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Abstract—This paper presents a Sensor-Driven Hierarchical
Domain Adaptation (DA) method that aims at transferring the
knowledge from a source domain (RS image where reference
data are available) to a different but related target domain
(RS image where no labeled reference data are available) for
solving a classification problem. Due to the different acquisition
conditions, a difference in the source and target distributions of
the features representing the same class is generally expected.
To solve this problem, the proposed method takes advantage
from the availability of multisensor data to hierarchically detect
features subspaces where for some classes data manifolds are
partially (or completely) aligned. These feature subspaces are
associated with invariant physical properties of classes measured
by the sensors in the scene, i.e., measures having almost the
same behaviour in both domains. The detection of these invariant
feature subspaces allows us to infer labels of the target samples
that result more aligned to the source data for the considered
subset of classes. Then, the labeled target samples are analyzed
in the full feature space to classify the remaining target samples
of the same classes. Finally, for those classes for which none
of the sensors can measure invariant features we perform the
adaptation via a standard Active Learning (AL) technique.
Experimental results obtained on two real multisensor datasets
confirm the effectiveness of the proposed method.

Index Terms—Transfer learning, Domain Adaptation (DA),
multi-sensor data acquisition, invariant features, data fusion,
classification, Remote Sensing (RS).

I. INTRODUCTION

HE POSSIBILITY of generating accurate land-cover

maps by applying supervised classification approaches
to RS data has been extensively analyzed in the literature.
The main drawback of these methods is the need of reference
data for training the classification algorithm, which requires
expensive and labour intensive field data collection. Therefore,
in a real application scenario it is not reasonable to assume
to have ground reference data available each time that a new
RS data is acquired. To mitigate the need of labeled samples,
the new RS image can be classified by exploiting the ground
reference data associated with an image acquired by the same
sensor in a region with comparable properties (i.e., same
set of land-cover classes). However, when transferring the
knowledge among pairs of RS images, even tough they are
similar to each other, it is necessary to face many problems.
The different acquisition conditions of the two data (i.e., il-
lumination, atmosphere, look/view angles, sensor parameters)
affect the radiometry of the scene. Moreover, the phenological
state of the vegetation or the differences in the soil moisture
can lead to crucial variations in the spectral response of the

same land-cover classes (e.g., bare soil, crops). From the
statistical view point, all these factors result in a shift of
the probability distribution of the classes between the images.
Hence, the direct application of the classifier trained on the
source domain (RS data where reference data are available)
to the target domain (RS data where no reference data are
initially available) results in a low classification accuracy of
the obtained land-cover map.

In machine learning and pattern recognition literature, the
issue mentioned above is addressed by using DA methods
in the framework of transfer learning. The main idea is to
transfer the knowledge learned on the source domain to a
target domain by modelling the differences among the areas
[1], [2]. Several methods have been presented in the framework
of change detection, where the source and the target domains
are acquired in the same geographical area but at different
times. Few approaches have been developed to normalize the
images if they have been taken under identical acquisition
condition [3]-[7], while others adopt image processing for
matching as more as possible the statistical distributions of the
images [7], [8]. More sophisticated techniques aim at adapting
the classification model estimated on the source domain to
the target domain [9]-[11]. In [9], [10] the main idea is to
use in an unsupervised way the samples of the target image
to tune the classifier in order to update the land-cover map
generated on the source domain. In [11] the authors first apply
an unsupervised change-detection method to the source and
the target domains, then they exploit the unchanged pixels
associated with the groundtruth samples of the source domain
to generate the reference data of the target domain. However,
all these methods can address the case of classification of time-
series images acquired on the same area.

In the case of images acquired on different regions, it is
not possible to use the change information or the tempo-
ral correlation between areas for addressing the DA issue.
To solve this problem, a common DA strategy consists in
weighting the samples of the source domain in order to
use them in the classification of the target domain [12]-
[15]. In [12], [13] the source samples weighting is combined
with feature transformations in order to construct a feature
representation that minimizes the domain difference, while
in [14], [15] the re-weighting technique is jointly used with
an active learning (AL) method to evaluate the similarity
between source and target domains. Note that AL methods
aim at iteratively expanding the original training set by se-
lecting the most informative unlabeled samples of the target



domain. Typically, an interactive process with a supervisor is
required to manually label the selected samples, thus strongly
improving the classification accuracy [16]. Several approaches
address the DA problem by gradually adapting the training
distribution to the target domain rather than performing a
samples weighting [17], [18]. In [17] the authors present
a deep learning model to gradually replace source domain
samples with target domain samples, while in [18] a unified
architecture which jointly address feature learning, domain
adaptation and classifier learning is proposed.

Many DA problems have been also addressed by semisu-
pervised learning methods [19]-[27] when the reference data
are not sufficient to represent the real distributions of the
land-cover classes. Indeed, often ground data are acquired
over contiguous sites easily to access, thus resulting in a
unrepresentative pool of samples that affect the training of
the classifier. SSL methods aim to solve this problem by
taking advantage from the unlabeled samples of the image
to better model the distributions of the classes and thus train
the classifier. In [19] the authors present an iterative algorithm
which exploits a weighting strategy based on a time-dependent
criterion to include in the training set the unlabeled samples
of the image. At each iteration a Support Vector Machine
(SVM) classifier is trained with the enlarged set of labeled
samples, thus gradually searching the optimal classification
function. In particular, they observe that the most informative
unlabeled samples are the ones close to the margin bound-
aries of the SVM. Recently, graph-based methods brought
a great contribution in solving semisupervised classification
problems due to their solid mathematical background [28]—
[33]. Typically, both the labeled and unlabeled samples are
considered as nodes of the graph, while the weights between
the nodes represent the similarity among pairs of samples. This
condition allows one to drive the labeling process in a natural
way among samples of the same classes under the assumption
of consistency (i.e., nearby points should belong to the same
class) [28]. In [34], the graph represents the structure of the
land-cover classes to highlight possible changes between the
domains. Thus, the method does not require to have the same
set of land-cover classes between source and target domains.
First, the number of classes of the target domain is detected by
means of a clustering algorithm. Second, a sub-graph matching
algorithm is proposed to detect the common classes and to
identify possible changes among pairs of land-cover classes.
To match the classes of the different domains, the data are
projected into a higher dimensional kernel induced feature
space which allows a linear class separation.

In the computer vision community, several methods ad-
dressed unsupervised DA problems by learning new feature
representations that are domain-invariant [35], [36]. This can
be done by projecting the source and target domains to low-
dimensional subspaces and then aligning the source subspace
to the target one [37], or by directly learning a projection of
the data where the distance between the domains is minimized
[38]. In [39], the authors propose a transfer subspace learning
approach by minimizing the Bregman divergence between the
domains in lower dimensional spaces. A significant effort
has been devoted to detect an intermediate feature subspace

using the information conveyed by both the domains [40]-
[43]. In [40], the authors address a DA problem in which the
data from the source and the target domain are represented
by heterogeneous features having different dimensions. Both
the source and target data are projected onto an augmented
common feature subspace [44], where it is possible to transfer
the knowledge across the domains. The feature augmentation
method has been extended to detect a manifold of intermediate
domains [41]-[43]. In [41] the authors present a kernelized
manifold-based approach which extends and improves the
method reported in [42]. The main idea is to exploit a geodesic
flow kernel to model the domain shift by integrating an infinite
number of subspaces that characterize changes in geometric
and statistical properties between the domains. In [45] a new
framework based on the optimal transportation problem is pre-
sented to transport the source samples to the target distribution.
According to the proposed regularization schemes, the class
structure of the source domain is encoded to guarantee that
samples belonging to the same class must undergo similar
transformation. In [46] the authors propose a method which
aims to select a subset of features that are characterized
by both invariant spatial behaviour and discrimination ability
among the set of land-cover classes. The feature selection is
performed considering a novel criterion function based on
a standard measure of distance between the classes and a
novel metric that evaluates the stationary behaviour of features
between the domains. Due to this feature-selection phase,
the generalization capability of the classification method is
strongly improved with respect to the standard techniques. In
[47] a nonlinear deformation based on vector quantization and
graph matching is presented to adapt the source domain to the
target domain. The data manifolds of the images are locally
deformed to facilitate the statistical alignment. Therefore, by
maximizing the similarity of the graphs representing the two
domains it is possible to transfer the knowledge from the
source to the target domain in an unsupervised way. In [48]-
[51] the authors address the adaptation from a local perspec-
tive, trying to adapt locally the samples of the images while
preserving the geometrical structure of the entire distribution.
In [51] the authors propose an alignment method which works
directly on the manifolds of the images, thus addressing the
cases of having multiangular, multitemporal, and multisource
image classification problems. In greater details, the method
aims to pull close samples of the same classes while preserving
the geometry of each manifold along the transformation. How-
ever, to detect possible spaces where the manifolds are aligned
the presented method requires a set of labeled data from the
target image. Indeed, the alignment transformation is defined
by using both labeled and unlabeled samples. Similarly, in
[49] the authors focus on the feature extraction phase to
statistically align the distributions of the source and the target
domains either in a semisupervised or in an unsupervised way.
In particular, they present a Transfer Component Analysis,
which allows the preservation of the local geometry (data
manifold) while minimizing the distance between the domains,
thus improving the classification accuracy of the target domain
regardless of the classifier.

From this brief analysis of the literature, it turned out that



accurate DA results can be achieved by defining a feature
representation that minimizes the difference between the distri-
butions in the source and target domains. However, the effec-
tiveness of these data-driven methods strongly depends on both
the discrepancy between the source and target distributions and
some properties of the considered set of land-cover classes.
In [52], [53] the authors pointed out that, unless the training
samples are prohibitively large, there are no guarantees of
success for unsupervised DA problems. Thus, DA problems
become intractable when the similarity between source and
target distributions is not sufficient. For this reason, differently
from the literature, in the proposed approach the detection of
the optimal features space relies on a physical-based approach
that exploit the capability of the sensors to measure some
almost invariant physical properties of the classes, i.e., having
almost the same behaviour in the domains. When a sensor is
able to measure physical properties, associated with subset of
features, characterized by an invariant (similar) behaviour on
one (or more) class(es) across the domains, it is possible to
transfer the knowledge from the source to the target domain
in an unsupervised yet reliable way. Although these feature
subspaces guarantee a better alignment of the data with respect
to the original space, for some specific classes they are
not sufficient to model the entire distribution of the target
domain. Thus, the main idea of the proposed method is to
exploit hierarchically different invariant feature subspaces to
infer the labels of the target samples of some classes almost
aligned to the source data. The labeled target samples are
then analyzed in the full feature space to properly represent
the Probability Density Function (PDF) of the target domain
for the considered subset of classes. Finally, the subset of
classes for which none of the sensors available can measure
invariant properties are adapted by using an AL procedure
which takes advantage from the adaptation performed in the
previous step. This step can be introduced to further increase
the level of detail of the land-cover map already obtained in
an unsupervised way for the invariant classes. Note that the
proposed method cannot be applied to any domain adaptation
problem and a preliminary analysis is required to design the
hierarchical decomposition. However, the only assumption of
the method is that in the considered DA problem there are
sensors capable to measure biophysical parameters that have
similar values the domains. Experiments conducted on two real
multisensor datasets confirm the effectiveness of the proposed
method.

The rest of the paper is organized as follow. Section II
introduces the problem formulation and the notation used
in the paper. Section III presents the proposed DA method,
while Section IV describes the considered dataset. Section
V illustrates and discusses the experimental results. Finally,
Section VI draws the conclusion of this paper.

II. PROBLEM FORMULATION

In this section we formalize the sensor-driven DA problem
and define the notation used in the paper. Let us assume to have
N sensors U, with n = [1, N], which can acquire data on
two different geographical areas. The feature vector extracted

by the nth sensor ¥,, is defined as x¥» = (z'", zy", .., zym),
with x¥» € R%, Accordingly, the vector x € RY of features

extracted by all the available [V sensors is as follows:

x=(x""ux¥2u.. ux")

D
_ Wy v, W2 vy, Wy Uy (
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Let D; be the source domain and D, the target domain
that we assume share the same set of M land-cover classes
Q = {wn}M_,. Let Ty = {xs,,Ys,;}; be the training set
available on the source domain and {x;;}; be the set of
unlabeled samples of the target domain, where X; j, X ; € RY
and ys; € ). From the statistical view point, each class
wpm € 2 is characterized by the prior probability P(w,) and
by its relation with the data through the class conditional
probability P(x|w,,). Accordingly, the distribution of the
source domain can be written as:

ps(x) = Z PS(Wm)PS(X‘Wm) (2)

Wm €N

and the distribution of the target domain:

pt(x) = Z Pt(wm>Pt(Xlwm) 3)

wm €Q

Due to the different scenes represented by D and Dy (e.g.,
different acquisition condition, different ground condition, dif-
ferent geographical locations), usually a shift in the probability
distributions of the classes is observed (i.e., ps(x) # p:(x)).
The main goal of the DA method is to overcome this shift,
in order to transfer knowledge from D, to D, in a reliable
way. Typically, this is done by adapting the classifier model
trained on D, to D, [54], by searching feature spaces where
the data are more aligned from the global view point [55] or
by matching local deformations [56], [S7]. Differently from
all the methods present in the literature, in the proposed
approach the detection of these features subspaces relies on the
physical meaning of the properties measured by the available
sensors. When one (or more) sensor(s) takes a measure (or
a subset of measures) that is not affected by the specific
domain considered (e.g., the height value of a tree), in the
associated feature subspace the probability distributions result
almost statistically aligned. This is exploited by the proposed
method to infer knowledge to D; as described in the next
section.

III. PROPOSED SENSOR-DRIVEN HIERARCHICAL DA
METHOD

The acquisition of multisensor data results in the collection
of complementary measurements on the scene. Due to the
capability of each sensor of measuring different physical prop-
erties of the land-cover classes in many cases, it is possible to
identify a set of properties which are expected to be almost
invariant between D, and D, for one or more specific classes.
A physical measure can be considered invariant for a class
when the class presents almost the same distribution in the
feature space defined by the measure in Ds and D;. This
condition allows us to bridge the gap between source and target
distributions. Fig. 1 shows the block-scheme of the proposed
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Fig. 1. Block scheme of the proposed sensor-driven hierarchical domain adaptation method.

DA approach. The main assumptions of the proposed method
are: i) the availability of multisensor data acquired on D, and
Dy, ii) the same set of land-cover classes is shared between
the domains. Note that even though the assumption of having
the same set of land-cover classes between the domains can be
critical in some application, it has been extensively employed
in the literature [9], [22], [58]-[62] and it is reasonable in
many real cases.

A. Sensor-driven Hierarchical Decomposition

The first step, Sensor-driven Hierarchical Decomposition,
seeks to decompose the DA problem to identify a subset of
classes for which invariant measurements can be obtained. If
for a subset of classes some features have almost the same
behaviour in both the domains, for those classes it is possible
to infer knowledge from D, to D; in an unsupervised but
reliable way. To generate the hierarchical decomposition of
the set of land-cover classes, first the invariant measures are
detected. To this end, it is necessary to analyze the properties
of both the considered classification problem and the sensors
available. Note that the detection of the invariant feature
subspaces can be performed by considering more sophisticated
combination of features acquired by different sensors or by
combining different features. The use of data-driven methods
can identify features potentially effective but with results im-
plicitly less reliable/robust given the fact that the DA problem
is ill-posed [52], [53]. The exploitation of a physic-driven
step can mitigate the possible drawback on the reliability of
the results of data-driven methods. Thus, in the considered
implementation, we focused the attention on the physic of
both the signals recorded by the sensors and their interaction
with the set of classes to detect the measures carachterized by
invariant bahaviour. Many papers in the literature studied the
interaction between RS sensors and the physical properties of
the scene [63]-[65]. For example, in [63] the authors define a
set of physical indices for urban scene to automatically classify
high-resolution imagery in an unsupervised way, while in [64]
similar indices are employed to extract the ground truth data
directly from the high resolution image.

Procedure 1: Sensor-driven Hierarchical Decomposition

1: begin

2: inputs: The set of land-cover classes Q = {w,,}M_; and
the set of sensors ¥,,, n = [1, N]

3. for w,, € Q do

4. Analyze the set of measures x = {x¥1 U..Ux¥V}

to detect the sensor V¥, (or the set of sensors) which
Uy,

provides an invariant feature subspace x
5 if there is at least one invariant measure for w,,, then
6 Insert w,, into the set of classes C;y,,
7. else
8 Insert w,, into the set of classes C,
9:  end if
end for
: Define the number of hierarchical levels equal to the
number of detected invariant feature subspaces. According
to a top-down approach, starting from the whole set of
classes (2
for each level of the hierarchy do
select one of the detected invariant feature subspaces
partition the meta-classes present in the hierarchical
level into two (or more) disjoint meta-classes by keep-

12:
13:

ing in the same meta-class the classes having similar
behaviour in the considered invariant feature subspace.
15: end for
. Partition the remaining meta-classes into w,, € C,.
17: outputs: The hierarchical tree structure C = {ck}kN s
Wm € Ciny and w,, € C, and the related invariant feature
subspaces identified at each level.

In light of this, the user expertise together with results
published in the literature, should be employed to detect
feature subspaces where a subset of classes is expected to
be characterized by an invariant behaviour from the phys-
ical view point. Procedure 1 describes the steps defined to



generate the hierarchical tree structure. First, we perform an
invariance analysis which takes into account the considered
classification problem and the set of sensors available. The
goal of this analysis is to evaluate, for each land-cover class,
the physical measures collected by the sensors in order to
identify if one (or more) measure(s) is (are) invariant for that
class. For instance, the land-cover class “Tree” is expected
to have almost always high height values regardless of the
geographical location. Thus, the height measured by a LiDAR
sensor can be considered a physical invariant measure for the
“Tree” class. At the end of this phase, we identify the invariant
feature subspaces and associate each class w,, either to: i)
a subset of classes C;,, for which invariant features exist,
or ii) a subset of classes C, for which none of the sensors
available can measure invariant properties. In the second phase
of the proposed procedure, we define the hierarchical tree
structure by iteratively partitioning the multiclass problem
into meta-class problems. Note that, the hierarchical structure
allows us to decompose the DA problem, thus facilitating
the identification of the most discriminant feature subspace
(among the invariant ones) where each land-cover class can
be accurately classified. To this end, a top-down approach is
considered. At each level of the hierarchy a specific sensor,
among the ones able to measure invariant properties, drives the
definition of the meta-classes. Note that the order in which the
sensors are used to define the hierarchy is not relevant, since
the leaf-nodes (land-cover classes) are discriminated due to
the joint use of the detected invariant features. Let ¥, be
the sensor that drives the definition of the meta-classes at
the first level of the hierarchy. The whole set of classes ()
is partitioned into two (or more) disjoint meta-classes so that
the classes assigned to one meta-class are more similar to each
other than to the classes associated to the other meta-classes
in the considered invariant feature subspace x¥~. Note that,
if the considered sensor is able to measure invariant features
only for one land-cover class, at that level of the hierarchy
there will be a leaf node representing that land-cover class vs
a meta-class including all the remaining classes. The process
is repeated until all the detected invariant measures have been
employed. Accordingly, all the w,, € C;,, are identified as
leaf-nodes, while the w,, € C, are assigned to the remaining
meta-classes. Let us consider a hierarchical tree structure made
up of the set of classes C = {ck}g:kl, where c;, can be a meta-
or a data- class (i.e., w,,). For all the hierarchy levels starting
from two, each class cj is connected to a unique parent-class
and a set of child-classes F'(ck) = {ck,,Ck,, -, Ck,, }, Where
f1 is the number of classes included in the meta-class c; (see
Fig. 2). At each level of the tree the PDFs of Dy and D; for
a feature vector x can be written as follows:

ps(x) = Z PS(Ck>PS(X|Ck)+ Z Ps(ck)Ps(X|Ck) 4)
cECy ck€Cinwv

and

p(x) = Y Piler)P(xler) + Y Piler)Pi(x|ex) (5)
cp€Cy ck€Cinw

Note that the sets C,, and C;,,,, are different for different levels
of the tree (for simplifying the notation we do not include

O Data-class
] Meta-class

_________________

Fig. 2. Example of 5 levels hierarchical tree structure of 7 land-cover classes.
The generic class ¢y, is represented connected to its child-classes F'(c) =
{ck1, ck2, ck3}. In the considered example fj, is equal to three.
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P (x*v|cyy) # Po(x¥7|cky)

P (x¥7|cyy) # Po(x¥7|cky)

Fig. 3. Example of classes that result statistically aligned in the feature
space x¥n, which is invariant from the physical view point, while they are
not aligned in a generic feature subspace x¥v. Note that, the definition of
invariant behaviour between the domains means that cg, and cg, present
almost the same behaviour in x¥n.

explicitly the dependence). First, we adapt the set of classes
Cinvy by means of a sensor-driven inference method. Then,
we address the adaptation of classes characterized by variant
behaviour, C,, by using a standard AL technique.

B. Sensor-driven Inference Method

The second step, Semsor-driven Inference Method, seeks
to infer the labels of the C;,, classes from D, to Dy, thus
generating a training set adapted to D; for those classes. Note
that no labeled samples are required from the target domain.
Let us focus the attention on a generic meta-class cj that
includes 2 child-classes {cy, , ck, }. Without loosing generality,
let us assume that from the previous step it turned out that one
sensor V,,, among the /N available ones, provides an invariant
features subspace x¥» where the classes {cg,,ck,} can be
discriminated. The conditional PDFs in that feature subspace
x¥n result almost aligned (the probability distributions are
similar), i.e.,:

Pt(x\yn |Ck1) :Q‘JPS(X\II” |Ck1)’ and

Py(xV"|ep,) = Py(x¥n

(6)

Ckz)
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whereas they may be not aligned for all other feature sub-
spaces:
Py(xV"|ck,) #Ps(x¥"|ck, ), and
Py(x"" |ex,) # Ps(x""|cr,)

Vv € [1, N], with v #n

(7

Fig. 3 shows the qualitative example of the considered classes
statistically aligned in the invariant feature space x¥~, while
they are not aligned in a generic feature subspace x¥~. The
alignment condition of the data allows us to transfer the
knowledge from D, to D; in an unsupervised but reliable way.
In greater detail, this is accomplished by means of two main
steps. First, we infer class labels of the target samples that
result more aligned to the source samples (i.e., that have the
highest probability of being correctly labeled) in the invariant
feature subspaces. Then, we analyze the labeled target samples
in x = (x¥1 Ux¥ U . Ux"™) to accurately model the
target distribution of the considered classes in the entire feature
space, thus labeling the remaining samples of that classes (see
Fig. 4).

1) Invariant Feature Space Inference: the proposed infer-
ence strategy exploits a classifier trained on D; in the feature
subspace x¥" to predict the labels of D, for the invariant
classes c, and ci,. Due to the hierarchical tree structure,
we focus the attention only on the unlabeled samples of D,
belonging to the meta-class ci of the considered level of the
tree. While at the first level of the hierarchy the entire set of
unlabeled samples is considered, for all the levels starting from
two we inherit the samples of the identified meta-class c. Let
Xs.c,, and &; ., be the source and the target samples belonging
to the class ¢y, respectively. To transfer the knowledge between
the domains, in our study we consider the SVM classifier,
extensively employed for the classification of RS [66]-[69].
However, since the data alignment is due to the invariance
of the feature space, any other classification technique can be
employed. Let T ., = {(X;II,;L,ZJS,]‘)‘ x;pj Xs.c, } be the
source training set for the considered class cj represented in
the detected invariant feature space x¥n with xf’; € R* and
Ysj € {Ckiscky}. The SVM classifier trained in x¥» with

the labeled samples of the source domain T ., is applied
to the unlabeled target samples xf’J € X,. The labels
of the target samples are predicted according to the sign
of the discriminant function f(x¥=) associated to the SVM
hyperplane, i.e., sign[f(x¥")]. Although in the considered
feature subspace x¥» the data are more aligned that in the
original space, this subspace is not expected to be sufficient
to properly model the entire target PDFs of ci, and cg,.
For this reason, we generate an initial training set for Dy
by considering only the samples that fall outside the SVM
margin (i.e., | f(x)| > 1) because they are the ones having the
highest probability of being correctly classified (see Fig. 5).
Let Tt,ck(o) = {(Xg;?yt,j” X;Ij; € th’ka |f(xz\fl,ljn) > 1}
be the initial training set of D, generated by transferring
the knowledge in x¥» for the invariant classes c, and cy,.
Let X, oo 0) = {X.7| X7 € Xiep, |f(x7)] < 1} be the
remaining set of unlabeled target samples.

2) Target Samples Back Projection: the obtained initial
target training set 7T; ., (o) is analyzed in the entire feature
space to represent the PDFs of the considered classes on all
the available features (i.e., P;(x|c, ) and P;(x|ck,)). This con-
dition allows us to use all the available information to ensure
an accurate classification of the remaining unlabeled samples.
Then, the classifier is trained on the initial training set T} ., (o)
in the entire feature space to classify the remaining unlabeled
samples X ., (), thus obtaining the final target training set
for the considered class cg, ie., {(X¢;,yt,;)|Xt; € Xicp}
Note that at each level of the hierarchy, the adaptation is
performed by classifying the target samples in the invariant
feature subspace using the source reference data. Thus, we
are adapting the reference data available in the Dg to Dy
via the invariant feature subspaces. When the adaptation of
ck, and cg, is complete, we can focus the attention on their
child classes, i.e., F'(ck,) and F'(cg,). Due to the hierarchical
decomposition of the DA problem, the adaptation of F'(cy,)
and F(cy, ) is address separately since they belong to different
meta-classes. If F'(cg,) and F(cg,) have been identified as
invariant classes C;y,, the adaptation is performed by using
the sensor-driven inference method, otherwise the adaptation
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Fig. 5. Classification result obtained on the unlabeled target samples Xy ¢,
by using the labeled samples of the source domain T ., in the detected

invariant feature space xY~. According to the decision function |f (x;p;)|,
the set of unlabeled target samples is divided into T} ., 0y and X; ¢, (0)-

is based on AL method (see Section III-D).

C. Supervised Classification of the Target Domain

By applying the label inference method to all the classes
Cinv, in the previous step we generate an initial training set for
the target domain T} ¢, = {(X¢,j,Yr,;)}; With x; ; € R? and
Yt,; € Cino. By using the considered training set, we classify
D, in the entire feature space, thus generating a classification
map representing all the invariant data-classes w,, € C;,, and
the target samples belonging to the variant classes X} ¢, . In the
considered implementation we employed the SVM classifier
by considering the One Against All (OAA) multiclass strategy
[19]. Note that, this classifier is at the state of the art of
the RS classification data because of its high generalization
capability [66], [67], high classification accuracy when com-
pared with other classifiers and effectiveness in handling ill-
posed problems (i.e., low ratio between the number of training
samples and the number of features) [68], [69]. By inferring
the knowledge on the classes C;y,,, we simplify the adaptation
problem by: i) reducing the number of classes that should
be adapted in the next step, and ii) introducing constraints in
the adaptation of the remaining classes C, that increase the
reliability of adaptation based on AL method. The amount of
simplification depends on the number of classes C;,,,, on which
we can detect invariant feature subspaces between Dy and D;.

D. Adaptation based on Active Learning

The last step of the proposed method, Adaptation based on
AL, aims to complete the land-cover map of D; generated at

the previous step, by integrating the classes w,, € C,. This is
done by obtaining the labels of few informative samples for
generating a representative training set of D;. To minimize the
number of training samples of D; we exlpoit an AL methods.
AL methods are employed in the supervised classification
of RS data to optimize the definition of the training set by
selecting the most informative samples. The initial training
set is iteratively expanded by means of an interactive pro-
cedure which involves a supervisor (i.e., a human expert)
who correctly assigns the labels to the selected uncertain (i.e.,
informative) samples [70]-[72].

The AL strategy employed in the proposed method focuses
the attention only on the C, classes by taking advantage from:
i) the hierarchical decomposition of the DA problem, ii) the
adaptation performed in the previous step on the classes C;p.
Due to the hierarchical decomposition of the classes, we are
in the condition of identifying the target samples belonging to
the variant classes & ¢, . This condition allows us to refine the
target training set used to classify the invariant classes C;y.y
by integrating only unlabeled target samples belonging to the
classes w,, € C,.

It is worth mentioning that the proposed method can use any
kind of AL strategy. Here we consider the marginal sampling
by closest support vector (MScSV) [73]. This very simple
tecnique selects the sample, lying within the margin, closest to
the hyperplane of the SVM classifier. In the multiclass strategy,
the MScSV considers the most uncertain sample for each bi-
nary SVM according to the one-against-all (OAA) architecture
[74]. Please note that more sophisticated techniques can be
employed. However, in the considered operational scenario
we selected a simple AL strategy to avoid the tuning of any
parameter. At the end of this step, we generate the land-cover
map of D, by means of the training set obtained with the
inference method integrated to the AL approach.

IV. DATASETS DESCRIPTION AND DESIGN OF
EXPERIMENTS

A. Datasets Description

The proposed DA method was evaluated experimentally on
two different multisensor datasets:

1) Forest Dataset: in this dataset (see Fig. 6), we consid-
ered two spatially disjoint forest areas located in the Southern
Italian Alps, Trentino region. The first study area is located
in Val di Sella (1090 Ha), whereas the second one is located
in Padergnone (175 Ha), hereafter referred as Vds and Pad,
respectively. The sensors available were a hyperspectral (HSI)
sensor, a LiDAR system and a color camera. The HSI presents
a spectral range between 402.9 nm and 989.1 nm and a spatial
resolution of 1 m. In Vds, the acquisition was performed on
16th July 2008 with a spectral resolution of 4.6 nm (126
spectral bands), whereas in Pad the data were taken on 4th
September 2007 with a spectral resolution of 9.2 nm (63
spectral bands). The Vds image was subsampled by applying a
Gaussian model with a Full Width at Half Maximum (FWHM)
equal to the band spacings (i.e., 9.2 nm) by matching the
corresponding wavelength ranges. LiDAR data were acquired
jointly with the HSI with an average point density of 5



Fig. 6. Forest dataset: color composition of the orthophoto acquired on a portion of the Trentino region. The study areas are highlighted in the white rectangles
overlapped on the optical image. A small portion of the high-resolution optical images of the dataset is represented for both the study areas.

pts/m?. The Digital Terrain Model (DTM) was produced and
subtracted from the LiDAR data to obtain the relative height
of the targets with respect to the terrain. The obtained LiDAR
point cloud was rasterized to generate the Canopy Height
Model (CHM) image. The high resolution optical image has
3 spectral bands acquired in the visible range (RGB) with
a spatial resolution of 0.2 m. The spatial resolution of the
optical image was degraded to 1 m to be coherent with the HSI
and the CHM, using the nearest neighbour re-sampling. The
multi-sensor data were manually coregistered by guaranteeing
a data shift up to 1 m. To this end, we used as reference
targets the buildings present in the scene. The considered
domains share nine classes: 3 Conifers species (i.e., Norway
Spruce, European Larch, Scots Pine), 2 Broadleaves species
(i.e., European Beech, Hop Hornbeam), Buildings, Roads, Soil
and Grass.

2) Urban Dataset: in this dataset (see Fig. 7) we considered
as first domain a multisensor data acquired over the University
of Houston campus and the neighboring urban area [75]. The
data consist of an HSI image acquired at the spatial resolution
of 2.5 m, having 144 spectral bands in the spectral range
between 380 nm and 1050 nm and a LiDAR point cloud
acquired over the same scene. By processing the LiDAR data a
CHM was generated at the same spatial resolution of the HSI
data. The LiDAR data were acquired on 22nd June 2012, while
the HSI data were acquired on 23rd June 2012. The second
domain is a urban area located in Pellizzano, Trentino region.
The multisensor data available are an HSI image having 1 m
spatial resolution and, 65 spectral bands in the range between
400 nm and 990 nm and LiDAR data acquired with an average
point density > 10 pts/m2. By processing the LiDAR data a
CHM of 1 m spatial resolution was generated to represent
the elevation value of the object with respect to the ground.
The HSI data were acquired on 23rd June 2013, while the
LiDAR data were acquired in September 2012. To perform the
adaptation, the spectral channels of the two HSI images were
compared, thus extracting from the 144 spectral bands of the
Houston (Hst) dataset the corresponding 65 of the Pellizzano
(Plz) dataset. Starting from the ground reference data available
on the Hst dataset, we took six thematic classes which are
present also in the Plz dataset for our classification tasks:

Buildings, Roads, Trees, Soil, Water and Grass. Please note
that in this dataset we considered RS data acquired by different
sensors and in completely different environmental conditions.

B. Experimental Setup

To assess the performance of the proposed approach, all the
areas were considered as Dy and D;. Tab. I reports the number
of samples per area divided in Training (TR) and Test (TS) and
pool sets for the Forest Dataset. When an area is considered
as D, the training set is exploited to infer the knowledge on
the unlabeled samples of D;. The test set of the other area
(i.e., Dy) is used for the accuracy assessment and the pool set
is the unlabeled set of samples used by the AL technique. Tab.
IT reports the number of samples per area divided in Training
(TR) and Test (TS) for the Urban Dataset. In this case, no AL
was performed since for all the considered classes invariant
feature were measured, thus we did not generate a pool set of
samples. Four random datasets per area have been generated
and the average results obtained on the test set of the D, for
four trials are reported.

In all the experiments carried out, a radial basis function
(RBF) kernel was adopted in the SVM classifier. In the
experiments with AL methods, at the first iteration the model
selection phase was performed using a grid strategy on the
validation set of Dy, thus tuning the RBF kernel width and
the SVM regularization parameter. The same grid strategy was
used to tune the model parameters for the standard supervised
SVM. The proposed method was compared to the state-of-
the-art DA method Transfer Component Analysis (TCA) [76],
the semisupervised LapSVM method [29] and the Geodesic
Flow Kernel (GFK) [41]. We applied a grid strategy to tune
the parameters of the considered baselines, thus selecting the
ones that resulted in the highest classification accuracy on the
test set of D;. The samples of Dy were used for training the
LapSVM, the TCA and the GFK to perform the classification
of D;. The classification results were evaluated in terms of
Overall Accuracy (OA), Producer Accuracy (PA) and User
Accuracy (UA).

To quantitatively evaluate the dissimilarity between D, and Dy
in the invariant feature subspaces x¥~ we calculate per class



Fig. 7. Urban dataset: (a) false color composition of the HSI of the Houston data, (b) false color composition of the HSI of the Pellizzano data.

TABLE I
NUMBER OF AVAILABLE LABELED SAMPLES OF THE LAND-COVER
CLASSES IN THE SOURCE AND THE TARGET DOMAINS FOR THE FOREST

TABLE I
NUMBER OF AVAILABLE LABELED SAMPLES OF THE LAND-COVER
CLASSES IN THE SOURCE AND THE TARGET DOMAINS FOR THE URBAN

DATASET. DATASET.
Number of samples Number of samples

Class Name Vds Pad Class Name Hst Plz

TR | TS | Pool | TR | TS | Pool TR TS TR TS
Norway Spruce (w;) |478 | 238 | 239 | 43 | 21 | 21 Building (wq) 194 193 990 990
Silver Fir (w2) 378|189 | 189 | 105| 52 | 53 Soil (w3) 93 93 430 430
European Larch (ws) | 373 | 186 | 187 | 388 | 194 | 194 Grass (w3) 194 194 474 474
European Beech (w,) | 512 | 255 | 256 | 815 | 407 | 408 Roads (w4) 192 192 496 496
Hop Hornbeam (ws5) | 83 | 41 | 41 (145 72 | 72 Water (ws) 91 91 831 831
Grass (wg) 1781 89 | 89 [172| 86 | 86 Trees (wg) 94 94 410 410
Building (w7) 143 71 | 71 |137| 68 | 68
Roads (wsg) 148 | 73 | 74 | 137 | 68 | 68
Soil (wg) 190 94 | 95 [200| 99 | 100 rewritten as follows:

the Jeffrey-Matusita (JM) distance. Let us focus on the class

¢k, » the JM distance between the class conditional probability

P,(x¥"|cg,) and Py(x¥"|cg,) can be computed as follows:
JMy, =1/2(1 — e Br) (8)

where By, is the Bhattacharyya distance, i.e.,:

Bkl = ln{ / \/Ps(x‘yn|ck1)Pt(X‘Pn|ck1)} ©)

Adopting the assumption that the classes follow multivariate
Gaussian distributions, the Bhattacharyya distance By, can be

1 DD SN
B = gk, k(TR ) e, - k)

Lo 1% + 5
20 \2/I=, 1=

|

(10)

where pg and Xj are the mean and the covariance matrix
of the class ¢, in Dg, while ufcl and EZI are the mean and
the covariance matrix of the class cg, in D;.

V. EXPERIMENTAL RESULTS

In this section, the experimental results obtained on both
the datasets are presented. In particular, the hierarchical tree
structures and the results obtained for both C,, and C;,,, classes
are reported.



A. Results on the Forest Dataset

1) Sensor-driven Hierarchical Decomposition: Fig. 8
shows the hierarchical tree structure defined for the consid-
ered DA problem. The structure is derived according to the
procedure described in Procedure 1. First, we identify the
physical measures that can be considered almost invariant
across the domains for each land-cover class. The HSI sensor
provides the Normalized Difference Vegetation Index (NDVI),
the LiDAR sensor records the elevation values (H), while
the high resolution optical images allows the identification of
textural features, i.e., homogeneity textural feature derived by
processing the Green band and mean and variance of Red,
Green and Blue spectral channels. At the first level of the
hierarchy, we focus the attention on the LiDAR sensor. The
sensor is able to measure the relative height value (H) of the
objects present in the scene with respect to the ground. In
the related feature subspace, we can partition the whole set of
classes 2 into two meta-classes: the first one (“Elevated”) ag-
gregates classes characterized by high height values (i.e., Trees
and Building), while the second one (“Flat”) includes classes
having almost zero H values (i.e., Soil, Grass and Roads). At
the second level of the hierarchy, the NDVI measure provided
by the HSI sensor is considered. The “Elevated” meta-class
can be partitioned into two meta-classes and one leaf-node
class: i) the meta-class characterized by high positive NDVI
values (i.e., European Beech and Hop Hornbeam) denoted as
“Broadleaves”; ii) the meta-class characterized by medium
positive NDVI values (i.e., Scots Pine, Norway Spruce and
European Larch) denoted as “Conifers”; and iii) the leaf-
node class having negative NDVI values (i.e., Building). The
“Flat” meta-class can be partitioned into two meta-classes,
one having negative NDVI values (i.e., Roads) and the second
one having non-negative NDVI values (i.e., Soil and Grass).
Note that, the land-cover classes are automatically identified
as leaf nodes by the defined procedure due to the joint use
of the invariant features. Thus, the Building class is the only
one having high H values and negative NDVI, while the
Roads class is the only one having low H values and negative
NDVI. At the last level of the hierarchy, the textural measures
provided by the high resolution optical image are used to
partition the “Land” meta-class into Soil and Grass. The
hierarchical tree structure is finally completed by partitioning
the remaining meta-classes “Conifers” and “Broadleaves” into
the w,, € C, classes for which none of the sensors measures
invariant features.

2) Sensor-driven Inference Method: in the considered sce-
nario, the detected C;,, classes are Conifers, Broadleaves,
Soil, Roads, Grass and Building. A representation of the DA
problem is shown in Fig. 9. Due to the different acquisition
conditions of the source and the target images, even though
the two domains appears similar, the feature subspaces repre-
sented in Fig. 9c and Fig. 9d point out a strong shift in the
distributions. In contrast, by relying on the physical properties
of the classes, the feature space defined by the NDVI and the
H results in a good statistical alignment of the distributions
(see Fig. 9a and Fig. 9b). These results are confirmed by the
quantitative evaluation of Tab. III, where the class-wise JM
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Fig. 8. Hierarchical tree structure derived at the end of the invariance analysis
for the considered Forest Dataset. The invariant feature subspaces used to
derive the meta-classes are reported for each level of the hierarchy.
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TABLE III
JM DISTANCE BETWEEN Pad AND Vds COMPUTED PER CLASS
CONSIDERING: (i) THE INVARIANT FEATURE SPACE XY, (ii) THE FIRST 3
COMPONENTS OF THE PRINCIPAL COMPONENT ANALYSIS (PCA) AND, (iii)
THE WHOLE FEATURE SPACE X.

o . JM distance
X PCA X

Conifers 0.259 1.024 1.414
Broadleaves 0.427 1.409 1.414
Grass 0.859 1.414 1.414
Building 0.838 1.273 1.414
Roads 0.480 1.379 1.414
Soil 0.558 1.381 1.414

distance between Pad and Vds is presented considering the
invariant feature space xV~, the first 3 components of the
principal component analysis (PCA) and the whole feature
space x. The obtained result confirms the selected invariant
feature spaces for the considered forest DA problem. Tab. IVa
and Tab. IVb show the classification results obtained when
Pad and Vds are D, respectively. The proposed sensor-driven
DA method SVM*/ is compared with the SVM classifier
trained on D, and the DA TCA and GFK methods and the
semisupervised LapSVM method. By directly applying to D;
the standard SVM trained on Dj, the shift in the sample
distributions strongly affects the classification accuracies of
Grass, Roads, Building and Soil. This effect is encountered in
both the DA problems, thus generating very low PA and UA.
In particular, the Soil class is completely misclassified due to
the strong shift of the class distribution (see Fig. 9c and Fig.
9d). By focusing the attention on Conifers and Broadleaves,
the labeled samples of Pad properly represent the unlabeled
samples of Vds. In contrast, by considering Vds as D, the
sample distributions of the same classes are not effective in
representing the Pad distributions.

The TCA, the LapSVM and the GFK methods sharply
increase the OA with respect to the use of the supervised SVM
classifier. However, the methods are not able to handle the
adaptation of Soil, Roads and Grass classes as proven by the
obtained PA and UA on D;. In contrast, the proposed SVM™/
method accurately classifies D;. The obtained PA and UA are
all higher than 80% for both the adaptation problems, thus



TABLE IV
AVERAGE CLASSIFICATION RESULTS (OVER FOUR TRIALS): (a) Pad IS THE SOURCE DOMAIN; (b) Vds IS THE SOURCE DOMAIN. OA %,
PA% AND UA% OBTAINED BY APPLYING: 1) THE SVM CLASSIFIER TRAINED ON THE SOURCE DOMAIN; 2) THE DA TCA METHOD; 3)
THE SEMISUPERVISED LAPSVM; 4) THE DA GFK METHOD; 5) THE PROPOSED SENSOR-DRIVEN DA METHOD SVM™/ .

Standard Proposed
Classes SVM TCA LapSVM GFK Ssvmin/
PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA%
Conifers 81.25 | 93.49 | 90.56 | 95.99 | 79.85 | 91.03 | 93.56 | 80.91 | 90.77 | 95.65
Broadleaves | 85.47 | 73.49 | 91.05 | 75.12 | 88.01 | 68.42 | 71.28 | 84.46 | 93.24 | 83.57
Grass 93.25 | 4591 | 43.54 | 5894 | 51.69 | 43.19 | 41.73 | 87.92 | 100 100
Building 21.12 | 100 | 13.03 | 36.63 | 37.68 | 81.68 | 87.64 | 27.46 | 93.66 | 97.44
Roads 76.63 | 46.03 | 65.75 | 42.57 | 79.45 | 95.87 | 60.74 | 72.60 | 92.47 | 99.26
Soil 0 0 96.01 | 96.27 | 56.12 | 4597 | 20.09 | 11.70 | 100 | 96.41
OA % 72.87 81.61 75.43 73.29 93.05
(@)
Standard Proposed
Classes SVM TCA LapSVM GFK Ssvmnf
PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA%
Conifers 74.19 | 37.26 | 100 65.7 100 | 48.71 | 75.89 | 85.53 | 97.07 | 84.44
Broadleaves | 46.72 | 76.59 | 81.09 | 99.15 | 62.44 | 99.66 | 91.44 | 84.23 | 90.14 | 98.26
Grass 42.44 | 98.64 | 30.23 100 2.62 100 | 7091 | 4535 | 99.13 | 97.71
Building 58.08 | 40.10 | 50.74 | 27.88 | 33.46 | 24.4 | 33.51 | 45.96 | 99.26 | 98.90
Roads 21.69 | 15.16 | 38.24 | 35.62 | 41.54 | 33.83 | 21.80 | 41.91 100 | 80.24
Soil 0 0 2.27 448 | 23.48 | 48.44 0 0 82.07 | 100
OA % 47.77 69.31 59.78 68.14 93.04

sharply increasing the classification accuracies of the critical
classes. Note that similar OA results for both the DA problems
(i.e., 93.05% and 93.04%) are achieved, regardless of the
accuracies obtained by directly applying the classifier (i.e.,
72.87% and 47.77%).

3) Adaptation based on AL: Although the adaptation per-
formed in the previous step achieves an accurate classification
map of D, for the invariant classes without any labeling cost,
the AL technique is integrated in the inference method for
addressing the adaptation of the remaining forest species (i.e.,
C, classes). Tab. Va and Tab. Vb show the classification
accuracies obtained on D; for each class by applying the
supervised SVM classifier trained on D, the standard AL
method for DA, SVM 4y, and the proposed inference method
SVMTL’C integrated with the MScSV AL method. For both
the experiments 45 samples were added by means of the
AL methods. Note that the MScSV at each iteration selects
a sample for each binary classifier of the OAA multiclass
strategy. While the standard MScSV AL selects one sample per
class (i.e., at each iteration 9 samples are added) the SVMZLE
selects samples only for the C, classes, (i.e., at each iteration
5 samples are added).

Let us focus the attention on the results obtained when Pad
is Dy (see Tab. Va). The PM improves the OA accuracy of
approximatively a 13% with respect to the standard SVM 4,

(b)

and of a 32% with respect to the SVM. Moreover, the PA and
the UA of the forest species sharply increased compared to the
ones obtained with the SVM 4,. Therefore, due to the accurate
adaptation performed in the previous step for the classes Grass,
Building, Roads and Soil, by requiring the labels of few
samples for the remaining classes we obtained an accurate
land-cover map of the D;. Tab. Vb shows similar results when
Vds is the source domain. The PM improves the OA accuracy
of 8% with respect to the SVM 4 and of 40% with respect
to the SVM. Fig. 10a and Fig. 10b depict the average (on
four trials) classification accuracies obtained on D versus
the number of new labeled samples with the proposed method
SVMZLLf and the standard AL method SVM,;, considering
Pad and Vds as Dy, respectively. The results obtained confirm
that the proposed approach allows a significant reduction in
the number of target labeled samples, and thus in the labelling
cost, required for obtaining a given classification accuracy.
As an example, when Pad is the source domain, to reach
an OA of 70% our method requires 15 samples whereas
the SVM 41, needs 80 samples (see Fig. 10a). To reach the
same OA when Vds is the source domain, SVMfo requires
10 samples, whereas the SVM 4, requires 45 samples (see
Fig. 10b). Furthermore, even tough the AL exploited in the
PM selects samples only from the variant set of classes C,,
by adding a high number of labeled samples from the D,
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the standard AL method still achieves comparable OA. Thus,
the results obtained confirm the effectiveness of the inference
method in adaptation the invariant set of classes Cjy.,.

B. Results on the Urban Dataset

1) Sensor-driven Hierarchical Decomposition: Fig. 11
shows the hierarchical tree structure defined for the urban DA
problem according to the procedure described in Procedure
1. The HSI sensor provides the NDVI and the Normalized
Difference Water Index (NDWI), while from the LiDAR data
we extract the elevation value with respect to the ground (H).

AL

Moreover, we derive the homogeneity textural feature from
the Green spectral band of the HSI image. At the first level
of the hierarchy, the LiDAR sensor drives the definition of the
meta-classes, thus partitioning the whole set of classes {2 into
classes characterized by high height values (i.e., Trees and
Building), denoted as “Elevated”, and classes having low H
values (i.e., Soil, Water, Grass and Roads), denoted as “Flat”.
At the second level of the hierarchy, the HSI sensor is used to
partition the meta-classes of the previous level into the feature
subspace defined by the NDVI. Thus, the “Elevated” meta-
class is partitioned into the two leaf nodes Building and Trees



TABLE V
AVERAGE CLASSIFICATION RESULTS (OVER FOUR TRIALS) OBTAINED BY ADDING 45 SAMPLES WHEN THE SOURCE DOMAIN IS: (a) Pad
, (b) Vds. OA%, PA% AND UA% OBTAINED BY APPLYING: 1) THE SUPERVISED SVM CLASSIFIER TRAINED ON THE SOURCE DOMAIN;
2) THE MSCSV STANDARD DA AL METHOD; 3) THE PROPOSED ADAPTATION METHOD SVMTLf INTEGRATED WITH THE AL STEP FOR
ADAPTING THE C,, CLASSES.

Standard Proposed

Classes SVM SVM . svmy/
PA% | UA% |PA% | UA% | PA% | UA%
N. Spruce | 30.46 | 77.45 | 54.26 | 75.86 | 65.11 | 75.41
- | E.Larch | 11.72|41.31 |36.48 | 74.25 | 4621 | 79.41
2 |S.Pine | 76.61(39.39|79.03 | 54.49 | 80.24 | 60.06
T | E. Beech |61.57|77.53|80.10|78.41 | 85 |82.73
Hornbeam | 55.49 | 16.49 | 54.88 | 27.69 | 73.78 | 37.46

= | Grass 88.20 | 44.35 | 100 |47.91 | 100 | 100
£ |Building |21.13| 100 |84.51|93.75 | 97.54 | 97.19
"2 | Roads 73.63 | 39.45 | 95.55 | 67.72 | 92.47 | 99.63
Z | Soil 0 0 0 0 100 | 96.41

OA % 45.97 64.18 77.81

(a)

Standard Proposed

Classes SVM SVM ., svmy/
PA% | UA% | PA% | UA% | PA% | UA%
N. Spruce | 55.95 | 9.89 [59.52]17.48 | 63.10 | 23.45
o |E.Larch |22.56| 559 |15.90 | 11.48|26.15|20.24
2 |S.Pine |35.89(5095|51.48 | 62.99 | 49.60 | 70.02
T | E. Beech |52.74 | 78.69 | 88.36 | 88.30 | 94.08 | 90.22
Hornbeam | 2.08 | 35.29 | 43.40 | 89.29 | 75.35 | 91.18
= | Grass 61.63 | 98.15 | 96.22 | 99.70 | 99.42 | 97.71
£ | Building |65.81 |37.37 | 63.24 | 69.35 | 99.26 | 100
"2 | Roads 4191 |21.27 | 77.21| 60.17 | 100 | 80.24
Z | Soil 0 0 ]90.66|99.45 | 82.07 | 100

OA % 40.80 73.26 81.12
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Fig. 11. Hierarchical tree structure derived at the end of the invariance analysis
for the Urban Dataset. The invariant feature subspaces used to derive the meta-
classes are reported for each level of the hierarchy.

having negative and positive NDVI, respectively. Similarly,
the “Flat” is splitted into the Roads leaf node class and “No
Roads” (i.e., Soil, Grass and Water) metaclass due to their
negative and non-negative NDVI behaviour, respectively. At

the third level of the hierarchy, in the feature space defined by
the NDWI, we discriminate the Water leaf node class since it
is characterized by extremely positive NDWI values compared
to the meta-class “Land” (i.e., Soil and Grass). Finally, due
to the different textural behaviour the “Land” meta-class is
partitioned into Soil and Grass classes.

2) Sensor-driven Inference Method: Tab. VIla and Tab.
VIIb show the classification results obtained when Plz and
Hst are D, respectively. The proposed method SVM™*f is
compared with the SVM classifier trained on Dy, the TCA
AND GFK DA method and the semisupervised LapSVM
method. Similarly to the Forest Dataset, there is a strong shift
in the distributions in the feature subspaces as presented in
Fig. 12c and Fig. 12d. Moreover, Tab. VI, where the JM
distances between Hst and Plz are presented, confirms the
selected invariant feature spaces for the urban DA problem.
The direct use of the standard SVM trained on D, and applied
to D, confirms the shift of the PDFs between the two domains,
thus resulting in very low OA (i.e., 57.92% and 59.98%



0.8
0.6
_ 04
>
202
' ¢ Trees
0 d Building
! 4 Road
’ ¢ Grass
0.2 4 Soil
0 5 10 15 20 25
H
(@)
Piz
4000
3000 -
€
=
8 2000 -
® ¢ Trees
Building
1000 4 Road
¢ Grass
4 Soil
0 ) ) ) ) ) A
0 500 1000 1500 2000 2500 3000 3500 4000 4500

403 nm
(©

Hst
0.6 AR R
04¥
3 02 :
2o
r- ¢ Trees
or Building
4 Road
# Grass
-0.2 4 Soil
0 5 10 15 20 25
H
(b)
4000
3000
1S
c
oo}
Q2
& 2000 ¢ Trees
Building
1000 - 4 Road
¢ Grass
0 4 Soil ‘
0 500 1000 1500 2000 2500 3000 3500 4000 4500

403 nm
@

Fig. 12. Distributions of the labeled samples of Plz (left) and Hst (right) represented in: (a-b) the invariant feature subspace defined by the NDVI (HSI
scanner) and the H (LiDAR sensor); and (c-d) the feature subspace defined by spectral channels at the wavelength of 403 nm and 938 nm, respectively.

when Plz and Hst are Dg, respectively). According to the
results obtained for the Forest dataset, the TCA, the GFK and
the LapSVM methods improve the classification accuracies
of those classes that do not present severe changes in the
class distributions. However, for those classes having sharp
differences in the PDFs (i.e., Soil and Grass) the effective-
ness of the literature approaches decreases. In contrast, the
proposed SVM®*f is able to achieve a high classification
accuracies for all the classes due to the similar behaviour
of the distributions in the invariant feature subspaces. Fig.
12a and Fig. 12b show the invariant feature space defined by
the NDVI and the H where one can observe that the class
distributions are statistically aligned. This is confirmed by
the classification results obtained by the proposed SVM™/
method, which always improve the results obtained by the
literature methods. In particular, OA of 94.22% and 98.26%
are achieved when Plz and Hst are Dg, respectively. Moreover,
all the UA and PA accuracies are higher than 84% regardless
of the area considered as Dy.

VI. DISCUSSION AND CONCLUSION

In this paper a sensor-driven hierarchical DA method based
on invariant features for the classification of RS images has
been presented. The proposed method transfers the knowledge
between D and D; under the assumptions that: i) they share
the same set of land-cover classes, and ii) the same set of
multisensor RS data is available for both the domains. In
particular, the method takes advantage from a multisensor sce-
nario to mitigate the shift in the PDFs of the classes due to the

TABLE VI
JM DISTANCE BETWEEN Plz AND Hst COMPUTED PER CLASS
CONSIDERING: (i) THE INVARIANT FEATURE SPACE XY | (ii) THE FIRST 3
COMPONENTS OF THE PRINCIPAL COMPONENT ANALYSIS (PCA) AND, (iii)
THE WHOLE FEATURE SPACE X.

Cor _ JM distance
xen PCA X

Building 0.063 0.688 1414
Soil 0.354 0.893 1.414
Grass 0.299 1.402 1.414
Roads 0.612 1.145 1.414
Water 0.410 0.842 1.414
Trees 0.483 1.414 1.414

different acquisition condition. By exploiting the peculiarity of
each sensor of measuring different physical properties of the
scene, it is possible to detect hierarchically feature subspaces
where subsets of classes result statistically aligned. Instead
of using data-driven feature extraction methods, the detection
of invariant features is driven by the physical properties of
the land-cover classes. To this end, a preliminary invariance
analysis of the classification problem is required in order to
detect the invariant features subspaces for the considered set
of land-cover classes.

The proposed approach is based on four main steps. In the
first step we perform a sensor-driven hierarchical decompo-



TABLE VII
AVERAGE CLASSIFICATION RESULTS (OVER FOUR TRIALS) WHEN: (a) Plz IS THE SOURCE DOMAIN; (b) Hst IS THE SOURCE DOMAIN.
OA%, PA% AND UA% OBTAINED BY APPLYING: 1) THE SUPERVISED SVM CLASSIFIER TRAINED ON THE SOURCE DOMAIN; 2) THE DA
TCA METHOD; 3) THE SEMISUPERVISED LAPSVM; THE DA GFK METHOD; 5) THE PROPOSED SENSOR-DRIVEN DA METHOD SVM*"*f.

Standard Proposed

Classes SVM TCA LAPSVM GFK SvVMmf

PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA %
Building | 62.64 | 79.64 | 88.20 | 94.29 | 85.81 | 70.80 | 100 | 77.67 | 98.87 | 100
Soil 43.27 | 16.21 | 57.26 | 35.32 | 47.58 | 69.96 | 41.29 | 100 | 99.46 | 70.34
Grass 85.82 | 82.12 | 57.22 | 98.23 | 90.98 | 98.88 | 98.77 | 82.47 | 84.14 | 98.78
Roads 0 0 81.90 | 72.97 | 56.38 | 71.81 | 7442 | 25 95.70 | 96.20
Water 87.08 | 98.75 | 94.78 | 86.47 | 100 | 64.54 | 60.87 | 100 | 94.78 | 100
Trees 98.57 | 52.65 | 97.73 | 95.03 | 97.73 | 99.14 | 89.12 | 97.73 | 97.72 | 100
OA % 57.92 77.84 78.80 73.71 94.22

(@)
Standard Proposed

Classes SVM TCA LAPSVM GFK SvMminf

PA% | UA% | PA% | UAY% | PA% | UA% | PA% | UA% | PA% | UA %
Building | 97.07 | 41.17 | 97.70 | 97.70 | 98.31 | 98.01 | 84.98 | 91.31 | 99.97 | 99.84
Soil 19.59 | 87.76 | 2.67 | 70.77 | 85.17 | 83.38 | 70.31 | 59.88 | 90.34 | 100
Grass 88.81 | 98.07 | 100 | 63.20 | 100 | 82.72 | 94.38 | 100 100 100
Roads 0 0 97.13 | 57.85 | 12.65 | 98.82 | 64.30 | 68.35 | 96.01 | 91.94
Water 72.59 | 92.41 | 79.24 | 99.96 | 99.94 | 66.88 | 95.22 | 97.08 | 100 | 97.67
Trees 2493 | 100 |93.48 | 100 | 78.17 | 100 100 | 79.09 | 99.63 | 100
OA % 59.98 81.97 83.37 85.53 98.26

(b)

sition by focusing the attention on the physical properties of
the scene. Thus, the adaptation problem can be decomposed
by dividing the classes into two groups: i) a subset of classes
for which invariant features are measured, ii) a subset of
classes for which none of the sensors available can measure
invariant properties. In the second step, we bridge the gap
between the distributions according to a sensor-driven DA
strategy, which infers labels from Dy to D, for the invariant
classes. By taking advantage from the statistical alignment of
the domain distributions in the detected features subspaces,
we generate an initial training set for D; selecting the target
samples more aligned to the source data. This training set
is analyzed in the full feature space to properly model the
PDF of the target domain for the considered subset of classes.
Indeed, even though the invariant feature subspaces present a
reliable distribution alignment between the domains, they may
be not sufficient to accurately solve the complex classification
problem of the target domain. The obtained training set is em-
ployed to perform in the third step a supervised classification
of D, for the set of invariant classes. Finally, the proposed
method addresses the adaptation of the remaining land-cover
classes characterized by variant features behaviour using an
AL technique.

Experimental results obtained on two real multisensor
dataset show that: i) by means of the invariant feature subspace

we correctly transfer the knowledge of D; to the more aligned
unlabeled samples of D, ii) by considering the full feature
space we are able to accurately model the PDFs of D, for
the invariant classes, and iii) reliable classification result can
be obtained for the set of invariant classes of D; without
requiring any labeled sample for it. Moreover, the adaptation
of the invariant classes introduces constraints to the general
structure of the entire problem facilitating the adaptation of
the remaining variant classes. Due to the adaptation performed
by means of the sensor-driven inference method we are in the
condition of focusing the attention only on the C, classes, thus
reducing the number of needed target samples to achieve accu-
rate classification maps. Indeed, a standard DA-AL technique
selects the most informative samples for all the land-cover
classes, whereas the proposed method requires only the labels
of samples belonging to the C, classes. This condition allows
us to rapidly increase both the accuracy on the C, classes and
on the entire DA problem.

As a final remark, we point out that due to the increasing
availability of multisensor data, the proposed sensor-driven DA
method is promising from the operational view point. Indeed,
the possibility of acquiring complementary measures of the
scene makes it possible to take advantage from the physical
properties of the classes to drive the adaptation, thus increasing
the reliability of the adaptation process. Moreover, differently



form the statistical DA method present in the literature, in this
paper we propose a simple and effective approach based on
the physical meaning of the measures collected by different
sensors, thus performing an accurate adaptation which does
not require the tuning of critical parameters.

As future work, we plan to further analyze the sensor-
driven inference strategy by testing the proposed technique on
datasets where a different combination of sensors is available.
Moreover, we aim to replace the AL technique with an
unsupervised DA method in order to adapt the set of variant
classes without any labeling cost. This can be achieved by
exploiting the constraints introduced on the set of invariant
classes to drive the unsupervised adaptation of the remaining
land-cover classes.
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