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Abstract: For the sake of providing insight into the use of nonstandard techniques à la A. Robinson
and into Luxemburg’s nonstandard hull construction, we first present nonstandard proofs of some
known results about C∗-algebras. Then we introduce extensions of the nonstandard hull construction
to noncommutative probability spaces and noncommutative stochastic processes. In the framework of
internal noncommutative probability spaces, we investigate properties like freeness and convergence
in distribution and their preservation by the nonstandard hull construction. We obtain a nonstandard
characterization of the freeness property. Eventually we provide a nonstandard characterization of
the property of equivalence for a suitable class of noncommutative stochastic processes and we study
the behaviour of the latter property with respect to the nonstandard hull construction.
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1. Introduction

In this work we apply nonstandard techniques à la Abraham Robinson to C∗-algebras,
C∗-probability spaces (also known as noncommutative probability spaces) and noncom-
mutative stochastic processes.

Our starting point is the nonstandard hull construction due to Luxemburg [1]. For the
sake of completeness, in Section 2 we briefly outline such a construction in the case of a C∗-
algebra. Functional analysts are probably more familiar with the ultraproduct construction
(see [2]), which is an important tool in the study of C∗-algebras (see also [3] or [4]). Actually,
every ordinary ultraproduct of C∗-algebras can be realized as the nonstandard hull of
some internal C∗-algebra. Therefore, we loosely say that we deal with ultraproducts of
C∗-algebras.

Concerning the terminology that we adopt throughout this paper, we use the attribute
“ordinary”, rather than “standard", when referring to some mathematical notion which is
familiar to most mathematicians. The reason being that the term “standard” has a precise
technical meaning in the framework of nonstandard techniques. We refer the reader to [5]
as a valuable reference for the relevant notions and for the construction of nonstandard
universes. We also mention [6] [§1] for a concise axiomatic introduction to the subject.

We stress that we may almost completely rewrite this paper in ultraproduct language
or, gearing towards logic, within the framework of continuous logic (see [7]). In our opinion
we get slightly more generality by working with nonstandard hulls. Indeed, most of the
results in this paper apply to the internal C∗-algebras and not just to the standard ones
(the latter being the nonstandard extensions of ordinary C∗-algebras). Admittedly, our
approach is motivated by our familiarity with the nonstandard techniques and by our
belief that, in many cases, a nonstandard proof is simpler and more intuitive than a proof
of the same result written in ultraproduct language.

As for the paper’s contents, we begin by saying that a significant amount of the
material that we present in the first part stems from questions or problems posed in [8].
Actually, we devote Section 3 to nonstandard proofs of three known results which are
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related to the content of [8]. While not strictly pertinent to noncommutative probability,
we present those proofs mostly to give insight on the use of nonstandard techniques in
the nonstandard hull framework. In Section 3, we occasionally point out what seem to be
inaccuracies or mistakes in [8].

In Section 4 we provide results about weights that are defined on nonstandard hulls
and we prove a weak property of normality for a class of those weights, thus extending a
result obtained in [8].

In Section 5 we deal with C∗-probability spaces. After some preliminary results about
states, we show that the property of freeness of a family of subalgebras is preserved by
forming the nonstandard hull of a C∗-probability space. We introduce the nonstandard
notion of almost freeness and we show that it coincides with freeness on standard fam-
ilies of subalgebras of a standard C∗-probability space, thus obtaining a nonstandard
characterization of the ordinary freeness property.

In Section 5 we also obtain a nonstandard characterization of the noncommutative
notion of convergence in distribution and we provide an elementary nonstandard proof
that the property of ∗-freeness is preserved by convergence in ∗-distribution. In the last
part of Section 5, we investigate the behaviour of the free product of C∗-probability spaces
with respect to the nonstandard hull construction.

In Section 6 we apply the results from the previous section. After recalling the notion
of stochastic process over a C∗-algebra given in [9], we extend the nonstandard hull con-
struction to an internal noncommutative stochastic process. In this setting we deal with the
notion of equivalence. We provide nonstandard versions of the reconstruction theorem
in [9] and of other results therein. In this regard, we notice that, in light of the above-
mentioned relationship between nonstandard hulls and ultraproducts, the nonstandard
hull of an internal noncommutative stochastic process should be related to some sort of
ultraproduct construction that applies to a family of ordinary noncommutative stochastic
processes. We could not find any reference to such a construction in the literature. Eventu-
ally, we briefly discuss the adaptedness and the Markov properties in the framework of
noncommutative stochastic processes, with special attention to the case of the nonstandard
hull of an internal process.

In the mostly speculative Section 7, we try to make sense of the belief that a nonstan-
dard universe does, or should have, physical significance on its own (see [10], for instance).
We translate nonstandardly a result on the approximation of a Fock space by means of a
sequence of so-called toy Fock spaces and we give a presentation of the nonstandard hull
of an internal Fock space.

Finally, we point out that the ultraproduct construction is extensively used in [10]. In
our opinion, the nonstandard techniques allow for simpler and more natural proofs of a
large number of results given therein.

2. Preliminaries

We refer mostly to [11] for the basics of the theory of C∗-algebras. All C∗-algebras are
assumed to be unital. We denote an algebra unit by 1. The term subalgebra always stands
for C∗-subalgebra. Similarly, the term homomorphism of C∗-algebras always refers to a
∗-homomorphism.

As in [11], we use the term inner product rather than hermitian product.
We assume that the reader is familiar with the notions and the basic techniques of

nonstandard analysis as introduced, for instance, in [5]. The reader who is interested in an
axiomatic presentation of those techniques may refer to [6] [§1].

Here we just recall that a nonstandard universe allows to properly extend each infinite
mathematical object X under consideration of an object ∗X, in a way that X and ∗X satisfy
the same properties which are definable by means of bounded quantifier formulas in the
first order language of set theory. This property is referred to as the Transfer Principle.
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We warn the reader that the notation ∗X for the nonstandard extension of an ordinary
mathematical object X should not be confused with X∗, denoting the adjoint of some
element X, whenever the latter makes sense.

Sets of type ∗X are called standard. An element of some standard set is called an
internal set. If A, B are internal sets, by BA we denote the internal set of all internal
B-valued functions defined on A.

Relative to a nonstandard universe one can formulate the internal equivalents of all
ordinary mathematical notions. Intuitively, to each property P which is bounded quantifier-
definable (possibly with parameters) in the language of set theory there corresponds a
property ∗P and the Transfer Principle ensures that a set X satisfies P if and only if its
nonstandard extension ∗X satisfies ∗P. Therefore we can consider, for instance, ∗continuity;
∗compactness, etc. For simplicity, we will omit the initial “star” when it is clear that the
property under consideration applies to some internal set.

A nonstandard universe also contains sets which are not standard. This is ensured by
the so-called κ-saturation property: for some uncountable cardinal κ which is sufficiently
large for our purposes, we require that every family of cardinality smaller than κ of internal
sets with the finite intersection property has nonempty intersection. It can be proved
that, for every κ as above, there exists some κ-saturated nonstandard universe (see, for
instance, [12]).

In the following we will also make use of Keisler’s Internal Definition Principle: In
every nonstandard universe, a bounded quantifier formula in the first order language of
set theory with internal parameters defines an internal set.

The so-called Overspill Lemma is a straightforward consequence of ω1-saturation. We
formulate the former relative to ∗C: Any internal subset of ∗C that contains arbitrarily large
finite (in absolute value) hypercomplex numbers also contains some infinite hypercomplex
(i.e., some infinite element in ∗C\C).

We assume that some sufficiently saturated nonstandard universe has been fixed
throughout this paper and we briefly recall the nonstandard hull construction (see [1]).
As we mentioned in the Introduction, the nonstandard hull is a slight generalization of
the ultraproduct construction in functional analysis. In this paper we prefer the former
construction because, assuming familiarity with the nonstandard techniques, it is much
simpler than the ultraproduct.

Let A be an internal C∗-algebra. The nonstandard hull of A is the ordinary C∗-algebra
Â defined by letting:

(1) Fin(A) = {a ∈ A | ‖a‖ < n for some n ∈ N};
(2) for a, b ∈ A, a ≈ b if ‖a− b‖ ≈ 0;
(3) for a ∈ A, â = {x ∈ A | x ≈ a};
(4) Â =

(
Fin(A)/≈

)
= {â | a ∈ Fin(A)}.

We define operations on Â as follows:

0 = 0̂; 1 = 1̂; râ + b̂ = ̂(ra + b); (â)(b̂) = âb; â ∗ = (̂a∗)

and norm by ‖â‖ = ◦‖a‖, for all a, b ∈ Fin(A) and all r ∈ C.
It can be easily verified that the operations on Â are well defined and that Â is a

C∗-algebra. If X ⊂ Fin(A), we let X̂ = {x̂ : x ∈ X}. In particular, if B is a subalgebra of A
then B̂ is a subalgebra of Â.

Let A be an ordinary C∗-algebra. Under the assumption that the set of individuals
of our nonstandard universe is a superset of A, we have that A ⊆ Â. Furthermore, by
identifying a ∈ A with â, we have that A is a C∗-subalgebra of ∗̂A. As is customary, we
write Â for ∗̂A.

If φ : A→ B is a homomorphism of ordinary C∗-algebras, we let

φ̂ : Â → B̂
â 7→ ∗̂φ(a)
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Since homomorphisms are norm-contracting, the map φ̂ is well-defined. Furthermore,
it is straightforward to verify that it is a homomorphism.

All the above assumptions and notations are in force throughout this paper.
Similarly to the above, one defines the nonstandard hull Ĥ of an internal Hilbert space

H. It is a straightforward verification that Ĥ is an ordinary Hilbert space with respect to the
standard part of the inner product of H. Furthermore, let B(H) be the internal C∗-algebra
of bounded linear operators on some internal Hilbert space H and let A be a subalgebra
of B(H). Each â ∈ Â can be regarded as an element of B(Ĥ) by letting â(x̂) = â(x), for all
x ∈ H of finite norm. (Note that â(x̂) is well defined since a is norm–finite.) Therefore we
can regard Â as a C∗-subalgebra of B(Ĥ).

3. Three Known Results

The results in this section can be rephrased in ultraproduct language and can be
proved by using the theory of ultraproducts. The nonstandard proofs that we present
below show how to apply the nonstandard techniques in combination with the nonstandard
hull construction.

3.1. Infinite Dimensional Nonstandard Hulls Fail to Be von Neumann Algebras

In [8] [Corollary 3.26] it is proved that the nonstandard hull B̂(H) of the in internal
algebra B(H) of bounded linear operators on some Hilbert space H over ∗C is a von
Neumann algebra if and only if H is (standard) finite dimensional. Actually, this result
can be easily improved by showing that no infinite dimensional nonstandard hull is, up
to isometric isomorphism, a von Neumann algebra. It is well-known that, in any infinite
dimensional von Neumann algebra, there is an infinite sequence of mutually orthogonal
non-zero projections. Hence one may want to apply [8] [Corollary 3.25]. Albeit the
statement of the latter is correct, its proof in [8] is wrong in the final part. Therefore we
begin by restating and reproving [8] [Corollary 3.25] in terms of increasing sequences of
projections. We denote by Proj(A) the set of projections of a C∗-algebra A.

Lemma 1. Let A be an internal C∗-algebra and let (pn)n∈N be an increasing sequence of projections
in Proj(Â ). Then there exists an increasing sequence of projections (qn)n∈N in Proj(A) such that,
for all n ∈ N, pn = q̂n.

Proof. We recursively define (qn)n∈N as follows: As q0 we pick any projection r ∈ Proj(A)
such that p0 = r̂. (See [8] [Theorem 3.22(vi)].) Then we assume that q0 < · · · < qn in
Proj(A) are such that pi = q̂i for all 0 ≤ i ≤ n. Again by [8] [Theorem 3.22(vi)], we can
further assume that pn+1 = r̂, for some r ∈ Proj(A ). By [11] [II.3.3.1], we have r̂q̂n = q̂n,
namely rqn ≈ qn. Hence, by Transfer of [11] [II.3.3.5], for all k ∈ N+ there is rk ∈ Proj(A)
such that qn ≤ rk and ‖r− rk‖ < 1/k. By Overspill, there is q ∈ Proj(A) such that qn ≤ q
and q ≈ r. We let qn+1 = q.

Then we immediately get the following:

Corollary 1. Let A be an internal C∗-algebra of operators and let (pn)n∈N be a sequence of
non-zero mutually orthogonal projections in Proj(Â ). Then Â is not a von Neumann algebra.

Proof. From (pn)n∈N, we get an increasing sequence (p′n)n∈N of projections in A by letting
p′n = p0 + · · · + pn, for all n ∈ N. By Lemma 1, there exists an increasing sequence
(q′n)n∈N of projections in A. From the latter we get a sequence (qn)n∈N of non-zero mutually
orthogonal projections, by letting q0 = q′0 and qn+1 = q′n+1 − q′n, n ∈ N. Finally, [8]
[Proposition 3.22] applies.

Proposition 1. The following are equivalent for an internal C∗-algebra of operators A:

1. A is (standard) finite dimensional;
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2. Â is a von Neumann algebra.

Proof. (1) ⇒ (2) This is a straightforward consequence of the fact that A is isomorphic
to a finite direct sum of internal matrix algebras of standard finite dimension over ∗C and
that the nonstandard hull of each summand is a matrix algebra over C of the same finite
dimension.
(2)⇒ (1) Suppose Â is an infinite dimensional von Neumann algebra. Then in Â there is
an infinite sequence of mutually orthogonal non-zero projections, contradicting Corollary 1.
Therefore Â is finite dimensional and so is A.

A straightforward consequence of the Transfer Principle and of Proposition 1 is that,
for an ordinary C∗-algebra of operators A,

Â is a von Neumann algebra ⇔ A is finite dimensional.

It is worth noticing that there is a construction known as tracial nostandard hull which,
applied to an internal C∗-algebra equipped with an internal trace, returns a von Neumann
algebra. See [8] [§3.4.2]. Not surprisingly, there is also an ultraproduct version of the tracial
nostandard hull construction. See [13].

3.2. Real Rank Zero Nonstandard Hulls

The notion of real rank of a C∗-algebra is a non-commutative analogue of the covering
dimension. Actually, most of the real rank theory concerns the class of real rank zero
C∗-algebras, which is rich enough to contain the von Neumann algebras and some other
interesting classes of C∗-algebras (see [11,14] [V.3.2]).

In this section we prove that the property of being real rank zero is preserved by the
nonstandard hull construction and, in case of a standard C∗-algebra, it is also reflected by
that construction. Then we discuss a suitable interpolation property for elements of a real
rank zero algebra.

Eventually we show that the P∗-algebras introduced in [8] [§3.5.2] are exactly the real
rank zero C∗-algebras and we briefly mention further preservation results.

We recall the following (see [14]):

Definition 1. An ordinary C∗-algebra A is of real rank zero (briefly: RR(A) = 0) if the set of its
invertible self-adjoint elements is dense in the set of self-adjoint elements.

In the following we make essential use of the equivalents of the real rank zero property
stated in [14] [Theorem 2.6].

Proposition 2. The following are equivalent for an internal C∗-algebra A:

(1) RR(Â) = 0;
(2) for all â, b̂ orthogonal elements in (Â)+ there exists p̂ ∈ Proj(Â) such that (1− p̂)â = 0

and p̂ b̂ = 0.

Proof. (1) ⇒ (2): Let â, b̂ be orthogonal elements in (Â)+. By [14] [Theorem 2.6(v)], for
all 0 < ε ∈ R there exists a projection q̂ ∈ Â such that ‖(1− q̂) â‖ < ε and ‖q̂ b̂‖ < ε.
By [8] [Theorem 3.22], we can assume q ∈ Proj(A). Being 0 < ε ∈ R arbitrary, from
‖(1− q)a‖ < 2ε and ‖qb‖ < 2ε, by saturation we get the existence of some projection
p ∈ A such that (1− p)a ≈ 0 and pb ≈ 0. Hence (1− p̂)â = 0 and p̂ b̂ = 0.

(2) ⇒ (1): Follows from (v) ⇒ (i) in [14] [Theorem 2.6].

Proposition 3. Let A be an internal C∗-algebra such that RR(A) = 0. Then RR(Â) = 0.

Proof. Let â, b̂ be orthogonal elements in (Â)+. By [8] [Theorem 3.22(iv)], we can assume
that a, b ∈ A+ and ab ≈ 0. Hence ‖ab‖ < ε2, for some positive infinitesimal ε. By Transfer
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of [14] [Theorem 2.6 (vi)], there is a projection p ∈ A such that ‖(1− p)a‖ < ε and ‖pb‖ < ε.
Therefore (1− p̂)â = 0 and p̂ b̂ = 0 and we conclude by Proposition 2.

Proposition 4. Let A be an ordinary C∗-algebra. The following are equivalent:

(1) RR(A) = 0;
(2) RR( ∗A) = 0;
(3) RR( ∗̂A ) = 0.

Proof. (1) ⇒ (2) holds by Transfer and (2) ⇒ (3) holds by Proposition 3. Therefore it
remains to prove (3) ⇒ (1). As usual, we assume that A is a subalgebra of ∗̂A and we
identify a ∈ A with ∗̂a ∈ ∗̂A. We show that [14] [Theorem 2.6 (vi)] is satisfied. Let a, b ∈ A+

and 0 < ε ∈ R be such that ‖ab‖ < ε2. Then ‖ab‖ < δ2, for some δ < ε. By assumption
there is p̂ ∈ Proj( ∗̂A) such that ‖(1− p̂)a‖ < δ and ‖ p̂ b‖ < δ. By [8] [Theorem 3.22], we
assume p ∈ Proj( ∗A). Hence ‖(1− p) ∗a‖ < ε and ‖p ∗b‖ < ε. By Transfer, there exists
p ∈ Proj(A) such that ‖(1− p)a‖ < ε and ‖p b‖ < ε.

Question 1. In Proposition 3, does the converse implication hold for any internal C∗-algebra?

Let A be an ordinary C∗-algebra and let a, b ∈ A+. We write a � b if ba = a (equiv-
alently: ab = a). In [11] [V.3.2.16], the author introduces an interpolation property for
positive elements a, b in a C∗-algebra of real rank zero such that a � b. In [11] [V.3.2.17],
he proves such property under the additional assumption that there is a positive element
c such that a � c � b. Actually, the interpolation property holds, under no additional
assumption, in all nonstandard hulls having real rank zero.

Proposition 5. Let A be an internal C∗-algebra such that RR(Â ) = 0 and let â, b̂ ∈ (Â)+, with
â� b̂ and ‖b̂‖ ≤ 1. Then there exists a projection p̂ ∈ Â such that â� p̂� b̂. If ‖â‖ ≤ 1 then
p̂ also satisfies â ≤ p̂ ≤ b̂.

Proof. From â� b̂, we get â(1− b̂) = 0. Since ‖b̂‖ ≤ 1, from b̂ ≤ ‖b̂‖ we get 0 ≤ 1− b̂. By
Proposition 2 there exists p̂ ∈ Proj(Â) such that (1− p̂ ) â = 0 and p̂ (1− b̂ ) = 0, namely
â� p̂� b̂.

Concerning the final claim, it is a general fact that if c� d are positive elements in a
C∗-algebra and ‖c‖ ≤ 1 then c ≤ d. To prove that, work in the commutative C∗-subalgebra
generated by {c, d, 1} and use the Gelfand transform. (See [11] [Theorem II.2.2.4]).

If follows that, assuming ‖â‖ ≤ 1, we immediately get â ≤ p̂ ≤ b̂ from â� p̂� b̂.

Next we recall the definition of P∗-algebra from [8] [§3.5.2]: a C∗-algebra A is a P∗-
algebra if every self-adjoint element from A is the norm limit of real linear combinations of
mutually orthogonal sequences of projections. Notice that the complex linear span of the
projections is dense in a P∗-algebra.

Actually, the P∗-algebras are exactly the real rank zero algebras:

Proposition 6. The following are equivalent for an ordinary C∗-algebra A:

(1) RR(A) = 0;
(2) A is a P∗-algebra.

Proof. (1) ⇒ (2) We use the functional calculus (see [11] [Corollary II.2.3.1]). If a ∈ Asa
has finite spectrum then idσ(a) is a linear combination with real coefficients of mutually
orthogonal projections in C(σ(a)) and the conclusion follows.
(2) ⇒ (1) We verify (1) in the form of the equivalent condition [14] [Theorem 2.6 (ii)],
simply by noticing that, if (pi)1≤i≤n is a tuple of mutually orthogonal projections and
(λi)1≤i≤n ∈ Rn, then σ(∑n

i=1 λi pi) ⊆ {λi : 1 ≤ i ≤ n} ∪ {0}. Hence, by (2), the self-adjoints
of finite spectra are dense in Asa.
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In light of the previous proposition, we may regard that of Proposition 3 as a simpler
proof of [8] [Theorem 3.28]. One may object that the proof of Proposition 3 heavily relies
on [14] [Theorem 2.6] and ask for a more direct proof of [8] [Theorem 3.28]. Here is one:

Proposition 7. Let A be an internal C∗-algebra. Then

RR(A) = 0 ⇒ RR(Â) = 0.

Proof. Let â ∈ Âsa. By [8] [Theorem 3.22], we assume a ∈ Asa. Let b ∈ A be an invertible
element such that ‖b− a‖ ≈ 0. By polar decomposition (see, for instance, [8] [Proposition
3.13]), let u ∈ A be the unique unitary element such that b = |b|u. Let 0 < ε ∈ R and let
d = (|b|+ ε/2)u. Since |b| is invertible then d is invertible and ‖a− d‖ < ε. It suffices to
prove that d−1 ∈ Fin(A) to conclude that d̂ is invertible in Â. By the functional calculus,∥∥(|b|+ ε/2)−1

∥∥ ≤ 2/ε ∈ Fin( ∗R). Hence
∥∥d−1

∥∥ ≤ 2/ε.
Summing up: For all 0 < ε ∈ R there exists an invertible d̂ ∈ Â such that ‖â− d̂‖ ≤ ε.

Hence the conclusion.

Further preservation results that can be easily established are the following:

(1) An ordinary C∗-algebra is projectionless if it has no projection different from 0, 1.
It is easy to verify that, if p is a projection in an internal C∗-algebra, p ≈ 0 implies
p = 0 (hence p ≈ 1 ⇒ p = 1). From [8] [Theorem 3.22(vi)] it then follows that the
property of being projectionless is preserved and reflected by the nonstandard hull
construction.

(2) An ordinary C∗-algebra has stable rank one if its invertible elements form a dense
subset (see [11] [V.3.1.5]). The same proof as in Proposition 7 shows that the property
of an internal C∗-algebra of having stable rank one is preserved by the nonstandard
hull construction. Furthermore, an analogous of Proposition 4 can be proved with
respect to the stable rank one property, by using [8] [Corollary 3.11].

3.3. Nonstandard Hulls of Internal Function Spaces

In this section, we extend the description given in [15] of the nonstandard hull of the
internal Banach algebra of ∗R-valued continuous functions on some compact Hausdorff
space to the case when A is the internal C∗-algebra C(X) of ∗C-valued continuous functions
on some compact Hausdorff space X. For f ∈ Fin(A), let ◦f : X → C be defined as follows:
( ◦f )(x) = ◦( f (x)), for all x ∈ X. It is easy to verify that the nonstandard hull Â of A is
formed by { ◦f : F ∈ Fin(A)}, equipped with the operations inherited by A. In particular,
( ◦f )( ◦g) = ◦( f g) and ( ◦f )∗ = ◦( f ∗). (In the latter equality, ∗denotes the adjoint.)

By the Gelfand-Naimark Theorem, the commutative C∗-algebra Â is isometrically
isomorphic to the ordinary C∗-algebra C(Y), where Y is the compact Hausdorff space of
nonzero multiplicative linear functionals on Â, equipped with the topology induced by the
weak ∗-topology on the dual of Â. The natural isomorphism Γ : Â→ C(Y), known as the
Gelfand transform, is defined as follows: Let ◦f ∈ Â. Then

Γ( ◦f ) : Y → C

ϕ 7→ ϕ( ◦f )

(see [11] [II.2.2.4]).
To each x ∈ X we associate the multiplicative linear functional

x̂ : Â → C
◦f 7→ ◦( f (x))

(1)

(In order to verify that x̂ satisfies the required properties, the assumption f ∈ Fin(A)
is crucial.) Let x 6= y, x, y ∈ X. By Transfer of Urysohn’s Lemma there exists an internal
continuous function f : X → ∗[0, 1] such that f (x) = 0 and f (y) = 1. It follows that x̂ 6= ŷ.
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In general, the internal topology on X is not an ordinary topology, but forms a basis
for an ordinary topology on X, that we denote by Q since it was named Q-topology by
A. Robinson.

We notice that, for all f ∈ Fin(A), the map ◦f is continuous with respect to the
Q-topology. Actually, let B(z, r) be the open ball of radius r centered at z ∈ C. Then

( ◦f )−1(B(z, r)) =
⋃

n∈N+

{x ∈ X : | f (x)− z| < r− 1/n},

and the latter is open in the Q-topology.
We let X̂ = {x̂ : x ∈ X} and we denote by τ the topology induced on X̂ by the

weak ∗-topology on the dual of Â. Keeping also in mind the notation previously introduced,
we prove the following:

Proposition 8. The function ̂ : (X, Q) → (X̂, τ) that maps x to the multiplicative linear
functional x̂ defined as in (1) is a homeomorphism. Moreover, the set X̂ is dense in Y.

Proof. We have shown above that ̂ is one-one.
Let x ∈ X. By definition of the weak∗-topology, to prove the continuity of̂it suffices

to verify that, for all f ∈ Fin(A) and all 0 < r ∈ R, the set {y ∈ X : |ŷ( ◦f )− x̂( ◦f )| < r} is
Q-open: This is straightforward from the already established continuity of ◦f .

To prove that ̂ is an open map, it suffices to show that, for each internal open set
Z ⊆ X, the set Ẑ = {ẑ : z ∈ Z} is τ-open. We fix z ∈ Z. By Transfer of Urysohn’s Lemma,
there exists a ∗[0, 1]-valued f ∈ A such that f (z) = 0 and f (x) = 1 for all x ∈ X \ Z. The set

U = {x̂ ∈ X̂ : |x̂( ◦f )− ẑ( ◦f )| < 1/2}

is τ-open and contains ẑ. Moreover, for all x ∈ X, x̂ ∈ U if and only if | ◦f (x)| < 1/2. Hence
U ⊆ Ẑ. It follows that Ẑ is τ-open.

Concerning the second part of the statement, let us assume that there exists ϕ ∈ Y
which does not belong to the closure (X̂)− of X̂. By Urysohn’s Lemma, there exists a
[0, 1]-valued h ∈ C(Y) such that h(ϕ) = 1 and h|(X̂)− = 0. Let f ∈ C(X) be such that
Γ( ◦f ) = h, where Γ is the Gelfand transform defined above. Since

0 = Γ( ◦f )(x̂) = x̂( ◦f ) = ◦f (x) for all x ∈ X,

then ◦f = 0. Being Γ an isometry, we get a contradiction with ‖h‖ = 1.

4. Noncommutative Loeb Theory

At first reading, the title of this section may sound somewhat obscure. To clarify
it, we recall that a Loeb probability measure is an ordinary probability measure that is
obtained from an internal finitely-additive probability measure. See [5] or [6]. We recall
that a C∗-probability space is a pair (A, φ), where A is a C∗-algebra and φ : A → C is a
state, namely a positive linear functional with the property that φ(1) = 1.

In short: States are the noncommutative counterparts of probability measures. In the
following we deal with the problem of obtaining an ordinary weight from an internal one.
Moreover, weights are closely related to states. Hence the title of this section.

We begin by recalling some notions and elementary facts relative to an ordinary
C∗-algebra A.

A weight is an additive, positively homogeneous function φ : A+ → [0, ∞], i.e.,
φ(ra + b) = rφ(a) + φ(b), for all a, b ∈ A+ and all r ∈ [0, ∞), with the convention that
0 ·∞ = 0 (so that φ(0) = 0).

Let φ be a weight. From the inequality a ≤ ‖a‖1, a ∈ A+ (see [11] [II.3.1.8]), it follows
that φ(a) ≤ ‖a‖φ(1). Therefore condition φ(1) < ∞ is equivalent to φ(A+) ⊆ [0, ∞). A
weight is finite if it satisfies one of those two equivalent properties.
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A finite weight φ extends uniquely to a positive linear functional on A, usually
denoted by the same name. This is because each a ∈ A can be uniquely written as
a = (a1 − a2) + i(a3 − a4), for some positive ai, each of norm ≤ ‖a‖. (Recall that a =
(a + a∗)/2 + i[(a− a∗)/2i] and see, for instance, [8] [Corollary 3.21].) Conversely, every
positive linear functional on A yields a finite weight.

A weight φ is normal if for any uniformly norm-bounded increasing net F ⊂ A+, such
that sup F exists in A+, then

φ(sup F) = sup
a∈F

φ(a).

Let κ be a cardinal. We say that a weight φ is κ-normal if the previous property holds
for any uniformly norm-bounded directed family F ⊂ A+ with |F| < κ.

For the rest of this section, if not otherwise stated, A is assumed to be an internal
C∗-algebra.

Following nonstandard terminology we say that an internal weight φ : A+ → ∗[0, ∞]
is S-continuous if φ(a) ≈ 0 for all 0 ≈ a ∈ A+. We recall the following (see [8] [Lemma 4.4]):

Lemma 2. The following are equivalent for an internal weight φ : A+ → ∗[0, ∞]:

(1) φ is S-continuous;
(2) φ(1) ∈ Fin( ∗[0, ∞]);
(3) for all a, b ∈ A+, if a ≈ b then φ(a) ≈ φ(b).

For benefit of the reader who wants to check the proof of Lemma 2 given in [8], we
point out that [8] [Proposition 3.12] lacks the crucial assumption a− b ∈ Re(M) (which is
trivially satisfied if a, b are positive elements). Actually, as it stands, [8] [Proposition 3.12]
is wrong, even for commutative internal algebras: Let C(X) be the internal C∗-algebra of
∗C-valued functions on some compact space X an let r, s ∈ ∗R be such that r ≈ s, r 6= s. Let
f , g be the constant functions f (x) = ir and g(x) = is. Then f ≈ g, but there is no h ∈ C(X)
that satisfies f ≈ h ≈ g and f ≤ h, g ≤ h.

Let φ : A+ → ∗[0, ∞] be an internal S-continuous weight. By Lemma 2, φ takes
values in ∗[0, ∞) (we will say that it is a ∗finite weight). As previously noticed, we can
extend φ to an internal positive linear functional defined on A, that we still denote by
φ. By transfer of [16] [Theorem 4.3.2], we have ‖φ‖ = φ(1). It follows from Lemma 2(2)
that ‖φ‖ ∈ Fin( ∗[0, ∞]). Hence there is a one-to-one correspondence between the internal
S-continuous weights and the internal positive linear functionals of (standard) finite norm.

By Lemma 2(3), from an internal S-continuous weight φ : A+ → ∗[0,+∞] we can
define a map

φ̂ : (Â )+ → [0,+∞)
â 7→ ◦φ(a)

(2)

Clearly φ̂ is additive and positive homogeneous, hence a (finite) weight. It can be
regarded as a noncommutative Loeb integral operator (see the discussion in [8] [§4.4]).

Here is an example of an internal weight which is not the nonstandard extension
of any ordinary weight: Let N ∈ ∗N \ N and let MN(

∗C) be the internal C∗-algebra of
N × N matrices on ∗C. Let tr : MN(

∗C)+ → ∗[0, ∞) be the normalized trace defined by
tr((aij)) = 1

N ∑N
i=1 aii. By Lemma 2, tr is S-continuous. Notice that the non-normalized

trace is not S-continuous.
Next we want to prove that every S-continuous internal weight in a κ-saturated non-

standard universe is κ-normal, thus strengthening [8] [Theorem 4.5] (see [8] [Question 11]).
We point out that, in the following result, differently from [8] [Theorem 4.5], the internal
weight is not required to be normal and the internal C∗-algebra is not necessarily commu-
tative.

Let r, s ∈ ∗R. We write r & s if r > s or r ≈ s.
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Theorem 1. Let φ : A+ → ∗C be an internal S-continuous weight in a κ-saturated nonstandard
universe. Then the weight φ̂ defined in (2) is κ-normal.

Proof. By Transfer of the Gelfand–Naimark Theorem ([11] [Corollary II.6.4.10]), we assume
that A is a subalgebra of the internal C∗-algebra B(H), for some internal Hilbert space H.
As remarked at the end of Section 2, we regard Â as a subalgebra of B(Ĥ), where Ĥ is the
nonstandard hull of H.

We denote by H1 the unit ball centered at the origin of H. By [11] [I.2.6.7], the following
are equivalent for â, b̂ ∈ (Â)sa:

(1) â ≤ b̂;
(2) for all h ∈ H1, ◦〈(b− a)h, h〉 ≥ 0;
(3) for all h ∈ H1, Re(〈(b− a)h, h〉) & 0 and Im(〈(b− a)h, h〉) ≈ 0.

Let F ⊆ Â+ be an infinite norm-bounded directed family with |F| < κ. Let L be a
norm-bound for the elements of F. Let F0 be formed by picking exactly one representative
for each element in F, so that F = {â |a ∈ F0}.

Let R = sup{φ̂(â) | â ∈ F}. Since F is norm-bounded, R is finite.
We claim that there exists b ∈ Fin(A) such that â ≤ b̂ for all a ∈ F0 and φ̂(b̂) = R. To

prove this, let P<ω(F0) be the set of finite subsets of F0. Notice that |P<ω(F0)| < κ. For each
C ∈ P<ω(F0) and each n ∈ N+, let Fn,C be the internal subset of A whose elements x satisfy
the following properties:

(a) ‖x‖ ≤ L + 1;
(b) for all h ∈ H1 and all a ∈ C, Re(〈(x − a)h, h〉) ≥ −1/n and −1/n ≤ Im(〈(x −

a)h, h〉) ≤ 1/n;
(c) |φ(x)− R| ≤ 1/n.

By directness of F, the equivalence (1)⇔ (3) above and the definition of R, the Fn,C
are nonempty. Moreover they have the finite intersection property, since Fmax(n,m),B∪C ⊆
Fn,B ∩ Fm,C.

By κ-saturation, we let b ∈ ⋂{Fn,C : n ∈ N+and C ∈ P<ω(F0)}. Then b̂ satisfies the
required conditions. It follows that φ̂(â) ≤ φ̂(b̂) for all â ∈ F. Being b̂ a ≤ -upper bound of
F, if sup F exists in (Â)+, then

sup{φ̂(â) | â ∈ F} ≤ φ̂(sup F) ≤ φ̂(b̂) = sup{φ̂(â) | â ∈ F}.

Therefore φ̂ is κ-normal.

With reference to the previous theorem, it is straightforward to check that the weight
φ̂ is κ-completely additive, namely if I is a set of cardinality < κ and {ai}i∈I is a family of
elements of (Â )+ such that ∑i∈I ai is defined, then φ̂(∑i∈I ai) = ∑i∈I φ̂(ai).

We briefly comment on [8] [Question 11]. If an internal weight φ : A+ → ∗[0, ∞] is not
S-continuous and a ∈ Fin(A+) is such that φ(a) 6= ∗∞, then there exists a ≈ b ∈ Fin(A+)
such that φ(a) 6≈ φ(b). Hence only when φ is the so-called degenerate weight (namely φ
satisfies φ(0) = 0 and φ(a) = ∗∞, for a 6= 0), it is possible to define a weight φ̂ : (Â )+ →
[0,+∞] as in (2). In such case, φ̂ itself is the degenerate weight.

5. Nonstandard Noncommutative Probability

In this section we will be mostly concerned with an important part of noncommutative
probability known as free probability. The latter was initiated by Voiculescu to attack a
problem in the theory of von Neumann algebras. See [17].

In Section 4, we already recalled the definition of C∗-probability space (briefly: C∗ps).
We recall the following definitions.

A state φ is faithful if

φ(a∗a) = 0⇒ a = 0 for all a ∈ A.
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A state φ is tracial if
φ(ab) = φ(ba) for all a, b ∈ A.

We notice that, by Lemma 2, the state φ in an internal C∗ps (A, φ) is S-continuous.
Therefore, by defining φ̂ as in (2) above, we have that (Â, φ̂ ) is an ordinary C∗ps. We will
use this fact without further mention.

We say that an internal state φ : A→ ∗C is S-faithful if

φ(a∗a) ≈ 0⇒ a ≈ 0 for all a ∈ Fin(A).

We have the following characterization of faithfulness:

Proposition 9. Let φ : A→ C be an ordinary state. The following are equivalent:

(1) φ is faithful;
(2) ∗φ : ∗A→ ∗C is S-faithful;
(3) φ̂ : Â→ C is faithful.

Proof.

(1)⇒ (2) We assume (1). Let a ∈ ∗A be such that φ(a∗a) ≈ 0. Then there exists some
nonnegative infinitesimal r ∈ R such that φ(a∗a− r1) = 0. Hence ‖a∗a‖ ≈ 0. From the
equality ‖a∗a‖ = ‖a‖2 we get a ≈ 0.

(2)⇒ (3) We assume (2). Let â ∈ Â. We get the following chain of implications:

φ̂(â∗ â) = 0⇒ φ(a∗a) ≈ 0⇒ a ≈ 0⇒ â = 0.

(3)⇒ (1) Since we can assume without loss of generality that A is a subalgebra of Â and
that φ̂ extends φ, the result is straightforward.

We say that an internal state φ : A→ ∗C is S-tracial if

φ(ab) ≈ φ(ba) for all a, b ∈ Fin(A).

We leave the straightforward proof of the following to the reader.

Proposition 10. Let φ : A→ C be an ordinary state. The following are equivalent:

(1) φ is a tracial state;
(2) ∗φ : ∗A→ ∗C is S-tracial;
(3) φ̂ is a tracial state.

To help the reader’s intuition, we stress that, in a C∗ps (A, φ), the elements of A play
the roles of random variables, whose expectation is given by φ.

Next we formulate the property of free independence (for short: freeness). See [17]
[Proposition 3.5] for insights about such notion.

Definition 2. Let (A, φ) be an ordinary C∗ps. A family (Bj)j∈I of C∗-subalgebras of A is free
if for all n ∈ N, all i ∈ In and all b ∈ ∏n

i=1 Bi(j) such that i(1) 6= i(2) 6= . . . 6= i(n) and
φ(bi(1)) = · · · = φ(bi(n)) = 0 it holds that φ(bi(1) · · · bi(n)) = 0.

We stress that freeness depends on the state φ. Therefore, in the previous definition, it
would be more appropriate to say that the family (Bj)j∈I is free with respect to φ. Usually
it is the context that prevents any ambiguity.

Notice that Definition 2 makes sense also for a family of unital ∗-subalgebras of A.

Notational convention. A family (Bj)j∈I of C∗-algebras is actually a function B defined on I.
Therefore we denote its nonstandard extension ∗B, which is a function defined on ∗I, by
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( ∗Bj)j∈ ∗I . For notational simplicity we write B̂j for ∗̂Bj. Without loss of generality, we can
further assume that I ⊆ ∗I.

The above notation and assumption are in force throughout this section.

The chain of equivalences in the following result provides a nonstandard characteriza-
tion of freeness and proves that the latter is preserved and reflected by the nonstandard
hull construction.

Proposition 11. Let (A, φ) be an ordinary C∗ps and let (Bj)j∈I be a family of C∗-subalgebras of
A. The following are equivalent:

(1) (Bj)j∈I is free;
(2) there exists some N ∈ ∗N \N for which the following holds: For all M ≤ N, all internal

i ∈ ( ∗I)M and all internal b ∈ ∏M
j=1

∗Bi(j) such that i(1) 6= i(2) 6= . . . 6= i(M) if
φ(bi(1)) = · · · = φ(bi(M)) = 0 then φ(bi(1) · · · bi(M)) = 0;

(3) (B̂j)j∈ ∗I is free with respect to φ̂.

Proof. (1) ⇒ (2) is a consequence of Transfer.
Regarding (2) ⇒ (3), we fix N as in (2). Let 0 < m ∈ N, i ∈ ( ∗I)m and b ∈

∏m
j=1 Fin( ∗Bi(j)) be such that i(1) 6= i(2) 6= . . . 6= i(m) and φ̂(b̂i(1)) = · · · = φ̂(b̂i(m)) = 0.

Then φ(bi(j)) ≈ 0 for all 1 ≤ j ≤ m. Let di(j) = bi(j) − φ(bi(j))1. Therefore di(j) ≈ bi(j)
and φ(di(j)) = 0, for all 1 ≤ j ≤ m. It follows by assumption that φ(di(1) · · · di(m)) = 0.
Since bi(1) · · · bi(m) ≈ di(1) · · · di(m), we get φ(bi(1) · · · bi(m)) ≈ φ(di(1) · · · di(m)). Therefore
0 = (φ(bi(1) · · · bi(m)))̂ = φ̂(b̂i(1) · · · b̂i(m)).

The proof of (3)⇒ (1) is straightforward from Bj ⊆ B̂j, for all j ∈ I.

The proof of the previous proposition naturally leads to formulating a nonstandard
variant of the notion of freeness.

Definition 3. Let (A, φ) be an internal C∗ps. A family (Bj)j∈I (not necessarily internal) of internal
C∗-subalgebras of A is almost free if, for all n ∈ N, all i ∈ In and all b ∈ ∏n

j=1 Fin(Bi(j)), whenever
i(1) 6= i(2) 6= . . . 6= i(n) and φ(bi(1)) ≈ 0, . . . , φ(bi(n)) ≈ 0 then φ(bi(1) · · · bi(n)) ≈ 0.

Proposition 12. Let (A, φ) be an ordinary C∗ps and let (Bj)j∈I be a family of subalgebras of A.
The following are equivalent:

(1) ( ∗Bj)j∈ ∗I is free.
(2) ( ∗Bj)j∈ ∗I is almost free.

Proof. (1) ⇒ (2). Let n ∈ N, i ∈ ( ∗I)n and b ∈ ∏n
j=1 Fin( ∗Bi(j)) be such that i(1) 6=

i(2) 6= . . . 6= i(n) and φ(bi(1)) ≈ 0, . . . , φ(bi(n)) ≈ 0. Since φ(bi(j))− φ(bi(j))1) = 0, for all
1 ≤ j ≤ n, then φ(∏n

j=1(bi(j) − φ(bi(j))1)) = 0. We notice that ∏n
j=1(bi(j) − φ(bi(j))1)) =

bi(1) · · · bi(n) + S, where S is a standard finite sum of terms each having infinitesimal norm.
Therefore φ(bi(1) · · · bi(n)) ≈ 0, as required.
(2)⇒ (1). The following chain of implications holds: ( ∗Bj)j∈ ∗I is almost free⇒ (B̂j)j∈ ∗I is
free⇒ (Bj)j∈I is free⇒ ( ∗Bj)j∈ ∗I is free. The leftmost implication is straightforward and
the middle one holds by Proposition 11. The rightmost implication holds by Transfer.

Corollary 2. Let (A, φ), (Bj)j∈I be as in Proposition 12. Then (Bj)j∈I is free if and only if
( ∗Bj)j∈ ∗I is almost free.

Let (A, φ) be an internal C∗ps and let (Bj)j∈I be an internal free family of subalgebras
of A. Notice that the same proof as (1) ⇒ (2) in Proposition 12 shows that (Bj)j∈I is
almost free.

Noncommutative probability has its own notion of convergence in distribution (see [17]):
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Definition 4. Let (Am, φm)m∈N and (A, φ) be ordinary C∗ps. For each m ∈ N let am = (am,j)j∈I
be a sequence in Am and let a = (aj)j∈I be a sequence in A. We say that

(1) (am)m∈N converges in distribution to a if, for all n ∈ N and all i ∈ In,
limm φm(am,i(1) · · · am,i(n)) = φ(ai(1) · · · ai(n)).

(2) (am)m∈N converges in ∗-distribution to a if for all n ∈ N, all i ∈ In and all (ε1, . . . , εn) ∈
{1, ∗}n,

lim
m

φm(aε1
m,i(1) · · · a

εn
m,i(n)) = φ(aε1

i(1) · · · a
εn
i(n)).

We stress that, in the previous definition, the “∗” refers to the adjoint operator.
With the notation of Definition 4 in force, let I′ = I ∪ {k}, for some k /∈ I, and let a′m be

the extension of am defined by am,k = 1Am , for all m ∈ N. Similarly, let a′ be the extension
of a obtained by letting ak = 1A. We make the trivial observation that (am)m∈N converges
in ∗-distribution to a if and only if (a′m)m∈N converges in ∗-distribution to a′. From now on
we assume that (am)m∈N and a satisfy the following property:

there exists j ∈ I such that, for all m ∈ N, am,j = 1Am and aj = 1A (◦)

Let ( ∗Am, ∗φm)m∈ ∗N be the nonstandard extension of (Am, φm)m∈N. Without loss of
generality we assume I ⊆ ∗I. We give the following nonstandard characterization of conver-
gence in distribution. A similar characterization applies to convergence in ∗-distribution.

Proposition 13. With the notation of Definition 4 in force, and under the subsequent assumptions,
the following are equivalent:

(1) (am)m∈N converges in distribution to a;
(2) there exists N ∈ ∗N \N such that the following holds for all internal N-tuples (i1, . . . , in)

in ( ∗I)N :

∃M ∈ ∗N ∀M < K ∈ ∗N( ∗φK(
∗aK,i(1) · · · ∗aK,i(N)) ≈ ∗φ( ∗ai(1) · · · ∗ai(N))).

Proof. For N ∈ ∗N we denote by ( ∗I)N
× the internal set formed by all internal tuples

in ( ∗I)N .
(1)⇒ (2) From (1) we get by Transfer and Overspill that the internal set

{N ∈ ∗N : ∀i ∈ ( ∗I)N
× lim

M∈ ∗N
∗φM( ∗aM,i(1) · · · ∗aM,i(N)) =

∗φ( ∗ai(1) · · · ∗ai(N))}

properly contains N. Any N ∈ ∗N witnessing the proper inclusion satisfies the
required property.
(2) ⇒ (1) Let n, l be positive natural numbers. From (2), recalling (◦), we get that
∀i ∈ ( ∗I)n ∃M ∈ ∗N ∀M < K ∈ ∗N

| ∗φK(
∗aK,i(1) · · · ∗aK,i(n))− ∗φ( ∗ai(1) · · · ∗ai(n))| < 1/l.

Hence, by Transfer and by arbitrariness of n, l, we get (1).

Definition 5. Let (A, φ) be an ordinary C∗ps and let (Xj)j∈I be a family of subsets of A and let Bj
be the unital C∗-algebra generated by Xj, for j ∈ I. We say that (Xj)j∈I is ∗-free if (Bj)j∈I is free.

A sequence (ai)i∈I is ∗-free if so is ({ai})i∈I .

We have already noticed that the notion of freeness can be formulated with refer-
ence to a family of ∗-subalgebras of a given C∗-algebra A in a C∗ps (A, φ). Actually the
following holds:
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Proposition 14. Let (A, φ) be an ordinary C∗ps. Let (Aj)j∈I be a family of unital ∗-algebras of A
and, for each j ∈ I, let Bj be the C∗-algebra generated by Aj. Then (Aj)j∈I is free if and only if so
is (Bj)j∈I .

Proof. In order to establish the nontrivial implication we apply Corollary 2. Let ( ∗Aj)j∈ ∗I
and ( ∗Bj)j∈ ∗I be the nonstandard extensions of the two families with the same names.
Let n ∈ N, i ∈ ( ∗I)n and b ∈ ∏n

j=1 Fin( ∗Bi(j)) be such that i(1) 6= i(2) 6= . . . 6= i(n) and
φ(bi(1)) ≈ 0, . . . , φ(bi(n)) ≈ 0. Since bi(k) is in the internal closure of ∗Ai(k), there exists some
ai(k) ∈ ∗Ai(k) such that ai(k) ≈ bi(k). Hence φ(ai(k)) ≈ φ(bi(k)), for each 1 ≤ k ≤ n. By almost
freeness of ( ∗Aj)j∈ ∗I we get that φ(ai(1) · · · ai(n)) ≈ 0. Since ai(1) · · · ai(n) ≈ bi(1) · · · bi(n),
we finally get φ(bi(1) · · · bi(k)) ≈ 0. Having established that ( ∗Bj)j∈ ∗I is almost free, we are
done by Corollary 2.

We apply the latter proposition and previous results to give an elementary nonstan-
dard proof of the following known fact:

Proposition 15. Let (Am, φm)m∈N and (A, φ) be C∗ps. For each m ∈ N let am = (am,j)j∈I be a
∗-free sequence in Am. If (am)m∈N converges in ∗-distribution to a = (aj)j∈I then a is ∗-free.

Proof. For notational simplicity let us consider the case when |I| = 2. For m ∈ N let
am = (bm, cm) and a = (b, c).

Let 0 < k ∈ N and let u1, . . . , uk and v1, . . . , vk be elements in the unital ∗-algebras
generated by {1, b} and {1, c} respectively. Let us assume that φ(u1) = · · · = φ(uk) = 0
and φ(v1) = · · · = φ(vk) = 0. We claim that φ(u1v1 · · · ukvk) = 0. Once more for the sake
of simplicity, let us assume k = 1 and let u = u1, v = v1. (The argument below immediately
extends to any positive k.)

Recalling how the ∗-algebra generated by {1, b} is obtained, we associate to u a
sequence (um)m∈N, where um belongs to the ∗-algebra generated by {1, bm} and um is
defined from 1, bm in the same way as u is defined from 1, b. By assumption we have
limm φm(um) = φ(u). We do the same with v.

Let us denote by ( ∗AM, ∗φM)M∈ ∗N and ( ∗aM)M∈ ∗N the nonstandard extensions of
(Am, φm)m∈N and (am)m∈N respectively.

Next we use the nonstandard characterization of convergence of a sequence. Let
( ∗uM)M∈ ∗N and ( ∗vM)M∈ ∗N be the nonstandard extensions of (uM)M∈N and (vM)M∈N
respectively. For all M ∈ ∗N \N we have ∗φM( ∗uM) ≈ 0 and ∗φM( ∗vM) ≈ 0. By Corollary 2
we get that ∗φM( ∗uM

∗vM) ≈ 0 for all M ∈ ∗N \N. Hence φ(uv) = 0.

Next we investigate the behaviour of the free product of C∗-probability spaces with
respect to the nonstandard hull construction. We begin by recalling the definition of free
product (see [18] [Definition 7.10]):

Definition 6. Let (Ai, φi)i∈I be a family of ordinary C∗ps such that the functionals φi : Ai → C,
i ∈ I, are faithful traces. A C∗ps (A, φ), with φ a faithful trace, is called a free product of the family
(Ai, φi)i∈I if there exists a family (wi : Ai → A)i∈I of norm-preserving unital homomorphisms
with the following properties:

(1) for all i ∈ I, φ ◦ wi = φi;
(2) the C∗-subalgebras (wi(Ai))i∈I form a free family in (A, φ);
(3)

⋃
i∈I wi(Ai) generates the C∗-algebra A.

It can be shown that a free product of the family (Ai, φi)i∈I as in Definition 6 does
exist. The assumption of faithfulness is just a technical simplification. Furthermore, (A, φ)
and the family (wi : Ai → A)i∈I are unique up to isomorphism. See [18] [Theorem 7.9].

Theorem 2. Let (Ai, φi)i∈I be an ordinary family of C∗ps such that the functionals φi : Ai → C,
i ∈ I, are faithful traces. Let (A, φ) be the free product of the family with norm-preserving unital
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homomorphisms (wi : Ai → A)i∈I as in Definition 6. If the C∗-algebra Â is generated by⋃
i∈ ∗I ŵi(Âi) then (Â, φ̂) is the free product of the family (Âi, φ̂i)i∈ ∗I , with norm-preserving unital

homomorphisms (ŵi : Âi → Â)i∈ ∗I .

Proof. At the beginning of Section 5 we have already observed that if (B, η) is an ordinary
C∗ps then so is (B̂, η̂). Moreover, if η is faithful so is η̂, by Proposition 9. Furthermore, if
η is tracial so is η̂: let a, b ∈ Fin( ∗A). Then η̂(â b̂) ≈ ∗η(ab) = ∗η(ba) ≈ η̂(b̂ â), where the
middle equality holds by Transfer. Hence η̂(â b̂) = η̂(b̂ â). We leave it to the reader to verify
that if η is norm-preserving so is η̂.

In light of the previous considerations and of the assumption that Â is generated by⋃
i∈ ∗I ŵi(Âi), we are left to show that (1) and (2) of Definition 6 are satisfied by (Âi, φ̂i)i∈ ∗I

and (ŵi : Âi → C)i∈ ∗I . Condition φ̂ ◦ ŵi holds for all i ∈ ∗I by Transfer and by definition of
φ̂, ŵi.

Eventually, the family (ŵi(Âi))i∈ ∗I is free with respect to φ̂ by Proposition 11.

With reference to the proof of the previous theorem, we point out that we do not use
the explicit construction of the free product outlined in [18] [Lecture 7]. We just make use
of the universal property of that construction.

Regarding the assumption in the statement of Theorem 2 that the C∗-algebra Â is
generated by

⋃
i∈ ∗I ŵi(Âi), we notice that the other assumptions only ensure that the C∗-

algebra generated by
⋃

i∈ ∗I ŵi(Âi) is a subalgebra of Â. Actually, if (Bi)i∈I is an internal
family of C∗-subalgebras of the internal C∗-algebra A such that

⋃
i∈ ∗I Bi generates A, it

might be that
⋃

i∈I B̂i generates a proper C∗-subalgebra of Â, as the following shows.

Example. Let M ∈ ∗N \N and let N = 2M. Let us denote by ∗CN the internal C∗-algebra
of internal functions f : {1, . . . , N} → ∗C, equipped with the supremum norm and with
componentwise addition, multiplication and conjugation. Let 1 be the unit of ∗CN and, for
0 < i ≤ N, let ei be the function in ∗CN that takes value 1 on i and 0 elsewhere. Clearly,
∗CN is internally generated by

⋃
i≤N Ci, where Ci is the C∗-algebra generated by {ei, 1}, for

i ≤ N. Let v ∈ Fin( ∗CN) be defined as follows:

v(i) =
{

0 if 1 ≤ i < M;
1 otherwise

We observe that the ordinary C∗-algebra generated by
⋃

i≤N Ĉi is just the C∗-algebra
generated by {êi : 1 ≤ i ≤ N} ∪ {1̂} and we show that v̂ does not belong to the latter.

First of all, we introduce a convenient presentation of ∗̂CN . We associate to each f in
Fin( ∗CN) the map

◦ f : {1, . . . , N} → C

i 7→ ◦ f (i)

Notice that ◦ f is well-defined because f (i) ∈ Fin( ∗C), for all 1 ≤ i ≤ N. The set

A = {◦ f : F ∈ Fin( ∗CN)}

is closed under componentwise addition, multiplication and conjugation. It can be easily
verified that, equipped with the supremum norm, A becomes a C∗-subalgebra of the ordi-
nary C∗-algebra CN of complex valued functions defined on the discrete space {1, . . . , N}.
A little bit of work is only required to prove that A is closed. We sketch the relative proof
to highlight the use of a fairly routine nonstandard argument.

Let (◦ fn)n∈N be a Cauchy sequence in A. Let r ∈ R be such that ‖ fn‖ < r, for all
n ∈ N. Let (nm)0<m∈N be a strictly increasing sequence of natural numbers with the
following properties:

(a) for all 0 < m, m < nm;
(b) for all nm < k, l it holds that ‖ fk − fl‖ < 1/m.
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For each positive natural number k, we let Xk be the internal set of (internal) sequences
(gh)h∈ ∗N of elements of Fin( ∗CN) with the following properties:

(1) for all i ∈ ∗N, ‖gi‖ < r;
(2) for all i ≤ nk, gi = fi;
(3) for all nk < i, j ∈ ∗N,

∥∥gi − gj
∥∥ < 1/k.

Each Xk is internal, by the Internal Definition Principle. It is easily seen that the family
{Xk}0<k∈N has the finite intersection property. By saturation, there exists g ∈ ⋂0<k Xk. Let
N ∈ ∗N \N. By definition of Xk, for all 0 < k and all nk < i ∈ N, ‖ fi − gN‖ < 1/k. Then
(◦ fn)n∈N converges to ◦gN .

Having established that A is a C∗-algebra, it is straightforward to verify that the map

A → ∗̂CN

◦ f 7→ f̂

is an isometric isomorphism. From now on we deal with A. We regard the maps v, 1
and the ei’s, 1 ≤ i ≤ N, as elements of A. Finally, we prove that v does not belong to
the C∗-algebra generated by {ei : 1 ≤ i ≤ N} ∪ {1}. First of all we notice that every
element in the ordinary ∗-algebra B generated by {ei : 1 ≤ i ≤ N} ∪ {1} is a constant
function on all but finitely many points. For the sake of contradiction, let f ∈ B be such
that ‖ f − v‖ < 1/2. Let 1 ≤ i < M and M ≤ j ≤ N be such that f (i) = f (j). From
‖ f − v‖ ≥ |1− f (j)| ≥ 1− | f (i)| ≥ 1/2 we get a contradiction. Hence v does not belong
to the norm-closure of B.

Let (I, <) be a directed partially ordered set. If for all i, j ∈ I there exists k ∈ I such
that i, j ≤ k and wi(Ai) ∪ wi(Aj) ⊆ wk(Ak), then the extra assumption in Theorem 2 is
satisfied, as a consequence of the following:

Proposition 16. Let (J, /) be an internal directed set. Let (Bj)j∈J be an internal family of subalge-
bras of an internal C∗-algebra B with the property that for all i, j ∈ J there exists k ∈ J such that
i, j E k and Bi ∪ Bj ⊆ Bk.

If B is generated by
⋃

j∈J Bj then B̂ is generated by
⋃

j∈J B̂j. Actually,

B̂ =
⋃
j∈J

B̂j.

Proof. Notice that
⋃

j∈J Bj is an internal ∗-algebra. From the assumption that B is generated
by
⋃

j∈J Bj it follows that for each b ∈ Fin(B) there exist j ∈ J and b′ ∈ Bj such that b ≈ b′.
Hence b̂ ∈ B̂j and so B̂ ⊆ ⋃j∈J B̂j. The converse inclusion is trivial.

6. Nonstandard Noncommutative Stochastics

We begin with the definition of stochastic process over a C∗-algebra given in [9]:

Definition 7. Let B be a C∗-algebra and let T be a set. An ordinary noncommutative stochastic
process (briefly: nsp) over B indexed by T is a triple A = (A, (jt : B→ A)t∈T , φ), where

(a) (A, φ) is a C∗ps;
(b) for each t ∈ T, jt is a C∗-algebra homomorphism with the property that jt(1B) = 1A;

The stochastic process A is full if the C∗-algebra A is generated by
⋃

t∈T jt(B).

Notice that, in [9], all nsp’s are assumed to be full. Fullness is needed in the proof
of [9] [Proposition 1.1].
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Let us recall some notation and terminology from [9]: Let A be an ordinary nsp and,
for all 0 < n ∈ N, let t = (t1, . . . , tn) ∈ Tn; b = (b1, . . . , bn) ∈ Bn. We define the map
jt : Bn → A by letting jt(b) = jtn(bn) . . . jt1(b1). The t-correlation kernel is the function

wt : Bn × Bn → C

(a, b) 7→ φ(jt(a)∗ jt(b))

It is straightforward to verify that wt is conjugate linear in each of the a’s components
and linear in each of the b’s components. (This is the usual convention in Physics.)

We endow Bn with the supremum norm and we denote by Bn
1 its unit ball. As is usual

with sesquilinear forms, we define the norm of wt, for t ∈ Tn, as follows:

‖wt‖ = sup{|wt(a, b)| : a, b ∈ Bn
1}.

We recall the following definition from [9]:

Definition 8. Let Ai = (Ai, (jit : B→ Ai)t∈T , φi), i = 1, 2, be ordinary nsp’s and let (Hi, πi, ξi)
be the GNS triples associated to (Ai, φi), for i = 1, 2 (see [11] [II.6.4]). The processes A1 and A2
are equivalent if there exists a unitary operator u : H1 → H2 such that

u(ξ1) = ξ2 and, for all b ∈ B and all t ∈ T, uπ1 j 1
t (b) = π2 j 2

t (b)u.

The following is a characterization of equivalence between full nsp’s (see [9] [Proposi-
tion 1.1]).

Proposition 17. For i = 1, 2 let Ai = (Ai, (jit : B → Ai)t∈T , φi) be ordinary full stochastic
processes. The two processes are equivalent if and only if, for all 0 < n ∈ N, all a, b ∈ Bn and all
t ∈ Tn it holds that

w1
t (a, b) = w2

t (a, b).

We make use of Proposition 17 to give a nonstandard characterization of equivalence.

Theorem 3. For i = 1, 2 let Ai = (Ai, (jit : B → Ai)t∈T , φi) be ordinary full nsp’s. Let ∗Ai be
the nonstandard extension of Ai, i = 1, 2. The following are equivalent:

1. A1 and A2 are equivalent;
2. there exists N ∈ ∗N \N such that, for all internal t ∈ ( ∗T)N and all internal a, b ∈ ( ∗B)N ,

∗w1
t (a, b) = ∗w2

t (a, b).

Proof. (1)⇒ (2) is a straightforward consequence of Proposition 17 and of Transfer.
Concerning the converse implication, let N be as in (2). We fix 0 < n ∈ N. Let t ∈ ( ∗T)n;

a, b ∈ ( ∗B)n. We extend them to internal sequences of length N by letting, for instance,
t′ = (t1, . . . , tn, tn, tn, . . . ), a′ = (a1, . . . , an, 1B, 1B, . . . ), b′ = (b1, . . . , bn, 1B, 1B, . . . ). Then

∗w1
t (a, b) = ∗w1

t′(a
′, b′) = ∗w2

t′(a
′, b′) = ∗w2

t (a, b).

Therefore

∀t ∈ ( ∗T)n∀a ∈ ( ∗B)n∀b ∈ ( ∗B)n( ∗w1
t (a, b) = ∗w2

t (a, b)).

By Transfer we get

∀t ∈ Tn∀a ∈ Bn∀b ∈ Bn(w1
t (a, b) = w2

t (a, b)).

Being n arbitrary, by Proposition 17 we get that A1 and A2 are equivalent.



Mathematics 2021, 9, 2598 18 of 25

The content of Theorem 3 is that a full nsp A is determined, up to equivalence, by the
internal family of correlation kernels { ∗wt : t ∈ ( ∗T)N} of the process ∗A, for some infinite
hyperatural N.

The reader who is familiar with the notion of stochastic process, as introduced for
instance in [19], is invited to read the commentary on [9] [Section 1] to make sense of
Definition 7. In short, let X = (Xt : Ω → S)t∈T be an ordinary stochastic process, where
the Xt’s are measurable functions defined on a probability space (Ω,F , µ) with values in
some measurable space (S,G). Let φ : L∞(Ω,F )→ C be defined by φ(g) =

∫
Ω g dµ, for all

g ∈ L∞(Ω,F ).
It can be shown that the triple

(L∞(Ω,F ), (jt : L∞(S,G)→ L∞(Ω,F ))t∈T , φ),

where jt( f ) = f ◦ Xt for all t ∈ T and all f ∈ L∞(S,G), forms a nsp in the sense of
Definition 7. Furthermore, under additional assumptions on a nsp, one can associate to the
latter an ordinary stochastic process.

Let A = (A, (jt : B→ A)t∈T , φ) be an internal nsp. For all t ∈ T, the map ĵt : B̂→ Â
defined by ĵt(b̂) = ĵt(b) is well-defined because C∗-algebra homomorphisms are norm
contracting. It is straightforward to verify that the nonstandard hull Â = (Â, ( ĵt : B̂ →
Â)t∈T , φ̂ ) ofA is an ordinary nsp. We point out that the C∗-algebra generated by

⋃
t∈T ĵt(B̂)

is a subalgebra of Â but, in general, fullness of A is not inherited by Â. In this regard,
see the Example in Section 5 and the discussion preceding it. The following is a sufficient
condition for preservation of fullness.

Proposition 18. Let (T,< ) be an internal linearly ordered set and let A = (A, (jt : B →
A)t∈T , φ) be an internal full nsp with the property that, for all s < t in T, js(B) is a subalgebra of
jt(B). Then Â = (Â, ( ĵt : B̂→ Â)t∈T , φ̂ ) is an ordinary full nsp.

Proof. An immediate consequence of Proposition 16.

Next we provide a nonstandard characterization of equivalence between nsp’s of the
form Â.

We make a preliminary remark. Let (A, φ) be an internal C∗ps and let (H, π : A →
B(H), ξ) be the associated internal GNS triple, where ξ is the cyclic vector of the repre-

sentation. As we already remarked at the end of Section 2, we can identify B̂(H) with a
C∗-subalgebra of B(Ĥ). It can be easily verified that

π̂ : Â → B(Ĥ)

â 7→ π̂(a)

is a ∗-homomorphism and that, for all â ∈ Â, φ̂(â) = 〈π̂(â)ξ̂, ξ̂〉, where 〈 ·, · 〉 denotes the
inner product on Ĥ.

In order to conclude the verification that (Ĥ, π̂ : Â → B(Ĥ), ξ̂ ) is a GNS triple for
(Â, φ̂), we prove the following result, which is actually stronger than what we need:

Proposition 19. Let (A, φ), (H, π : A → B(H), ξ), (Ĥ, π̂ : Â → B(Ĥ), ξ̂ ) be as above. Then
{φ̂(â)(ξ̂) : A ∈ Fin(A)} = Ĥ.

Consequently, (Ĥ, π̂ : Â→ B(Ĥ), ξ̂ ) is a GNS triple for (Â, φ̂ ).

Proof. Following [11] [II.6.4], let Nφ = {x ∈ A : φ(x∗x) = 0}. By the GNS construction,
we have that ξ is the image of the unit of A in A/Nφ and that π(a) is the left multiplication
operator by a on A/Nφ. Moreover A/Nφ is an inner product space with respect to 〈 ·, · 〉
defined by

〈x + Nφ, y + Nφ〉 = φ(y∗x), x, y ∈ A.
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Furthermore, H is the Hilbert space completion of A/Nφ and the set

{π(a)(ξ) : A ∈ A}

is dense in H.
Let ĥ ∈ Ĥ. Then there exists a ∈ A such that a + Nφ = π(a)(ξ) ≈ h and, by definition

of norm on a quotient space, there exists also y ∈ Nφ such that ‖a + y‖ ≈
∥∥a + Nφ

∥∥. It
follows that ‖a + y‖ is finite. Furthermore

π(a + y)(ξ) = a + Nφ ≈ h.

Therefore there exists some b ∈ Fin(A) such that π(b)(ξ) ≈ h. For such a b it holds
that π̂(b̂)(ξ̂) = ĥ.

Theorem 4. Let Ai = (Ai, (jit : B→ Ai)t∈T , φi), i = 1, 2, be internal nsp’s over the C∗-algebra
B such that Â1 and Â2 are full. Let (Hi, πi, ξi) be the internal GNS triples associated to (Ai, φi),
for i = 1, 2. The following are equivalent:

(1) the processes Â1 and Â2 are equivalent according to Definition 8;
(2) there exists an infinite hypernatural N such that, for all t ∈ TN , the t-correlation kernels w1

t , w2
t

relative to A1,A2 respectively satisfy the property w1
t ≈ w2

t (namely,
∥∥w1

t − w2
t
∥∥ ≈ 0).

Proof.

(1)⇒(2) For 0 < k, m ∈ N, let Ckm be the set

{M ∈ ∗N : m ≤ M and ∀t ∈ TM∀a, b ∈ BM
1 (|w1

t (a, b)− w2
t (a, b)| ≤ 1/k)}.

By the Internal Definition Principle, each Ckm is internal. It follows from [9] [Proposi-
tion 1.1] that the family {Ckm}0<k,m∈N has the finite intersection property. By saturation,⋂

Ckm 6= ∅. Any N in the common intersection is an infinite hypernatural with the property
that, for all t ∈ TN and all a, b ∈ BN

1 , w1
t (a, b) ≈ w2

t (a, b). Recalling that the supremum
of an internal set of infinitesimals is itself an infinitesimal, we get that, for all t ∈ TN ,∥∥w1

t − w2
t
∥∥ ≈ 0, as required.

(2)⇒(1) Let N be as in (2) and let n ∈ N be arbitrarily chosen. By [9] [Proposition 1.1] and
by linearity it suffices to prove that

for all t ∈ Tn and all a, b ∈ Bn
1 ŵ1

t (â, b̂) = ŵ2
t (â, b̂).

Let 0 < n ∈ N and let t ∈ Tn; a, b ∈ Bn
1 . We extend them to internal sequences of length

N by letting t′ = (t1, . . . , tn, tn, tn, . . . ), a′ = (a1, . . . , an, 1B, 1B, . . . ),
b′ = (b1, . . . , bn, 1B, 1B, . . . ).

From w1
t (a, b) = w1

t′(a
′, b′) ≈ w2

t′(a
′, b′) = w2

t (a, b) we get immediately that ŵ1
t (â, b̂) =

ŵ2
t (â, b̂).

The content of Theorem 4 is that the nonstandard hull Â of an internal, full nsp A is
determined, up to equivalence, by the internal family of correlation kernels {wt : t ∈ TN}
of A, for some infinite hypernatural N.

When A is an ordinary nsp we write Â for ∗̂A. (The context will prevent any ambigu-
ity.) Notice that if A is indexed by set T, then Â is indexed by ∗T.

We prove that, under the additional assumption of fullness, equivalence of nsp’s is
preserved and reflected by the nonstandard hull construction.

Proposition 20. Let Ai = (Ai, (jit : B → Ai)t∈T , φi), i = 1, 2, be ordinary full nsp’s such that
their nonstandard hulls are also full. Then A1 and A2 are equivalent if and only if Â1 and Â2
are equivalent.
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Proof. Let us assume that A1 and A2 are equivalent. Notice that if u is an internal unitary
operator then û is well-defined and unitary. Moreover equalities are preserved by the
nonstandard hull construction. By Transfer of Definition 8 it is thus straightforward to
prove that Â1 and Â2 are equivalent. Notice that we do not need the fullness property for
this implication.

Regarding the converse implication, for all 0 < n ∈ N and all t ∈ ( ∗T)n, let us write

ŵi
t for ∗̂wi

t, i = 1, 2. Let us assume that Â1 and Â2 are full. By Proposition 17, we have that

ŵ1
t = ŵ2

t . Then, for all 0 < k ∈ N,

∀t ∈ ( ∗T)n(
∥∥∥ ∗w1

t − ∗w2
t

∥∥∥ < 1/k).

By Transfer we get
∀t ∈ Tn(w1

t = w2
t ).

Eventually, by applying Proposition 17 again, we get that A1 and A2 are equiva-
lent.

Next we provide a nonstandard version of the Reconstruction Theorem ([9] [Theorem
1.3]). Let B be an internal C∗-algebra and T an internal set. We let T =

⋃
0<N∈ ∗N TN .

If t ∈ T we let
◦
Kt be the sequence obtained by removing the K-th component from the

tuple t. Same meaning for
◦
Kb, when b ∈ BN and 1 ≤ K ≤ N. Furthermore, we let

•
Kb = (b1, . . . , bK−2, bKbK−1, bK+1, . . . , bN). If t, s ∈ T, we let tus be the time sequence
obtained by inserting the component u ∈ T between t and s. We denote by `(t) the length
of the sequence t and by 1 the element (1, . . . , 1) in BN , for some N ∈ ∗N (the context will
prevent any ambiguity).

Let 1 < N ∈ ∗N. Inspired by the notion of t-correlation kernel previously introduced
(see also [9] [Proposition 1.2]), we say that an internal family {wt : BN× BN → ∗C : t ∈ TN}
of maps is an N-system of correlation kernels over B if it satisfies the following properties
(when not specified, quantifications refer to internal objects):

CK0N for all t ∈ TN and all a1, a2, b1, b2 ∈ Fin(BN) it holds that

– wt(a1, a2) ∈ Fin( ∗C) and
– if a1 ≈ a2 and b1 ≈ b2 then wt(a1, b1) ≈ wt(a2, b2);

CK1N for all t1, t2 ∈ T, all u, v ∈ T, all norm-finite a1, a2, b1, b2 such that `(a1) = `(b1) =
`(t1), `(a2) = `(b2) = `(t2) and `(a1a2) = N − 1 it holds that

wt1t2u(a1a21, b1b21) ≈ wt1vt2(a11a2, b11b2);

CK2N for all t ∈ TN , all M ∈ ∗N and all internal sequences {cr}r≤M ⊆ Fin( ∗C) and
{br}r≤M ⊆ Fin(BN) it holds that

Im(∑
i,j

cicjwt(bi, bj)) ≈ 0 and Re(∑
i,j

cicjwt(bi, bj)) & 0.

CK3N for all t ∈ TN

wt(1, 1) ≈ 1;

CK4N for all t1, t2 ∈ T such that `(t1t2) = N − 1 and all u ∈ T it holds that

– for all b ∈ Fin(BN), all norm-finite a1, a2 such that `(a1) = `(t1), `(a2) =
`(t2) and `(a1a2) = N − 1, the map

a 7→ wt1ut2(a1aa2, b)
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is approximately conjugate linear, namely: For all r ∈ Fin( ∗C) and all
a, b ∈ Fin(B)

wt1ut2(a1(ra + b)a2, b) ≈ r̄wt1ut2(a1aa2, b) + wt1ut2(a1ba2, b);

– for all a ∈ Fin(BN), all norm-finite b1, b2 such that `(b1) = `(t1), `(b2) =
`(t2) and `(b1b2) = N − 1, the map

b 7→ wt1ut2(a, b1bb2)

is approximately linear (see above);

CK5N for all t ∈ TN and all norm-finite a, b ∈ BN−1, the map wa,b
t : B× B→ ∗C defined

by (a, b) 7→ wt(aa, bb) approximately factors through the map ϕ : (a, b) 7→ a∗b,
namely: There exists some internal map ψ : B→ ∗C, such that, for all a, b ∈ Fin(B),
wa,b

t (a, b) ≈ ψ(ϕ(a, b));
CK6N for all t ∈ TN , all u ∈ T, all 1 < K ≤ N and all a, b ∈ Fin(BN) if tK−1 = tK then

wt(a, b) ≈ w
(
◦
Kt)u

((
•
Ka)1, (

•
Kb)1).

A 1-system of correlation kernels is a family {wt : T ∈ T} of maps that satisfies CK01
and CK21–CK51.

Notice that the definition of a system of correlation kernels given in [9], strict equalities
are required. We do not impose that condition because we claim that an N-system, for
some N ∈ ∗N \N, suffices to reconstruct an unique ordinary nsp. We prove that after a
preliminary construction.

Let 0 < N ∈ ∗N and let {wt : T ∈ TN+1} be an internal (N + 1)-system of correlation
kernels over an internal C∗-algebra B. We define an N-system {wt : T ∈ TN} as follows:
we fix z ∈ T and, for each t ∈ TN , we let

wt(a, b) = wtz(a1, b1) for all a, b ∈ BN .

By CK1N+1, a different choice of z ∈ T amounts to an infinitesimal perturbation in the
value of wt(a, b).

The verification that {wt : T ∈ TN} satisfies properties CK0N – CK6N is straightfor-
ward. Thus we can repeat the construction and, by internal induction, we get a family WK
of K-systems of correlation kernels, one for each 1 ≤ K ≤ N + 1. Let W =

⋃
0<n∈N Wn.

We notice that, for all n ∈ N, B̂n = (B̂)n holds. By CK0n, 0 < n ∈ N, the map

ŵt : (B̂)n × (B̂)n → C

(â, b̂) 7→ ◦wt(a, b)

is well-defined for all wt ∈W. We let Ŵ = {ŵt : wt ∈W}.
The following holds:

Theorem 5. Let N be an infinite hypernatural, T an internal set and let {wt : T ∈ TN+1} be an
internal (N + 1)-system of correlation kernels over some internal C∗-algebra B.There exists an
ordinary nsp A = (A, (jt : B̂ → A)t∈T , φ) whose family of correlation kernels is the family Ŵ
defined above. Moreover such A is unique up to equivalence.

Proof. We verify that the family Ŵ is a projective system of correlation kernels over B̂
indexed by T, according to [9]. Equalities up to an infinitesimal turn into equalities when
taking the nonstandard part. First of all we notice that Ŵ satisfies property CK1 as a
consequence of the validity of CK1n, 0 < n ∈ N. Concerning CK2, it suffices to keep in
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mind that the standard part of the sum of finitely many finite addends is the sum of their
standard parts.

The only property whose verification requires a little bit of work is CK5. We fix 0 < n ∈
N, t ∈ Tn+1 and â, b̂ ∈ B̂n. We notice that the map wâ,b̂

t : B̂× B̂ → C, (â, b̂) 7→ ŵt(â â, b̂ b̂)
is well-defined by CK0n+1. We prove that it factors through the map ϕ̂ : (â, b̂) 7→ â∗ b̂. Let
ψ be as in CK5n+1 relative to t, a, b. From wa,b

t (a, b) ≈ ψ(ϕ(a, b)) and from CK0n+1, we
get ψ[Fin(B)] ⊆ Fin(B) and ψ(c) ≈ ψ(d) whenever c ≈ d. Hence ψ̂ : B̂→ C, b̂ 7→◦ ψ(b) is
well-defined.

Let â, b̂ ∈ B̂. We have:

wâ,b̂
t (â, b̂ ) = ◦wt(aa, bb) = ◦ψ(a∗b) = ψ̂(â∗b) = ψ̂(ϕ̂(â, b̂)).

By arbitrariness of â, b̂, we get wâ,b̂
t = ψ̂ϕ̂.

The remaining properties are easily verified.
Finally, we get the existence of an ordinary nspAwith the required properties from [9]

[Theorem 1.3]. Notice also that the proof of the latter theorem ensures that A is full.

Let N be an infinite hypernatural. As already anticipated, the content of Theorem 5 is
that an N-system of correlation kernels contains enough information to uniquely recon-
struct, up to equivalence, an ordinary nsp whose family of correlation kernels is determined
by the N-system.

Let Â be the nonstandard hull of some internal nsp A. Admittedly, it is a limitation
that the time set T of Â is an internal set. This rules out many familiar sets. To overcome
such restriction, we may suitably choose T.

One possibility is to fix some infinite hypernatural M and to let T = {K/M : 0 ≤
K ≤ M}. Then, for all t ∈ [0, 1], we let t+ = min{0 ≤ K ≤ M : T ≤ K/M} and we define
jt : B̂→ Â as follows: jt(b̂ ) = ĵt+(b). In this way, the time set of Â is the real unit interval.
We may also make the additional assumption that the internal process A is S-continuous,
namely that, for all s, t ∈ T, s ≈ t implies js ≈ jt. Under S-continuity, it follows that, for all
s, t ∈ T and all b, c ∈ Fin(B), if s ≈ t and b ≈ c then jt(b) ≈ js(b) ≈ js(c).

Another possibility is to fix the factorial M of some infinite hypernatural number
and to define T as above. Thus the set ◦T = {◦t : T ∈ T} contains all the rationals in
the unit interval. Under the assumption of S-continuity, the map j◦t : B̂ → Â defined by
j◦t(b̂) = ĵt(b) is a well-defined C∗-algebra homomorphism (see above). Therefore we get
an ordinary nsp (Â, ( ĵt : B̂ → Â)t∈◦T , φ̂ ) whose time set forms a dense subset of the real
unit interval.

Alternatively, we may let T = {K ∈ ∗A : K ≤ M}, for some infinite hypernatural M
or T = ∗N, and consider the ordinary nsp (Â, ( ĵt)t∈N, φ̂ ).

Next we discuss the Markov property relative to a nsp and we formulate sufficient
conditions for recovering an ordinary Markov nsp from an internal one.

We begin by recalling the definition of conditional expectation in the noncommutative
framework. Let A be an ordinary C∗-algebra and let A0 be a C∗-subalgebra of A. A mapping
E : A→ A0 is called a conditional expectation if

(1) E is a linear idempotent map onto A0;
(2) ‖E‖ = 1.

It is straightforward to check that E(1) = 1 holds for a conditional expectation E.
Moreover, the following hold (see [20]):

(a) E(bac) = bE(a)c, for all a ∈ A and all b, c ∈ A0;
(b) E(a∗) = E(a)∗, for all a ∈ A;
(c) E is positive.

Let T be a linearly ordered set. We say that a nsp A = (A, (jt : B → A)t∈T , φ) is
adapted if, for all s < t in T, js(B) is a C∗-subalgebra of jt(B). By adopting this terminol-
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ogy, the content of Proposition 18 is that fullness of an adapted nsp is preserved by the
nonstandard hull construction.

Definition 9. Let T be a linearly ordered set. The adapted process A = (A, (jt : B→ A)t∈T , φ)
is a Markov process with conditional expectations if there exists a family E = {Et : A→ jt(B)}t∈T
of conditional expectations such that, for all s, t ∈ T, the following hold:

E2 φ = φ|jt(B) ◦ Et;
E3 EsEt = Emin(s,t).

Definition 9 is a restatement in the current setting of the definition of Markov nsp with
conditional expectations in [9] [§2.2]. By property (a) above it follows immediately that
property E1 in [9] [§2.2] holds and that, for all s ∈ T, Es|js(B) = idjs(B).

For all s ∈ T let A[s be the C∗-algebra generated by
⋃

s≤t jt(B). It is straightforward to
check that the Markov property

M′ Es(A[s) = js(B) for all s ∈ T,

introduced in [9] [§2.2] does hold for a Markov process as in Definition 9. Notice also that,
for t ≤ s, condition E3 always holds.

Let A be as in Definition 9. By letting Es,t = Es|jt(B) for s ≤ t in T, we get a family
F = {Es,t : jt(B)→ js(B) : s, t ∈ T and s ≤ t} of conditional expectations satisfying

(1) Et,t = idjt(B) for all t ∈ T;
(2) Es,tEt,u = Es,u for all s ≤ t ≤ u in T

as well as the Markov property M in [9]. It follows that the statement of [9] [Theorem 2.1]
(with the exception of the normality property) and subsequent results do hold for A and F .
In particular the quantum regression theorem [9] [Corollary 2.2.1] does hold.

So far for the ordinary setting. Next we fix the factorial N of some infinite hypernatural
number and we let T = {K/N : K ∈ ∗N and 0 ≤ K ≤ N}. Let A = (A, (jt : B→ A)t∈T , φ)
be an internal S-continuous adapted Markov process with an internal family E = {Et :
A→ jt(B)}t∈T of conditional expectations.

We have previously remarked that the ordinary nsp Â = (Â, ( ĵt : B̂ → Â )t∈ ◦T , φ̂ )

is well-defined and that Q ∩ [0, 1] ⊆ ◦T ⊆ [0, 1]. Furthermore, ĵt(B) = ĵt(B̂) holds for all

t ∈ T and the map Êt : Â → ĵt(B̂) given by Êt(â) = Êt(a) is a well-defined conditional
expectation. Under the assumption that the family E is S-continuous, namely Es ≈ Et

whenever s ≈ t, it follows that the map Ê◦t : Â → ĵt(B̂) defined by Ê◦t(â) = Êt(a) is
well-defined. Moreover, the family {Ês : s ∈ ◦T} satisfies E2 and E3 of Definition 9 and the
Markov property M′. Hence Â is an ordinary adapted noncommutative Markov process
with conditional expectations. It seems that the adaptedness property of the internal
processA is needed in order to get the above conclusion, due to the already mentioned fact
that the nonstandard hull construction, in general, does not behave well with respect to the
operation of forming the C∗-algebra generated by family of subalgebras of a given algebra.

7. Nonstandard Fock Spaces

In most cases nonstandard universes are used to derive results about the standard
universe. Some authors go beyond that. For instance, in [10], the author contends that “a
nonstandard universe has physical significance in its own right" and, more specifically,
“the states and observables of the nonstandard Fock space have physical significance”.
Admittedly, the author does not elaborate much on his statements in quotations.

In this short section we derive from standard results that each element of the non-
standard extension of the free Fock space is infinitely close to some “simple” element of a
nonstandard free toy Fock space, in a sense that we make precise in the following.
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Let H be a complex Hilbert space. We let

F(H) =
⊕
n∈N

H⊗n,

where, for 0 < n, N⊗n is the n-fold tensor product of H and H⊗0 is a one-dimensional space
which is often denoted by CΩ. Here Ω is a distinguished unit vector, called the vacuum
vector. Recall that the elements of F(H) are of the form (hn)n∈N, with hn ∈ H⊗n for all
n ∈ N and ∑n∈N‖hn‖2

n < ∞, where ‖ ‖n is the norm on H⊗n. The space F(H) is equipped
with the norm ‖ ‖ defined by

‖(hn)n∈N‖ = ( ∑
n∈N
‖hn‖2

n)
1
2 .

In the following by the free Fock space we mean the space F(L2(R≥0,C)). We denote
the latter by Φ. Regarding the physical import of Φ, we just say that it describes the
quantum states of a number of identical particles from the single particle Hilbert space
L2(R≥0,C).

We write an element f ∈ Φ as f0Ω+∑0<n∈N fn, where f0 ∈ C; Ω is the vacuum vector
and, for all 0 < n ∈ N, fn ∈ L2(R≥0,C)⊗n.

Next we introduce the free toy Fock space. For each i ∈ N, let C2
i be an isomorphic copy

of C2 and let {Ωi = (1, 0)>, Xi = (0, 1)>} be the standard basis of C2
i . (Here and in the

following we write vectors as column vectors.) The free toy Fock space TΦ is defined as

CΩ⊕
⊕
n≥1

⊕
i1 6=... 6=in

(CXi1 ⊗ · · · ⊗CXin),

where Ω is the identification of the vacuum vectors Ωi. As pointed out in [21], there is a one-
to-one correspondence between the orthonormal basis of TΦ which is naturally associated
to the construction of the latter and the set of all finite sequences (i1, . . . , in) ∈ Nn, n ∈ N,
and i1 6= i2 6= . . . 6= in.

It can be shown quite easily that TΦ can be embedded into Φ (see [21] [§5]). More
interestingly for us, in [21] [§6] the authors construct a sequence of toy Fock spaces that
approximate Φ. We recast the authors’ main result in the framework of a nonstandard
universe. First of all we notice that, by transfer, the nonstandard extension ∗Φ of Φ is the
internal norm closure of the internal direct sum of the Hilbert spaces ( ∗L2(R≥0,C))⊗N ,
N ∈ ∗N.

Let K ∈ ∗N \N and let 0 = t0 < t1 < · · · < tN < . . . , N ∈ ∗N, be an internal partition
of ∗R≥0 such that, for all N ∈ ∗N, tN+1 − tN = 1/K. For each N ∈ ∗N let XN be the
normalized characteristic function of the interval [tN , tN+1), namely the function

1[tN ,tN+1)√
tN+1 − tN

.

We form the internal toy Fock space

TiΦ = ∗CΩ⊕
⊕

∗N3N≥1

⊕
i1 6=... 6=iN

( ∗CXi1 ⊗ · · · ⊗
∗CXiN ),

where the innermost direct sum is intended to range over all internal N-tuples (i1, i2, . . . , iN)
of hypernaturals such that i1 6= i2 6= . . . 6= iN .

Let P : ∗Φ → ∗Φ be the internal orthogonal projection onto TiΦ. We apply [21]
[Theorem 1(1)] to the sequence of partitions (Sn)0<n∈N, where Sn has constant step 1/n.
By Transfer and by the nonstandard characterization of convergence of a sequence we get
that P( f ) ≈ f , for all f ∈ ∗Φ. It follows that, up to an infinitesimal displacement, we can
regard each f ∈ ∗Φ as a hyperfinite (hence: A formally finite) sum of pairwise orthogonal
elements, each belonging to some of the direct summands that occur in the definition of TiΦ.
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Moreover, since the supremum of an internal set of infinitesimals is itself an infinitesimal,
we also get P ≈ idΦ∗ . Hence, by passing to nonstandard hulls and by writing Φ̂ for ∗̂Φ
as is usual, the map P̂ : Φ̂ → Φ̂ defined by f̂ 7→ P̂( f̂ ), for f ∈ Fin( ∗Φ), is just idΦ̂. As a
consequence we get that Φ̂ = T̂iΦ. Notice that the latter equality provides an equivalent
definition of Φ̂. In particular, every element of Φ̂ can be lifted to some hyperfinite sum of
the form described above.

By similar arguments, and in light of [21] [Theorem 1(2)], we can approximate up to
an infinitesimal displacement the creation and the annihilation operator on ∗Φ by means
of hyperfinite sums involving the discrete counterparts of those operators defined on TiΦ.
See [21] for details.
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