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Abstract

Task-oriented dialogue (ToD) systems need to interpret the user’s input to understand

the user’s needs (intent) and corresponding relevant information (slots). This process is

performed by a Natural Language Understanding (NLU) component, which maps the text

utterance into a semantic frame representation, involving two subtasks: intent classifica-

tion (text classification) and slot filling (sequence tagging). Typically, new domains and

languages are regularly added to the system to support more functionalities. Collecting

domain-specific data and performing fine-grained annotation of large amounts of data

every time a new domain and language is introduced can be expensive. Thus, developing

an NLU model that generalizes well across domains and languages with less labeled data

(low-resource) is crucial and remains challenging.

This thesis focuses on investigating transfer learning and data augmentation methods

for low-resource NLU in ToD. Our first contribution is a study of the potential of non-

conversational text as a source for transfer. Most transfer learning approaches assume

labeled conversational data as the source task and adapt the NLU model to the target task.

We show that leveraging similar tasks from non-conversational text improves performance

on target slot filling tasks through multi-task learning in low-resource settings. Second,

we propose a set of lightweight augmentation methods that apply data transformation

on token and sentence levels through slot value substitution and syntactic manipulation.

Despite its simplicity, the performance is comparable to deep learning-based augmentation

models, and it is effective on six languages on NLU tasks. Third, we investigate the

effectiveness of domain adaptive pre-training for zero-shot cross-lingual NLU. In terms of

overall performance, continued pre-training in English is effective across languages. This

result indicates that the domain knowledge learned in English is transferable to other

languages. In addition to that, domain similarity is essential. We show that intermediate
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pre-training data that is more similar – in terms of data distribution – to the target

dataset yields better performance.

Keywords Task-Oriented Dialogue, Natural Language Understanding, Limited Labeled

Data, Slot Filling, Intent Classification
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Chapter 1

Introduction

Building a dialogue system that can engage a real-world conversation with a human

has been one of the ultimate and long-standing goals of Artificial Intelligence (AI) and

Natural Language Processing (NLP). While this goal is challenging, research progress in

dialogue systems has been made throughout the years. One such progress is in the line of

Task-Oriented Dialogue (ToD) systems that aim to assist human users in accomplishing a

specific task. This chapter lays out the context of the study of this thesis, namely Natural

Language Understanding (NLU) or Spoken Language Understanding (SLU)1 in ToD

systems and its challenges, sets up the research objective, and highlights the contributions

and the research roadmap carried out in this thesis.

1.1 Context

A ToD system is an intelligent system that interacts with human users through a conver-

sation (via voice or text) to complete a particular task (Young et al., 2010; hao Su et al.,

2018). Tasks are typically well-constrained and practical functionalities such as booking

a flight, checking the weather in a particular location, playing a song, or setting up an

appointment (Figure 1.1). ToD systems have been around in the research community for

a while (Raux et al., 2005; Bohus and Rudnicky, 2009; Wen et al., 2017) and also attract

1Some literatures refer to NLU as SLU.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Given an input utterance, NLU parses it into a semantic representation that

contains the intention of the user (intent) and relevant information (slots) corresponding

to the intent.

significant interest in the industry, especially since the launch of Siri2, Google Assistant3,

Alexa4, and Cortana5 (McTear, 2020).

It is essential that during its interaction with the user, the ToD system needs to have

the ability to understand what the user wants, decide what action needs to be performed,

and generate a response back to the user. These abilities are typically realized in a pipeline

framework (Young, 2000). There are several components in the pipeline of a ToD system,

namely Natural Language Understanding (NLU), Dialogue Manager (DM), and Natural

Language Generation (NLG). When the input utterance is from speech, an Automatic

Speech Recognition (ASR) component is needed to convert the speech input into text.

The NLU component is responsible for parsing the utterance into a particular semantic

representation. The DM then uses the semantic representation to update the current

state of the dialogue and determine the next action to be carried out, e.g., querying an

external knowledge base, asking for the required information from the user. Finally, given

the next action, the NLG generates the response back to the user. This thesis focuses on

the NLU component of a ToD system.

In the context of ToD systems, NLU deals with parsing a user utterance into a

semantic representation. The representation is often modeled as a semantic frame (Tur

and De Mori, 2011), which captures the intention of the user and relevant information

mentioned in the utterance that corresponds to the intent (Figure 1.1). This process

involves two tasks, namely intent classification and slot filling. For example, given the

2https://www.apple.com/siri/.
3https://assistant.google.com/ .
4https://developer.amazon.com/en-US/alexa .
5https://www.microsoft.com/en-us/cortana .
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utterance “Show me all Delta flights from Milan to New York on Friday“, the intent is

Search Flight and the corresponding slots are “Delta“ (Airline), “Milan“ (Origin),

“New York“(Destination), and “Friday“(Day). These intents and slots are pre-defined

and domain-specific.

1.2 Motivation and Research Problem

(a) ATIS (b) SNIPS

Figure 1.2: Recent performance trend for NLU tasks: intent accuracy and slot F1 on ATIS

and SNIPS datasets when sizeable training data is available for each domain. Charts from

Qin et al. (2021).

Although existing neural network-based approaches (Liu and Lane, 2017; Wang et al.,

2018a; Goo et al., 2018) on NLU have shown substantial progress with state-of-the-art

performance (Figure 1.2) on standard benchmark datasets such as ATIS (Price, 1990)

and SNIPS (Coucke et al., 2018), these approaches are typically trained on large labeled

data6 (data hungry). In addition to that, in terms of language, most studies are defined

on the availability of the training data, which is centered around English datasets such

as ATIS (Price, 1990), MIT corpus (Liu et al., 2013), and SNIPS (Coucke et al., 2018).

With the widespread use of commercial conversational agents such as Google Assis-

tant, Amazon Alexa, Microsoft Cortana, and Apple Siri, these systems are continuously

updated with more functionalities and language coverage to reach a broader audience.

For instance, it is reported in 2018 that Alexa devices already have around 70,000 func-

tionalities7 and support eight languages as of April 20218.

6In the ATIS and SNIPS datasets, the full training data size is 4K and 13K, respectively.
7ZDNet.com. Accessed June 2021
8Summa Linguae. Accessed June 2021
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Typically functionalities in task-oriented dialogue systems are grouped into domains.

While the notion of a domain in general NLP usually refers to text variation in mul-

tiple dimensions such as topics, genre, style, medium, etc., on a given dataset (Plank,

2011; Ramponi and Plank, 2020), the notion of a domain in ToDs is relatively narrower.

In the context of NLU in ToDs, a domain usually defines the required intentions that

need to be extracted from the user utterances so that the system can perform its task

effectively (Tur and De Mori, 2011). Typically a domain is represented by a collec-

tion of predefined intents and slots that define the domain’s target semantic. For ex-

ample, in a flight domain, as we have seen in Figure 1.1, we can have the utterance

“Show me all Delta flights from Milan to New York on Friday“, in which the intent is

Search Flight and the corresponding slots are “Delta“ (Airline), “Milan“ (Origin),

“New York“(Destination), and “Friday“(Day). On another domain, for example, a

restaurant booking domain, we can have the utterance “Find me a Mexican restaurant“

in which the intent is Search Restaurant and the corresponding slot is “Mexican“

(Cuisine).

As domains and languages in the system are expanding, the NLU engine should be

able to adapt and recognize new intent and slots types. The straightforward solution is

achieved through a standard supervised learning by training a separate NLU model with

labeled data from each domain and language pair. However, this solution does not scale

well, as defining the slots and intents types, collecting and annotating a large amount of

domain-specific training data every time a new domain and language is introduced can

be time-consuming. Thus, developing an NLU model that generalizes well across domains

and languages with less labeled data is necessary and remains a challenging problem.

1.3 Research Aim and Scope

In response to the problem description in the previous subsection, this thesis aims to

investigate methods to improve the model performance on NLU tasks in low- resource

scenarios, i.e., limited labeled data on a particular domain or language.

Methods. Building on recent research progress on transfer learning (Pan and Yang,

2010; Ruder, 2019) and data augmentation methods, in this thesis we investigate their

applicability on NLU tasks in ToD systems when limited labeled data is available. Trans-
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fer learning essentially leverages knowledge from a particular source dataset or model to

the target settings. On the other hand, data augmentation aims to produce additional

training data automatically to improve model performance.

In the context of NLP research, the idea of transfer learning has been around for quite

a while. It is prevalent with the ubiquitous use of pre-trained word embeddings such

as Word2Vec(Mikolov et al., 2013), Glove (Pennington et al., 2014), until Elmo (Peters

et al., 2018) and BERT (Devlin et al., 2019) which provides contextual embeddings and

pre-trained models which can be fine-tuned to many NLP tasks. For data augmentation,

although it has been well received in ML research, in particular for computer vision tasks,

it is relatively underexplored in NLP partly due to the discrete representation of the input

space (Feng et al., 2021). Nevertheless, there has been an increasing interest in studying

data augmentation in NLP, from basic operation like swapping and word replacement

(Wang and Yang, 2015; Wei and Zou, 2019b), to the more complex sentence generation

using pre-trained NLG models (Quteineh et al., 2020).

Low-Resource Scenario. In the NLP literature, a low-resource scenario typically de-

pends on a particular assumption of resource availability that is used in the study. Typ-

ically these assumptions fall into several dimensions: the availability of the task-specific

labels, the availability of unlabeled language or domain-specific text, and the availability

of auxiliary data (Hedderich et al., 2021). This thesis investigates low-resource scenarios

where there is a lack of task-specific labeled data in the target domain (or language) for

training the NLU model. Regarding the definition of “how low is low-resource“, different

settings have been used in the context of NLU. Most studies on English NLU (Chen et al.,

2016; Jaech et al., 2016; Hou et al., 2018a; Peng et al., 2020) use a small percentage of

the original training data e.g. 10% to simulate low-resource settings when a new domain

is added to the system. Similarly, recent studies (Hou et al., 2020; Henderson and Vulić,

2021) evaluate their methods on few-shots settings, in which only one or two examples are

available for training (1-shot, 2-shot). While in cross-lingual NLU, where non-English lan-

guages are used, the low-resource scenario can be framed as zero-shot settings (Upadhyay

et al., 2018; Schuster et al., 2019a; van der Goot et al., 2021), in which only a “high-

resource“ language, e.g., English labeled dataset is available for training and evaluation is

performed on several non-English languages. As for this thesis, the low-resource scenario

is achieved by using a small percentage of the original training data or zero-shot setup in
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cross-lingual NLU.

1.4 Contributions

The following items summarize each of the contribution of the work in this thesis. Through-

out the thesis we refer each of the contribution as C1 - C4.

C1. Leveraging Non-Conversational Text As a Source of Transfer.

Transfer learning approaches for low-resource NLU leverage relatively large data in the

source domain to help a task in a target domain through adaptation methods. Most of

these methods assume the availability of labeled domain-specific slot filling datasets on

the source domain. Little effort has been carried out in exploiting cheaper alternatives

on the source side that can be useful, especially when no conversational slot filling is not

available yet (cold start). To this end, we investigate the potential of leveraging non-

conversational data that is labeled with a task similar to slot filling. We show that using

Named Entity Recognition (NER) and Semantic Tagging as auxiliary tasks in a multi-

task learning framework consistently improve model performance on the slot filling task in

low-resource settings. Furthermore, we investigate the benefit of applying data selection

prior to multi-task learning and find that, in our settings, it does not boost performance

further.

C2. Generating Additional Labeled Data via Lightweight Augmentation.

Recent data augmentation approaches for low-resource NLU mostly rely on deep learning

based models. We consider these approaches as heavy weight as we need to train a

separate neural model for augmentation and also typically consist of several stages such

as pre-training, ranking, and filtering of generated data. We propose Lightweight

Augmentation that does not require model training which consists of a set of simple

yet effective text span and sentence level augmentation operations. The augmentations

include meaning-preserving slot value substitution and syntactic manipulation. In terms

of performance, Lightweight Augmentation is competitive with state-of-the-art deep

learning based augmentation models. Lightweight Augmentation is also beneficial

for fine-tuned large pre-trained models such as BERT, ALBERT, and RoBERTa, which

suggests that combining transfer learning and data augmentation is additive to NLU

performance. Furthermore, we also show that Lightweight Augmentation is effective
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for six non-English languages.

C3. Continued Pre-training for Zero-shot Cross Lingual NLU.

Recent studies have shown that adding a second stage of pre-training of a pre-trained

language model can improve performance in certain settings. However, prior studies are

limited to English and mostly on text classification tasks. To this end, we systematically

study the effectiveness of continued domain adaptive pre-training of a massive multilingual

transformer (MMT) model on intermediate English unlabeled spoken language data for

zero-shot cross-lingual tasks in eight languages. In terms of performance, we observe that

continued pre-training is more effective for Latin script languages and slot filling benefits

more from continued pre-training than intent classification. We observe that domain

similarity between the unlabeled data and English fine-tune data is important, and using

different languages between pre-training and fine-tuning can hamper performance.

C4. Survey of Recent Neural Methods for Slot Filling and Intent Classifica-

tion. Since the adoption of neural approaches in NLP, there has been a lot of development

of applying different kinds of neural architectures to SF and IC tasks. We conduct a survey

to give a guided map to existing neural approaches for NLU tasks. Our survey includes

a broad overview of three neural architectures: independent models, which models slot

filling and intent classification tasks separately, joint models which exploits the synergy

of both tasks simultaneously, and transfer learning models that scale NLU models to new

domains.

1.5 Thesis Outline

This thesis consists of six further chapters. Chapter 2 introduces concepts about neural

networks and common neural architectures that are often used in NLP tasks. We describe

aspects of human conversation which illustrate the complexity and challenges of building

dialogue systems. We describe two types of dialogue systems: chat-oriented and task-

oriented dialogue systems and their rule-based and data-driven approaches.

In Chapter 3 we describe in more detail about the NLU task in the context of ToD

systems. The content of this chapter corresponds to the contribution C4 (§1.4), which

includes a literature review on the recent progress of applying neural methods for slot

filling and intent classification tasks, and state of the art approaches for low-resource
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Figure 1.3: Topics for each chapter and its corresponding publications

NLU. We provide a comparison of each approach and conclude by drawing a connection

from existing studies and contributions of this thesis. The content of this chapter is

partially taken from Louvan and Magnini (2020b).

In Chapter 4, our study (Louvan and Magnini, 2019) examines a specific setting in

which no task-oriented dataset is available as auxiliary data. We study the potential

of leveraging a more general source from non-conversational text which has similar task

characteristics with NLU (contribution C1 in §1.4) via multi-task learning (MTL). Fur-

thermore, as a follow up work (Louvan and Magnini, 2020a), we also examine the potential

of performing data selection on the auxiliary data before performing MTL.

In Chapter 5, we turn into a relatively emerging method in in NLP, data augmenta-

tion, and its combination with state of the art transfer learning methods (contribution C2

in §1.4). We propose a set of simple and effective augmentation methods (Lighweight

Augmentation) (Louvan and Magnini, 2020d) to automatically generate additional la-

beled data. We also evaluate the applicability of Lighweight Augmentation on several

domains and non-English languages (Louvan and Magnini, 2020c).

In Chapter 6, motivated by the recent availability of multilingual datasets and progress

on pre-trained multilingual models, we examine the effectiveness of additional pre-training

on intermediate unlabeled spoken language data for zero-shot cross-lingual SLU (contri-

bution C3 in §1.4) on eight languages. We also analyze the important factors to consider

when performing continued pre-training in the context of zero-shot cross-lingual NLU.

Finally, Chapter 7 draws conclusions from the thesis and highlights possible future works.
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Chapter 2

Background

This chapter presents concepts that are used throughout the thesis. Section 2.1 sum-

marizes neural network architectures that are commonly used in data-driven approaches

in NLP. Section 2.2 reviews concepts related to dialogue systems including, aspects in

human conversation and two main categories of dialogue systems: chat-oriented dialogue

and task-oriented dialogue (ToD) systems that include its rule-based and data-driven

approaches. In the context of this thesis, the focus is on ToD systems.

2.1 Neural Networks

In recent years, with the rapid advances of neural network approaches (deep learning),

faster computation with Graphical Processing Unit (GPU), neural based models have

become the default approach to solve many NLP tasks (Manning, 2015). This section

provides a brief overview of several concepts on neural networks used throughout this

thesis, namely Feed-Forward Network, Recurrent Neural Network, and Self-Attention

Network (Transformers).

2.1.1 Feed Forward Network

The feed-forward network (FFN) or often called Multi-Layer Perceptron (MLP) (Rosen-

blatt, 1957) is the simplest building block of a neural network model. It is called feed-
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forward as information flows in one direction. The FFN consists of several layers: input

representation layer, hidden layer, and the output layer. The number of layers is flexible,

and the model is often referred to as a deep model when many layers are used. The input

representation of an FFN is a vector representation of the text input. Nowadays, the

standard representation of the text input (e.g., words) is an embedding that is a dense

vector representation of words. The embeddings can be learned from scratch or can be

pre-trained on large unlabeled data using methods such as Word2Vec (Mikolov et al.,

2011) and Glove (Pennington et al., 2014). The next hidden layer then transforms the

input into another representation (hidden state representation). Finally, the output layer

uses this hidden state representation to compute the final output.

Essentially, transforming the representation in each hidden layer of a FFN is performed

by applying a matrix multiplication and non-linear function to the previous representation

(Figure 2.1). For example, given an input vector x, the next layer has a parameter in

a matrix W1 and a bias vector b1. To compute the hidden state vector representation,

h, we compute h = g(W1x + b1), where g is a non-linear activation function such as

ReLu, tanh. The output layer then takes h to compute the final output vector, z, where

z = g(W2h) + b2. In many cases, z, is used for classification decision and we want to

turn the real valued numbers in z into a probabilistic distribution y of the output classes

via a softmax function. Figure 2.1 describes the standard operation in a FFN.

Figure 2.1: A feed forward neural network. Each unit in each layer is fully connected to

the other units in the subsequent layer.

2.1.2 Recurrent Neural Network

In language processing, an input is typically processed in sequence, e.g., a paragraph is

processed sentence by sentence and word after word in a sentence. In addition to that,
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we need to consider the temporal context information as each word may depend on other

words that come before or after the current word. The use of FFN in NLP has several

shortcomings when used for language processing. FFN uses a fixed-size input which can

be impractical as in language processing the input such, i.e., a sentence can be a variable-

length. FFN also does not naturally capture the temporal context of the sequence as it

represents an input at once in this fixed-size input. Recurrent Neural Network (RNN)

has been used to address these challenges.

The Elman network (Elman, 1990) is one of the simplest examples of a RNN. Similar

to FFN, a RNN processes an input xt multiplied with a parameter matrix and applying a

non-linear activation function to get the hidden state ht which will be used by the output

layer to compute the final output yt. In contrast to FFN, the RNN processes one input

at a time and the hidden state from the previous time step, ht−1 , is incorporated in

computing the hidden state representation in the current time step, ht. The previous

step’s hidden state captures the context and memory from the beginning of the input

sequence. Hence, RNNs can handle variable-length input and capture temporal aspects

in the sequence. Figure 2.2 illustrates the structure of an RNN when processing an input

sequence.

Figure 2.2: An unrolled recurrent neural network when processing an input sequence.

The parameter matrices U,V,W are shared across time steps.

RNN Variants. One known problem with RNNs is the vanishing-gradient problem as the

input sequence gets longer, makes it difficult to capture long-dependencies. More complex

activation unit have been proposed to alleviate this problem such as Gated Recurrent Unit

(GRU) (Cho et al., 2014) and Long Short-Term Memory (LSTM) network (Hochreiter

and Schmidhuber, 1997). The GRU has mechanisms to decide whether the information

from the previous hidden state needs to be included at all in the current time step (reset

gate) and how much information from the previous hidden state needs to be included in
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the current hidden state (update gate). The goal of LSTM is similar to GRU but with

more complex activation units.

RNN building blocks. There have been many variations in composing a neural model

using an RNN as the building block. As in FFN, RNN can be stacked for several layers.

In addition to that, instead of one direction left to right sequence processing, it has

been shown that a bi-directional RNN (Schuster and Paliwal, 1997) learn better context

information and perform better than the vanilla RNN in many NLP tasks such as Part-

of-Speech tagging (Plank et al., 2016) and Named Entity Recognition (Chiu and Nichols,

2016).

2.1.3 Self-Attention Network: Transformer

The transformer model is introduced by Vaswani et al. (2017) which is initially applied to

Machine Translation (MT) tasks. Compared to RNN, which processes inputs sequentially

in nature, Transformer allows better parallelization when processing a sequence of input.

Instead of processing one input at a time like RNN, Transformer is more similar to FFN

because it processes elements in the sequence at once. The Transformer typically consists

of several layers of a transformer block which include a self-attention layer, a feed-forward

layer, and a residual connection, among other details. Transformer uses self-attention

mechanism where each token in the input compares its representation with the rest of the

tokens in the same input to learn better context information and relation between tokens.

This self-attention computation is performed in several layers, e.g., six layers. The entire

architecture from the original Transformer is shown in Figure 2.3.

We briefly describe some relevant concepts in a single transformer block:

Self-Attention. Instead of using the raw input embedding, the self-attention is computed

using the notion of a query (q), key (k), and value (v) attention to capture different roles

of the input embedding. The query is used when a token is compared to all other tokens

in the same input. The key is used to respond to a query, and the value is used to compute

the attention output. As each input can be calculated independently, the computation

can take advantage of efficient matrix multiplication:

SelfAttention(Q,K,V) = softmax(
QKT

√
dk

)V (2.1)

Multi-head attention. In a sentence, different words can have a relation with the other
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Figure 2.3: The Transformer model from Vaswani et al. (2017)

words on various aspects, for example, syntactic, semantic, and discourse relationships.

Learning these different relations are the motivation of the multi-head attention which is

a set of self-attention layers.

Positional Embedding. In an RNN, information of the order of the inputs is inherently

part of the model. However, for Transformer, no information indicates the relative or

absolute position of the input order. To add the word order information, the input

embedding is combined with the positional embedding. The original Transformer work

uses a combination of sine and cosine functions to compute a position embedding.

2.1.4 Training a Neural Network

As a neural network is an instance of supervised machine learning, it needs to be trained

with example inputs x with its correct output y. Given a set of N training examples,

D = {xi,yi}Ni=1, the aim is to estimate (learning) a function f(x; Θ) that maps x to y.

The learning process essentially involves estimating the most optimal value of the pa-

rameters Θ. In order to do this, first we need a loss function that models the distance

between the correct output y and the model’s prediction ŷ. For example, in the context
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of classification tasks, the typical loss function, L, that is used is the cross-entropy loss

which is defined as L(ŷ, y) = −
∑C

i=1 y
i log ŷi, over C possible classes. To find the param-

eters that minimize the loss, typically a particular gradient-based optimizer is used, for

example Adam (Kingma and Ba, 2014), Adagrad (Duchi et al., 2011). The gradient of

the loss is computed using the partial derivative of the loss function with respect to each

parameter in the neural network layers. The gradient computation is computed using the

backpropagation algorithm (Rumelhart et al., 1986).

2.2 Dialogue Systems

This subsection present concepts relation to dialogue systems. Some parts this subsection

are adapted from Magnini and Louvan (2021). We describe characteristics on human

dialogue (§2.2.1) that illustrates the complexity of a conversation which makes building

dialogue systems challenging. We review two types of dialogue systems: chat-oriented

dialogue system (§2.2.2) and task-oriented dialogue (§2.2.3) including its rule-based and

data-driven approaches.

2.2.1 Characteristics of Human Dialogue

Turns & Utterance. The distinguishing characteristic of dialogues is that they appear

as a sequence of turns (T1, T2, ... in Table 2.1 ), each constituted by a speech by a single

speaker, speaking without interruption by the speech of the other speaker (Traum and

Heeman, 1996). Using turns, the speakers alternate their contributions to achieving the

dialogue goals. At each turn, the participants make explicit their contribution through one

or more utterances (e.g., a question, an answer) in a way that utterances keep a reasonable

connection with the previous turns and with the intended goals of the dialogue.

Speech & Dialogue Act.The study of human dialogue has been greatly influenced by

the theory of speech acts, initially introduced by Austin (1962) and then further developed

by Searle (1969). The core intuition behind speech acts is that language is not only used

to make statements (called constative speech acts), but also to perform actions that have

effects in the world (called performative speech acts). Performative utterances do not

have a true value; rather, they have felicity conditions, which may be appropriate or
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Turn Speaker Utterance

T1 Client Can you find me a train from Cambridge to Leicester?

T2 Agent There are several what day and time do you want to leave or arrive?

T3 Client I’d like to leave on Wednesday and should arrive by 13:00

T4 Agent The TR2176 leaves Cambridge at 09:21 and gets into Leicester at 11:06.

Will that work for you?

T5 Client What is the price of that train?

T6 Agent The price is 37.80 pounds. Would you like to go ahead a book a seat?

T7 Client Yes, I would like to book a seat on that train. Thank you.

T8 Agent Just to clarify, am I booking just one ticket or more?

T9 Client Yes. also find me Primavera’s phone number

T10 Agent Booking was successful, the total fee is 37.79 GBP payable at the station.

Reference number is : 2Z3LQ075 . What else did you need?

T11 Client Thanks. I am also looking for the Primavera. It is an attraction.

T12 Agent Yes, it’s a very nice attraction.

T13 Client Can I get their phone number please?

T14 Agent Their phone number is 01223357708. Can i help with something else?

T15 Client No. That will be all. Thank you.

T16 Agent Thank you for contacting the Cambridge Town Info centre. Goodbye.

Table 2.1: Example of a human-human dialogue from the MultiWOZ dataset

(Budzianowski et al., 2018) between a client and a town info agent.

not for the utterance to have the supposed consequences. For example, when we say “I

order you to go“, then some action of going is expected to happen. In more recent years,

the speech act theory has influenced the design of dialogue systems, and the notion of

dialogue act, strictly derived from speech act, has become a central characteristic for the

interpretation of user utterances. Specific inventories of dialogue acts have been proposed

to be applied to a vast range of conversational situations. As an example, Stolcke et al.

(2000), list 42 dialogue acts, including Thanking (e.g. T16 in Table 2.1 Thank you for

contacting the Cambridge Town Info centre. Goodbye., Yes-No-Question, (e.g. T14 in

Table 2.1“...Can i help with something else“ ), Opinion (e.g. T12 in Table 2.1 Yes, it’s

a very nice attraction.), and BackChannel-Question (e.g. T8 in Table 2.1 Just to
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clarify, am I booking just one ticket or more? ).

Grounding. Dialogue requires that interlocutors agree on the topic and the entities of the

conversation and acknowledge each other. The process through which the participants

keep themselves aligned during the dialogue is called grounding (Clark and Schaefer,

1987; Clark and Brennan, 1991), and it involves acknowledging that information has been

established as part of the common ground of the dialogue participants. This process

has been investigated in computational linguistics in order to codify the behavior of the

participants. As an example, Traum and Nakatani (2002) proposes a model based on

common ground units, where grounding elements (e.g., repetitions, expressions of explicit

agreement, like ok) are explicitly marked. One example of grounding through repetition

is shown in T14 of Table 2.1 when the agent repeats the phrase “their phone number“

from the previous utterance in T13 indicating that the agent understands the client.

Initiatives & Subdialogues. Conversation flow can be controlled by one participant.

For example, in a sport post-match press conference, a journalist asks questions related

to the match, and the athlete provides answers. So, in this case, the information flow is

unidirectional, and the journalists take the conversation initiatives. However, in a normal

human-human conversation, information flows bi-directionally where the control of the

conversation can shift from one speaker to another speaker making a mixed initiatives

(Walker and Whittaker, 1990) conversation. These mixed initiatives can happen as there

can be a different sequence or subdialogues takes place, e.g., as sometimes a speaker that

answers a question can also ask questions, sometimes a speaker drives the conversation

to a different topic (T9 in Table 2.1), etc.

2.2.2 Chat-Oriented Dialogue System

The ability to engage in a fluent and natural conversation with a human is often denoted

as one of the requirements of a true artificial intelligence system (Turing, 1950). While

this idea seems elusive and unattainable, it has attracted many researchers to work on

chatbots which mimics human conversation behavior and able to converse on different

kinds of topics (open-domain).

Rule-based chatbots. Early chatbots were developed to pass the Turing Test, in which

a system passes the test if a human thinks that they are talking to another human. ELIZA

(Weizenbaum, 1966), a chatbot developed by Weizenbaum at MIT, is often considered
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as one of the pioneering examples in dialogue systems and has influenced subsequent

systems such as Parry (Colby et al., 1971), TEAM (Grosz et al., 1987), and ALICE

(Wallace, 2009). Eliza relies on pattern matching scripts to generate a response back to

the user. The programmer needs to define each of the pattern matching rules. Table 2.2

shows an example of interaction between a user and Eliza.

Speaker Utterance

User Men are all alike

Eliza In what way?

User They’re always bugging us about something specific or other

Eliza Can you think of a specific example?

User Well, my boyfriend made me come here.

Eliza Is it important to you that your boyfriend made you come here?

Table 2.2: An example of interaction scenario between a user and Eliza. Eliza uses a

script to simply asking back the user’s statement, for example, whenever it encounters

the keyword “my” in the user’s utterance.

While Eliza was initially created to demonstrate the superficiality of dialogue be-

tween humans and machines, it successfully deceived early users that they were actually

communicating with a human.

Data-driven based chatbots. With the availability of human-human conversation data

online, such as conversations on social media (e.g., Twitter, Reddit), movie subtitles, and

the rapid development of applying machine learning approaches on NLP, research on di-

alogue systems have shifted its focus from rule-based to data-driven approaches. In a

rule-based approach, a response from the system is a result of matching an utterance to

a predefined template, while in a data-driven approach, rules are learned automatically

from massive data to map an utterance—and its dialogue context—to an appropriate

response (response generation). Ritter et al. (2011) formulates this response generation

problem as a translation model. They exploit a Twitter conversation thread composed of

a conversational stimulus and a response and use Statistical Machine Translation (SMT)

tools on these conversational threads so that the SMT can generate a response given a

conversational stimulus. With the rapid adoption of neural approaches on NLP, a myriad

amount of neural approaches have been applied to response generation in the context of
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chatbots. Many of these neural approaches (Vinyals and Le, 2015; Sordoni et al., 2015;

Shang et al., 2015) use the encoder-decoder (Seq2Seq) architecture (Sutskever et al.,

2014). The encoder process the utterance and its context, and the decoder generate the

response word by word until the end of the utterance marker. Recently, with the advent

of large pre-trained language models such as GPT-2 (Radford et al., 2019) (pre-trained

on a general text), a common approach is to continue the training of the pre-trained lan-

guage model to an unlabeled conversational dataset (fine-tuning) and use the language

model to generate the response. On this line of work, some approaches perform large scale

pre-training on massive conversational text such as DialoGPT (Zhang et al., 2020) and

Meena (Adiwardana et al., 2020).

Speaker Utterance

Emotion: Lonely

User Hi there , don’t know what to do , just broke up with my girlfriend ,

we were 8 years together.

Mime Oh no ! What happened ?

Emotion: Excited

User I have a huge chance to win a PS4 !

Mime That is great ! Are you excited ?

Emotion: Disappointed

User I lost my favorite hoodie somewhere . I am so upset . like how could

I lose a hoodie ? It is so big , did I just leave it somewhere ?

Mime Well that is not good , I hope you have to be careful next time?

Table 2.3: Examples of conversation between a user and MIME (Majumder et al., 2020)

on different emotion scenarios.

There exist known limitations on neural chatbot systems, such as it tends to generate

a response that is too general or bland by replying “OK”, “I do not know” or just re-

peating what the user has said. In order to generate an appropriate response, the system

needs to capture the semantics that involves natural language understanding (NLU) and

user understanding, including recognizing entities, intent, topics, emotion, and sentiment

from the user, knowledge, or commonsense reasoning (Huang et al., 2020). The NLU of a

chat-oriented dialogue system is more challenging than a task-oriented dialogue system as
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there is no pre-defined schema and labels as the dialogue is open-ended. Several advance-

ments try to alleviate this problem. Some works (Zhou et al., 2018; Tuan et al., 2019)

incorporated an external knowledge base to link the facts about the world—concepts,

facts, relation—into the dialogue systems (knowledge grounding). Also, recognizing the

user’s emotion has been shown as another factor that influences the length of the user’s

engagement with the system (Shum et al., 2018). Emotionally aware dialogue systems

(Zhou et al., 2020; Majumder et al., 2020) typically incorporate an emotion classifier,

which is trained on a conversational dataset that is annotated with emotion labels. One

such example is the EmpatheticDialogues (Rashkin et al., 2018) dataset. Table 2.3

shows an emotionally aware dialogue generation from Mime. The work from Li et al.

(2016); Vijayakumar et al. (2018) incorporate diversity factors in the training objective

to generate more diverse and appropriate responses.

In a broader context, to control text generation from a large pre-trained language

model is still an open research question. As pre-trained language models are initially

trained on a general corpus, often we do not have much control over the attributes of the

output text such as the topic, sentiment, style, factual correctness, etc (Li et al., 2021b).

Controlling these attributes are essential for applications such as dialogue system. For

example, we do not want the dialogue system to generate text that contains toxic, abusive,

and hatred (Gehman et al., 2020). Dathathri et al. (2020) explored an approach to steer

the text generated from a pre-trained language model by plugging multiple attribute

models to guide the generated text. These attribute models govern the sentiment and the

topic of the generated text from the language model. Controlling text generation from a

pre-trained language model is still an early and active stage of research; one can refer to

survey from (Dathathri et al., 2020; Weng, 2021) for more details on recent approaches

for neural controlled text generation.

2.2.3 Task-Oriented Dialogue System

ToD (often referred as goal-oriented dialogue) systems aim to assist users in completing

a task through conversation in natural language, either in a speech or written form. In

contrast to chat-oriented dialogue system, which primarily aims to maximize long-term

user engagement, ToD focus on interacting with users on a domain-specific task (Gao

et al., 2019), such as booking a flight or ordering food.
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Figure 2.4: An example dialogue taken from Gus(Bobrow et al., 1977).

One important concept in the early ToD that is still relevant until present ToD is

the concept of frame-driven dialogue introduced in Gus (Bobrow et al., 1977). In general,

a frame in Gus is a data structure that has a name and a set of slots associated with it.

A slot also has a name and a filler (value). For example, in the context of travel planning

in Gus, one of the frames is TripSpecification, which has slots such as homeport,

foreign port in which the slot values are city names that define the origin and destination

of a trip. These frames, slots, and their values are typically called as the domain ontology

of the ToD. The conversation in ToD is frame-driven, as the system gets the necessary

information from the user through dialogues until all required slots in the frame are filled

(slot filling). Figure 2.4 shown an example dialogue from Gus.

Rule-based approach. In a rule-based dialogue system, the conversational flow can be

pre-defined as a finite state automata (FSA) (Figure 2.5). In each state, the system asks

a specific question to get the information from the user, and then based on the user’s

response, the system transitions to the next state. This process proceeds until the end
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state is reached. During its interaction with the user, the system needs to be able to

Figure 2.5: An example state transition in which there are four pre-defined slots: From,

To, Date, Return in a flight booking scenario. The example is taken from Jurafsky

and Martin (2009).

understand what the user has expressed. In this context, natural language understanding

(NLU) is approached as detecting the slot values mentioned in the user’s utterance. In a

rule-based system, the system designer needs to specify semantic grammar rules for the

utterance that a parser can use to extract the user’s intended task and slot values.

REQUEST → show | give me

FLIGHT → flights | a flight

ORIGIN → from CITY

DESTINATION → to CITY

CITY → Milan | Trento | Barcelona

Table 2.4: Examples of semantic grammar rules

Data-driven approach (Pipeline). The arguments which motivate the move from

rule-based to data-driven approaches are that rule-based approaches are more expensive

to develop and not scalable when adapting to new domains, i.e., the number of rules
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Figure 2.6: A modular architecture of a task-oriented dialogue system (Young, 2000).

may explode, which makes it difficult to maintain (He and Young, 2003; McTear, 2020).

The pipeline of ToD systems typically use a modular architecture that consist of several

components (Figure 2.6) organized in a pipeline. As shown in the overall architecture

in Figure 2.6, the system consists of Natural Language Understanding (NLU), Dialogue

Manager (DM), and Natural Language Generation (NLG) components. When the inter-

action with the user is through voice, Automatic Speech Recognition (ASR) and Text To

Speech (TTS) components are needed.

NLU. In recent approaches, NLU has focused mainly on shallow semantic parsing, which

extracts information relevant to the task that the user wants to accomplish. Typically,

there are two items that are extracted from an utterance, namely the intent, often corre-

sponding to the user’s need (e.g., search a flight, play a song, block a credit card, etc.) and

entities (slots values) that are applied to the intent, for instance airline name, flight des-

tination, song name, artist name, etc. In data-driven approaches, instead of handcrafting

the semantic grammar rules which can be costly to develop and hard to maintain, de-

tecting the intent in an utterance is typically modeled as a classification problem (intent

classification), and extracting the slots (slot filling) is modeled as a sequence tagging prob-

lem. In the early initiatives of the statistical-driven approach for NLU, rich features-based

models, such as Support Vector Machines and Hidden Markov Model, were often applied

to both intent classification and slot filling (Raymond and Riccardi, 2007; Moschitti et al.,

2007). More recently, most approaches are based on neural network models (deep learn-

ing). Popular architectures which typically applied to these tasks are bi-LSTM + CRF

(Lample et al., 2016) and by fine-tuning a pre-trained language model (Chen et al., 2019)
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to the target task. We discuss further NLU models in Chapter 3.

User I’m looking for a cheaper restaurant

inform(price=cheap)

System Sure. What kind - and where?

User Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System The House serves cheap Thai food

User Where is it?

inform(price=cheap, food=Thai, area=centre) ; request(address)

System The House is at 106 Regent Street

Table 2.5: An example dialogue annotated with dialogue belief state. This example is

taken from Mrksic et al. (2017)

DM. The dialogue management typically involves two components, namely the Dialogue

State Tracker (DST) and Dialogue Policy (DP). The DST is responsible for maintaining

the belief state which represents the user’s goal state up to the current turn of the dialogue

(Henderson et al., 2014). This belief state is then used by the DP to decide which next

action needs to be performed by the system (Su et al., 2016). In the belief state, the DST

needs to track the search constraints expressed by the user (informable slots) and also

questions that are asked by the user (requests) related to the search results. An example

of a dialogue with informable and request slots is shown in Table 2.5. A number of

approaches have been applied to DST, including using generative models such as Markov

Decision Process (Williams and Young, 2007), discriminative models such as Maximum

Entropy Models (Metallinou et al., 2013), linear-chain CRF (Kim and Banchs, 2014).

Important to these discriminative models is the features used in the model, such as the

information from NLU, the context information of dialogue history, etc. Recently, there

has been a vast amount of neural approaches (Mrksic et al., 2017; Zhong et al., 2018; Lee

et al., 2019; Zhou and Small, 2019; Shan et al., 2020) where less feature engineering is

needed. As for DP, recently, it is dominated by reinforcement learning (RL) (Su et al.,

2018) based approaches. In RL, instead of using rule-based or utterance-level annotation,

it leverages the final outcome of the dialogue, whether the task is completed successfully

or not. This approach, however, requires a large number of conversations, and therefore,
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research has been directed to study the simulation of user interaction with the dialogue

policy (Asri et al., 2016; Cao et al., 2020).

NLG. The Natural Language Generation (NLG) component receives a dialogue act from

the dialogue manager as input and maps it to natural language. For example, given the

system act action=inform(cuisine=Italian,area=west, city=Firenze, price=cheap),

NLG converts this act representation into a sentence like There are several cheap Italian

restaurants in the west area of Firenze. Similar to other tasks, recent approaches for NLG

have been dominated by neural-based approaches in particular the encoder-decoder model

(Wen et al., 2015a,b; Kennard et al., 2017; Kale and Rastogi, 2020).

Data-driven approach (End to End). One known problem in pipeline methods is

an error that happens in a component that can propagate to the next components along

the pipeline. Therefore, there have been research effort on end-to-end (E2E) approaches

of task-oriented dialogue system (Rojas-Barahona et al., 2017; Madotto et al., 2018; Wu

et al., 2019; Qin et al., 2020b). In E2E approaches, no individual components, e.g., NLU,

NLG, DST, are present. The input of E2E models is only the raw dialogue history, the

knowledge base (i.e., domain ontology), and the model needs to output the response to

the user directly. So, in this case, all information that exists in pipeline methods, such as

intent, slots, dialogue state, and dialogue policy, is in the latent space. While it may reduce

the error cascading, it is still challenging to capture all this information and its correlation

with each other, and typically E2E models need a large amount of conversational data.

In addition to that, as all information that exist in the pipeline methods is in the latent

space, it could make E2E model harder to fix when error occurs.
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Natural Language Understanding in

ToD Systems

This chapter serves as an intermediate chapter prior to next chapters that details the con-

tribution C1(Leveraging Non-Conversational Text As a Source of Transfer), C2 (Gen-

erating Additional Labeled Data via Lightweight Augmentation), and C3 (Continued

Pre-training for Zero-shot Cross Lingual NLU) in this thesis. The content of this chapter

is partially derived from our survey paper Louvan and Magnini (2020b) which corre-

sponds to the contribution C4 (Survey of Recent Neural Methods for Slot Filling and

Intent Classification).

This chapter introduces background on NLU in the context of ToD systems, presents

the NLU definition as intent classification (IC) and slot filling (SF) tasks, describes its

evaluation metrics, and presents recent approaches on neural NLU models. After that,

we present and summarize the state of the art of low-resource NLU methods, the focus

of this thesis, to scale NLU models to new domains (§3.6.1) and languages (§3.6.2) with

limited labeled data. At the end of each subsection (§3.6.1, §3.6.2) we provide comparison

and takeaways of existing low-resource NLU methods. We conclude this chapter with an

overall summary and drawing connection from existing studies that motivate our work in

C1, C2, C3.
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3.1 Introduction

We generalize several recent approaches assuming that the output of the NLU process is a

partially filled semantic frame (Wang et al., 2005; Tur and De Mori, 2011), corresponding

to the intent of the user in a certain portion of the dialogue, with a number of slot-value

pairs that need to be filled to accomplish the intent. The notion of intent originates from

the idea that utterances can be assigned to a small set of dialogue acts (Stolcke et al.,

2000), and it is now largely adopted to identify a task or action that the system can

execute in a certain domain. Slot-value pairs, on the other end, represent the domain

of the dialogue, and have been actually implemented either as an ontology (Bellegarda,

2013), possibly with reasoning services (e.g. checking the constraints over slot values) or

simply trough a list of entity types that the system needs to identify during the dialogue.

Intents may correspond either to specific needs of the user (e.g. blocking a credit

card, transferring money, etc.), or to general needs (e.g. asking for clarification, thanking,

etc.). Slots are defined for each intent: for instance, to block a credit card it is relevant to

know the name of the owner and the number of the card. Values for the slots are collected

through the dialogue, and can be expressed by the user either in a single turn or in several

turns. At each user turn in the dialogue the NLU component has to determine the intent

of the user utterance (intent classification) and has to detect the slot-value pairs referred

in the particular turn (slot filling).

In Section 2.2.3, we described a task-oriented system as a pipeline of components,

saying that SF and IC are core tasks at the NLU level. Particularly, IC consists of classi-

fying an utterance with a set of pre-defined intents (Ravuri and Stolcke, 2015), while SF is

defined as a sequence tagging problem (Raymond and Riccardi, 2007; Mesnil et al., 2013),

where each token of the utterance has to be tagged with a slot label. In this scenario,

training data for SF typically consist of single utterances in a dialogue where tokens are

annotated with a pre-defined set of slot names, and slot values correspond to arbitrary

sequences of tokens. In this perspective, it is worth mentioning a research line on dialogue

state tracking (DST) (Henderson et al., 2014; Mrksic et al., 2015; Budzianowski et al.,

2018), where the NLU component is usually embedded into DST. What is relevant for our

topic is that in this context SF is defined as a classification problem: given the current

utterance and the previous dialogue history, the system has to decide whether a certain

slot-value pair defined in the domain ontology is referred or not in the current utterance.
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Although promising, from the NLU perspective, this research line poses constraints (e.g.

all slot-value pairs have to be pre-defined in an ontology,) that limit the SF applicability.

For this reason, and because NLU components are the prevalent solution in current task-

oriented systems, the focus of our survey will be on SF as a sequence tagging problem, as

more precisely defined in the next section.

3.2 Task Definition

We formulate SF and IC as follows. Given an input utterance x = (x1, x2, .., xT ), SF

consists in a token-level sequence tagging, where the system has to assign a corresponding

slot label yslot = (yslot1 , yslot2 , .., yslotT ) to each token xi of the utterance. On the other end,

IC is defined as a classification task over utterances, where the system has to assign the

correct intent label yintent for the whole utterance x. In general, supervised learning

approaches learn a probabilistic model to estimate p(yintent,yslot|x,θ) where θ is the

parameter of the model. Table 3.1 shows an example of the expected output of a model

for the SF and IC tasks.

Utterance (x) I want to listen to Hey Jude by The Beatles

Slot (yslot) O O O O O B-song I-song O B-artist I-artist

Intent (yintent) play song

Table 3.1: Example of SF and IC output for an utterance. Slot labels are in BIO format:

B indicates the start of a slot span, I the inside of a span while O denotes that the word

does not belong to any slot.

3.3 Datasets for SF and IC

In this section, according to our task definition, we list available dialogue datasets (most

of them are publicly available) where each utterance is assigned to one intent, and to-

kens are annotated with slot names. Most of such datasets are collections of single turn

user utterances (i.e., not multi-turn dialogues). An example of a single-turn utterance

annotation is shown in Table 3.1. The datasets covered in this section is not necessarily
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exhaustive, for more details on other existing datasets one may refer to (Razumovskaia

et al., 2021).

Dataset Lang. # intent # slot # train/dev/test

ATIS EN 18 79 4,478 / 500 / 893

(Hemphill et al., 1990)

MEDIA FR - 68 12,908/1,259/3,005

(Bonneau-Maynard et al., 2005)

SNIPS-NLU EN 7 39 13,084 / 700 / 700

(Coucke et al., 2018) IT 7 39 5,742 /700 / 700

Facebook EN 12 11 30,521 / 4,181 / 8,621

Multilingual TH 12 11 3,617 / 1,983 / 3,043

(Schuster et al., 2019a) ES 12 11 2,156 / 1,235 / 1,692

MIT Restaurant EN - 8 6,128 / 1,532 / 1,521

(Liu et al., 2013)

MIT Movie EN - 12 7,820 / 1,955 / 2,443

(Liu et al., 2013)

Table 3.2: Single-turn datasets statistics. The acronyms EN, FR, IT, TH, ES correspond

to the language used in the dataset, namely English, French, Italian, Thai, and Spanish.

The ATIS (Airline Travel Information System) dataset (Hemphill et al., 1990) is the

most widely used single-turn dataset for NLU benchmarking. The total number of utter-

ances is around 5K utterances that consist of queries related to the airline travel domain,

such as searching for a flight, asking for flight fare, etc. While it has a relatively large

number slot and intent labels, the distribution is quite skewed; more than 70% of the

intent is a flight search. The slots are dominated by a slot that expresses location names

such as FromLocation and ToLocation. The MEDIA dataset (Bonneau-Maynard

et al., 2005) is constructed by simulating the conversation between a tourist and a hotel

representative in the French language. Compared to ATIS, the MEDIA corpus size is

around three times larger; however, MEDIA is only annotated with slot labels. The slots

are related to hotel booking scenarios such as the number of people, date, hotel facility,
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relative distance, etc. The MIT corpus (Liu et al., 2013) is constructed through a crowd-

sourcing platform where crowd workers are hired to create natural language queries in

English and annotate the slot label in the queries. The MIT corpus covers two domains,

namely movie and restaurant, in which the utterances are related to finding information

of a particular movie or actor, searching or booking a restaurant with a particular dis-

tance and cuisine criteria. The SNIPS dataset (Coucke et al., 2018) was collected by

crowdsourcing through the SNIPS voice platform. Intents include requests to a digital

assistant to complete various tasks, such as asking the weather, playing a song, book a

restaurant, asking for a movie schedule, etc. SNIPS is now often used as a benchmark for

NLU evaluations.

While most datasets are available in English, recently there has been growing interest

in expanding slot filling and intent classification datasets to non-English languages. The

original ATIS dataset has been derived into several languages, namely Hindi, Turkish

(Upadhyay et al., 2018), and Indonesian (Susanto and Lu, 2017). The MultiATIS++

dataset from Xu et al. (2020) expands the ATIS dataset to more languages, namely

Spanish, Portuguese, German, French, Chinese, and Japanese. The work from (Bellomaria

et al., 2019) introduces the Italian version of the original SNIPS dataset. The Facebook

multi-lingual dataset (Schuster et al., 2019a), introduced a dataset on Thai and Spanish

languages across three domains namely weather, alarm, and reminder. The detailed

statistics of each dataset are listed in Table 3.2.

3.4 Evaluation Metrics

For the IC task, evaluation is performed on the utterance level. The typical evaluation

metric for IC is accuracy, calculated as the number of the correct predictions made by

the model divided by the total number of predictions.

As for SF, the evaluation is performed on the entity level. The common metrics used

is the metric introduced in CoNLL-2003 shared task (Tjong Kim Sang and De Meulder,

2003) to evaluate Named Entity Recognition (NER) by computing the F1 score, the

harmonic mean score between precision and recall. Precision (P ) is the percentage of slot

predictions from the model which are correct, while recall (R) is the percentage of slots

in the corpus that are found by the model. These metrics are computed in terms of true
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positive (TP ), false positive (FP ), and false negative (FN), which are defined as follows:

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2× P ×R
P +R

(3.1)

A slot prediction is considered correct when an exact match is found (Tjong Kim Sang

and De Meulder, 2003). As the slot is annotated in BIO format (Tjong Kim Sang and

Buchholz, 2000) to mark the chunk boundary of the slot (see Table 3.1), a correct pre-

diction is only counted when the model can predict the correct slot label on the correct

boundary. Consequently, the exact match metrics does not reward cases when the model

predict correct slot label but get the incorrect slot boundary (partial match).

Token Gold Standard Prediction

Show O O

me O O

the O O

cheapest B-relative fare O

American B-airline name B-airline name

Airlines I-airline name I-airline name

flight O O

from O O

Milan B-origin city B-destination city

to O O

New B-destination city B-destination city

York I-destination city O

on O O

Friday B-day O

Table 3.3: Example of gold standard annotation of slots in an utterance and the system

prediction.

Table 3.3 shows an example of system predictions and Table 3.4 summarizes the cal-

culation of TP, FP, and FN. Applying Equation 3.1, the precision, recall, and F1 are 33%,

20%, and 25%, respectively.
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Slot TP FP FN

relative fare 0 0 1

airline name 1 0 0

origin city 0 0 1

destination city 0 2 1

day 0 0 1

Total 1 2 4

Table 3.4: Calculation of TP, FP, FN for the example in Table 3.3

3.5 NLU Models

In the following sections, we outline the main models that have been proposed for SF and

IC, and categorize the models into two main groups, namely independent models (§3.5.1)

and joint models (§3.5.2).

3.5.1 Independent Models

Independent models train each task separately and recent neural models typically use

RNN as the building block for SF and IC. At each time step t, the encoder transforms the

word representation xt to the hidden state ht. For SF, the output layer predicts the slot

label yslott condition on ht. For IC, typically the last hidden state hT is used to predict the

intent label yintentof the utterance x. Note that, for independent approaches, the models

for SF and IC are trained separately. Most neural models for SF and IC generally consist

of several layers, namely an input layer, one or more encoder layer, and an output layer.

Consequently, the main differences between models are in the specifics of these layers.

The most common dataset used for evaluating independent models is ATIS.

In the input layer of neural models each word is mapped into embeddings. Mesnil

et al. (2013) compared several embeddings, namely pre-trained SENNA (Collobert et al.,

2011), RNN Language Model (RNNLM) (Mikolov et al., 2011), and random embeddings.

SENNA gives the best result compared to other embeddings, and, typically, further fine-

tuning word embeddings improves performance. Yao et al. (2013) report that embeddings

learned from scratch directly on ATIS data (task-specific embeddings) are better than
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SENNA. However, task-specific embeddings are composed not only by words but also

by named entities (NE ) and syntactic features1. NE improves performance significantly

while part-of-speech only adds small benefits. Ravuri and Stolcke (2015) emphasizes the

importance of character representation to handle OOV issues.

For the encoder layer, various RNN architectures have been applied to SF and IC

(Mesnil et al., 2013, 2015; Liu and Lane, 2015). Mesnil et al. (2013) compare the Elman

(Elman, 1990) and Jordan (Jordan, 1997) RNNs. They observe that the performance of

the Jordan RNN is marginally better than Elman. They also experiment a bi-directional

version of Jordan RNN and obtained the best score of 93.89 F1 for SF, performing better

than CRF for about +1 absolute F1 improvement. Xu and Sarikaya (2013) use Con-

volutional Neural Network (CNN) (LeCun et al., 1998) to extract 5-gram features and

apply max-pooling to obtain the word representation before passing it to the output layer.

Compared with RNN (Yao et al., 2013; Mesnil et al., 2013), CNN gives lower performance

for SF on ATIS. Other studies (Yao et al., 2014a; Vu et al., 2016) adapt Long Short-Term

Memory Network (LSTM) (Hochreiter and Schmidhuber, 1997) to SF. The LSTM model

gives better SF performance compared to CRF, CNN, and RNN. Ravuri and Stolcke

(2015) compare the performance of vanilla RNN and LSTM for IC. They find that the

vanilla RNN works best for shorter utterances, while LSTM is better for longer utterances.

For the output layer, typically a softmax function is used for prediction at a particular

time step. Yao et al. (2014b) propose a R-CRF model combining the feature learning

power of RNN and the sequence level optimization of CRF for SF. The RNN + CRF

scoring mechanism incorporates the features learned from RNN and the transition scores

of the slot slot labels. R-CRF outperforms CRF and vanilla RNN on ATIS and on the

Bing query understanding dataset. Table 3.5 summarizes the performance of independent

models on SF and IC.

Takeaways on independent SF and IC models:

• Performance of RNN encoders (unidirectional) are Jordan ≤ Elman < LSTM. Bi-

directional encoding is additive to the performance of each encoder.

• Incorporating more context information is better for SF performance. Using global

context information, such as sentence level representation, and attention mech-

1Gold named entity and syntactic information
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Input Model (Enc/Dec) Output Slot (F1) Intent(Err)

(F1) (Err)

Xu and Sarikaya (2013) lexical CNN softmax 94.35 6.65

Yao et al. (2013) lexical Elman RNN softmax 94.11 -

Yao et al. (2013) lexical+NE Elman RNN softmax 96.60 -

Yao et al. (2014a) lexical LSTM softmax 94.85 -

Yao et al. (2014b) lexical+NE Elman RNN CRF 96.65 -

Mesnil et al. (2015) lexical Hybrid Elman softmax 95.06 -

+ Jordan RNN

Liu and Lane (2015) lexical Elman RNN softmax 94.89 -

with label sampling

Vu et al. (2016) lexical bi-directional RNN softmax 94.92 -

Liu and Lane (2016a) lexical bi-directional RNN softmax 95.75 2.35

+attention

Kurata et al. (2016b) lexical Encoder-Decoder softmax 95.40 -

LSTM

Table 3.5: Comparison of independent SF and IC models and their performance on ATIS.

anisms (Kurata et al., 2016b; Liu and Lane, 2016a) boosts performance of bi-

directional encoder even further.

• When adding external features is possible, semantic features such as NE are more

beneficial than syntactic features for SF. When NE is used, it can boost the model

performance for SF significantly.

• The slot filling task is related to Named Entity Recognition (NER) (Grishman and

Sundheim, 1996) task as slot values can be a named entity such as airline name, city

name etc. If the slot filling task is modeled as a sequence tagging problem, basically

recent neural models proposed for NER can be used for slot filling and vice versa.

To know more about the recent development of neural NER models, one can consult

the survey from Yadav and Bethard (2018).

• The main disadvantage of independent models is that they do not exploit the in-

teraction between intent and slots and may introduce error propagation when they

are used in a pipeline.

35



CHAPTER 3. NATURAL LANGUAGE UNDERSTANDING IN TOD SYSTEMS

3.5.2 Joint Models

Figure 3.1: Left: Shared Bi-GRU encoder (Zhang and Wang, 2016). Middle: Slot-Gate

Mechanism (Goo et al., 2018). Right: BERT Based (Chen et al., 2019).

In Section 3.5.1 we reported approaches that treat SF and IC independently. However,

as the two tasks always appear together in an utterance and they share information, it

is intuitive to think that they can benefit each other. For instance, if the word “The

Beatles” is recognized as the slot Artist, then it is more likely that the intent of the

utterance is PlaySong rather than BookFlight. On the other hand, recognizing that

the intent is PlaySong would help to recognize “Hey Jude” as the slot Artist rather

than MovieName.

Recent approaches model the relationship between SF and IC simultaneously in a joint

model. These approaches promote two-way information sharing between the two tasks

instead of a one-way (pipeline). We describe several alternatives to exploit the relation

between SF and IC: through parameter and state sharing and gate mechanism.

Parameter and State Sharing. A pioneering work in joint modeling is Xu and Sarikaya

(2013), which performs parameter sharing and captures the relation between SF and IC

through Tri-CRF (Jeong and Lee, 2008). The model uses CNN as a shared encoder for

both tasks and the produced hidden states are utilized for SF and IC. In addition to

features learned from the NN and from the slot label transition, Tri-CRF incorporates an

additional factor g to learn the correlation between the slot label assigned to each word and

the intent assigned to the utterance, which explicitly captures the dependency between

the two tasks. A similar approach (Guo et al., 2014), shares the node representation

produced by Recursive Neural Network (RecNN) which operates on the syntactic tree of
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the utterance. The node’s representation is shared among SF and IC. Zhang and Wang

(2016) use a shared bi-GRU encoder and a joint loss function between SF and IC (Figure

3.1 Left), in which the loss function has weights associated with each tasks.

Liu and Lane (2016a) use a neural sequence to sequence (encoder-decoder) model with

attention mechanism commonly used for neural machine translation. The shared encoder

is a bi-directional LSTM, and the last hidden state of the encoder is then used by the

decoder to generate a sequence of slot labels, while for IC there is a separate decoder. The

attention mechanism is used to learn alignments between slot labels in the decoder and

words in the encoder. Hakkani-Tür et al. (2016) also adopt parameter sharing similar to

Zhang and Wang (2016), but instead of using GRU they use a shared LSTM and perform

predictions for slots, intent, and also domain.

In a recent approach by Wang et al. (2018b) they propose a bi-model based structure

to learn the cross-impact between SF and IC. They argue that a single model for two tasks

can hurt performance, and, instead of sharing parameters, they use two-task networks to

learn the cross-impact between the two tasks and only share the hidden state of the other

task. In the model, every hidden state h1
t in the first network is combined with the hidden

state of the second network h2
t , and vice versa. Training is also done asynchronously, as

each model has a separate loss function. Qin et al. (2019) use a self-attentive shared

encoder to produce better context-aware representations, then apply IC at the token level

and use this information to guide the SF task. They argue that previous work based on

single utterance-level intent prediction is more prone to error propagation. If some token-

level intent is incorrectly predicted, the other correct token-level prediction can still be

useful for corresponding SF. For the final IC prediction, they use a voting mechanism to

take into account the IC prediction on each token.

Chen et al. (2019) use a Transformer (Vaswani et al., 2017) model for joint SF and

IC by fine-tuning a pre-trained BERT (Devlin et al., 2019) model (Figure 3.1 Right).

The input is passed through several layers of transformer encoders and the hidden state

outputs are used to compute slot and intent labels. The hidden state hCLS is used for IC2

while the rest of the hidden states at each time step hi serve SF.

Slot-Intent Gate Mechanism. In addition to parameter and state sharing, a separate

network with a slot gating mechanism was introduced by Goo et al. (2018) to model the

2[CLS] is a special token in BERT input format that often used as the sentence representation.
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interaction between SF and IC more explicitly (Figure 3.1 Middle). In the encoder, a slot

context vector for each time step, cSi , and a global intent context vector cI are computed

using an attention mechanism (Bahdanau et al., 2015). The slot-gate gs is computed as

a function of cSi and cI , gs =
∑
v · tanh(cSi + W · cI). Then, gs is used as a weight

between hi and cSi to compute ysloti as follows: ysloti = softmax(W (hi + gs · cSi )). Larger

gs indicates a stronger correlation between cSi and cI .

E et al. (2019) propose a bi-directional model, SF-ID (SF-Intent Detection) network,

sharing ideas with Goo et al. (2018), with two key differences. First, in addition to the

slot-gated mechanism, they add an intent-gated mechanism as well. Second, they use

an iterative mechanism between the SF and ID network, meaning that the gate vector

from SF is injected into the ID network and vice versa. This mechanism is repeated for

an arbitrary number of iteration. Compared to (Goo et al., 2018), the SF-ID network

performs better both in SF and IC on ATIS and SNIPS. The work from Li et al. (2018)

is also similar to Goo et al. (2018) with two differences. First, they use a self-attention

mechanism (Vaswani et al., 2017) to compute cSi . Secondly, they use a separate network

to compute gate vector gs, but the input of this network is the concatenation of cSi and

the intent embedding v, and gs is defined as gs = tanh(W g[cislot, v
intent] + bs). After that,

hi is combined with gs through element-wise multiplication to compute ysi as follows:

ysloti = softmax(W s(hi � gs) + bs). They report a +0.5% improvement on SF over Liu

and Lane (2016a). A recent work by Zhang et al. (2019), further improves the performance

of the BERT based model by adding a gate mechanism (Li et al., 2018) to the BERT

model. Table 3.6 compares the performance of the joint models.

Takeaways on joint SF and IC models:

• The overall performance of joint models for SF and IC (Table 3.5) is competitive

with independent models (Table 3.6). The advantage of joint models is that they

have relatively fewer parameters than independent models, as both tasks are trained

on a single model.

• When computational power is not an issue, fine-tuning a pre-trained model such

as BERT is the way to go for maximum SF and IC performance. Hybrid methods

combining parameter and state sharing + intent gating yield the best performance

(Zhang et al., 2019).
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Method Model

ATIS SNIPS

Slot Intent Slot Intent

F1 Acc/Err F1 Acc/Err

Parameter

& State Sharing

Xu and Sarikaya (2013) CNN + Tri-CRF 95.42 -/5.91 - -

Guo et al. (2014) Recursive NN 93.96 95.40 - -

Zhang and Wang (2016) Joint Multi-Task,Bi-GRU 95.49 98.10 - -

Liu and Lane (2016a) Seq2Seq + Attention 94.20 91.10 87.80 96.70

Hakkani-Tür et al. (2016) Bi-LSTM 94.30 92.60 87.30 96.90

Qin et al. (2019) Token-Level IC + Self-Attention 95.90 96.90 94.20 98.00

Chen et al. (2019) Transformer (BERT) 96.10 97.50 97.00 98.60

State Sharing

Wang et al. (2018b) Bi-model, BiLSTM 96.89 98.99 - -

Slot-Intent Gating

Goo et al. (2018) Slot-Gated Full Attention 94.80 93.60 88.80 97.70

Li et al. (2018) BiLSTM + Self-Attention 96.52 -/1.23 - -

E et al. (2019) SF-ID Network 95.75 97.76 91.43 97.43

Hybrid Param

Sharing + Gating

Zhang et al. (2019) BERT + Intent-Gate 98.75 99.76 98.78 98.96

Table 3.6: Performance comparison of joint models for SF and IC on ATIS and SNIPS-

NLU.

• For the non-BERT-based model, using state sharing (Wang et al., 2018b) is the

best on ATIS. However, the disadvantage is that it is actually a bi-model and not a

single model.

• Similar to independent models, contextual information is crucial to performance.

Adding a self-attention mechanism (Qin et al., 2019; Li et al., 2018) to either param-

eter and state sharing or to slot-intent gating can boost performance even further.

• When sufficiently large in-domain training data is available, the SF and IC perfor-

mance in ATIS and SNIPS is already saturated. Therefore, further research on this

classic leaderboard chase is not worth it. We discuss more about that in Section 6.
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• Most of the work in joint models and also independent models (Section §3.5.1) re-

ports F1 scores for slot filling performance. However, these scores do not reveal

in which specific cases these models behave differently, contributing to overall per-

formance. We leave further analysis on model performance as a potential future

work.

3.6 State of The Art Low-Resource NLU Methods

So far, the models that we consider in Section §3.5.1 and Section §3.5.2 are designed

to be trained on a single domain (e.g. banking, restaurant reservation, flight booking)

and require relatively large labeled data to perform well. However, as we have described

in §1.2, in practice, new intents and slots are regularly added to a system to support

new tasks and domains also in languages other than English, requiring data and time

intensive processes for data collection and annotation. Hence, methods to train models

for new domains (domain scaling) and languages (cross-lingual) with limited or without

labeled data are needed.

Generally speaking, there are two common methods to address domain scaling and

cross-lingual NLU, namely transfer learning and data augmentation. In contrast to su-

pervised learning, where we learn a model from scratch, transfer learning (Pan and Yang,

2010; Ruder, 2019) aims to leverage the knowledge learned from related settings (task,

domain, and language) to learn a model for a target setting. While for data augmenta-

tion, the aim is to automatically extend the original training data on the target setting

by performing data transformation. The next subsections discuss the transfer learning

and data augmentation approaches applied for domain scaling (§3.6.1) and cross-lingual

NLU (§3.6.2) in ToD.

3.6.1 Scaling to New Domains

Setup. The setup of the problem assume that there areK source domainsD1
S,D2

S, . . . ,DKS
and a target domain DK+1

T , and there is an abundance of data in DS and limited data in

DT . For Transfer Learning (TF) approaches, instead of training a target model MT for

DT from scratch, TF aims to adapt the learned model MS from DS to produce a model
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Figure 3.2: Left: Data-driven approach (Jaech et al., 2016; Hakkani-Tür et al., 2016).

Middle: Model-Driven Approach with expert models (Kim et al., 2017). Right: Zero-shot

model (Bapna et al., 2017).

MT trained on DT . TF is typically applied with various parameter sharing and training

mechanisms. As for data augmentation (DA), typically, particular data transformation is

applied to DT to produce D′
T , then the modelMT is trained on the union of the original

dataset and the new synthetic data, DT ∪ D
′
T .

For SF and IC two transfer learning based approaches are proposed, namely data-

driven and model-driven. As for data-driven techniques, typically, we combine data from

DS and DT and train the model in a way that allows knowledge sharing betweenMS and

MT .

Data-driven via Multi-Task Learning. Some studies (Jaech et al., 2016; Hakkani-

Tür et al., 2016) apply knowledge sharing using multi-task learning (MTL) (Caruana,

1997). In MTL, the parameters of the model are partitioned into parts that are task-

specific and parameters that are shared across tasks (Figure 3.2 Left). The MTL model

is typically trained in an alternating fashion on DS and DT . Results have shown that

MTL is particularly effective relative to single-task learning (STL) when the data in DT
is scarce, and the benefits over STL diminish as more data is available. One aspect that

is believed to be important is the characteristic of auxiliary tasks that are used in MTL.

It is expected that the auxiliary tasks should be similar to the target task for MTL to be

helpful for the target task. There are other approaches from Hakkani-Tür et al. (2016)

that use MTL, but they focus on improving performance on multi-domain settings where

sizeable data for each domain is already available. Most approaches (Jaech et al., 2016;

Hakkani-Tür et al., 2016) use the data from DS as auxiliary tasks, i.e., conversational text

labeled NLU data.
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Data-driven via Pre-train & Fine Tuning. Another technique that is typically used

in data-driven approaches is based on pre-train and fine-tune mechanisms. In contrast

to MTL, the general idea of pre-train and fine-tuning is first to train a model M on DS
then uses the learned weight to initialize MT and continue the training on DT . Goyal

et al. (2018) train a joint model of SF and IC, MS, on large DS , then fine-tune MS

by replacing the output layer corresponding with the label space from DT and train the

model further on DT . Siddhant et al. (2019) also uses fine-tuning mechanism, but the

main difference with Goyal et al. (2018) is they leverage large unlabeled data to learn

contextual embedding, ELMo (Peters et al., 2018), before fine-tuning on DT .

As we need to train from scratch the whole model when adding a new domain, data-

driven approaches, especially MTL-based, need increasing training time as the number

of domains grows. The alternative strategy, the model-driven approach, alleviates the

problem by enabling model reusability. Although different domains have different slot

schemas, slots such as date, time and location can be shared.

Model-driven via Expert-based. In model-driven adaptation, ”expert” models (Fig-

ure 3.2 Middle) are first trained on these reusable slots (Kim et al., 2017; Jha et al., 2018)

and the outputs of the expert models are used to guide the training of MT for a new

target domain. This way, the training time of MT is faster, as it is proportional to the

DT data size, instead of the larger data size of the whole DS and DT . In this model-driven

setting, Kim et al. (2017) do not treat each expert model on each DS equally; instead,

they use an attention mechanism to learn a weighted combination from the feedback of

the expert models. Jha et al. (2018) use a similar model as Kim et al. (2017); however,

they do not use an attention mechanism. For training the expert models, instead of using

all available DS, they build a repository consisting of common slots, such as date, time,

location slots. The assumption is that these slots are potentially reusable in many target

domains. Upon training MS on this reusable repository, the output of MS is directly

used to guide the training of MT .

Zero-shot. While data-driven and model-driven approaches can share knowledge learned

on different domains, such models are still trained on a pre-defined set of labels, and can

not handle unseen labels, i.e., not mapped to the existing schema. For example, a model

trained to recognize a Destination slot can not be used directly to recognize the slot

Arrival Location for a new domain, although both slots are semantically similar. For
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this reason, researchers have recently been working on zero-shot models, trained on label

representations that leverage natural language descriptions of the slots (Bapna et al.,

2017; Lee and Jha, 2019). Assuming that accurate slot descriptions are provided, slots

with different names, although semantically similar, would have a similar description as

well. Thus, having trained a model for the Destination slot with its descriptions, it is

now possible to recognize the slot Arrival Location without training on it, but only

supplying the corresponding slot description.

In addition to slot description, other zero-shot approaches explore the use of slot

value examples (Shah et al., 2019; Guerini et al., 2018). Shah et al. (2019) show that a

combination of a small number of slot values examples with a slot description performs

better than (Bapna et al., 2017; Lee and Jha, 2019) on the SNIPS dataset. Zero-shot

models are typically trained on a per-slot basis (Figure 3.2 Right), meaning that if we

have N slots, then the model will output N predictions. Therefore, a merging mechanism

is needed in case there are prediction overlaps. In order to alleviate the problem of having

multiple predictions, Liu et al. (2020b) propose a coarse-to-fine approach, in which the

model learns the slot entity pattern (coarsely) to identify a particular token is an entity

or not. After that, the model performs a single prediction of the slot type (fine) based on

the similarity between the feature representation and the slot description.

Data Augmentation. As mentioned before, Transfer Learning (TF) primarily focuses

on the mechanism on transferring learned representation from source settings to target

settings, while data augmentation (DA), on the other hand, aims to generate meaning

preserving additional labeled data D′
T . DA has been commonly used, for example, in

Computer Vision research (Krizhevsky et al., 2012; Summers and Dinneen, 2019) where

operations such as image flipping, cropping, color jittering have been a standard technique.

However, in the context of NLP, DA is less trivial as the input space is discrete, and it

is still challenging to produce meaning-preserving labeled data. Despite the challenges

and lack of standard augmentation, there has been an increasing interest in applying data

augmentation in NLP. Different techniques have been proposed from relatively simple

rule-based methods (heuristic) such as word substitution, deletion, addition (Wang and

Yang, 2015; Wei and Zou, 2019b) until model-based approaches that train a neural model

or pre-trained model to generate synthetic text (Kobayashi, 2018; Kumar et al., 2020;

Anaby-Tavor et al., 2020). DA has shown potential in low-resource NLP tasks such as
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text classification (Wei and Zou, 2019b), parsing (Sahin and Steedman, 2018; Vania et al.,

2019a), and machine translation (Sennrich et al., 2016; Fadaee et al., 2017).

In the context of NLU in ToD, a number of DA approaches have been proposed to gen-

erate synthetic labeled utterances. Kurata et al. (2016a) trains an LSTM encoder-decoder

model on the same utterance as input and output sequences. In the augmentation process,

the model encodes the original utterance, and they perform perturbation (additive, mul-

tiplicative perturbation) on the hidden state to generate different tokens and slot labels

in utterance. The work from Hou et al. (2018b) trains a sequence to sequence (Seq2Seq)

model (Sutskever et al., 2014) on a pair of utterances that belongs to the same semantic

frame (intent) cluster. Similar to Kurata et al. (2016a), they use the last hidden state of

the Seq2Seq encoder to generate the synthetic utterance. They also incorporate diversity

measures to generate more varied utterances. Zhao et al. (2019) also uses Seq2Seq model

as Hou et al. (2018b), but they incorporate intermediate atomic templates that provide

a mapping between the semantic representation and the raw natural language utterance.

The work from Yoo et al. (2019) follows the same idea, but they use a Variational Auto

Encoder (VAE) (Kingma and Ba, 2015) to generate additional labeled utterances.

With the advent of pre-trained language models such as BERT (Devlin et al., 2019),

BART (Lewis et al., 2020), and GPT-2 (Radford, 2018), pretrained on language modeling

tasks on massive amount of data, these off-the-shelf models have been used to obtain bet-

ter contextual augmentation. In contrast to most prior approaches in which the augmented

words are limited on the words that appear in DT , these pre-trained models can produce

words outside DT . Anaby-Tavor et al. (2020) fine-tunes GPT-2 on DT with the following

format: y1 SEP x1 EOS y2 SEP x2 EOS ...yn SEP xn EOS, where yi is the intent label of the

utterance xi, SEP indicates the separator between the intent label and the utterance, and

EOS marks the end of the utterance. After fine-tuning, to generate a synthetic utterance,

we supply an intent label and a separator ”y SEP” then let the model generate the utter-

ance token by token until EOS. The approach from Peng et al. (2020) also uses GPT-2 as

Anaby-Tavor et al. (2020) but with different pre-training and fine-tuning strategies. They

continue pre-training GPT-2 on unlabeled 400K dialogue corpus and then fine tuning on

two scenarios: fine-tune on a dataset where the ontology (intent and slot values anno-

tation) is available or on a dataset where domain-specific unlabeled dataset is available.

44



CHAPTER 3. NATURAL LANGUAGE UNDERSTANDING IN TOD SYSTEMS

Kumar et al. (2020) compares several Transformer models: BERT, BART, and GPT-23,

fine-tune each model on DT conditioned on the intent label and generate the synthetic

utterance. They found that BART works the best for intent classification on the SNIPS

dataset.

Summary. In this subsection, we have seen that there have been a wide variety of

approaches to domain scaling. While all of the approaches share the same motivation to

overcome limited labeled data on the target setting, each of the approaches has different

requirements and assumptions regarding available auxiliary data or models that can be

used as a source of transfer or augmentation. Table 3.7 compares the requirements of

auxiliary data or pre-trained model and the mechanism for transfer learning or augmen-

tation from each approach.

Takeaways on scaling to new domains with transfer learning.

• Both data driven methods, MTL and pre-train fine tuning, improve performance when

data in DT is limited. Both are also flexible, as virtually many tasks from different

domains can be plugged into these methods. As the number of domains grow, pre-train

and fine tuning is more desirable than MTL. However, fine tuning is more prone to the

forgetting problem (He et al., 2019) compared to MTL.

• When the number of domains, K, is massive, the pre-train fine tuning approach and

model driven approaches, such as expert based adaptation, are preferable with respect

of training time.

• When there exists K existing domains and no annotation is available in DT , the choice

is zero-shot approaches with the expense of providing meta-information such as slot

and intent descriptions.

Figure 3.3: Example of zero-shot predictions for slot filling in an utterance. Prediction is

performed on a per slot basis. Figure is taken from Liu et al. (2020b).

• Typically zero-shot models perform prediction on a per-slot basis (Figure 3.3). Given

3Similar to Anaby-Tavor et al. (2020) but instead of using ”y SEP” prompt for generation, they add

more context words i.e., ”y SEP w1w2w3”
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Method Auxiliary Requirements

Transfer Learning

Jaech et al. (2016) Multi-Task Learning Labeled conversational slot filling DS

Goyal et al. (2018) Pre-train & Fine-Tuning Labeled conversational slot filling DS

Siddhant et al. (2019) Pre-train & Fine-Tuning Unlabeled conversational DS

Labeled conversational slot filling DS

Kim et al. (2017) Expert model Labeled conversational slot filling DS

Pre-trained models on DS

Jha et al. (2018) Expert model Coarse-grained labeled conversational

slot filling DS

Pre-trained models on DS

Bapna et al. (2017) Train on DS only (zero-shot) Labeled conversational slot filling DS

Natural language description of slot names

Lee and Jha (2019) Train on DS only (zero-shot) Labeled conversational slot filling DS

Natural language description of slot names

Shah et al. (2019) Train on DS only (zero-shot) Labeled conversational slot filling DS ,

Natural language description of slot names

Slot value examples

Guerini et al. (2018) Train on DS only (zero-shot) Slot value examples

Data Augmentation

Kurata et al. (2016b) Model based DA —

Hou et al. (2018b) Rule, Model based DA —

Zhao et al. (2019) Model based DA Intent and slot Value Template

Yoo et al. (2019) Model based DA —

Peng et al. (2020) Model based DA Unlabeled conversational DS

Pre-trained GPT-2

Anaby-Tavor et al. (2020) Model based DA Pre-trained GPT-2

Kumar et al. (2020) Model based DA Pre-trained BART, BERT, GPT-2

Table 3.7: Comparison of transfer learning and data augmentation approaches on domain

scaling focusing on the methods and their auxiliary requirements. For more comparison

in terms of the neural models, evaluated tasks, and type of augmentation, see Table A.1

.

an utterance and K possible slots, prediction is performed K times. Consequently, a

token in the utterance can be classified into more than one slot. For example, in Figure

3.3, the word “tune” can be predicted as Playlist and Music Item slots which add more

difficulties for the final prediction (Liu et al., 2020b). In addition to that, per-slot
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prediction can also be computationally inefficient, especially when there are many slots

and utterances to process.

Takeaways on scaling to new domains with data augmentation.

• While numerous methods have been proposed, they share similar goals that are to

generate meaning-preserving and diverse synthetic utterances.

• There are different granularities in which the augmentation is applied: on the word-level

or sentence-level.

• Recent approaches typically use pre-trained language models such as GPT-2, BERT to

perform contextual augmentation. Being pre-trained on massive data, pre-trained LMs

may produce words that do not appear in DT . Moreover, as the pre-training task is a

language model task, pre-trained LMs can produce words that fit in the context of the

original utterance. However, it is still relatively challenging to generate label-preserving

utterance or slot values.

• Another drawback of data augmentation is that it increases the training time of the NLU

model as we add synthetic utterances. In addition to that, model-based approaches

consist of several stages, such as ranking or filtering utterances to improve diversity

and preserve original meaning, which can contribute to more training time.

3.6.2 Cross-Lingual NLU

As we have described in Section 1.3, most NLU approaches are focused on major lan-

guages, e.g., English, and it is still a challenge in NLU, or even other dialogue sub-tasks

is to achieve multilingual ToD systems that support many languages. As the supervised

learning model obtains the best performance in NLU, the bottleneck is to obtain a suf-

ficiently large labeled dataset for many languages. Collecting sizeable labeled data for

many languages is infeasible. This data scarcity drives most NLU research towards cross-

lingual transfer (zero-shot or few shots) approaches. In zero-shot cross-lingual transfer,

it is typically assumed that only a high-resource language, e.g., English labeled data is

available for training the model and transfer directly to other languages. This section

reviews existing approaches on cross-lingual NLU.

Transfer Learning via Cross-Lingual Word Embedding. Upadhyay et al. (2018)

uses the monolingual embedding from fastText(Bojanowski et al., 2017) and project em-
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beddings from two different languages into a shared semantic space to produce bilingual

embeddings through a linear transformation (Smith et al., 2017). After that, they train

an NLU model using the bilingual embeddings on the English labeled data and perform

the zero-shot evaluation. Liu et al. (2019c) refines a cross-lingual word embeddings from

Joulin et al. (2018) using a self-learning framework (Artetxe et al., 2017) by providing a

small number of English in-domain lexicon. In their subsequent work Liu et al. (2020c)

uses their refined cross-lingual word embedding and add label regularization method to

improve the cross-lingual alignment. They do this by taking into account the slot label

sequence to produce better utterance representation. The intuition is that if two utter-

ances have a similar slot label sequence, then both utterances have a similar meaning as

well.

Transfer Learning via Massive Multilingual Transformer (MMT) Model. Sev-

eral works have investigated the multilingual aspect of a pre-trained multilingual pre-

trained model such as multilingual BERT (mBERT) (Devlin et al., 2019) and XLM-R

(Lample and Conneau, 2019). These models are trained on a concatenated unlabeled data

from multiple languages. For example, mBERT is trained on Wikipedia data from 104

languages. Despite no cross-lingual supervision and rely on a language modeling objective,

multilingual pre-trained models have shown potential for zero-shot cross-lingual transfers

on NER, POS tagging, dependency parsing, and Natural Language Inference tasks (Wu

and Dredze, 2019; Pires et al., 2019). Motivated by these developments, recently, the

default baseline approach for zero-shot cross-lingual has been fine-tuning a multilingual

pre-trained model such as mBERT (Devlin et al., 2019), XLM-R (Lample and Conneau,

2019) on the English labeled dataset. Despite its potential for zero-shot transfer, it is

known that MMT is less effective to distant target languages —from English— and for

languages that have less amount of data for pre-training (Lauscher et al., 2020).

Improving Contextual Cross-Lingual Representation. As MMTs, such as mBERT,

XLM-R, do not include cross-lingual alignment between languages in the pre-training

stages, recent approaches have been focusing on injecting cross-lingual supervision to

improve performance on the cross-lingual transfer tasks. Most methods are characterized

by different resource requirements such as the availability of parallel data or machine

translation model and in which stages the cross-lingual supervision occurs, such as during

fine-tuning or pre-training or in between the two stages. Schuster et al. (2019a) uses a

Neural Machine Translation (NMT) system to produce utterances on the target language.
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Then annotation projection is performed to project slot labels from the original utterance

to the target utterance. For the annotation projection, they use the attention weights of

their NMT system. Xu et al. (2020) also uses an NMT system to generate utterances on

the target language. However, instead of using attention weights of the NMT, they propose

an end-to-end model that learns the slot alignments through an attention module and also

reconstructs the original utterance. Kulshreshtha et al. (2020) compares several cross-

lingual alignment methods with different cross-lingual sources such as bilingual dictionary

and parallel corpus. They report that fine-tuning mBERT on a word alignment task from

a parallel corpus significantly improves zero-shot transfer on several downstream tasks,

including slot filling. van der Goot et al. (2021) use multi-task learning to compare

the usefulness of several auxiliary tasks namely Mask Language Modeling (MLM), Neural

Machine Translation (NMT), and Universal Dependency (UD) parsing for zero-shot NLU.

They found that multi-task with Mask Language Modeling (MLM) is the most robust for

slot filling but it does not help intent classification.

Data Augmentation. Another line of work on improving cross-lingual representation

involves data augmentation approaches to generate code switched data in which two or

more languages are used in the same utterance. Qin et al. (2020a) improves the multilin-

gual representation of mBERT by replacing words in the English utterance with a word

from one of the target languages during fine-tuning. They define a threshold ratio that

controls how many sentences and words are replaced during the fine-tuning stage. Liu

et al. (2020a) also performs selective code-switching (CS) by using attention weights to

choose which words to be replaced. Both approaches (Qin et al., 2020a; Liu et al., 2020a)

use a bi-lingual dictionary to look up the substitute words.

Summary. In this subsection, we have surveyed the literature related to cross-lingual

NLU, focusing on zero-shot cross-lingual. Similar to the domain scaling problem, zero-

shot cross-lingual NLU also adopts transfer learning and data augmentation techniques.

Overall, most of the approaches can be characterized by the method to improve the

cross-lingual representation and its auxiliary requirements. Table 3.8 summarizes the

comparison across approaches.

Takeaways on zero-shot cross-lingual NLU.

• In terms of SF and IC performance, methods that give the best performance typically

involve the translate and train method combined with slot labels projection (Schuster
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Method Auxiliary Requirements

Upadhyay et al. (2018) Embedding alignment Monolingual word embedding

Liu et al. (2019c) Embedding alignment Cross-lingual word embedding

Slot value examples

Liu et al. (2020a) Code switching Bilingual dictionary

via attention

Liu et al. (2020c) Label regularized Cross-lingual Word Embedding

alignment

Schuster et al. (2019a) Translate + Train MT Model, pre-trained MMT

Annotation Projection

Xu et al. (2020) Translate + Train MT Model, pre-trained MMT

E2E Projection

Kulshreshtha et al. (2020) Embedding alignment Pre-trained MMT

Parallel corpus

Bilingual dictionary

Word aligner

Qin et al. (2020a) Code switching Bi-lingual dictionary

Table 3.8: Comparison of zero-shot cross-lingual NLU approaches focusing on the method

and its auxliary requirements.

et al., 2019a; Xu et al., 2020). These methods require the availability of MT models

for each target language.

• The current de-facto approach for zero-shot cross-lingual NLU is to fine-tune MMT

such as BERT and XLM-R on the English SF and IC datasets. Given that no cross-

lingual supervision is performed during the pre-training of an MMT, many methods

have been proposed to improve MMT’s cross-lingual representation. These methods

include cross-lingual embedding alignment leveraging a bi-lingual dictionary or parallel

corpus before MMT fine-tuning and code-switching during the fine-tuning stage.

• In the case of MMT fine-tuning, it could be the case that using English as the source

of transfer is not always optimal in zero-shot settings. Providing a small number of

examples (few-shot) may yield a larger benefit than zero-shot as suggested by Lauscher

et al. (2020).
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3.7 Conclusion & Context on Contributions

In this chapter we have introduced in more detail both the background and the definition

of NLU in the context of ToD which is based on intent classification and slot filling

tasks. Several neural NLU models have been proposed, which can be categorized into

independent and joint models. As shown in Table 3.6, the performance of these state-

of-the-art models on standard benchmark datasets such as ATIS and SNIPS have been

relatively saturated. Evaluation on these standard benchmarks is typically performed

by training an individual model, which assumes that sizeable training data is available

for each dataset. However, as we have described in §3.6 new domains and languages

are regularly added to ToD systems, and adding relatively large labeled data for each

new domain and language is expensive. Therefore, methods to scale NLU models to new

domains and languages with limited labeled data (low-resource) are necessary.

We have described various research efforts to solve low-resource NLU through trans-

fer learning and data augmentation. Approaches can be characterized by their specific

methods, such as multi-task learning, pre-train & fine tuning, model based augmentation,

etc., and by assuming the availability of auxiliary requirements, such as the availability

of labeled conversational dataset on source domains, pre-trained language models, unla-

beled conversational data, machine translation models etc. (Table 3.7 and Table 3.8).

The contributions of this thesis, C1, C2, C3 from §1.4 are built based on top of existing

studies on transfer learning and data augmentation for low-resource NLU.

On the contribution C1 Leveraging Non-Conversational Text As a Source of Transfer

(Chapter 4), we investigate an alternative auxiliary data that can be used for low-resource

NLU, specifically slot filling tasks. From Table 3.7 it is evident that labeled conversa-

tional dataset in the source domain is typically assumed to be available as auxiliary data.

While this assumption is reasonable, it does not cover the cold-start situation in which no

labeled conversational dataset is available as auxiliary data. To this end, in our work for

C1, we investigate the effectiveness of using non-conversational text which is annotated

with semantically similar tasks with slot filling as auxiliary data. For the contribution

C2 Generating Additional Labeled Data via Lightweight Augmentation (Chapter 5), in

contrast to existing data augmentation methods in Table 3.7 that are model-based, we

propose a set of simple yet effective augmentation operations. We consider our augmen-

tation operations as lightweight augmentation as they do not require training a separate
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deep learning model to generate synthetic data. The contribution C3 Continued Pre-

training for Zero-shot Cross Lingual NLU (Chapter 6) is related to zero-shot cross-lingual

NLU. The default approach for zero-shot cross-lingual NLU involves fine-tuning a mas-

sive multilingual transformer (MMT) pre-trained model (Table 3.8) on the English labeled

dataset. We investigate the benefit and analyze important factors of continued domain

adaptive pre-training on intermediate unlabeled data before the fine-tuning stage.
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Chapter 4

Leveraging Non-Conversational Text

As we have seen in §3.6.1, transfer learning is one of the standard methods used for

domain scaling with limited labeled data on task-oriented NLU. Approaches in transfer

learning can be characterized by the adaptation technique, e.g., multi-task learning, pre-

train fine-tuning, and auxiliary requirements that are assumed to be available, e.g., labeled

conversational slot filling data (Table 3.7).

This chapter discusses our investigation on alternative auxiliary data that is used on

a transfer learning method for low-resource slot filling1. We examine a setting where

no conversational slot filling data is available as the source of transfer (cold start). To

this end, we leverage non-conversational text (contribution C1), which is annotated with

similar tasks as slot filling, through multi-task learning (MTL) (Louvan and Magnini,

2019) (§4.1 - §4.4). Furthermore, we investigate whether performing data selection on the

auxiliary data before MTL can further boost performance (Louvan and Magnini, 2020a)

(§4.5).

4.1 Introduction

Existing works in low-resource slot filling are mostly based on transfer learning (Mou

et al., 2016), whose aim is to leverage relatively large resources in a source domain (DS)

1We have related preliminary work in (Louvan and Magnini, 2018a,b) but in this chapter we focus on

(Louvan and Magnini, 2019) and (Louvan and Magnini, 2020a)
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Sentence what is the most expensive flight from boston to dallas

ATIS Slot O O O B-COST REL I-COST REL O O B-FROM LOC O B-TO LOC

NER O O O O O O O B-GPE O B-GPE

SemTag B-QUE B-ENS B-DEF B-TOP B-IST B-CON B-REL B-GPE O B-GPE

Table 4.1: An example of slot filling annotation from the ATIS (Airline Travel Information

System) dataset and author-annotated NER and SemTag in IOB format (Ramshaw and

Marcus, 1995a). Some ATIS slots correspond to NER or SemTag labels, such as FROM LOC

and TO LOC with GPE in NER and SemTag. Some slot tags can also be composed of several

SemTag labels such as COST REL which is composed of TOP (superlative positive) and IST

(intersective adjective).

for a source task (TS), to help a task (TT ) in a target domain (DT ), where less data are

available. As described in §3.6.1, depending on how the adaptation is performed, there

are two notable approaches: data-driven adaptation (Jaech et al., 2016; Goyal et al.,

2018; Kim et al., 2016), and model-driven adaptation (Kim et al., 2017; Jha et al., 2018).

Essentially, both approaches produce a model on the target domain performing training on

the same task (slot filling, in our case), i.e., assuming (TS = TT ), although from different

domains, i.e. (DS 6= DT ). All of these approaches assume that slot filling datasets for the

source domain are available, and little effort has been devoted in finding and exploiting

cheaper TS, which is crucial in a situation where a slot filling dataset in DS is not ready

yet (cold-start).

Accordingly, we attempt to leverage non-conversational source tasks (TS 6= TT ) i.e.,

tasks that use widely available non-conversational resources, to help slot filling. These

resources are cheaper to obtain compared to domain-specific slot filling datasets, and

many of them are annotated with rich linguistic knowledge, which is potentially useful

for slot filling (Chen et al., 2016). Among these resources, we mention PropBank (Palmer

et al., 2005) and FrameNet (Baker et al., 1998), which consist of annotated documents

with verb and frame-based semantic roles, respectively; CoNLL 2003 (Sang and Meulder,

2003) and OntoNotes (Pradhan et al., 2013), which provide named entity information;

and Abstract Meaning Representation (AMR) (Banarescu et al., 2013), which provides a

graph-based semantic formalism.

In this work, we leverage non-conversational tasks as auxiliary tasks in a multi-task
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learning (MTL) (Caruana, 1997) setup. Given appropriate auxiliary tasks, MTL has

shown to be particularly effective in which labeled data is scarce and has been applied to

various NLP tasks such as parsing (Søgaard and Goldberg, 2016a), POS tagging (Yang

et al., 2016), neural machine translation (Luong et al., 2016), and opinion role labeling

(Marasovic and Frank, 2018). While there are potentially many non-conversational tasks

that we can use as auxiliary tasks, we focus on those that assign semantic class categories

to a word, as they are similar in nature to slot filling. In particular, in this work we

choose Named Entity Recognition (NER) and the recently introduced Semantic Tagging

(SemTag) (Abzianidze and Bos, 2017), motivated by the following rationales:

• Both NER and SemTag are semantically related to slot filling. As illustrated in

Table 4.1, slot labels may correspond to either NER or SemTag labels. In addition,

SemTag complements NER as its labels subsume NER labels, and thus could be

useful to address linguistic phenomena (e.g. comparative expression, intersective

adjective) relevant for slot filling and that are beyond named entities.

• Both NER and SemTag can be re-used in many slot filling domains. Labels in both

tasks are typically more general (coarse-grained) compared to labels in slot filling.

• The resources for both tasks are cheaper to obtain compared to domain-specific slot

filling datasets, as there have been several initiatives in constructing large datasets

for NER and SemTag, for example OntoNotes (Pradhan et al., 2013) and Parallel

Meaning Bank (PMB) (Abzianidze et al., 2017) respectively. This is beneficial in a

cold-start situation in which no slot filling dataset is already available in DS.

Although NER has been already used in slot filling models, most of these approaches

(Mesnil et al., 2013, 2015; Zhang and Wang, 2016; Gong et al., 2019; Louvan and Magnini,

2018b) use and incorporate ground truth NER labels or output of NER systems as features

to train a slot filling model, our work differs in the method of learning and leveraging

such features from disjoint datasets through MTL and evaluating the performance in

low-resource settings.

Our contributions are:

• We propose to leverage non-conversational tasks, namely NER and SemTag, to im-

prove low-resource slot filling through MTL; to our knowledge this MTL combination
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has not been explored before.

• We show that MTL models with NER and SemTag strongly improve single-task slot

filling models on three well known datasets.

While we focus on using NER and SemTag, our study has shed light on the potential use

of non-conversational tasks in general to help low-resource slot filling.

4.2 Approach

Slot filling is often modeled as a sequence labeling problem. Given a sequence of words

x = (x1, x2, ..., xn) as input, a model M predicts the corresponding slot labels y =

(y1, y2, ..., yn) as output.

4.2.1 Base Model

State-of-the-art models on sequence labeling are typically built based on bi-directional

LSTM (bi-LSTM), on top of which there is a CRF model (Lample et al., 2016; Ma and

Hovy, 2016). The bi-LSTM takes x as input and each word xi is represented as an

embedding ei = [wi; ci] composed of the concatenation of a word embedding wi and

character embeddings ci. The bi-LSTM layer produces the forward output state
−→
hi and

the backward output state
←−
hi . The concatenation of the output states, hi = [

−→
hi ;
←−
hi ], is

then fed to a feed-forward (FF) layer, followed by a CRF as the final output layer that

predicts a slot label yi by taking into account the mixture of context information captured

by the last FF layer and the slot prediction yi−1 from the previous word.

4.2.2 Multi-task Learning Models

In the context of MTL, models for TS, often referred as auxiliary tasks, and for TT ,

referred as the target task, are simultaneously trained (Yang et al., 2017). In order to

perform adaptation, the MTL model M is partitioned into task-specific parts (MTS and

MTT ) and task-shared-parts (MTS∩TT ). We use two notable MTL architectures:
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Figure 4.1: Multi-task learning (MTL) models: MTL Fully Shared Network (Left) and

Hierarchical MTL (Right).

• MTL-Fully Shared Network (MTL-FSN). This architecture has been explored

in NLP including for sequence tagging tasks (Collobert et al., 2011; Søgaard and

Goldberg, 2016b; Plank et al., 2016; Changpinyo et al., 2018). The word and char-

acter embeddings, and the bi-LSTM layers, are parts ofMTS∩TT . The hidden state

outputs of the bi-LSTM are passed to each of the CRF output layers in MTS and

MTT . During training a mini-batch of a particular task, the output layers of other

tasks are not updated.

• Hierarchical-MTL (H-MTL). Inspired by (Søgaard and Goldberg, 2016a; Sanh

et al., 2019), we introduce a hierarchy of tasks in M to create different levels of

supervision. Instead of placing the output CRF layers for all tasks after the shared

bi-LSTM layer, we add a task-specific bi-LSTM in MTT after the shared bi-LSTM

and then attach the output layer. In other words, we supervise TS, which have

coarse-grained labels in the lower level output layer and TT , which has more fine-

grained labels in the higher level output layer.

4.3 Experiments

The main objective of our experiments is to validate the hypothesis that using non-

conversational tasks as auxiliary tasks in a MTL setup can help low-resource slot filling.

In our MTL configuration, the target task (TT ) is slot filling, and the auxiliary tasks
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(TS) are set to NER or SemTag or both.

Baselines. We compare the two MTL approaches (see §4.2.2) with the following base-

lines:

• Single-Task Learning (STL). The base model is directly trained and tested on

TT , without incorporating any information from TS. The base model (see §4.2.1) is

a bi-LSTM-CRF which is the core of many models for slot filling (Goo et al., 2018;

Wang et al., 2018a; Liu and Lane, 2016b) and sequence tagging tasks in general.

• STL + Feature Based (STL + FB). The same model as STL but incorporating

the outputs of the independently trained NER and SemTag models as an additional

feature in the input embeddings. The features are added by concatenating them

with the original input embedding.

Datasets. The language of all the datasets that we use is English. We evaluate our

approach on three slot filling datasets, namely ATIS (Price, 1990), MIT Restaurant, and

Movie (Liu et al., 2013). ATIS is a widely used dataset for spoken language understanding

which contains utterances requesting flight related information. While MIT Restaurant

and Movie contain utterances requesting information related to restaurants and movies.

For NER, we use the newswire section of OntoNotes 5.0 (Pradhan et al., 2012), which

is compiled from English Wall St. Journal. For SemTag, we use Parallel Meaning Bank

(PMB) (Abzianidze et al., 2017) 2.2.0. The PMB dataset is constructed from twelve differ-

ent sources, including OPUS News Commentary (Tiedemann, 2012), Tatoeba2, Sherlock-

Holmes stories, Recognizing Textual Entailment (Giampiccolo et al., 2007), and the bible

(Christodoulopoulos and Steedman, 2015). Following the previous publication related to

SemTag (Abzianidze and Bos, 2017), we train the SemTag model using the silver data3

and test on gold data. For all datasets, we use the provided train/dev/test splits. Table

4.2 and Table 4.3 shows the overall statistics of each dataset and example sentences and

their annotation, respectively. To simulate the low-resource settings, in all experiments

we only use 10% randomly sampled training data on TT .

Training. We do not tune the hyperparameters4 but follow the suggestions and adapt

2https://tatoeba.org/eng/
3The silver data consists of the documents tagged with semantic parser from (Bjerva et al., 2016) and

some manual corrections
4The hyperparameters are listed in Table A.5
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Dataset Task #train #dev #test #label

ATIS Slot Filling 4478 500 893 79

MIT Restaurant Slot Filling 6128 1532 3385 8

MIT Movie Slot Filling 7820 1955 2443 12

OntoNotes 5.0 NER 34970 5896 2327 18

PMB SemTag 67965 682 650 73

Table 4.2: Statistics about the datasets, reporting the number of sentences in

train/dev/test set, and the number of labels.

Dataset Example

ATIS Do you have a [United]Airline flight from [Boston]Origin

MIT Restaurant I would like to find a [Chinese buffet]Cuisine

MIT Movie Did [Sofia Coppola]Director direct any adventure films

OntoNotes 5.0 A rescue team found [Uchikoshi]Person on

[the thirty first of last October]Date

PMB [Lucy]Person [can′t]Negation [use]PresentSimple [chopsticks]Concept

Table 4.3: Example sentences for each dataset and its annotation

the implementation of Reimers and Gurevych (2017)5. The MTL models are trained in

an alternate fashion (Jaech et al., 2016) between TT and TS. Consequently, as the training

data size of TS is larger than TT , the same TT data is reused until the whole TS is used

in the training. We evaluate the performance by computing the F1-score on the test set

using the standard CoNLL-2000 evaluation6.

4.4 Results and Discussion

Overall Performance. Table 4.4 lists the overall performance of the baselines and of

the MTL models. We report the average F-1 score and also the standard deviation, as

recommended by Reimers and Gurevych (2018), over three runs from different random

5https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
6https://www.clips.uantwerpen.be/conll2000/
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Model
TS TT

ATIS MIT-R MIT-M

STL - 87.910.56 67.370.26 80.710.63

STL+FB - 87.790.67 67.270.64 80.560.54

MTL-FSN N 89.560.16 68.820.18 80.770.13

S 89.190.26 68.210.71 80.570.32

N,S 89.100.41 68.210.43 79.690.33

H-MTL N 89.170.33 69.221.00 81.790.26

S 88.960.41 69.090.24 81.590.17

N,S 88.780.37 68.960.50 81.150.25

Table 4.4: Average F1-score and standard deviation (numbers in subscript) of the perfor-

mance on the test sets. For the TT training split, only 10% data is used. Bold indicates

the best score for each TT . N and S in TS denote NER and SemTag, respectively.

seeds. For all TT , it is evident that the MTL models with NER or SemTag combinations

yield the best results compared to STL. MTL models also outperform the STL + FB

baseline, indicating that training the model simultaneously with the auxiliary task is

better than incorporating the output of the independently trained auxiliary models as

features for the slot filling model. In terms of the effectiveness of the auxiliary tasks, using

NER produces the best results compared to the other TS combinations. The difference

between MTL with NER and MTL with SemTag is marginal, however, on all cases NER is

more beneficial as an auxiliary task than SemTag. Combining both NER and SemTag as

auxiliary tasks tends to perform worse than MTL with one auxiliary tasks. We hypothesize

that for the model architecture that we use, it becomes more difficult to handle larger

label set, for example, the number of label of SemTag is four times larger than NER and

also the variation of text in SemTag is more diverse as the Parallel Meaning Bank corpus

is constructed from twelve different sources.

Regarding the MTL models, in most cases, the performance of MTL-FSN and H-

MTL are comparable. The most evident gap between H-MTL and MTL only shows on

the MIT-M dataset in which H-MTL surpass corresponding MTL-FSN more than 1 F1
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TT
Concept Model

STL MTL

ATIS LOC 94.740.37 95.820.34

ORG 92.520.89 93.370.29

MIT-R LOC 75.290.46 76.020.39

MIT-M PER 85.040.24 84.580.56

Table 4.5: Performance on slots related to person (PER), location (LOC), and organiza-

tion (ORG) concepts. We use the best MTL from Table 4.4 for each TT .

points with relatively small standard deviation. Although on MIT-R, H-MTL obtains the

best result i.e., 69.22 vs 68.22 from MTL-FSN, the standard deviation is relatively high

on this specific case.

Slot-wise Performance. One of our motivations for using NER and SemTag is that

their labels are coarse-grained, and that they can be re-used for several slot filling do-

mains. We are interested to see whether MTL improves the performance of slots related

to these coarse-grained concepts. In order to do this, we manually created a mapping7

from the slots to some coarse-grained entity concepts used by CoNLL-2003 (Sang and

Meulder, 2003) including Person, Organization, and Location. For example, in ATIS, the

slot airline name is mapped to Organization, the slot fromloc.city name is mapped to

Location, etc. We perform the analysis on the dev set by re-running the evaluation based

on the mapping. Results in Table 4.5 show that in ATIS and MIT-R, MTL brings im-

provements on slots related to Location and Organization. However, MTL does not help

in slots related to Person names in MIT-M. Based on our observation on the prediction

results, most errors come from misclassifying director slots as actor slots. We sample

10 sentences in which the model makes mistakes on director tag. Of these sentences,

four sentences are wrongly annotated. Another four sentences are errors by the model

although the sentence seems easy, typically the model is confused between director and

actor. The rests are difficult sentences. For example, the sentence: “Can you name Akira

Kurusawas first color film”. This sentence is somewhat general and the model needs more

information perhaps access to an external knowledge base to discriminate between actor

7We provide the mapping in Table A.2 and A.3
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and director to classify the entity “Akira Kurusawas”.

Figure 4.2: Gain (∆F1) obtained using MTL over STL on increasing training data.

Positive numbers mean MTL is better, negative numbers mean MTL is worse. We use

the best MTL from Table 4.4 for each TT .

Performance Gain on Increasing Data Size. We also carried on an experiment by

increasing the amount of training data on TT , and evaluated the performance on the dev

set to understand the usefulness of MTL on varying data size. As shown in Figure 4.2,

as we increase the size of the training data, the gain that we obtain using MTL tends

to decrease. The results suggest that MTL is indeed more useful in very low-resource

scenarios, according to our initial hypothesis. After 40% training data size is used (around

2K utterances), MTL is less useful. We believe that this is because the slot filling datasets

are relatively simple, e.g. the texts are short and most of them express a single specific

request, thus, it is relatively easy for the model to capture the regularities.

Impact on Auxiliary Tasks Performance. We also perform an analysis to understand

the effect of MTL to the model performance for TS . The STL performance of OntoNotes

and Semantic Tagging are around 89% and 96% respectively in terms of F1-score. With

MTL, on average, the TS model performance decrease about 0.7 points for OntoNotes and

0.2 points for Semantic Tagging. This suggests that TS models do not benefit from the

low-resource TT through the MTL framework and the training mechanism that we use.

In general, whether MTL can benefit model performance in a target task given auxiliary

tasks (or vice versa) is still a question and beyond the scope of this work. While there is
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no exact answer yet for this question, we refer to (Bingel and Søgaard, 2017; Alonso and

Plank, 2017) which study the characteristics of auxiliary tasks that is potential to help

target task performance.

4.5 Data Selection

In the previous section we have shown that on the absence of conversational auxiliary

text, non-conversational text as the source data may help low-resource NLU. We leverage

non-conversational tasks, tasks that use widely available non-conversational text, through

multi-task learning (MTL). While the results are positive in most cases, we seek a way to

improve the MTL performance further by mitigating the distribution mismatch (Rosen-

stein, 2005) between the non-conversational source data and the conversational target

data.

One solution to alleviate the impact of the mismatch is using data selection, a process

for selecting relevant training instances from the source data. Data selection has been

applied in the context of domain adaptation to address changes in the data distribution

for various NLP tasks, such as sentiment analysis and POS Tagging (Ruder and Plank,

2017a; Liu et al., 2019a), machine translation (Axelrod et al., 2011) and Named Entity

Recognition (NER) (Murthy et al., 2018; Zhao et al., 2018). To our knowledge, all existing

previous works apply data selection to different domains, while maintaining the same task

(TS = TT , DS 6= DT ).

In our context, we aim to investigate the benefit of data selection in a more complex

setting, where we have not only different domains (DS 6= DT ), but also different tasks

(TS 6= TT ). Intuitively, such setting may bring advantage in situations where large training

data are available for a task TS , and we want to exploit such data for a different (although

related) task TT , where much less training is available. We experiment with the situation

where TS is Named Entity Recognition (NER) on a general domain, where several datasets

are available, and TT is slot filling in the context of utterance interpretation for dialogue

systems, where much fewer data are available. Both of the tasks are poorly investigated

in data selection (to our knowledge there is no previous work on slot filling), and there is

no consensus about the benefit of data selection for them.
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We propose an experimental framework where we can compare data selection settings

with an increasing level of complexity. We first consider data selection where NER is both

the source and target task, and apply transfer learning from different domains: we call this

setting Same Tasks from Different Domains (STDD) (§4.5.3), TS = TT and DS 6= DT .

In a second, more complex setting, we consider NER as the source task and slot filling

as the target: this is called TS 6= TT and DS 6= DT , Different Tasks from Different

Domains (DTDD) (§4.5.4). In this scenario, as we have disparate label space between

the source and the target task, we combine the data selection process with multi-task

learning (MTL). To our knowledge, this combination has received very little attention in

the literature.

4.5.1 Framework

In general, the goal of data selection is to select an optimal subset of training instances,

X∗S, from all the available data XS in TS , to be used for training the model for the target

taskMTT . Given the source data XS = {xS1 , xS2 , ..., xSn}, each instance is ranked according

to a score S and the top m examples are then used to train MTT .

We apply the data selection approach from Ruder and Plank (2017b), based on

Bayesian Optimization (BO) (Brochu et al., 2010), to evaluate the effectiveness of data

selection on both the STDD and DTDD scenarios. Specifically, for DTDD we combine

data selection and multi-task learning. Given XS, the framework performs data selection

based on a score S derived from a set of features. The top m examples are then used to

trainMTT . In case of STDD, theMTT is a single task sequence tagging model, where we

use a biLSTM-CRF model (§4.2.1). As for DTDD,MTT is the MTL-FSN model (§4.2.2).

The performance on the validation set of the target task is then used by the BO optimizer

to update the weight of the scoring features. The overall framework is shown in Figure

4.3.

Following Ruder and Plank (2017b), the selection process is based on a score S com-

puted as the linear combination of weighted features, which include both similarity and

diversity features: Sθ(x) = θ> · φ(x), where θ represents the weight for each feature and

φ(x) denotes the feature values of each instance x. The features are calculated between

the representation of XS instances and XT . We use term distribution as the representation
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Figure 4.3: Overall Data Selection Framework

of the instances. We use the same similarity and diversity measures as Ruder and Plank

(2017b). The weights θ are learned through BO by taking into account the performance

on the validation set when selecting a particular subset of XS. The score S is computed

for each x in XS, and then the top m examples are selected for training theMTT model.

The loss value L from theMTT in the validation set is used by BO as a feedback to select

the next points for θ.

4.5.2 Experiments

We systematically investigate how data selection is effective when applied on both the

STDD and DTDD scenarios. We address two semantic sequence labeling tasks: Named

Entity Recognition (NER) and slot filling (SF).

Datasets. For NER we use the OntoNotes 5.0 dataset that we use in MTL experiments

(§4.3) but with additional sections. These sections include newswire (NW), talkshows

broadcast (BC), telephone conversation (TC), news broadcast (BN), articles from web

sources (WB), and articles from magazines (MZ). We use different OntoNotes sections as

different domains in our experiments. The overall statistics of each section is shown in

Table 4.6. As for SF dataset, we use the same datasets (Table 4.2) as our previous MTL

experiments, namely ATIS, MIT-R, and MIT-M.

Data Selection Configurations. We make use of the selection framework described

in Section 4.5.1, and apply three Bayesian Optimization data selection (BODS ) configu-
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Dataset #train #dev #test #label

OntoNotes NW 34970 5896 2327 18

OntoNotes BC 11879 2117 2211 18

OntoNotes TC 12891 1634 1366 18

OntoNotes BN 10683 1295 1357 18

OntoNotes WB 16598 2316 2307 18

OntoNotes MZ 6911 642 780 18

Table 4.6: Statistics about the NER datasets used in the experiments for data selection.

The language of the datasets is English.

rations, according to whether we use features both for similarity and diversity (DSsim,div),

similarity features only (DSsim), or diversity features only (DSdiv). We compare the three

configurations with the following baselines:

• All source, which uses all the data from TS .

• Random, which selects random data from TS .

• DSmap,full. We provide a manual mapping from NER labels to SF labels (Table A.2).

A sentence from TS is selected is if all the NER occurrences have a mapping to a

slot in TT .

• DSmap,partial. A sentence from TS is selected if at least one of the NER occurrences

in the sentence has a mapping to a slot label in TT .

Training Settings. We follow most of the hyperparameters8 as recommended by Reimers

and Gurevych (2018). We train the model for TS and TT in an alternating fashion. We use

early stopping on the dev set performance of TT . For the model performance evaluation,

we calculate the F1-score using the standard CoNLL script9. For all experiments, we

report the average F1 score results from 10 runs with different seeds. We follow Ruder

and Plank (2017b) for most configurations of the optimizer (Table A.7), and run 50

iterations. For both the STDD and DTDD scenarios, we select top 50%10 examples

8Appendix A.6 reports all used hyperparameters.
9https://www.clips.uantwerpen.be/conll2000.

10We tune from 10% to 50% on the dev set.
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from XS. For MTL we adapt the implementation from Reimers and Gurevych (2017),

extending the Bayesian Optimization data selection framework from Ruder and Plank

(2017b) to support MTL.

4.5.3 STDD Scenario: TS = TT ,DS 6= DT

This scenario is the same setup as Ruder and Plank (2017b), where we use the same tasks

both for the source and the target task from different domains, except that we apply the

data selection to a semantic sequence tagging task namely NER. In this scenario, we use

NER both for the source and the target task. The target domain is one of the three

OntoNotes sections namely NW (news), TC (telephone conversation) and BC (mixed of

conversation and broadcast) while as source domain (DS) we use all available sections in

OntoNotes except the one used as the target domain. We only use 10% of training data

for the target domain to simulate limited data settings. At the end of the data selection

process, we select the top 50% sentences from DS using the best feature weights learned

with the Bayesian Optimizer.

Method TC NW BC

Baseline

All source 63.174.75 79.08†0.42 73.422.13

Random 62.024.47 77.930.54 71.392.12

BODS

DSsim,div 61.714.57 76.990.40 72.601.14

DSsim 61.453.80 78.300.41 73.441.12

DSdiv 61.653.77 78.320.53 71.891.53

Table 4.7: Average F1-score and standard deviation on the test set. † indicates significant

differences (p < 0.05) between the best BODS approach and the best baseline.

Table 4.7 compares the performance of the baselines with the selection-based ap-

proaches. In general, we do not observe clear advantages of data selection methods over

the baselines, especially the all source data baseline. Using all source data yields the most

competitive results almost in all cases. The only case in which DS surpasses the all source

baseline is on the BC domain but only for a tiny gain. For NW and BC domains, some
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DS methods show clear advantages over the random baseline, but still worse than using

all source data.

We want to see whether the distance between domains may characterize the perfor-

mance of the data selection. For this purpose we quantify the domain similarity between

each pair DS and DT with Jensen Shannon Divergence (JSD) (Lin, 1991). We compute

the JSD between the term distribution of DS and DT . The average JSD of each target

task with respect to the source tasks are 0.80 (TC), 0.86 (NW), and 0.87 (BC)11. We

observe that the higher the JSD is, the more beneficial is the data selection for the target

task. BC, which has the highest JSD average, benefits the most from the data selection.

On the other hand, TC with the lowest average similarity, has the largest gap between

the baseline and the best DS methods (−1.4 F1 point).

Based on our experiments, for the STDD scenario we observe that:

1. In most of the cases, DS methods are inferior to the all source baseline. Yet, each

domain has a different selection metric configuration that performs the best. This

observation suggests that the hypothesis from Ruder and Plank (2017b) i.e., different

tasks or even different domains demand a different notion of selection metric, is also

applicable to semantic sequence tagging tasks such as NER.

2. The gap between the best DS method and the baseline for each DT can be charac-

terized from the average JSD similarity to its DS . Being more similar to other DS
is a more suitable situation to get benefit from data selection.

4.5.4 DTDD Scenario: TS 6= TT ,DS 6= DT

In this scenario we intend to observe whether data selection adds benefit to MTL. As in

the STDD case, data selection is performed on the auxiliary task, where data is assumed

to be abundant, and we only use a small portion of data for the target task. We use NER

as the auxiliary task and ST as the target task. Previously in §4.4, we show that NER

is helpful for SF through MTL, although it is not clear whether adding data selection is

beneficial. We use the MTL setup in §4.4 , where OntoNotes NW is used as the auxiliary

11Complete pairwise JSD values are listed in Table A.4.
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Method ATIS MIT-R MIT-M

STL

biLSTM-CRF 85.460.25 63.990.77 76.390.57

Baseline (MTL)

All source 90.050.34 69.280.40 81.280.23

Random 89.930.26 69.540.35 81.350.31

DSmap,full 89.970.25 68.820.50 79.270.36

DSmap,partial 89.850.29 69.240.40 80.760.30

MTL+BODS

DSsim,div 89.780.39 69.290.37 81.070.29

DSsim 89.830.31 69.250.41 81.170.25

DSdiv 89.950.41 69.090.24 81.100.28

Table 4.8: Average F1-score and standard deviation on the test set. † indicates significant

differences (p < 0.05) between the best BODS approach and the best baseline.

task, and the target task is one of the ST datasets with only 10% of available training

data.

Observing the results in Table 4.8, in all the cases the baselines, namely all source

data and random selection, perform better than MTL with DS methods. The selection

methods based on manual label mapping, DSmap, do not bring advantage over all source

data. Therefore, given two distant DS and DT , selecting sentences based on the label

mapping does not help. Moreover, as random selection gives good results as well for most

scenarios, this indicates that data selection is not beneficial in our experimental setting

that combines data selection and MTL.

Error Analysis. For the ATIS dataset, the models has trouble in disambiguating

flight origin and flight destination. While for the MIT Restaurant dataset, similar type

of problems occur between cuisine, restaurant name, and dish slots. For the MIT-Movie

dataset, misclassifications happen between character, actor, and director slots. We in-

spect the predictions made by the model to check what kind of cases are difficult for the

model. For ATIS, there are several sentence patterns which are difficult for the model

namely sentences that contain disjunction (or) or conjunction (and) when specifying the
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flight origin or destination, sentences which has lack of context when specifying the slot

information, and sentences which are very long. We list the example of these sentences

in Table 4.9.

1 Anything from Baltimore or Washington with a stopover in Denver

2 Show me flights from Atlanta to Baltimore Denver and Dallas

3 Which airlines serves Denver Pittsburgh and Atlanta

4 Find me the earliest Boston departure and the latest Atlanta return trip so that

i can be on the ground the maximum amount of time in Atlanta and return to

Boston on the same day

Table 4.9: Example sentences from the ATIS dev set in which errors made by the model.

(highlighted).

Our findings and lessons learned for DTDD are the following:

1. We observe that MTL performs better than single-task learning (STL) for low-

resource slot filling, confirming the finding from Louvan and Magnini (2019). How-

ever, adding data selection for MTL is ineffective in our DTDD experimental setup.

We hypothesize that MTL learns good common feature representations across tasks,

this way inherently helping the model to focus on relevant features even from noisy

data in TS. In addition to that, due to data sparsity in limited training, using all

the training data works better because the model may learn a better text represen-

tation (sentence encoder). Recent similar work from Schröder and Biemann (2020)

which uses information theoretic based for estimating the usefulness of an auxiliary

task for MTL also found that for semantic sequence tagging tasks such as NER and

argument mining, it is less clear when a particular dataset is useful as an auxiliary

task.

2. Data selection seems to produce selected sentences with concentrated similarity

distribution. We analyze the similarity distribution of the sentences before and

after the data selection (Figure 4.4). We use Infersent encoder (Conneau et al.,

2017) to obtain the sentence embeddings and use cosine measure to calculate the

similarity score. The similarity score is calculated between each sentence embedding
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in TS and the average values of sentence embedding in TT . We hypothesize that data

selection is probably ineffective when the sentence similarity distribution between

TS and TT is already concentrated on a very narrow range. However, when we

perform data selection using several OntoNotes sections as TS and perform further

MTL experiment, the result is also negative (Appendix A.1).

3. Practically, using Bayesian Optimization for data selection is an expensive method

especially when using it with multi-task learning.

(a) Similarity distribution from sentences se-

lected from OntoNotes NW when ATIS is the

target task

(b) Similarity distribution from sentences se-

lected from OntoNotes NW when MIT-R is the

target task

Figure 4.4: Sentence similarity distribution across different selection strategy
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4.6 Conclusions

We proposed to leverage Named Entity Recognition and Semantic Tagging from non-

conversational text as auxiliary tasks through multi-task learning to help low-resource

slot filling. Our experiments demonstrate that non-conversational tasks are effective to

improve slot filling performance, and they are reusable in different slot filling domains.

We observe that incorporating a task-hierarchy in the multi-task architecture based on

the granularity of the labels does not bring evident benefit in most of the datasets.

We also investigated the benefit of data selection for transfer learning in several sce-

narios of increasing complexity. We apply an existing model-agnostic state-of-the-art data

selection framework, and carried on experiments on two semantic sequence tagging tasks,

NER and slot filling, and two transfer learning scenarios, STDD (Same Tasks Different

Domains), and DTDD (Different Tasks Different Domains). For the STDD scenario, se-

lection methods show potential when the target domain has the highest similarity to the

source domains, based on Jensen Shannon Divergence. As for the DTDD scenario in

which we use related tasks (NER and Semantic Tagging) from distant domains, using

selection does not bring advantage over using all the source data. A possible cause is

that, because of data sparsity on the target task, it is only by injecting more source data

that we can improve the model. Finally, MTL does not benefit from data selection, as it

may already effectively help the model to focus on relevant features even though in the

presence of noisy data from distant domains.

In a broader context, given several possible auxiliary tasks, it is still challenging to

identify which auxiliary tasks can be useful for multi-task learning. There have been some

works that study this issue, however it seems there is no strong consensus yet among these

studies especially for semantic sequence tagging tasks.
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Generating Additional Labeled Data

As we have described in §3.6.1, in addition to transfer learning, another approach on

alleviating limited labeled data is by applying data augmentation. Data augmentation

approaches aim to generate additional labeled data automatically by transforming the

original data through specific operations. Most of the data augmentation approaches

in low-resource NLU are model based (Table 3.7), and we consider these approaches as

heavyweight augmentation as they require to train a separate neural model and often

involve several stages in the augmentation process.

In this chapter, we propose Lightweight Augmentation (Louvan and Magnini,

2020d) (contribution C2) methods that consist of relatively simple non-gradient based

operations to produce utterance variations. Lightweight Augmentation includes

meaning preserving slot value substitution and sentence modification through depen-

dency tree manipulation. In addition to evaluating the effectiveness of Lighweight

Augmentation on English datasets, we also assess the applicability of Lightweight

Augmentation on five non-English datasets: Italian, Hindi, Turkish, Spanish, and Thai

(Louvan and Magnini, 2020c) (§5.5).

5.1 Introduction

One of the methods proposed to alleviate data scarcity in task-oriented NLU is data aug-

mentation (DA), which aims to automatically increase the size of the training data by
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applying data transformations, ranging from simple word substitution to sentence gener-

ation. Recently, DA has shown promising potential for several NLP tasks, including text

classification (Wei and Zou, 2019b; Wang and Yang, 2015), parsing (Sahin and Steedman,

2018; Vania et al., 2019a), and machine translation (Fadaee et al., 2017). As for SF and

IC, DA approaches typically generate synthetic utterances by leveraging Seq2Seq (Hou

et al., 2018a; Zhao et al., 2019; Kurata et al., 2016b), Conditional VAE (Yoo et al., 2019),

or pre-trained Natural Language Generation (NLG) models (Peng et al., 2020). Such

approaches make use of in-domain data, and are relatively heavyweight, as they require

training neural models, which may involve several phases to generate, filter, and rank the

produced augmented data, thus requiring more computation time. It is also relatively

challenging for deep learning-based models to generate semantically preserving synthetic

utterances in limited data settings.

cost_relative

Slot-Sub CropSlot-Sub+LM

BERT

Show me the cheapest flight from Atlanta to [MASK] [MASK](?, cost_relative)

Training data

(most expensive, cost_relative)
(least expensive, cost_relative)
...

from_location to_location

Show me  the cheapest  flight from 
Atlanta to San Francisco

Rotate
me the cheapest flight from Atlanta 
to San Francisco show 

Show me the  cheapest  flight from  Atlanta   to   San Francisco

Show me the cheapest flight from Atlanta to New York

Figure 5.1: Examples of applying lightweight augmentation on an utterance in the ATIS

dataset.

In this chapter, we show that lightweight augmentation, a set of simple DA methods

that produce utterance variations, is very effective for SF and IC in a low-resource set-

ting. Lightweight augmentation considers both text span and sentence variations. The

span-level augmentation aims to diversify slot values in a particular text span through a

semantically preserving substitution of slot values. The sentence-level augmentation seeks

to produce alternative sentence structure through crop and rotate (Sahin and Steedman,

2018) operations based on a dependency parse structure.

We investigate the effect of lightweight augmentation both on typical biLSTM-based

joint SF and IC models, and on large pre-trained LM transformers based models, in both
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cases with a limited data setting. Our contributions are as follows:

• We present a lightweight text span and sentence level augmentation for SF and IC.

We show that, despite its simplicity, lightweight augmentation is competitive with

more complex, deep learning-based, augmentation.

• We show that big self-supervised models, such as BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019b), and ALBERT (Lan et al., 2020) can perform well

under a low data regime, and still benefit from lightweight augmentation.

• The combination of our span based augmentation and transfer learning (e.g. BERT

fine-tuning) yields the best performance for most cases.

5.2 Lightweight Data Augmentation

Given the original training data D, DA aims to generate additional training data D′.
For each sentence S in D, an augmentation operation is applied N times, which can be

empirically determined. Each augmented sentence S ′ is added to D′, and the union of D
and D′ is then used to train the model for SF and IC. We describe the Lightweight

Augmentation operations in the following subsections.

5.2.1 Slot Substitution (Slot-Sub)

Our first lightweight method, slot substitution, is similar to (Gulordava et al., 2018),

which is based on substituting a token in a sentence with another token with a consistent

syntactic annotation (i.e., part-of-speech or morphology tags). However, unlike Gulordava

et al. (2018), our method is not limited to single tokens. As slot filling is a semantic task,

rather than syntactic, we can naturally extend the method from single tokens (i.e., slot

names composed by a single token) to multiple tokens (i.e., slot names composed by

multiple tokens, or spans1), still preserving the semantics associated to a certain slot.

Practically, for slot substitution we take advantage of the fact that SF training data

1We define a span as a sequence of one or more tokens that convey a slot value.
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are typically annotated with the BIO format2. We exploit the fact that two text spans in

different utterances in D are likely to be semantically similar if they share the same slot

label. We randomly pick one span in the S and then perform the substitution (Figure 5.1

Left). For instance, we can substitute the span “cheapest”, with other spans having the

same slot label (i.e., Cost Relative), such as “least” or “most expensive”.

5.2.2 Slot Substitution with Language Model (Slot-Sub-LM)

Our second lightweight method, Slot-Sub-LM, shares the goal with Slot-Sub, i.e., to

substitute sp with sp′. However, we do not use D to look for substitute candidates, instead

we use a large pre-trained language model to generate the slot value candidates, using the

fill-in-the-blank style (Donahue et al., 2020). The expectation is that large pre-trained

LMs, being trained on massive amount of data, can produce a sensible text span given

a particular sentence context, and possibly produce slot values that do not occur in D.

While we use BERT for our purpose, virtually any pre-trained LM can be used for Slot-

Sub-LM. Existing works on DA using LMs (Kobayashi, 2018; Kumar et al., 2020) are

applied on text classification to replace random tokens in the text, which is not directly

applicable to SF. Our approach focuses on spans conveying slot values, and include a

filtering mechanism to reject retrieved slot spans that are not semantically compatible.

Generating New Slot Values. Given an utterance consisting of one or more slot value

spans, we “blank” one of the span and then let the LM to predict the new tokens in

the span. For instance, we give “show me the round trip flight from Atlanta to

Denver” to the LM for blank prediction. Practically, blank tokens are encoded as special

[MASK] tokens3 to let the pre-trained LM performing prediction. The decoding of the new

tokens is carried out iteratively from left to right (Figure 5.1 Middle) and, to produce

the surface form of a token, we apply nucleus sampling (Holtzman et al., 2020) using the

top-p portion of the probability mass. Nucleus sampling has been empirically shown to

be better than beam search, and top-k sampling (Fan et al., 2018) to produce fluent and

diverse texts.

2B indicates the beginning of the span, I indicates the inside of the span. O indicates that a token does

not belong to any slot. For example, ”San Francisco” will be annotated as B-to location I-to location.
3We set the number of masked tokens to be the same as the tokens of the original slot value, e.g. san

francisco is masked as [MASK][MASK], although this number could actually be sampled as well.
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Filtering. While pre-trained LMs are expected to generate sensible replacements for

a span in the utterance, a possible issue is that the new slot span is not semantically

consistent with the original one. For example, for the original span “cheapest” in “show

me the cheapest round trip flight from Atlanta to Denver”, the LM could output “earliest”

as a substitution, which does not fit the slot label cost relative. To mitigate this issue,

we use a binary sentence classifier as a filter (Slot-Sub-LM+Filter) to decide whether

S and S ′ are semantically compatible, based on the change made on the slot span. The

training of the classifier is composed of a pair S and S ′, with its binary decision label (i.e.,

accept or reject S ′). To construct the training data, for positive examples (accept) we take

advantage of the sentence pair produced by Slot-Sub, while for the negative examples

(reject) we sample sp′ in D where y 6= y′ and replace sp in S with sp′ to produce S ′. We

use the BERT model as the sentence pair classifier and we encode the tokens, w, in both

S and S ′ sentence pairs, as [CLS]wS1w
S
2 . . . w

S
n [SEP]wS

′
1 w

S′
2 . . . wS

′
m . On top of BERT, we

add a feed-forward layer that uses the hidden state of the sentence representation, h[CLS],

for prediction.

5.2.3 Crop and Rotate

show me the cheapest flight ...
verb pron det adj noun ...

ROOT

dative

dobj

det

amod

Figure 5.2: Original sentence.

show the cheapest flight ...
verb det adj noun ...

ROOT dobj

det

amod

Figure 5.3: Sentence after applying Crop.
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me the cheapest flight ... show
pron det adj noun ... verb

ROOT

dative

dobj
amod

det

Figure 5.4: Sentence after applying Rotate.

The third lightweight method that we present augments an utterance by changing

its syntactic structure. We adopt the augmentation approach from Sahin and Steedman

(2018), which is based on two operations, Crop and Rotate applied to the dependency

parse tree of a sentence. To our knowledge, this approach has not yet been applied to

slot filling and intent classification, which is a contribution of our work. Crop focuses

on particular fragments of a sentence (e.g., predicate and its subject, or predicate and

its object), and removes the rest of the fragments, including its sub-tree, to create a

smaller sentence. Rotate aims to rotate the target fragment of a sentence around the

root of the dependency parse structure, producing a new utterance. For example, in the

utterance “Show me the cheapest flight from Atlanta to San Francisco”, the word “me”

can be cropped as it is one of the children of the root verb “show”. While for rotation,

the direct object (“flight”) and its children (“the cheapest”) are rotated around the root

verb. Figure 5.3 and 5.4 illustrates the relevant dependency structure manipulation on a

sentence (Figure 5.2).

It is possible for crop and rotate operations to produce ungrammatical or ill-formed

sentences which can be considered as injecting noise during model training. It has been

shown that noise induction as data augmentation can make a more robust model espe-

cially in limited data settings to reduce overfitting (Wei and Zou, 2019a; Li et al., 2017).

In addition to that, having the variations from crop and rotate may beneficial for the

model when applied to languages that have relatively flexible word order such as Turkish,

Kazakh, and North Sami (Vania et al., 2019b; Sahin and Steedman, 2018).
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5.3 Experiments and Results

We experimented our Lightweight Augmentation approach on three well-known

datasets for SF and IC, namely ATIS (Hemphill et al., 1990), SNIPS (Coucke et al., 2018)

and FB (Schuster et al., 2019a). All datasets are in English. ATIS contains utterances

related to flight domain (e.g., searching flight, booking). SNIPS includes multi-domain

utterances such as weather, movie, restaurant, etc. FB contains utterances from 3 do-

mains, weather, alarm, and reminder. To simulate the data scarcity setting, we follow

previous works (Hou et al., 2018a; Yoo et al., 2019) and only use medium-size (i.e., 1/10)

of training data for each dataset. Statistics on the three datasets are reported in Table

5.1.

Label #Utterances (D) #Augmented Utterances (D′)

Dataset #slot #intent #train #dev #test SS SS-LM C R

ATIS 79 18 0.4K 500 893 3.9K 0.8K 0.8K 1.1K

SNIPS 39 7 1.3K 700 700 6.3K 2.5K 2.6K 3.7K

FB 11 12 3K 4.1K 8.6K 5.4K 5.4K 5.9K 8.5K

Table 5.1: Statistics of both the original training data D and the augmented data D′.
#train denotes our medium-size training data setup (10% of full training data). D′

is produced by each augmentation method, where the number N of augmentations per

sentence is tuned on the dev set. SS, SS-LM, C, and R denote Slot-Sub, Slot-Sub-LM,

Crop, and Rotate augmentation operations

As for evaluation, we use standard evaluation metrics, namely the F1-score for SF and

accuracy for IC4. Performance is calculated as the average score of ten different runs. In

order to compare our methods, we use two baselines for slot filling and intent detection:

a simple BiLSTM-CRF model, and a state of the art BERT-based model, which is fine-

tuned to SF and IC5. Each model is trained for 30 epochs, and we apply early stopping

criteria.

For both slot substitution (Slot-Sub) and slot substitution with language model

(Slot-Sub-LM) augmentation methods, we tune the number of augmented sentences

4Metric is computed using the standard evaluation script https://www.clips.uantwerpen.be/conll2000/
5We use the bert-base-uncased model
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per utterance, N , on the dev set of each dataset. For crop and rotate, we use the default

parameters from Sahin and Steedman (2018). To produce the dependency parse structure

for the utterances in our datasets, we use Spacy6. All hyperparameters are tuned on the

dev set. More details on the settings is provided in Table A.8. For training the binary

classifier for Slot-Sub-LM+Filter, we generate the same number of positive (accept)

and negative (reject) training instances7.

In order to allow comparison with more complex data augmentation approaches, we

also report results obtained with state of the art approaches based on Seq2Seq (Hou

et al., 2018a) and Conditional Variational Auto Encoder (CVAE) (Yoo et al., 2019).

Our implementation is based on the Huggingface library (Wolf et al., 2019), available at

https://github.com/slouvan/saug.

Table 5.2 reports the results on the test sets used in our experiments on limited data

settings8. As for comparison, we include best-reported scores from two state of the art

augmentation methods, namely a sequence-to-sequence (Seq2Seq) based on Hou et al.

(2018a) and a VAE based methods from Yoo et al. (2019). Results in Table 5.6 (test set)

show that lightweight augmentation is beneficial for both Bi-LSTM CRF and BERT, on

both ATIS (single domain) and SNIPS (multi-domain) datasets. Slot-Sub yields the

best results for both the BiLSTM+CRF and BERT models, with SF performance up to

90.43 on ATIS and 90.66 on SNIPS, and IC performance to 95.49 on ATIS and 97.11 on

SNIPS. As for the FB dataset, models only gain marginal improvement across lightweight

augmentation. We hypothesize that FB is relatively easy to solve, compared with ATIS

and SNIPS, as the slot filling performance of BiLSTM without augmentation already

achieves a very high F1 score. The improvement using augmentation is more significant

for SF rather than for IC.

Out of all Lightweight Augmentation methods, Slot-Sub obtains the best per-

formance, particularly on slot filling on ATIS and SNIPS. The overall best performing

configuration is a combination of BERT fine-tuning with Slot-Sub augmentation. Given

limited training data, BERT fine-tuning without augmentation surpasses BiLSTM-CRF

without augmentation by a large margin. Yet, performance can be boosted even further

6https://spacy.io/
7Details about the training instance and the binary classifier performance is in Table A.9 and Table

A.10 respectively
8For “upper bound” performance i.e., when 100% training data is used consult Appendix A.11

80



CHAPTER 5. GENERATING ADDITIONAL LABELED DATA

Model DA
ATIS SNIPS FB

Slot Intent Slot Intent Slot Intent

BiLSTM None 86.83 90.64 84.51 95.94 93.83 98.47

+CRF Seq2Seq 88.72 - - - - -

(Hou et al., 2018a)

VAE 89.27 90.95 - - - -

(Yoo et al., 2019)

Slot-Sub 89.89† 93.37† 86.45† 96.30† 93.70 98.45

Slot-Sub-LM 87.03 92.96† 82.82 96.14 91.52 98.20

Slot-Sub-LM+Filter 87.19 92.01† 82.77 96.08 92.18 98.37

Crop 88.62† 92.32† 85.84† 96.07 93.91 98.64

Rotate 88.83† 92.33† 85.65 96.39† 94.04 98.56

BERT None 89.39 94.98 89.17 96.70 94.22 98.61

Slot-Sub 90.43† 95.49† 90.66† 97.11† 94.01 98.59

Slot-Sub-LM 87.88 94.49 85.65 96.59 91.84 98.47

Slot-Sub-LM+Filter 88.37 94.57 86.23 96.60 92.60 98.59

Crop 89.47 94.55 89.77 96.78 94.20 98.73

Rotate 89.57 94.48 89.37 96.81 94.32 98.80

Table 5.2: Overall results on the test set. Underlined numbers indicate best performing

methods for a particular slot filling + intent model. Bold numbers indicate best overall

methods. † indicates significant improvement over the baseline without augmentation (

p-value < 0.05, Wilcoxon signed rank test).

with lightweight augmentation, suggesting that even a big, self-supervised model, such as

BERT can still benefit from augmentation on limited data settings. The improvements on

BiLSTM-CRF indicate that lightweight augmentation improves the model’s robustness

when trained on small amounts of data. We find that Slot-Sub-LM is suboptimal for

SF. Our qualitative observation shows that Slot-Sub-LM often generates slot values

that are semantically incompatible with the original slot label. Crop and Rotate can

help IC in some cases, although their improvement is marginal.

Despite its simplicity, Slot-Sub is also competitive with state-of-the-art heavyweight
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data augmentation approaches (Seq2Seq and CVAE), significantly boosting Bi-LSTM and

BERT performance for SF on ATIS and SNIPS. We believe that the key advantage of

Slot-Sub is its capability to maintain semantic consistency over the slot spans, which

has revealed to be stronger than that of heavyweight approaches. This also shows that

slot consistency is crucial for obtaining good performance, particularly for SF. While the

CVAE based approach from Yoo et al. (2019) has injected slot and intent labels in the

model, it seems that generating semantically consistent utterances is still challenging for

deep learning models, especially when data is limited.

5.4 Analysis and Discussion

Figure 5.5: Gain (∆F1) obtained by Slot-Sub (SS) on various training data size. Posi-

tive numbers mean that the model with SS is better than without SS.

Performance on different training data size (D). Figure 5.5 displays the gain

obtained by Slot-Sub for various data size for slot filling. Using smaller data size (i.e.,

5%) than our default setting, Slot-Sub still obtains a F1 gain for all datasets. On the

other hand, as we increase the number of training data, the Slot-Sub benefit diminishes,

without hurting performance on ATIS and SNIPS. As for FB we observe a performance

drop of less than 1 F1, which is still relatively low.

Impact of number of augmented sentences. To better understand the effect of the

number of augmented sentences per utterance (N), we now observe the performance of our
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Model Aug.
ATIS SNIPS

Slot Intent Slot Intent

BERT None 91.6 95.0 89.8 95.0

(large) SS 92.8 95.4 92.8 95.4

Albert None 92.1 94.8 89.5 99.0

(xxl) SS 92.9 95.0 93.6 99.2

Roberta None 90.6 92.8 89.2 98.9

(large) SS 93.2 95.9 92.5 98.8

Table 5.3: Lightweight augmentation Slot-Sub (SS) applied to very large pre-trained

LMs.

best performing method, Slot-Sub, while changing N values (we use {2, 5, 10, 20, 25})
on the dev set9. As for ATIS, increasing N yields a F1 improvement from 90.68 up to

91.62; SNIPS performance increased from 87 F1 and to 88 F1 when increasing N from

2 to 5 and it is stable around 88 F1 when using N larger than 5; finally, FB is stable

around 93.4 to 93.7 F1. Overall, the biggest improvement is when N is increased from 2

to 5, while with higher values only minor improvements can still be obtained on ATIS.

Is lightweight augmentation beneficial for very large language models? Moti-

vated by the encouraging results that lightweight augmentation has obtained on a strong

pre-trained LM such as BERT on low-resource settings (see Table 5.2), we now fur-

ther examine the advantage of lightweight augmentation for other very large pre-trained

LM models, namely Albert (Lan et al., 2020) and Roberta (Liu et al., 2019b). We use

the largest trained models for each of the pre-trained LM, namely bert-large-uncased,

roberta-large, and albert-xxl. Results, reported in Table 5.3, show that on limited

data settings, all the very large models still benefit from Slot-Sub, notably on the per-

formance for SF.

Qualitative Analysis of slot values from Slot-Sub vs Slot-Sub-LM. The per-

formance of Slot-Sub especially in SF is better than Slot-Sub-LM, as Slot-Sub

maintains semantic consistency on the span level. We observe that Slot-Sub-LM often

generates slot values that fit the sentence context but that do not maintain the semantics

9For the results on the dev set consult Table A.12
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Dataset Slot Original Sentence Slot-Sub Slot-Sub-LM

ATIS Depart Time List all flights leaving

Denver on Continental

on Sunday after 934

pm

List all flights leaving

Denver on Continental

on Sunday after 7 pm

List all flights leav-

ing Denver on Conti-

nental on Sunday after

Christmas day

Fromloc

Cityname

List all flights leaving

Denver on Continental

on Sunday after 934 pm

List all flights leaving

Atlanta on Continen-

tal on Sunday after 934

pm

List all flights leaving

Boston on Continental

on Sunday after 934 pm

Airlines Name I need a flight on Air

Canada from Toronto

to San Diego with a lay-

over in DC

I need a flight on

Northwest Airlines

from Toronto to San

diego with a layover in

DC

I need a flight on

a Thursday from

Toronto to San Diego

with a layover in DC

SNIPS Condition

Description

Will it be sunny in Ey-

ota Hawaii on February

seventh 2025

Will it be humid in Ey-

ota Hawaii on February

seventh 2025

Will it be held in Ey-

ota Hawaii on February

seventh 2025

Spatial Re-

lation

What is the closest

cinema today playing

animated movies

What is the close-by

cinema today playing

animated movies

What is the under-

ground cinema today

playing animated

movies

FB Date Time Set alarm for 4 am to-

morrow morning

Set alarm at 6 tomor-

row morning

Set alarm for me to-

morrow morning

Location How hot is it in Hong

Kong ?

How hot is it in Fair-

banks ?

How hot is it in the

mornings ?

Table 5.4: Samples of sentences from Slot-Sub and Slot-Sub-LM. The bold text span

denotes the span that is substituted. The text span in blue denotes semantically consistent

replacements, while red indicates semantically inconsistent substitutes.
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of the slots, which hampers the performance in SF (Table 5.4). The fact that Slot-Sub-

LM often generates “wrong” slot values makes Slot-Sub-LM+Filter also less effective.

A possible future direction is to cast Slot-Sub-LM as a conditional NLG problem, incor-

porating labels at the token-level, although this is still challenging when data is limited.

5.5 Follow-up Experiments: Non-English Datasets

In previous sections we have demonstrated the effectiveness of Lightweight Augmen-

tation on English datasets. Motivated by this encouraging results, in this section, we

assess the applicability of Lightweight Augmentation on non-English datasets.

Datasets. We experiment with datasets from five languages: Italian, Hindi, Turkish,

Spanish, and Thai. For the Italian language, we use the data from Bellomaria et al.

(2019), translated from the English SNIPS dataset (Coucke et al., 2018). SNIPS has been

widely used for evaluating NLU models and consists of utterances in multiple domains.

As for Hindi and Turkish, we use the ATIS dataset from Upadhyay et al. (2018), derived

from Hemphill et al. (1990). ATIS is a well known NLU dataset on flight domain. As

for Spanish and Thai we use the FB dataset from Schuster et al. (2019b) that contains

utterances in alarm, weather, and reminder domains. The overall statistics of the datasets

are shown in Table 5.5.

Baseline and Data Augmentation (DA) Methods. We use the state of the art

BERT-based joint intent slot filling model (Chen et al., 2019) as the baseline model. We

leverage the pre-trained multilingual BERT (M-Bert), which is trained on 104 languages.

During training, M-Bert is fine tuned on the slot filling and intent classification tasks.

Given a sentence representation x = ([CLS] t1 t2 . . . tL), we use the hidden state h[CLS] to

predict the intent, and htito predict the slot label. As for DA methods, we did not include

Slot-Sub-LM. We add one configuration Combine, which combines the result of Slot-

Sub and Rotate, as Rotate obtains better results than Crop on the development set.

Results. The overall results reported in Table 5.6 show that applying DA improves

performance on slot filling and intent classification across all languages. In particular, for

SF, the Slot-Sub method yields the best result, while for IC, Rotate obtains better

performance compared to Crop in most cases. These results are consistent with the
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#Label #Utterances (D) #Aug (D′)

Dataset Lang #slot #intent #train #dev #test #SS #C #R

SNIPS-IT Italian 39 7 574 700 698 5.4K 1.4K 1.8K

ATIS-HI Hindi 73 17 176 440 893 1.2K 460 472

ATIS-TR Turkish 70 17 99 248 715 144 161 194

FB-ES Spanish 11 12 361 1.9K 3K 1.4K 769 1K

FB-TH Thai 8 10 215 1.2K 1.6K 781 - -

Table 5.5: Statistics on the datasets. #train indicates our limited training data setup

(10% of full training data). D′ is produced by tuning the number of augmentations per

utterance (N) on the dev set. SS, C, and R denote Slot-Sub, Crop, and Rotate

augmentation operations

finding from our experiments on the English dataset (Section §5.3), where Slot-Sub

improves SF and Crop or Rotate improve IC. In general, Rotate is better than Crop

for most cases on IC, and we think this is because Crop may change the intent of the

original sentence. Intents typically depend on the occurrence of specific slots, so when

the cropped part is a slot-value, it may change the sentence’s overall semantics.

We can see that languages with different typological features (e.g. subject/verb/object

ordering)10 benefit from Rotate operation for IC. This result suggests that augmentation

can produce useful noise (regularization) for the model to alleviate overfitting when labeled

data is limited. When we use Combine, it still helps the performance of both SF and IC,

although the improvements are not as high as when only one of the augmentation method

is applied. The only language that gets the benefits the most from Combine is Turkish.

We hypothesize that as Turkish has a more flexible word order than the other languages

it benefits the most when Rotate is performed.

Performance on varying data size. To better understand the effectiveness of Slot-

Sub, we perform further analysis on different training data size (see Figure 5.6). Overall,

we observe that as we increase the training size, the benefit of Slot-Sub is decreasing for

all datasets. For some datasets, namely ATIS-HI and FB-ES, Slot-Sub can cause per-

formance drop for larger data size, although it is reasonably small (less than 1 F1 point).

10Italian, Spanish, and Thai are SVO languages while Hindi and Turkish are SOV languages.
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Model DA
SNIPS-IT ATIS-HI ATIS-TR FB-ES FB-TH

Slot Intent Slot Intent Slot Intent Slot Intent Slot Intent

mBERT None 78.2 94.9 69.5 86.5 64.3 78.9 84.1 97.6 56.0 89.8

SS 81.9† 94.9 72.4† 87.2 66.6† 79.8 84.2 97.7 59.6† 91.4†

C 80.1† 94.6 70.0 86.9 65.1 79.4 83.8 98.0† - -

R 79.2† 95.3 70.6 87.6† 65.2 80.0 83.2 98.2† - -

Comb 81.2† 95.0 72.1† 86.9 66.6† 81.1† 83.6 97.9 - -

Table 5.6: Performance comparison of the baseline and augmentation methods on the

test set. F1 score is used for slot filling and accuracy for intent classification. Scores are

the average of 10 different runs. † indicates statistically significant improvement over the

baseline (p-value < 0.05 according to Wilcoxon signed rank test).

Figure 5.6: Improvement (∆F1) obtained by Slot-Sub (SS) on different training data

size. Positive numbers mean that the model with SS yields gain.

FB-TH consistently benefits from Slot-Sub even when full training data is used. Until

which training data size the improvement is significant vary across datasets11. For SNIPS-

IT, improvement is clear for all training data size and they are statistically significant up

until the training data size is 80%. For ATIS-HI improvements are significant until data

size of 40%. As for FB datasets, improvements are significant only until the training data

size is 10%. Overall, we can see that Slot-Sub is effective for cases where data is scarce

11For more details of the p-value of the statistical tests please refer to Table A.14
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(5%, 10%), while it is still relatively robust for larger data size on all datasets.

Figure 5.7: Gain (∆F1) obtained by Slot-Sub (SS) on various number of augmented

sentence (N). Positive numbers mean that the model with SS yields gain.

Performance on different numbers of augmentation per utterance (N). We

examine the effect of a larger number of augmentations per utterance (N) to the model

performance, specifically for SF (see Figure 5.7). For FB-ES, similarly to the results in

Table 5.6, increasing N does not affect the performance. For the other datasets, increasing

N brings performance improvement. For ATIS-HI, SNIPS-IT, and FB-TH the trend is

that, as we increase N , performance goes up and plateau. For ATIS-TR, changing N does

not really affect the gain of the performance as the performance trend is quite steady across

number of augmentations. For most combinations of N in each dataset (except FB-ES),

the difference between the performance of model that using Slot-Sub and the model

that does not use Slot-Sub is significant12.

5.6 Related Work

Data augmentation methods have been widely applied in computer vision, ranging from

geometric transformations (Krizhevsky et al., 2012; Zhong et al., 2020), data mixing

(Summers and Dinneen, 2019), to the use of generative models (Goodfellow et al., 2014) for

generating synthetic data. Recently, data augmentation has been applied to various NLP

12For more details of the p-value of the statistical tests please refer to Table A.14
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tasks, including text classification (Wei and Zou, 2019b; Wang and Yang, 2015), parsing

(Sahin and Steedman, 2018; Vania et al., 2019a), and machine translation (Fadaee et al.,

2017). Augmentation techniques for NLP tasks range from operations on tokens (e.g.,

substituting, deleting) (Wang and Yang, 2015; Kobayashi, 2018; Wei and Zou, 2019b), to

manipulation of the sentence structure (Sahin and Steedman, 2018), to paraphrase-based

augmentation (Callison-Burch et al., 2006).

Data augmentation has been also experimented in the context of slot filling and intent

classification. Particularly, recent methods have focused on the application of generative

models to produce synthetic utterances. Hou et al. (2018a) proposes a method that

separates the utterance generation from the slot values realization. A sequence to sequence

based model is used to generate utterances for a given intent with slot values placeholders

(i.e., delexicalized), and then words in the training data that occur in similar contexts of

the placeholder are inserted as the slot values. Zhao et al. (2019) also uses a sequence to

sequence model by exploiting a small number of template exemplars. Yoo et al. (2019)

proposes a solution based on Conditional Variational Auto Encoder (CVAE) to generate

synthetic utterances. In this case the CVAE takes into account both the intent and the

slot labels during training, and the model generates the surface form of the utterance,

slot labels, and the intent label. Recent work from Peng et al. (2020) make use of GPT-

2 (Radford et al., 2019), and fine-tuned it to intent and slot-value pairs to generate

utterances.

In comparison to existing, state of the art, augmentation methods for slot filling and

intent detection, the augmentation methods proposed in this work can be considered as

lightweight because they do not require any separate training based on deep learning

models for generating additional data. Still, lightweight augmentation maintains consis-

tent slot semantic substitutions, a feature that is crucial for effective data augmentation.

In the spectrum of existing augmentation methods, i.e., from words manipulation to

paraphrasing-based methods, our lightweight approaches lie in the middle, as we focus

either on particular text spans that convey slot values, or on particular structures in the

dependency parse tree of the utterance.
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5.7 Conclusion

We showed that Lightweight Augmentation for slot filling and intent detection in

low-resource settings is competitive to more complex deep learning based data augmen-

tation. A lightweight method based on slot values substitution, while preserving the

semantic consistency of slot labels, has proven to be more effective. We also show that

large self-supervised models, like BERT, can benefit from Lightweight Augmenta-

tion suggesting that a combination of data augmentation and transfer learning is very

useful and has the potential to be applied to other NLP tasks.

Furthermore, we evaluate the effectiveness of Lightweight Augmentation in five

non-English typologically diverse languages: Italian, Hindi, Spanish, Turkish, and Thai.

We find that the results are consistent with the experiment results on English datasets.

Slot values substitutions and dependency tree manipulations can substantially improve

performance in most cases when only a small amount of training data is available. We also

show that a large pre-trained multilingual BERT (M-Bert) benefits from Lightweight

Augmentation.

In retrospect, there have been subsequent published works that align with our study.

Dai and Adel (2020) evaluate a number of augmentation operations on Named Entity

Recognition (NER) task on material science and biomedical domains. One such operation

is mention replacement which is similar to our Slot-Sub operation. Their experiments

also show that relatively simple augmentation operations can boost performance for small

training data scenario. Lin et al. (2021) use the BART pre-trained model (Lewis et al.,

2020) which combines bi-directional encoder (BERT) and left to right decoder (GPT-

2). Slot descriptions are injected during fine-tuning, and the loss function is modified to

encourage more diverse slot values. Another important pre-training differences between

BERT that we use for our Slot-Sub-LM with BART is that for BART they use text-

infilling task in which a text span is masked instead of a single token.

In a broader context, data augmentation has spawned a surge of interest in NLP

recently. However, most data augmentation comes with empirical results and intuition,

and it is still not clearly understood in the research community why data augmentation

works (Feng et al., 2021).
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Chapter 6

Continued Pre-Training for

Zero-Shot Cross-Lingual SLU

As described in §1.2, most task-oriented Spoken Language Understanding (SLU) ap-

proaches focus on major languages, e.g., English, and it is still a challenge in SLU to

achieve multilingual systems that support many languages. As the supervised learning

model obtains the best performance in SLU, the bottleneck is to obtain a sufficient labeled

dataset for many languages. Although we have experimented with several non-English

languages in Chapter 5, collecting sizeable labeled data for many languages is infeasible,

which drives most SLU research towards cross-lingual transfer approaches in which only

a high-resource language, e.g., English labeled data is available for training the model and

transfer directly to other languages (zero-shot).

The de facto method for zero-shot cross-lingual SLU consists of fine-tuning a pre-

trained multilingual model on the English target task and then evaluating the model

on unseen languages. However, recent studies show that adding a second pre-training

stage (continued pre-training) can improve performance in certain settings, e.g. text

classification tasks on English (Gururangan et al., 2020). This chapter corresponds to

the contribution C3, in which we investigate the effectiveness of additional pre-training

on intermediate unlabeled spoken language data in the context of zero-shot cross-lingual

SLU.
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6.1 Introduction

Many models have been proposed for SF and IC, and performance on standard English

benchmarks have relatively saturated (Louvan and Magnini, 2020b). However, scaling

models to other languages (cross-lingual), is still challenging, especially when labeled

data is limited or not available (zero-shot). To address the problem, several zero-shot

cross-lingual SLU approaches (Schuster et al., 2019a; Upadhyay et al., 2018; Xu et al.,

2020) assume that a labeled dataset is available only for a high-resource language (e.g.,

English). With the rise of pre-trained multilingual language models, such as mBERT

(Devlin et al., 2019) and XLM-R (Conneau et al., 2020), the default method for zero-shot

cross-lingual SLU involves a fine-tuning stage: the pre-trained model is first trained on

the English data with the task-specific objective, and then evaluated on the same task on

languages that were not seen in the training phase (zero-shot).

However, while direct fine-tuning may serve as a strong baseline, pre-trained language

models are not necessarily universal, and they may need domain-specific adaptation. In

fact, recent works have shown that adding a second pre-training stage (continued pre-

training) before fine-tuning can positively impact performance (Beltagy et al., 2019; Lee

et al., 2020; Gururangan et al., 2020). In the continued pre-training stage, the pre-trained

language model continues its training with a domain-specific or task-specific unlabeled

dataset, using the same self-supervised objective (e.g., Masked Language Model). The

motivation for adding another pre-training stage is to alleviate the domain mismatch

– data distribution difference – between the original pre-training and the target task

data. By performing continued pre-training on domain-specific unlabeled data, the model

acquires prior knowledge expected to be helpful in the fine-tuning stage. While continued

pre-training has shown promising results on text classification, typically on English, it

remains unclear whether it is applicable in the context of zero-shot cross-lingual SLU.

In contrast to previous work, which has mostly focused on English text classification,

we assess the effectiveness of continued pre-training for zero-shot cross-lingual SLU tasks

(intent classification and slot filling). Our study reveals that the existing continued pre-

training method (Gururangan et al., 2020), that is successful in English text classification

tasks, does not always generalize to the context of zero-shot cross-lingual SLU.

We systematically investigate the effectiveness of continued pre-training of a pre-
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trained multilingual model on zero-shot cross-lingual SLU for eight non-English languages,

and analyzes the factors that crucially impact performance. Our study aims to answer

the following questions:

(Q1) Is continued pre-training effective for zero-shot cross-lingual SLU tasks?

↪→ Our experiments on the MultiATIS++ dataset (Xu et al., 2020) reveal that incorpo-

rating continued pre-training on intermediate English data can improve performance over

direct fine-tuning for all languages either on slot filling on intent classification. The per-

formance gain is especially evident for languages that use the Latin script writing system.

The benefit of continued pre-training diminishes as we inject cross-lingual supervision in

the fine-tuning stage, even with simple data augmentation through code-switching.

(Q2) What are the factors that influence the effectiveness of the continued pre-training

stage?

↪→ Using the target language for continued pre-training before fine-tuning on English

introduces instability and can be detrimental to the overall performance; however, this

instability can be largely alleviated with a simple code switch on the fine-tuning data.

Regarding the continued pre-training data, we observe that performance improvement are

not obtained by merely adding more data. In fact, higher domain similarity between the

continued pre-training data and the fine-tuning data leads to better performance.

6.2 Background: Continued Pre-training

Many language models (Devlin et al., 2019; Liu et al., 2019b; Yang et al., 2019) are pre-

trained with a self-supervised objective on massive unlabeled data from general domains

(e.g., Wikipedia, Common Crawl) to acquire a powerful contextual text representation.

They serve as a convenient initialization, and are then trained on the labeled data of

downstream tasks (fine-tuning). However, the distribution shift between the original pre-

training data and the domain of the target task can yield poor performance.

One method to mitigate the problem is to add a continued pre-training stage by con-

tinuing the pre-training of the model using the same self-supervised objective either on

unlabeled domain-specific data (Lee et al., 2020; Beltagy et al., 2019; Gururangan et al.,

2020) or on task-specific data (Gururangan et al., 2020). While continued pre-training

has shown positive performance, most previous studies focus on text classification on
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English. Our work is complementary: (i) we investigate the effectiveness of continued

pre-training through intermediate data in a zero-shot cross-lingual setting; (ii) since our

context is cross- lingual, we analyze the role that the language itself plays in the effective-

ness of the continued pre-training; (iii) we investigate both sentence-level and token-level

tasks, namely intent classification and slot filling, to be performed simultaneously on an

utterance.

6.3 Continued Pre-Training in Zero-Shot SLU

Adapted LM Fine-tuned LM

Pre-training Continued Pre-training Fine tuning Zero-shot Cross-lingual Prediction

Fine-tuned LM

Self-supervised 
objective 
e.g. MLM

Train

billet d'avion le moins cher de Tacoma à Orlando

billet d'avion le moins cher de Tacoma à Orlando

origin destinationcost relative

Intent: airfare info

The standard approach With Continued Pre-training

Transformer-based 
LM (e.g. mBERT)

Unlabeled data 
from general sources on 

many languages 

Train

English unlabeled 
intermediate data

English labeled 
target task data

Train
Self-supervised 
objective 
e.g. MLM

Task-specific 
objective
e.g. cross-entropy

Figure 6.1: The overall stages of zero-shot cross lingual SLU using a pre-trained multilin-

gual model. The standard approach follows the stages marked with blue arrows (direct

fine-tuning). We investigate the effectiveness of adding a continued pre-training stage

(red dashed box) in the overall pipeline.

The overall pipeline of zero-shot cross-lingual SLU is shown in Figure 6.1. We con-

trast the standard approach (direct fine-tuning) with the continued pre-training approach,

which continues training the model on the intermediate unlabeled data with its original

self-supervised objective, i.e., Masked Language Modeling (MLM). As the original pre-

training data of many models are relatively far from the task-oriented dialogues used in

SLU, we hypothesize that continued pre-training can alleviate the domain mismatch and

add better prior knowledge before fine-tuning.

Intermediate Data for Continued Pre-Training. We define several criteria for

the intermediate data that we use for continued pre-training. First, the domain of the

intermediate data should be relatively close to the target dataset. We interpret the term

domain as a multidimensional variety space (Ramponi and Plank, 2020; Plank, 2016):
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a domain comprises multiple aspects – such as style, topic, and genre (van der Wees

et al., 2015) – that contribute to text variation. In this perspective, and as the target

dataset is SLU for a task-oriented dialogue system, we require that the intermediate data

comprises text that presents a spoken language dialog style and covers a broad range of

topics. Second, the dataset should be several magnitudes larger in size than the target

task dataset. Third, it must be available in many languages to support our study of

continued pre-training with the target language.

6.4 Experimental Setup

In this section, we detail the experimental settings related to models, evaluation metrics,

and datasets.

6.4.1 Models

For all of our experiments, we use a transformer (Vaswani et al., 2017) based model,

namely multilingual BERT (mBERT) (Devlin et al., 2019), as the pre-trained model.

mBERT is originally pre-trained on Wikipedia from 104 languages with Masked Lan-

guage Model (MLM) and Next Sentence Prediction (NSP) objectives. We use the pre-

trained bert-base-multilingual-cased1, consisting of 12 layers, 768 hidden states, 12 self-

attention heads, and 110 M parameters. The input text is encoded with the format: [CLS]

w1, w2, w3, ..., wn [SEP] where wi is an individual token.

Continued Pre-training. For the continued pre-training stage, we train mBERT with

unlabeled intermediate data only using the MLM objective for 12.5 K steps, and mostly

adopt the hyperparameters2 in Gururangan et al. (2020). We compare the following

configurations: (i) DAPTTgt in which we perform continued domain adaptive pre-training

(DAPT) of mBERT on intermediate unlabeled data on the target language. (ii) DAPTEn

in which we perform continued domain adaptive pre-training of mBERT on intermediate

unlabeled data on English.

Fine-Tuning. As baseline model, without any adaptation (No DAPT), we use the BERT-

1https://github.com/google-research/bert/blob/master/multilingual.md
2Appendix A.2
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based joint intent and slot filling model proposed in (Chen et al., 2019). This model is

state-of-the-art for IC and SF (Louvan and Magnini, 2020b), and it is often used as one

of the baselines in recent zero-shot cross-lingual SLU studies (Xu et al., 2020; Li et al.,

2021a). The hidden state h[CLS] is used for intent classification; the rest of the hidden

states at each time step hi are used for slot filling. The model is optimized with Adam,

and the learning rate is set to 1×10−5. The model is trained for 20 epochs on the English

dataset; as the setup is zero-shot cross-lingual (i.e., no labeled target language data is

available), we use the model on the last epoch for zero-shot evaluation following Xu et al.

(2020).

We evaluate the effectiveness of each of the DAPT configurations when applied to the

following fine-tuning scenarios:

• Fine-tuning on English (Finetune-En). This is the standard fine-tuning scenario,

where we take mBERT either with DAPT or no DAPT, fine-tune it to the English

intent and slot filling data, and perform zero-shot prediction to all target languages.

• Fine-tuning on the English code-switched data (Finetune-CS). In this scenario, we

perform data augmentation on the English fine-tuning dataset via code-switching. We

follow the approach from Qin et al. (2020a) in which we replace English words with their

translation in the target language using the Panlex bilingual dictionary (Kamholz et al.,

2014). Given a training batch, we select which sentences and tokens will be replaced.

We use the same hyperparameter3 used by Qin et al. (2020a), that defines both sentence

and word ratio to control the word replacement. We include FineTune-CS because

we want to study the benefits of DAPT when adding stronger cross-lingual supervision

in the fine-tuning stage.

We did not experiment with other models that leverage more informed code-switching (Liu

et al., 2020c; Krishnan et al., 2021), or more complex models with machine translation

and annotation projection (Xu et al., 2020), as our main goal is to investigate the effect

of the intermediate data in the continued pre-training stage, rather than achieving the

state of the art performance on the target task dataset.

Implementation & Model Evaluation metric. For IC and SF models we adapt the

implementation from Qin et al. (2020a)4. For continued pre-training we use the script

3Appendix A.2
4https://github.com/kodenii/CoSDA-ML
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from Wolf et al. (2019). For evaluation, we use accuracy for intent classification and

entity-level F1 score for slot filling5. We run each experiment five times with different

seeds and report the average accuracy and F1 score.

6.4.2 Dataset

Slot Filling and Intent Classification Dataset. We use the MultiATIS++ (Xu et al.,

2020) dataset, which contains nine languages: English, German, Spanish, French, Por-

tuguese, Hindi, Japanese, Chinese, and Turkish. The dataset is derived from the original

ATIS English dataset (Hemphill et al., 1990), widely used as a benchmark for intent clas-

sification and slot filling for task-oriented dialogue systems. Utterances are related to

conversations of a user asking for flight information to a system and are annotated with

their intent and slots in BIO format (Ramshaw and Marcus, 1995b). The overall dataset

statistics are shown in Table 6.16.

Language #train #dev #test #slot #intent

English 4.4K 490 893 83 24

German 4.4K 490 892 83 24

Spanish 4.4K 490 893 83 24

French 4.4K 490 893 83 24

Portuguese 4.4K 489 892 83 24

Hindi 1.4K 160 888 74 22

Japanese 4.4K 490 886 83 24

Chinese 4.4K 490 893 83 24

Turkish 0.6K 60 715 70 21

Table 6.1: Multi-ATIS++ (Xu et al., 2020) dataset statistics.

Continued Pre-training Dataset. In this work, we focus on using the OpenSubtitle7

(OpenSub) (Lison and Tiedemann, 2016) dataset for the continued pre-training stage for

5We use the standard CoNLL script to compute the F1 score

http://deeplearning.net/tutorial/code/conlleval.pl
6We found slot annotation mistakes, especially for Spanish and French datasets, where the number of

tokens and the corresponding slot labels are different. For these cases, we skip the utterances.
7https://opus.nlpl.eu/OpenSubtitles-v2018.php
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several reasons. First, the dataset is constructed from movies and TV series containing

spoken language in dialogue settings covering a broad range of topics. Second, OpenSub-

title covers all the languages that we use on the downstream tasks, which enables us to

evaluate not only DAPTEn but also DAPTTgt. Third, the dataset is large in size, thus

ideal for continued pre-training. Typically, the dataset used for continued pre-training is

larger than that used for fine-tuning. For our experiments we randomly sampled 100K

sentences for each language in the OpenSub dataset, resulting in a dataset around 20

times larger than the downstream task dataset. Table 6.2 summarizes the statistics for

the OpenSub dataset.

Language Total Tokens

English (EN) 734,302

German (DE) 691,039

Spanish (ES) 711,264

French (FR) 739,551

Portuguese (PT) 676,789

Hindi (HI) 688,675

Japanese (JA) 747,780

Chinese (ZH) 611,700

Turkish (TR) 554,709

Table 6.2: OpenSub (Lison and Tiedemann, 2016) dataset statistics. Each language has

100K utterances.

6.5 Results

The main goal of our experiment is to answer research question (Q1) Is continued pre-

training effective for zero-shot cross-lingual SLU tasks? Table 6.3 compares the zero-

shot performance for slot filling and intent classification across languages. Observing the

results language-wise (by column in Table 6.3), all languages improve over No-DAPT in

at least one DAPT setting. Hence, DAPT is effective across languages. Note that the

baseline performance, No-DAPT, on FineTune-En scenario is lower from FineTune-

CS because FineTune-CS has stronger supervision signal on the target language i.e.,
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Slot filling F1

DE ES FR PT HI JA ZH TR

FineTune-En

No-DAPT 65.3 71.3 64.0 61.9 47.5 62.2 66.3 27.4

∆DAPTTgt +4.0 −2.4 −7.7 −0.6 −12.9 −9.7 −0.6 +18.5

∆DAPTEn +2.1 +0.9 +5.9 +1.4 −4.5 +0.8 −0.2 −5.8

FineTune-CS

No-DAPT 75.5 80.8 71.9 72.0 58.1 67.1 81.6 72.0

∆DAPTTgt −0.2 −0.4 +0.5 +1.1 −3.9 −6.3 −1.2 −10.9

∆DAPTEn +0.4 +0.1 +4.6 +1.2 −13.9 −8.4 −0.7 −15.8

Intent classification accuracy

DE ES FR PT HI JA ZH TR

FineTune-En

No-DAPT 90.0 91.9 92.1 92.8 81.1 83.0 87.1 61.2

∆DAPTTgt −10.8 +0.5 −13.3 −1.6 −13.3 −1.9 −2.9 +8.1

∆DAPTEn −0.8 −0.1 +0.1 −0.6 −2.5 −0.5 −2.4 +8.3

FineTune-CS

No DAPT 95.1 96.4 96.6 94.2 85.6 85.1 88.0 66.2

∆DAPTTgt −1.1 −0.2 −0.5 +1.3 +0.6 −2.4 +0.3 +3.9

∆DAPTEn −1.6 −0.2 −0.2 +0.4 −0.8 −2.6 −7.3 +12.3

Table 6.3: Performance comparison on the test set for slot filling and intent classification.

Scores for No DAPT are the average slot F1 and intent accuracy from five runs. The

∆DAPTTgt and ∆DAPTEn indicate the delta between DAPT and No DAPT.

the English fine-tune dataset is code-switched to the target language. Although the pre-

trained multilingual language model is pre-trained on hundreds of languages, the context

for training is monolingual. Code-switching during fine-tuning helps to improve the cross-

lingual representation as it mixes context from different languages. These baseline results
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also confirm the finding from Qin et al. (2020a) that code-switching boosts zero-shot

cross-lingual performance for slot filling and intent classification.

Observing the results per task, slot filling benefits from either DAPTEn or DAPTTgt

for German, Spanish, French, Portuguese, and Turkish – languages with Latin scripts

writing systems. For these languages, the margin obtained from DAPT when fine-tuning

on English (FineTune-En) is higher than when we apply DAPT on code-switched data

(FineTune-CS). The margin of DAPT when applied on FineTune-CS diminishes

because FineTune-CS uses a stronger supervision signal in the fine-tuning stage, thus

providing a higher baseline. For non-Latin script languages, performing continued pre-

training is less useful, and we only observe marginal improvement on Japanese when

applying DAPTEn and FineTune-En. Similar to Lauscher et al. (2020), we believe that

performance is also affected by typological language proximity such as the subject, verb,

and object ordering, phonology features or other aspect related to the original size of the

pre-training data of mBERT. We leave this for future work.

DAPT is less effective for intent classification than for slot filling. The only language

that consistently benefits from continued pre-training in both fine-tuning scenarios is

Turkish. In general, it is harder to boost Latin script languages’ performance through

DAPT because the baseline is relatively high: a stronger supervision signal would thus

be needed. The performance gain is small even for those languages that do benefit from

DAPT. We also observe that using a different language between continued pre-training

and fine-tuning stages, DAPTTgt and FineTune-En, may hamper performance even for

Latin script languages, especially Spanish, French and Portuguese. We further discuss the

effect of using different language between continued-pretraining and fine-tuning in Section

§6.6.1.

6.6 Analysis and Discussion

To answer research question (Q2) What are the factors that influence the effectiveness

of the continued pre-training stage? we analyze our results focusing on the performance

variation when using different languages in DAPT and fine-tuning (§6.6.1), the effect of

domain distribution in different sources for DAPTEn (§6.6.2). In addition to that, we

perform performance analysis on per slot and per intent basis (§6.6.3).
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6.6.1 Performance variation when applying DAPT

(a) No DAPT + FineTune-En (b) DAPTTgt+ FineTune-En (c) DAPTEn+ FineTune-En

Figure 6.2: Post-hoc analysis: development set performance variation (with a 95% confi-

dence interval) on intent classification between English and French, using FineTune-En

and applying different DAPT strategies.

Table 6.3 shows that DAPT is effective across languages. In particular, DAPTEn is

superior to DAPTTgt for continued pre-training. However, as we have noticed in Section

§6.5, there are cases where performance drop when we use DAPTTgt and FineTune-En,

especially for intent classification. This behaviour holds even for languages relatively close

to English, such as German and French. One possible reason for the drop in accuracy is

that the language difference introduces instability in fine-tuning. Our post-hoc analysis

shows that the target language performance during training on the dev set has a large

deviation and continues fluctuating even after the English dev performance has stabilized.

This observation resonates with a previous study from Keung et al. (2020), which shows

that, for zero-shot text classification, English dev performance often does not correlate

with those of the target language. Using DAPTTgt and FineTune-En pronounces the

disagreement of performance between the English and the target dev set. Figure 6.2 shows

the comparison of the intent classification performance during training across continued

pre-training strategies when fine-tuning on English for French8. However, for the slot fill-

ing task, we do not observe a large performance variation even with a language mismatch:

this might indicate that text classification is more susceptible to instability than sequence

tagging. The variability caused by DAPTTgt is largely alleviated when we use DAPTEn.

For the FineTune-CS scenario, the system is relatively stable even when combined with

8For other languages, refer to Figure A.1
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DAPTTgt or DAPTEn.

6.6.2 Domain Relevance for DAPTEn

We aim at investigating whether the improvement from the continue pre-training derives

indeed from the domain relevance of the intermediate data. For this purpose, we selected

a few written text datasets instead of spoken language, which are focused on a specific

topic.

Specifically, we use the European Medicines Agency9 (EMEA) and European Central

Bank10 corpus (ECB) from Tiedemann (2012). EMEA contains articles about human,

veterinary, or herbal medicines extracted from the EMEA website. ECB contains finan-

cial documents that are extracted from the website and documentation of the European

Central Bank. In order to check that EMEA and ECB are more distant in terms of do-

main from MultiATIS than OpenSub, we compute the Jensen Shannon Divergence (JSD)

measure of the term distribution. JSD is often used to measure the domain similarity

between two datasets (Dai et al., 2020; Ruder and Plank, 2017b). We compute the JSD

between the MultiATIS English dataset that is used for fine-tuning and each English

intermediate dataset (Table 6.4). Based on the domain similarity measure, EMEA and

ECB are more distant to MultiATIS than OpenSub.

OpenSub EMEA ECB

JSD 0.419 0.391 0.397

Table 6.4: Domain similarity between MultiATIS and each of the intermediate data.

For each intermediate dataset, we randomly sample 100K sentences. We compare

the slot filling performance of DAPTEn with FineTune-En on OpenSub, EMEA, and

ECB in Table 6.5. Overall, we see that the DAPT using OpenSub obtains improvements

over No-DAPT in all cases. The DAPT performance using EMEA and ECB are lower

than OpenSub in most cases. Even for DE and PT languages, DAPT with ECB obtains

substantially lower performance than No-DAPT. However, there are cases when EMEA or

9https://opus.nlpl.eu/EMEA.php
10https://opus.nlpl.eu/ECB.php
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Lang.
No

DAPT

∆DAPTEn

OpenSub EMEA ECB

DE 65.3 +2.1 −2.5 −9.5

ES 71.3 +0.9 +0.9 +1.3

FR 64.0 +5.9 +2.0 +0.7

PT 61.9 +1.4 −0.3 −9.1

Avg +2.5 +0.005 −4.1

Table 6.5: Comparison of slot filling (top) performance by applying DAPTEn with

FineTune-En using OpenSub, EMEA, and ECB.

OpenSub

You have a cancellation on Flight 16 for New York .

That route does not take us to the airport .

Chicago , this is flight 209er

I fly to Taiwan Tuesday then back to Dusseldorf

Table 6.6: Example of the most similar sentences from OpenSub to the utterance in

MultiATIS: Show me flights from Denver to Philadelphia on a Monday

.

ECB match or even perform better than OpenSub i.e., for Spanish language. These cases

indicate that performing data selection before continued pre-training could be beneficial

for constructing more optimal DAPT dataset. We leave this possibility for future work.

Qualitative Analysis. We hypothesize that OpenSub contains some domain-relevant

utterances with MultiATIS that may support positive transfer in DAPT. We retrieve an

utterance from MultiATIS, “Show me flights from Denver to Philadelphia on a Monday“

that is close to the centroid11 of the MultiATIS dataset. Then, we retrieve the most

similar utterances from OpenSub using cosine similarity of the BERT-based sentence rep-

resentation (Table 6.6). These utterances are not directly related to booking flight tickets

but relatively relevant to flight or travel topics in general. Another evident dimension

11This is computed by averaging the BERT based sentence representation
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in these similar utterances12 that may help positive transfer in DAPT is the style of the

utterance, which is mainly in a conversational style.

6.6.3 Per Slot and Intent Breakdown

We perform further analysis on the development set of the target language to examine

the performance on a per-slot basis. We focus our analysis on the FineTune-CS sce-

nario. As the number of slots is relatively large, we categorize each slot into few coarse-

grained types: for example, slots such as fromloc.city name and toloc.city name

are mapped to Location (LOC), airline names to Organization (ORG), de-

part time.period of day, depart time.time etc to TIME. In general, slots that

belong to location, date and time, account for around 80% of the overall slots. We also

include flight-specific slots (e.g., FlightMod) in this analysis, which describe the criteria

for choosing a flight; whether it is the earliest, the shortest in terms of duration, etc. As

shown in Figure 6.3, slots that belong to location benefit from DAPT for all European

and Turkish languages. In terms of entity type improvement, German is similar to French:

both languages improve on the date and time entity types; Spanish and Portuguese are

also similar since they improve on the organization type. For non-Latin script languages,

although in terms of overall results (Table 6.3) DAPT does not improve performance,

we see improvements on slots related to date (for Hindi), location (for Chinese), and also

slots related to flight-specific information (for Japanese). We conduct the same type of

analysis on the dev set for intent classification (Figure 6.4) when applying DAPTEn to

FineTune-CS. We focus on intents that have frequency > 20. On these intents, the mar-

gin between DAPTEn and no DAPT is tiny; this is expected as the overall performance

between DAPTEn and no DAPT for intent classification is comparable. In addition to

that, the intent atis flight occupies 75% of the data, and its performance is already high

(around 98 - 99% for Latin script languages) even without DAPT.

Qualitative error analysis. We perform error analysis on the French dev set. Most

errors made by the No DAPT model that are fixed by DAPTEn model belongs to three

slots: fromloc.city name, toloc.city name, and stoploc.city name. We manu-

ally examine 92 examples of these errors. Most of the errors that are fixed by DAPTEn

are the cases in which the No DAPT predicts the gold slot value as O (false negative).

12More examples in Appendix A.15
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Figure 6.3: ∆ F1 performance on per slot basis between the DAPTEn and no DAPT

on each language on FineTune-CS scenario. Positive value means DAPT yields perfor-

mance gain over no DAPT.

Figure 6.4: ∆ accuracy on per intent basis between the DAPTEn and no DAPT on each

language on FineTune-CS scenario.

For these cases, we found that the model has problems in recognizing a slot value when

it is preceded by a partitive article d’, for example “Vols d’ Atlanta le deux août (Flights

from Atlanta Aug. 2 )“. Another type of error is related to ambiguity: for example, a

fromloc.city name slot is predicted as toloc.city name. Furthermore, the error

cases in which both models have difficulties are related to partial match errors which

often involve consecutive tokens with different slot types. For example, in the utterance

“Je veux voyager de Washington DC à Philadelphie mardi matin“, both models predict

Washington DC as the city name, while Washington and DC are annotated as separate

slots, representing the city name and the state name respectively.
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6.7 Related Work

Zero-Shot Cross-Lingual SLU. Before the advent of the pre-trained multilingual trans-

former models, most approaches relied on pre-trained cross-lingual embeddings to perform

zero-shot SLU. Upadhyay et al. (2018) uses cross-lingual embedding (Bojanowski et al.,

2017) to perform zero-shot SLU while Schuster et al. (2019a) uses multilingual embedding

(Cove) from pre-trained multilingual bi-LSTM encoder used in Neural Machine Transla-

tion (NMT). Liu et al. (2019c, 2020c) leverages transferable latent variables to improve

the sentence representation across languages. More recently, as pre-trained multilingual

transformer models show potential in zero-shot settings, most approaches focus on im-

proving their multilingual representation through augmentation and alignment methods.

Qin et al. (2020a) proposes multilingual code-switching using a bi-lingual dictionary to

improve mBERT’s multilingual representation. Xu et al. (2020) introduces soft alignment

of slots between English and the target language produced by an NMT system that elim-

inates the need for an annotation projection pipeline. Kulshreshtha et al. (2020) study

the effect of various cross-lingual alignment methods to improve mBERT representation.

Continued Pre-training. Domain adaptation is a long-studied problem in the NLP

community (Daumé III, 2007; Blitzer et al., 2007), in which we assume data in the target

domain might be hard to obtain while being abundant in source domains. Continued

pre-training – where the model is trained on relevant data using the same pre-training

objective – is used for mitigating the distribution mismatch between the pre-training and

the fine-tuning data in terms of domain (Logeswaran et al., 2019; Han and Eisenstein,

2019; Gururangan et al., 2020; Beltagy et al., 2019), task (Gururangan et al., 2020), and

language (Pfeiffer et al., 2020). A complementary approach performs a first fine-tuning

on related auxiliary tasks (for which training data are easy to obtain) before the final

fine-tuning on the downstream task (Arase and Tsujii, 2019; Garg et al., 2020; Khashabi

et al., 2020). Our work is in line with Gururangan et al. (2020) where we investigate

further the effectiveness of continued pre-training in the context of zero-shot cross-lingual

SLU.
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6.8 Conclusion

We systematically study the effectiveness of continued pre-training of a multilingual model

on intermediate English unlabeled spoken language data for zero-shot cross-lingual tasks,

namely intent classification and slot filling, on 8 languages. Our results show that the

domain knowledge learned in English is transferable to other languages. Slot filling bene-

fits more from continued pre-training than intent classification especially on Latin script

languages. The gain from continued pre-training diminishes as we inject cross-lingual

supervision through code-switching data augmentation in the fine-tuning stage. There

are several factors that influence the effectiveness of the continued pre-training: (i) Us-

ing different language between pre-training and fine-tuning can hamper performance and

introduce instability in the model training, which can be alleviated with code switching.

(ii) Domain similarity is important. The more similar – in terms of data distribution –

the intermediate data to the target dataset yields better performance. We believe that

our findings could also be applicable to broader NLP tasks in the context of zero-shot

cross-lingual settings.
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Chapter 7

Conclusion & Future Work

7.1 Conclusion

This thesis focuses on investigating transfer learning and data augmentation methods for

low-resource NLU in ToD systems. We surveyed recent developments on neural methods

for task-oriented NLU and existing approaches when scaling models to new domains or lan-

guages with limited labeled data. We characterize existing low-resource NLU approaches

in terms of their methods and auxiliary requirements and identify their challenges. As

contributions, we conduct an investigation and propose solutions to address these chal-

lenges. In this chapter, we conclude the thesis and outline future research directions

within task-oriented NLU.

In Chapter 4, we described our investigation on using non-conversational text as aux-

iliary data in the absence of a task-oriented dataset as a source of transfer. In particular,

we use non-conversational text annotated with NER or Semantic Tagging as auxiliary

tasks similar to slot filling tasks in NLU. We use multi-task learning (MTL) models to

incorporate auxiliary tasks and show that MTL with non-conversational auxiliary tasks

consistently outperforms single-task learning models. Furthermore, we investigate the

potential of data selection on the auxiliary data before conducting MTL; however, the

results are negative.

In Chapter 5, we proposed non-gradient based augmentation methods, Lightweight

Augmentation. Lightweight Augmentation incorporate token and sentence level
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augmentation, which consists of meaning preserving token substitution and syntactic ma-

nipulation through dependency parse tree information. We showed that Lightweight

Augmentation despite its simplicity, is competitive with deep-learning based augmen-

tation and effective on low-resource scenarios on English and five non-English datasets.

Combining transfer learning through BERT fine-tuning and Lightweight Augmenta-

tion yields the best performance, which suggests that transfer learning and data aug-

mentation are additive to performance.

In Chapter 6, we investigate the potential of performing continued pre-training of

a pre-trained multilingual transformer model in the context of zero-shot cross-lingual

NLU. In a zero-shot scenario where only an English dataset is available for training,

continued pre-training is effective across languages. The effectiveness is especially evident

for languages with Latin script systems. We also emphasize that using different languages

between continued pre-training and fine-tuning can be detrimental to performance. The

domain similarity between the intermediate data used in continued pre-training and the

fine-tuning data is essential for performance benefit.

Overall, this thesis has investigated transfer learning and data augmentation ap-

proaches in different low-resource scenarios. In most cases, both transfer learning and

data augmentation can improve model performance on NLU tasks. From the subtasks’

perspective, observing the overall results, slot filling obtains the most benefit compared

to intent classification in the majority of the cases. The margin of improvements can

be affected by several factors, such as the size of the training instance in the target

setting and characteristics of auxiliary data or pre-trained models. As the number of

training instances in the target setting increases, the benefit of transfer learning and data

augmentation becomes less evident. Especially for data augmentation, label preserving

operations are a crucial factor. The characteristics of the auxiliary data, such as the do-

main similarity between the auxiliary data and the target data, is also an essential factor.

When we use models based on large pre-trained language models (e.g., BERT, ALBERT,

RoBERTa), while they still benefit from data augmentation, the improvement is less than

smaller models such as LSTM based models.
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7.2 Future Work

Based on the works that we have pursued in this thesis, there are some potential future

directions for further research in the context of low-resource scenarios or even in a more

general case of task-oriented NLU. First, the low-resource scenario that we consider is

either data scarcity in a domain (Chapter 4 and 5) or language (Chapter 6). It could be

the case that the data is scarce in both domain and language dimensions which require

a transfer learning method that considers both dimensions simultaneously. There have

been some recent works that pursue this specific low-resource scenario (Liu et al., 2021b;

Razumovskaia et al., 2021). In addition to that, there are some works (Yu et al., 2021;

Hou et al., 2021) which explore few-shot scenarios where only few examples are available

in the target domain. Second, it would be interesting to leverage unlabeled data from

live traffic. In real situations, personal digital assistants such as Google Home, Apple

Siri, and Amazon Alexa, receive live traffic data from real users. This large amount of

unlabeled data from live traffic is a potential data source for model training, in addition

to in-house annotated data. Unlabeled live data are likely different from in-house data,

as they can contain more diverse, noisy, and irrelevant utterances. In this situation, exist-

ing methods to tap on unlabeled data, such as semi-supervised learning, still face unique

challenges to handle live data. It is worth noting that a bottleneck in this direction is

that working on live data in academic settings is not trivial. Some works explore this

line of research by applying semi-supervised learning (Cho et al., 2019) and also data

selection (Do and Gaspers, 2019) mechanism. Third, regarding the evaluation, existing

neural approaches are typically evaluated on single-intent utterance. However, in a real-

world scenario, users may indicate multiple-intent in an utterance, e.g., ”Show me all

flights from Atlanta to London and get the cost” (Gangadharaiah and Narayanaswamy,

2019) or even expressing multiple sentences in one single turn. The evaluation of dia-

logue models on standard benchmarks often overestimates the model’s performance in

real-world settings. One of the main causes is that there is a gap between task-oriented

datasets and real-world conversations. Typically, task-oriented datasets are constructed

by crowd-workers following certain templates or instructions suggested by the Wizard of

Oz methodology. As a result, utterances in the dataset tend to be semantically precise and

clear, which resembles an ideal situation. On the other hand, in real-world conversations,

there can be phenomena, such as speech errors and disfluencies, typos, out-of-domain

111



CHAPTER 7. CONCLUSION & FUTURE WORK

utterances, unseen entities, paraphrasing, and simplification, which are challenging for

automatic systems. Therefore, it is important to evaluate the robustness of dialogue

models against a range of phenomena they might encounter in real-world conversations,

which go beyond the standard evaluation datasets. Recent initiatives introduce evaluation

on the robustness of dialogue systems, addressing aspects not covered in current standard

benchmarks. Peng et al. (2021) introduce RADDLE, an evaluation benchmark with a

robustness checklist that covers phenomena such as paraphrase, verbosity, simplification,

typos, etc. Their framework supports evaluation for Natural Language Understanding,

Dialogue State Tracking, Dialogue Policy, and Natural Language Generation tasks. They

evaluate the existing state-of-the-art models on these tasks and found that most mod-

els perform unsatisfactorily on these robustness evaluations, which suggests that there is

still ample room for model improvements. Similarly, Liu et al. (2021a) propose a model-

agnostic toolkit, LAUG, which generates natural language perturbations for evaluating

the robustness issues in task-oriented dialog in terms of language variety, speech charac-

teristics, and noise perturbation.
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Method Requirements Model Task

Transfer Learning

Jaech et al. (2016) MTL Labeled conversational slot filling DS biLSTM SF

Goyal et al. (2018) Pre-train Labeled conversational slot filling DS biLSTM SF,IC

& Fine-Tuning

Siddhant et al. (2019) Pre-train Unlabeled conversational DS biLSTM Elmo SF,IC

& Fine-Tuning

Labeled conversational slot filling DS

Kim et al. (2017) Expert model Labeled conversational slot filling DS biLSTM + attention SF, IC

with attention

Jha et al. (2018) Expert model Coarse-grained labeled conversational biLSTM SF

without attention slot filling DS

Bapna et al. (2017) Train on DS only Labeled conversational slot filling DS biLSTM SF

(zero-shot) Natural language description of slot names

Lee and Jha (2019) Train on DS only Labeled conversational slot filling DS biLSTM+attention+highway SF

(zero-shot) Natural language description of slot names

Shah et al. (2019) Train on DS only Labeled conversational slot filling DS biGRU SF

(zero-shot) Natural language description of slot names

Slot value examples

Guerini et al. (2018) Train on DS only Slot value examples biLSTM SF

(zero-shot)

Liu et al. (2019c) Train on DS only Labeled conversational slot filling DS biLSTM+latent variable SF

(zero-shot)

Slot value examples

Data Augmentation

Kurata et al. (2016b) Model based DA — Se2Seq LSTM SF

Hou et al. (2018b) Rule, Model based DA — Seq2Seq + Attention SF

Zhao et al. (2019) Model based DA Intent and slot Value Template Seq2Seq LSTM SF

Yoo et al. (2019) Model based DA — Conditional Variational SF, IC

Auto Encoder

Peng et al. (2020) Model based DA Unlabeled conversational DS Transformer SF, IC

Pre-trained GPT-2

Anaby-Tavor et al. (2020) Model based DA Pre-trained GPT-2 Transformer IC

Kumar et al. (2020) Model based DA Pre-trained BART, BERT, GPT-2 Transformer IC

Table A.1: Comparison of transfer learning approaches for domain scaling
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ATIS Slot OntoNotes

Label

AIRLINE NAME ORG

AIRPORT NAME FAC

ARRIVE DATE, DAY NAME, DAY NUMBER, DE-

PART DATE, DEPART TIME, FLIGHT DAYS,

TIME RELATIVE, TODAY RELATIVE

DATE

ARRIVE TIME, MONTH NAME, PERIOD OF DAY, RE-

TURN TIME, TIME

TIME

CITY NAME, FROM LOC, STATE CODE,

STATE NAME, STOP LOC, TO LOC

GPE

COST RELATIVE, FARE AMOUNT MONEY

DAYS CODE, ECONOMY, FARE BASIS CODE,

FLIGHT MOD, MEAL, MEAL CODE,

MEAL DESCRIPTION, MOD, FLIGHT STOP,

FLIGHT MOD, OR, RESTRICTION CODE,

ROUNDTRIP, TRANSPORT TYPE

O

FLIGHT NUMBER CARDINAL

Table A.2: Label Mapping from ATIS to OntoNotes.

MIT Movie Slot OntoNotes

Label

CHARACTER, ACTOR, DIREC-

TOR

PER

YEAR DATE

PLOT, RATING, TITLE,

REVIEW, SONG, RAT-

INGS AVERAGE, GENRE,

TRAILER

O

Table A.3: Label Mapping from MIT Movie to OntoNotes.
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DT
DS Avg ∆

TC NW BC BN WB MZ

TC - 0.74 0.84 0.80 0.83 0.77 0.80 1.7

NW 0.74 - 0.85 0.91 0.91 0.90 0.86 0.7

BC 0.84 0.85 - 0.90 0.90 0.86 0.87 0.02

Table A.4: Domain Similarity (JSD) for each DT and DS

Hyperparameter Value

LSTM cell size 100

Dropout 0.5

Word embedding dimension 300

Character embedding dimension 100

Mini-batch size 32

Optimizer Adam

Number of epoch 50

Early stopping 10

Table A.5: Neural Model Hyperparameters

Hyperparameter Value

LSTM cell size 100

Dropout 0.5

Word embedding dimension 300

Character embedding dimension 100

Mini-batch size 128

Clip norm 1

Optimizer Adam

Number of epoch 20

Early stopping 10

Table A.6: Neural model hyperparameters for MTL with Data Selection
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Parameter Adopted value

Surrogate model Gaussian Pro-

cesses with

MCMC sampling

Acquisition function Expected Loga-

rithmic Improve-

ment

Number of initial evalu-

ation points

3

Search space upper

bound

1

Search space lower

bound

-1

Number of iterations 50

Table A.7: Parameters used by the Bayesian Optimizer.

Hyperparameter Value

Learning rate 10−5

Dropout 0.1

Mini-batch size 16

Optimizer BertAdam

Number of epoch 30 (bert-base-uncased)

10 (bert-large,

roberta-large,

albert-xxl)

Early stopping 10

nbaug Tuned on {2, 5, 10}
Nucleus sampling top-p = 0.9

Max rotation 3

Max crop 3

Table A.8: Hyperparameters used for the Transformer based models and data augmenta-

tion methods
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Dataset #train

ATIS 7,846

SNIPS 24,472

FB 52,798

Table A.9: Total training examples for Slot-Sub-LM+Filter. The number of positive

and negative examples are the same.

Dataset Accuracy

ATIS 92.70

SNIPS 86.10

FB 99.14

Table A.10: The accuracy of the binary sentence classifier.

Model
ATIS SNIPS FB

Slot Intent Slot Intent Slot Intent

BiLSTM + CRF 95.66 98.34 95.13 98.07 96.18 99.30

Table A.11: Slot filling and intent classification performance when 100% training data is

used.

N
ATIS SNIPS FB

Slot Intent Slot Intent Slot Intent

2 90.68 94.46 87.57 97.43 93.77 93.82

5 91.08 94.92 88.12 97.86 93.5 98.33

10 91.36 94.82 88.00 97.46 93.5 98.28

20 91.57 95.04 88.07 97.54 93.51 98.2

25 91.62 94.82 87.91 97.59 93.41 98.25

Table A.12: Slot filling and intent classification performance with SlotSub with different

number of augmented sentence (N)
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Dataset Training Size (%) p-value

ATIS-HI 5 0.04311444678

10 0.005062032126

20 0.04311444678

40 0.04311444678

80 0.1380107376

100 0.2733216783

ATIS-TR 5 0.224915884

10 0.005062032126

20 0.7150006547

40 0.1797124949

80 0.1797124949

100 0.1797124949

SNIPS-IT 5 0.04311444678

10 0.005062032126

20 0.04311444678

40 0.04311444678

80 0.04311444678

100 0.04311444678

FB-ES 5 0.04311444678

10 0.02831405495

20 0.1797124949

40 0.1755543028

80 0.1380107376

100 0.1797124949

FB-TH 5 0.04311444678

10 0.005062032126

20 0.1797124949

40 0.1797124949

80 0.1797124949

100 0.10880943

Table A.13: The p-values of statistical tests on the experiments on Figure ??.
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Dataset Nb Aug p-value

ATIS-TR 2 0.005062032126

5 0.01251531869

10 0.006910429808

20 0.5001842571

25 0.07961580146

ATIS-HI 2 0.1097446387

5 0.005062032126

10 0.005062032126

20 0.04311444678

25 0.04311444678

SNIPS-IT 2 0.005062032126

5 0.005062032126

10 0.005062032126

20 0.04311444678

25 0.04311444678

FB-ES 2 0.0663160313

5 0.02831405495

10 0.09260069782

20 0.3452310718

25 0.07961580146

FB-TH 2 0.03665792867

5 0.005062032126

10 0.005062032126

20 0.04311444678

25 0.04311444678

Table A.14: The p-values of statistical tests on the experiments
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(a) No DAPT + FineTune-En (b) DAPTTgt+ FineTune-En (c) DAPTEn+ FineTune-En

(d) No DAPT + FineTune-En (e) DAPTTgt+ FineTune-En (f) DAPTEn+ FineTune-En

(g) No DAPT + FineTune-En (h) DAPTTgt+ FineTune-En (i) DAPTEn+ FineTune-En

Figure A.1: Post-hoc analysis: development set performance variation across multiple

runs on intent classification when using FineTune-En and applying different DAPT

strategies.
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A.1 Data Selection (DS) - Sentence Similarity

Next, we analyze the similarity distribution of the sentences before and after the data

selection. We use Infersent encoder (Conneau et al., 2017) to obtain the sentence em-

beddings and using cosine measure to calculate the similarity score. The similarity score

is calculated between each sentence embedding in TS and the average values of sentence

embedding in TT . We notice that the average similarity score distribution for methods

without selection and with selection is similar, and that the standard deviation is very

narrow. Observing the shape of the overall density1 distribution of the similarity scores

(Figure A.2), we can see that the distribution of DSall is already highly concentrated to

a particular area of similarity scores. Moreover, all the methods that use a data selection

process produce similar shape of density distribution with respect to methods that do not

use any selection process.

We hypothesize that in situations where the sentence similarity distribution is con-

centrated in a very narrow range, the benefit of performing data selection is lower. In

order to validate if this is indeed the case, we created another source dataset, where the

similarity score distribution is more uniformly distributed and includes data from differ-

ent domains. We constructed this dataset by collecting the sentences from all sections

of OntoNotes 5.0. After that, we computed the similarity of the sentences against the

centroid of TT . In order to generate a more uniform similarity distribution, we distributed

the sentences into buckets of approximately the same size, where each bucket is defined

by a similarity score range (e.g. 0.0 to 0.1, 0.1 to 0.2, etc.). We then carried on the

same data selection evaluation using this new source data (we refer this as T allS ). We can

see that after the selection process, the distribution tends to peak at a particular range

(Figure A.2) again. Table A.16 shows the overall performance when using T allS data and

we do not observe clear advantage of data selection (DS) methods. Based on the results,

only on the MIT Restaurant dataset with DSsim gives better performance than DSall.

Although DSall still gives the best result for most datasets, among the three selection

methods DSsim consistently gives better results than the other two methods.

1Density plot is the smoothed version of the histogram estimated with Gaussian kernel density esti-

mation.
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(a) ATIS with TS as the auxiliary dataset (b) ATIS with T all
S as the auxiliary dataset

(c) MIT-R with TS as the auxiliary dataset (d) MIT-R with T all
S as the auxiliary dataset

(e) MIT-M with TS as the auxiliary dataset (f) MIT-M with T all
S as the auxiliary dataset

Figure A.2: Sentence similarity distribution when using TS or T allS x
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OpenSub

You have a cancellation on Flight 16 for New York .

That route does not take us to the airport .

Chicago , this is flight 209er

I fly to Taiwan Tuesday then back to Dusseldorf

Your plane ticket to Naples .

I got 1,000 bucks that says you end up solo pilot on a one-way flight to Spankytown .

If we leave at 10 p.m. , we can catch them in Modesto .

Your bus leaves from depot six in just a few minutes .

do you know the way to san jose ?

He was boarding a flight to Johannesburg .

Take the 77 bus and get off at the village .

Anny flew here from Seattle today .

Just go back to their last port before she boarded , leave a message so Dean knows .

Flying monkeys , take us to Emerald City .

Will you sail from here or will you go via Rome ?

Where ’s the plane , Francisco ?

Our estimated flight time is approximately five and a half hours .

Your flight ’s in two hours .

So when you going to Cleveland ?

Table A.15: Example of the most similar sentences from OpenSub to the utterance in

MultiATIS

.

Method ATIS MIT-R MIT-M

DSall 91.140.25 69.190.45 81.630.25

DSsim,div 90.660.48 68.880.35 81.240.36

DSsim 90.880.39 69.450.46 81.430.34

DSdiv 90.770.42 69.010.25 81.250.35

.

Table A.16: Results with T allS as the auxiliary dataset
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A.2 Model, Implementation, and Training Details

• The infrastructure that we use is a machine with single GeForce RTX 2080 Ti

GPU. The running time for performing continued pre-training with 100K sentences

is around 45 minutes. The running time for the intent classification and slot filling

experiments for five different seeds is around 100 minutes.

• For the intent and slot filling models, we adapt the implementation from Qin et al.

(2020a) in which they make it publicly available (https://github.com/kodenii/CoSDA-

ML). The sentence and token ratio replacement for code-switching is set to 1.0 and

0.9 respectively. For training, the learning rate is set to 10−5, batch size is set to 32.

We did not do extensive hyperparameter tuning, as this is a zero-shot cross lingual

case where the target dataset is not available, we use the same hyperparameters as

Xu et al. (2020).

• For the continued pre-training we use the language modeling script from Huggingface

(Wolf et al., 2019). We use the bert-base-multilingual-cased, hidden state size

is 768, we apply dropout probability of 0.1. The number of training steps is 12500

following Gururangan et al. (2020), the batch size is set
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