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Bateryless image sensors present an opportunity for long-life, long-range sensor deployments that require zero mainte-
nance and have low cost. Such deployments are critical for enabling remote sensing applications, e.g. instrumenting national
highways, where individual devices are deployed far (kms away) from supporting infrastructure. In this work, we develop
and characterize Camaroptera, the irst bateryless image-sensing platform to combine energy-harvesting with active, long-
range (LoRa) communication. We also equip Camaroptera with a Machine Learning-based processing pipeline to mitigate
costly, long-distance communication of image data. his processing pipeline ilters out uninteresting images, and only trans-
mits the images interesting to the application. We show that compared to running a traditional Sense-and-Send workload,
Camaroptera’s Local Inference pipeline captures and sends upto 12× more images of interest to an application. By perform-
ing Local Inference, Camaroptera also sends upto 6.5× fewer uninteresting images, instead using that energy to capture upto
14.7× more new images, increasing its sensing efectiveness and availability. We fully prototype the Camaroptera hardware
platform in a compact, 2cm x 3cm x 5cm volume. Our evaluation demonstrates the viability of a bateryless, remote, visual-
sensing platform in a small package that collects and usefully processes acquired data and transmits it over long distances
(kms), while being deployed for multiple decades with zero maintenance.

1 INTRODUCTION
Sustained by the recent advances in low-power sensing and computing technology, Internet of hings (IoT)
devices are increasingly capable of interacting with the physical world. Systems that sense, compute, and com-
municate are now frequently deployed into human environments to sense and process important signals for a
breadth of applications, including security, environmental science, urban planning [1] and optimization, preci-
sion agriculture, and even space exploration [12, 16, 79].

A challenging class of sensing applications are remote sensing applications, where the sensing devices are
deployed far away from supporting infrastructure. Examples of remote sensing applications include deploying
sensors deep into a rainforest, or instrumenting national highways that are kilometers away from the closest
towns [? ] (one such scenario is shown in Figure 1b). Each sensor node deployed for such applications must
be able to transmit data over long distances, potentially over multiple kilometers. he radios commonly used
in sensor nodes, such as Bluetooth Low-Energy (BLE) or WiFi, cannot service these long-range requirements.
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Fig. 1. (a) Camaroptera prototype. (b) Example remote sensing application (national highways), where each device is located
far (kms) away from the nearest supporting infrastructure (basestation).

Recently, chirp spread-spectrum technology has enabled radios like LoRa to achieve kilometer-scale data trans-
mission [41], by sacriicing data-rate (vs WiFi) and power-consumption (vs BLE). LoRa presents a promising
way to design sensor nodes for such remote deployments.

Remote sensing applications also require sensor deployments to have long lifetimes with zero maintenance.
Such deployments are geographically distributed over large distances, making regular device maintenance an
expensive operation in terms of cost as well as human efort. Over the past few years, improvements in energy-
harvesting systems have led to the emergence of wireless IoT systems that are entirely energy neutral. hese
systems extract (e.g., Radio waves, solar) energy from their environment, bufering the energy in a batery [35]
or capacitor [12]. Ater collecting suicient energy, the system activates and performs some sensing, computing,
or communication for its application. While energy-harvesting extends the lifetime of remote sensing systems,
bateries still need to be periodically replaced.

Swapping these bateries for small capacitors or supercapacitors (bateryless operation) allows sensor deploy-
ments to achieve long lifetimes with zero maintenance. Such bateryless devices present several key beneits,
and have atracted growing interest in recent years [12, 16, 27]. Along with enabling maintenance-free, long
lifetimes, bateryless devices avoid creating batery waste, allow the design of more compact and cheaper de-
vices and therefore, enable the development of the “next trillion” IoT devices [61], especially in remote sensing
applications.

Future remote sensing systems must also support gathering visual sensor data to directly, rather than in-
directly, observe complex environmental phenomena. However, high-data-rate visual data requires larger on-
device storage and more energy for long-distance transmission than sensors with low-data-rates such as ac-
celerometers or temperature sensors. Kilometer-scale transmission of visual data is even more challenging on
bateryless systems, as energy-expensive transmission keeps the bateryless device busy with recharging en-
ergy, preventing it from sensing new, potentially important events. Consequently, deploying visual sensors in
long-life, maintenance-free, remote sensing applications demands solutions that mitigate this high-energy cost
of long-range radio transmissions.
Our Contributions: In this paper, we enable remote sensing applications with long lifetimes, by developing the
Camaroptera bateryless remote visual sensing system. Camaroptera senses visual spectrum data using an ultra-
low-power image sensor. Camaroptera is also equipped with a LoRa [66] radio, enabling it to communicate over
long distances, even in the presence of urban signal occlusion [17]. Camaroptera is bateryless and harvests its
operating energy using small solar cells, storing energy in a small supercapacitor. Finally, Camaroptera employs
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on-device processing of data to reduce the use of its costly radio, using the radio only when it identiies data to
be interesting to the application. Our main contributions with Camaroptera are:

• Camaroptera presents the irst bateryless, energy-harvesting platform to support active, long-range com-
munication (LoRa), enabling long-life, maintenance-free deployments of sensor nodes in remote sensing
applications.

• Camaroptera mitigates the high energy-cost of kilometer-scale communication, with a Local Inference-
based processing pipeline that identiies and transmits only the images that are interesting to the applica-
tion.

• We develop a fully-functional prototype of Camaroptera, with a compact 3�� × 5�� × 2�� footprint. he
prototype works within these tight volume constraints, which limit solar cell output (to a few mW) and
energy storage volume (e.g., 33mF at 3V).

Our evaluation shows that Local Inference allows Camaroptera to reduce the transmission of uninteresting
images by upto 6.5× when compared against Sense-and-Send, a popular design for sensor nodes. Camaroptera
uses the extra energy to capture upto 14.7× more new images, reporting upto 12× more interesting events than
Sense-and-Send.

2 BACKGROUND
Kilometer-range, bateryless image-sensors are critical to enabling future remote sensing applications. Unmod-
iied, existing long-range wireless technologies (2.1) and bateryless systems (2.2) are key enablers, although
this work is distinct in its goals and mechanism from existing bateryless image sensors. Camaroptera brings
these ideas together, addressing the unique challenges of long-range communication for remote image sensing
by using local computation.

2.1 Long-Range Wireless Communication
Remote sensing devices are increasingly able to include a long-range radio, such as a LoRa chirp spread-spectrum
radio [17, 19, 41]. LoRa integrated circuits (ICs) are commercially available, inexpensive, and ofer long range (i.e.,
kilometers) at relatively lowpower (i.e., hundreds ofmW). Extensible receiver infrastructure, likeOpenChirp [17],
afords simple, publish/subscribe data management (e.g., MQTT) with simple endpoints. he ability to commu-
nicate kilometers at low power creates the opportunity for more devices to be deployed in remote environments
than is possible using other radio technologies. 4G/LTE incurs per-byte subscription costs [53], Bluetooth has
limited range [8, 21], andWiFi requires many access points for wide-area coverage. Backscater [38, 39, 70, 74, 77]
is appealing, although limited by the need for large, powered transmiter infrastructure that provides wireless
power and a communication carrier signal. LoRa provides a critical balance between long range and low-power
operation, making it suitable for remote IoT deployments. While LoRa consumes relatively low power (hun-
dreds of mW), this power draw can still be expensive for energy-constrained remote sensors, who must must
judiciously use their radio link, or risk exceeding their constrained energy budget.

2.2 Bateryless Systems
Bateryless, energy-harvesting devices are emerging to support sensing, communication, and computation with
no bateries for energy storage [12, 26, 28, 64, 67]. hese devices harvest energy from light [12, 35], radio waves
(RF) [64], user interaction [37] or other sources, storing the energy in a capacitor or super-capacitor and using
it when suicient energy accumulates to do useful work. Some bateryless devices operate only intermitently,
as energy accumulates [11, 29, 45, 46, 49, 63, 78]. A key advantage to bateryless operation is eliminating the
need for per-device maintenance to replace bateries, which efectively extends deployed device lifetimes to the
lifetime of the ICs on the board. Eliminating bateries also has secondary beneits: reducing size, weight and
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environmental footprint (batery waste). In contrast, batery-powered systems have a number of disadvantages.
Bateries require maintenance because they need to be replaced over a long lifetime: ixed bateries deplete and
rechargable bateries have a limited number of recharge cycles. Some recent work combines rechargable and
ixed batery storage [35] using LTO bateries. hese bateries bring more recharge cycles, but smaller capac-
ity (40mAh) than Lithium-Ion bateries, impeding their use in multi-decade deployments with energy-hungry
radios.

Bateryless devices are becoming useful in image sensing platforms [58, 59]. Existing devices are limited,
however, in their reliance on an instrumented environment with installed wireless power and a backscater
communication medium precludes their application in wide-spread, long-range (i.e., kilometer-scale) deploy-
ments. Avoiding complex wireless power infrastructure, which increases cost, is a key problem that we address
in this work.
Communication is energy-hungry Communicating large image data over multiple kilometers has a high
energy cost, making it challenging to deploy on bateryless devices typically designed for ultra-low-power op-
eration. Camaroptera’s main goal is to use local computation to address this challenge. Computing to process a
QQVGA image using an image-classifying neural network consumes around 65�� and transmiting an image
consumes 288�� (Section 5 describes our platform in detail, and Section 8 describes these data in more detail).
High energy costs translate to high time costs in a bateryless system because a bateryless systemmust spend its
time collecting the energy that it uses to operate. Figure 2 shows the collection time at diferent power levels for
the quantity of energy required to transmit an image: at 10-20kLux (a typical cloudy day outdoors), recharging
takes 45 seconds to two minutes. A bateryless device is unavailable to sense new data during this recharging
period, and a long recharging latency could cause it to miss important events.

Many existing sensor designs commonly employ a Sense-and-Send approach, transmiting data as they are
collected [58, 59]. Sense-and-Send is, however, a poor match for bateryless, remote-sensing, because transmiting
all data leads to a high aggregate recharge time, which may miss important events. Moreover, all data are not
equally interesting and sending these data at high cost is not useful to an application.

Camaroptera reduces unnecessary communication (and recharging) by computing locally on sensed data to
ind interesting data that should be transmited, rather than indiscriminantly transmiting data in the Sense-and-
Send model. While the computational capability of low-power microcontrollers is limited, prior work shows
promise for sophisticated sensor data processing on bateryless, energy-harvesting devices [24]. With architec-
tural support for yet more eicient computing in ultra-low-power MCUs [15, 25], the computational capabilities
available to bateryless, energy-harvesting sensor nodes will further increase. he increase in computational ca-
pability of bateryless systems motivates Camaroptera as it allows the use of local computing for reducing costly
long-range communication, consequently enabling maintenance-free, multi-decade deployments of bateryless,
long-range sensing systems.

3 CAMAROPTERA DESIGN REQUIREMENTS
Camaroptera’s design is motivated by the unique challenges of deploying a bateryless device that is capable of
high-data-rate image sensing and expensive, long-range communication. We identify four key requirements for
designing an efective remote sensing system and present how existing works fail to meet them. hese require-
ments are (R1) kilometer-range, (R2) multi-decade lifetime, (R3) minimal environmental impact, and (R4) low
cost.
(R1) Kilometer-Range. A remotely-deployed, image-sensing system must cover a large geographic area while
respecting cost and maintenance requirements. Communication cannot rely on large numbers of high-cost base
stations that require continuous power (i.e., imposing an infrastructure cost) or large bateries (i.e., imposing a
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Fig. 2. Energy collection times at diferent light levels for sending a JPEG-compressed image over the LoRa radio on Ca-
maroptera. An energy-harvesting system cannot capture new data during these energy collection periods, which can go
upto two minutes at lower light levels, causing it to miss potentially important events. Camaroptera uses on-device process-
ing to avoid using the radio for transmiting uninteresting events, saving the associated time and energy for capturing and
processing more new events.

Table 1. Comparing Camaroptera with prior work.

Requirement Bateryless
Cams [58, 59]

Backscater
[20, 38, 39, 77]

LoRa
Backscater [70]

Magno
et. al [23]

Permamote
[35] Camaroptera

R1: km-Range ✗ ✗ ✗ ✔ ✗ ✔

R2: Multi-Decade ✔ ✔ ✔ ✗ ✗ ✔

R3: Low Env. Impact ✗ ✗ ✔ ✗ ✔ ✔

R4: Low Cost ✗ ✗ ✔ ✗ ✔ ✔

maintenance cost). Each device must, therefore, support transmission over a multiple kilometers independently
to enable large-scale, geo-distributed remote sensing applications.
(R2) Multi-Decade Lifetime. A remotely-deployed, image-sensing system must operate for a long period of
time (decades) with zero maintenance, given the high maintenance costs of geo-distributed systems. hese sys-
tems should require no component or batery replacements over its lifetime, and should operate without costly
centralized power or communications infrastructure; fully autonomous and wireless operation is ideal.
(R3) Minimal Environmental Impact. A remotely-deployed image-sensor must have minimal negative im-
pact on its environment. It must minimize its short-term environmental impact by being small, unobtrusive, and
by not interfering with existing (e.g., radio) infrastructure. It must minimize its long-term environmental impact
by minimizing the amount of hazardous chemical waste due to bateries and other toxic components.
(R4) Low Cost. A remotely-deployed image-sensing system must have a low cost. Devices must be manufac-
tured at large scale (i.e. millions) requiring each device’s cost to be low to minimize total cost.hese devices must
also avoid relying on costly centralized power or communications infrastructure. Minimizing cost minimizes op-
erator liability as deployed devices are at risk of damage or loss due to vandalism, animal interactions [44] and
weather.
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3.1 Existing systems fall short
Existing systems meet some, but not all of the requirements for designing efective remote-sensing systems,
as we show in Table 1. Prior atempts at bateryless image sensing [58, 59] rely on short-range, RF-energy-
transmission infrastructures, violating requirements R1, R3 and R4. While prior work on bateryless communi-
cation oten relies on short-range RF-backscater [20, 38, 39, 77], a prior work has proposed using LoRa signals
for energy-harvesting and backscater communication [70], eliminating costly RF-energy-transmission infras-
tructures. However, LoRa backscater supports a maximum separation of 475m between the source and receiver
, failing R1 and precluding its use for remote-sensing applications. In contrast, we equip Camaroptera with an
active, long-range LoRa radio, enabling kilometer-range communication(R1) and a decrease in environmental
impact and infrastructure requirements (low-power receivers only – R3).

A recent system (Magno et. al [23]) presents a bateryless image-sensing platform, designed for face recogni-
tion. While it employs a LoRa radio to achieve a long deployment range, it uses an ARM Cortex-M4 core with
FLASHmemory, whose limitedwrite endurance precludes long-lifetimes and fails (R2). In contrast, Camaroptera
uses an MSP430 microcontroller with embedded Ferroelectric RAM (FRAM) for long-lifetime non-volatile stor-
age. Magno et. al also is designed for indoor operation, resulting in a power system with ∼ 6× larger solar panels
and a larger cost and environmental impact (R3, R4).

Permamote[35] presents a batery-powered solution for long-term, low-cost sensing. However, it achieves a
long-lifetimes by restricting operation to low-data-rate sensors (accelerometers and temperature sensors) com-
bined with short-range, low-power communication, making it unsuitable for image-sensing applications with
high-power, kilometer-range radios. Camaroptera achieves a maintenance-free, multi-decade lifetime (R2) by re-
lying on bateryless operation, which also lowers per-device cost (R4) compared to equivalent, batery-powered
systems.

4 CAMAROPTERA DESIGN OVERVIEW
Camaroptera is a bateryless sensing, computing, and communication system composed of a custom hardware
platform, application-level sotware components, and sotware control components. As outlined in Section 3,
we have designed Camaroptera according to the design requirements for multi-decade deployments in remote
sensing applications. he hardware and sotware components of Camaroptera are outlined in Figure 3a. Each
Camaroptera device is built on CamHW, a custom hardware platform.he hardware includes a small, low-power
image sensor to collect images, a microcontroller with embedded memory to process images, a long-range radio
chip for communication, and a solar energy-harvesting power system for collecting and storing energy from the
environment. CamHW is composed of several printed circuit boards (PCBs) that assemble into a three dimen-
sional device. Section 5 describes CamHW in detail and Figure 1a shows the assembled device hardware. he
sotware of each Camaroptera device is built around CamSW, a simple operating system and device driver layer.
CamSWmanages sensor data collection and operates an at-sensor processing pipeline to process collected images.
he at-sensor processing pipeline can support arbitrary application-speciic operations (e.g., CNN/DNN-based
image classiiers [24]), and built-in operations, which include image-diference detection, and image compression.
Our implementation performs DNN-based image classiication, followed by JPEG compression for the images to
be transmited. CamSW also controls the radio hardware, and segments and packetizes data for transmission.
Meeting Design Requirements. Together, Camaroptera’s hardware and sotware meet the design requirements
for a pervasive, long-term image sensing device. CamHW includes a LoRa IC, enabling communication over
kilometer ranges (R1). Kilometer-scale communication is a key requirement for widespread deployment without
excessive base station infrastructure costs. Camaroptera’s bateryless energy-harvesting power system is simple
to deploy and requires no maintenance once deployed (R2). Deployment requires simply installing a device with
its solar panels exposed to sunlight, not requiring any direct connection to infrastructure. Bateryless operation
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(a) (b)

Fig. 3. (a) System overview of Camaroptera. (b) Camaroptera prototype PCBs.

requires no batery replacements and produces no batery waste (R3). Camaroptera’s design minimizes its cost
(R4). CamHW is a low-cost 2-layer custom PCB populated entirely with COTS components and ICs. Each fully-
assembled device costs around USD$50 in low volume; high-volume pricing will further reduce the device cost.
Low cost enables large-scale deployements.

CamSW is designed for immediate, at-sensor processing of collected sensor data. Application-speciic at-
sensor processing allows Camaroptera to identify uninteresting data and to discard them immediately, and avoid
consuming the energy, time, and bandwidth required to send them to a base station. Camaroptera then uses this
saved energy and time to capture and process new images, improving its sensing efectiveness and availability.
By identifying the images of interest to an application and sending only these images, Camaroptera eiciently
uses the scarce bandwidth available to remotely deployed devices.

5 HARDWARE DESIGN
CamHW is a hardware platform designed for bateryless sensing and computing, and long-range communication.
CamHW is composed entirely of COTS components, limiting the per-device cost. he platform mounts these
COTS components on 3 small 2-layer PCBs mounted to one another in a three dimensional package. CamHW’s
three boards are the sensor board, the power board, and the solar board.he sensor board includes sensing, comput-
ing, and communication components. he power system board includes energy storage and power conditioning
components. he solar board includes the device’s solar cells and provides structural support for the manufac-
tured device. Figure 3b shows a photograph of the populated sides of the three boards.

5.1 Sensor Board
he sensor board incorporates the main active components of Camaroptera’s remote sensor system, including
a microcontroller (MCU), a low-power image sensor, and a LoRa transceiver with a ceramic patch antenna. he
sensor board hardware is agnostic to its power system and can be powered by Camaroptera’s power board or
by a standard 3V supply.
MCU. Camaroptera’s MCU is a Texas Instruments Ultra Low-Power MCU MSP430FR5994 [72] running at 16
MHz with 8kB of SRAM and 256 kB of embedded non-volatile Ferroelectric RAM (FRAM). We select this MCU
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speciically for the embedded FRAMmemory, as its non-volatility allows Camaroptera to save image data across
power failures, and the higher write endurance of FRAM (compared to FLASH) allows Camaroptera to be de-
ployed for multiple years without memory corruption. he limited memory, low clock frequency, and simple
architecture of the MSP430FR5994 are key challenges to supporting sophisticated computations, as observed in
prior work [24], and require device-speciic sotware optimizations (described in Section 6.2).
Image Sensor. Camaroptera uses a Himax HM01B0 [31] image sensor, which is an ultra-low-power CMOS
image sensor. Its sensor has an active area of 320x320 pixels each of which with a side dimension of 3.6�m.
Camaroptera conigures the camera to operate in QQVGA (160x120) mode, capturing 8-bit grayscale images.
We use this image sensor for its ultra-low-power operation (≤ 1.1�� for a QQVGA image).
Transceiver. Camaroptera uses a Semtech RFM95W LoRa chirp spread spectrum [65] modulation transceiver
IC [32]. he chip incorporates an ultra-low-power 20 dBm power ampliier with a sensitivity over -148 dBm.
Camaroptera connects this LoRa IC to a ceramic chip antenna with a maximum gain of 3.42 dBi. Using a LoRa
transceiver allows Camaroptera to communicate the captured images to remote basestations located multiple
kilometers away.

5.2 Power board
he power board implements Camaroptera’s energy harvesting power system. he power system uses a two-
stage voltage boosting circuit with hardware voltage comparators to keep system voltage in the most eicient
operating range for the boosters. he power board also houses Camaroptera’s supercapacitor-based energy stor-
age.
Boosting. he irst voltage boosting stage connects the solar cells to the supercapacitor using an LTC3105 [43].
he booster is a high-eiciency step-up DC/DC converter that operates down to 225mV input and supports
maximum power point control (MPPC). Both of these features are important for operating on variable solar
energy.

he second boosting stage connects the energy storage capacitor to the sensor board using a TPS61070 [71]
synchronous voltage boost converter. his boost IC provides eiciency over 85% with input as low as 1.2V for a
regulated output of 3V. Camaroptera controls the booster operation, keeping it powered of when the superca-
pacitor voltage is outside its maximum eiciency region.
Voltage hresholding. Camaroptera uses two MIC841 [54] voltage comparators with an externally adjustable
hysteresis to drive the enable input of Camaroptera’s second booster and the reset line of the MCU. he irst
comparator ensures that the second boosting stage is enabled only when the energy storage capacitor is charged
between a lower threshold of 1.24V and its rated maximum of 3V. Camaroptera’s second comparator holds the
MCU in reset while the ��� output of the second boosting stage stabilizes. We empirically determined that the
system stabilizes at 2.2V, which is the the minimum voltage to operate the LoRa modem.he second comparator
is set to a low threshold of 2.2V and a high threshold of 3V.
Energy Storage. Camaroptera stores energy in a high-density supercapacitor. Camaroptera’s supercapacitor
must store suicient energy to ensure that its longest energy-atomic task completes without exhausting the de-
vice’s stored energy. Camaroptera’s largest energy-atomic task is sending a single 255-byte LoRa packet. Under
this constraint, we equipped Camaroptera with a BestCap [4] 33mF high-density supercapacitor. his superca-
pacitor also has a low Equivalent Series Resistance (ESR) enabling it to provide the high radio current with a
smaller drop in voltage.

5.3 Solar Board
Camaroptera’s solar board is covered by four solar cells connected in parallel and mounts perpendicularly to
the sensor and power boards. he solar cells are an array of IXYS [34] high-eiciency monocrystalline cells,
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Fig. 4. Camaroptera sotware flow chart.

measuring 22mm x 7mm each. he solar board provides structure and power for the assembled device with
mechanical and electrical connections to the other boards.

6 SOFTWARE DESIGN
Camaroptera’s sotware subsystem, CamSW, is centered around locally processing captured images to avoid
transmiting images that are not interesting to an application.

6.1 Local Processing
CamSW locally processes every image ater its capture. he goal of processing is to ind images of interest to
the application that should be transmited, otherwise discarding uninteresting images. Avoiding transmission
of uninteresting images enables Camaroptera to judiciously use its time and energy. CamSW supports arbitrary
image processing pipelines that can vary by application. A pipeline may use general iltering operations, such
as diferencing, or application-speciic ones, such as a deep neural network trained for a speciic task.

We built a representative, prototype processing pipeline designed to identify and transmit images containing
people.his representative person detection pipeline has both general and application-speciic stages.he person
detection pipeline includes four stages. Figure 4 shows the sotware low of this person detection pipeline.
Image Diferencing. Ater capturing an image, Camaroptera compares it to the most recently captured image
to determine if the new image difers. If the image difers, it may be of interest to the application and should
continue through the pipeline. If not, Camaroptera can safely discard the image. Ater comparison to a previous
frame, Camaroptera takes the new frame and saves it as a reference for future diferences. Diference computation
is generally applicable.
DNN Inference. If a new image difered from a previous one, Camaroptera runs an application-speciic in-
ference routine on that image to identify whether it is interesting to the application. For our person detection
application, Camaroptera runs a deep neural network trained to detect images containing people. Inference
using statistical methods or learned inference models are inherently application-speciic and each application

ACM Trans. Embedd. Comput. Syst.



10 • Harsh Desai, Mateo Nardello, Davide Brunelli, and Brandon Lucia

Fig. 5. The DNN architecture used by Camaroptera to perform person detection.

requires its ownmodel. For person detection we run a single model, but Camaroptera supports cascadingmodels,
as MCU resources permit.

(a) (b) (c)

Fig. 6. Comparing an uncompressed and JPEG compressed images captured byCamaroptera. (a) Original image. (b) Floating
point JPEG. (c) Fixed point JPEG.

Pre-Transmission Transformation. If an image is deemed interesting by inference, Camaroptera transforms
the image to prepare it for transmission.his transformation could include a variety of encoding and encryption,
depending on application requirements. In our person detection prototype, we compress each interesting image
before transmission.
Transmission.Once transformed for transmission, Camaroptera packetizes the image and transmits each of an
image’s packets in sequence using its LoRa radio.

6.2 Sotware Implementation Details
We implemented Camaroptera’s processing pipeline, including diferencing, inference, and compression.
Diferencing. he goal of this processing stage is to act as a fast ilter for images of static or slowly-changing
scenes. We implemented a simple image diferencing algorithm that explicitly compares corresponding pixel
values between images. We chose this approach for its simple and fast operation, where a more sophisticated
approach (e.g. SSIM-based) would be considerably slower on the MSP430 MCU which lacks a loating-point unit
and must rely on sotware emulation of loating-point operations.

ACM Trans. Embedd. Comput. Syst.



Camaroptera: A Long-Range Image Sensor with Local Inference for Remote Sensing Applications • 11

In our simple approach, we deem images diferent from one another if the number of diferent pixels exceeds
a heuristically-deined threshold. We set the threshold empirically to 400 pixels by observing that human igures
in our images tend to be around 20x20 pixels in size.
Inference.Our Camaroptera prototype uses a Deep Neural Network (DNN) for image classiication.he DNN’s
structure is derived from the LeNet [40] digit classiication convolutional neural network.he architecture of the
networkwe used is shown in Figure 5.We trained the LeNet-structuredDNNusing a set of images collected using
our Camaroptera prototype. We collected 4000 images around our university campus in 5 diferent locations in a
wide variety of lighting conditions. We used Amazon Mechanical Turk [? ] workers to label them as containing
a person, not containing a person, or not being a valid image. he dataset included 60% negative images and 40%
positive images. Ater labeling the dataset, we trained the network using a subset of 3600 of the images, holding
10% aside for testing and validation.

We optimized the network to decrease its size because the model, as trained, does not it in the 250kB of
available memory on our MSP430 MCU. First, we stored the network weights in a sparse format, using 16-bit
ixed-point integers to save space and increase compute speed. he MSP430 MCU does not natively support
loating point operations and sotware emulation is extremely slow. All computations for the network were
therefore performed in ixed-point arithmetic, with kernels writen for sparse matrices. Second, we reduced
the size of the network by passing the 160x120 input image through a 4x4 average pooling layer, before the
network’s irst convolutional layer. he pooling layer efectively reduces the input to 30x40 pixels. We then
use the Genesis [24] network minimization tool to perform hyperparameter (i.e., structural) optimization on
our trained, modiied network. Genesis applies aggressive near-zero pruning and layer separation to reduce
a network’s weight storage requirements, the size of its intermediate activiations and the expected inference
latency and energy. Camaroptera encodes the optimized network fromGenesis as Compressed Sparse Row (CSR)
for space eiciency. Ater optimization, the network’s weights consume 20kB of memory, which is a substantial
reduction compared to its initial 3.6MB of network weights. he inal network additionally requires around
80kB for intermediate activations and yields 78% accuracy on a test set, with 40% False Postives (FP) and 1%
False Negatives (FN). Section 8 evaluates Camaroptera with diferent false positive and false negative ratios.
Compression. Camaroptera implements JPEG compression, based on an existing implementation [57]. As with
inference, we modiied the JPEG implementation to use ixed point arithmetic instead of loating point, given
the lack of loating point support in the MSP430 MCU. Shiting to ixed point reduced the latency to compress
a 160x120 image from 25 seconds to 7 seconds. Fixed point JPEG degrades image quality, but not excessively.
Figure 6 compares an uncompressed image, and ones compressed using loating and ixed point.

We additionally optimized the transmission of JPEG headers. he irst 500 bytes of the compressed bit stream
is always the same, using the same quality factor and frame resolution. We store the header on the receiver and
avoid sending the 500 bytes of header data, which amounts to the transmission of two LoRa packets and seconds
or minutes of device operation.
Transmission. We operate the LoRa radio with the following parameters: Frequency = 915MHz, Bandwidth
= 500kHz, Spreading Factor = 7, Coding Rate = 4

5
, Preamble Length = 8 symbols, Output TX Power = 17dBm,

Packet Size = 255 bytes.
Energy Management. We manage the energy usage of diferent tasks on Camaroptera in sotware, by charg-
ing the capacitor to 3V before the start of each task. A task can be either image capture, any single stage of
the processing pipeline, or transmission of a single LoRa packet. Once the execution of a task is complete, if the
capacitor voltage is below 3V, Camaroptera goes into deep-sleep and charges the capacitor before resuming oper-
ation from the next task. We have sized the capacitor to atomically support the largest energy task (transmission
of single LoRa packet), avoiding mid-task power failures.
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7 EVALUATION METHODOLOGY
We evaluated Camaroptera using a fully-built hardware and sotware prototype (Figure 1a) to show that lo-
cal inference efectively enables Camaroptera to ind and transmit interesting images, to avoid transmiting
uninteresting images, and to capture and process more images overall compared to several baselines. We also
characterize Camaroptera across a range of sotware conigurations and environments. Running experiments on
a real Camaroptera device in real lighting conditions allowed capturing real system timing behaviors, including
energy-harvesting ineiciencies, processing latency, and energy variability.

7.1 Application
Our prototype implements a representative person detection application using a deep neural network and sends
images containing people to the base station, which we refer to as operating in the Local Inference mode. We
demonstrate the efectiveness of this Local Inference mode by comparing it with two alternate modes: Sense-
and-Send and Basic hresholding. he sotware lowcharts for these three modes are shown in Figure 4. Sense-
and-Send indiscriminately transmits all the images it captures, only running JPEG compression for each image.
Basichresholding sends JPEG compressed images that signiciantly difer from the device’s previous image, with
2% or greater number of pixels difering by 15% or greater. Local Inference uses local DNN inference to detect
images of people. Local Inference irst runs Basic hresholding and for signiicantly diferent images, invokes the
trained DNN person detector from Section 6. Local Inference sends images classiied as containing people only
and discards other images.

7.2 Methodology
We ran three multi-week, in-lab experiments, with Camaroptera handling images in one of Sense-and-Send, Ba-
sic hresholding, and Local Inference modes (Section 7.1) for the respective experiment. We evaluated how Ca-
maroptera operates at three diferent, realistic outdoor light conditions ranging from overcast to bright sun (15,
30 and 45 kLux), seting these light levels using a dimmable incandescent bulb and a URCERI MT-912 light meter.
Each trial had 5000 image events emulated via anMSP430 experimental control board connected to Camaroptera.
We emulated image delivery to ensure repeatable experiments. To emulate an event (i.e., a signiicantly diferent
image), the control board raises the event GPIO pin, connected to Camaroptera. To emulate an interesting event
(i.e., an image containing a person), the control board raises the interesting GPIO pin, connected to Camaroptera.
he control board generates events and interesting events with Gaussian (� = 3� , � = 1�) durations and Poisson
(� = 10�) inter-arrival times, based on our informal proiling of real, pre-COVID19 human activity on a college
campus during daytime. We use the same event sequences across trials with diferent system conigurations to
ensure fair comparison.

As outlined in Section 7.1, we studied Camaroptera in three operating modes. In the Sense-and-Send mode,
Camaroptera captures and transmits images continuously. In the Basic hresholding and Local Inference modes,
Camaroptera irst captures an image. If Camaroptera captures an image with the event GPIO raised, the image
is treated as an event. Basic hresholding transmits an image if it is an event, assuming perfect discrimination of
events using diferencing. For the Local Inference mode, an image captured with both the event and interesting
event GPIO pins raised indicates the presence of a person, and not otherwise. he number of event images that
are interesting is dictated by the True Positive (TP) rate: ��% of all event images will be marked as interesting.
For every event image, Camaroptera runs its classiier and makes a classiication judgement uniformly randomly
based on its false positive (FP) and false negative (FN) ratio: an uninteresting image has ��% chance of being
transmited and an interesting image has ��% chance of begin discarded. We ran the multi-week experiment
with a FP:FN = 10:10 classiier that emulated a reasonable operating point, and a 1% TP rate.
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8 EVALUATION RESULTS
Our evaluation shows that compared to the Sense-and-Send and Basic hresholding modes, Camaroptera’s Local
Inferencemode enables it to capture and transmit more interesting images, transmit fewer uninteresting images
and capture more total images. We evaluated Camaroptera’s sensitivity to variation in several evaluation param-
eters, including the rate of interesting events in the environment (True Positive Rate) and the FP:FN rate of the
classiier.

8.1 Local inference yields beter data
We present the results of the multi-week experiment described in Section 7.2, showing that the Local Inference
mode yields beter data than Sense-and-Send and Basic hresholding, providing more interesting images, fewer
uninteresting images, and processing more images overall.
Local Inference sends more interesting images:

Figure 7a shows the number of interesting images – images containing people – that Camaroptera captures
in the Local Inferencemode, compared to the Sense-and-Send and Basic hresholdingmodes. Across all three light
levels, Camaropterawith Local Inference captures and sends a larger number of interesting images.his diference
is greatest at low input power (15klx), with the Local Inference mode enabling Camaroptera to send around 12×

more interesting images than the commonly used Sense-and-Send mode, and around 3× more than the Basic
hresholding mode. he Local Inference mode outperforms the other two modes as it uses energy judiciously,
avoiding the costly transmission of uninteresting images.

he data show that in Local Inference mode, Camaroptera transmits as many as 50% of all interesting im-
ages, which is 12� more interesting images than Sense-and-Send transmits. here are two main reasons that
Camaroptera does not capture 100% of interesting images in Local Inference mode. First, Camaroptera spends
time processing each image, creating a risk of not capturing an interesting image while processing an uninter-
esting one. Section 9 discusses strategies to further reduce this risk and capture more interesting events. Second,
even in Local Inferencemode, Camaroptera spends time recharging energy spent transmiting interesting events,
which blocks capturing new data.
Local Inference sends fewer uninteresting images:

Camaroptera’s local inference avoids transmiting uninteresting images more efectively than other modes.
Figure 7b shows how the number of uninteresting images sent varies with input power across the three op-
erating modes. Local Inference mode sends up to 6.5× fewer uninteresting images than Sense-and-Send mode.
Additionally, while Local Inference mode transmits a roughly constant number of uninteresting images across
input power levels, Sense-and-Send and Basic hresholding send more uninteresting images as input power in-
creases. Local Inference avoids the problem of eager transmission faced by Sense-and-Send and Basichresholding:
as power increases, recharging becomes faster enabling sending more images. However without the ability to
discriminate interesting from uninteresting, Sense-and-Send and Basic hresholding more quickly send more un-
interesting images.
Local Inference captures more total images:

Operating in the Local Inference mode allows Camaroptera to avoid costly transmission of uninteresting im-
ages, and use that energy to capture and process newer images. Figure 7c shows the total number of images
that Camaroptera processes in all the operating modes across the whole trial. Local Inference mode enables Ca-
maroptera to capture upto 14.7× more total images than the Sense-and-Send mode, and upto 2.8× more than
the Basic hresholding mode. Processing more raw images by using local inference decreases the chance that
Camaroptera misses a critical, interesting event.

Transmiting images is energy-expensive, and collecting that energy takes signiicant time. Avoiding unnec-
essary image transmission allows the Local Inference mode to signiicantly reduce the energy collection time,
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(a) Interesting images sent (b) Uninteresting images sent (c) Total images captured & processed

(d) Latency distribution for Sense-and-
Send

(e) Latency distribution for Basic Thresh-
olding

(f) Latency distribution for Local Infer-
ence

Fig. 7. (a) to (c) show the results of a multi-week experiment demonstrating that the Local Inferencemode outperforms the
Sense-and-Send and Basic Thresholding modes on Camaroptera, in terms of Interesting images sent, Uninteresting images
sent and Total images captured respectively. (d) to (f) show the per-frame latency distribution across the three operating
modes, for three diferent light levels.

resulting in less time spent on each image than the other two modes. Figures 7d to 7f show the distribution of
total time spent on an image frame, across three light levels for each mode. he total time includes the time
to capture, process and, if applicable, transmit the frame, as well as the time to collect the energy required for
these tasks. As radio transmissions are energy-expensive, the frames that are transmited incur a large latency,

ACM Trans. Embedd. Comput. Syst.



Camaroptera: A Long-Range Image Sensor with Local Inference for Remote Sensing Applications • 15

(a) (b) (c) (d)

Fig. 8. Figures (a) to (d) show the performance of Camaroptera under diferent True Positive (TP) rates at diferent light
levels. Here, Camaroptera operates in the Local Inferencemode with a classifer that has a 10:10 False Positive : False Negative
ratio. Changing the TP rate represents diferent amount of interesting events in the environment.

dominated by energy collection. his can be observed in Figure 7d, which shows the Sense-and-Sendmode trans-
miting every image, and thus incurring large frame latencies (60� to 90� at 15klx) on all the frames it captures.
Further, the frame latencies are higher when input power is low (≥ 60� at 15klx), due to slower energy collection,
and lower at higher input power (30� to 40� at 45klx), where energy collection is faster. he Basic hresholding
mode (Figure 7e) avoids transmiting unchanged images, which is relected in the large number of frames with
latency ≤ 10� , as these frames avoid large energy collection delays. However, the uninteresting images that
the Basic hresholding mode transmits still incurs this large delay, as represented by the frames having large
total times (between 50� and 90� at 15klx). In contrast, the Local Inference mode (Figure 7f) minimizes the total
per-frame latency by using the high-energy radio only for transmiting the images it classiies as interesting for
the application. his results in very few frames incurring the high energy collection cost of radio transmissions
(frames with latency between 60� to 90� at 15klx). Majority of the frames in the Local Inferencemode either take
≤ 10� when eliminated by Image Diferencing, or take 10� to 20� when eliminated by the Inference module.
Faster frame latencies allow the Local Inference mode to capture more total images, increasing the efectiveness
of Camaroptera in detecting interesting events.

8.2 Efect of varying Event Composition
We studied Camaroptera’s sensitivity to varying the True Positive (TP) rate of images encountered, across Fig-
ures 8a and 8d. We restrict this study to Camaroptera’s Local Inference mode with a DNN having a ratio of
False Positives to False Negatives of 10:10. he trials for this sensitivity study had 100 image events, and the
results were averaged across three repetitions of each trial. We varied the TP rate from 20% (few people) to 80%
(crowded area), representing diferent amounts of interesting event traic. he data shows that higher interest-
ing event traic (TP rate) degrades Camaroptera’s ability to detect interesting events only when input power is
low. We expected that a higher TP rate would be detrimental in the Local Inference mode, since it would require
more energy-expensive image transmissions. his expectation holds true for total images captured, as seen in
Figure 8a, where the most images are captured for the lowest TP rate (20%). Figure 8d shows that as the TP rate
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(a) Total images captured & processed (b) Interesting images sent (c) Uninteresting images sent

Fig. 9. Figures (a) to (c) show the performance of Camaroptera with diferent classifiers at diferent light levels, operating
in the Local Inference mode. The diferent classifiers are represented by their False Positive : False Negative (FP:FN) ratio.
Here, the True Positive rate for the environment is set to be 20%. Diferent classifier FP:FN ratios represent diferent design
points for Camaroptera.

increases, Camaroptera spends more time on image transmission and less on image capturing, resulting in fewer
total images.

Figures 8b and 8c provide additional insights into how Camaroptera operates at diferent TP rates. As we
expect, Camaroptera reports more total interesting events when there is a higher amount of interesting event
traic; however, the fraction of interesting events it reports varies. At 10klx, energy eiciency maters most, and
a low TP rate helps Camaroptera avoid activating the expensive radio. Camaroptera reports the largest fraction
of interesting events for the 20% TP rate at 10klx. At higher input power, a TP rate of 50% presents a higher
fraction of interesting events. Camaroptera reporting a larger fraction of interesting events at 50% TP than 80%

TP is expected; more interesting events use the radio more frequently, missing the capture of newer interesting
events. When comparing against a 20% TP rate, Camaroptera misses consecutive interesting events due to its
long processing latency.While Camaroptera misses consecutive event for all TP rates, this degrades performance
the most at 20% TP rate (since there are few interesting events to begin with). Figure 8 shows that Camaroptera’s
ability to report interesting events is robust across a reasonable amount of event traic (especially at 50%), and
can be deployed across a variety of environments.

8.3 Efect of varying DNN Parameters
We measured Camaroptera’s sensitivity to variations in the False Positive and False Negative rate of its DNN
classiier, evaluting its efectiveness with diferent learned inference models (Figures 9a to 9c). We evaluted three
classiiers, representing diferently tuned versions of the DNN in Section 6 with the same memory footprint.
We identify a classiier by the ratio of its False Positives to its False Negatives, e.g., FP:FN = 10:10. Similar to
Section 8.2, this sensitivity study was also conducted with trials comprising of 100 image events, averaged across
three repetitions.

Figures 9a and 9b show that a 10:10 classiier captures the most total images. However, the classiier that
reports the largest fraction of interesting events depends on the input power. At low input power (10− 20��� ), a
low FP rate (10%, 20%) leads to fewer uninteresting images transmited (Figure 9c) than a 40% FP rate, preserving
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Table 2. Lifetime of Camaroptera with diferent power systems

System Capacity Lifetime Transmitted Frame
Latency

CR2477 1000mAh 17.6 days 20.676s

Non-rechargeable AA only 3000mAh 52.7 days 20.676s

Rechargeable AA only 2650mAh 4-5 yearsa 20.676s

Rechargeable LTO only 10mAh 4.8 yearsb 20.676s

Permamote[35] (CR2477 + LTO) – 4.8 years + 17.6 days 20.676s

CamHW – ∞
c 36-114s (45-15klx)

a Shelf-life limitations
b Assuming 10,000 recharge cycles at half-depth discharge
c heoretically ininite, practical device lifetimes dictated by IC degradation

the limited available energy. Camaroptera uses this energy to capture and report a higher fraction of interesting
events. At higher input power (≥ 30��� ), energy is more abundant, and lowering the FN rate takes precedence; a
40 : 1 classiier reports the largest fraction of interesting events, even when its high FP rate leads to transmiting
the most uninteresting events. Figure 9 shows that designers using Camaroptera must tune the classiier to
match their application requirements (e.g. sufering higher FP for achieving lower FN), and also the deployment
environment (e.g. prioritizing a lower FP when input power is low).

8.4 Device Characterization
We characterized and compared the lifetime of our energy-harvesting, bateryless Camaroptera system with dif-
ferent batery-poweredCamaroptera systems, aswell as the Permamote[35] system, in Table 2. Non-rechargeable
bateries are a poor choice for a long-range, visual-sensing system like Camaroptera given their limited lifetimes
of a few weeks. Rechargeable bateries allow Camaroptera to achieve longer lifetimes, but still require expensive
batery replacements every 4-5 years. Permamote combines a rechargeable LTO batery with a non-rechargeable
backup CR2477 batery for powering operation during periods of no input power (e.g. night time). While this
does extend the operation to night time, we argue that this its our Camaroptera system poorly for two reasons.
First, the 5 year lifetime even with a rechargeable LTO batery requires expensive batery replacements, failing
our requirement for a multi-decade lifetime. Second, a visual-sensing based system like Camaroptera can capture
useful images only when the scene is well-lit, rendering night-time operation unnecessary, especially in remote
areas where artiicial lighting will be rare.

We also characterized Camaroptera’s latency and energy for its main operations, with data in Figure 10. he
data show that while inference takes the most time to complete, transmiting using LoRa consumes the most
energy because the radio system has much higher power consumption. With low input power, the high energy
cost of transmiting requires a long recharging latency (Figure 2) despite the low transmission latency. With
high input power, recharge times drop and the time spent computing exceeds the time spent transmiting and
recharging.
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(a) Energy (b) Latency (c) Power

Fig. 10. Cost breakdown for performing diferent tasks on Camaroptera.

9 FUTURE WORK
he less time Camaroptera spends between two subsequent image captures, the more images Camaroptera can
capture and process, resulting in higher sensing efectiveness. We discuss a few ways to run Camaroptera pro-
cessing pipeline faster, so that it captures and processes images more frequently.
More compute: Camaroptera performs computations on each image it captures and running these computa-
tions faster will enable Camaroptera to capture a new image sooner. he most latency-intensive computations
on Camaroptera are Inference and JPEG Compression, as shown in Figure 10b. Optimizing the speed of these
two computations will in turn reduce the time between two subsequent image captures. his can be achieved by
employing special architectures, from DNN accelerators to dedicated DSP co-processors.

We quantitatively show the beneits of faster compute by running the DNN in Camaroptera on an ARM
Cortex-M4 core (NUCLEO-G474RE [? ]). We ran experiments with the FP:FN = 10:10 classiier, with event em-
ulation using the 20% True Positive rate, at four diferent light levels. For each experiment, Camaroptera ran
everything but the DNN on the MSP430, and invoked the ARM core for running the DNN. Figure 11 shows that
using the ARM core to accelerate the DNN computations enables Camaroptera to capture more interesting and
total images. he ARM core provides higher energy eiciency than the MSP430, consuming 16.5�� (∼ 93��

for 178��) for running the DNN; the ARM core outperforms the MSP430 in terms of both energy and latency.
However, commercial ARM cores lack support for byte-addressible, non-volatile memory like FRAM, justifying
our MSP430-centric design of Camaroptera. We envision future revisions of Camaroptera to have new compu-
tational accelerators speciic to the nature of deployed applications, which will enable Camaroptera to become
a more efective sensor.
More power: Camaroptera has to spend time recharging the energy used for performing tasks, and improving
energy-harvesting eiciency will reduce this recharging delay. he energy-harvesting eiciency depends on the
size and eiciency of the solar cells, and the eiciency of Camaroptera’s power board. As solar cell technology
matures, and more eicient boosters become available, future revisions of Camaroptera can employ them to
reduce their energy recharging latency, processing each image faster.
Adaptation: At high input power levels, Camaroptera processes each image faster in the Basic hresholding
mode, as compared to the Local Inferencemode. Figures 12a and 12b show a breakdown of the per-image latency
for Camaroptera operating in the Basic hresholding and Local Inference modes, harvesting 30klx and the maxi-
mum rated power of Camaroptera’s solar cells respectively. Each bar shows the time spent performing a diferent
task for an image (from capture to transmission), including the time to recharge the energy required by the task;

ACM Trans. Embedd. Comput. Syst.



Camaroptera: A Long-Range Image Sensor with Local Inference for Remote Sensing Applications • 19

(a) Total images captured & processed (b) Interesting images sent (c) Uninteresting images sent

Fig. 11. Figures (a) to (c) show the performance of Camaroptera with our MSP-based design, and using an ARM Cortex-M4
board to run the DNN. While using an ARM core to replace the MSP430 enables Camaroptera to perform beter, the lack of
FRAM support in commercial ARM cores justifies our choice of building Camaroptera around an MSP430 MCU.

the shaded region shows the recharging latency. he breakdown for transmiting an interesting image (INFER-
TP) and for discarding an uninteresting image (INFER-TN) in the Local Inference mode are shown separately. At
30klx, it is faster to discard an uninteresting image using machine inference (INFER-TN) than transmiting it
indiscriminately in the Basic hresholdingmode, since it is slow to recharge the energy required for image trans-
mission.While INFER-TP (transmiting an interesting image) takes the longest total time, it is infrequent enough
that Camaroptera operates faster in the Local Inference mode as compared to the Basic hresholding mode (as
shown by results in Section 8). Conversely, when harvesting the maximum rated power, operating in the Local
Inference is always slower than the Basic hresholding mode. At this high input power, recharging is quick and
transmiting an entire image is faster than running inference. his presents another way to improve the overall
speed of Camaroptera– by switching to the Basic hresholding mode at very high input power levels.

However, this faster operation comes at the cost of a sharp increase in network traic. At this input power level,
with a 20% TP rate, the Basic hresholding mode sends an image every ∼ 13 seconds, while the Local Inference
mode sends one every ∼ 74 seconds. he Local Inference mode discards a majority of the uninteresting images,
transmiting less frequently. Assuming an airtime of 0.33 ms per JPEG-compressed image, a time-multiplexed
basestation should be able to receive packets from close to 40 devices operating in Basic hresholding. On the
other hand, the same basestation will be able to service more than 200 devices operating in the Local Inference
mode. his translates to a 5× increase in the number of required basestations. Every basestation will have to
further expend resources to ilter out the uninteresting images sent by the Basic hresholdingmode. Input-power
based switching presents a design tradeof in terms of local device speed vs network congestion, and the decision
whether to employ this will depend on the speciic deployment scenario.

10 RELATED WORK
here are several categories of work related to Camaroptera: bateryless remote sensing and communication
systems, intermitent computing systems, and work on edge and near-sensor computing.
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(a) 30 klx (b) Maximum rated power

Fig. 12. Latency breakdown for processing events in the Local Inference mode for an interesting event (INFER-TP), for an
uninteresting event (INFER-TN) and in the Basic Thresholding mode, at (a) 30 klx and (b) The maximum rated power of
Camaroptera’s solar cells. The shaded regions show the portion of time spent recharging energy; a task is shaded entirely if
recharging takes longer than execution. At common levels of input power (30 klx), the Local Inferencemode outperforms the
Basic Thresholdingmode as processing uninteresting images (INFER-TN) is faster in the Local Inferencemode. In contrast, at
the maximum rated input power, sending an image ater Basic Thresholding is faster than running Local Inference, even for
uninteresting images. However, this increased device speed comes at the cost of flooding the network with uninteresting
images, representing an important design tradeof.

10.1 Bateryless Sensing and Communication
Priorwork developed bateryless devices to sense their environment and transmit acquired data.hemost related
of these devices are bateryless image sensing systems [58, 59] described in Section 3.1. hese systems rely
on backscater communication, requiring heavy RF infrastructure and are not appropriate for pervasive, wide-
spread deployment, which is the motivation of Camaroptera. A recent system [23] presents a bateryless image
sensing system for face recognition. While using a similar camera and radio to Camaroptera, its architecture
and deployment targets are entirely diferent. It targets indoor face detection, resulting in a diferent power
system design with signiicantly (roughly 6×) larger solar panels, and uses a time-of-light sensor to trigger
image captures. More importantly, its computing subsystem is designed around an ARM Cortex-M4 core, which
does not support byte-addressable non-volatile memory, making this system unsuitable for long-lifetime, energy-
harvesting applications. Other bateryless systems [10, 12, 26, 28, 37, 64, 80, 81] are designed to collect low-data-
rate time series data and do not support image collection. Additionally, by relying on backscater, Bluetooth
Low Energy (BLE), or other short range communciation media, these devices do not communicate over long
distances, making them inapplicable to Camaroptera.

Other prior work on bateryless communication relates to Camaroptera. Some work uses active radios [9,
12, 21] focusing primarily on BLE. We are unaware at the time of writing of any bateryless device support-
ing active LoRa communication, making Camaroptera the irst device with this capability. NeoFOG [47] relies
on high-powered radios and focuses on optimizing sensor-to-sensor communication, not long-range backhaul.
Other work uses passive communication, primarily based on RF backscatering. Some work aims at short-range
backscatering of directed or ambient RF energy [38, 39, 64, 74, 77], which are inapplicable to the demands
of wide-spread sensor deployment. Longer-range passive systems [60, 70, 76] extend the range of passive net-
working, but to insuicient range (10s of meters) [76] and with dependence on large, powered RF transmiters.
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Camaroptera has the full range of LoRa (100s of meters to kilometers) and requires only inexpensive receivers,
not complex, high-power RF power transmiters.

10.2 Intermitent Computing and DNNs
Recent work improved the computational capability of bateryless devices with sotware and hardware mod-
els for intermitent computing. Most relevant is recent work on bringing deep learning to energy-harvesting
devices [24]; Camaroptera directly leverages this work for its DNN hyper-parameter optimization. Binary net-
works [14, 42] and bit-serial [18] approaches are an appealing alternative option for DNNs on intermitent
devices. Other work on intermitent computing focused on correctness using sotware support for tasks [11, 29,
49, 63, 78] and checkpoints [5, 6, 36, 50, 51, 62, 73], some with support for approximation [22, 48]. Other systems
provide hardware support for designing intermitent architectures [30, 55], circuits [56] and platforms [12, 36].
Some work on intermitent computing targets the safety of I/O operations [3, 7] and concurrency [63, 78].

Camaroptera is largely orthogonal to this prior work on intermitent computing because, while bateryless, Ca-
maroptera avoids intermitent operation by provisioning its capacitive energy storage for communication, which
is an order of magnitude larger than what computing requires. Consequently, Camaroptera avoids unpredictable
intermitent operation, instead Camaroptera is designed to have suicient stored energy before atempting any
computation.

10.3 Edge Computing
Prior work on edge computing has studied early image discard for constrained image sensing systems, similar
to Camaroptera’s processing pipelines. Systems like WULoRa [52] use a secondary wake-up receiver to trigger
a sensing task on the LoRa-based sensing device, whereas Camaroptera triggers its LoRa radio upon detecting
interesting events in its environment. Edge systems process image and video data [33, 69, 75] eiciently on
inelastic deployed resources. Camaroptera difers in scale from most prior edge systems (with at-sensor com-
puting being “beyond the edge”, according to prior work [24]). Edge computing on larger, yet inelastic systems
represent an important future research topic. We assume Camaroptera’s base stations are cheap receivers, but
in future Camaroptera base stations could include sophisticated edge computing resources. Managing the divi-
sion of labor between Camaroptera-scale sensor nodes, larger, base-station-scale edge computing resources, and
clouds is an open problem.

11 CONCLUSION
We presented Camaroptera, the irst bateryless image sensor with the ability to communicate over extremely
long distances using an active LoRa radio. Camaroptera is designed to reduce the high cost of long-range commu-
nication by processing data locally, using at-sensor processing pipelines. Our fully-built hardware and sotware
prototype supports all of Camaroptera’s capabilities in a compact form factor. Our evaluation showed that em-
ploying Local Inference on Camaroptera allows it to send upto 12× more interesting images, while reducing the
uninteresting images sent by upto 6.5×, as compared to a traditional Sense-and-Send approach. his also allows
Camaroptera to capture upto 14.7× more total images, increasing Camaroptera’s efectiveness as a sensor. Fu-
ture Camaroptera iterations can employ novel architectures to reduce computational costs, further improving
it’s availability in real-world deployments.
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