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Abstract

The COVID-19 epidemic is the last of a long list of pandemics that have affected humankind
in the last century. In this paper, we propose a novel mathematical epidemiological model
named SUIHTER from the names of the seven compartments that it comprises: susceptible unin-
fected individuals (S), undetected (both asymptomatic and symptomatic) infected (U), isolated
infected (I), hospitalized (H), threatened (T), extinct (E), and recovered (R). A suitable pa-
rameter calibration that is based on the combined use of least squares method and Markov
Chain Monte Carlo (MCMC) method is proposed with the aim of reproducing the past history
of the epidemic in Italy, surfaced in late February and still ongoing to date, and of validating
SUIHTER in terms of its predicting capabilities. A distinctive feature of the new model is that it
allows a one-to-one calibration strategy between the model compartments and the data that are
daily made available from the Italian Civil Protection. The new model is then applied to the
analysis of the Italian epidemic with emphasis on the second outbreak emerged in Fall 2020. In
particular, we show that the epidemiological model SUIHTER can be suitably used in a predictive
manner to perform scenario analysis at national level.

1 Introduction

The Coronavirus pandemic of coronavirus disease 2019 (COVID-19) is a tremendous threat to
global health. Since the outbreak in early December 2019 in China, more than 1 834 573 global
deaths have been registered, while the estimated total number of confirmed cases is 84 511 153 up to
January 2nd, 2021 [2]. The real number of people infected is unknown, but probably much higher.

In this scenario, predicting the trend of the epidemic is of paramount importance to mitigate
the pressure on the health systems and activate control strategies (e.g. quarantines, lock-downs,
and suspension of travel) aiming at containing the disease and delaying the spread.

As these predictions have vital consequences on the different actions taken from governments
to limit and control the COVID-19 pandemic, the recent period has seen considerable flowering
of epidemiological mathematical models; see, e.g, [6, 14, 21, 22, 30, 39]. However, estimates and
scenarios emerging from modeling highly depend on different factors, ranging from epidemiological
assumptions to, perhaps most importantly, the completeness and quality of the data based on
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which models are calibrated. Since the beginning of the COVID-19 emergency, the quality of data
on infections, deaths, tests, and other factors have been spoiled by under-detection or inconsistent
detection of cases, reporting delays, and poor documentation. This inconvenient has affected, and
still is to date hampering, the intrinsic predictive capability of mathematical models.

Despite the lack or incompleteness of the available data, which makes modeling the current
COVID-19 outbreak challenging, mathematical models are still vital to establish predictions within
reasonable ranges, and can be adapted to incorporate the effects of public health authority in-
terventions in order to estimate in advance their effectiveness and their impact on the COVID-19
spread. Building upon the celebrated SIR (susceptible (S), infectious (I), and recovered (R)) model
proposed in 1927 by Kermack and McKendrick [25], several generalizations have been formulated
over the years by enriching the number of compartments, e.g. Susceptible – Exposed – Infectious
– Recovered (SEIR), Susceptible - Infectious - Susceptible (SIS), Susceptible - Exposed - Infected
- Recovered - Deceased (SEIRD), Susceptible – Exposed – Infectious – Asymptomatic – Recovered
(SEIAR), Susceptible - Infectious - Susceptible - Recovered (SIRS), Susceptible - Exposed - Infec-
tious - Quarantined - Recovered (SEIQR), Maternally - derived immunity - Susceptible – Exposed
– Infectious – Recovered (MSEIR), ... ; we refer to, e.g., [7, 24, 32] for an overview. Overall, these
models have been abundantly applied to locally analyze COVID-19 outbreak dynamics in various
countries (see, e.g., [26, 28, 30, 31]).

However, the peculiar epidemiological traits of the COVID-19 ask for models better able to
accurately portray the mutable dynamic characteristics of the ongoing epidemic, with particular
emphasis on two critical aspects: (i) the crucial role played by the undetected (both asymptomatic
and symptomatic) individuals; (ii) the number of individuals that require Intensive Care Unit
(ICU) admission. This latter aspect is of paramount importance in designing realistic scenarios
that incorporate the pressure of the epidemic on the national health systems.

In this paper we introduce a new mathematical model, named SUIHTER, based on the initials of
the seven compartments that it comprises: susceptible uninfected individuals (S), undetected (both
asymptomatic and symptomatic) infected (U), isolated infected (I), hospitalized (H), threatened
(T), extinct (E), recovered (R). It is a system of coupled ordinary differential equations (ODEs)
that are driven by a set of parameters that are indeed piecewise constant time dependent functions.
A first set of parameters denote the transmission rates due to contacts between susceptible and
undetected, quarantined or hospitalized subjects. A second set of parameters mimics the rates at
which I (isolated) and H (hospitalized) individuals develop clinically relevant or life-threatening
symptoms. A further parameter indicates the probability rate of detection of previously unde-
tected infected individuals. Another set of parameters indicates the rate of recovery for the four
classes of infected subjects. Finally, the last parameters denote the mortality rates for the different
compartments.

This SUIHTER model has been conceived to face some of the limitations that can be found in
existing epidemiological models applied to the COVID-19 pandemic. On the one hand, some studies
adopt simple SIR-like models [26, 30, 31], which have the advantage of having a limited number of
parameters to be calibrated, but pay the price of being unable to track the dynamics of different
categories of infected individuals. On the other hand, other multi-compartmental models (see e.g.
[6, 22]) have been proposed to account for the detailed knowledge of the clinical characterization for
different classes of infected individuals according to the actual level of disease severity. However,
it is not always possible (and, even when possible, it is not easy) to associate the multiple infected
compartments to the available data. The SUIHTER model has been designed with the objective of
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creating the most compact model able to predict the different categories of infectious individuals
which are considered relevant by the policy makers.

A key challenge in modelling the dynamics of COVID-19 epidemic is represented by the large
number of the undetected cases. Indeed, the contribution to the spread of the epidemics due to the
(often asymptomatic) undetected cases is too relevant to be neglected. Several authors [22, 45, 29]
have attempted, using different strategies, to quantify the number of undetected infections and
their effect on epidemic spread. In the present work, we propose a strategy about the initialization
of those compartments that are not covered by the data (such as Susceptible, Undetected and
Recovered).

The model adopts a two-step calibration process based on a preliminary estimation of the model
parameters that uses a Least Squares minimization, followed by a Bayesian calibration performed
through a Markov Chain Monte Carlo algorithm.

The model has been adopted to simulate the second COVID-19 epidemic outbreak in Italy arisen
in Fall 2020 (and still ongoing). In particular, we have investigated the capability of the model in
forecasting the occurrence of a peak for the most relevant compartments with an adequate advance
notice. Results of the calibration, simulation by SUIHTER and predictions for Italy and the six
largest Italian regions are also reported.

The outline of the paper is as follows: in Section 2 we introduce the SUIHTER mathematical
model; Section 3 is devoted to the description of the calibration procedure, Section 4 contains the
numerical results along with their discussion. In Section 5, we draw our conclusions and we discuss
some model’s limitations.

2 Mathematical model

The spread of COVID-19 had made it clear that it is of paramount importance to include in
epidemiological models a compartment describing the dynamics of infected individuals that are
still undetected. This is, e.g., the case of [22]. However, some compartments presented in [22]
(undetected asymptomatic infected and undetected symptomatic infected) are virtually impossible
to be validated since these classes of individuals cannot be traced in public databases (cf. [1]). For
this reason, building upon [22] we propose a new model more suited to taking full advantage of
publicly available data. In particular, our model is described by the following system of ordinary
differential equations

Ṡ (t) = −S (t)
βUU (t) + βII (t) + βHH (t)

N
,

U̇ (t) = S (t)
βUU (t) + βII (t) + βHH (t)

N
− (δ + ρU )U (t) ,

İ (t) = δU (t)− (ρI + ωI+γI) I (t) +θHH (t),

Ḣ (t) = ωII (t)− (ρH + ωH+θH+γH)H(t)+θTT (t),

Ṫ (t) = ωHH (t)− (θT + γT )T (t) ,

Ė (t) = γII (t)+γHH (t)+γTT (t) ,

Ṙ (t) = ρUU (t) + ρII (t) + ρHH (t)

(1)
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Figure 1: Interactions among compartments in SUIHTER model

where the compartments of the model are defined as follows (see Figure 1):

• S: number of susceptible (uninfected) individuals;

• U : number of undetected (both asymptomatic and symptomatic) infected individuals;

• I: number of infected individuals isolated at home;

• H: number of infected hospitalized individuals;

• T : number of infected threatened individuals hosted in ICUs;

• E: number of extinct individuals;

• R: number of recovered individuals,

and N = S + U + I +H + T + E +R denotes the total population (assumed constant).
The model is characterized by the following 14 parameters, some of which are possibly chosen

as time dependent piecewise polynomial functions:

• βU , βI , βH denote the transmission rates due to contacts between a susceptible subject and
an undetected infected, a quarantined, or a hospitalized subject, respectively;

• ωI denotes the rate at which I-individuals develop clinically relevant symptoms, while ωH
denotes the rate at which H-individuals develop life-threatening symptoms;

• θH and θT denote the rates at which H and T -individuals improve their health conditions
and return to the less critical I and H compartments, respectively;
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• δ denotes the probability rate of detection, relative to undetected infected individuals;

• ρU , ρI and ρH denote the rate of recovery for three classes (U , I and H, respectively) of
infected subjects;

• γI , γH and γT denote the mortality rates for the individuals isolated at home, hospitalized
and hosted in ICUs, respectively.

Since data available for the Recovered cases do not include those individuals who recovered
before being detected, we also propose a novel indicator, that will be denoted as Recovered from
detected, and that we define as

RD(t) =

∫ t

tI

(ρII(τ) + ρHH(τ)) dτ.

This indicator can be obtained in postprocessing from computed compartments and collects those
individuals who recovered after being detected.

In mathematical epidemiology a fundamental quantity is the basic reproduction number (denoted
by R0), which is used to measure the transmission potential of a disease. It represents the average
number of secondary infections produced by a typical case of an infection in a population where
everyone is susceptible (see [16, 7, 32]). For our model, by using a similar argument to the one
adopted in the proof of Proposition 1 in [22], we find

R0 =
βU
r1

+
δ

r1

(
βI(r3r4 − θTωH) + βHωIr4
r2r3r4 − r4θHωI − r2θTωH

)
, (2)

where r1 = δ + ρU , r2 = ρI + ωI + γI , r3 = ρH + ωH + θH + γH , and r4 = θT + γT . For the
sake of comparison (cf. Eq. (32) in [22]), we observe that in the present context the characteristic
polynomial q(s) of the Jacobian matrix associated to the linearization of (1) around the equilibrium
configuration (S̄, 0, 0, 0, 0, Ē, R̄) with S̄ + Ē + R̄ = N is

q(s) = s3p(s) with p(s) = D(s)− S̄N(s)

where

D(s) = (s+ r1)(s+ r2)(s+ r3)(s+ r4)− (s+ r1)θHωI − (s+ r1)(s+ r2)θTωH

and

N(s) = (s+ r4){βU [(s+ r2)(s+ r3)− ωIθH ] + βIδ(s+ r3) + βHδωI}− βUωHθT (s+ r2)− βIδθTωH .

From the mathematical point of view, the reproduction number R0 plays the role of a threshold
value at the outset of the epidemic. If R0 > 1, the disease spreads in the population; if R0 < 1,
the number of infected gradually declines to zero. Note that all factor in Eq. (2) are, as expected,
actually positive. Furthermore, the expression (2) considerably simplifies upon assuming, as done
in the remainder of this paper, that βI = βH = θH = γH = 0. Our SUIHTER model, as other com-
partmental models, corresponds to a particular case of an integral model with arbitrary distribution
of infectious time, for which R0 is well-known [16].

5



2.1 Model initialization

A critical issue is the way those compartments for which data are unavailable (Susceptible, Unde-
tected and Recovered) are initialized. In particular, when the analysis focuses on a late phase of
the epidemics, as in the present investigation of the second epidemic outbreak in the Fall 2020, it
may difficult to estimate those ”initial” values as a result of the simulation from day 0.

For these reasons, we have devised a strategy to estimate the number of Recovered and Un-
detected individuals based on the value of the Infection Fatality Ratio (IFR) defined as the ratio
between the number of deaths and the number of resolved cases (dead or recovered) at a specific
time (ideally at the end of the epidemic)

IFR =
E

R+ E
. (3)

We assume that IFR will be roughly constant in time, at least over the first wave. By using the
age-dependent estimates given in [8] the IFR can be estimated around 1.2 % for Italy. The number
of Recovered individuals on a given day can be then computed from (3) based on IFR and the
number of Expired individuals. Moreover, the number of Undetected individuals at a given time
can be obtained by exploiting the detecting ratio at any given time as follows. We introduce a time
dependent Case Fatality Ratio (CFR) defined as:

CFR(t) =
∆E(t)

∆RD(t) + ∆E(t)
, (4)

where ∆E(t) = E(t+ ∆t/2)− E(t−∆t/2) and ∆RD(t) = RD(t+ ∆t/2)− RD(t−∆t/2), denote
the deaths and (detected) recovered cases observed in a time-window of size ∆t = 28 days around
a given time t. The number of Undetected individuals at a given time is estimated by assuming
that the detection ratio, that is the percentage of detected cases with respect to the total number
of positive cases, be computed as

I(t) +H(t) + T (t)

U(t) + I(t) +H(t) + T (t)
≈ ∆I(t) + ∆H(t) + ∆T (t)

∆U(t) + ∆I(t) + ∆H(t) + ∆T (t)
=

IFR

CFR(t+ d)
. (5)

Here we have assumed that the variation of the number of total positive individuals in the time
window [t − ∆t, t + ∆t] can be approximated by the variation of the resolved case shifted by a
confirmation-to-death delay d = 13 (see [44]), namely

∆U(T ) + ∆I(t) + ∆H(t) + ∆T (t) ≈ ∆R(t+ d) + ∆E(t+ d) =
∆E(t+ d)

IFR
.

Similarly, we have assumed that the variation of detected positive individuals in the time window
[t − ∆t, t + ∆t] can be approximated with the variation of the resolved detected cases shifted by
the same time delay:

∆I(t) + ∆H(t) + ∆T (t) ≈ ∆RD(t+ d) + ∆E(t+ d) =
∆E(t+ d)

CFR(t+ d)
.

By using the available data for I, H, T , and E, other than the value of S deduced under the
assumption of constant total population and the estimate of CFR(t) given in Eq. (4), we estimate
the initial conditions for R and U as

R(t) =

(
1

IFR
− 1

)
E(t),
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U(t) =

(
CFR(t+ d)

IFR
− 1

)
(I(t) +H(t) + T (t)) ,

from Eqs. (3) and (5), respectively.

3 Parameter calibration

Model calibration through data fitting is essential to reproduce the past history of the epidemic
and to perform short-term forecasts by inferring the epidemiological characteristics of COVID-19.

Here we use reported isolated, hospitalized, threatened and extinct cases data to estimate the
parameters of the proposed SUIHTER model. In particular, we perform the calibration in two
steps. Firstly, we find a set of parameter values using an (ordinary) least squares (LS) estimator.
Then, we perform a Bayesian calibration using a Markov Chain Monte Carlo (MCMC) algorithm,
starting from a prior distribution of the parameters centered about the LS estimate. Calibration
of epidemiological models has been already performed in a Bayesian framework, following the
pioneering paper by O’Neill and Roberts [37], for several infectious diseases [9, 17, 27]. In the
case of COVID-19 epidemic, Bayesian inference has been performed using simpler SIR [40, 47],
meta-community SEIR-like [6, 19, 21, 28, 33] and SEIAR [39] models, in this latter case aiming
at estimating nine parameters – including a dynamic, time-dependent contact rate β(t) – during
the first outbreak of the COVID-19 epidemic. In addition to model calibration, our analysis also
provides a numerical assessment of the predictive capability of the model, in forecasting with an
adequate advance notice the occurrence of a peak for the most relevant compartments.

System (1) can be recast in the following general form describing a system of ODEs for a
state vector Y with ne components (or compartments): find Y(t) : [tI , tF ] → Rne with Y(t) =
[Y1(t), . . . , Yne(t)]

T such that

Y′(t) = F(t,Y(t);p(t)) t ∈ (tI , tF ] (6)

Y(tI) = Y0. (7)

where F is the right-hand-side of system (1) and Y0 ∈ Rne denotes the initial condition at time tI
evaluated as discussed in Section 2.1. The evolution of the system depends on npar time-dependent
parameters, collected into the function p(t) : (tI , tF ] → Rnp . Note that, at the discrete level, the
nonlinear nature of system (1) is treated by considering an explicit (fourth-order Runge-Kutta)
time discretization with time step ∆t = 1 day

Let us partition the interval I = [tI , tF ] into nph phases, corresponding to different epidemic
stages due to, e.g., partial restrictions (such as lock-down measures) or different containment rules
introduced by the Government or by the local Authorities, so that on each phase the environmental
conditions may be considered fixed. Thus, on each phase, the values of the npar model parameters
are assumed constant (but unknown), so that we can introduce the following set of admissible
parameters

Pad = {p(t) : p(t)|Ik = pk ∈ [pL,k,pU,k], k = 1, . . . , nph} (8)

where pL,k,pU,k are given constant vectors. For the sake of notation, let us denote by p ∈ Rnp

the vectors of unknown parameters to be estimated, with np = nparnph, and let Y = Y(t,p)
highlight the dependence of the states on the parameters. Consequently, Pad is the np-dimensional
hypercube delimited by the constraints (8). Additional constraints on the parameters are assumed,
by imposing that some of them are constant over all phases.
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Let ∆t be a positive time step, for which we consider nme measurements of ncom = 5 < ne
compartments at equally spaced times tj = j∆t, j = 1, . . . , nme over the interval I = [tI , tF ], with
t1 = tI + ∆t, tnme = tF ; in total, we have ncom × nme = 5 × nme reported data, say D̂(t) =
{ŶI,H,T,E,RD

(tj)}nme
j=1 ∈ R5×nme , that is,

D̂(t) = {(Î(t1), Ĥ(t1), T̂ (t1), Ê(t1), R̂D(t1))
T , . . . , (Î(tnme), Ĥ(tnme)), T̂ (tnme), Ê(tnme), R̂D(tnme))

T }.

The first stage of the calibration process is then performed by seeking a LS estimate of the
parameters vector, given by the solution of the following minimization problem,

p̂ = arg min
p∈Pad

(9)

where

J (p) :=

nme∑
j=1

∑
k={I,H,T,E,RD}

αk(tj)‖Yk(tj ,p)− Ŷk(tj)‖22, (10)

where Yk(tj ,p), k = {I,H, T,E,RD} denote the components of the solution Y of Problem (6)-
(7), corresponding to the compartments I,H, T,E, and RD, respectively, evaluated at time instant
tj , j = 1, . . . , nme, for the set of parameters p. For a balanced distribution of the error across the
different compartments, whose amplitudes vary along time, the dynamical weight coefficients are
defined as αk(tj) = 1/Ŷk(tj).

We considered the official epidemiological data supplied daily by the Italian Civil Protection,
hereafter called “raw data” and freely available at https://github.com/pcm-dpc/COVID-19, [1].
The accuracy of these data is highly questioned, in particular concerning the estimate of the total
number of reported positive cases (strongly dependent on the daily screening effort) [21]. This
lack of accuracy is indeed one of the most critical aspects of simple SIR-like models in which the
calibration of the Infected compartment is often performed using data on the reported positive
cases. In our model, the ncom = 5 time series selected for the calibration (Isolated, Hospitalized,
Threatened, Extincts and Recovered from detected) are the data that have been daily supplied by
the Italian authorities since the beginning of the pandemic. One of the key features of the proposed
SUIHTER model is indeed the one-to-one correspondence of the compartments with the categories
for which reliable data, as the ones provided on a daily-basis by the Italian Civil Protection, are
available [1].

When nph phases are considered, equation (9) leads to the optimization of np = 14nph pa-
rameters in total. Namely, for each phase of the epidemic, we have the 14 parameters given by
[βU , βI , βH , ωI , ωH , δ, ρU , ρI , ρH , θH , θT , γI , γH , γT ].

Unfortunately, so many parameters make the calibration process problematic. In what follows,
we calibrate our model under the following simplifying assumptions:

• βI and βH are set to zero, by assuming that the infection only occurs through a contact
between a Susceptible individual and an Undetected infected individual (see, for instance,
[12]);

• θH is set to zero as we assume that a Hospitalized individual can return back to home only
once he has recovered, since this parameters may be difficult to estimate in the absence of
specific data on the H to I flux.;
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• γH are set to zero, by assuming that when a Hospitalized individual is in life-threatening
conditions, he/she is moved to ICU;

• δ, ρU , ρI , ρH , γI , θT ∈ R are constant on [tI , tF ].

With these restrictions, the total number of parameters to be calibrated is reduced to 4nph + 6.
The first stage of the calibration process has been performed by solving the minimization prob-

lem (9) numerically. We have used a parallel version of the limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm with box constraints (L-BFGS-B), see [49] for details.

The second stage of the calibration process aims at quantifying uncertainties and has been
carried out employing a Bayesian framework, since the latter provides probability densities of the
input parameters that can be propagated through the model.

Bayesian inference allows us to construct a probability distribution function (PDF) for the
unknown parameters merging prior information and available data, these latter entering in the
expression of the likelihood function. At this stage, in order to account for the uncertainty on
the initial conditions, we extend the set of parameters to be estimated to p̄ = (p,q) where q =
(U(tI), R(tI)) collects the initial conditions for the Undetected and Recovered compartments whose
values are not available from the data and can only be estimated. The posterior PDF can then
be obtained through the Bayes theorem on conditional probabilities. For the case at hand, we
quantify the likelihood of the parameter vector p̄ corresponding to the model outcome Yk(tj , p̄),
k = {I,H, T,E,RD} in correlation to the reported cases D̂(t) as

π(D̂(t) | p̄) =
∏

k={I,H,T,E,RD}

1

(2πσ2)nme/2
exp

− 1

2σ2

nme∑
j=1

(Ŷk(tj)−Yk(tj , p̄))2

 ,

where the (unknown) variance σ2 is assumed to be constant for each compartment.
Note that a usual assumption when estimating parameters of epidemiological models is that

reported cases, given their discrete nature, follow a Poisson or negative binomial distribution [17,
21, 12, 33]. However, given the relatively large number of cases, the normal distribution represents
a good and flexible approximation, allowing for faster computations.

Using Bayes’ theorem, we obtain the posterior distribution of the parameters p̄ accounting for
the prior knowledge on the parameters and the reported cases, as

π(p̄ | D̂(t)) =
π(D̂(t) | p̄)π(p̄)

π(D̂(t))
=

π(D̂(t) | p̄)π(p̄)∫
P π(D̂(t) | p̄)π(p̄)dp̄

,

where π(p̄) denotes the (uniform) prior distribution for the parameters. Here, we assume that the
prior PDF for the model parameters p is centered at the LS estimate p̂ obtained during the former
calibration stage, on a range [0.9p̂, 1.1p̂], while priors of the initial values q is centered around an
estimate q̂ obtained based on the IFR, infection fatality ratio (see Eq. (3)), on a range [0.7q̂, 1.3q̂].
The larger relative amplitude of the latter prior interval reflects the higher uncertainty on the initial
value for the Recovered and Undetected compartments.

An alternative, more common and rigorous procedure, would require to specify informative
priors for the parameters, starting from key epidemiological features, as done, e.g., in [21, 12].
However, given the large numbers of parameters to be estimated – some of which do not find explicit
counterparts in epidemiological literature – we have assumed uniform priors, centered about the
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LS estimates, as a practical shortcut to overcome the difficulty in specifying the prior distribution.
In terms of predictive capability of the model, numerical results provided in Section 4 allows us to
assess the proposed approach.

Since we cannot obtain the posterior distribution over the model parameters p analytically,
we adopt approximate-inference techniques based on Monte Carlo (MC) methods, which aim at
generating a sequence of random samples from a Markov chain whose distribution approaches the
posterior distribution asymptotically, whence the name of Markov chain Monte Carlo (MCMC)
[43]. In particular, we have used the delayed rejection adaptive Metropolis (DRAM) algorithm [23]
implemented in pymcmcstat, see [34] for the details. The first 500 000 samples of the chain serve
to tune the sampler and are later discarded (burn-in period). We use the next 500 000 samples to
approximate the posterior distribution for the parameters p̄.

From the generated chains, we draw NMC samples of the parameters p̄1, . . . , p̄NMC
that we

use to perform forward propagation of uncertainty through the model, and to compute predictive
envelopes of the SUIHTER model compartments (or predictive distributions).

We report the MC samples of the trajectories on the time interval (tI , tfor], including a forecast
window (tF , tfor] that extends beyond the time window (tI , tF ] where data have been reported, to
assess the predictive capability of the model.

4 Results and discussion

In this section we present three batteries of numerical results assessing the forecasting capabilities
of the SUIHTER model. Our analysis focuses on the second wave of the epidemic that started at the
end of the Summer of 2020 and, at the time of this writing, is still affecting Italy. In Section 4.1, we
present the simulation of the second wave obtained with the SUIHTER model using for its calibration
all the data between August 20, 2020 and December 31, 2020. By limiting the time range of the
data used for the calibration, we also investigate the model capability in forecasting the peaks of
the different compartments (see Section 4.2).

Our results at the national level for the second outbreak have been obtained by initializing
the Isolated, Hospitalized, Threatened and Extinct compartments with the data provided by the
Dipartimento della Protezione Civile [1] at August 20, 2020, namely I = 15 063, H = 883, T = 68
and E = 35 418. The initial value for the Undetected and Recovered compartments are estimated
using the strategy based on IFR and time-dependent CFR introduced in Section 2.1, resulting
in the values U = 12 274 and R = 2 916 082, respectively. Finally, the initial condition for the
Susceptible compartments is given by S = (N − I − U −H − T − E −R) = 57 504 185. Note that
this would imply that, by the end of the first wave, around 4.8% of the Italian population had
been infected. A serosurvey organized by ISTAT and ISS had estimated that 2.5% of the Italian
population had been infected [35, 46]; the survey however had a low compliance, so that its results
may be biased. A corresponding survey in Spain [41] with a much higher compliance rate estimated
seropositivity to 4.6% or 5%, depending on the methodology used for the seroprevalence analysis.
Using an ensemble model calibrated over several countries [36] estimate the proportion infected
in Italy at September 1 around 4.5%. Using instead a dynamical model calibrated over detailed
data, [33] estimate the proportion infected in Italy at September 30 of 4.78%. Thus, the value of
Recovered cases obtained for August 20 looks rather realistic.
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4.1 Simulation of the second epidemic wave

The SUIHTER model has been used to simulate the second epidemic outbreak, starting from August
20, 2020 until December 31, 2020. The different phases in which the parameters can take different
values have been identified according to the occurrence of some critical events:

• September 24, 2020: all schools at the national level reopened after the summer (and spring
lockdown) closure (schools calendars vary by grades and by region level in Italy);

• October 8, 2020: new rules imposing the mandatory use of masks in all locations (either
indoor or outdoor) accessible to public;

• October 26, 2020: confinement rules including distance learning for most secondary schools,
limitations on the activity of shops, bars and restaurants, strong limitation of sport and leisure
activities1;

• November 6, 2020: stricter confinement rules including distance learning from 9th grade,
further restrictions on commercial activities, limitations on the circulation outside the own
municipality (for some Italian regions, classified as red regions)2;

• November 15, 2020: additional confinement rules as more regions turned to red color 3;

• November 19, 2020: additional confinement rules as more regions turned to red color4;

• November 29, 2020: relaxation of confinement rules in some regions turned to orange color5;

• December 6, 2020: relaxation of confinement rules in some regions turned to yellow color6;

• December 18: stricter confinement rules are introduced for Christmas holidays7.

By considering a time lag of 4 days (to account for the incubation period) [20], the corresponding
phases on which the model parameters are defined and possibly changing) are:

• Phase 1: August 20, 2020 - September 28, 2020;

• Phase 2: September 29, 2020 - October 11, 2020;

• Phase 3: October 12, 2020 - October 29, 2020;

• Phase 4: October 30, 2020 - November 9, 2020;

• Phase 5: November 10, 2020 - November 18, 2020;

• Phase 6: November 19, 2020 - November 23, 2020;

1DPCM October 24, 2020, http://www.governo.it/sites/new.governo.it/files/DPCM_20201024.pdf
2DPCM November 4, 2020, https://www.gazzettaufficiale.it/eli/gu/2020/11/04/275/so/41/sg/pdf
3http://www.salute.gov.it/imgs/C_17_notizie_5171_0_file.pdf
4http://www.regione.abruzzo.it/system/files/atti-presidenziali/ordinanze/2020/ordinanza-n-102.

pdf
5http://www.salute.gov.it/imgs/C_17_notizie_5197_0_file.pdf
6https://www.gazzettaufficiale.it/eli/id/2020/12/05/20A06781/sg
7Decree Law December 18, 2020, n. 172, https://www.gazzettaufficiale.it/eli/id/2020/12/18/20G00196/sg
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• Phase 7: November 24, 2020 - December 3, 2020;

• Phase 8: December 4, 2020 - December 10, 2020;

• Phase 9: December 11, 2020 - December 22, 2020;

• Phase 10: December 23, 2020 - December 31, 2020.

As mentioned in Section 3, the compartments employed for calibration are only those with more
reliable data, namely Isolated (I), Hospitalized (H), Threatened (T), Extinct (E) and Recovered
from detected individuals.

We performed the model calibration by employing the MCMC parameter estimation procedure
described in Section 3, over the 10 phases using the data over the full time range from August 20,
2020 to December 31, 2020. The simulations were run for the subsequent 15 days beyond the date
associated to the last set of data used for the calibration forecasting the evolution of the epidemic
until January 15, 2021. For the new additional phase the values of the parameters are obtained
by linearly extrapolating the two (constant) values of the corresponding parameter of the last two
phases, located at the final day of each phase, namely phases 9 and 10.

In Figure 2, we report the expected values for the time evolution of the 7 compartments of
the SUIHTER model as well as the time evolution of additional compartment of the Daily new
positive, which corresponds to δ U(t), and the corresponding 95% prediction intervals obtained by
propagating input uncertainties through the model.

We notice that the calibrated compartments (Isolated, Hospitalized, Threatened, Extinct and
Recovered from detected) accurately fit the corresponding data time series in the calibration phase.
For all the compartment the 15-day forecast also indicates the capability of the model in predicting
the evolution of the epidemic at the national level.

Moreover, the time history of the Daily new positives is also in reasonable agreement with
the data, proving that the model is able to capture the main dynamics of the system also for
quantities that are not directly driven by the data calibration. Our calibration indicates that from
August 20, 2020 to January 15, 2021, 4 056 118± 284 533 individuals have been infected, of which
48.0%±2.0% have been detected. In addition, we estimate a posteriori, i.e. by using the outputs of
the simulation, that the IFR during the same period is 1.3%±0.1%. This latter figure is compatible
with the IFR estimated at 1.2% for Italy by using estimates by age reported in [8] while somewhat
higher than the estimate shown in [36]. We also observe that our calculated estimates are likely to
be underestimated as the second outbreak is still ongoing at the present time and compartments
of isolated and extinct individuals become populated at different time scales.

The median values and the 95% credibility intervals computed by the MCMC calibration are
reported in Table 1 for the parameters that are constant over the simulation and for the initial values
of Undetected and Recovered, while in Table 2 we report the parameters that are free to change
in each phase. The posterior distributions for all the constant and time-dependent parameters are
reported in Figures 1 and 2 of the Supplementary Material. The traceplots for all the parameters
(also available in the Supplementary Material in Figures 3 and 4) indicate that the MCMC method
reached a good convergence after the first 500 000 samples.

The former parameters and time dependent functions represent rates that can be used to in-
terpret the dynamics of the second Italian outbreak. For example, large values of βU indicate
sustained transmission rates at the corresponding phases. Values of healing rates ρU , ρI and ρH
are proportional to the probability of healing for individuals in the compartments U, I and H, but
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Figure 2: Expected values (solid lines) and 95% prediction intervals (shaded areas) for the 7
compartments of the SUIHTER model plus the additional Daily new positives compartment. The
data are indicated with black dots (in the calibration phase) and with a dashed line in the validation
phase

are inversely proportional to the corresponding average time of healing; the rate ρI also incorpo-
rates the healing on isolated individuals who are however asymptomatic. To better understand the
role of the parameters, note that if they were constant, ρI

ρI+ωI+γI
would represent the probability

for an isolated individual to recover without being hospitalized, and similarly ρH
ρH+ωH+γH

represents
the probability for a hospitalized individual to recover without being transferred to ICUs. In the
same way, γT

γT+θT
represents the probability of dying for an individual in ICUs, and δ

δ+ρU
represents

the probability that an infected individual is detected.
Finally, Table 2 also reports the value of the basic reproduction number R0 calculated as in

Eq.(2) for the SUIHTER model. The calculation uses the model parameters reported in Tables 1
and 2 (columns 1− 4). Note that the amplitude of the credibility intervals are strongly influenced
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Median 95% CI

δ 0.12041 [0.10739, 0.12841]
γI 3.78e-5 [3.43e-5, 4.15e-5]
ρU 0.12320 [0.11303, 0.13593]
ρI 0.02408 [0.02197, 0.02658]
ρH 0.06677 [0.06171, 0.07212]
θT 0.05026 [0.04517, 0.05456]
U(tI) 12 429 1 762
R(tI) 2 727 163 150 286

Table 1: Median values and 95% credibility intervals of constant parameters and U and R initial
values

βU ωI ωH γT
Phase Median 95% CI Median 95% CI Median 95% CI Median 95% CI

1 0.2640 [0.2475, 0.2825] 0.0059 [0.00537, 0.00648] 0.0132 [0.0121, 0.0146] 0.0760 [0.0691, 0.0837]
2 0.3658 [0.3329, 0.3936] 0.00771 [0.00701, 0.00847] 0.0192 [0.0173, 0.0210] 0.1252 [0.1133, 0.1372]
3 0.3449 [0.3223, 0.3685] 0.00933 [0.00849, 0.01018] 0.0223 [0.0202, 0.0243] 0.0886 [0.0793, 0.0958]
4 0.2756 [0.2485, 0.2972] 0.00691 [0.00629, 0.00755] 0.0264 [0.0238, 0.0286] 0.1561 [0.1400, 0.1689]
5 0.2421 [0.2202, 0.2658] 0.00496 [0.00445, 0.00537] 0.0259 [0.0233, 0.0281] 0.1673 [0.1517, 0.1830]
6 0.1779 [0.1615, 0.1952] 0.00422 [0.00383, 0.00464] 0.0269 [0.0243, 0.0293] 0.1909 [0.1741, 0.2103]
7 0.2093 [0.1906, 0.2307] 0.00340 [0.00309, 0.00373] 0.0263 [0.0238, 0.0286] 0.1900 [0.1726, 0.2079]
8 0.1924 [0.1743, 0.2109] 0.00313 [0.00283, 0.00342] 0.0251 [0.0226, 0.0272] 0.1872 [0.1708, 0.2055]
9 0.3052 [0.2780, 0.3354] 0.00309 [0.00281, 0.00339] 0.0244 [0.0223, 0.0269] 0.1924 [0.1729, 0.2086]
10 0.2949 [0.2686, 0.3251] 0.00351 [0.00319, 0.00385] 0.0249 [0.0226, 0.0272] 0.1867 [0.1700, 0.2053]

Table 2: Median values and 95% credibility intervals of the parameters that changes over the phases
and the corresponding R0

by the choice of the prior in the interval centered about the values of the model parameters obtained
by the least squares procedure ±10%. They should mainly be judged in relative terms.

We observe that the value of R0 obtained by the calibration reflects the full reopening of
educational activities and work restart after holidays, as well as the public health measures and
restrictions later introduced by authorities to contain the second epidemic outbreak. In particular,
the rise of R0 in Phases 2 and 3 follows the full schools reopening and restart of working activities
from mid September, and probably accounts for seasonality effects too. Restrictions on mobility,
schools, businesses and partial lock-downs were introduced in late October at regional and national
levels, as reflected by the decrease of R0 from Phase 5 to 6, when R0 became smaller than one.
Partial reopening and easing restrictions were gradually introduced in some regions and at the
national level from late November, as the new increment of R0 from Phase 9 indicates.

4.1.1 Simulating the second outbreak for Italian regions

The results obtained simulating the epidemic at the national scale can indeed hide specific local
outbreaks. The SUIHTER model can also simulate the evolution of the epidemic for everyone of the
20 Italian Regions for which the same data time series as those used for the national calibration are
available. Unfortunately, this is not true for the finer geographical level (the 107 provinces) since
only the number of total cases from the beginning of the epidemic is provided.
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Sicily

Figure 3: Expected values (solid lines) and 95% prediction intervals (shaded areas) for the Isolated,
Hospitalized and Threatened compartments, from left to right, in the six larger Italian regions.
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Following the same initialization and calibration strategies adopted at the national level, we
have carried out the simulation of the second epidemic outbreak in the six larger Italian regions,
namely Lombardy, Veneto, Emilia-Romagna, Lazio, Campania and Sicily. In Figure 3, the expected
value for the time evolution of the three infectious compartments used for the calibration and the
corresponding 95% prediction intervals are reported for the former three regions. The calibration
has been carried out using the same setting as for the national level, i.e. calibrating the model
with the data available until December 31, 2020 and then simulating until January 15, 2021. The
results obtained by numerical simulations stand in good agreement with the real data, with few
exceptions, namely the Isolated compartment in Veneto (where the time series is clearly affected
by some reporting problems) and the Hospitalized compartment in Emilia-Romagna.

4.2 Predicting the peaks

Predicting the peak of an epidemic outbreak is a tremendous challenge for an epidemiological
model. Yet, the predictive capability of epidemiological models is of paramount importance to
inform policymakers about the dynamics of the disease and foresee timing and level of peaks of
infected, hospitalized and ICU treated individuals, as well as the potential effects of policy responses.

With the goal of investigating to which extent our SUIHTER model is able to predict the oc-
currence of the epidemic wave peak, we repeated the calibration using the data over limited time
ranges.

In particular, we have considered three different cases: in Case 0 we used all the data time
histories available until December 3, while in Cases 1, 2 and 3, the data employed for the calibration
were limited to November 23, November 18, and November 9, respectively. For each case, the
simulations were run for the subsequent 30 days beyond the date associated to the last set of data
used for the calibration and the linear extrapolation carried out as indicated before.

In Figure 4, we report the expected value for the time evolution of the four compartments used
for the calibration, and the 95% prediction intervals obtained by propagating input uncertainties
through the model. The accuracy of the forecast, as expected, improves when a richer set of
data are employed in the calibration. Our simulations show the occurrence of a peak for each of
the three compartments, not only for Case 0 in which the time lapse of the data used for the
calibration covers the peaks, but also for Case 1, 2, and 3, when the data time-series employed for
the calibration are still rising. However, we should remark that if the model is calibrated with a
shorter time series, namely available data stop more than 30 days before the peak, the occurrence
of the peak cannot be correctly predicted.

As already noticed, because of the overall complexity of the problem and the limited data
available for its calibration, by no means we intend here to certify in rigorous terms the actual
values of the future compartments. However, in spite of the widths of the predictive intervals
(which depend, at some extent, on the widths of the chosen prior distributions), we nonetheless
observe that the expected values (solid lines in Figure 4) carry meaningful prediction capabilities.

To further assess the accuracy of the prediction, it is interesting to compare this peak fore-
casting with respect to the actual data, i.e. the day and value that have been reported for the
different compartments at the end of November 2020. Moreover, we propose a comparison with the
predictions obtained using the two different strategies based on data fitting. The first is based on
a simple polynomial fit of degree 2 on the last recorded 10 days, while the second is obtained by
using a curve registration (see [42] for an overview on this subject) by exploiting the similarities
between the first and second waves. The registration procedure is performed by first computing
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Figure 4: Peak forecast obtained by the SUIHTER model with different data ranges for the Isolated,
Hospitalized, Threatened and Extinct compartments

the Exponentially Modified Gaussian (EMG) function that best fits the first wave. We denote this
function as w(t), t0 ≤ t ≤ t1, with t0 the first day of the recorded data (February 24) and t1 equal
to August 1. Then a second minimization problem is solved to compute the time shift and scaling
factors to apply to the computed EMG function to best fit the rising portion of the second wave
in the time range [tk, tn], with tk coinciding with October 15 and tn with the last recorder date.
Namely, we look for the optimal time shift h̄, and the scaling factors s̄1 and s̄2 such that

(h̄, s̄1, s̄2) = arg min
h,s1,s2

tn∑
i=tk

(s1w(s2 ti + h)− di)2 ,

where di is the value of the considered data series at day ti.
For each data series, the fitted EMG function and the optimal values for shift and scaling factors

are computed and, in this way the shape of the first wave can be used to complete the second wave
for the different compartments.

A comparison between the peak forecast obtained with the SUIHTER model, the quadratic ex-
trapolation (based on the last 10 days), and the registration approach is displayed in Figure 5, for
the Isolated, Hospitalized and Threatened compartments. The curves show how the prediction in
terms of day of peak occurrence and peak value changes as far as an increasing number of data are
used (the last data day is reported on the horizontal axis). To minimize the effect of data daily
noise, the reference value (in dashed line) is obtained smoothing the data with a Savitzky-Golay
polynomial smoothing filters of degree 3 [38].
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Isolated (peak day) Isolated (peak value)

Hospitalized (peak day) Hospitalized (peak value)

Threatened (peak day) Threatened (peak value)

Figure 5: Peak day (left) and peak value (right) vs. last used data by day for the three compartments
Isolated (top), Hospitalized (middle) and Threatened (bottom), estimated with data extrapolation,
data registration and SUIHTER model
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By comparing the peak predictions with the day and value of the measured (smoothed) data
peak (reported with a dashed line in Figure 5), we should first remark that the SUIHTER prediction
largely outperforms those obtained with polynomial extrapolation. Moreover, even when compared
with predictions based on the registration with the first epidemic wave, the SUIHTER model is more
accurate for most of the considered quantities. When making this comparison, it is worthy noticing
that, while prediction based on the registration strongly depends on the evolution of the different
compartment during the first epidemic wave, the predictions based on SUIHTER do not require any
a-priori knowledge of previous epidemic waves.

5 Conclusions and model limitations

In this paper, we have introduced a new mathematical model, named SUIHTER, to describe the ongo-
ing pandemic of coronavirus disease 2019 (COVID-19). This epidemiological model is constructed
on seven compartments – susceptible uninfected individuals (S), undetected (both asymptomatic
and symptomatic) infected (U), isolated (I), hospitalized (H), threatened (T ), extinct (E) and
recovered (R) – and we exploit it to study and analyse the second Italian outbreak emerged in
Fall 2020 and still ongoing. In particular, our model is suited for calibration against data made
available daily by the Italian Civil Protection [1]. On the basis of these data at the national level,
our calibration populates the compartments I, H, T , E and RD, which we purposely use to de-
termine transmission rates, rates of recovery, infection fatality ratio, etc. In particular, SUIHTER
allows to estimate the infected, but undetected population, a compartment (U) that is crucial for
studying and understanding the epidemic, especially considering that large shares of infected indi-
viduals went uncounted during the first and even the second outbreaks in Italy. Moreover, thanks
to our approach transmission rates, and thus the basic reproduction number R0, can be estimated.
Finally, our calibration is made robust by exploiting Bayesian estimation using the Markov Chain
Monte Carlo method.

The SUIHTER model calibrated at the Italian national level is validated against data related to
the last part of the second outbreak. Comparisons are made against basic statistical models, namely
quadratic regression and registration of the first epidemic wave. The comparison demonstrates the
better accuracy of SUIHTER for predictive purposes. This is made possible by using extrapolated
transmission rates that are calibrated at earlier times through regression models, a feature that
allows capturing peaks of the second Italian outbreak correctly, and enables using SUIHTER in a
predictive fashion by leveraging data available at the current date. This novel approach attempts
to circumvent a common issue of the use of epidemiological compartmental models for forecasting
[39], that is accurately capturing transmission rates. However, as our approach is based on interpo-
lating values of these transitions rates, the accuracy of their extrapolation and, consequently, their
exploitation for prediction within SUIHTER can only be limited to restricted time windows, espe-
cially when government interventions and citizen behaviours are changing). Note that, although
the calibration procedure did not make any assumptions about the temporal changes in parameters,
the estimates accurately reflect the policy changes: estimates of R0 decrease as control measures
are tightened and increase when they are relaxed. The results of the simulation of the second wave
carried out at the national and regional levels showed the capability of the model in predicting
accurately the time-evolution in a time frame of 15 days past the data used in the calibration.
Longer term predictions the model should account for the possible changes in restriction rules that
may occur in the future to supply analyses of different scenarios (as recently done in [38] based on
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the SUIHTER model).
A further limitation of our approach is that we are currently calibrating the Italian epidemic

outbreaks at the national level, that is as a whole, without summing up the different contributions
at the level of the 20 Italian regions for which data are available [1]; we indeed performed the
calibration of the six larger Italian regions. Populating compartments at the national level by
summing up results obtained by tailored calibrations of each Italian region would allow a better
capturing of the spatio-temporal heterogeneity of the Italian outbreaks, which reflects different
mobility patterns and density of population. In this respect, several different approaches have been
proposed in literature, see, e.g. [11] and the references therein, ranging from the use of network
based models [5, 13], to systems of ordinary differential equations on network [3, 4], as well as non-
local partial differential equations [48]. Among the contributions appeared during the COVID-19
pandemic, we also recall the recent papers [6, 21, 28], where a meta-community SEIR-like model
has been proposed and employed to reproduce the contagion in Italy. Still, calibrating our SUIHTER
at the regional level, and for all the regions, would require a more sophisticated design due to the
intrinsic ill-posedness of the inverse problem, especially when taking mobility patterns into account.
Nevertheless, we plan to better address spatio-temporal heterogeneity of the Italian outbreaks in the
future by generalizing our SUIHTER model to incorporate suitable spatial-multicity mobility terms
at the regional level. Even if a more spatially detailed compartment model is surely desirable, to
act, for example, at the province level (Italy is comprised of 107 provinces), at the time being no
detailed data for its calibration have been made available.

Albeit the SUIHTER model is namely very sophisticated and involves 14 time-dependent param-
eters and functions to be determined based on available data, we limited our calibration to a subset
of the possible control variables, by forcibly setting to zero some parameters that we deemed to
be less relevant for the transmission of the epidemic and by assuming as constant over time some
other ones. We also neglected incubation time, and we implicitly assumed that all distributions in
the states are exponential, which is far from correct [18]. Still, we believe that this qualifies as an
acceptable compromise among the complexity of the SUIHTER model and its calibration procedure,
the associated computational costs, and the accuracy of the results. Some of the calibrated pa-
rameters assume values that are able to compensate for those parameters prescribed a-priori, even
if their interpretation may not result straightforward in explaining the outbreak. In this respect,
we plan to assess the robustness of our approach by allowing the calibration of additional parame-
ters. Further, our multi-compartment SUIHTER model does not consider stratification of age groups
within the compartments. This is namely an important aspect as some compartments like H, T
and E are mostly populated by the elderly, while the transmission mechanisms widely differ by age
and context of infection (workplace, school, family, etc.) [15, 33]. We also plan to improve SUIHTER

by considering age stratification within its compartments.
Among the limitations of our work is the identifiability of model parameters as SUITHER calls

indeed for calibrating a relatively large set of such parameters. Although we acknowledge its
importance, the current study does not present a direct verification of the identification conditions
on model parameters nor, in general, a identifiability analysis. Some, albeit indirect, verification
of the identifiability properties of the model comes from the very large sets of time series on which
calibration has been successfully performed. These are however aspects that we may better address
in future studies.

Finally, in consideration of the ongoing emergency situation amidst the second Italian outbreak,
we believe that our SUIHTER model is well suited to be used in a predictive manner to support and
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motivate public health measures. To the best of our knowledge, apart from [10] wherein a SEIRD
model is used at the regional level, SUIHTER stands as one of the first models to analyze the second
Italian COVID-19 outbreak and that can readily serve the purpose of predicting the short-term
epidemic trends and perform longer term scenario analyses.
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Cuomo-Dannenburg, Amy Dighe, Bimandra Djaafara, Ilaria Dorigatti, Sabine L. van Elsland,
Richard G. FitzJohn, Katy A.M. Gaythorpe, Lily Geidelberg, Nicholas C. Grassly, William D.
Green, Timothy Hallett, Arran Hamlet, Wes Hinsley, Ben Jeffrey, Edward Knock, Daniel J.

22

pugliese
Cross-Out

pugliese
Inserted Text
I



Laydon, Gemma Nedjati-Gilani, Pierre Nouvellet, Kris V. Parag, Igor Siveroni, Hayley A.
Thompson, Robert Verity, Erik Volz, Caroline E. Walters, Haowei Wang, Yuanrong Wang,
Oliver J. Watson, Peter Winskill, Xiaoyue Xi, Patrick G.T. Walker, Azra C. Ghani, Christl A.
Donnelly, Steven Riley, Michaela A.C. Vollmer, Neil M. Ferguson, Lucy C. Okell, Samir Bhatt,
and Imperial College COVID-19 Response Team. Estimating the effects of non-pharmaceutical
interventions on COVID-19 in Europe. Nature, 584:257–261, 2020.

[20] Tapiwa Ganyani, Cecile Kremer, Dongxuan Chen, Andrea Torneri, Christel Faes, Jacco
Wallinga, and Niel Hens. Estimating the generation interval for COVID-19 based on symptom
onset data. Euro Surveill., 25(17), 2020.

[21] Marino Gatto, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Carraro, Renato
Casagrandi, and Andrea Rinaldo. Spread and dynamics of the COVID-19 epidemic in Italy:
Effects of emergency containment measures. Proceedings of the National Academy of Sciences,
117(19):10484–10491, 2020.

[22] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro Di Filippo,
Angela Di Matteo, and Marta Colaneri. Modelling the COVID-19 epidemic and implementa-
tion of population-wide interventions in Italy. Nature Medicine, pages 1–6, 2020.

[23] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. DRAM: Efficient adaptive
MCMC. Statistics and Computing, 16:339–354, 2006.

[24] Herbert W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599–653,
2000.

[25] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the royal society of London. Series A, Containing papers
of a mathematical and physical character, 115(772):700–721, 1927.

[26] Adam J. Kucharski, Timothy W. Russell, Charlie Diamond, Yang Liu, John Edmunds, Se-
bastian Funk, Rosalind M. Eggo, Fiona Sun, Mark Jit, James D. Munday, Nicholas Davies,
Amy Gimma, Kevin van Zandvoort, Hamish Gibbs, Joel Hellewell, Christopher I. Jarvis, Sam
Clifford, Billy J. Quilty, Nikos I. Bosse, Sam Abbott, Petra Klepac, and Stefan Flasche. Early
dynamics of transmission and control of COVID-19: a mathematical modelling study. The
Lancet Infectious Diseases, 20(5):553 – 558, 2020.
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Merino-Amador, Jose León Paniagua, Juan F. Muñoz Montalvo, Faustino Blanco, Raquel
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SUPPLEMENTARY MATERIAL

SUIHTER: A new mathematical model for COVID-19. Application to the analysis of the second
epidemic outbreak in Italy

Figure 1: Posterior (black) and uniform prior (red) distributions for all the fixed model parameters.
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Figure 2: Posterior (black) and uniform prior (red) distributions for all the varying model param-
eters.
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Figure 3: Traceplot for the fixed model parameters.
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Figure 4: Traceplot for all the varying model parameters.

29




