 be a partitioning of [0, 𝑇 ] into possibly variable time steps
∆𝑡𝑚 = 𝑡𝑚+1 − 𝑡𝑚, 𝑚 = 0, . . . ,𝑀 − 1. For 𝑋⃗𝑚 ∈ 𝑉 ℎ

𝜕0
, we let 𝜏⃗𝑚 and 𝜈⃗𝑚 be the natural fully discrete analogues

of 𝜏⃗ℎ and 𝜈⃗ℎ on Γ𝑚 = 𝑋⃗𝑚(𝐼), recall (4.4). In addition, let 𝜔⃗𝑚 ∈ 𝑉 ℎ be the natural fully discrete analogue of
𝜔⃗ℎ ∈ 𝑉 ℎ, recall (4.5); and similarly for 𝑣⃗𝑚 ∈ 𝑉 ℎ, recall (4.6). Finally, let 𝑄⃗𝑚 ∈ [𝑉 ℎ]2×2 be the natural fully
discrete analogue of 𝑄⃗ℎ, recall (4.7).

5.1. Based on 𝜅𝑚+1

We propose the following fully discrete approximation of (𝒫ℎ)ℎ.
(𝒫𝑚)ℎ Let 𝑋⃗0 ∈ 𝑉 ℎ

𝜕0
, 𝜅0 ∈ 𝑉 ℎ, 𝑌⃗ 0 ∈ 𝑉 ℎ

𝜕0
and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺, 𝜆, 𝜍 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be given.

For 𝑚 = 0, . . . ,𝑀 − 1, find 𝛿𝑋⃗𝑚+1 ∈ Xℎ, with 𝑋⃗𝑚+1 = 𝑋⃗𝑚 + 𝛿𝑋⃗𝑚+1, 𝜅𝑚+1 ∈ 𝑊ℎ
𝜕0

, 𝑌⃗ 𝑚+1 ∈ Yℎ(2𝜋𝛼𝐺 𝑒⃗1) and
𝑚⃗𝑚+1 : 𝜕𝑀𝐼 → R2 such that

2𝜋

(︃
𝑋⃗𝑚 · 𝑒⃗1 𝑄𝑚 𝑋⃗𝑚+1 − 𝑋⃗𝑚

∆𝑡𝑚
, 𝜒⃗ |𝑋⃗𝑚

𝜌 |

)︃ℎ

−
(︁
𝑌⃗ 𝑚+1

𝜌 , 𝜒⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
+
(︁
𝑌⃗ 𝑚

𝜌 · 𝜏⃗𝑚, 𝜒⃗𝜌 · 𝜏⃗𝑚 |𝑋⃗𝑚
𝜌 |−1

)︁
= −𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗𝑚, 𝜅𝑚)− κ

]︁2
+ 2𝜆 + 2 𝛽𝒜𝑚 𝜅𝑚, 𝜒⃗ · 𝑒⃗1 |𝑋⃗𝑚

𝜌 |+ (𝑋⃗𝑚 · 𝑒⃗1) 𝜏⃗𝑚 · 𝜒⃗𝜌

)︂ℎ

+ 2𝜋𝛼

(︂[︁
Kℎ(𝑋⃗𝑚, 𝜅𝑚)− κ

]︁
(Zℎ − 2),

𝜔⃗𝑚 · 𝑒⃗1

𝑋⃗𝑚 · 𝑒⃗1

𝜒⃗ · 𝑒⃗1 |𝑋⃗𝑚
𝜌 |
)︂ℎ

+ 2𝜋𝛼
(︁[︁

Kℎ(𝑋⃗𝑚, 𝜅𝑚)− κ
]︁

(Zℎ − 2) 𝑒⃗1, (𝜈⃗𝑚 · 𝜒⃗𝜌) 𝜏⃗𝑚 + (𝜏⃗𝑚 · 𝜒⃗𝜌) (𝜔⃗𝑚 − 𝜈⃗𝑚)
)︁ℎ

+
(︁
𝜅𝑚 (𝑌⃗ 𝑚)⊥ − 2𝜋𝛽𝒜𝑚 𝑒⃗2, 𝜒⃗𝜌

)︁ℎ

− 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 ∀𝜒⃗ ∈ Xℎ, (5.1a)

2𝜋
(︁
𝑋⃗𝑚 · 𝑒⃗1

(︁
𝛼 [Kℎ(𝑋⃗𝑚, 𝜅𝑚+1)− κ] + 𝛽𝒜𝑚

)︁
, 𝜒 |𝑋⃗𝑚

𝜌 |
)︁ℎ

−
(︁
𝑌⃗ 𝑚+1, 𝜒 𝜈⃗𝑚 |𝑋⃗𝑚

𝜌 |
)︁ℎ

= 0 ∀𝜒 ∈ 𝑊ℎ
𝜕0

, (5.1b)(︁
𝜅𝑚+1 𝜈⃗𝑚, 𝜂⃗ |𝑋⃗𝑚

𝜌 |
)︁ℎ

+
(︁
𝑋⃗𝑚+1

𝜌 , 𝜂⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︀
𝑚⃗𝑚+1 · 𝜂⃗

]︀
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
, (5.1c)

where
𝒜𝑚 = 2𝜋

(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝑚 − 𝜈⃗𝑚 · 𝑒⃗1, |𝑋⃗𝑚

𝜌 |
)︁ℎ

−𝑀0. (5.1d)

Assumption 5.1. Let 𝑋⃗𝑚 satisfy Assumption 4.2 with 𝑋⃗ℎ replaced by 𝑋⃗𝑚, and let dim span{𝑣⃗𝑚(𝑞𝑗)}𝐽−1
𝑗=1 = 2.

Assumption 5.2. Let 𝑋⃗𝑚 satisfy Assumption 4.1 with 𝑋⃗ℎ replaced by 𝑋⃗𝑚, and be such that the following
holds. If 𝑈⃗ ∈ Yℎ(⃗0) with(︁

𝑈⃗𝜌, 𝜒⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
= 0 ∀𝜒⃗ ∈ Xℎ and

(︁
𝑈⃗ , 𝜒 𝜈⃗𝑚 |𝑋⃗𝑚

𝜌 |
)︁ℎ

= 0 ∀𝜒 ∈ 𝑊ℎ
𝜕0

, (5.2)

then 𝑈⃗ = 0⃗.

We note that Assumption 5.2 is only violated in very rare cases. For example, if ∅ ≠ 𝜕𝐶𝐼 = 𝜕𝐼 and if 𝑋⃗𝑚

parameterizes a straight line, then 𝑈⃗ = 𝜏⃗𝑚 constant in 𝐼 satisfies (5.2). However, the following lemma shows
that in most cases the assumption holds.

Lemma 5.3. Let 𝑋⃗𝑚 satisfy Assumption 5.1. Then if 𝜕𝐶𝐼 = ∅, or if 𝜕𝐶𝐼 ̸= 𝜕𝐼 ∖ 𝜕0𝐼, then Assumption 5.2
holds.
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Proof. Let 𝑈⃗ ∈ Yℎ(⃗0) satisfy (5.2). If 𝜕𝐶𝐼 = ∅ then we can choose 𝜒⃗ = 𝑈⃗ ∈ Yℎ(⃗0) ⊂ Xℎ in (5.2), recall
(3.7), to obtain that 𝑈⃗ is constant in 𝐼. The second property in (5.2), on recalling (4.5), then yields that
𝑈⃗ · 𝜔⃗𝑚(𝑞𝑗) = 𝑈⃗ · 𝑣⃗𝑚(𝑞𝑗) = 0, 𝑗 = 1, . . . , 𝐽 − 1. Hence Assumption 5.1 gives that 𝑈⃗ = 0⃗.

We now consider the case 𝜕𝐶𝐼 ̸= ∅. As we assume 𝜕𝐶𝐼 ̸= 𝜕𝐼 ∖ 𝜕0𝐼, it holds that also 𝜕𝑀𝐼 ̸= ∅, recall (2.37).
For ease of exposition, let 𝜕𝑀𝐼 = {0} and 𝜕𝐶𝐼 = {1}. It follows from the first condition in (5.2) that

𝑈⃗(𝑞𝑗+1)− 𝑈⃗(𝑞𝑗)

|𝑋⃗𝑚(𝑞𝑗+1)− 𝑋⃗𝑚(𝑞𝑗)|
=

𝑈⃗(𝑞𝑗)− 𝑈⃗(𝑞𝑗−1)

|𝑋⃗𝑚(𝑞𝑗)− 𝑋⃗𝑚(𝑞𝑗−1)|
, 𝑗 = 1, . . . , 𝐽 − 1,

and so, on recalling Assumption 5.1, there exist positive numbers 𝛼𝑗 such that

𝑈⃗(𝑞𝑗+1) = (1 + 𝛼𝑗) 𝑈⃗(𝑞𝑗)− 𝛼𝑗 𝑈⃗(𝑞𝑗−1), 𝑗 = 1, . . . , 𝐽 − 1. (5.3)

Combining (5.3) and the fact that 𝑈⃗ ∈ Yℎ(⃗0), i.e. 𝑈⃗(𝑞0) = 0⃗, we obtain, via induction, that there exist numbers
𝜁𝐽−1 ≥ 𝜁𝐽−2 ≥ . . . ≥ 𝜁1 > 0 such that

𝑈⃗(𝑞𝑗+1) = (1 + 𝜁𝑗) 𝑈⃗(𝑞1), 𝑗 = 1, . . . , 𝐽 − 1.

Hence it follows from the second property in (5.2) and the Assumption 5.1, recall (4.5), that 𝑈⃗(𝑞1) = 0⃗, and so
𝑈⃗ = 0⃗ in 𝐼. This completes the proof. �

Lemma 5.4. Let Assumption 5.1 hold. Moreover, if ∅ ≠ 𝜕𝐶𝐼 and if 𝜕𝐶𝐼 = 𝜕𝐼∖𝜕0𝐼 then let also Assumption 5.2
hold. Let 𝑋⃗𝑚, 𝑌⃗ 𝑚 ∈ 𝑉 ℎ

𝜕0
, 𝜅𝑚 ∈ 𝑉 ℎ, 𝑚⃗𝑚 ∈ R2 and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → R2 be given.

Then there exists a unique solution to (𝒫𝑚)ℎ, (5.1).

Proof. As we have a linear system of equations, with the same number of equations as unknowns, existence
follows from uniqueness. Hence we consider a solution to the homogeneous equivalent of (5.1), and need to show
that this solution is in fact zero. In particular, let 𝛿𝑋⃗ ∈ Xℎ, 𝜅 ∈ 𝑊ℎ

𝜕0
, 𝑌⃗ ∈ Yℎ(⃗0), and 𝑚⃗ : 𝜕𝑀𝐼 → R2 be such

that

2𝜋
(︁(︁

𝑋⃗𝑚 · 𝑒⃗1

)︁
𝑄𝑚 𝛿𝑋⃗, 𝜒⃗ |𝑋⃗𝑚

𝜌 |
)︁ℎ

−∆𝑡𝑚

(︁
𝑌⃗𝜌, 𝜒⃗𝜌 |𝑋⃗𝑚

𝜌 |−1
)︁

= 0 ∀𝜒⃗ ∈ Xℎ, (5.4a)

2𝜋 𝛼
(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅, 𝜒 |𝑋⃗𝑚

𝜌 |
)︁ℎ

−
(︁
𝑌⃗ , 𝜒 𝜈⃗𝑚 |𝑋⃗𝑚

𝜌 |
)︁ℎ

= 0 ∀𝜒 ∈ 𝑊ℎ
𝜕0

, (5.4b)(︁
𝜅 𝜈⃗𝑚, 𝜂⃗ |𝑋⃗𝑚

𝜌 |
)︁ℎ

+
(︁

(𝛿𝑋⃗)𝜌, 𝜂⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
=

∑︁
𝑝∈𝜕𝑀 𝐼

[𝑚⃗ · 𝜂⃗] (𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ
𝜕0

. (5.4c)

Choosing 𝜒⃗ = 𝛿𝑋⃗ in (5.4a), 𝜒 = 𝜅 in (5.4b) and 𝜂⃗ = 𝑌⃗ in (5.4c) yields that

2𝜋
(︁
𝑋⃗𝑚 · 𝑒⃗1 |𝑄𝑚 𝛿𝑋⃗|2, |𝑋⃗𝑚

𝜌 |
)︁ℎ

+ 2𝜋𝛼 ∆𝑡𝑚

(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅2, |𝑋⃗𝑚

𝜌 |
)︁ℎ

= 0. (5.5)

It follows from (5.5) and 𝜅 ∈ 𝑊ℎ
𝜕0

that 𝜅 = 0. Similarly, it follows from (5.5), 𝛿𝑋⃗ ∈ 𝑉 ℎ
𝜕0

, (3.5a), (4.6) and (4.7)
that 𝜋ℎ [𝛿𝑋⃗ · 𝑣⃗𝑚] = 0 with 𝛿𝑋⃗ = 0⃗ on 𝜕𝐼 ∖ 𝜕0𝐼. Then choosing 𝜂⃗ = 𝛿𝑋⃗ ∈ Xℎ ⊂ 𝑉 ℎ

𝜕0
in (5.4c) yields, on recalling

(2.37) and 𝛿𝑋⃗ = 0⃗ on 𝜕𝐼 ∖ 𝜕0𝐼, that(︁
|(𝛿𝑋⃗)𝜌|2, |𝑋⃗𝑚

𝜌 |−1
)︁

=
∑︁

𝑝∈𝜕𝑀 𝐼

[︁
𝑚⃗ · 𝛿𝑋⃗

]︁
(𝑝) = 0. (5.6)

It follows from (5.6) that 𝛿𝑋⃗ is constant in 𝐼. Together with 𝜋ℎ [𝛿𝑋⃗ · 𝑣⃗𝑚] = 0 and Assumption 5.1 we obtain
that 𝛿𝑋⃗ = 0⃗. Now (5.4c) implies that 𝑚⃗ = 0⃗.
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It remains to show that 𝑌⃗ = 0⃗. We have from (5.4a) and (5.4b) that(︁
𝑌⃗𝜌, 𝜒⃗𝜌 |𝑋⃗𝑚

𝜌 |−1
)︁

= 0 ∀𝜒⃗ ∈ Xℎ and
(︁
𝑌⃗ , 𝜒 𝜈⃗𝑚 |𝑋⃗𝑚

𝜌 |
)︁ℎ

= 0 ∀𝜒 ∈ 𝑊ℎ
𝜕0

.

Moreover, our assumptions and Lemma 5.3 yield that Assumption 5.2 holds. Hence we have that 𝑌⃗ = 0⃗, and
thus we have shown the existence of a unique solution to (𝒫𝑚)ℎ. �

Remark 5.5. We note that it is not possible to prove the existence of a unique solution to (5.1) in the case
of clamped boundary conditions, when 𝜕𝐶𝐼 = 𝜕𝐼 = {0, 1}. The authors faced a similar issue in the context of
the approximation of Willmore flow for general open surfaces in [6]. There the problem could be overcome by
a suitable tweak to the discretization, see (3.19) and Theorem 4.1 there. In particular, the approach applied
in [6] relied on the discretization of the side constraint (2.22) there, which is formulated in terms of the mean
curvature vector 𝑘⃗𝑚 = 𝑘𝑚 𝑛⃗𝒮 of 𝒮, rather than in terms of the scalar curvature variables κ and κ𝒮 that we
consider here, recall (3.8) and (3.9). Hence the approach from [6] is not applicable to the situation considered
in this paper.

Remark 5.6. We note that in practice it is easiest to find the solution to (5.1) by first eliminating 𝑚⃗𝑚+1 from
(5.1) via replacing the test space 𝑉 ℎ

𝜕0
in (5.1c) with Yℎ(⃗0). Having computed (𝛿𝑋⃗𝑚+1, 𝜅𝑚+1, 𝑌⃗ 𝑚+1) in this way,

for example with the help of a sparse factorization package like UMFPACK, see [18], the values 𝑚⃗𝑚+1 can be
obtained from (5.1c). For example, if 𝑞0 ∈ 𝜕𝑀𝐼 then we have, on recalling (4.5), that

𝑚⃗𝑚+1(𝑞0) =
(︁

1, 𝜒0 |𝑋⃗𝑚
𝜌 |
)︁

𝜅𝑚+1(𝑞0) 𝜔⃗𝑚(𝑞0) +
(︁

1, (𝜒0)𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
𝑋⃗𝑚+1

𝜌 (𝑞0).

Remark 5.7. In light of our stability result Theorem 4.4 for the semidiscrete scheme (4.23), it would be
desirable to also prove (conditional) stability for the fully discrete scheme (5.1). However, at present this remains
an open problem, in line with other fully discrete schemes for Willmore flow and elastic flow in the literature,
see e.g. [2, 4, 5, 19, 21]. Note that the only stability result for a fully discrete scheme for Willmore flow, that we
are aware of, is given in [32], for a scheme where the tangential velocity is zero.

5.1.1. Conserved flows

Here, following the approach in Section 4.3.1 of [7], we consider fully discrete variants of the semidiscrete
conserving approximations in Section 4.1.1. In particular, on rewriting (5.1a) as

2𝜋

(︃
𝑋⃗𝑚 · 𝑒⃗1 𝑄𝑚 𝑋⃗𝑚+1 − 𝑋⃗𝑚

∆𝑡𝑚
, 𝜒⃗ |𝑋⃗𝑚

𝜌 |

)︃ℎ

−
(︁
𝑌⃗ 𝑚+1

𝜌 , 𝜒⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
=
(︁
𝑓𝑚, 𝜒⃗ |𝑋⃗𝑚

𝜌 |
)︁ℎ

,

we can formulate our surface area and volume conserving variant for (𝒫𝑚)ℎ as follows. Here, for ease of presen-
tation, we assume that 𝜕𝑀𝐼 = ∅, so that we do not need to consider the discrete conormals 𝑚⃗𝑚+1. Moreover,
on recalling (3.6), we have that Yℎ(2𝜋𝛼𝐺 𝑒⃗1) = 𝑉 ℎ

𝜕0
.

(𝒫𝑚
𝐴,𝑉 )ℎ: Let 𝑋⃗0 ∈ 𝑉 ℎ

𝜕0
, 𝜅0 ∈ 𝑉 ℎ, 𝑌⃗ 0 ∈ 𝑉 ℎ

𝜕0
and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺, 𝜆, 𝜍 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be

given. For 𝑚 = 0, . . . ,𝑀 − 1, find 𝛿𝑋⃗𝑚+1 ∈ Xℎ, with 𝑋⃗𝑚+1 = 𝑋⃗𝑚 + 𝛿𝑋⃗𝑚+1, 𝜅𝑚+1 ∈ 𝑊ℎ
𝜕0

, 𝑌⃗ 𝑚+1 ∈ 𝑉 ℎ
𝜕0

, and
𝜆𝑚+1

𝐴 , 𝜆𝑚+1
𝑉 ∈ R such that (5.1b), (5.1c) and

2𝜋

(︃
𝑋⃗𝑚 · 𝑒⃗1 𝑄𝑚 𝑋⃗𝑚+1 − 𝑋⃗𝑚

∆𝑡𝑚
, 𝜒⃗ |𝑋⃗𝑚

𝜌 |

)︃ℎ

−
(︁
𝑌⃗ 𝑚+1

𝜌 , 𝜒⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
=
(︁
𝑓𝑚, 𝜒⃗ |𝑋⃗𝑚

𝜌 |
)︁ℎ

− 2𝜋𝜆𝑚+1
𝐴

[︁(︁
𝑒⃗1, 𝜒⃗ |𝑋⃗𝑚

𝜌 |
)︁

+
(︁

(𝑋⃗𝑚 · 𝑒⃗1) 𝜏⃗𝑚, 𝜒⃗𝜌

)︁]︁
− 2𝜋𝜆𝑚+1

𝑉

(︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝜈⃗𝑚, 𝜒⃗ |𝑋⃗𝑚

𝜌 |
)︁

∀𝜒⃗ ∈ Xℎ, (5.7a)

(i) 𝐴(𝑋⃗𝑚+1) = 𝐴(𝑋⃗0), (ii) 𝑉 (𝑋⃗𝑚+1) = 𝑉 (𝑋⃗0) (5.7b)
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hold. The nonlinear system of equations arising at each time level of (𝒫𝑚
𝐴,𝑉 )ℎ can be solved with a suitable

iterative solution method, see below. In the simpler case of surface area conserving flow, we need to find
(𝛿𝑋⃗𝑚+1, 𝜅𝑚+1, 𝑌⃗ 𝑚+1, 𝜆𝑚+1

𝐴 , 𝜆𝑚+1
𝑉 ) ∈ Xℎ ×𝑊ℎ

𝜕0
× 𝑉 ℎ

𝜕0
× R× {0} such that (5.1b), (5.1c), (5.7a) and (5.7b)(i)

hold. Similarly, for volume conserving flow, we need to find (𝛿𝑋⃗𝑚+1, 𝜅𝑚+1, 𝑌⃗ 𝑚+1, 𝜆𝑚+1
𝐴 , 𝜆𝑚+1

𝑉 ) ∈ Xℎ ×𝑊ℎ
𝜕0
×

𝑉 ℎ
𝜕0
× {0} × R such that (5.1b), (5.1c), (5.7a) and (5.7b)(ii) hold.

Adapting the strategy in Section 4.3.1 of [7], we now describe a Newton method for solving the nonlinear
system (5.7), (5.1b) and (5.1c). The linear system (5.7a), (5.1b) and (5.1c), with (𝜆𝑚+1

𝐴 , 𝜆𝑚+1
𝑉 ) in (5.7a) replaced

by (𝜆𝐴, 𝜆𝑉 ), can be written as: Find (𝛿𝑋⃗𝑚+1(𝜆𝐴, 𝜆𝑉 ), 𝜅𝑚+1(𝜆𝐴, 𝜆𝑉 ), 𝑌⃗ 𝑚+1(𝜆𝐴, 𝜆𝑉 )) ∈ Xℎ ×𝑊ℎ
𝜕0
× 𝑉 ℎ

𝜕0
such

that

T𝑚

⎛⎜⎝ 𝑌⃗ 𝑚+1(𝜆𝐴, 𝜆𝑉 )

𝛿𝑋⃗𝑚+1(𝜆𝐴, 𝜆𝑉 )
𝜅𝑚+1(𝜆𝐴, 𝜆𝑉 )

⎞⎟⎠ =

⎛⎜⎝g⃗
𝑚

1

g⃗
𝑚

2

g⃗
𝑚

3

⎞⎟⎠+ 𝜆𝐴

⎛⎜⎝𝒦⃗
𝑚

0

0⃗

⎞⎟⎠+ 𝜆𝑉

⎛⎜⎝𝒩⃗
𝑚

0

0⃗

⎞⎟⎠ .

Assuming the linear operator T𝑚 is invertible, we obtain that⎛⎜⎝ 𝑌⃗ 𝑚+1(𝜆𝐴, 𝜆𝑉 )

𝛿𝑋⃗𝑚+1(𝜆𝐴, 𝜆𝑉 )
𝜅𝑚+1(𝜆𝐴, 𝜆𝑉 )

⎞⎟⎠ = (T𝑚)−1

⎡⎢⎣
⎛⎜⎝g⃗

𝑚

1

g⃗
𝑚

2

g⃗
𝑚

3

⎞⎟⎠+ 𝜆𝑉

⎛⎜⎝𝒩⃗
𝑚

0

0⃗

⎞⎟⎠
⎤⎥⎦ =: (T𝑚)−1

⎛⎜⎝g⃗
𝑚

1

g⃗
𝑚

2

g⃗
𝑚

3

⎞⎟⎠+ 𝜆𝐴

⎛⎝𝑠⃗𝑚
1

𝑠⃗𝑚
2

𝑠𝑚
3

⎞⎠+ 𝜆𝑉

⎛⎜⎝𝑞⃗𝑚

1

𝑞⃗𝑚

2

𝑞𝑚
3

⎞⎟⎠ . (5.8)

It immediately follows from (5.8) that

𝜕𝜆𝐴
𝑋⃗𝑚+1(𝜆𝐴, 𝜆𝑉 ) = 𝑠⃗𝑚

2 , 𝜕𝜆𝑉
𝑋⃗𝑚+1(𝜆𝐴, 𝜆𝑉 ) = 𝑞⃗𝑚

2
,

where 𝑋⃗𝑚+1(𝜆𝐴, 𝜆𝑉 ) = 𝑋⃗𝑚 + 𝛿𝑋⃗𝑚+1(𝜆𝐴, 𝜆𝑉 ). Hence we can proceed as in (4.13) of [7] to define a Newton
iteration for finding a solution to the nonlinear system (𝒫𝑚

𝐴,𝑉 )ℎ. In practice this Newton iteration always
converged within a couple of iterations.

5.2. Based on 𝜅𝑚+1
𝒮

We can consider the following fully discrete approximation of (4.41).
(𝒫𝑚
𝒮 )(ℎ) Let 𝑋⃗0, 𝑌⃗ 0

𝒮 ∈ 𝑉 ℎ
𝜕0

, 𝜅0
𝒮 ∈ 𝑉 ℎ, 𝑚⃗0 ∈ R2 and 𝛼 ∈ R>0, κ, 𝑀0, 𝛼𝐺, 𝜆, 𝜍 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be

given. For 𝑚 = 0, . . . ,𝑀 − 1, find 𝛿𝑋⃗𝑚+1 ∈ Xℎ, with 𝑋⃗𝑚+1 = 𝑋⃗𝑚 + 𝛿𝑋⃗𝑚+1, 𝜅𝑚+1
𝒮 ∈ 𝑊ℎ

(𝜕0)
, 𝑌⃗ 𝑚+1

𝒮 ∈ 𝑉 ℎ
𝜕0

, with

𝜋⃗ℎ
[︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝑌⃗ 𝑚+1

𝒮

]︁
∈ Yℎ(2𝜋𝛼𝐺 𝑒⃗1), and 𝑚⃗𝑚+1 : 𝜕𝑀𝐼 → R2 such that

2𝜋

(︃
(𝑋⃗𝑚 · 𝑒⃗1) 𝑄𝑚 𝑋⃗𝑚+1 − 𝑋⃗𝑚

∆𝑡𝑚
, 𝜒⃗ |𝑋⃗𝑚

𝜌 |

)︃ℎ

−
(︁

(𝑋⃗𝑚 · 𝑒⃗1) (𝑌⃗ 𝑚+1
𝒮 )𝜌, 𝜒⃗𝜌 |𝑋⃗𝑚

𝜌 |−1
)︁

+
(︁

(𝑋⃗𝑚 · 𝑒⃗1) (𝑌⃗ 𝑚
𝒮 )𝜌 · 𝜏⃗𝑚, 𝜒⃗𝜌 · 𝜏⃗𝑚 |𝑋⃗𝑚

𝜌 |−1
)︁

= −
(︁
𝜋 𝑋⃗𝑚 · 𝑒⃗1

[︀
𝛼 [𝜅𝑚

𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝑚
𝒮 𝜅𝑚

𝒮
]︀
− 𝑌⃗ 𝑚

𝒮 · 𝑒⃗1, 𝜒⃗𝜌 · 𝜏⃗𝑚
)︁(ℎ)

−
(︁[︁

𝜋
[︁
𝛼 [𝜅𝑚

𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝑚
𝒮 𝜅𝑚

𝒮

]︁
− 𝜅𝑚

𝒮 𝑌⃗ 𝑚
𝒮 · 𝜈⃗𝑚

]︁
|𝑋⃗𝑚

𝜌 | − (𝑌⃗ 𝑚
𝒮 )𝜌 · 𝜏⃗𝑚, 𝜒⃗ · 𝑒⃗1

)︁(ℎ)

+
(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝑚

𝒮 (𝑌⃗ 𝑚
𝒮 )⊥, 𝜒⃗𝜌

)︁(ℎ)

−
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

[︁[︁
2𝜋𝜍 + 𝑚⃗𝑚 · 𝑌⃗ 𝑚

𝒮

]︁
(𝜒⃗ · 𝑒⃗1)

]︁
(𝑝) ∀ 𝜒⃗ ∈ Xℎ, (5.9a)

2𝜋
(︁
𝑋⃗𝑚 · 𝑒⃗1

(︀
𝛼 (𝜅𝑚+1

𝒮 − κ) + 𝛽𝒜𝑚
𝒮
)︀
, 𝜒 |𝑋⃗𝑚

𝜌 |
)︁(ℎ)

−
(︁

(𝑋⃗𝑚 · 𝑒⃗1) 𝑌⃗ 𝑚+1
𝒮 , 𝜒 𝜈⃗𝑚 |𝑋⃗𝑚

𝜌 |
)︁(ℎ)

= 0 ∀𝜒 ∈ 𝑊ℎ
(𝜕0)

, (5.9b)(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝑚+1

𝒮 𝜈⃗𝑚, 𝜂⃗ |𝑋⃗𝑚
𝜌 |
)︁(ℎ)

+
(︁
𝑒⃗1, 𝜂⃗ |𝑋⃗𝑚

𝜌 |
)︁

+
(︁

(𝑋⃗𝑚 · 𝑒⃗1) 𝑋⃗𝑚+1
𝜌 , 𝜂⃗𝜌 |𝑋⃗𝑚

𝜌 |−1
)︁
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=
∑︁

𝑝∈𝜕𝐶𝐼

[︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝜁 · 𝜂⃗

]︁
(𝑝) +

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝑚⃗𝑚+1 · 𝜂⃗

]︁
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
, (5.9c)

where

𝒜𝑚
𝒮 = 2𝜋

(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝑚

𝒮 , |𝑋⃗𝑚
𝜌 |
)︁(ℎ)

−𝑀0. (5.9d)

We now state the analogues of Assumptions 5.1 and 5.2.

Assumption 5.8. Let dim span
{︂(︁

(𝑋⃗𝑚 · 𝑒⃗1) 𝜈⃗𝑚, 𝜒 |𝑋⃗𝑚
𝜌 |
)︁(ℎ)

: 𝜒 ∈ 𝑊ℎ
(𝜕0)

}︂
= 2.

Assumption 5.9. Let 𝑋⃗𝑚 satisfy Assumption 4.1 with 𝑋⃗ℎ replaced by 𝑋⃗𝑚 and be such that the following
holds. If 𝑈⃗ ∈ Yℎ(⃗0) with(︁

(𝑋⃗𝑚 · 𝑒⃗1) 𝑈⃗𝜌, 𝜒⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
= 0 ∀𝜒⃗ ∈ Xℎ and

(︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝑈⃗ , 𝜒 𝜈⃗𝑚 |𝑋⃗𝑚

𝜌 |
)︁(ℎ)

= 0 ∀𝜒 ∈ 𝑊ℎ
(𝜕0)

,

then 𝑈⃗ = 0⃗.

Lemma 5.10. Let Assumptions 5.1 and 5.8 hold. Moreover, if 𝜕𝐶𝐼 ̸= ∅ then let Assumptions 5.9 hold. Let
𝑋⃗𝑚, 𝑌⃗ 𝑚

𝒮 ∈ 𝑉 ℎ
𝜕0

, 𝜅𝑚
𝒮 ∈ 𝑉 ℎ, 𝑚⃗𝑚 ∈ R2 and 𝛼 ∈ R>0, κ, 𝜆,𝑀0, 𝛼𝐺 ∈ R, 𝛽 ∈ R≥0, 𝜁 : 𝜕𝐶𝐼 → S1 be given. Then

there exists a unique solution to (𝒫𝑚
𝒮 )(ℎ), (5.9).

Proof. As we have a linear system of equations, with the same number of equations as unknowns, existence
follows from uniqueness. Hence we consider a solution to the homogeneous equivalent of (5.9), and need to show
that this solution is in fact zero. In particular, let 𝛿𝑋⃗ ∈ Xℎ, 𝜅𝒮 ∈ 𝑊ℎ

(𝜕0)
, 𝑌⃗𝒮 ∈ 𝑉 ℎ

𝜕0
, with 𝜋ℎ

[︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝑌⃗𝒮

]︁
∈

Yℎ(⃗0), and 𝑚⃗ ∈ R2 be such that

2𝜋

(︃
(𝑋⃗𝑚 · 𝑒⃗1) 𝑄𝑚 𝛿𝑋⃗

∆𝑡𝑚
, 𝜒⃗ |𝑋⃗𝑚

𝜌 |

)︃ℎ

−
(︁

(𝑋⃗𝑚 · 𝑒⃗1) (𝑌⃗𝒮)𝜌, 𝜒⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
= 0 ∀𝜒⃗ ∈ Xℎ,

(5.10a)

2𝜋𝛼
(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝒮 , 𝜒 |𝑋⃗𝑚

𝜌 |
)︁(ℎ)

−
(︁

(𝑋⃗𝑚 · 𝑒⃗1) 𝑌⃗𝒮 , 𝜒 𝜈⃗𝑚 |𝑋⃗𝑚
𝜌 |
)︁(ℎ)

= 0 ∀𝜒 ∈ 𝑊ℎ
(𝜕0)

,

(5.10b)(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝒮 𝜈⃗𝑚, 𝜂⃗ |𝑋⃗𝑚

𝜌 |
)︁(ℎ)

+
(︁

(𝑋⃗𝑚 · 𝑒⃗1) (𝛿𝑋⃗)𝜌, 𝜂⃗𝜌 |𝑋⃗𝑚
𝜌 |−1

)︁
=

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝑚⃗ · 𝜂⃗

]︁
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
.

(5.10c)

Choosing 𝜒⃗ = 𝛿𝑋⃗ in (5.10a), 𝜒 = 𝜅𝒮 in (5.10b) and 𝜂⃗ = 𝑌⃗𝒮 in (5.10c) yields, on noting 𝜋ℎ
[︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝑌⃗𝒮

]︁
∈

Yℎ(⃗0), that

2𝜋
(︁
𝑋⃗𝑚 · 𝑒⃗1 |𝑄𝑚 𝛿𝑋⃗|2, |𝑋⃗𝑚

𝜌 |
)︁ℎ

+ 2𝜋𝛼 ∆𝑡𝑚

(︁
𝑋⃗𝑚 · 𝑒⃗1 (𝜅𝒮)2, |𝑋⃗𝑚

𝜌 |
)︁(ℎ)

= 0. (5.11)

It follows from (5.11) and 𝜅𝒮 ∈ 𝑊ℎ
(𝜕0)

that 𝜅𝒮 = 0. Similarly, it follows from (5.11) that [𝛿𝑋⃗ · 𝑣⃗𝑚](𝑞𝑗) = 0,

𝑗 = 1, . . . , 𝐽 −1, and, on recalling (4.7), that 𝛿𝑋⃗ = 0⃗ on 𝜕 𝐼 ∖𝜕0𝐼. Then choosing 𝜂⃗ = 𝛿𝑋⃗ ∈ Xℎ ⊂ 𝑉 ℎ
𝜕0

in (5.10c)
yields, on recalling (2.37) and 𝛿𝑋⃗ = 0⃗ on 𝜕 𝐼 ∖ 𝜕0𝐼, that(︁

𝑋⃗𝑚 · 𝑒⃗1 |(𝛿𝑋⃗)𝜌|2, |𝑋⃗𝑚
𝜌 |−1

)︁
=

∑︁
𝑝∈𝜕𝑀 𝐼

[︁
(𝑋⃗𝑚 · 𝑒⃗1) 𝑚⃗ · 𝛿𝑋⃗

]︁
(𝑝) = 0. (5.12)
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It follows from (5.12) that 𝛿𝑋⃗ is constant in 𝐼. Together with [𝛿𝑋⃗ · 𝑣⃗𝑚](𝑞𝑗) = 0, 𝑗 = 1, . . . , 𝐽 − 1, and
Assumption 5.1 we obtain that 𝛿𝑋⃗ = 0⃗. Then (5.10c) implies that 𝑚⃗ = 0⃗.

If 𝜕𝐶𝐼 = ∅, then we can choose 𝜒⃗ = 𝑌⃗𝒮 ∈ Yℎ(⃗0) ⊂ Xℎ in (5.10a), recall (3.7), to obtain that 𝑌⃗𝒮 is
constant in 𝐼. Then (5.10b), together with Assumption 5.8, gives that 𝑌⃗𝒮 = 0⃗. If 𝜕𝐶𝐼 ̸= ∅, on the other hand,
then Assumption 5.9 directly gives that 𝑌⃗𝒮 = 0⃗. Hence we have shown the existence of a unique solution to
(𝒫𝑚
𝒮 )ℎ. �

Remark 5.11. Similarly to Remark 5.6, in practice the system (5.9) is easiest solved by first eliminat-
ing 𝑚⃗𝑚+1. This can be achieved by replacing the test space 𝑉 ℎ

𝜕0
in (5.9c) with Yℎ(⃗0). Having computed

(𝛿𝑋⃗𝑚+1, 𝜅𝑚+1
𝒮 , 𝑌⃗ 𝑚+1

𝒮 ), the values 𝑚⃗𝑚+1 can then be obtained from (5.9c). For example, if 𝑞0 ∈ 𝜕𝑀𝐼 then we
have that

(𝑋⃗𝑚(𝑞0) · 𝑒⃗1) 𝑚⃗𝑚+1(𝑞0) =
(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝑚+1

𝒮 , 𝜒0 |𝑋⃗𝑚
𝜌 |
)︁(ℎ)

𝜈⃗𝑚(𝑞0) +
(︁

1, 𝜒0 |𝑋⃗𝑚
𝜌 |
)︁

𝑒⃗1

+
(︁
𝑋⃗𝑚 · 𝑒⃗1, (𝜒0)𝜌 |𝑋⃗𝑚

𝜌 |−1
)︁

𝑋⃗𝑚+1
𝜌 (𝑞0).

6. Numerical results

On recalling (4.13), (4.15) and (4.30), as the fully discrete energy for the two schemes (𝒫𝑚)ℎ and (𝒫𝑚
𝒮 )(ℎ)

we consider, respectively,

̂︀𝐸𝑚+1 = 𝜋

(︂
𝛼
[︁
Kℎ(𝑋⃗𝑚, 𝜅𝑚+1)− κ

]︁2
+ 2 𝜆, 𝑋⃗𝑚 · 𝑒⃗1 |𝑋⃗𝑚

𝜌 |
)︂ℎ

+ 𝛽
2

[︂
2𝜋
(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝑚+1 − 𝜈⃗𝑚 · 𝑒⃗1, |𝑋⃗𝑚

𝜌 |
)︁ℎ

−𝑀0

]︂2
− 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑚+1(𝑝) · 𝑒⃗1 + 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗𝑚+1(𝑝) · 𝑒⃗1, (6.1a)

̂︀𝐸𝑚+1
𝒮 = 𝜋

(︁
𝛼 [𝜅𝑚+1

𝒮 − κ]2 + 2𝜆, 𝑋⃗𝑚 · 𝑒⃗1|𝑋⃗𝑚
𝜌 |
)︁(ℎ)

+ 𝛽
2

[︂
2𝜋
(︁
𝑋⃗𝑚 · 𝑒⃗1 𝜅𝑚+1

𝒮 , |𝑋⃗𝑚
𝜌 |
)︁(ℎ)

−𝑀0

]︂2
− 2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑀 𝐼

𝑚⃗𝑚+1(𝑝) · 𝑒⃗1 + 2𝜋𝜍
∑︁

𝑝∈𝜕2𝐼∪𝜕𝐹 𝐼

𝑋⃗𝑚+1(𝑝) · 𝑒⃗1. (6.1b)

Given Γ0 = 𝑋⃗0(𝐼), we define the following initial data. First, we let 𝜇⃗0 be the true conormal to Γ0, i.e.
𝜇⃗0 = (−1)𝑝+1 𝜏⃗0(𝑝) for 𝑝 ∈ 𝜕𝐼 ∖ 𝜕0𝐼, recall (2.20), and then set 𝑚⃗0 = 𝜇⃗0 on 𝜕𝑀𝐼. Next, on recalling (4.10), we
let 𝜅⃗0 ∈ 𝑉 ℎ

𝜕0
be such that (︁

𝜅⃗0, 𝜂⃗ |𝑋⃗0
𝜌 |
)︁ℎ

+
(︀
𝜏⃗0, 𝜂⃗𝜌

)︀
=

∑︁
𝑝∈𝜕𝐼∖𝜕0𝐼

[︀
𝜇⃗0 · 𝜂⃗

]︀
(𝑝) ∀𝜂⃗ ∈ 𝑉 ℎ

𝜕0
,

and then define 𝜅0 = 𝜋ℎ
𝜕0

[𝜅⃗0 · 𝑣⃗0] ∈ 𝑊ℎ
𝜕0

. Moreover, we let 𝑌⃗ 0
⋆ ∈ 𝑉 ℎ be such that

𝑌⃗ 0
⋆ = 2𝜋𝜋⃗ℎ

[︁
|𝜔⃗0|−1𝑋⃗0 · 𝑒⃗1

(︁
𝛼
[︁
Kℎ(𝑋⃗0, 𝜅0)− κ

]︁
+ 𝛽𝒜0

)︁
𝑣⃗0
]︁
,

recall (4.15), (4.5), (4.6) and (5.1d), and then define 𝑌⃗ 0 ∈ Yℎ(2𝜋𝛼𝐺 𝑒⃗1) via

𝑌⃗ 0(𝑞𝑗) =

⎧⎪⎨⎪⎩
(︁
𝑌⃗ 0

⋆ (𝑞𝑗) · 𝑒⃗2

)︁
𝑒⃗2 𝑞𝑗 ∈ 𝜕0𝐼,

2𝜋𝛼𝐺 𝑒⃗1 𝑞𝑗 ∈ 𝜕𝑀𝐼,

𝑌⃗ 0
⋆ (𝑞𝑗) 𝑞𝑗 ∈ 𝐼 ∖ (𝜕0𝐼 ∪ 𝜕𝑀𝐼).
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Figure 2. (𝒫𝑚)ℎ Willmore flow for a torus. Solution at times 𝑡 = 0, 0.5, 2, 10, 50. Below a plot
of the discrete energy (6.1a) and of the ratio (6.2).

In addition, we set 𝜅0
𝒮 = Kℎ(𝑋⃗0, 𝜅0) ∈ 𝑉 ℎ, and let 𝑌⃗ 0

𝒮,⋆ ∈ 𝑉 ℎ be such that

𝑌⃗ 0
𝒮,⋆ = 2𝜋𝜋⃗ℎ

[︀
|𝜔⃗0|−1

(︀
𝛼 [𝜅0

𝒮 − κ] + 𝛽𝒜0
𝒮
)︀
𝑣⃗0
]︀
,

recall (4.41b), (4.6) and (5.9d). Then we define 𝑌⃗ 0
𝒮 ∈ 𝑉 ℎ

𝜕0
, with 𝜋⃗ℎ

[︁
(𝑋⃗0 · 𝑒⃗1) 𝑌⃗ 0

𝒮

]︁
∈ Yℎ(2𝜋𝛼𝐺 𝑒⃗1), via

𝑌⃗ 0
𝒮 (𝑞𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︁
𝑌⃗ 0
𝒮,⋆(𝑞𝑗) · 𝑒⃗2

)︁
𝑒⃗2 𝑞𝑗 ∈ 𝜕0𝐼,

2𝜋𝛼𝐺 𝑒⃗1

𝑋⃗0(𝑞𝑗) · 𝑒⃗1

𝑞𝑗 ∈ 𝜕𝑀𝐼,

𝑌⃗ 0
𝒮,⋆(𝑞𝑗) 𝑞𝑗 ∈ 𝐼 ∖ (𝜕0𝐼 ∪ 𝜕𝑀𝐼).

Unless otherwise stated we use 𝛼 = 1, κ = 𝜆 = 𝛽 = 𝛼𝐺 = 𝜍 = 0 and employ uniform time steps, ∆𝑡𝑚 = ∆𝑡,
𝑚 = 0, . . . ,𝑀 − 1.

6.1. Surfaces without boundary

6.1.1. Genus 1 surfaces

In this subsection, we consider genus 1 surfaces without boundary, so that 𝜕𝐼 = ∅.
Starting with an elongated cigar-like shape for Γ0, we observe the evolution shown in Figure 2 for the scheme

(𝒫𝑚)ℎ, (5.1). The discretization parameters are 𝐽 = 128 and ∆𝑡 = 10−4. The observed final radius is 2.14, with
the centre at (3.03, 0). Hence 𝑅/𝑟 = 3.03/2.14 = 1.414 ≈

√
2. Here we recall that the ratio

√
2 characterizes the

Clifford torus, the known minimizer of the Willmore energy (2.13), with κ = 0 and 𝛼 = 1, among all genus 1
surfaces, see [28], with Willmore energy equal to 4 𝜋2 = 39.478. We note that, as expected, the energy (6.1a) is
monotonically decreasing, while the ratio

𝑟𝑚 =
max𝑗=1,...,𝐽 |𝑋⃗𝑚(𝑞𝑗)− 𝑋⃗𝑚(𝑞𝑗−1)|
min𝑗=1,...,𝐽 |𝑋⃗𝑚(𝑞𝑗)− 𝑋⃗𝑚(𝑞𝑗−1)|

(6.2)

approaches one as time increases.
When we repeat the simulation for the two schemes (𝒫𝑚

𝒮 )(ℎ), we note markedly different tangential motions.
For the scheme with mass lumping throughout, (𝒫𝑚

𝒮 )ℎ, the vertices coalesce on the left side of the curve and
eventually the algorithm breaks down. For the scheme (𝒫𝑚

𝒮 ), on the other hand, the density of vertices is higher
on the right side of the circular shape, with the ratio (6.2) smaller than 2. We demonstrate this in Figure 3,
where we also show an evolution of the ratio (6.2) for the scheme (𝒫𝑚

𝒮 ) over time.
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Figure 3. (𝒫𝑚
𝒮 )(ℎ) Same evolution as in Figure 2. Left: Γ𝑚 at time 𝑡 = 10 for (𝒫𝑚

𝒮 )ℎ, middle:
Γ𝑚 at time 𝑡 = 50 for (𝒫𝑚

𝒮 ), right: the ratio (6.2) over time for (𝒫𝑚
𝒮 ).

Because of the bad behaviour of the scheme (𝒫𝑚
𝒮 )ℎ in practice, we will discard that scheme from now on.

We will mainly concentrate on the scheme (𝒫𝑚)ℎ, which in practice leads to nearly equidistributed polygonal
curves, and at times compare it to the scheme (𝒫𝑚

𝒮 ).

6.1.2. Genus 0 surfaces

In this subsection, we consider genus 0 surfaces without boundary, so that 𝜕0𝐼 = {0, 1}. We will parameterize
Γ clockwise, so that 𝜈⃗ induces the outer normal 𝑛⃗𝒮 on 𝒮, recall (2.3) and (2.4).

We begin with a convergence experiment. To this end, we note that a sphere of radius 𝑅(𝑡), where 𝑅(𝑡)
satisfies

𝑅′(𝑡) = − κ
𝑅(𝑡) ( 2

𝑅(𝑡) + κ), 𝑅(0) = 𝑅0 ∈ R>0, (6.3)

is a solution to (2.14). The nonlinear ODE (6.3), in the case κ ̸= 0, is solved by 𝑅(𝑡) = 𝑧(𝑡) − 2
κ , where

𝑧(𝑡) is such that 1
2 (𝑧2(𝑡) − 𝑧2

0) − 4
κ (𝑧(𝑡) − 𝑧0) + 4

κ2 ln 𝑧(𝑡)
𝑧0

+ κ2𝑡 = 0, with 𝑧0 = 𝑅0 + 2
κ . We use the solution

to (6.3), with κ = −1, and a sequence of approximations for the unit sphere (𝑅0 = 1) to compute the error
‖Γ−Γℎ‖𝐿∞ = max𝑚=1,...,𝑀 max𝑗=0,...,𝐽

⃒⃒⃒
|𝑋⃗𝑚(𝑞𝑗)| −𝑅(𝑡𝑚)

⃒⃒⃒
over the time interval [0, 1] between the true solution

and the discrete solutions for the schemes (𝒫𝑚)ℎ and (𝒫𝑚
𝒮 ). In particular, we choose 𝑋⃗0 ∈ 𝑉 ℎ

𝜕0
with

𝑋⃗0(𝑞𝑗) =

(︃
cos
[︀(︀

1
2 − 𝑞𝑗

)︀
𝜋 + 0.1 cos

(︀(︀
1
2 − 𝑞𝑗

)︀
𝜋
)︀]︀

sin
[︀(︀

1
2 − 𝑞𝑗

)︀
𝜋 + 0.1 cos

(︀(︀
1
2 − 𝑞𝑗

)︀
𝜋
)︀]︀)︃ , 𝑗 = 0, . . . , 𝐽,

recall (4.1), to ensure an initially non-uniform distribution of vertices. We also define the error

‖Γ− Γℎ‖𝐿∞(𝐿2) = max
𝑚=1,...,𝑀

[︃(︂⃒⃒⃒
|𝑋⃗𝑚| −𝑅(𝑡𝑚)|

⃒⃒⃒2
, |𝑋⃗𝑚

𝜌 |
)︂ℎ
]︃ 1

2

.

Here we used the time step size ∆𝑡 = 0.1 ℎ2
Γ0 , where ℎΓ0 is the maximal edge length of Γ0. The computed errors,

together with their experimental order of convergence (EOC), are reported in Tables 2 and 3. We remark that
repeating these simulations for the scheme (𝒫𝑚

𝒮 )ℎ failed, because of tangential motion leading to vertices in the
left halfplane.

We remark that for the experiments in Table 2, the ratio (6.2), which at time 𝑡 = 0 starts off at about
𝑟0 = 1.22, always decreases monotonically and approaches the value 1, so that the final semicircle is nearly
equidistributed. For the experiments in Table 3, however, this is not the case, and the distribution of vertices
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Table 2. Errors for the convergence test for the scheme (𝒫𝑚)ℎ with κ = −1. We also show
the ratio (6.2) at time 𝑡 = 1.

𝐽 ℎΓ0 ‖Γ− Γℎ‖𝐿∞ EOC ‖Γ− Γℎ‖𝐿∞(𝐿2) EOC 𝑟𝑀

32 1.0792e-01 1.3951e-02 – 7.3622e-03 – 1.06
64 5.3988e-02 4.1092e-03 1.76 1.8232e-03 2.02 1.06
128 2.6997e-02 1.1867e-03 1.79 4.5434e-04 2.00 1.06
256 1.3499e-02 3.3690e-04 1.82 1.1347e-04 2.00 1.06
512 6.7495e-03 9.4318e-05 1.84 2.8358e-05 2.00 1.06

Table 3. Errors for the convergence test for the scheme (𝒫𝑚
𝒮 ) with κ = −1. We also show the

ratio (6.2) at time 𝑡 = 1.

𝐽 ℎΓ0 ‖Γ− Γℎ‖𝐿∞ EOC ‖Γ− Γℎ‖𝐿∞(𝐿2) EOC 𝑟𝑀

32 1.0792e-01 1.5595e-02 – 9.8711e-03 – 2.79
64 5.3988e-02 5.5381e-03 1.49 2.7237e-03 1.86 3.32
128 2.6997e-02 1.9703e-03 1.49 7.5278e-04 1.86 3.96
256 1.3499e-02 7.0062e-04 1.49 2.0783e-04 1.86 4.72
512 6.7495e-03 2.4888e-04 1.49 5.7280e-05 1.86 5.61
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Figure 4. (𝒫𝑚
𝒮 ) Generalized Willmore flow with κ = −1 for a sphere. A plot of (6.2) over

time and a plot of the solution at time 𝑡 = 1 for the run with 𝐽 = 64 from Table 3.

remains very nonuniform. In each case, the longest elements are the two elements touching the 𝑒⃗2-axis, while
the shortest elements are found far away from the axis. As an example, we show the plot of (6.2) over time, as
well as the distribution of vertices at time 𝑡 = 1 for the run with 𝐽 = 64 in Figure 4, and these are generic for
the behaviour for every value of 𝐽 .

We conjecture that these long elements at the boundary are the reason for the suboptimal convergence rates
seen in Table 3. We note that in 𝐿∞(𝐿1) the convergence order is quadratic for the scheme (𝒫𝑚

𝒮 ), although we
do not display the precise numbers here.

Next we consider a numerical experiment for Helfrich flow, i.e. surface area and volume preserving Willmore
flow, for a flat disc. The dimensions of the initial disc are chosen as 5× 1× 5, so that the flow evolves towards
a sharp that resembles a human red blood cell, see Figure 5. The discretization parameters for the two schemes
are 𝐽 = 128, ∆𝑡 = 10−4 and 𝑇 = 0.2.
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Figure 5. (𝒫𝑚)ℎ Helfrich flow for a flat disc of dimension 5×1×5. Solution at times 𝑡 = 0, 0.2,
and separately at time 𝑡 = 0.2. On the right we show the final distribution of vertices for the
scheme (𝒫𝑚

𝒮 ). Below we visualize the axisymmetric surfaces generated by Γ𝑚 at times 𝑡 = 0
and 𝑡 = 0.2.

6.2. Surfaces with boundary

In the case of clamped boundary conditions, recall (2.32), we define 𝜁(𝑝), for 𝑝 ∈ 𝜕𝐶𝐼, via 𝜁(𝑝) =
(sin 𝜗(𝑝), cos 𝜗(𝑝))𝑇 , where 𝜗(𝑝) ∈ R, 𝑝 ∈ 𝜕𝐶𝐼, denote the prescribed contact angle with the 𝑥1-axis.

We recall from Lemmas 5.4 and 5.10 that we can prove existence of a unique solution to the linear systems
arising at each time level in the presence of clamped boundary conditions only if Assumption 5.2 holds. This
assumption is violated if Γ𝑚 is a straight line, and so the linear systems are indeed singular. In all other cases,
however, the linear systems for the simulations we present in the following are nonsingular, and so we can find
their unique solutions.

6.2.1. Surfaces with one connected boundary component

In this subsection, we consider the situation 𝜕0𝐼 = {0} and 𝜕𝐼 = {0, 1}. On recalling (2.3) this means that
the normal 𝜈⃗(0, 𝑡) will point upwards.

We show two experiments for Navier boundary conditions in Figure 6, where we observe that depending on
the sign of the spontaneous curvature, the sphere-like cap is either convex or concave. Our numerical results are
in agreement with Figures 9 and 10 in [6]. As the discretization parameters we choose 𝐽 = 64 and ∆𝑡 = 10−4.

The same simulations as in Figures 6, but for clamped boundary conditions are shown in Figure 7.

6.2.2. Surfaces with two connected boundary components

In this subsection, we consider the case 𝜕0𝐼 = ∅ and 𝜕𝐼 = {0, 1}. We will always parameterize Γ(0) from
left to right, so that the normal 𝜈⃗ for a straight line points upwards. When the curve Γ(0) is vertical, we
parameterize it from top to bottom so that the normal 𝜈⃗ points to the right. Throughout this subsection we
choose the discretization parameters 𝐽 = 64 and ∆𝑡 = 10−4.

Navier boundary conditions for an open cylinder, when Γ(0) is a straight vertical line, are shown in Figure 8.
Here we note that for κ = −1 the evolution is stationary, which is in contrast to Figure 14, below.

In order to see the influence of a negative spontaneous curvature on the evolution, we start two simulations
for Navier conditions for a cut cylinder with a dumbbell shape, see Figure 9. We observe that the dumbbell
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Figure 6. (𝒫𝑚)ℎ Generalized Willmore flow with Navier boundary conditions for a sphere-
like cap with κ = 1, top, and κ = −1, bottom. Solution at times 𝑡 = 0, 0.1, 0.4 (top) and
𝑡 = 0, 1, 5, 10 (bottom), as well as a plot of the discrete energy (6.1a) over time. We also show
the axisymmetric surfaces generated by Γ0 and Γ𝑀 .
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Figure 7. (𝒫𝑚)ℎ Generalized Willmore flow with clamped boundary conditions with conormal
angle 𝜗(1) = 7

6 𝜋 = 210∘ for a sphere-like cap with κ = 1, left, and κ = −1, right. The solutions
are shown at times 𝑡 = 0, 0.5, and we also visualize the axisymmetric surfaces generated by
Γ𝑀 .
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Figure 8. (𝒫𝑚)ℎ Generalized Willmore flow with Navier boundary conditions for an open
cylinder. Left with κ = 1, right with κ = −1. The solutions are shown at times 𝑡 = 0, 0.5, and
we also visualize the axisymmetric surfaces generated by Γ𝑀 .
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Figure 9. (𝒫𝑚)ℎ Generalized Willmore flow with Navier boundary conditions for a dumbbell-
like open cylinder shape. Left with κ = −1, right with κ = −2. The solutions are shown at
times 𝑡 = 0, 1, and we also visualize the axisymmetric surfaces generated by Γ𝑀 .

becomes more and more pronounced, the smaller we choose κ. For κ = −2 the evolution nearly leads to a
pinch-off. Choosing κ = −3 does indeed lead to pinch-off, which we do not show in Figure 9.

Two simulations for the same initial data, but now with 𝜕𝐹 𝐼 = 𝜕𝐼, are shown in Figure 10. Here the evolution
for κ = 1 appears to approach the inner half of a torus, while for κ = −1 the limiting shape is similar to an
hourglass. In both cases the final discrete energy is approximately zero.

In the former case we can prevent the energy converging to zero by requiring the endpoints to remain on lines
parallel to the 𝑥1-axis. I.e. we use the same initial data, but now let 𝜕𝑆𝐹 𝐼 = 𝜕2𝐼 = 𝜕𝐼. The evolution is shown
in Figure 11, where a numerical steady state is reached with discrete energy ̂︀𝐸𝑚+1 > 25. For completeness we
also display the corresponding simulation with κ = −1, which is indistinguishable from the one in Figure 10.

Different simulations for the top part of a torus, with clamped boundary conditions at the inner ring, and
free boundary conditions at the outer ring, are shown in Figure 12.

Repeating these experiments for Navier boundary conditions at the inner ring of the torus cap, and enforcing
surface area preservation, leads to the simulations shown in Figure 13. Here, for κ = 1 we observe pinch-off,
and so we stop the simulation just prior to the pinch-off happening.
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Figure 10. (𝒫𝑚)ℎ Generalized Willmore flow with free boundary conditions for a dumbbell-
like open cylinder shape. Left with κ = 1, right with κ = −1. The solutions are shown at times
𝑡 = 0, 0.1, 0.5, 1, and we also visualize the axisymmetric surfaces generated by Γ𝑀 .
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Figure 11. (𝒫𝑚)ℎ Generalized Willmore flow with semifree boundary conditions for a
dumbbell-like open cylinder shape. Left with κ = 1, right with κ = −1. The solutions are
shown at times 𝑡 = 0, 1, 10, and we also visualize the axisymmetric surfaces generated by Γ𝑀 .
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Figure 12. (𝒫𝑚)ℎ Generalized Willmore flow with mixed clamped and free boundary con-
ditions for a torus-like cap. Left with κ = 1, right with κ = −1. The contact angle for the
clamped node is chosen as 𝜗(0) = 7

6 𝜋 = 210∘. The solutions are shown at times 𝑡 = 0, 0.1, 1, 5,
and we also visualize the axisymmetric surfaces generated by Γ𝑀 .
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Figure 13. (𝒫𝑚)ℎ Surface area preserving generalized Willmore flow with mixed Navier and
free boundary conditions for a torus-like cap. Left with κ = 1, right with κ = −1. The solutions
are shown at times 𝑡 = 0, 1, 5 (left) and at times 𝑡 = 0, 5, 10 (right), and we also visualize the
axisymmetric surfaces generated by Γ𝑀 .
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Figure 14. (𝒫𝑚)ℎ Generalized Willmore flow, for 𝛼𝐺 = −1, with Navier boundary conditions
for an open cylinder. Left with κ = 1, right with κ = −1. The solutions are shown at times
𝑡 = 0, 0.5, and we also visualize the axisymmetric surfaces generated by Γ𝑀 .

Finally, we show two evolutions for Gaussian curvature effects. To this end, we repeat the simulations in
Figure 8, but now with 𝛼𝐺 = −1. In contrast to the earlier results, the cylindrical initial data is no longer
stationary for κ = −1. See Figure 14 for a visualization of the results.

Appendix A. Consistency of weak formulations

A.1. Formulations based on ~

Here we derive the strong form for (3.22), together with possible boundary conditions for the 𝐿2-gradient
flow of (2.21). We recall from (3.12), (3.13), (3.35) and (2.7) that

𝑦⃗ · 𝜈⃗ = 2𝜋𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ] , where κ𝒮 = κ − 𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
and 𝒜𝒮 = 2𝜋 (𝑥⃗ · 𝑒⃗1 κ𝒮 , |𝑥⃗𝜌|)−𝑀0. (A.1)

We begin by re-stating (3.22a), on noting (A.1) and (3.5b), as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) =
(︀
𝑦⃗𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗ |𝑥⃗𝜌|−1

)︀
− 𝜋

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ, 𝜒⃗ · 𝑒⃗1 |𝑥⃗𝜌|+ (𝑥⃗ · 𝑒⃗1) 𝜒⃗𝜌 · 𝜏⃗

)︁
− 2𝜋𝛼 (κ𝒮 − κ, (κ − κ𝒮) 𝜒⃗ · 𝑒⃗1 |𝑥⃗𝜌|)− 2𝜋𝛽𝒜𝒮 (𝑒⃗2, 𝜒⃗𝜌)

− 2𝜋𝛼 (κ𝒮 − κ, (𝜏⃗ · 𝑒⃗1) 𝜒⃗𝜌 · 𝜈⃗) +
(︀
κ 𝑦⃗⊥, 𝜒⃗𝜌

)︀
− 2𝜋𝜍

∑︁
𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

𝜒⃗(𝑝) · 𝑒⃗1 =
7∑︁

𝑖=1

𝑇𝑖(𝜒⃗) ∀𝜒⃗ ∈ X. (A.2)
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We now set
ℬ = 𝜕0𝐼 ∪ 𝜕𝑆𝐹 𝐼 ∪ 𝜕𝐹 𝐼. (A.3)

On recalling (2.3) and (3.5b) throughout these 𝑇𝑖(𝜒⃗) calculations for any 𝜒⃗ ∈ X, we have that

𝑇1(𝜒⃗) = ((𝑦⃗𝑠 · 𝜈⃗) 𝜈⃗, 𝜒⃗𝜌) = − ([(𝑦⃗𝑠 · 𝜈⃗) 𝜈⃗]𝑠, 𝜒⃗ |𝑥⃗𝜌|) +
∑︁
𝑝∈ℬ

(−1)𝑝+1 [(𝑦⃗𝑠 · 𝜈⃗) 𝜒⃗ · 𝜈⃗] (𝑝) = 𝐴1(𝜒⃗) + 𝐵1(𝜒⃗). (A.4)

Moreover,

4∑︁
𝑖=2

𝑇𝑖(𝜒⃗) = −𝜋 (𝛼 (κ𝒮 − κ) (2κ − κ𝒮 − κ) + 2𝜆 + 2𝛽𝒜𝒮 κ, 𝜒⃗ · 𝑒⃗1 |𝑥⃗𝜌|)

− 𝜋
(︁
𝑥⃗ · 𝑒⃗1

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ

)︁
𝜏⃗ + 2𝛽𝒜𝒮 𝑒⃗2, 𝜒⃗𝜌

)︁
= 𝐴2(𝜒⃗) + 𝑇8(𝜒⃗), (A.5)

where

𝑇8(𝜒⃗) = 𝜋
(︁[︁

𝑥⃗ · 𝑒⃗1

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ

)︁
𝜏⃗
]︁

𝑠
, 𝜒⃗ |𝑥⃗𝜌|

)︁
− 𝜋

∑︁
𝑝∈ℬ

(−1)𝑝+1
[︁
𝑥⃗ · 𝑒⃗1

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ

)︁
𝜒⃗ · 𝜏⃗ + 2𝛽𝒜𝒮 𝜒⃗ · 𝑒⃗2

]︁
(𝑝) = 𝐴3(𝜒⃗) + 𝐵3(𝜒⃗). (A.6)

In addition,

𝑇5(𝜒⃗) = 2𝜋𝛼 ([(κ𝒮 − κ) (𝜏⃗ · 𝑒⃗1) 𝜈⃗]𝑠 , 𝜒⃗ |𝑥⃗𝜌|)− 2𝜋𝛼
∑︁
𝑝∈ℬ

(−1)𝑝+1 [(κ𝒮 − κ) (𝜏⃗ · 𝑒⃗1) 𝜒⃗ · 𝜈⃗] (𝑝) = 𝐴4(𝜒⃗) + 𝐵4(𝜒⃗).

(A.7)
Finally,

𝑇6(𝜒⃗) = −
(︀
(κ 𝑦⃗⊥)𝑠, 𝜒⃗ |𝑥⃗𝜌|

)︀
+
∑︁
𝑝∈ℬ

(−1)𝑝+1
[︀
κ 𝜒⃗ · 𝑦⃗⊥

]︀
(𝑝) = 𝐴5(𝜒⃗) + 𝐵5(𝜒⃗), (A.8)

and 𝐵2(𝜒⃗) = 𝑇7(𝜒⃗). With the above definitions, we can write (A.2) as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) =
7∑︁

𝑖=1

𝑇𝑖(𝜒⃗) =
5∑︁

𝑖=1

𝐴𝑖(𝜒⃗) +
5∑︁

𝑖=1

𝐵𝑖(𝜒⃗) ∀𝜒⃗ ∈ X. (A.9)

It follows from (3.23), (3.24) and
𝜈⃗𝑠 = −κ 𝜏⃗ , (A.10)

that

((𝑦⃗𝑠 · 𝜈⃗) 𝜈⃗ + κ 𝑦⃗⊥)𝑠 = ((𝑦⃗ · 𝜈⃗)𝑠 𝜈⃗ + κ (𝑦⃗ · 𝜈⃗) 𝜏⃗)𝑠 = (𝑦⃗ · 𝜈⃗)𝑠𝑠 𝜈⃗ + (𝑦⃗ · 𝜈⃗)𝑠 𝜈⃗𝑠 + κ (𝑦⃗ · 𝜈⃗)𝑠 𝜏⃗ + (𝑦⃗ · 𝜈⃗) (κ 𝜏⃗)𝑠

= (𝑦⃗ · 𝜈⃗)𝑠𝑠 𝜈⃗ + (𝑦⃗ · 𝜈⃗) (κ 𝜏⃗)𝑠,

and so
𝐴1(𝜒⃗) + 𝐴5(𝜒⃗) = −

(︀[︀
(𝑦⃗ · 𝜈⃗)𝑠𝑠 + 𝑦⃗ · 𝜈⃗ κ2

]︀
𝜈⃗ + 𝑦⃗ · 𝜈⃗ κ𝑠 𝜏⃗ , 𝜒⃗ |𝑥⃗𝜌|

)︀
. (A.11)

Choosing 𝜒⃗ = 𝜒 𝜏⃗ , for 𝜒 ∈ 𝐻1
0 (𝐼), in (A.9), and combining (A.4)–(A.8) and (A.11), we obtain for the right

hand side of (A.9)

7∑︁
𝑖=1

𝑇𝑖(𝜒 𝜏⃗) =
5∑︁

𝑖=1

𝐴𝑖(𝜒 𝜏⃗) = − (𝑦⃗ · 𝜈⃗ κ𝑠 + 𝜋 [𝛼 (κ𝒮 − κ) (2κ − κ𝒮 − κ) + 2𝜆 + 2𝛽𝒜𝒮 κ] 𝜏⃗ · 𝑒⃗1, 𝜒 |𝑥⃗𝜌|)
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+ 𝜋
(︁[︁

𝑥⃗ · 𝑒⃗1

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ

)︁]︁
𝑠
− 2𝛼 (κ𝒮 − κ) 𝜏⃗ · 𝑒⃗1 κ, 𝜒 |𝑥⃗𝜌|

)︁
= −𝜋 𝛼

(︁
𝑥⃗ · 𝑒⃗1

(︁
2(κ𝒮 − κ) κ𝑠 −

[︁
[κ𝒮 − κ]2

]︁
𝑠

)︁
, 𝜒 |𝑥⃗𝜌|

)︁
+ 2𝜋𝛼 ((κ𝒮 − κ)(κ𝒮 − 2κ), 𝜏⃗ · 𝑒⃗1 𝜒 |𝑥⃗𝜌|)

= 2𝜋𝛼 ((κ𝒮 − κ) [𝑥⃗ · 𝑒⃗1 (κ𝒮 − κ)𝑠 + 𝜏⃗ · 𝑒⃗1 (κ𝒮 − 2κ)] , 𝜒 |𝑥⃗𝜌|) , (A.12)

where we have noted that 𝜏⃗𝑠 · 𝜏⃗ = 0, (A.10), (2.3) and (A.1). In addition, it holds, on noting (A.1), (2.3) and
(A.10), that

𝑥⃗ · 𝑒⃗1 (κ𝒮 − κ)𝑠 = −𝑥⃗ · 𝑒⃗1

[︂
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

]︂
𝑠

=
(𝜈⃗ · 𝑒⃗1) 𝜏⃗ · 𝑒⃗1 − (𝜈⃗𝑠 · 𝑒⃗1) 𝑥⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
= 𝜏⃗ · 𝑒⃗1 (2κ − κ𝒮),

and so substituting into (A.12) yields that
∑︀7

𝑖=1 𝑇𝑖(𝜒 𝜏⃗) = 0, as expected.
Choosing 𝜒⃗ = 𝜒 𝜈⃗, for 𝜒 ∈ 𝐻1

0 (𝐼), in (A.9), and combining (A.4)–(A.8) and (A.11), we obtain for the right
hand side of (A.9)

7∑︁
𝑖=1

𝑇𝑖(𝜒 𝜈⃗) =

5∑︁
𝑖=1

𝐴𝑖(𝜒 𝜈⃗) = −
(︁
(𝑦⃗ · 𝜈⃗)𝑠𝑠 + 𝑦⃗ · 𝜈⃗ κ2, 𝜒 |𝑥⃗𝜌|

)︁
− 𝜋 ([𝛼 (κ𝒮 − κ) (2κ − κ𝒮 − κ) + 2𝜆 + 2𝛽𝒜𝒮 κ] 𝜈⃗ · 𝑒⃗1, 𝜒 |𝑥⃗𝜌|)

+ 𝜋
(︁
𝑥⃗ · 𝑒⃗1

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ

)︁
κ, 𝜒 |𝑥⃗𝜌|

)︁
+ 2𝜋𝛼

(︀
[(κ𝒮 − κ) 𝜏⃗ · 𝑒⃗1]𝑠 , 𝜒 |𝑥⃗𝜌|

)︀
= − 2𝜋

(︁
(𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ])𝑠𝑠 + 𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ] κ2, 𝜒 |𝑥⃗𝜌|

)︁
+ 𝜋

(︁[︁
𝛼
[︁
κ2
𝒮 − κ2

]︁
− 2𝜆− 2𝛽𝒜𝒮 κ

]︁
𝜈⃗ · 𝑒⃗1, 𝜒 |𝑥⃗𝜌|

)︁
+ 𝜋

(︁
𝑥⃗ · 𝑒⃗1

[︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ

]︁
κ, 𝜒 |𝑥⃗𝜌|

)︁
+ 2𝜋𝛼

(︀
(κ𝒮)𝑠 𝜏⃗ · 𝑒⃗1, 𝜒 |𝑥⃗𝜌|

)︀
= − 2𝜋 (𝛼𝑥⃗ · 𝑒⃗1(κ𝒮)𝑠𝑠 + 𝛼𝜏⃗ · 𝑒⃗1(κ𝒮)𝑠 + κ𝜈⃗ · 𝑒⃗1 [𝛼(κ𝒮 − κ) + 𝛽𝒜𝒮 ] , 𝜒|𝑥⃗𝜌|)

− 2𝜋
(︁
𝑥⃗ · 𝑒⃗1 [𝛼(κ𝒮 − κ) + 𝛽𝒜𝒮 ] κ2, 𝜒|𝑥⃗𝜌|

)︁
+ 𝜋

(︁
𝑥⃗ · 𝑒⃗1

[︁
𝛼
[︁
κ2
𝒮 − κ2

]︁
− 2𝜆− 2𝛽𝒜𝒮κ

]︁
(κ − κ𝒮), 𝜒|𝑥⃗𝜌|

)︁
+ 𝜋

(︁
𝑥⃗ · 𝑒⃗1

[︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮κ

]︁
κ, 𝜒|𝑥⃗𝜌|

)︁
= − 2𝜋𝛼 ((𝑥⃗ · 𝑒⃗1(κ𝒮)𝑠)𝑠, 𝜒|𝑥⃗𝜌|) + 2𝜋𝜆 (𝑥⃗ · 𝑒⃗1κ𝒮 , 𝜒|𝑥⃗𝜌|) + 𝜋𝛼

(︁
𝑥⃗ · 𝑒⃗1

[︁
κ2
𝒮 − κ2

]︁
(κ − κ𝒮), 𝜒|𝑥⃗𝜌|

)︁
+ 4𝜋𝛽𝒜𝒮 (𝑥⃗ · 𝑒⃗1, κ(κ𝒮 − κ), 𝜒|𝑥⃗𝜌|) + 𝜋𝛼

(︁
𝑥⃗ · 𝑒⃗1 (κ𝒮 − κ)

[︁
2(κ𝒮 − κ)κ − 2κ2 + (κ𝒮 − κ)κ

]︁
, 𝜒|𝑥⃗𝜌|

)︁
= − 2𝜋𝛼 ((𝑥⃗ · 𝑒⃗1(κ𝒮)𝑠)𝑠, 𝜒|𝑥⃗𝜌|) + 2𝜋𝜆 (𝑥⃗ · 𝑒⃗1κ𝒮 , 𝜒|𝑥⃗𝜌|)− 𝜋𝛼

(︁
𝑥⃗ · 𝑒⃗1

[︁
κ2
𝒮 − κ2

]︁
κ𝒮 , 𝜒|𝑥⃗𝜌|

)︁
+ 4𝜋𝛽𝒜𝒮 (𝑥⃗ · 𝑒⃗1, κ(κ𝒮 − κ), 𝜒|𝑥⃗𝜌|) + 4𝜋𝛼 (𝑥⃗ · 𝑒⃗1 (κ𝒮 − κ) (κ𝒮 − κ) κ, 𝜒|𝑥⃗𝜌|) , (A.13)

where we have noted that 𝜈⃗𝑠 · 𝜈⃗ = 0, (2.6), (A.1) and (2.3). Clearly, it follows from (A.2), (A.13) and (2.7) that
(2.24) holds.

It remains to show that the weak formulation (3.22) indeed enforces the desired boundary conditions. Here,
we recall that apart from the axisymmetric boundary conditions (2.35) on 𝜕0𝐼, we consider the following four
different types of boundary conditions on 𝜕𝐼 ∖ 𝜕0𝐼.

(i) 𝜕𝒮(𝑡) is free, i.e. 𝜕𝐹𝒮(𝑡), see (2.25) for 𝜕𝒮(𝑡) and (2.30) in the axisymmetric case.
(ii) 𝜕𝒮(𝑡) ⊂ 𝜕𝒟 is semifree, i.e. 𝜕𝑆𝐹𝒮(𝑡), see (2.27) for 𝜕𝒮(𝑡) and (2.31) in the axisymmetric case.
(iii) 𝜕𝒮(𝑡) clamped, i.e. 𝜕𝐶𝒮(𝑡), see (2.28) for 𝜕𝒮(𝑡) and (2.33) in the axisymmetric case.
(iv) 𝜕𝒮(𝑡) having Navier conditions, i.e. 𝜕𝑁𝒮(𝑡), see (2.29) for 𝜕𝒮(𝑡) and (2.34) in the axisymmetric case.

Firstly, we recall from (3.22) that 𝑥⃗(·, 𝑡) ∈ 𝑉 𝜕0
with 𝑥⃗𝑡(·, 𝑡) ∈ X, for 𝑡 ∈ (0, 𝑇 ], imposes strongly that (2.31a),

(2.33a), (2.34a) and (2.35a) hold. Furthermore, we note that (3.22c) weakly imposes (2.35b) and (2.33b), recall
the paragraph below (3.8). This means that we still need to show (2.35c), (2.30), (2.31b), (2.31c) and (2.34b).
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We begin with (2.35c). To this end, we choose test functions 𝜒⃗ = 𝜒 𝜈⃗ in (A.2), where 𝜒 ∈ 𝐻1(𝐼) is zero away
from 𝜕0𝐼, to obtain

2𝜋 ((𝑥⃗ · 𝑒⃗1)𝑥⃗𝑡 · 𝜈⃗, 𝜒|𝑥⃗𝜌|) =
(︀
𝑦⃗𝜌 · 𝜈⃗, 𝜒𝜌 |𝑥⃗𝜌|−1

)︀
− 𝜋

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ, 𝜒 𝜈⃗ · 𝑒⃗1 |𝑥⃗𝜌|+ (𝑥⃗ · 𝑒⃗1) 𝜏⃗ · 𝜈⃗𝜌 𝜒

)︁
− 2𝜋𝛼 (κ𝒮 − κ, (κ − κ𝒮) 𝜒 𝜈⃗ · 𝑒⃗1 |𝑥⃗𝜌|)− 2𝜋𝛼 (κ𝒮 − κ, (𝜏⃗ · 𝑒⃗1) 𝜒𝜌) +

(︀
κ 𝑦⃗⊥ − 2𝜋𝛽𝒜𝒮 𝑒⃗2, 𝜒𝜌 𝜈⃗ + 𝜒 𝜈⃗𝜌

)︀
.
(A.14)

We are interested in the boundary condition that is weakly enforced by (A.14) on 𝜕0𝐼, and so the only relevant
terms are the ones involving 𝜒𝜌 on the right hand side of (A.14). They simplify, on noting from (2.3) that
𝜈⃗ · 𝑒⃗2 = 𝜏⃗ · 𝑒⃗1, and on recalling (3.24) and (A.1), to(︀

𝑦⃗𝜌 · 𝜈⃗, 𝜒𝜌 |𝑥⃗𝜌|−1
)︀
− 2𝜋𝛼 (κ𝒮 − κ, (𝜏⃗ · 𝑒⃗1) 𝜒𝜌) +

(︀
κ 𝑦⃗⊥ − 2𝜋𝛽𝒜𝒮 𝑒⃗2, 𝜒𝜌 𝜈⃗

)︀
=
(︀
𝑦⃗𝑠 · 𝜈⃗ − 2𝜋(𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮) (𝜏⃗ · 𝑒⃗1) + κ 𝑦⃗⊥ · 𝜈⃗, 𝜒𝜌

)︀
= ((𝑦⃗ · 𝜈⃗)𝑠 − 2𝜋(𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮) (𝜏⃗ · 𝑒⃗1), 𝜒𝜌) = 2𝜋𝛼

(︀
𝑥⃗ · 𝑒⃗1 (κ𝒮)𝜌, 𝜒𝜌 |𝑥⃗𝜌|−1

)︀
. (A.15)

We can now argue as in Appendix A.1 of [7] to show that despite the degenerate weight in the last term in
(A.15), the identity (A.14) gives rise to the boundary condition (κ𝒮)𝜌 = 0 on 𝜕0𝐼. In particular, we note that
all the integrands in all the remaining terms converge to zero for 𝜌 approaching 𝜕0𝐼, on recalling (2.10). This
proves that (3.22a) weakly enforces (2.35c).

Next we recall from (2.37) and (3.15) that

𝑦⃗ = 2𝜋𝛼𝐺 𝑒⃗1 on 𝜕𝑀𝐼 = 𝜕𝑁𝐼 ∪ 𝜕𝑆𝐹 𝐼 ∪ 𝜕𝐹 𝐼.

Combining with (A.1) yields that

𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 − 𝛼𝐺
𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
= 0 on 𝜕𝑀𝐼. (A.16)

Hence, we have that (2.30c), (2.31c) and (2.34b) are imposed strongly. Overall, we still need to show (2.30a),
(2.30b) and (2.31b). To this end, we derive conditions that make the second sum in (A.9) vanish for all test
functions 𝜒⃗ ∈ X. It follows from (A.4) and (A.8), on recalling (3.24) and (A.1), that

𝐵1(𝜒⃗) + 𝐵5(𝜒⃗) =
∑︁
𝑝∈ℬ

(−1)𝑝+1
[︀(︀

(𝑦⃗𝑠 · 𝜈⃗) 𝜈⃗ + κ 𝑦⃗⊥
)︀
· 𝜒⃗
]︀

(𝑝) =
∑︁
𝑝∈ℬ

(−1)𝑝+1 [((𝑦⃗ · 𝜈⃗)𝑠 𝜈⃗ + κ (𝑦⃗ · 𝜈⃗) 𝜏⃗) · 𝜒⃗] (𝑝)

= 2𝜋
∑︁
𝑝∈ℬ

(−1)𝑝+1 [(𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ])𝑠 𝜒⃗ · 𝜈⃗] (𝑝)

+ 2𝜋
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [κ (𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ]) 𝜒⃗ · 𝜏⃗ ] (𝑝),

where in the last term we have noted that (2.35b) implies that 𝜈⃗ · 𝑒⃗1 = 0 on 𝜕0𝐼, recall also (2.10). Looking first
at the normal boundary contributions, we compute for a 𝜒 ∈ 𝐻1(𝐼), on noting from (2.3) that 𝜈⃗ · 𝑒⃗2 = 𝜏⃗ · 𝑒⃗1,
that

5∑︁
𝑖=1

𝐵𝑖(𝜒𝜈⃗) = 2𝜋
∑︁
𝑝∈ℬ

(−1)𝑝+1 [(𝑥⃗ · 𝑒⃗1 [𝛼(κ𝒮 − κ) + 𝛽𝒜𝒮 ])𝑠𝜒] (𝑝)

− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[𝜈⃗ · 𝑒⃗1𝜒] (𝑝)− 2𝜋𝛽𝒜𝒮
∑︁
𝑝∈ℬ

(−1)𝑝+1 [𝜈⃗ · 𝑒⃗2𝜒] (𝑝)

− 2𝜋𝛼
∑︁
𝑝∈ℬ

(−1)𝑝+1 [(κ𝒮 − κ) 𝜏⃗ · 𝑒⃗1𝜒] (𝑝)
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= 2𝜋𝛼
∑︁
𝑝∈ℬ

(−1)𝑝+1 [𝑥⃗ · 𝑒⃗1(κ𝒮)𝑠𝜒] (𝑝)− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[︂
𝑥⃗ · 𝑒⃗1

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒

]︂
(𝑝)

= 2𝜋
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[︂
𝑥⃗ · 𝑒⃗1

(︂
(−1)𝑝+1𝛼(κ𝒮)𝑠 − 𝜍

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

)︂
𝜒

]︂
(𝑝) ∀𝜒 ∈ 𝐻1(𝐼), (A.17)

where in the last step we have observed (2.35c) and (A.3). This gives (2.30a) on 𝜕𝐹 𝐼, on recalling (2.2a) and
(3.5b).

Next we consider the tangential components. It holds, on noting (A.16), (2.7), 𝜈⃗ · 𝑒⃗1 = −𝜏⃗ · 𝑒⃗2, (2.12), (2.20)
and (2.2b), that

5∑︁
𝑖=1

𝐵𝑖(𝜒 𝜏⃗) = 2𝜋
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [κ (𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ]) 𝜒] (𝑝)

− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹∪𝜕𝐹 𝐼

[𝜏⃗ · 𝑒⃗1 𝜒] (𝑝)− 2𝜋𝛽𝒜𝒮
∑︁
𝑝∈ℬ

(−1)𝑝+1 [𝜏⃗ · 𝑒⃗2𝜒] (𝑝)

− 𝜋
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1
[︁
𝑥⃗ · 𝑒⃗1

(︁
𝛼 [κ𝒮 − κ]2 + 2𝜆 + 2𝛽𝒜𝒮 κ

)︁
𝜒
]︁

(𝑝)

= −2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [𝑥⃗ · 𝑒⃗1𝒦𝒮 𝜒] (𝑝)− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹∪𝜕𝐹 𝐼

(−1)𝑝+1

[︂
𝑥⃗ · 𝑒⃗1

𝜇⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒

]︂
(𝑝)

+ 2𝜋𝛽𝒜𝒮
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1

[︂
𝑥⃗ · 𝑒⃗1

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒

]︂
(𝑝)

− 2𝜋
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1
[︁
𝑥⃗ · 𝑒⃗1

(︁
1
2𝛼 [κ𝒮 − κ]2 + 𝜆 + 𝛽𝒜𝒮 κ

)︁
𝜒
]︁

(𝑝)

= −2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹∪𝜕𝐹 𝐼

(−1)𝑝+1

[︂
𝑥⃗ · 𝑒⃗1

𝜇⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒

]︂
(𝑝)

− 2𝜋
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1
[︁
𝑥⃗ · 𝑒⃗1

(︁
𝛼𝐺𝒦𝒮 + 1

2𝛼 [κ𝒮 − κ]2 + 𝜆 + 𝛽𝒜𝒮 κ𝒮
)︁

𝜒
]︁

(𝑝)

= 2𝜋
∑︁

𝑝∈𝜕𝑆𝐹∪𝜕𝐹 𝐼

(−1)𝑝

[︂
𝑥⃗ · 𝑒⃗1

(︂
𝜍

𝜇⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
+ 𝛼𝐺𝒦𝒮 + 1

2𝛼 [κ𝒮 − κ]2 + 𝜆 + 𝛽𝒜𝒮 κ𝒮
)︂

𝜒

]︂
(𝑝) ∀𝜒 ∈ 𝐻1(𝐼). (A.18)

This yields (2.30b) on 𝜕𝐹 𝐼, on recalling (2.2a) and (3.5b). In order to prove (2.31b) on 𝜕𝑆𝐹 𝐼, we choose
a test function 𝜒⃗ ∈ X and then combine (A.17) and (A.18). For example, on 𝜕1𝐼 we choose 𝜒⃗ = 𝜒 𝑒⃗2 =
𝜒 (𝜈⃗ · 𝑒⃗2) 𝜈⃗ + 𝜒 (𝜏⃗ · 𝑒⃗2) 𝜏⃗ = 𝜒 (−1)𝑝+1 (𝜇⃗ · 𝑒⃗1) 𝜈⃗ + 𝜒 (−𝜈⃗ · 𝑒⃗1) 𝜏⃗ , and hence we obtain the desired result. The case
𝜕2𝐼 follows analogously.

A.2. Formulations based on ~𝒮

Here we derive the strong form for (3.44), together with possible boundary conditions for the 𝐿2-gradient
flow of (2.21). We recall from (3.34) and (3.35) that

𝑦⃗𝒮 · 𝜈⃗ = 2𝜋 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ] , where 𝒜𝒮 = 2𝜋 (𝑥⃗ · 𝑒⃗1 κ𝒮 , |𝑥⃗𝜌|)−𝑀0. (A.19)

We begin by re-stating (3.44a), on noting (2.3), as
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2𝜋 ((𝑥⃗ · 𝑒⃗1)𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗|𝑥⃗𝜌|) =
(︀
(𝑥⃗ · 𝑒⃗1)(𝑦⃗𝒮)𝜌 · 𝜈⃗, 𝜒⃗𝜌 · 𝜈⃗|𝑥⃗𝜌|−1

)︀
−
(︁
𝜋𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1, 𝜒⃗𝜌 · 𝜏⃗

)︁
−
(︁
𝜋[𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮 ]− κ𝒮 𝑦⃗𝒮 · 𝜈⃗ − (𝑦⃗𝒮)𝑠 · 𝜏⃗ , 𝜒⃗ · 𝑒⃗1|𝑥⃗𝜌|

)︁
+
(︀
𝑥⃗ · 𝑒⃗1κ𝒮 𝑦⃗⊥𝒮 , 𝜒⃗𝜌

)︀
−

∑︁
𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[[2𝜋𝜍 + 𝑚⃗ · 𝑦⃗𝒮 ] 𝜒⃗ · 𝑒⃗1] (𝑝) =
5∑︁

𝑖=1

𝑆𝑖(𝜒⃗) ∀𝜒⃗ ∈ X.

(A.20)

On recalling (2.3), (3.5b) and (A.3) throughout these 𝑆𝑖(𝜒⃗) calculations, we have that

𝑆1(𝜒⃗) = (𝑥⃗ · 𝑒⃗1 ((𝑦⃗𝒮)𝑠 · 𝜈⃗) 𝜈⃗, 𝜒⃗𝜌)

= − ([𝑥⃗ · 𝑒⃗1 ((𝑦⃗𝒮)𝑠 · 𝜈⃗) 𝜈⃗]𝑠 , 𝜒⃗ |𝑥⃗𝜌|) +
∑︁
𝑝∈ℬ

(−1)𝑝+1 [𝑥⃗ · 𝑒⃗1 ((𝑦⃗𝒮)𝑠 · 𝜈⃗) 𝜒⃗ · 𝜈⃗] (𝑝) = 𝐴1(𝜒⃗) + 𝐵1(𝜒⃗). (A.21)

Moreover, it holds that

𝑆2(𝜒⃗) = −
(︁[︁

𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1

]︁
𝜏⃗ , 𝜒⃗𝜌

)︁
=
(︁[︁(︁

𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1

)︁
𝜏⃗
]︁

𝑠
, 𝜒⃗ |𝑥⃗𝜌|

)︁
−
∑︁
𝑝∈ℬ

(−1)𝑝+1
[︁(︁

𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1

)︁
𝜒⃗ · 𝜏⃗

]︁
(𝑝) = 𝐴2(𝜒⃗) + 𝐵2(𝜒⃗). (A.22)

In addition,

𝑆3(𝜒⃗) = −
(︁[︁

𝜋 [𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮 ]− κ𝒮 𝑦⃗𝒮 · 𝜈⃗ − (𝑦⃗𝒮)𝑠 · 𝜏⃗
]︁
𝑒⃗1, 𝜒⃗ |𝑥⃗𝜌|

)︁
= 𝐴3(𝜒⃗). (A.23)

Finally,

𝑆4(𝜒⃗) =
(︀
𝑥⃗ · 𝑒⃗1 κ𝒮 𝑦⃗⊥𝒮 , 𝜒⃗𝜌

)︀
= −

(︀[︀
𝑥⃗ · 𝑒⃗1 κ𝒮 𝑦⃗⊥𝒮

]︀
𝑠
, 𝜒⃗ |𝑥⃗𝜌|

)︀
+
∑︁
𝑝∈ℬ

(−1)𝑝+1
[︀
𝑥⃗ · 𝑒⃗1 κ𝒮 𝜒⃗ · 𝑦⃗⊥𝒮

]︀
(𝑝) = 𝐴4(𝜒⃗) + 𝐵4(𝜒⃗),

(A.24)
and we also set 𝐵3(𝜒⃗) = 𝑆5(𝜒⃗). With the above definitions, we can write (A.20) as

2𝜋 ((𝑥⃗ · 𝑒⃗1) 𝑥⃗𝑡 · 𝜈⃗, 𝜒⃗ · 𝜈⃗ |𝑥⃗𝜌|) =
5∑︁

𝑖=1

𝑆𝑖(𝜒⃗) =
4∑︁

𝑖=1

𝐴𝑖(𝜒⃗) +
4∑︁

𝑖=1

𝐵𝑖(𝜒⃗) ∀𝜒⃗ ∈ X. (A.25)

On recalling (3.1b), we observe that

𝐴4(𝜒⃗) = −
(︀[︀

𝑥⃗ · 𝑒⃗1 κ𝒮 𝑦⃗⊥𝒮
]︀
𝑠
, 𝜒⃗ |𝑥⃗𝜌|

)︀
= − ([𝑥⃗ · 𝑒⃗1 κ𝒮 ((𝑦⃗𝒮 · 𝜈⃗) 𝜏⃗ − (𝑦⃗𝒮 · 𝜏⃗) 𝜈⃗)]𝑠 , 𝜒⃗ |𝑥⃗𝜌|) . (A.26)

Choosing 𝜒⃗ = 𝜒 𝜏⃗ , for 𝜒 ∈ 𝐻1
0 (𝐼), in (A.25), and combining (A.21)–(A.24) and (A.26), and recalling 𝜏⃗𝑠 · 𝜏⃗ = 0,

(A.10), (2.3), (A.19) and (2.7), we obtain for the right hand side of (A.25)

5∑︁
𝑖=1

𝑆𝑖(𝜒𝜏⃗) =
4∑︁

𝑖=1

𝐴𝑖(𝜒𝜏⃗)

= (𝑥⃗ · 𝑒⃗1κ(𝑦⃗𝒮)𝑠 · 𝜈⃗, 𝜒|𝑥⃗𝜌|) +
(︁[︁

𝜋𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1

]︁
𝑠
, 𝜒|𝑥⃗𝜌|

)︁
−
(︁[︁

𝜋
[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
− κ𝒮 𝑦⃗𝒮 · 𝜈⃗ − (𝑦⃗𝒮)𝑠 · 𝜏⃗

]︁
𝜏⃗ · 𝑒⃗1, 𝜒|𝑥⃗𝜌|

)︁
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− (𝑥⃗ · 𝑒⃗1κ𝒮 [(𝑦⃗𝒮 · 𝜈⃗)𝑠 + κ𝑦⃗𝒮 · 𝜏⃗ ] + (𝑥⃗ · 𝑒⃗1κ𝒮)𝑠𝑦⃗𝒮 · 𝜈⃗, 𝜒|𝑥⃗𝜌|)

= (𝑥⃗ · 𝑒⃗1(κ − κ𝒮)(𝑦⃗𝒮)𝑠 · 𝜈⃗, 𝜒|𝑥⃗𝜌|) +
(︁
𝑥⃗ · 𝑒⃗1

(︁
𝜋
[︁
𝛼 (κ𝒮 − κ)2 + 2𝛽𝒜𝒮κ𝒮

]︁
𝑠
− (κ𝒮)𝑠𝑦⃗𝒮 · 𝜈⃗

)︁
, 𝜒|𝑥⃗𝜌|

)︁
− ((𝑦⃗𝒮)𝑠 · (𝑒⃗1 − (𝜏⃗ · 𝑒⃗1)𝜏⃗) , 𝜒|𝑥⃗𝜌|)

= 0,

as expected.
Choosing 𝜒⃗ = 𝜒 𝜈⃗, for 𝜒 ∈ 𝐻1

0 (𝐼), in (A.25), and combining (A.21)–(A.24) and (A.26), and on recalling (2.6),
𝜈⃗𝑠 · 𝜈⃗ = 0, (A.19) and (2.7), we obtain for the right hand side of (A.25)

5∑︁
𝑖=1

𝑆𝑖(𝜒 𝜈⃗) =
4∑︁

𝑖=1

𝐴𝑖(𝜒𝜈⃗) = − ([𝑥⃗ · 𝑒⃗1 ((𝑦⃗𝒮)𝑠 · 𝜈⃗)]𝑠 , 𝜒|𝑥⃗𝜌|)

+
(︁[︁

𝜋𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1

]︁
κ, 𝜒|𝑥⃗𝜌|

)︁
−
(︁[︁

𝜋
[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
− κ𝒮 𝑦⃗𝒮 · 𝜈⃗ − (𝑦⃗𝒮)𝑠 · 𝜏⃗

]︁
𝜈⃗ · 𝑒⃗1, 𝜒|𝑥⃗𝜌|

)︁
− (𝑥⃗ · 𝑒⃗1κκ𝒮 𝑦⃗𝒮 · 𝜈⃗ − [𝑥⃗ · 𝑒⃗1κ𝒮 𝑦⃗𝒮 · 𝜏⃗ ]𝑠 , 𝜒|𝑥⃗𝜌|)

= − ([𝑥⃗ · 𝑒⃗1 ((𝑦⃗𝒮 · 𝜈⃗)𝑠 + (κ − κ𝒮)𝑦⃗𝒮 · 𝜏⃗)]𝑠 , 𝜒|𝑥⃗𝜌|)

+
(︁[︁

𝜋𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1

]︁
κ, 𝜒|𝑥⃗𝜌|

)︁
−
(︁[︁

𝜋
[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
+ (κ − κ𝒮)𝑦⃗𝒮 · 𝜈⃗ − (𝑦⃗𝒮 · 𝜏⃗)𝑠

]︁
𝜈⃗ · 𝑒⃗1, 𝜒|𝑥⃗𝜌|

)︁
− (𝑥⃗ · 𝑒⃗1κκ𝒮 𝑦⃗𝒮 · 𝜈⃗, 𝜒|𝑥⃗𝜌|)

= − 2𝜋𝛼 ([𝑥⃗ · 𝑒⃗1(κ𝒮)𝑠]𝑠 , 𝜒|𝑥⃗𝜌|)− ([𝑥⃗ · 𝑒⃗1(κ − κ𝒮)𝑦⃗𝒮 · 𝜏⃗ ]𝑠 , 𝜒|𝑥⃗𝜌|)

+
(︁
𝜋𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮κ𝒮

]︁
κ𝒮 , 𝜒|𝑥⃗𝜌|

)︁
−
(︀
𝑥⃗ · 𝑒⃗1

[︀
(κ − κ𝒮)2 + κκ𝒮

]︀
𝑦⃗𝒮 · 𝜈⃗, 𝜒|𝑥⃗𝜌|

)︀
− (𝑦⃗𝒮 · 𝑒⃗1κ − (𝑦⃗𝒮 · 𝜏⃗)𝑠𝑥⃗ · 𝑒⃗1(κ − κ𝒮), 𝜒|𝑥⃗𝜌|)

= − 2𝜋𝛼 ([𝑥⃗ · 𝑒⃗1(κ𝒮)𝑠]𝑠 , 𝜒|𝑥⃗𝜌|)− ([𝑥⃗ · 𝑒⃗1(κ − κ𝒮)]𝑠 𝑦⃗𝒮 · 𝜏⃗ , 𝜒|𝑥⃗𝜌|)
− 𝜋𝛼

(︀
𝑥⃗ · 𝑒⃗1

[︀
(κ𝒮)2 + κκ𝒮 + 2κ2 − 2κκ𝒮

]︀
(κ𝒮 − κ), 𝜒|𝑥⃗𝜌|

)︀
− (𝑦⃗𝒮 · 𝑒⃗1κ, 𝜒|𝑥⃗𝜌|) + 2𝜋𝜆 (𝑥⃗ · 𝑒⃗1κ𝒮 , 𝜒|𝑥⃗𝜌|)− 2𝜋𝛽𝒜𝒮 (κ𝑥⃗ · 𝑒⃗1(κ − κ𝒮), 𝜒|𝑥⃗𝜌|)

= − 2𝜋𝛼 ([𝑥⃗ · 𝑒⃗1(κ𝒮)𝑠]𝑠 , 𝜒|𝑥⃗𝜌|)− ([𝑥⃗ · 𝑒⃗1(κ − κ𝒮)]𝑠 𝑦⃗𝒮 · 𝜏⃗ , 𝜒|𝑥⃗𝜌|)
−
(︀
𝜋𝑥⃗ · 𝑒⃗1

[︀
𝛼
(︀
κ2
𝒮 − κ2

)︀
− 2𝜆

]︀
κ𝒮 + 𝑦⃗𝒮 · 𝑒⃗1κ, 𝜒|𝑥⃗𝜌|

)︀
+ 2𝜋 (𝑥⃗ · 𝑒⃗1 [𝛼(κ𝒮 − κ)

+ 𝛽𝒜𝒮 ] (κ𝒮 − κ) κ, 𝜒|𝑥⃗𝜌|) . (A.27)

The desired result (2.24) follows from (A.20) and (A.27) on noting that

− [𝑥⃗ · 𝑒⃗1 (κ − κ𝒮)]𝑠 𝑦⃗𝒮 · 𝜏⃗ − 𝑦⃗𝒮 · 𝑒⃗1 κ = −(𝜈⃗𝑠 · 𝑒⃗1) 𝑦⃗𝒮 · 𝜏⃗ − 𝑦⃗𝒮 · 𝑒⃗1 κ = −(𝑦⃗𝒮 · 𝜈⃗) 𝜈⃗ · 𝑒⃗1 κ
= 2𝜋𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ] (κ𝒮 − κ) κ = 2𝜋𝑥⃗ · 𝑒⃗1 [𝛼 (κ𝒮 − κ) + 𝛽𝒜𝒮 ]𝒦𝒮 ,

where we have recalled (2.7), (A.10) and (A.19).
We now need to show that the weak formulation (3.44) enforces the claimed boundary conditions. As in

Section A.1, the conditions (2.31a), (2.33a), (2.34a) and (2.35a) are enforces strongly. We also notice that
(3.44c) enforces (2.35b) and (2.33b), recall the discussion below (3.9). This means that we still need to show
(2.35c), (2.30), (2.31b), (2.31c) and (2.34b).

In order to show (2.35c) we argue similarly to Section A.1. Choosing 𝜒⃗ = 𝜒 𝜈⃗ in (A.20), where 𝜒 ∈ 𝐻1(𝐼)
is zero away from 𝜕0𝐼, that the term 2𝜋𝛼 (𝑥⃗ · 𝑒⃗1 (κ𝒮)𝜌, 𝜒𝜌 |𝑥⃗𝜌|−1) equals a sum of inner products that have
integrands that converge to zero for 𝜌 approaching 𝜕0𝐼. We can then again use Appendix A.1 of [7] to show
that (3.44a) implies the boundary condition (2.35c).
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Next we recall from (2.37) and (3.37) that

(𝑥⃗ · 𝑒⃗1) 𝑦⃗𝒮 = 2𝜋𝛼𝐺 𝑒⃗1 on 𝜕𝑀𝐼 = 𝜕𝑁𝐼 ∪ 𝜕𝑆𝐹 𝐼 ∪ 𝜕𝐹 𝐼. (A.28)

Combining with (A.19) and noting (2.2a) yields (A.16). Hence, we have that (2.30c), (2.31c) and (2.34b) are
imposed strongly. Overall, we still need to show (2.30a), (2.30b) and (2.31b). It follows from (A.21) and (A.24),
on recalling (A.10), (3.1b), (A.19), (2.7) and (2.2b), that

𝐵1(𝜒⃗) + 𝐵4(𝜒⃗) =
∑︁
𝑝∈ℬ

(−1)𝑝+1
[︀
(𝑥⃗ · 𝑒⃗1)

(︀
((𝑦⃗𝒮)𝑠 · 𝜈⃗) 𝜈⃗ + κ𝒮 𝑦⃗⊥𝒮

)︀
· 𝜒⃗
]︀

(𝑝)

=
∑︁
𝑝∈ℬ

(−1)𝑝+1 [(𝑥⃗ · 𝑒⃗1) ([(𝑦⃗𝒮 · 𝜈⃗)𝑠 + (κ − κ𝒮) (𝑦⃗𝒮 · 𝜏⃗)] 𝜈⃗ + κ𝒮 (𝑦⃗𝒮 · 𝜈⃗) 𝜏⃗) · 𝜒⃗] (𝑝)

=
∑︁
𝑝∈ℬ

(−1)𝑝+1 [ [2𝜋𝛼 (𝑥⃗ · 𝑒⃗1) (𝜅𝒮)𝑠 + (𝜈⃗ · 𝑒⃗1) (𝑦⃗𝒮 · 𝜏⃗)] 𝜈⃗ · 𝜒⃗] (𝑝)

+
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [(𝑥⃗ · 𝑒⃗1) κ𝒮 (𝑦⃗𝒮 · 𝜈⃗) 𝜏⃗ · 𝜒⃗] (𝑝).

Looking first at the normal boundary contributions, we compute, on noting that 𝑚⃗ = 𝜇⃗ and (2.20),

4∑︁
𝑖=1

𝐵𝑖(𝜒 𝜈⃗) =
∑︁
𝑝∈ℬ

(−1)𝑝+1 [ [2𝜋𝛼 (𝑥⃗ · 𝑒⃗1) (𝜅𝒮)𝑠 + (𝜈⃗ · 𝑒⃗1) (𝑦⃗𝒮 · 𝜏⃗)] 𝜒] (𝑝)−
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[[2𝜋𝜍 + 𝑚⃗ · 𝑦⃗𝒮 ] (𝜈⃗ · 𝑒⃗1) 𝜒] (𝑝)

= 2𝜋𝛼
∑︁
𝑝∈ℬ

(−1)𝑝+1 [𝑥⃗ · 𝑒⃗1 (κ𝒮)𝑠 𝜒] (𝑝)− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[︂
𝑥⃗ · 𝑒⃗1

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒

]︂
(𝑝)

= 2𝜋
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[︂
𝑥⃗ · 𝑒⃗1

(︂
(−1)𝑝+1 𝛼 (κ𝒮)𝑠 − 𝜍

𝜈⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1

)︂
𝜒

]︂
(𝑝) ∀𝜒 ∈ 𝐻1(𝐼). (A.29)

where in the last step we have observed (2.35c) and (A.3). This gives (2.30a) on 𝜕𝐹 𝐼 on recalling (2.2a) and
(3.5b).

Next we consider the tangential components. It holds, on noting that 𝑚⃗ = 𝜇⃗, (2.20), (2.7) and (A.28), that

4∑︁
𝑖=1

𝐵𝑖(𝜒 𝜏⃗) =
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [(𝑥⃗ · 𝑒⃗1) κ𝒮 (𝑦⃗𝒮 · 𝜈⃗) 𝜒] (𝑝)

−
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1
[︁(︁

𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
− 𝑦⃗𝒮 · 𝑒⃗1

)︁
𝜒
]︁

(𝑝)

− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[(𝜏⃗ · 𝑒⃗1) 𝜒] (𝑝)−
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [(𝑦⃗𝒮 · 𝜏⃗) (𝜏⃗ · 𝑒⃗1) 𝜒] (𝑝)

=
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [(𝑥⃗ · 𝑒⃗1) κ (𝑦⃗𝒮 · 𝜈⃗) 𝜒] (𝑝)− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

[(𝜏⃗ · 𝑒⃗1) 𝜒] (𝑝)

−
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1
[︁
𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
𝜒
]︁

(𝑝)
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= −2𝜋𝛼𝐺

∑︁
𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1 [(𝑥⃗ · 𝑒⃗1)𝒦𝒮 𝜒] (𝑝)

−
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1
[︁
𝜋 𝑥⃗ · 𝑒⃗1

[︁
𝛼 (κ𝒮 − κ)2 + 2𝜆 + 2𝛽𝒜𝒮 κ𝒮

]︁
𝜒
]︁

(𝑝)

− 2𝜋𝜍
∑︁

𝑝∈𝜕𝑆𝐹 𝐼∪𝜕𝐹 𝐼

(−1)𝑝+1

[︂
𝑥⃗ · 𝑒⃗1

𝜇⃗ · 𝑒⃗1

𝑥⃗ · 𝑒⃗1
𝜒

]︂
(𝑝) ∀𝜒 ∈ 𝐻1(𝐼). (A.30)

This yields (2.30b) on 𝜕𝐹 𝐼 on recalling (2.2a). In order to prove (2.31b) on 𝜕𝑆𝐹 𝐼, we choose a test function
𝜒⃗ ∈ X and then combine (A.29) and (A.30), similarly to the previous section, Section A.1.

Appendix B. Singularities for Willmore flow of genus-1 surfaces

In the recent paper [17] it was shown that a torus of revolution 𝒮(0), with profile curve Γ(0) such that
its turning number T(Γ) = 1

2𝜋

∫︀
𝐼

κ |𝑥⃗𝜌| d𝜌 is zero, will develop a singularity under Willmore flow. Here we
recall that for an immersed curve Γ ⊂ R2, T(Γ) ∈ Z is the winding number with respect to the origin of
the tangent vector 𝜏⃗ . In particular, it is shown in Lemma 4.8 of [17] that either a singularity will develop in
finite time, or as 𝑡 → ∞ one of the following quantities will grow unbounded: 𝑎(𝑡) = sup𝐼 [κ2 + ( 𝜈⃗·𝑒⃗1

𝑥⃗·𝑒⃗1
)2]

1
2 or

|Γ(𝑡)|H2 = ((𝑥⃗ · 𝑒⃗1)−1, |𝑥⃗𝜌|), where 𝑎(𝑡) is a suitable 𝐿∞-norm of the second fundamental form on 𝒮(𝑡), and
where |Γ(𝑡)|H2 denotes the length of the curve Γ(𝑡) in the hyperbolic plane H2, see e.g. (2.6a) of [10].

In this appendix, we will present numerical evidence that T(Γ) = 0 appears to be a necessary condition for
a singularity to develop, and that any such singularity is only attained as 𝑡 →∞. To this end, we consider the
case 𝜕𝐼 = ∅ from now on and define

|Γ𝑚|H2,ℎ =
(︁

(𝑋⃗𝑚 · 𝑒⃗1)−1, |𝑋⃗𝑚
𝜌 |
)︁ℎ

(B.1)

for Γ𝑚 = 𝑋⃗𝑚(𝐼) and 𝑋⃗𝑚 ∈ 𝑉 ℎ, as a discrete analogue to |Γ(𝑡)|H2 . We remark that a corresponding discrete
analogue of 𝑎(𝑡) in practice behaved very similarly to (B.1), and so we omit its discussion here.

We begin with two experiments for the case T(Γ) ̸= 0. In particular, we choose as initial data a generating
curve that is made up of a circle of radius 1 centered at

√
2 𝑒⃗1 and a circle of radius 𝑟 centered at (

√
2±(1−𝑟)) 𝑒⃗1,

with 𝑟 = 0.1, so that T(Γ) = ±2. The simulations of Willmore flow for the surfaces generated by these curves is
shown in Figure B.1. The discretization parameters for the scheme (𝒫𝑚)ℎ are 𝐽 = 512 and ∆𝑡 = 10−4. When
the smaller circle is inscribed on the right, then the evolution immediately approaches a double-covering of the
Clifford torus, recall also Figure 2. If the smaller circle is inscribed on the left, a more complicated evolution
ensues, but eventually a double covering of the Clifford torus is reached. At time 𝑡 = 100, both evolutions have
reached a discrete Willmore energy of 78.96 ≈ 8 𝜋2, i.e. about twice the Willmore energy of the Clifford torus.

Overall the results in Figure B.1 indicate that T(Γ) = 0 is a necessary condition for a singularity under
Willmore flow to occur.

We now concentrate on the possible onset of a singularity. To this end, we show the evolution for two initial
lemniscates in Figures B.2 and B.3. The discretization parameters for the scheme (𝒫𝑚)ℎ are 𝐽 = 1024 and
∆𝑡 = 10−6. The initial data satisfy T(Γ) = 0, and so the result in Lemma 4.8 of [17] yields that Willmore flow
will develop a singularity either in finite time or as 𝑡 → ∞. In the first experiment the part of the lemniscate
with larger radius is close to the 𝑥2-axis. But during the evolution that part thins and approaches the axis. In
the second experiment, the initial lemniscate is rotated by 180 degrees, so that the part with the smaller radius
is close to the 𝑥2-axis. During the evolution that parts thins even more and approaches the axis.

To investigate the behaviour close to the 𝑥2-axis further, and to help decide whether the evolution reaches
a singularity in finite time, we start a refined computation from the solution at time 𝑡 = 0.3 in Figure B.3.
The results for 𝐽 = 4096 and ∆𝑡 = 10−8 are shown in Figure B.4. The discrete quantity (B.1), which we plot
on the right of Figure B.4, appears to grow polynomial in time. In particular, it seems to grow only slightly
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Figure B.1. (𝒫𝑚)ℎ Willmore flow for T(Γ) = ±2. We show the two evolutions at times
𝑡 = 0, 1, 5, 100.
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Figure B.2. (𝒫𝑚)ℎ Willmore flow for T(Γ) = 0. We show the solution at time 𝑡 = 0, at times
times 𝑡 = 0, 0.5, . . . , 3 and at time 𝑡 = 3.
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Figure B.3. (𝒫𝑚)ℎ Willmore flow for T(Γ) = 0. We show the solution at time 𝑡 = 0, at times
times 𝑡 = 0, 0.1, . . . , 0.3 and at time 𝑡 = 0.3.
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Figure B.4. (𝒫𝑚)ℎ Willmore flow for T(Γ) = 0. The solution at times 𝑡 = 0, 0.05. On the
right a plot of |Γ𝑚|H2,ℎ, recall (B.1), over time, together with the best fits 𝑓(𝑡) = 𝑎 (1 + 𝑡)𝑏 and
𝑔(𝑡) = 𝑐 + 𝑑 𝑡, with (𝑎, 𝑏, 𝑐, 𝑑) = (12.9, 2.3, 12.9, 31.1).
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Figure B.5. (𝒫𝑚)ℎ Willmore flow for T(Γ) = 0. We show the solution at times 𝑡 =
0, 0.2, . . . , 0.8 and 0.9. Here the evolution on [0.8, 0.9] was computed with the finer parame-
ters 𝐽 = 4096 and ∆𝑡 = 10−7.

faster than the best fits of the form 𝑓(𝑡) = 𝑎 (1 + 𝑡)𝑏 and 𝑔(𝑡) = 𝑐 + 𝑑 𝑡, where for the best fits we observe
(𝑎, 𝑏, 𝑐, 𝑑) = (12.9, 2.3, 12.9, 31.1). It is therefore difficult to draw definite conclusions. Hence we conjecture that
the singularity, where the toroidal surface closes up at the origin, is reached only as 𝑡 →∞. This conjecture is
in agreement with similar conclusion drawn by the authors for the onset of a singularity for a genus-0 surface
that converges to two touching spheres. In particular, we stress that the evolution shown in Figure 24 in [7]
closely matches the shape of the curves in Figure B.4 near the 𝑥2-axis.

Finally, we also show a more interesting evolution for another initial data with T(Γ) = 0. Here a symmetric
lemniscate is inscribed with a circle on each side. The Willmore flow for a torus with such a generating curve can
be seen in Figure B.5. The discretization parameters are 𝐽 = 1024 and ∆𝑡 = 10−5, and for the final evolution
on the time interval [0.8, 0.9] we use the finer parameters 𝐽 = 4096 and ∆𝑡 = 10−7. We see that the circle
inscribed on the right of the lemniscate grows, while the circle on the left untangles to create two loops close to
the 𝑥2-axis with large curvature.
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The discrete quantity (B.1) once again appears to grow slightly faster than the best polynomial fits, with
our best fits for the final evolution in Figure B.5 given by 𝑓(0.8 + 𝑡) = 𝑎 (1 + 𝑡)𝑏 and 𝑔(0.8 + 𝑡) = 𝑐 + 𝑑 𝑡, with
(𝑎, 𝑏, 𝑐, 𝑑) = (22, 1.5, 22, 33).

Overall, based on our numerical evidence, we conjecture the following: If T(Γ(0)) = 𝛼 ̸= 0, then Willmore
flow will converge to a |𝛼|-covering of the Clifford torus. If T(Γ(0)) = 0, then Willmore flow will develop a
singularity/blow-up as 𝑡 →∞.

Acknowledgements. The authors gratefully acknowledge the support of the Regensburger Universitätsstiftung Hans
Vielberth.

References

[1] J.W. Barrett, H. Garcke and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations.
J. Comput. Phys. 222 (2007) 441–462.

[2] J.W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equa-
tions. SIAM J. Sci. Comput. 31 (2008) 225–253.

[3] J.W. Barrett, H. Garcke and R. Nürnberg, Elastic flow with junctions: Variational approximation and applications to nonlinear
splines. Math. Models Methods Appl. Sci. 22 (2012) 1250037.

[4] J.W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of isotropic and anisotropic elastic flow for closed and
open curves. Numer. Math. 120 (2012) 489–542.

[5] J.W. Barrett, H. Garcke and R. Nürnberg, Computational parametric Willmore flow with spontaneous curvature and area
difference elasticity effects. SIAM J. Numer. Anal. 54 (2016) 1732–1762.

[6] J.W. Barrett, H. Garcke and R. Nürnberg, Stable variational approximations of boundary value problems for Willmore flow
with Gaussian curvature. IMA J. Numer. Anal. 37 (2017) 1657–1709.

[7] J.W. Barrett, H. Garcke and R. Nürnberg, Finite element methods for fourth order axisymmetric geometric evolution equations.
J. Comput. Phys. 376 (2019) 733–766.

[8] J.W. Barrett, H. Garcke and R. Nürnberg, Stable discretizations of elastic flow in Riemannian manifolds. SIAM J. Numer.
Anal. 57 (2019) 1987–2018.

[9] J.W. Barrett, H. Garcke and R. Nürnberg, Variational discretization of axisymmetric curvature flows. Numer. Math. 141
(2019) 791–837.

[10] J.W. Barrett, H. Garcke and R. Nürnberg, Numerical approximation of curve evolutions in Riemannian manifolds. IMA J.
Numer. Anal. 40 (2020) 1601–1651.

[11] J.W. Barrett, H. Garcke and R. Nürnberg, Parametric finite element approximations of curvature driven interface evolutions,
edited by A. Bonito and R.H. Nochetto. In: Vol. 21 of Handb. Numer. Anal. Elsevier, Amsterdam (2020) 275–423.
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