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Abstract:We consider a φ-rigidity property for divergence-free vector fields in the Euclidean n-space, where
φ(t) is a non-negative convex function vanishing only at t = 0. We show that this property is always satisfied
in dimension n = 2, while in higher dimension it requires some further restriction on φ. In particular, we
exhibit counterexamples to quadratic rigidity (i.e. when φ(t) = ct2) in dimension n ≥ 4. The validity of the
quadratic rigidity, which we prove in dimension n = 2, implies the existence of the trace of a divergence-
measure vector field ξ on anH1-rectifiable set S, as soon as its weak normal trace [ξ ⋅ νS] is maximal on S. As
an application, we deduce that the graph of an extremal solution to the prescribed mean curvature equation
in a weakly-regular domain becomes vertical near the boundary in a pointwise sense.
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1 Introduction
The structure and the properties of vector fields, whose distributional divergence either vanishes or is repre-
sented by a locally finite measure, are of great interest in Mathematics and in Physics. Such vector fields
arise, for instance, in fluid mechanics, in electromagnetism, and in conservation laws. We shall not give
a detailed account, however the interested reader is referred to the monographs [20, 21], as well as to the
papers [6, 18, 23–25], and to the references found therein.

In this paper we shall consider a rigidity property à la Liouville for divergence-free vector fields in ℝn

defined hereafter.

Definition 1.1. Let φ : [0, +∞)→ [0, +∞) be a convex function such that φ(t) = 0 if and only if t = 0. We say
that the φ-rigidity property holds inℝn if, for any vector field η = (η1, . . . , ηn) ∈ L∞(ℝn;ℝn) such that
(i) η = 0 on {x ∈ ℝn : xn < 0},
(ii) div η = 0 onℝn in distributional sense,
(iii) ηn ≥ φ(|η|) almost everywhere onℝn,
one has that η ≡ 0 almost everywhere onℝn.

We state here two results that establish this rigidity property.
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Theorem 1.2 (Linear rigidity). Let n ≥ 2. Then the φ-rigidity property holds inℝn when φ(t) = ct for some con-
stant c > 0.

Theorem 1.3 (φ-rigidity in the plane). Let n = 2. Then the φ-rigidity holds inℝ2 for any choice of φ as in Defi-
nition 1.1.

Ideally, one would like to prove Theorem 1.3 in any dimension. Yet, proving φ-rigidity in dimension n > 2
when φ is not linear is a rather delicate issue and it would require some further hypotheses. Indeed, we have
found counterexamples for the choice φ(t) = ct2 in any dimension n ≥ 4, as proved in Theorem 4.2. At the
current stage it is unclear to us if Theorem 1.3may hold in dimension n = 3. Notice that the counterexamples
found in dimension n ≥ 4 are cylindrically symmetric; however, we prove in Proposition 4.3 that no such
vector field can be a counterexample for n = 3.

The specific choice φ(t) = t22 is quite interesting as it is closely related with a trace property of cer-
tain divergence-measure vector fields. More precisely, it allows us to deduce the existence of the trace of
a divergence-measure vector field ξ on an oriented, H1-rectifiable set S ⊂ ℝ2, under a maximality assump-
tion of the weak normal trace of ξ at S. In general, see Section 2.3, given a divergence-measure vector field
ξ defined on a bounded open set Ω ⊂ ℝn, one is able to define its normal trace only in a distributional
sense. More specifically, assuming that Ω is weakly-regular (that is, the perimeter of Ω is finite and coincides
with the (n − 1)-dimensional Hausdorff measure of ∂Ω, see Definition 2.5) one can show [34, Section 3]
that there exists a function [ξ ⋅ νΩ] ∈ L∞(∂Ω;Hn−1) such that the following Gauss–Green formula holds for
all ψ ∈ C1c (ℝn):

∫
Ω

ψ(x) d div ξ + ∫
Ω

ξ(x) ⋅ ∇ψ(x) dx = ∫
∂Ω

ψ(y)[ξ ⋅ νΩ](y) dHn−1(y), (1.1)

where we have denoted byHn−1 the (n − 1)-dimensional Hausdorffmeasure and by νΩ themeasure-theoretic
outer normal to ∂Ω. Such a function [ξ ⋅ νΩ] is called weak normal trace of ξ on ∂Ω. For the sake of com-
pleteness we recall that a first, fundamental weak version of the Gauss–Green formula is the classical result
by De Giorgi [16, 17] and Federer [19], which states that (1.1) holds true in the case ψ = 1, ξ ∈ C1 and Ω
with finite perimeter. A further extension due to Vol’pert [36, 37] holds when ξ is weakly differentiable or
BV. In the seminal works of Anzellotti [3, 4], the concepts of weak normal trace and of pairing between vec-
tor fields and (gradients of) functions are introduced for the first time. Since then, the class DM∞(Ω) of
divergence-measure, bounded vector fields has beenwidely studied in view of applications to hyperbolic sys-
tems of conservation laws [7, 9, 10], to continuum and fluid mechanics [8], and to minimal surfaces [28, 34]
among many others. In particular, the weak normal trace has been studied in different directions, see for
instance [1, 11–15].

Despite some explicit characterizations of the weak normal trace are available (see the discussion in
Section 2.3), a crucial issue coming with this distributional notion is that it is not possible to recover the
pointwise value of such a trace by a standard, measure-theoretic limit, see Example 2.7. However, assuming
that ‖ξ‖∞ ≤ 1 and that theweak normal trace [ξ ⋅ νS] attains themaximal value 1 at some point x ∈ S, it would
seem quite natural to expect that ξ cannot oscillate too much around x, to ensure a maximal outflow at x.
Thus, one is led to conjecture the existence of the classical trace, i.e. the validity of the formula

[ξ ⋅ νS](x) = νS(x).

Indeed, this is exactly what we are able to prove, limitedly to the case n = 2, by employing Theorem 1.3 with
the specific choice φ(t) = t22 .

Theorem 1.4. Let ξ ∈ DM∞(ℝ2) and S ⊂ ℝ2 an oriented H1-rectifiable with locally bounded H1-measure.
Then, forH1-a.e. x0 ∈ S such that [ξ ⋅ νS](x0) = ‖ξ‖∞ one has

ap-lim
x→x−0

ξ(x) = ‖ξ‖∞νS(x0).

In the above theorem the approximate limit is “one-sided” according to Definition 2.2. Notice that the same
conclusion of the theorem applies when the weak normal trace attains a local maximum for the modulus of
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the vector field, that is, when there exists an open set U containing x0 such that [ξ ⋅ νS](x0) ≥ |ξ(x)| for almost
every x ∈ U. Of course, by a scaling argument one can always restrict to vector fields ξ with ‖ξ‖∞ ≤ 1.

The statement of Theorem 1.4 holds forH1-a.e. x0 ∈ S. More precisely, one needs x0 ∈ S to be such that:
thenormal of S at x0 is defined; it is a Lebesguepoint for theweaknormal trace; anddiv ξ doesnot concentrate
around it. Asking x0 to satisfy these hypotheses, makes us indeed discard anH1-negligible set of S.

As the proof heavily relies on Theorem 1.3, we are able to show it only in dimension 2. Despite there exist
counterexamples to the quadratic rigidity in ℝn when n ≥ 4, we cannot exclude that Theorem 1.4 might be
true in any dimension. Were it false, one should be able to construct a vector field withmaximal normal trace
at some (n − 1)-submanifold S, whose blow-ups at most points of S are not unique. Indeed, the existence of
the classical, one-sided trace of ξ at x0 is equivalent to the uniqueness of the blow-up of ξ at x0 (see Propo-
sition 5.2). This essentially corresponds to a pointwise almost-everywhere convergence property. However,
a maximality condition on the value of the weak normal trace (viewed as a weak-limit of measures induced
by classical traces on approximating smooth surfaces) might enforce no more than a L1-type convergence,
in analogy with what happens to a sequence of negative functions that weakly converge to zero. The fact
that, in turn, L1-convergence does not imply almost everywhere convergence (unless one extracts suitable
subsequences) explains why proving Theorem 1.4 is so delicate.

Finally, we mention that Theorem 1.4 allows us to strengthen the main result of our previous paper [28].
In there we considered solutions to the prescribed mean curvature equation in a set Ω, in the so-called
extremal case. The extremality condition for the prescribed mean curvature equation

div ∇u
√1 + |∇u|2

= H on Ω

is a critical situation for the existence of solutions, occurring when the following, necessary condition for
existence


∫
E

H(x) dx

< P(E) for all E ⊂⊂ Ω

becomes an equality precisely at E = Ω. When ∂Ω is smooth, Giusti proved in his celebrated paper [22]
that the above necessary condition is also sufficient for existence, and moreover that the extremal case
can be characterized by other properties, among which the uniqueness of the solution up to vertical
translations and the vertical contact of its graph with the boundary of the domain. In the physically mean-
ingful case, i.e. Ω ⊂ ℝ2, the extremal case for the prescribed mean curvature equation corresponds to the
capillarity phenomenon for perfectly wetting fluids within a cylindrical container put in a zero gravity
environment.

In our previous work [28] we extended Giusti’s result to the wider class of weakly-regular domains,
obtaining an analogous characterization that involves the weak normal trace of the vector field

Tu = ∇u
√1 + |∇u|2

on ∂Ω. In virtue of the result provedhere,we obtain that the boundary behavior of the capillary solution in the
cylinder Ω ×ℝ actually improves to a vertical contact realized in the classical trace sense, rather than just in
the sense of the weak normal trace. In other words, the normalized gradient Tu is shown to admit a classical
trace (equal to the outer normal νΩ) at H1-almost-every point of ∂Ω. We remark that, at present, no other
technique, like the one based on regularity for almost-minimizers of the perimeter, seems to be applicable
in the case of a generic weakly-regular domain. The reason is that the boundary of the cylinder Ω ×ℝ is not
smooth enough to let the approaching boundary of the subgraph of the solution u be uniformly regularized
via the standard excess-decay mechanism for almost-minimizers of the perimeter.

Briefly, the paper is organized as follows. In Section 2 we lay the notation, recall some basic facts from
Geometric Measure Theory and weak normal traces. In Section 3 we give the proofs of Theorem 1.2 and of
Theorem 1.3. Section 4 presents the construction of a counterexample to the ct2-rigidity for n ≥ 4. Finally,
Section 5 is devoted to the weak normal trace and to the proof of Theorem 1.4.
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2 Preliminary notions and facts

2.1 Notation

We first introduce some basic notations. Given n ≥ 2,ℝn denotes the Euclidean n-dimensional space,ℝn+ the
upper half-space {x ∈ ℝn : xn > 0}, and ℝn0 the boundary of ℝ

n
+. For any x ∈ ℝn and r > 0, Br(x) denotes the

Euclidean open ball of center x and radius r. Given a unit vector v ∈ ℝn we set

Bvr (z) = {x ∈ Br(z) : (x − z) ⋅ v > 0}.

Given a Borel set E ⊂ ℝn, we denote by χE its characteristic function, by |E| its n-dimensional Lebesgue
measure, and byHd(E) its Hausdorff d-dimensional measure. We set

Ex,r = r−1(E − x),

where E ⊂ ℝn, x ∈ ℝn, and r > 0. Given Ω ⊂ ℝn an open set, we write E ⊂⊂ Ω whenever the topological clo-
sure E of E is a compact subset of Ω. Whenever a measurable function, or vector field, f is defined on Ω, we
denote by ‖f‖∞ its L∞-norm on Ω. We denote by DM∞(Ω) the space of bounded vector fields defined in Ω
whose divergence is a Radonmeasure. For brevity we setDM∞ := DM∞(ℝn). It is convenient to consider the
restriction toDM∞(Ω) of the weak-∗ topology of L∞: given a sequence {vk}k ⊂ DM∞(Ω), we say that vk con-
verges to v ∈ DM∞(Ω) in the weak-∗ topology of L∞, and write vk ⇀ v in L∞-w∗, if for every f ∈ L1(Ω;ℝn)
one has

∫
Ω

f ⋅ vk dx → ∫
Ω

f ⋅ v dx as k →∞.

2.2 Basic definitions in Geometric Measure Theory

We now recall some basic definitions and facts from Geometric Measure Theory and, in particular, from the
theory of sets of locally finite perimeter.

Definition 2.1 (Points of density α). Let E be a Borel set inℝn, x ∈ ℝn. If the limit

θ(E)(x) := lim
r→0+
|E ∩ Br(x)|
|Br(x)|

exists, it is called the density of E at x. In general θ(E)(x) ∈ [0, 1], hence, we define the set of points of density
α ∈ [0, 1] for E as

E(α) := {x ∈ ℝn : θ(E)(x) = α}.

Definition 2.2 (One-sided approximate limit). Let Ω ⊂ ℝn be an open set, and let S ⊂ Ω be an oriented
Hn−1-rectifiable set. Take z ∈ S such that the exterior normal ν = νS(z) is defined, and choose a measurable
function, or vector field, f defined on Ω. We write

ap-lim
x→z−

f(x) = w

if for every α > 0 the set {x ∈ Ω ∩ B−ν1 (z) : |f(x) − w| ≥ α} has density 0 at z.

Definition 2.3 (Perimeter). Let E be a Borel set inℝn. We define the perimeter of E in an open set Ω ⊂ ℝn as

P(E;Ω) := sup{∫
Ω

χE(x)divψ(x) dx : ψ ∈ C1c (Ω;ℝn), ‖ψ‖∞ ≤ 1}.

We set P(E) = P(E;ℝn). If P(E;Ω) <∞, we say that E is a set of finite perimeter in Ω. In this case (see [30])
one has that the perimeter of E coincides with the total variation |DχE| of the vector-valued Radon measure
DχE (the distributional gradient of χE), which is defined for all Borel subsets of Ω thanks to Riesz Theorem.
We also recall that P(E;Ω) = Hn−1(∂E ∩ Ω) when ∂E ∩ Ω is Lipschitz.
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Theorem 2.4 (De Giorgi Structure Theorem). Let E be a set of finite perimeter and let ∂∗E be the reduced
boundary of E defined as

∂∗E := {x ∈ ∂E : lim
r→0+

DχE(Br(x))
|DχE|(Br(x))

= −νE(x) ∈ 𝕊n−1}.

Then:
(i) ∂∗E is countablyHn−1-rectifiable,
(ii) for all x ∈ ∂∗E, χEx,r → χHνE (x) in L

1
loc(ℝ

n) as r → 0+, where HνE(x) denotes the half-space through 0 whose
exterior normal is νE(x),

(iii) for any Borel set A, P(E; A) = Hn−1(A ∩ ∂∗E), thus in particular P(E) = Hn−1(∂∗E),
(iv) ∫E divψ = ∫∂∗E ψ ⋅ νE dH

n−1 for any ψ ∈ C1c (ℝn;ℝn).

Finally, we recall the notion of weakly-regular set which is useful for the next section.

Definition 2.5 (Weakly-regular set). An open, bounded set Ω of finite perimeter, such that P(Ω) = Hn−1(∂Ω),
is said to be weakly-regular.

For the sake of completeness, we recall that examples of weakly-regular sets are, for instance, Lipschitz sets,
or minimal Cheeger sets withHn−1(∂Ω ∩ Ω(1)) = 0 (see [28, 33] for an account of these facts, [26, 31, 32] for
an introduction to Cheeger sets, and [27, 29] for recent results and examples).

2.3 The weak normal trace and the Gauss–Green formula

The weak normal trace was first defined in [3] for a vector field with divergence in L1(Ω), when Ω is bounded
and Lipschitz. When Ω is a generic open set, and denoting by Ln the Lebesgue measure on ℝn, the weak
normal trace [ξ ⋅ νΩ] can be defined as the distribution

⟨[ξ ⋅ νΩ], ψ⟩ := ∫
Ω

ψ d div ξ + ∫
Ω

ξ ⋅ ∇ψ dLn , ψ ∈ C∞c (ℝn).

Taking E ⊂⊂ Ω of class C1, and defining [ξ ⋅ νE] in the same way, one can show that the distribution is rep-
resented by an L∞ function defined on ∂E, that we still denote by [ξ ⋅ νE] with a slight abuse of notation,
so that

⟨[ξ ⋅ νE], ψ⟩ = ∫
∂E

ψ[ξ ⋅ νE] dHn−1.

Then, up to showing a locality property of the weak normal trace on C1 domains (see [1]), it is possible to
define [ξ ⋅ νS] for any given, oriented (n − 1)-rectifiable set S contained in Ω. We remark, however, that some
particular care has to be taken when Ω is a bounded open set with finite perimeter (and ξ is a-priori defined
only on Ω). In order to guarantee that the distributional weak normal trace is represented by an L∞ function
defined on S = ∂Ω one has to additionally assume that Ω is weakly-regular.

Thus, whenΩ is weakly-regular one obtains the Gauss–Green formula below (see [34, Section 3]) exploit-
ing the pairing between vector fields in DM∞(Ω) and functions in C1c (ℝn). Another version of the formula
with a slightly different pairing can be found in [28].

Theorem 2.6 (Generalized Gauss–Green formula). Let Ω ⊂ ℝn be a weakly-regular set. For any ξ ∈ DM∞(Ω)
and ψ ∈ C1c (ℝn) one has

∫
Ω

ψ d div ξ + ∫
Ω

ξ ⋅ ∇ψ dx = ∫
∂∗Ω

ψ[ξ ⋅ νΩ] dHn−1, (2.1)

where [ξ ⋅ νΩ] ∈ L∞(∂Ω;Hn−1) is the so-called weak normal trace of ξ on ∂∗Ω.

We remark for completeness that more general formulas have been recently obtained for pairings between
ξ ∈ DM∞(ℝn), ψ ∈ BVloc(ℝn) ∩ L∞loc(ℝ

n) and Ω bounded with finite perimeter (see in particular [14, 35]).
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As already observed by Anzellotti in [4] (see also [28]), the weak normal trace is a proper extension of
the scalar product between the exterior normal νΩ and the trace of the vector field ξ , assuming that the latter
exists in the classical sense. More generally, one expects that the weak normal trace is obtained as a weak-
limit of scalar products between (suitable averages of) the vector field ξ and the normal field νS. This actually
corresponds to [4, Proposition 2.1], which says that, whenever S is of class C1 and div ξ ∈ L1, then

1
ωnrn

∫
y∈Br( ⋅ )

ξ(y) ⋅ νS( ⋅ ) dLn(y)→ [ξ, νS] in L∞(S) − w∗ as r → 0+.

It is worth recalling that there exist also some pointwise characterizations of the weak normal trace. A first
one is obtained by testing (2.1) with a function ψ that approximates the characteristic function of a ball Br(x)
for x ∈ S. Taking x in a suitable subset of S of fullHn−1-measure one obtains

[ξ, νS](x) = ap-lim
r↓0

1
ωn−1rn

∫

y∈∂B−
r (x)

ξ(y) ⋅ (x − y) dHn−1(y) forHn−1-a.e. x ∈ S,

where, for r > 0 small enough, ∂B−r (x) denotes the part of ∂Br(x)which is on the side of S pointed by −νS(x).
A second characterization given in [4, Proposition 2.2], assuming S of class C1, is the following. Given x ∈ S
and r, ρ > 0 small enough, let Sρ(x) = S ∩ Bρ(x) and set

Qr,ρ(x) = {z = y − tνS(x) : y ∈ Sρ(x), t ∈ (0, r)},
νx(z) = νS(y) if z = y − tνS(x).

Note that νx(z) is well-defined on Qr,ρ(x) as soon as r, ρ are small enough. In other words, Qr,ρ(x) is a curvi-
linear rectangle foliated by translates of S ∩ Bρ(x) in the −νS(x) direction. It is proved in [4] that

[ξ, νS](x) = lim
ρ↓0

lim
r↓0

1
ωn−1ρn−1r

∫
z∈Qr,ρ(x)

ξ(z) ⋅ νx(z) dLn(z),

forHn−1-almost-every x ∈ S. This result canbealso obtainedby testing (2.1)with a C1 functionψ that satisfies
ψ = 1 on Sρ, ψ = 0 on Sρ − rνS(x), and which is linear on any segment (y, y − rνS(x)), y ∈ Sρ.

Despite the characterizations described above, one can easily construct examples of vector fields like
the one presented below (a variant of a piece-wise constant one defined in [4]) that illustrate possible wild
behaviors of divergence-free vector fields forwhich theweaknormal trace on S iswell-defined.More precisely,
the example below shows that, in general, the weak normal trace does not coincide with any classical, or
measure-theoretic, limit of the scalar product of the vector field with the normal to S, even when S is of class
C∞ and the vector field is divergence-free and smooth in a neighborhood of S (minus S itself).

Example 2.7. Let us setℝ2+ = {(x, y) : y > 0}, S = {(x, y) : y = 0}, and ν = (0, −1). For i ≥ 1and j = 1, . . . , 2i−1
we set xij = j

2i , yi =
1
2i , ri =

1
2i+2 . Then, for such i and j we take fi ∈ C

∞
c (ℝ)with compact support in (0, ri), so

that in particular fi(0) = fi(ri) = 0, and define pij = (xij , yi). Notice that by our choice of parameters, the balls
{Bij = Bri (pij)}i,j are pairwise disjoint. Whenever p ∈ Bij, we set

ξ(p) = fi(|p − pij|)(p − pij)⊥,

while ξ(p) = 0 otherwise (see Figure 1). One can suitably choose fi so that ‖ξ‖L∞(Bij) = 1 for all i, j. Moreover,
div ξ = 0 on ℝ2+ and thus for any ψ ∈ C1c (ℝ2), by the Gauss–Green formula and owing to the definition of ξ ,
one has

∫
S

ψ[ξ ⋅ ν] dH1 = ∫

ℝ2+

ξ ⋅ Dψ =∑
i,j
∫
Bij

ξ ⋅ Dψ =∑
i,j
∫
∂Bij

ψ ξ ⋅ νij = 0,

so that [ξ ⋅ ν] = 0 on S. At the same time, ξ twists in any neighborhood of any point p0 = (x0, 0), x0 ∈ (0, 1),
and the second component of the average of ξ on half balls centered at p0 has a lim inf strictly smaller than
its lim sup as r ↓ 0. In conclusion, the scalar product ξ(p) ⋅ ν(p0) does not converge to 0 in any pointwise or
measure-theoretic sense.
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Figure 1: A twisting vector field defined onℝ2+.

3 Proofs of the rigidity results
We start by proving that the convexity assumption on the function φ makes Definition 1.1 essentially equiv-
alent to a weaker one, in which the C∞ smoothness and the global Lipschitz-continuity of the vector field η
are required.

Lemma 3.1. Let φ and η be as in Definition 1.1. Let ρε be the standard mollifier supported in a ball of radius
ε > 0. Then the regularized vector field ηε = ρε ∗ η is globally Lipschitz and satisfies (i)–(iii) of Definition 1.1
up to an ε-translation in the variable xn.

Proof. We note that ηn ≥ φ(|η|) almost everywhere on ℝn by (iii), therefore Jensen’s inequality implies that
for all x ∈ ℝn and ε > 0

φ(|ηε(x)|) = φ(

∫
Bε

η(y)ρε(x − y) dy

)

≤ ∫
Bε

φ(|η(y)|)ρε(x − y) dy

≤ ∫
Bε

ηn(y)ρε(x − y) dy = ηεn(x).

Then we observe that ηε is globally Lipschitz, as a consequence of the boundedness of η, and verifies
div ηε = 0 on ℝn, that is, (ii). Moreover, for every x = (y, t) such that t ≤ −ε one has ηε(x) = 0. Finally, up to
a translation in the variable x, we can assume ηε(x) = 0 for all x ∈ ℝn−, hence property (i) is also satisfied.

Proof of Theorem 1.2. Without loss of generality, by Lemma 3.1 we can assume that η is smooth and globally
Lipschitz. Let us fix ε > 0 and consider the one-parameter flow associated with the vector field X = η + εen,
defined for every t ∈ ℝ and p ∈ ℝn by the Cauchy problem

{{
{{
{

Φ(0, p) = p,
∂
∂t
Φ(t, p) = X(Φ(t, p)).

Note that in the notation above we dropped the dependence upon the parameter ε for the sake of sim-
plicity. Due to the smooth dependence from the initial datum, the map Φ( ⋅ , ⋅ ) : ℝ ×ℝn → ℝn is smooth,
DpΦ|t=0 = Id and the map Φ(t, ⋅ ) : ℝn → ℝn is a diffeomorphism for every t ∈ ℝ. Let us denote by Φn(t, p)
the n-th component ofΦ(t, p). Since Xn(p) ≥ ε for all p ∈ ℝn, we have that ∂

∂tΦn(t, p) ≥ ε, hence the function
t → Φn(t, p) is strictly monotone and surjective. Therefore, for every h ∈ ℝ and p ∈ ℝn there exists a unique
T = T(p, h) ∈ ℝ such that Φn(T, p) = h. By the Implicit Function Theorem, T(p, h) is smooth and one has

∂hT(p, h) = Xn(Φ(T, p))−1, DpT(p, h) = −Xn(Φ(T, p))−1DpΦn(T, p).
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Fix now an open, bounded and smooth set A ⊂ ℝn−1 and h0 > 0. Let us set Ah0 = A × {h0} and define themap

Ψ : A × (0, h0)→ ℝn , Ψ(q, h) = Φ(T(p, h), p),

where we have set p = (q, h0). Before proceeding it is convenient to introduce some more notation. We write

Ψ = (Ψ1, . . . , Ψn−1, Ψn) = (Ψ̂, Ψn)

X = (X1, . . . , Xn−1, Xn) = (X̂, Xn)
y = (y1, . . . , yn−1, yn) = (ŷ, yn) for y ∈ ℝn .

We start by computing the partial derivative of Ψ with respect to h:

∂hΨ(q, h) = Xn(Ψ)−1X(Ψ).

Note thatΨ(p) = Ψ(q, h0) = p andΨn(q, h) = h by definition. Owing to the smoothness ofΨ, we first compute
the partial derivative with respect to h of Ψi

j := ∂qjΨ
i, for i, j = 1, . . . , n − 1:

∂hΨi
j = ∂qj∂hΨ

i = ∂qj [Xn(Ψ)−1Xi(Ψ)]

= Xn(Ψ)−1
n
∑
r=1
∂yrXi(Ψ)Ψr

j − Xn(Ψ)
−2Xi(Ψ)

n
∑
r=1
∂yrXn(Ψ)Ψr

j

=
n
∑
r=1
[Xn(Ψ)−1∂yrXi(Ψ) − Xn(Ψ)−2Xi(Ψ)∂yrXn(Ψ)]Ψr

j .

Moreover, it is immediate to check that ∂qjΨn(q, h) = 0 for all j = 1, . . . , n − 1 and that ∂hΨn(q, h) = 1, so
that in particular the matrix form of the previous computation is

∂hDqΨ̂ = B(Ψ) ⋅ DqΨ̂,

where
B = X−1n Dŷ X̂ − X−2n X̂ ⊗ DŷXn .

Moreover, the determinant of DΨ coincides with that of DqΨ̂. If we assume that q ∈ ℝn−1 is fixed, and define
δ(h) = detDqΨ̂(q, h), we find by standard calculations that

δ(h) = tr[B(Ψ(q, h))]δ(h),

with initial condition δ(h0) = 1. This shows that the Jacobian matrix of Ψ is uniformly invertible on compact
subsets of ℝn. Consequently, Ψ is a smooth diffeomorphism and the set Fε(A) := Ψ(A × (0, h0)), depicted in
Figure 2, is Lipschitz. Notice moreover that

|Ψ(q, h0) − Ψ(q, 0)| ≤
h0

∫
0

|∂hΨ(q, h)| dh ≤
h0

∫
0

X−1n |X| dh ≤ h0(c|η| + ε)−1(|η| + ε) ≤ max{h0,
h0
c }

,

thanks to theproperties of η. Noticenow that givenaboundedA ⊂ ℝn−1, there exists a constantR > 0depend-
ing only on A and h0, such that Fε(A) is contained in (−R, R)n for every ε > 0. Setting Lε(A) = Ψ(A × {0}), by
applying the Divergence Theorem on Fε(A) to the vector field X = η + εen we find the identity

0 = ∫
Fε(A)

div X = ∫
A

(ηn(q, h0) + ε) dq − εHn−1(Lε(A)),

since the integral on the “lateral” boundary of Fε(A) vanishes. This happens because the lateral boundary of
the flow-tube consists of integral curves of the flow X, and thus on this lateral boundary one has X ⋅ νFε(A) ≡ 0.
Using the fact thatHn−1(Lε(A)) ≤ (2R)n−1 we can pass to the limit as ε → 0 in the identity above, obtaining
that ηn vanishes on A × {h0}. By the arbitrary choice of both A and h0, and by property (iii) of Definition 1.1,
we conclude that η = 0 onℝn.
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Figure 2: The evolution of Ah0 through the diffeomorphism Ψ defines a “flow-tube”.

We now proceed with the proof of Theorem 1.3. Here, instead of using the “flow-tube” method employed
in the proof of Theorem 1.2, we take advantage of a special feature of 2-dimensional cylinders of the form
(−a, a) × (0, h0), i.e. the fact that their “lateral” perimeter is constantly equal to 2h0 (and in particular it does
not blow up when a → +∞).

Proof of Theorem 1.3. By Lemma 3.1 we can additionally assume that η is smooth and globally Lipschitz.
Since η2 ≥ 0, by the Divergence Theorem we find

r

∫
−r

|η2(x1, t)| dx1 =
r

∫
−r

η2(x1, t) dx1 =
t

∫
0

η1(−r, x2) − η1(r, x2) dx2 ≤ 2t‖η‖∞. (3.1)

Therefore, η2( ⋅ , t) ∈ L1(ℝ;ℝ) for all t > 0 and

‖η2( ⋅ , t)‖1 ≤ 2t‖η‖∞. (3.2)

By combining (iii) of Definition 1.1 with (3.2) and the fact that η2 is Lipschitz, we infer that

φ(|η1(x1, t)|) ≤ η2(x1, t)→ 0 as x1 → ±∞, (3.3)

hence, owing to the properties of φ, we get for all t > 0,

lim
x1→±∞

η1(x1, t) = 0.

This implies that
2‖η‖∞ ≥ η1(−r, t) − η1(r, t)→ 0

as r → +∞, for all t > 0. Therefore, we can take the limit in (3.1) as r →∞ and, thanks to the Dominated
Convergence Theorem, we obtain that

lim
r→+∞

r

∫
−r

|η2(x1, t)| dx1 = lim
r→+∞

t

∫
0

η1(−r, x2) − η1(r, x2) dx2

=
t

∫
0

lim
r→+∞
(η1(−r, x2) − η1(r, x2)) dx2 = 0.

Hence, the L1-norm of η2( ⋅ , t) is zero, thus η2( ⋅ , t) = 0, for all t > 0. By (3.3) and the properties of φ we
get η = 0 onℝ2.
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4 Counterexamples to quadratic rigidity in dimension n ≥ 4
Given x ∈ ℝn, we set r = (x1, . . . , xn−1) and z = xn. We consider vector fields η ∈ C0(ℝn) such that for r ̸= 0
one has

η(r, z) = (rf(r, z), h(r, z)) (4.1)

with f, h ∈ C1(ℝn+ \ {(0, z) : z ∈ ℝ}). We have the following:

Proposition 4.1. Let η ∈ C0(ℝn) be as in (4.1). Define

V(r, z) := −|r|n−1
z

∫
0

f(r, s) ds. (4.2)

Then η satisfies

η(r, z) = 0 for all z ≤ 0, (4.3)
|η(x)| ≤ 1 for all x ∈ ℝn , (4.4)
div η = 0 onℝn , (4.5)
ηn(x) ≥ c1|η(x)|2 for all x ∈ ℝn, (4.6)

if and only if V(r, z) satisfies

V(r, z) = 0 for all z ≤ 0, (4.7)
|∇V(r, z)| ≤ |r|n−2 for all r > 0 and z ∈ ℝ, (4.8)

r ⋅ ∇rV(r, z) ≥ c2|r|3−n(∂zV(r, z))2 for all r > 0 and z ∈ ℝ. (4.9)

Moreover, one has
η(r, z) = |r|1−n(−(∂zV)r, r ⋅ ∇rV). (4.10)

Proof. We show in full detail the only if part. Since

div η(r, z) = divr(rf(r, z)) + ∂zh(r, z) = (n − 1)f + r ⋅ ∇r f(r, z) + ∂zh(r, z),

equation (4.5) is equivalent to
∂zh = −(r ⋅ ∇r f + (n − 1)f). (4.11)

By recalling that h(r, 0) = 0 for all r by (4.3), from (4.11) we obtain that

h(r, z) = −
z

∫
0

(r ⋅ ∇r f(r, s) + (n − 1)f(r, s)) ds. (4.12)

Inequality (4.6), up to a change of the constant c, is equivalent to

h ≥ c|r|2f 2. (4.13)

Let us set V as in (4.2) and observe that (4.3) implies V(r, z) = 0 when z ≤ 0. Then using (4.12) we obtain

∇rV = −|r|n−1
z

∫
0

[∇r f(r, s) + (n − 1)f(r, s)|r|−2r] ds

and
∂zV(r, z) = −|r|n−1f(r, z), (4.14)

so that in particular
r ⋅ ∇rV = |r|n−1h, (4.15)
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and inequality (4.13) implies
r ⋅ ∇rV ≥ c|r|n+1f 2 ≥ c|r|3−n(∂zV)2.

Then by observing that (4.4) is equivalent to |r|2f 2 + h2 ≤ 1, we obtain by (4.14) and (4.15)

|∇V| ≤ |r|n−2.

We have thus proved that defining V as in (4.2) we get (4.7)–(4.9).
Conversely, one can easily check that given V satisfying (4.7)–(4.9), the vector field η defined as in (4.10)

satisfies (4.3)–(4.6).

Theorem 4.2. The quadratic rigidity property does not hold in dimension n ≥ 4.

Proof. Let us consider a positive parameter γ (to be chosen later) and define the function

V(r, z) =
{
{
{

γ[(1 + |r|n−1) 1
n−1 − 1] arctan(z2) if z ≥ 0,

0 otherwise.

Our aim is to verify properties (4.7)–(4.9) up to a suitable choice of γ, and then to use the equivalence stated in
Proposition 4.1. Of course (4.7) is true by definition of V. Let us set ρ = |r| andwrite V = V(ρ, z) for simplicity.
One has

∂ρV = γ arctan(z2)(1 + ρn−1)
2−n
n−1 ρn−2

and
∂zV = 2γ[(1 + ρn−1)

1
n−1 − 1] z

1 + z4
.

Notice that V is of class C1 and V(ρ, z) = 0 for all ρ > 0 and z ≤ 0. We obtain

|∇V| ≤ γ arctan(z2)(1 + ρn−1)
2−n
n−1 ρn−2 + 2γ[(1 + ρn−1)

1
n−1 − 1] z

1 + z4

≤ γ πρ
n−2

2 + γ
3 3

4

2 [(1 + ρ
n−1)

1
n−1 − 1], (4.16)

where the second inequality follows from the maximization of the function z
(1+z4) for z ∈ [0, +∞). Let us

consider the function

φ(ρ) = (1 + ρ
n−1)

1
n−1 − 1

ρn−2
.

As ρ → 0+, we have φ(ρ) ≃ ρ
n−1 , while as ρ → +∞ we have φ(ρ) ≃ ρ3−n. Moreover, when 0 < t < 1, one has

(1 + t) 1
n−1 ≤ 1 + t

n−1 , hence we deduce that

φ(ρ) ≤ ρ
n − 1 ≤ 1

when ρ < 1, and
φ(ρ) ≤ ρ3−n ≤ 1

when ρ ≥ 1. Therefore by (4.16) and the last inequalities we find that

|∇V| ≤ Cγρn−2,

where

C = π + 3
3
4

2 .

Assuming γ ≤ C−1, we obtain (4.8).
We now show that (4.9) (with the constant c = 1) holds up to taking a smaller γ. Indeed, the relation

ρ∂ρV ≥ ρ3−n(∂zV)2, after separation of variables, becomes

arctan(z2)(1 + z4)2

z2
≥ 4γφ(ρ)2(1 + ρn−1)

n−2
n−1 .

We argue as for the upper bound of φ(ρ) (more precisely, we discuss the two cases ρ < 1 and ρ ≥ 1; in the
first case we use the bound φ(ρ) ≤ 1, while in the second case we use the fact that n ≥ 4, and the inequal-
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ities φ(ρ) ≤ ρ3−n and 1 + ρn−1 ≤ 2ρn−1), and find

4γφ(ρ)2(1 + ρn−1)
n−2
n−1 ≤ 2

3n−4
n−1 γ. (4.17)

At the same time, by easy calculations we infer that the function arctan(t)(1+t2)2
t is bounded from below by 1.

Hence (4.9) is implied by the condition
γ ≤ 2

4−3n
n−1 .

In conclusion, by taking γ small enough, and thanks to Proposition 4.1, a divergence-free vector field provid-
ing a counterexample to the rigidity property in dimension n ≥ 4 is given by

η(r, z) =
{
{
{

γ|r|1−n(−2[(1 + |r|n−1) 1
n−1 − 1] z

1+z4 r, arctan(z
2)(1 + |r|n−1) 2−nn−1 |r|n−1) if z > 0,

0 if z ≤ 0.

We remark that the vector field η is of class C0, however one can obtain a C∞ counterexample bymollification
of η.

Concerning the3-dimensional case, the construction of a counterexamplewith cylindrical symmetry, as done
in Theorem4.2, does not work. Indeedwe are unable to get an estimate like (4.17), as the function φ(ρ) tends
to 1 as ρ → +∞. More precisely we can prove the following result.

Proposition 4.3. Let n = 3 and assume that V(r, z) is a C1 function satisfying properties (4.7)–(4.9). Then
V(r, z) = ψ1(|r|)ψ2(z) for suitable functions ψ1, ψ2 implies V ≡ 0.

Proof. We set ρ = |r| and write (4.9) as

ρψ1(ρ)ψ2(z) ≥ cψ2
1(ρ)[ψ


2(z)]

2.

Let us assume by contradiction that ψ1 and ψ2 are not trivial, hence there exist z0 > 0 and ρ0 > 0 such that
ψ2(z0) ̸= 0, ψ2(z0) ̸= 0, and ψ1(ρ0) ̸= 0. Setting a = ψ2(z0) and b = ψ2(z0), we have four cases according to
the signof a andψ1(ρ0).Wediscuss thefirst case a > 0 andψ1(ρ0) > 0.We consider thedifferential inequality

ρψ1(ρ) ≥ γψ
2
1(ρ)

with γ = cb2a > 0. Therefore, the function ψ1 is increasing and by separation of variables and integration
between ρ0 and ρ > ρ0 we get

ψ−11 (ρ0) ≥ −ψ
−1
1 (ρ) + ψ

−1
1 (ρ0) ≥ γ log(

ρ
ρ0
). (4.18)

We denote by I = [ρ0, β) the maximal right interval of existence of the solution ψ1, for which ψ1 > 0. We can
exclude the case β < +∞, aswewould obtain bymaximality thatψ1(ρ)→ +∞ as ρ → β−, however thiswould
contradict the fact that |ψ(ρ)| ≤ ρ for all ρ > 0. Contrarily, if ρ → +∞, one gets a contradiction with (4.18).
The remaining three cases can be discussed in a similar way.

Remark 4.4. As a consequence of Proposition 4.3 we infer that in dimension n = 3 no counterexample to the
rigidity property can be found in the class of vector fields of the form η(r, z) = (rf(|r|, z), h(|r|, z)).

5 The trace of a vector field with locally maximal normal trace
The results we shall discuss in this section are stated forHn−1-almost-every point of S, being S an oriented,
Hn−1-rectifiable set with locally finiteHn−1-measure. Therefore, given z ∈ DM∞, without loss of generality
(see [2, Theorem 2.56]) we shall assume x0 ∈ S to be such that
(a) the normal vector νS(x0) is defined at x0,
(b) x0 is a Lebesgue point for the weak normal trace [z ⋅ νS] of z on S, with respect to the measureHn−1 S,
(c) |div z|(Br(x0) \ S) = o(rn−1) as r → 0+.
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Lemma 5.1. Let η, {zk}k be vector fields in DM∞ with supk ‖zk‖∞ < +∞. Let Σ, {Sk}k be oriented, closed
Hn−1-rectifiable sets with locally finiteHn−1-measure, satisfying the following properties:
(i) zk → η in L∞-w∗,
(ii) Hn−1 Sk ⇀ Hn−1 Σ,
(iii) |div zk| (ℝn \ Sk)⇀ 0.
Then div η = 0 inℝn \ Σ.

Proof. Fix φ ∈ C1c (ℝn \ Σ) and set μk = div zk and μ = div η. By the Divergence Theorem coupled with the
formula (see [1, Proposition 3.2])

μk Sk = ([zk ⋅ νSk ]+ − [zk ⋅ νSk ]−)Hn−1 Sk ,

we have

∫
ℝn\Sk

φ dμk = −∫
Sk

φ dμk − ∫
ℝn\Sk

∇φ ⋅ zk

= −∫
Sk

φ([zk ⋅ νSk ]+ − [zk ⋅ νSk ]−) dHn−1 − ∫
ℝn
∇φ ⋅ zk ,

hence by (ii) and (iii)

∫
ℝn
∇φ ⋅ zk

≤ ∫
ℝn\Sk

|φ| dμk + 2‖zk‖∞ ∫ |φ| dHn−1 Sk → 0 as k →∞.

This shows that
∫
ℝn
φ dμ = lim

k
∫
ℝn
φ dμk = lim

k
∫
ℝn
∇φ ⋅ zk = 0,

which proves the thesis.

Proposition 5.2. Let z ∈ DM∞ and S a closed, orientedHn−1-rectifiable set with locally finiteHn−1-measure.
Then, forHn−1-almost-every x0 ∈ S and for any decreasing and infinitesimal sequence {rk}k, the sequence zk of
vector fields defined by zk(y) = z(x0 + rky) converges up to subsequences to a vector field η ∈ DM∞ in L∞-w∗,
such that setting Σ = [νS(x0)]⊥, we have div η = 0 onℝn \ Σ and [η ⋅ νΣ] = [z ⋅ νS](x0) on Σ.

Proof. We show that hypotheses (i)–(iii) of Lemma 5.1 are satisfied. Since ‖zk‖∞ = ‖z‖∞ for all k, thanks to
Banach–Alaoglu Theorem (see also [5, Theorem 3.28]) we can extract a not relabeled subsequence converg-
ing to η ∈ DM∞, which gives (i). We set Sk = r−1k (S − x0), then thanks to (c) we have

|div zk|(BR \ Sk) = r1−nk |div z|(BRrk (x0) \ S)→ 0 as k →∞ (5.1)

for all R > 0, which gives (iii). Owing to the localizationproperty proved in [1, Proposition3.2],we can replace
Swith theboundaryof anopen setΩ of class C1 such that x0 ∈ ∂Ω and νS(x0) = νΩ. DefiningΩk = r−1k (Ω − x0),
the proof of (ii) is reduced to showing thatHn−1 ∂Ωk weakly converge as measures toHn−1 ∂H, where H
is the tangent half-space to Ω at x0 (so that Σ = ∂H). This fact is a consequence of Theorem 2.4. Now we can
apply Lemma 5.1 and obtain div η = 0 on ℝn \ Σ. In order to prove the last part of the statement we have to
show that for any ψ ∈ C1c (ℝn) one has

∫
H

ψ d div η + ∫
H

∇ψ ⋅ η = τ0 ∫
∂H

ψ dHn−1,

where τ0 = [z ⋅ νS(x0)]. Since we have proved that div η = 0 onℝn \ Σ, we only have to show that

∫
H

∇ψ ⋅ η = τ0 ∫
∂H

ψ dHn−1. (5.2)

Note that by the convergence of zk to η, the L1loc-convergence of Ωk to H, and the convergence of themeasures
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Hn−1 ∂Ωk toHn−1 ∂H, we have

∫
H

∇ψ ⋅ η − τ0 ∫
∂H

ψ dHn−1 = lim
k
∫
Ωk

∇ψ ⋅ zk − τ0 ∫
∂Ωk

ψ dHn−1. (5.3)

Therefore by (5.1) and (b) we infer that

∫
Ωk

∇ψ ⋅ zk − τ0 ∫
∂Ωk

ψ dHn−1

≤

∫
∂Ωk

ψ ([zk ⋅ νΩk ] − τ0) dHn−1 − ∫
Ωk

ψ d div zk


≤ ‖ψ‖∞ ∫
∂Ωk∩sptψ

|[zk ⋅ νΩk ] − τ0| + ∫
ℝn\∂Ωk

|ψ| |div zk|→ 0 as k →∞.

Combining this last fact with (5.3) implies (5.2) at once, and concludes the proof.

By relying on Proposition 5.2 and on Theorem 1.3, we are now able to prove the main result of the section,
i.e. Theorem 1.4 which states the existence of the classical trace for a divergence-measure vector field having
a maximal weak normal trace on a orientedH1-rectifiable set S.

Proof of Theorem 1.4. Without loss of generality, up to a translation we can suppose x0 = 0 and up to a rota-
tion that νS(x0) = −e2. Moreover, up to rescaling ξ , we can suppose ‖ξ‖∞ = 1. Let

B+1 = B1 ∩ℝ
2
+.

We then want to show that the set
Nα := {x ∈ B+1 : |ξ(x) + e2| ≥ α}

has density zero at 0 for all α > 0. Argue by contradiction and suppose there exist α, β > 0 and a sequence of
radii {rk}k decreasing to zero such that

|Nα ∩ Brk |
πr2k
≥ β for all k. (5.4)

Define z0(x) := ξ(x) + e2 and the sequence zk(y) = z0(rky) for k ∈ ℕ. Since the second component of zk is
zk,2(x) = ξ2(rkx) + 1, one easily sees that

zk,2(x) ≥
|zk(x)|2

2 , (5.5)

for almost every x ∈ ℝ2. By the definition of Nα and by (5.5), the contradiction hypothesis (5.4) reads equiv-
alently as


{x ∈ r−1k B

+
1 : zk,2(x) >

α2

2 } ∩ B1

≥ πβ. (5.6)

On top of that, z0 ∈ DM∞ with ‖z0‖∞ ≤ 2. By Proposition 5.2 the sequence zk defined above converges
in L∞-w∗ (up to subsequences, we do not relabel) to a vector field η such that div(η) = 0 on ℝ2+ and
[η ⋅ (−e2)] = [z0 ⋅ (−e2)](0) on ℝ20. We aim to show that η satisfies hypotheses (i)–(iii) of Theorem 1.3. Were
this the case, one would conclude η ≡ 0 inℝ2+ and this would yield a contradiction with (5.6). Indeed, taking
χB+

1
as a test function, we get

π α
2β
2 ≤ ∫

B+
1

zk,2 →
k
∫

B+
1

η2.

On the one hand, we know that hypothesis (i) of Theorem 1.3 is satisfied as div(η) = 0 on ℝ2+. On the other
hand, as [η ⋅ ν] = −[z0 ⋅ e2](0) onℝ20, we get that

[η ⋅ ν] = −[ξ ⋅ e2](0) − e2 ⋅ e2 = ‖ξ‖∞ − 1 = 0,

so that hypothesis (ii) of Theorem 1.3 holds as well. We are left to show that hypothesis (iii) of Theorem 1.3
is satisfied. Since zk is equibounded, by (5.5) we infer as well that |zk|2 converges (up to subsequences, we
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do not relabel) to some function ζ in L∞-w∗. Clearly, one has from (5.5) and the weak-∗ convergence of zk
and of |zk|2 that ζ ≤ 2η2 almost everywhere. We want to prove that the same holds with |η|2 in place of ζ
so to retrieve hypothesis (iii) of Theorem 1.3 with the choice φ(t) = t22 . Take a probability measure f dx with
f ∈ L1(ℝ2). Then, by Jensen’s inequality,

∫ |zk|2f dx ≥

∫ zk f dx



2
= (∫ zk,1f dx)

2
+ (∫ zk,2f dx)

2
.

As k →∞, by the weak-∗ convergence we get

∫ ζf dx ≥ (∫ η1f dx)
2
+ (∫ η2f dx)

2
.

Thus, by letting f dx toward the Dirac measure centered at x, (iii) follows at once for almost-every point x
(more precisely, x must be a Lebesgue point for the functions ζ, η1, η2). A direct application of Theorem 1.3
yields the desired contradiction.

Corollary 5.3. Let Ω ⊂ ℝ2 be weakly-regular and let ξ ∈ DM∞(Ω). Then, for H1-a.e. x0 ∈ ∂Ω such that
[ξ ⋅ νΩ](x0) = ‖ξ‖∞ one has

ap-lim
x→x−0

ξ(x) = ‖ξ‖∞ νΩ(x0).

Proof. Thanks to the Gauss–Green formula (2.1) in the special case ψ = 1, one deduces that the vector field
̃ξ defined as ̃ξ = ξ on Ω and ̃ξ = 0 on ℝ2 \ Ω belongs to DM∞(ℝ2). The conclusion is achieved by applying
Theorem 1.4 with ̃ξ and ∂Ω in place of, respectively, ξ and S.

5.1 An application to capillarity in weakly-regular domains

The trace property that we have studied in the last section is motivated by the study of the boundary behavior
of solutions to the prescribedmean curvature equation in domains with non-smooth boundary (see [28]). Let
us consider the vector field

Tu = ∇u
√1 + |∇u|2

associated with any given u ∈ W1,1
loc (Ω). We say that u is a solution to the prescribedmean curvature equation

if
div Tu = H on Ω (PMC)

in the distributional sense, where H is a prescribed function on Ω. One of the main results of [28] is the
following theorem.

Theorem ([28, Theorem 4.1]). Let Ω ⊂ ℝn be a weakly-regular domain and let H be a given Lipschitz function
on Ω. Assume that the necessary condition for existence of solutions to (PMC) holds, that is,


∫
A

H(x) dx

< P(A) for all A ⊂ Ω such that 0 < |A| < |Ω|.

Then the following properties are equivalent:
(E) (Extremality) |∫Ω H dx| = P(Ω).
(U) (Uniqueness) (PMC) admits a solution u which is unique up to vertical translations.
(M) (Maximality) Ω is maximal for (PMC), i.e. no solution can exist in any domain strictly containing Ω.
(V) (Weak verticality) There exists a solution u which is weakly-vertical at ∂Ω, i.e.

[Tu ⋅ ν] = 1 Hn−1-a.e. on ∂Ω,

where [Tu ⋅ ν] is the weak normal trace of Tu on ∂Ω.

We remark that, in the relevant case of H a positive constant, the extremality property (E) is equivalent to Ω
being aminimal Cheeger set (i.e.Ω is the uniqueminimizer of the ratio P(A)

|A| among allmeasurable A ⊂ Ωwith
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Figure 3: A non-Lipschitz, weakly-regular domain. Originally appeared in [28, 29].

positive volume, see for instance [26, 27, 29, 31, 32]) and H equals the Cheeger constant of Ω. In dimension
n = 2, this extremal case corresponds exactly to capillarity in zero gravity for a perfectlywetting fluid that par-
tially fills a cylindrical container with cross-section Ω. We also stress that the uniqueness property (U) holds
in this case without any prescribed boundary condition; this means that the capillary interface in Ω ×ℝ only
depends upon the geometry of Ω. Another important remark should bemade on the verticality condition (V),
which corresponds to the tangential contact property that characterizes perfectly wetting fluids. In [28] this
condition is obtained under the weak-regularity assumption on Ω, which somehow justifies the presence of
the weak normal trace in the statement (see for instance in Figure 3 an example of non-Lipschitz, weakly-
regular domain built in [29] and covered by [28, Theorem 4.1]). Nevertheless, in the physical 3-dimensional
case (i.e. when Ω ⊂ ℝ2), the weak-verticality (V) improves to strong-verticality, that is, the trace of Tu exists
and is equal to νΩ almost-everywhere on ∂Ω thanks to Theorem 1.4 and to Corollary 5.3. However, we remark
that the strategy of proof strongly relies on the rigidity property, which we have been able to prove only in
dimension n = 2. It is an open questionwhether theweak-verticality condition always improves to the strong-
verticality given by the existence of the classical trace of Tu at Hn−1-almost-every point of ∂Ω, and more
generally if Theorem 1.4 holds in any dimension.
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