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Combining decision making and dynamical
systems for monitoring and executing

manipulation tasks

M. Saveriano®, J. Piater

In this paper, we propose a unified framework for online task scheduling, monitoring, and execution that integrates reconfigurable
behavior trees, a decision-making framework with integrated low-level control functionalities, and reactive motion generation with
stable dynamical systems. In this way, we realize a flexible and reactive system capable of coping with unexpected variations in the
executive context without penalizing modularity, expressiveness, and readability of humans. The framework is evaluated in a simulated
sorting task showing promising results in terms of flexibility regarding task scheduling and robustness to external disturbances.
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Uberwachung und Ausfiihrung von Roboter-Tatigkeiten durch kombinierte Entscheidungsfindung mit dynamischen
Systemen.

Fiir die Online-Aufgabenplanung von Robotern sowie deren Ausfiihrung und Uberwachung haben wir eine vereinheitlichte Architektur
entwickelt, die rekonfigurierbare Verhaltensbaume, Entscheidungsfindung mit integrierter Regelungstechnik und reaktive Bewegungs-
erzeugung mit stabilen dynamischen Systemen integriert. Das Ergebnis ist ein flexibles und reaktives System, das unerwartete Schwan-
kungen im Ausflhrungskontext bewéltigen kann, ohne Modularitat, Ausdruckskraft oder menschliche Lesbarkeit zu beeintrachtigen.
Das System wird mittels einer simulierten Sortieraufgabe evaluiert, die vielversprechende Ergebnisse in Bezug auf Flexibilitdt bei der

Aufgabenplanung und Robustheit gegeniiber externen Stérungen liefert.
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1. Introduction
Robots operating in everyday environments need increased flexibil-
ity to cope with sudden and unexpected variations in their execu-
tive context. In dynamic environments, the robot needs to perform
sensing and planning operations at low cost, as well as to moni-
tor its own actions in a goal-oriented fashion [1, 2]. High flexibility
and adaptation capabilities are required at each level of the sense-
plan-act loop to deploy robust and effective robotic solutions [3].
At the same time, the enhanced reasoning and acting capabilities
of cognitive robots have to be implemented considering facets like
modularity, reusability, design effectiveness, and human-readability.
In this work, we propose a unified framework that combines high-
level decision making, continuous execution monitoring, and on-
line motion generation. In our framework, task scheduling and ex-
ecution monitoring are handled by Reconfigurable Behaviour Trees
(RBTs) [4], while stable dynamical systems are exploited for online
motion generation. RBTs extend the traditional behavior trees [2]
with control layer features permitting the continuous monitoring of
the task execution and the online replanning of the task to react to
perceptual stimuli. This is particularly useful to rapidly react to ex-
ternal perturbations in the task execution like unexpected changes
in the pose of the manipulated object. The control layer of RBT is
implemented using only the basic components of a traditional BT,
de facto keeping the same level of expressiveness, modularity, and
human-readability.
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Motion planning with dynamical systems (DS) has several interest-
ing features, which explains why it is gaining interest in the learning
community. A DS generates goal-oriented, converging trajectories
that connect any two points in the robot’s workspace. DS trajecto-
ries are generated at runtime, allowing for online motion replan-
ning to handle unexpected perturbations [5-8]. A stable dynamical
system can be learned from human demonstrations [9] in an in-
cremental way [10, 11]. Finally, suitable control can be applied to
constrain the motion within a certain region and adapt to changes
in the workspace [12]. In this work, we use the Energy-based Stabi-
lizer of Dynamical Systems (ESDS) [13] that offers a good compro-
mise between training time and accuracy in motion reproduction.
Overall, the combination of reconfigurable behaviour trees for task
monitoring and dynamical systems for trajectory generation results
in a flexible and efficient framework for robotic task learning and
execution.

The rest of the paper is organized as follows. Section 2 reviews re-
lated work. The key aspects of the RBT and the ESDS approaches are
presented in Sect. 3. Results obtained in a sorting task are shown in
Sect. 4. Section 5 states the conclusion and proposes further exten-
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Table 1. List of abbreviations

BT Behavior Tree

RBT Reconfigurable Behavior Tree

DS Dynamical System

ESDS Energy-based Stabilizer of Dynamical Systems
WM Working Memory

LT™M Long-Term Memory

sions. To improve readability, a list of abbreviations used throughout
the paper is provided in Table 1.

2. Related work

2.1 Motion planning with dynamical systems

A prominent approach in the field of DS-based motion generation
are Dynamic Movement Primitives (DMP) [14]. In a DMP, a linear
dynamics is summed to a nonlinear forcing term used to repro-
duce a given trajectory. The nonlinear term is suppressed by a time-
dependent clock signal to guarantee convergence to a given tar-
get. DMPs have been extended in several ways. Among the oth-
ers: [15] tests different approaches to chain multiple DMPs repre-
senting position and orientation trajectories, while [16] introduces
task-dependent parameters to customize the execution. The time-
dependency is the main drawback of DMPs, since it limits the gen-
eralization capabilities pf the DMP outside the demonstration area
[17].

The stable estimator of dynamical systems (SEDS) [9] is probably
the first example of stable and time-independent DS learned from
demonstration. A known problem of SEDS is the lack of accuracy
in reproducing nonlinear motions. This problem is alleviated in [18]
by learning a Lyapunov function that complies with the demonstra-
tions and stabilizes the DS with minimal intervention, and in [17] by
learning a diffeomorphism that maps the training data into a space
where the SEDS works accurately. These approaches permit an accu-
rate reproduction of the demonstrated motion, but introduce extra
training time and open parameters to fit also the Lyapunov function
or the diffeomorphism.

Some approaches attempt to find a compromise between train-
ing time and accuracy [13, 19, 20]. Blocher et al. [19] applies only if
Gaussian mixture regression is used to encode the nonlinear system,
while the approach in [20] works with a single demonstration. In
previous work [13], we propose a solution that works with any re-
gression technique and multiple demonstrations, offering a good
compromise between accuracy and training time. This approach,
outlined in Sect. 3.1, is exploited here to generate the motion tra-
jectories.

2.2 Task scheduling and execution monitoring
Behavior Trees (BT) [2, 21] are a popular approach for task schedul-
ing that extend and generalize several other approaches including
decision trees [22], the subsumption architecture [23], and sequen-
tial behavior composition [24]. BTs use a fixed number of node types
to build a high-level representation of a robotic task as a rooted tree.
A BT is expressive, human-readable, modular, and reusable; all fea-
tures that make BTs a popular and attractive technique. However,
BTs are a high-level task scheduling approach where the decision
making is decoupled from the physical executive state and possible
ambiguities in the execution are not considered.

During the operational life of a robot, unexpected events may oc-
cur and a certain degree of flexibility in the task scheduling is ben-
eficial. Approaches like [25, 26] permit continuous monitoring of

the task execution by integrating perceptual stimuli in the decision
making. We have exploited this functionality to build a framework
for learning, monitoring, and executing manipulation tasks [27-29].
The drawback of these approaches is that they may lose the mod-
ularity and reusability of BTs. In [4], we proposed Reconfigurable
Behaviour Trees (RBTs) as an executive framework that combines
high-level decision making and low-level control features. RBTs are
described in Sect. 3.2.

3. Methods

In this section, we present the two components of our framework,
namely the Energy-based Stabilizer of Dynamical Systems (ESDS)
for online motion generation and the Reconfigurable Behavior Tree
(RBT) for task scheduling and execution monitoring.

3.1 Energy-based stabilizer of dynamical systems

Dynamical system definition ESDS encodes the demonstrated
trajectories into a nonlinear DS. Without loss of generality, we as-
sume that such a DS has an equilibrium at X = 0 where also the
velocity vanished. Under this assumption, the DS used by ESDS can
be written as

X ==X+ y(zs)(|Ix|Nfx), (1

where f(x) is a smooth and nonlinear vector field, «(|x||) =1 —
e=01IxI? ensures that (1) has equilibrium point at X = 0, and y(z, s)
a stabilizing gain defined later in this section. ESDS makes no prior
assumption on the stability of f(x) and uses y(z, s) to ensure global
convergence to X at runtime. This permits learning the nonlinear
term f(x) from training data using any regression technique, using
the approach described as follows.

Learning from demonstration The nonlinear term f(x) in (1)
is learned in a supervised manner. In our setting, a demonstrated
trajectory {x¢, )'(t}tT:1 consists of desired robot positions x¢ and ve-
locities x; sampled in T consecutive time instances. This has to be
cast into input/output pairs for supervised learning. To this end, we
assume y(z,s) =1 and rewrite (1) as

€71l Gk + x) = Fx), )
where
1
gy = e IxaE0 3)
1 otherwise

The relation (2) clearly shows that f(x) is a nonlinear mapping
between the position (x) and «~'(|Ix||) (X +x). Hence, we de-
fine the input data as Z = {xr}tT=1 and the output data as O =
{K_1(HXT||)().Q+X()}TT:1. The procedure is repeated in case multi-
ple demonstrations are provided. Once the input/output pairs Z/O
are computed, any regression technique can be used to retrieve an
estimate of f(x) for each input state. It is worth mentioning that
the self-defined inverse function x~'(-) in (3) does not generate dis-
continuities in the training data since x; and x; vanishes while ap-
proaching the equilibrium point.

Online stabilization The dynamical system (1) has an equilib-
rium point at x = 0, but so far we have not discussed the stabil-
ity of this equilibrium. Global stability of the equilibrium, implying
convergence of the trajectory to a given target, is of fundamental
importance to apply a DS to robot motion generation. In ESDS, the
dynamics is stabilized at runtime by the stabilizing gain y(z, s), which
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Fig. 1. The Lyapunov function used to prove the stability of (1)

Table 2. Definition of the function y(z, s)

[n X >
hi(x,x,X)= 10 X<
0.5(1 +sin ( ( = _ 0.5)) otherwise

Ix<  XI

ha(x, x,¥) =1—h1(x,x,X)
a(s) =min(0.99, h1(s, 0, 0.1k (Ix|)3) - ha(s, 0.9k (|| xS, x (|1x|)3))

B(z,5)=1—h1(z,—0.01,0) - ho(s,0, 0.1« (]| x|))3)
—h1(s, 0.9«(|Ix|)3, x(||x[)3) - h2(z,0,0.01)

y(z,5)=1—h1(2,0,0.01) - ha(s, 0, 0.1k(||x]])3)

is derived from energy considerations. We summarize the main as-
pects of this derivation and refer to [13] for further details.

Stability of nonlinear dynamical systems is usually analyzed using
Lyapunov theory [30] by defining a positive definite and vanishing
at the equilibrium (Lyapunov) function and showing that its time
derivative is negative definite and vanishes at the equilibrium. For
the DS (1), we consider the Lyapunov function depicted in Fig. 1,
consisting of a quadratic potentlal IxlI> and an energy tank. The
level of the energy tank is represented by the additional state vari-
able s. Taking the time derivative of this function, it is possible to find
stability conditions that affects the value of s and its rate of change
S. In particular, one can prove that the energy level s is increased by
the term x"x and decreased when z = «(||x|)x"f(x) < 0. Therefore,
the value of s and 5 can be controlled to render the function in Fig. 1
a proper Lyapunov function. This is obtained by assigning an initial
value s to s and by designing 0 < y(z,s) < to prevent that s be-
comes negative. The function y(z,s) is computed as summarized in
Table 2. Note that the dynamics —x in (1) vanishes only at the equi-
librium and prevents the DS from stopping in a spurious attractor if
y(z,5) = 0. As detailed in [13], the initial value of s can be efficiently
estimated from training data.

Comparison with existing approaches The effectiveness of
ESDS is demonstrated on a public benchmark (the LASA Handwrit-
ing dataset') containing 26 2D motions. For a quantitative compar-
ison, we consider the reproduction accuracy and the training time.
Accuracy is measured with the Swept Error Area (SEA) metric [18]
that represents the distortion (area) between a generated trajectory
and the relative demonstration. Comparative results from [13] are
reported in Table 3, using a third-party implementation? for CLF-
DM. The comparison shows that ESDS offers a good compromise

Thttps://bitbucket.org/khansari/lasahandwritingdataset.
Zhttps://bitbucket.org/khansari/clfdm/src/master;.

Table 3. Reproduction error and training time (mean / range) of dif-
ferent approaches on the LASA dataset

Approach SEA [mm?] Train. Time [s]
ESDS [13] 431.5/[26.0-1307] 0.08/[0.03-0.17]
CLF-DM [18] 460.7 /[16.6-1269] 2.3/[0.09-21.5]
7-SEDS [17] 537.0/[26.4-1139] 25.3/[7.6-55.4]
C-GMR [19] 496.7 /[20.3-1840] 0.1/[0.03-0.28]

between accuracy and training time, especially considering that it
does not impose any restriction on the regression technique used to
retrieve the motion.

3.2 Task monitoring with reconfigurable behavior trees

Behavior trees A BT is a graphical language that models the be-
havior of an autonomous agent as rooted trees obtained by comb-
ing the finite set of primitive nodes types shown in Table 4. Con-
dition and Action nodes are execution nodes, while Sequence, Fall-
back/Selector, Decorators, and Parallel are control flow nodes. Dur-
ing the execution, each node enters a running state that terminates
with a success or a failure. Executing a BT means periodically travers-
ing the tree top-down and left to right. The traversal is regulated by
a clock signal called “tick”. As shown in Table 4, each node in the
BT responds to the tick depending on its own type and on the return
state of the other nodes.

Reconfigurable behavior trees  Intuitively, we can think of a Re-
configurable Behavior Tree (RBT) [4] as a BT with branches that can
be dynamically allocated and deallocated. The dynamic allocation
mechanism is triggered by environmental stimuli like object addi-
tion or removal. The continuous monitoring of such stimuli, as well
as the dynamic allocation of the tree's branches, requires the fol-
lowing functionalities: i) a Long-Term Memory (LTM), organized in
JSON schemata, to conveniently store tree branches that are dynam-
ically loaded into a Working Memory (WM), i) an Emphasizer that
transforms logical pre- and postconditions and sensory data into a
priority assigned to each branch in the LTM, and iii) an Instantiator
process that queries the LTM and dynamically load the subtree in the
WM. Distinctive features of a RBT are implemented using only the
six nodes in Table 4, i.e. without increasing the design effort.

Task monitoring and execution The generic RBT, depicted in
Fig. 2, combines static and dynamic nodes. It is a goal oriented task
scheduler since it terminates as soon as the goal reached condi-
tion turns True. It exploits a blackboard to share variables across the
nodes and store the logical pre- and postconditions and the priority
list. The blackboard is a thread-safe mechanism that greatly simpli-
fies the communication between nodes. The core of the RBT are the
green and blue nodes that are executed in parallel, preserving the
asynchronous nature of sensor readings and decision making. The
Emphasizer (green node) transforms sensory input into subtree pri-
orities and it never terminates (is always in the Running state). This,
and the fact the Parallel node parent of the Emphasizer terminates
only if its two children do, let the RBT run until the goal is reached.
The blue nodes, which are dynamically allocated at each tick, load
from the LTM the branch with higher priority and prepare a small
BT ready for execution. The dynamic allocation of the blue nodes is
required to prevent deadlocks, letting the RBT reach the goal.
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Fig. 2. The generic RBT combines static and dynamic nodes. The nodes surrounded by the gray thick square permits terminating the task once a
global goal is reached. The Emphasizer (green dot-dashed node) changes the priority level of each box using perceptual information (robot-box
distances). The Instantiator is responsible for allocating and deallocating the nodes surrounded by the blue dashed polygon when the box
priorities change. The action node change box online modifies the box to sort based on the priority, while action node sort box generates

the pick-and-place subtask (Color figure online)

Table 4. BT nodes and their return status

Type Symbol Success Failure
Fallback/Selector ? One child succeeds All children fail
Sequence — All children succeed One child fails
Parallel = >M children succeed >N — M children fail
Decorator O Custom Custom
Action O Upon completion Impossible to complete
Condition O True False
Instantiator  The procedure presented in Algorithm 1 is used by
the Instantiator to query a tree branch from the LTM and instanti- Algorithm 1 Load and instantiate a BT
ate an executable BT. The branch to load is identified by a unique 1: function INSTANTIATESUBTREE(/) > /2 subtask name
label that serves as root of the BT (line 2). Once the JSON schemata 2 schemaList < GETTASKFROMLTM(/)
are queried, the tree is built top-down by iteratively casting JSON 3 T<{ > empty BT
schemata into the corresponding BT nodes and adding them to 4 for schema in schemaList do
the tree (lines 4 to 19). Similarly to [2], each postcondition is rep- 5: T < SCHEMATONODE(T, schema)
resented by a Condition node (line 7) and attached to the existing 6 postC « GETPOSTCONDITIONS(schema)
tree with a Fallback Tz, (lines 8-9). This permits terminating the 7 C < CONDITIONNODES(postC)
execution when the postcondition is True. Multiple postconditions 8: if C.length == 1 then
are attached to a Sequence node (line 11) and therefore sequen- 9 Trar < FALLBACKNODE(C)
tially checked. After these steps, the Sequence node is connected 10: else
to Tz (line 12) that now contains all the postconditions and can be 11: Tseq < SEQUENCENODE(C)
connected the BT (line 18). Preconditions are also cast into Condi- 12: Ttal < ATTACHSUBTREE(7seq)
tion nodes (line 16), while Action nodes are used to represent robot 13: end if
motions represented as stable dynamical systems (see Sect. 3.1). An 14: a, preC < GETACTIONS(schema)
Action can be executed only if all its preconditions are True. This is 15: A < ACTIONNODES(a)
achieved by connecting Action and Conditions to a Sequence node 16: C < CONDITIONNODES(preC)
that is then attached to the BT (lines 17-18). 17: Tseq < SEQUENCENODE(C, A)
18: T < ATTACHSUBTREE(Tzs/, Tseq)

Emphasizer In contrast to traditional BTs, RBTs allows a dynamic
reconfiguration of the execution order and a continuous monitor-
ing of the task execution. This is obtained by exploiting logical pre-
and postconditions and continuous environmental stimuli. Pre- and

heft 6.2020
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19: end for
20: return 7
21: end function
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(a) Initial state. (b) Goal state.
Fig. 3. Anillustration of the box sorting task. The manipulator has to

pick one by one the boxes from the table and place them in the white
(storage) area

postconditions are used to identify active branches in the tree, i.e.
subtrees with True preconditions and at least a False postcondi-
tions. The Emphasizer periodically looks for active subtrees and de-
termines if there are execution conflicts, i.e. multiple branches that
are concurrently active. This ambiguity in the decision process is re-
solved using a priority-based mechanism. We introduce a priority for
each active branch, a real value normalized between 0 and 1, and
use it to determine which subtree has to be loaded and executed.
Following [4], we define the priority e as

1 ifw< ®min
elw) = % if wmin < @ < Wmax (4)
0 if > wmax

where w is the distance between the robot end-effector and the
object to manipulate, and the thresholds wmin and wmax represent
the minimum and maximum distance to the object. A typical choice
for wmin is the size of the object, while wmax represent the maximum
distance at which the object can be successfully grasped.

4. Evaluation

We evaluate our framework in the box sorting task depicted in
Fig. 3. The robotic has to sort colored boxes (r_box, b_box, and
g_box) by picking them from the table (Fig. 3(a)) and placing them
in the “storage” area indicated by a white patch (Fig. 3(b)). The
Panda robot and the operational space use CoppeliaSim [31] and
the robot model identified in [32]. Each box can be sorted by ex-
ecuting the BT shown in Fig. 4, where the generic box reads as
r_box, b_box, or g_box. The presented scenario is simple, but it is
sufficient to show the modularity and reusability of the proposed so-
lution. Indeed, the nodes in Fig. 4 can be abstracted into the higher-
level action node execute subtree in Fig. 2 (modularity). More-
over, the subtree in Fig. 4 can be exploited to pick and place similar
objects (reusability), like the 3 colored boxes in Fig. 3. The switching
between the 3 sorting subtasks is regulated by a RBT like the one
in Fig. 2. At runtime, the sorting BT of the closest (highest priority)
box is loaded and connected to the BT using Algorithm 1, replacing
the block execute subtree. To compute the subtree priority (4),
we choose wmin as the length of the box side (wmin = 0.05 m) and
we estimate the maximum distance that still allows grasping a box
to be Omax = 1 m. The RBT successfully terminates if the 3 boxes are
sorted in the storage area. This is obtained by defining the RBT goal
as r_box placed A b_box placed A g_box placed. RBTs
are implemented in Python using the basic BT nodes provided by

Fig. 4. The BT used to sort (pick from the table and place in the
storage area) a generic box. This BT replaces the generic execute
subtree node in Fig. 2

-0.1 2
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(a) 3D view.
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Fig. 5. (a)-(b) Placement trajectories generated with ESDS. The black
solid lines indicate the demonstrations. Colored lines are the trajec-
tories generated for each box. (c) Picking trajectories generated with
ESDS. The vertical black dashed line indicates the time when the red
box is removed from the scene. Starting from this position a new
motion is generated to pick the green box (green solid line). The red
dashed line shows the originally-planned trajectory (pick r_ box)

py_tree.? In our implementation, the RBT has 19 nodes, obtained
by merging the trees in Fig. 2 and Fig. 4. Tree traversals (ticks) are
periodically performed every 38 ms. For comparison, a standard BT
requires 151 nodes to schedule the same task [4]. This result in an
increase in tick time of ~ 38 %.

The pick box and place box action nodes in Fig. 4 are
mapped to stable dynamical systems using the ESDS approach pre-
sented in Sect. 3.1. The DS representing each motion is learned
from a demonstrated trajectory using a Gaussian processes [33]. The
training data and the retrieved trajectories are shown in Fig. 5. At
runtime, the system generates a smooth trajectory connecting the
current end-effector position with a given target position. The target
for picking actions is the box position, while for placement actions
it is the desired position in the storage area. Trajectories generated
by ESDS (implemented in Matlab®) are depicted in Fig. 5.

3https://py-trees.readthedocs.io.
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Nominal execution In this experiment, the robot performs the
sorting task in an “ideal” scenario where the boxes are placed on
the table like in Fig. 3(a) and no external perturbation occurs. The
robot performs the sorting starting with the blue box (closest), then
switches to the red box, and finally to the green one. As already
mentioned, the task execution order is regulated by the distance be-
tween the robot gripper and the boxes. After placing the b_box in
the storage area, the RBT updates the priority of r_box and g_box.
Since r_box is the closest to the robot, the subtree sort r_box
(Fig. 4) is loaded and executed. The sort g_box subtask is exe-
cuted at the end and the RBT successfully terminates.

External perturbations In this experiment, we introduce a per-
turbation during the execution of the sorting task. The task is the
same as depicted in Fig. 4 and described in the previous paragraph.
As before, the robot performs the sorting starting with the blue box
(closest) and then switches to the r_box. However, during the ex-
ecution of the pick r_box action, we remove the r_box from
the scene. The system detects this incident and promptly reacts by
loading the sort g_box subtask. ESDS replans the pick trajectory
on the fly without discontinuities (Fig. 5(c)). Once the green box is
sorted, the RBT does not terminate since the goal r_box placed
A b_box placed A g_box placed is False and keeps moni-
toring the scene to detect eventual changes. At this point, one can
place the red box in the storage area or back on the table. If r_box
is placed in the storage area then r_box placed becomes True
and the task successfully terminates. In case r_box is placed back
to the table, the Instantiator loads the sort r_box subtree and
the sorting task successfully terminates.

5. Conclusion and future work

In this work, we presented a framework for monitoring and execut-
ing robotic tasks. The framework has two key components, namely
the Reconfigurable Behavior Trees and the Energy-based Stabilizer of
Dynamical Systems. RBTs are a novel executive framework that fea-
tures high-level decision making and low-level control capabilities,
enabling continuous monitoring and task switching. ESDS learns a
flexible and robust motion representation from a handful of demon-
strations that permits generating motion trajectories with proved
convergence. The proposed framework is tested in a sorting sce-
nario, showing its capabilities of handling perturbations during task
execution.

In future work, we plan to test our framework on real robots and
to provide a more comprehensive evaluation in challenging human-
robot interaction scenarios. We will also investigate the possibility of
learning also the RBT from human demonstrations.
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