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Abstract: Indoor environment modeling has become a relevant topic in several applications fields1

including Augmented, Virtual, and Extended Reality. With the digital transformation, many2

industries have investigated the possibility to generate detailed models of an indoor environment3

allowing the viewers to navigate through it, and mapping surfaces so as to insert virtual elements4

overlaid to the real scene. The scope of the paper is twofold. We first review the existing state-5

of-the-art (SoA) of learning-based methods for 3D scene reconstruction based on Structure From6

Motion (SFM) that predict depth maps and camera poses from a video stream. We then present7

an extensive evaluation using a recent SoA network, with particular attention to the capability of8

generalizing on new unseen data of indoor environments. The evaluation was conducted based9

using as a baseline metric the Absolute relative (AbsRel) measure on the depth map prediction.10

Keywords: Computer Vision; 3D Reconstruction; Deep Learning; Indoor; Digital Twin; Point11

Cloud.12

1. Introduction13

The ability of sensing the 3D space using single cameras is a widely in-14

vestigated topic in image processing and computer vision. Several solutions15

have been developed over the years to ensure a reliable reconstruction of the16

observed environment, adopting both traditional image processing [1][2][3], as17

well as more up-to-date learning approaches [9][34]. In fact, 3D sensing and18

reconstruction is a necessary building block behind a number of technologies19

in industry, including robotics, landslide mapping, gaming, mixed reality, ar-20

chaeology, medicine, to name a few [4][5][6]. Despite the many efforts spent21

by the research community in providing progressively more accurate models22

capable and sensing and reconstructing a 3D environment, a number of chal-23

lenges remains still open. In fact, the acquisition of 3D information can serve24

multiple purposes, and can be used in real-time in a multi-sensorial context, as25

seen in robots or, more in general, autonomous systems. This often implies that26

the visual information is only one among the multiple inputs to a localization27

and navigation system. In such conditions, the potential errors emerging from in-28

accuracies and/or wrong reconstruction of portions of the environment are often29

compensated and mitigated thanks to the presence of additional sensing devices.30

Vice versa, in a more restrictive context, in which multi-modal equipment is not a31

viable option, 3D reconstruction is performed using the visual information solely,32

thus requiring high resolution images for better feature detection, and accurate33
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camera calibration with distortion correction in order to generate the 3D model,34

consisting of a sparse or dense point cloud.35

In this paper, we present an in-depth evaluation of a robust state-of-the-36

art method for depth estimation, which is used as the core element for 3D37

reconstruction applications. In particular, we focus our research on the indoor38

scenario, in which we expect the user to collect data using an arbitrary camera,39

and following subjective criteria. In other words, the acquisition is not conducted40

following a rigorous path in scanning the environment, thus not imposing any41

constraint on the user’s side. Such conditions are indeed very common, and42

cover a wide spectrum of application scenarios, often involving on-the-field43

workers, which rely on such augmented/extended reality tools for inspection44

and maintenance operations.45

The paper is structured as follows: in Section 2 we present some recent46

relevant related work; Section 3 discusses the motivation of this work and the47

main contributions; in Section 4 we focus on the validation pipeline we have48

envisaged, describing the methodology and the metrics used. In Section 5 the49

achieved results are presented and discussed. Final remarks and conclusions are50

drawn in Section 6.51

2. Related Work52

In the following paragraphs, we report the most relevant works presented53

in the SoA, starting from the traditional Structure from Motion algorithm and54

surveying the most recent developments based on deep-learning. Structure55

from Motion (SfM) [28] allows the estimation of the three-dimensional structure56

of objects and environments based on the motion parallax that describes the57

appearance changes of an object when the observer’s viewpoint changes. By58

doing so, it is possible to infer the 3D structure of a target, and retrieve the59

distance from the camera to generate a 3D representation. Another basic principle60

of SfM is the stereo photogrammetry triangulation used to calculate the relative61

position of points from stereo pairs. More in general, SfM is required to solve62

three main problems. Firstly (i) it is required to find correspondences between63

the images and measure the distances between the features extracted with respect64

the two image planes. Typically, SIFT [32] features are used in this phase due65

to their robustness against change in scale, large variation of view point and66

challenging conditions such as different illumination and partial occlusions; as a67

second step, (ii) the camera position associated to each of the images processed68

is computed, via bundle adjustment (BA), to calculate and optimize 3D structure,69

camera pose and intrinsic calibration; lastly, (iii) generate a 3D dense point cloud70

by using the camera parameters to back project the points computed before on71

the 3D space, also called multi view stereo matching.72

Traditional 3D reconstruction algorithms require to perform heavy opera-73

tions and despite the proven effectiveness of these methods, they rely on high74

quality images as input. This may introduce some or limitations when it comes75

to process complex geometries, occlusions and low-texture areas. Such issues76

have been partially tackled replacing traditional feature and geometry-based77

approaches with deep learning. In particular, some stages of the traditional 3D78

reconstruction pipeline have been rethought following a deep learning-based for-79

mulation. To this aim, we present some of the methods explored for the purpose80
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of our research, which implement the principles of SfM using Convolutional81

Neural Networks (CNNs). One of the most relevant works exploiting neural net-82

works for depth estimation is DispNet [7]. DispNet is used for single view depth83

prediction. It is composed by an initial contracting stage, made of convolutional84

layers, followed by up sampling to perform deconvolutions, convolutions and85

computation of the loss function. Features from the contracting part are sent to86

the corresponding layer in the expanding portion. The network operates with a87

traditional encoder-decoder architecture with skip connections and multi-scale88

side prediction. The DispNet architecture is reported for convenience in Figure 1.89

Figure 1. Illustration of the architecture of the Disparity estimation Network (DispNet)
with encoder-decoder layout, and Pose estimation Network. Additional details in terms
of the size of each layer can be found in the original manuscript.

Many solutions have been developed employing Convolutional Neural90

Networks (CNNs) for the task of estimating the depth information. Some of91

them are used for stereo view synthesis such as DeepStereo [8], which learns92

how to generate new views from single images in order to recreate a synthetic93

stereoscopic system where the underlying geometry is represented by quantized94

depth plane. Similarly, Deep3D [9] implements CNNs to convert 2D video into95

3D sequences such as Anaglyph for 3D movie or Side-by-Side view for Virtual96

Reality (VR) applications. In this case the scene geometry is represented by97

probabilistic disparity maps. As well as Deep3D, other methods are following the98

recent research in learning three-dimensional structure from single view. Some99

of them introduced supervision signals such as in the work proposed by Garg100

et al. [33]. The authors propose a supervision consisting of a calibrated stereo101

twin for single-view depth estimation. The recent trends in depth estimation102

aim for unsupervised or self-supervised learning from video sequences. These103

methods work well in the task of inferring the scene geometry and ego-motion104

(similarly to SfM), but in addition they show great potential for other tasks such105

as segmentation, object motion mask prediction, tracking and other levels of106

semantics (please refer to [18][19][20][21][22][23]).107

Among the unsupervised/self-supervised methods, three important re-108

searches have been conducted by Vijayanarasimhan et al. [34], Zhou et al. [10]109

and Bian et al. [11]. These approaches implement two sub networks: the first one110

focuses on single view depth prediction, and the second one is used for camera111

pose estimation in support to the depth network, so as to replicate a pseudo112

stereo vision setting. These implementations mostly differ on the loss function,113

which is applied as supervision signal. In terms of performances the methods114

achieve state-of-the-art scores on the KITTI [31] and Cityscapes [35] datasets.115
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Ref. Method Indoor Dataset Note
[34] SfM Net 7 KITTI[31] & Cityscapes[35] O
[10] SfM Learner 7 KITTI[31] & Cityscapes[35] O
[11] SC-SfM Learner 7 KITTI[31] & Cityscapes[35] O
[12] Indoor SC-SfM Learner 3 NYUv2[27] R

Table 1: Methods from literature for depth estimation from video sequences. In
the column Note symbols (O) and (R) refer to Original and Rectified Training
data.

3. Motivation and Contribution116

Despite the proven effectiveness in street mapping contexts, the previous117

methods do not perform well when it comes to infer the 3D structure of indoor118

environments, and also by training the network with indoor RGB-D datasets, it119

does not allow to achieve satisfactory results, as also mentioned in [12]. Indeed,120

DispNet aims to learn the disparity between frames and due to the nature of hand-121

recorded sequences, typical of indoor data collection, the spatial relationship122

between adjacent frames might be of pure rotation, leading to a disparity equal123

to zero. More in detail, it has been demonstrated that the estimation of the depth124

map is strictly related to a dominance of translation with respect to rotations125

in the video sequences acquisition. In fact, previous implementations have126

been tested on datasets like KITTI [31], where the camera configuration and the127

forward motion did not give evidence to this issue. A research conducted by128

Bian et al. [12] has proven the existence of such limitation of the DispNet and129

proposes a weak rectification algorithm to pre-process indoor datasets before130

training the network. The authors have applied the rectification on the NUYv2131

[27][25] dataset used to train the network and tested the generalization capability132

on the 7Scene dataset [17]. Since the generalization was evaluated on one dataset133

only, we aim to provide additional benchmarks evaluating other RGB-D datasets134

and comment on the network generalization capability.135

In summary the main contributions of the paper are:136

• We provide additional benchmarks for the network proposed by Bian et137

al. in order to allow a better understanding on the network generalization138

performances.139

• We analyze the network generalization capability in connection with the140

statistics of the scene, from which the depth has to be estimated. We com-141

pute the depth standard deviation from depth ground truth to describe the142

amount of depth information that the network has to estimate, and then143

discuss how the generalization is related to this parameter.144

4. Materials and Methods145

As anticipated in the previous section, the results and evaluation that are146

presented in the following paragraphs are based on the work by Bian et al. [11]147

[12]. Here, the network model is pre-trained on ImageNet [13] using ResNet-18148

[14] in substitution to the depth and pose sub networks. Next, a fine-tuning149

on the rectified NYUv2 (Figure 3) [27][25] dataset is applied. Differently from150

the other architectures, the framework has been developed to overcome the151

scale ambiguity in [10], but it preserves the capability to test the depth and pose152
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Figure 2. Illustration of the architecture used for the experiments, where Ia, Ib are the
input RGB images, Da, Db the corresponding estimated depth maps, and Pab is the
relative camera position between Ia and Ib.

networks independently. We run our first tests on the depth map prediction153

on various RGB-D datasets of indoor environments (see Table 2) achieving154

results comparable to the ground truth (GT) except for a scale factor that can be155

calculated by normalizing the depth map with its median pixel value. The tests156

are conducted using the pre-trained model publicly available on the authors’157

GitHub repository [26]. We feed the unseen datasets in input to the model and158

retrieve the predicted disparity maps. For the evaluation, we adopt the Absolute159

Relative difference used in literature which is computed as follow:160

1
|V| ∑

p∈V

|d(p)− d∗(p)|
d∗(p)

(1)

where V denotes the set of valid depth pixels, d(p) and d∗(p) are the depth161

pixel value of the predicted depth map D and the depth ground truth D∗, respec-162

tively. As mentioned before, the predictions are at different scale with respect163

to the ground truth. Scaling is then applied via the scaling factor s computed as164

follows, where med{} refers to the median value:165

s =
medp∈V{D∗}

med{D} (2)

Note that, unlike the prediction, the ground truth exhibits some pixels equal166

to zero or one due to reflective surfaces or distances out of the sensor range. Such167

non-valid pixels are discarded in the computation above.168

4.1. Dataset169

The need of virtually reconstructing environments for autonomous naviga-170

tion and/or extended reality applications has increased the availability of indoor171

RGB-D data to train more and more data-hungry networks; however, the amount172

of data is still limited to few common environments. In this section we present a173

brief overview of the datasets used in our experiments. We tested the network174

performance on four different datasets containing sequences from several indoor175

environments. In particular, for the testing purposes we selected the sequences176

freiburg_360 and freiburg_pioneer from RGB-D TUM Dataset [24], all the sequences177

from RGB-D 7 Scene [17], the RGB-D Scene dataset from Washington RGB-D178
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Figure 3. NYU dataset [25]

Object Dataset [36] and the SUN RGB-D Dataset [37]. Details about the number179

of samples and resolution are reported in Table 2.180

• RGB-D TUM Dataset: the sequence freiburg1_360 contains a 360 degree181

acquisition in a typical office environment; the freiburg_pioneer sequence182

shows a quite open indoor environment captured by a robot with depth183

sensor attached on top of it (Figure 4). The dataset is provided with depth184

ground truth acquired by the Kinect sensor, and camera pose ground truth185

as rotation and translation are acquired with an external motion capture186

system, it is typically used for SLAM systems. For additional details we187

refer to the dataset website[15] and to the original paper[24]. Among the188

available sequences we decided to choose two of them (freiburg1_360 and189

freiburg_pioneer) since they represent distinct environments with interesting190

characteristics useful to test the generalization of the network. In particular,191

in freiburg_360 there are many complex geometry defined by the office192

furniture; freiburg_pioneer is instead characterized by wide spaces, usually193

implying more homogeneous depth maps but larger depth range.

Figure 4. RGB-D TUM Dataset, frame taken from the two sequences.
194

• RGB-D Microsoft Dataset: this dataset [17] consists in sequences of tracked195

RGB-D frames of various indoor environments, and it is provided with the196

corresponding depth ground truth (Figure 5). This dataset is the one used197
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by the authors in [12] to test the generalization capability of the network.198

Accordingly, we decided to re-run the tests as well, to ensure the replicability199

of the paper results.

Figure 5. 7 Scene dataset [17]
200

• Washington RGB-D Object Dataset: the dataset [36] was created with the201

purpose of providing structure data of real objects. Aside the isolated objects,202

the dataset provides 22 annotated sequences of various indoor environment203

with depth ground truth. Also in this case, RGB-D data are collected using204

Micorsoft Kinect using aligned 640x480 RGB and depth images (Figure 6).

Figure 6. Washington RGB-D Object Dataset [36]
205

• SUN RGB-D Dataset: the dataset [37] is a collection of several common206

indoor environments from different datasets; it contains RGB-D images from207

NYUv2 [27], Berkeley B3DO [38] and SUN3D [39]. The dataset has in total208

10335 RGB-D images. In order to make the experiments comparable, we209

have selected only the samples acquired using Kinect (Figure 7).

Figure 7. SUN RGB-D Dataset [37]
210
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As reported above, in all selected datasets, the RGB-D data is acquired with211

Microsoft Kinect version 1. The device is equipped with an RGB camera and212

a structured light sensor working on the near infrared light spectrum, where a213

known infrared pattern is projected onto the scene and the depth is computed214

after distortion correction. For additional information about the sensor and the215

related performances, please refer to the study by Wasenmüller et al. [40]. In216

terms of accuracy, the sensor exhibits an exponentially increasing offset going217

from 10mm at 0.5m, of up to 40mm at distance of 1.8m. Although the perfor-218

mances of the sensor are not as accurate as other more recent devices made219

available on the market, most benchmark datasets in the literature still have the220

Kinect depth map as ground truth.221

Name #Images Img. Size Ref.
freiburg_360 (TUM RGB-D) 756 640x480 [24]

freiburg_pioneer (TUM RGB-D) 1225 640x480 [24]
7Scene 29000 640x480 [17]

Washington 11440 640x480 [36]
SUN 10335 640x480 [37]

Table 2: Details of the three dataset used in the testing phase.

RGB GT Prediction

Whiteboard

Kitchen

Figure 8. Example of depth map prediction with different depth standard deviation.

5. Results222

In this section we present the results we obtained in our simulations. Since223

the author of [12] already compared the network performances with previous224

state-of-the-art unsupervised methods, and in particular with [11] and [41] show-225

ing an improvement in terms of Absolute Relative error after training data226

rectification, we focus on enriching the benchmark by testing the network on227

different unseen data. We evaluate the datasets described in the previous section228

by feeding frame sequences to the network and computing the Absolute Relative229

difference (AbsRel) for each prediction-ground truth pair every 5 frames. The230

results are reported in Table 3. We notice that the network generalization perfor-231

mance highly depends on the images depth range that has to be estimated. As232

an example, environments containing various structural features are more likely233

to result in a higher error, and frames depicting an homogeneous scenario with234

lower depth variation result in a lower error.235
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Scenes AbsRel StdDev (σ2)
freiburg_360 (TUM RGB-D) [24] 0.16 5056.86

freiburg_pioneer (TUM RGB-D)[24] 0.28 11370.31
Chess (7Scene) [17] 0.19 5800.00
Fire (7Scene) [17] 0.15 4418.00

Office (7Scene) [17] 0.16 4438.00
Pumpkin (7Scene) [17] 0.13 3435.00

RedKitchen (7Scene) [17] 0.20 5700.00
Stairs (7Scene) [17] 0.17 5341.00

Washington [36] 0.30 9656.00
B3DO (SUN RGB-D) [37] 0.18 6886.21

Table 3: Single-view depth estimation results on selected Datasets

Figure 9. The plot shows the behaviour of Absolute Relative error (AbsRel) and Depth
Standard Deviation (Std) over the B3DO sequence from SUN RGB-D Dataset.

In addition to the Absolute Relative error, we then analysed the Standard236

Deviation (σ2) of depth ground truth images, which gives an insight of how237

challenging an environment is from the learning perspective. The depth standard238

deviation shows great potential in understanding the overall structure of the239

environment, thus it can be employed in further improvements of the network240

depth prediction. As for the AbsRel, the tests were performed computing σ2
241

along with the error for each frame pairs every 5 frames. Figure 8 shows an242

example of borderline situations taken from SUN RGB-D [37], where in the243

case of the whiteboard, the measured AbsRel is particularly low, equal to 0.05244

and σ2 = 1416.48, on the other hand, in the kitchen image the depth range is245

larger with σ2 = 20639.78, and the resulting absolute error is equal to 0.48. By246

comparing the two examples we can see that frames with a smaller σ2 consist247

of relatively simple tasks that the network can easily manage; at the same time248

they often turn to be false positives. This situation is frequent because of the249

required normalization procedure, which is applied to the predicted depth in250

order to compare it with the GT. Indeed, for homogeneous surfaces that appear251
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to be orthogonal to the optical axis, the predicted depth map results in an almost252

flat gray level image, leading, after the normalization, to an apparently optimal253

prediction, no matter if the scale is consistent or not along the entire sequence.254

On the other hand, the higher the variation in the depth range, the harder is255

for the network to predict consistent disparity maps. This behaviour is shown256

in the plot reported in Figure 9, where the test are conducted on the B3DO257

sequence from SUN RGB-D. Unlike the other sequences, B3DO is composed258

by random frames from different environment, thus it is a good challenge for259

the generalization capability of the network.. As next step we performed the260

same test on the remaining (Table 2) to find the contexts in which the network261

works well and in which ones it is harder for the network to predict the disparity.262

Figure 10 presents the Absolute Relative error for each considered sequences in263

relation to the depth Standard Deviation both computed as the mean over the264

entire sequence. It is arguable from the plot that the Absolute Relative error is265

directly proportional to the amount of depth information (given by the standard266

deviation) that the network has to estimate. More precisely, it is noticeable that267

for datasets such as 7Scene, SUN RGB-D and the sequence freiburg_360, where268

the space is limited and so the overall depth standard deviation, the network269

tends to remain consistent and more accurate in the prediction, resulting in a270

lower absolute error. On the other hand, the prediction accuracy decreases when271

it comes to process wider and more complex environments as the ones belonging272

to the Washington dataset and the sequence freiburg_pioneer, and this is due to273

the higher variation in the environmental depth as it can be seen in Figure 10.274

6. Conclusions275

The goal of our paper was to test the generalization performance of the276

architecture proposed in [11], providing additional benchmark evaluations. The277

evaluation has been conducted using the Absolute Relative error as a standard278

metric. In addition we aim at providing the reader with some hints to interpret279

the reasons behind some of the results we achieved, so as to draw more detailed280

conclusions. We noticed that the network ability to estimate the structure of an281

indoor environment is related to the amount of information that has to be learnt,282

as it can be evinced from the plots reported above. In particular, the data from283

Washington Dataset shows the worst results and this is mostly due to the larger284

standard deviation on the depth range. We understand that this parameter can285

be considered as a valuable parameter to describe the network generalization286

capability on various environment. According to our experience, we believe the287

employment of the depth standard deviation as a weighting parameter in the288

learning stage is a useful parameter to better stimulate the network in predicting289

consistent disparity maps from large and more complex indoor environments.290

7. Future Works291

We tried to extend the evaluation of DispNet in a diversified set of scenarios,292

with the purpose of testing the depth extraction accuracy in monocular video,293

using (SoA) CNN. It is needless to say how such an approach can be revolutionary294

when deployed in real and unconstrained scenarios, and can be proved to be295

valuable for the companies engaged in the collection of digital twin, as well as296
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Figure 10. Mean Standard Deviation σ2 vs. Mean Absolute Relative error of all datasets.

for the ones involved in Mixed and Augmented reality developments. Our aim297

and recommendation for future studies include:298

• the adoption of other SoA architectures for richer comparisons;299

• the adoption of a novel metric that considers the depth standard deviation300

for performance evaluation and in the training stage;301

• the extension of the study to additional datasets, where the ground truth is302

collected with more up-to-date and accurate depth sensors.303

Abbreviations304

The following abbreviations are used in this manuscript:305

306
SoA State-of-the-art
SfM Structure from Motion
SIFT Scale Invariant Feature Transform
BA Bundle Adjustemnt
CNN Convolutional Neural Network
DispNet Disparity Network
RGB Red, Green, Blue
RGB-D Red, Green, Blue and Depth
GT Ground Truth
AbsRel Absolute Relative error
StdDev Standard Deviation

307
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