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Abstract: In this work, we deal with a robust fitting of a wrapped normal model to multivariate
circular data. Robust estimation is supposed to mitigate the adverse effects of outliers on infer-
ence. Furthermore, the use of a proper robust method leads to the definition of effective outlier
detection rules. Robust fitting is achieved by a suitable modification of a classification-expectation-
maximization algorithm that has been developed to perform a maximum likelihood estimation
of the parameters of a multivariate wrapped normal distribution. The modification concerns the
use of complete-data estimating equations that involve a set of data dependent weights aimed to
downweight the effect of possible outliers. Several robust techniques are considered to define weights.
The finite sample behavior of the resulting proposed methods is investigated by some numerical
studies and real data examples.
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1. Introduction

Circular data arise commonly in many different fields such as earth sciences, meteorol-
ogy, biology, physics, and protein bioinformatics. Examples are represented by the analysis
of wind directions [1,2], animal movements [3], handwriting recognition [4], and people
orientation [5]. The reader is advised to read the work in [6,7] to become familiar with the
topic of circular data and find several stimulating examples and areas of application.

In this paper, we deal with the robust fitting of multivariate circular data, according to
a wrapped normal model. Robust estimation is supposed to mitigate the adverse effects of
outliers on estimation and inference. Outliers are unexpected anomalous values that exhibit
a different pattern with respect to the rest of the data, as in the case of data orientated
towards certain rare directions [3,8,9]. In circular data modeling, in the univariate case,
the data can be represented as points on the circumference of the unit circle. The idea
can be extended to the multivariate setting, where observations are supposed to lie on a
p−dimensional torus, by revolving the unit circle in a p−dimensional manifold, with p ≥ 2.
Therefore, the main aspect of circular data is periodicity, that reflects in the boundedness of
the sample space and often of the parametric space.

The purpose of robust estimation is twofold: On the one hand we aim to fit a model
for the circular data at hand and on the other hand, an effective outlier detection rule can
be derived from the robust estimation technique. The latter often gives very important
insight into the data generation scheme and statistical analysis. Looking for outliers and
investigating their source and nature could unveil unknown random mechanisms that
are worth studying and may not have been considered otherwise. It is also important to
keep in mind that outliers are model dependent, since they are defined with respect to the
specified model. Then, an effective detection of outliers could be a strategy to improve
the model [10]. We further remark that an outlier detection rule cannot be derived by
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a non-robust method that is sensitive to contamination in the data, such as maximum
likelihood estimation.

There have been several attempts to deal with outliers in circular data analysis, mainly
focused on the Von Mises distribution and univariate problems [2,11–13]. A first general
attempt to develop a robust parametric technique in the multivariate case can be found
in [9]: The authors focused on weighted likelihood estimation and considered outliers from
a probabilistic point of view, as points that are unlikely to occur under the assumed model.
A different approach, based on computing a local measure of outlyingness for a circular
observation with respect to the distance from its k nearest neighbors, has been suggested
in [14].

In this paper, we propose a novel robust estimation scheme. The key idea is that
outlyingness is not measured directly on the torus as in [9] but only after unwrapping the
multivariate circular data from the p-dimensional torus onto a hyperplane. This approach
allows one to search for outliers based on their geometric distance from the robust fit. In
other words, the main difference between the proposed technique and that discussed in [9]
lies in the downweighting strategy: Here, weights are evaluated over the data unwrapped
onto Rp, whereas in [9], the weights are computed directly on the circular data over the
torus and the fitted wrapped model.

In particular, we focus on the multivariate wrapped normal distribution, that, de-
spite its apparent complexity, allows us to develop a general robust estimation algorithm.
Alternative robust estimation techniques are considered, such as those stemming from
M-estimation, weighted likelihood, and hard trimming. It is worth noting that to the
extent of our knowledge, M-estimation and hard trimming procedures have never been
considered in robust estimation for circular data, neither in univariate problems, nor in the
multivariate case. In addition, the weighted likelihood approach adopted here differs from
that employed in [9], according to the comments above.

The proposed robust estimation techniques also lead to outlier detection strategies
based on formal rules and the fitted model, by paralleling the classical results under a
multivariate Normal model [15]. It is also worth remarking that the methodology can be
extended to the family of wrapped elliptically symmetric distributions.

The rest of the paper is structured as follows. In Section 2 we give some necessary
background about the multivariate wrapped normal distribution and about the maximum
likelihood estimation approach. This represents the starting point for the newly established
robust algorithms that are introduced in Section 3. Outlier detection is discussed in Section 4.
The finite sample behavior of the proposed methodology is investigated through some
illustrative synthetic examples in Section 5, and numerical studies in Section 6. Real data
analyses are discussed in Section 7. Concluding remarks finalize the paper in Section 8.

2. Fitting a Multivariate Wrapped Normal Model

The multivariate wrapped normal distribution is obtained by component-wise wrap-
ping a p-variate normal distribution X ∼ Np(µ, Σ) on a p−dimensional torus [16–18]
according to Yd = Xd mod 2π, d = 1, 2, . . . , p. Formally, Y = X mod 2π is multivariate
wrapped normal and the modulus operator mod is performed component-wise. Then, we
can write Y ∼WNp(µ, Σ).

The density function of Y takes the form of an infinite sum over Zp, that is:

φ◦p(y; µ, Σ) = ∑
j∈Zp

φp(y + 2πj; µ, Σ) , (1)

where φp(·) denotes the density function of X. The support of Y is bounded and given
by [0, 2π)p. Without loss of generality, we let µ ∈ [0, 2π)p to ensure identifiability. The
p−dimensional vector j represents the wrapping coefficients vector, that is, it indicates
how many times each component of the p−toroidal data point has been wrapped. Hence,
if we observed the vector j, we would obtain the unwrapped (unobserved and hence not
available) observation x = y + 2πj.
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Given a sample (y1, y2, . . . , yn), the log-likelihood function is given by:

`(µ, Σ) =
n

∑
i=1

log φ◦p(yi; µ, Σ) . (2)

Direct maximization of the log-likelihood function in (2) appears unfeasible, since
it involves an infinite sum over Zp. A first simplification stems from approximating the
density function (1) with only a few terms [6], so that Zp is replaced by the Cartesian
product CJ = ⊗p

s=1J where J = (−J,−J + 1, . . . , 0, . . . , J − 1, J) for some J providing a
good approximation. Therefore, maximum likelihood estimation can be performed through
the Expectation-Maximization (EM) or Classification-Expectation-Maximization (CEM)
algorithm based on the (approximated) classification log-likelihood:

`c(µ, Σ) =
n

∑
i=1

∑
j∈CJ

vij log φp(yi + 2πj; µ, Σ) , (3)

where vij = 1 or vij = 0 according to whether yi has j ∈ CJ as the wrapping coeffi-
cients vector.

The CEM algorithm reveals a particularly appealing way to perform maximum likeli-
hood estimation both in terms of accuracy and computational time [8]. The CEM algorithm
alternates between the CE step:

v̂(s)ij =
φp(yi + 2πj; µ(s), Σ(s))

∑j∈CJ φp(yi + 2πj; µ(s), Σ(s))
(4)

ĵi
(s)

= argmaxjv̂
(s)
ij

x̂(s)i = yi + 2π ĵi
(s)

and the M-step:

µ̂(s+1) =
1
n

n

∑
i=1

x̂(s)i (5)

Σ̂(s+1) =
1
n

n

∑
i=1

x̂(s)i

(
x̂(s)i

)>
.

If the wrapping coefficients were known, we would obtain that xi = yi + 2πj, i =
1, . . . , n, are realizations from a multivariate normal distribution. Notice that, under such
circumstances, the estimation process in (5) resembles that concerning the parameters of
a multivariate normal distribution. Then, the wrapping coefficients can be considered as
latent variables and the observed circular data y as being incomplete [8,19,20].

We stress that in each step, the algorithm allows us to deal with multivariate normal
data x̂i obtained as the result of the CE-step in (4). Then, the M-step in (5) involves
the computation of the classical maximum likelihood estimates of the parameters of a
multivariate normal distribution.

3. A Robust CEM Algorithm

A robust CEM algorithm can be obtained by a suitable modification of the M-step (5),
while leaving the CE-step unchanged. Indeed, robustness is achieved solving a different
set of complete-data estimating equations given by:{

∑n
i=1 ψµ(x̂i; µ, Σ) = 0

∑n
i=1 ψΣ(x̂i; µ, Σ) = 0

(6)
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where the estimating equation ψ = (ψµ, ψΣ)
> = 0 is supposed to define a bounded influ-

ence and/or high breakdown point estimator of multivariate location and scatter [10,21,22].
The resulting algorithm is a special case of the general proposal developed in [23], which
gives very general conditions for consistency and asymptotic normality of the estimator
defined by the roots of (6). The main requirements are unbiasedness of the estimating
equation, the existence of a positive definite variance-covariance matrix Eµ,Σ

(
ψψ>

)
, and of

a negative definite partial derivatives matrix Eµ,Σ

(
∂ψ

∂(µ,Σ)

)
.

In this paper, we suggest a very general strategy that parallels the classical approaches
to robust estimation of multivariate location and scatter under the common multivariate
normal assumption, that can be easily extended to the more general setting of elliptical
symmetric distributions. In this respect, it is possible to use estimating equations as in (6)
that satisfy the above requirements. In particular, we will consider estimating equations
characterized by a set of data dependent weights that are meant to downweight those
data points that exhibit large Mahalanobis distances from the robust fit. The Mahalanobis
distance is defined over the complete unwrapped data as:

d = d(x̂; µ, Σ) =
[
(x̂− µ)>Σ−1(x̂− µ)

]1/2

and it is used to assess outlyingness. In the following, we illustrate some well-established
techniques for a robust estimation of multivariate location and scatter that define estimating
equations as in (5) to be used in the M-step.

3.1. M-Estimation

The M-step can be modified in order to perform M-estimation as follows:

µ̂
(s+1)
M =

∑n
i=1 w(s)

i x̂(s)i

∑n
i=1 w(s)

i

(7)

Σ̂(s+1)
M =

∑n
i=1 w(s)

i x̂(s)i

(
x̂(s)i

)>
∑n

i=1 w(s)
i

with:
w(s)

i = wi

(
d̂(s)i

)
= w

(
d(x̂(s)i ; µ̂

(s)
M , Σ̂(s)

M )
)

for a certain weight function w(·). The weights are supposed to be close to zero for those
data points exhibiting large distances from the robust fit. Well-known weight functions
involved in M-type estimation are the classical Huber wH(t) = min(1, c/|t|) and Tukey
wT(t) = [1− (t/c)2]2I(|t| ≤ c). The constant c regulates the trade-off between robustness
and efficiency.

3.2. S-Estimation

In S-estimation, the objective is to minimize a measure of distances’ dispersion. Let
Σ = σΓ, where σ denotes the size and Γ, with |Γ| = 1, the shape of the variance-covariance
matrix. Then, in the M-step one could update (µ, Γ), minimizing some robust measure of
scale of the squared distances, that is:

(µ̂
(s+1)
S , Γ̂(s+1)

S ) = argmin σ̂
(

d2(x̂(s)i ; µ, Γ)
)

with Γ = Σ|Σ|−
1
p and σ̂ is an M-scale estimate that satisfies:

1
n

n

∑
i=1

ρc1

(
d2(x̂(s)i ; µ, Γ)

σ̂

)
= K, 0 < K < sup ρc
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where ρc(·) is the Tukey bisquare function,

ρc(t) =

{
t2

2 −
t4

2c2 +
t6

6c4 if |t| ≤ c
c2

6 if |t| > c

with associated estimating function ψT(t) = twT(t). It can be shown that the solution to
the minimization problem satisfies M estimating equations [24]. The S-estimate for Σ is
updated as Σ̂(s+1)

S = σ̂Γ̂(s+1)
S . The consistency factor c1 determines the robustness-efficiency

trade-off of the estimator. The reader is pointed to [25] for details about its selection.

3.3. MM-Estimation

S-estimation can be improved in terms of efficiency if the consistency factor used in
the estimation of (µ, Γ) is larger than that used in the computation of σ̂. Then, one could
update (µ, Γ) minimizing:

1
n

n

∑
i=1

ρc2

(
d2(x̂(s)i ; µ, Γ)

σ̂

)

with c2 > c1 and σ̂ = σ̂

(
d2(x̂(s)i ;

ˆ
µ
(s+1)
S , Γ̂(s+1)

S )

)
. The updated MM-estimate of Σ is

Σ̂(s+1)
MM = σ̂Γ̂(s+1)

MM . A small value of c1 in the first step leads to a high breakdown point,
whereas a larger value c2 in the second step corresponds to a larger efficiency [22,25,26].

3.4. Weighted Likelihood Estimation

The weighted likelihood estimating equations share the same structure of M-type
estimating equations but with weights:

w(d) =
[A(δ(d)) + 1]+

δ(d) + 1
,

where δ(d) is the Pearson residual and A(δ) is the Residual Adjustment Function
(RAF) [27–31], with [·]+ denoting the positive part. Following [32], Pearson residuals
can be computed comparing the vector of squared distances and their underlying χ2

p
distribution at the assumed multivariate normal model, as:

δ(di) =
f̂n(d2

i )

mχ2
p
(d2

i )
− 1 , i = 1, 2, . . . , n ,

where f̂n is an unbiased-at-the-boundary kernel density estimate based on the set of
squared distances d̂2

i = d2(x̂(s)i ; µ̂
(s)
W , Σ̂(s)

W ) evaluated at the current parameters values
obtained from weighted likelihood estimation and mχ2

p
denotes the density function of

a χ2
p variate. The residual adjustment function can be derived from the class of power

divergence measures, including maximum likelihood, Hellinger distance, Kullback–Leibler
divergence, and Neyman’s Chi–Square, from the Symmetric Chi-Square divergence or
the family of Generalized Kullback–Leibler divergences. It plays the same role as the
Huber or Tukey function. The method requires the evaluation of a kernel density estimate
in each step over the set

{
d̂2

1, d̂2
2, . . . , d̂2

n

}
. The kernel bandwidth allows control of the

robustness-efficiency trade-off. Methods to obtain a kernel density estimate unbiased at
the boundary have been discussed and compared in [32].

It is worth remarking that Pearson residuals could have been also computed in a
different fashion through the evaluation of a multivariate non-parametric density estimate
evaluated over the x data or on the original torus data y. In the former case, a multivariate
kernel density estimate should have been compared with a multivariate normal density.
In the latter case, we need a suitable technique to obtain a multivariate kernel density
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estimate for torus data to be compared with the wrapped normal density. This approach
has been developed in [9]. In a very general framework, the limitations related to the
employment of multivariate kernels have been investigated in depth in [32]. The reader is
also pointed to [33,34], who developed weighted likelihood-based EM and CEM algorithms
in the framework of robust fitting of mixtures model.

3.5. Impartial Trimming Robust Estimation

In the M-step, we consider a 0–1 weight function, that is:

wi =

{
0 if d(x̂(s)i ; µ̂(s), Σ̂(s)) > q
1 if d(x̂(s)i ; µ̂(s), Σ̂(s)) ≤ q

(8)

for a certain threshold q. This is also known as a hard trimming strategy. The cut-off q can
be fixed in advance or determined in an adaptive fashion. Prominent examples are the
Minimum Covariance Estimator (MCD, [35]) and the Forward Search [36], respectively.
The computation of weights obeys an impartial trimming strategy, according to which,
based on current parameters values in each step, distances are sorted in non-decreasing
order, that is

d̂(s)
(1) ≤ d̂(s)

(2) ≤ . . . ≤ d̂(s)
(n),

and then, maximum likelihood estimates of location and scatter are computed over the
non trimmed set. In other words, a null weight is assigned to those data points exhibiting
the largest bnαc distances, where α ∈ [0, 0.5] is the trimming level: In this case, we have
q = d̂(s)

(n−bnαc). The variance-covariance estimate evaluated over the non trimmed set
is commonly inflated to ensure consistency at the normal model by a factor γ(p; α) =

1−α
F

χ2
p+2

(qp,1−α)
, where Fχ2

p
denotes the distribution function and qp,1−α is the (1− α) level

quantile of the χ2
p. A reweighting step can be also performed after convergence has been

reached, with weights computed as in (8) on the final fitted distances with q = qp,m
(common choices are m = 0.975, 0.990). The final estimates should be inflated as well, by
the factor γ(p; α∗), where now α∗ is the rate of actual trimming in the reweighting step.

3.6. Initialization

A crucial issue in the development of EM and CEM algorithms is the choice of initial
parameters values (µ(0), Σ(0)). Moreover, to avoid dependence of the algorithm on the
starting point and also to avoid being trapped in local or spurious solutions, it is suggested
to run the algorithm from different initial values and then choose the solution that better
satisfies some criterion. Here, starting values are obtained by subsampling. The mean
vector µ is initialized with the circular sample mean. Initial diagonal elements of Σ are
given by Σ(0)

rr = −2 log(ρ̂r), where ρ̂r is the sample mean resultant length; the off-diagonal
elements of Σ are given by Σ(0)

rs = ρc(yr, ys)σ
(0)
rr σ

(0)
ss (r 6= s), where ρc(yr, ys) is the circular

correlation coefficient, r = 1, 2, . . . , p and s = 1, 2, . . . , p [18]. The subsample size is expected
to be as small as possible in order to increase the probability to get an outlier free initial
subset but large enough to guarantee estimation of the unknown parameters. Several
strategies may be adopted to select the best solution at convergence, depending on the
robust methodology applied to update the parameters values. For instance, after MM-
estimation, one could consider the solution leading to the smallest robust scale estimate
among squared distances; when applying impartial trimming, one could consider the
solution with the lowest determinant |Σ̂|; the solution stemming from weighted likelihood
estimating equations can be selected according to a minimum disparity criterion [32,33]; or
minimizing the probability to observe a small Pearson residual over multivariate normal
data ([9,32] and references therein).
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3.7. Extension to Mixed-Type Data

It may happen that we are interested in the joint distribution of some toroidal and
(multivariate) linear data. Let us denote the mixed-type data matrix as (Y , Z), where Y is
composed by p1—dimensional circular data and Z by p2—dimensional linear data. Such
mixed-type data are commonly denoted as cylindrical [7]. Under the wrapped normal
model Y = Xmod 2π in a component-wise fashion and X has a multivariate normal
distribution. If we knew the wrapping coefficients vectors, we could deal with a sample
of size p = p1 + p2 from a multivariate normal distribution. The unknown wrapping
coefficients vectors are estimated in the CE-step (4), so that one can work with the complete
data (x̂i, zi) at each step.

4. Outlier Detection

Outlier detection is a task strongly connected to the problem of robust fitting, whose
main aim is to identify those data showing anomalous patterns, or even no patterns at all,
that deviate from model assumptions. For linear data, the classical approach to outlier
detection relies on Mahalanobis distances [37,38]. Here, the same approach can be pursued
on the inferred unwrapped data x̂i at convergence. Formally, an observation is flagged as
an outlier when:

d2(x̂i; µ̂, Σ̂) > qp;m , (9)

where m = 0.950, 0.975, 0.990 are common choices.
Outlier detection is the result of a testing strategy. For a fixed significance level, the

process of outlier detection may result in type-I and type-II errors. In the former case,
a genuine observation is wrongly flagged as an outlier (swamping), in the latter case, a
true outlier is not identified (masking). Therefore, it is important to control both the level,
provided by the rate of swamped genuine observations, and the power of the test, given
by the rate of outliers correctly detected. The outlier detection rule can be improved by
taking into account proper adjustments to correct for multiple testing and avoid excess of
swamping [39].

5. Illustrative Synthetic Examples

In this Section, in order to illustrate the main aspects and benefits of the proposed
robust estimation methodology, we consider a couple of examples with synthetic data.
Here, the examples only concern bivariate torus data. The samples size is n = 500 with 10%
contamination. We compare the results from the robust CEM described above in Section 3
and Maximum Likelihood Estimation (MLE) performed according to the classical CEM
algorithm described in Section 2, with J = 3. In particular, we consider MM-estimation
with 50% breakdown point and 95% shape efficiency, the WLE with a symmetric chi-square
RAF, and impartial trimming with 25% trimming and reweighting based on the 0.975-level
quantile of the χ2

2 distribution. It is worth stressing that the breakdown point and the
efficiency of the robust methods are tuned on the assumption of multivariate normality for
the unwrapped data x. The robust CEM algorithm has been initialized from 20 different
initial values evaluated over subsamples of size 10. Data and outliers have been plotted
with different symbols and colors (available from the online version of the paper).

Example 1. The bulk of the data (gray dots) has been drawn from a bivariate wrapped normal
distribution with µ = 0, Σ = 0.1 ∗ R, where R is a 2× 2 correlation matrix with off-diagonal
elements equal to 0.7. Two types of contamination are considered. The first fraction of atypical
data is composed by 25 scattered outliers along the circumference of the unit circle (denoted with a
red cross). They have been selected so that their distances from the true model on the flat torus are
larger than the 0.99-level quantile of the χ2

p distribution. The remaining part is given by clustered
outliers (green plus). The data are plotted in the left-top panel of Figure 1. Due to the intrinsic
periodic nature of the data, one should think that the top margin joins the bottom margin, the left
margin joins the right margin, and opposite corners join as well. Then, it is suggested to represent
the circular data points after they have been unwrapped on a flat torus in the form x = y + 2πj for
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j ∈ CJ , respecting the cyclic topology of the data. Therefore, the same data structure is replicated
according to the intrinsic periodicity of the data, as in the top-right panel of Figure 1. The bivariate
fitted models are given in the form of tolerance ellipses based on the 0.99-level quantile of a χ2

2
distribution. A single data structure is given in the bottom-left panel with ellipses over-imposed.
The bottom-right panel is a distance plot stemming from the WLE. The solid line correspond to the

cut-off
√

χ2
2;0.99. Points above the threshold line are detected as outliers. All the considered outliers

are effectively spotted after the robust CEM based on the WLE. In particular, the group of points
corresponding to the clustered outliers is well above the cut-off. Similar results stem from the use of
MM-estimation and impartial trimming. Figure 2 gives the fitted marginals on the circumference:
The robust fits are able to recover the true marginal density on the circle, whereas the maximum
likelihood fitted density has been flattened and attracted by outliers.
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Figure 1. First synthetic example. Top-left: Original circular data. Top-right: Data, fitted models
(WLE-solid line, trimming-dashed line, MM-dotted line, MLE-solid gray line) and true model (dashed
gray line) on a flat torus. Bottom-left: Fitted tolerance ellipses. Bottom-right: Distance plot. Genuine
data are in gray, scattered outliers in red, and clustered outliers in green.
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Figure 2. First synthetic example. Fitted and true marginal distributions on the unit circle.

Example 2. The data have been generated according to the procedure described in [8]: For a fixed
condition number CN = 20, we obtained a random correlation matrix R. Then, R has been
converted into the covariance matrix Σ = D1/2RD1/2, with D = diag(σ212), σ = π/4, and 1p
denotes a p-dimensional vector of ones. Then, 25 outliers (red cross) have been added in the direction
of the smallest eigenvalue of the covariance matrix [9], whereas the remaining 25 outliers have been
sampled from a uniform distribution on [0, 2π] (green plus).

The data and the fitted models are given in Figure 3. The distance plot stemming
from WLE is given in the bottom-right panel of Figure 3. The fitted and true marginals are
given in Figure 4. As before, maximum likelihood does not lead to a reliable fitted model
and does not allow to detect outliers because of an inflated fitted variance-covariance
matrix. In contrast, the occurrence of outliers does not affect robust estimation. The robust
methods lead to detect the point mass contamination since all corresponding points are
well above the cut-off line, as are most of the noisy points added in the direction of the
smallest eigenvalue of the true variance-covariance matrix.
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Figure 3. Second synthetic example. Top-left: Original circular data. Top-right: Data, fitted models
(WLE-solid line, trimming-dashed line, MM-dotted line, and MLE-solid gray line) and true model
(dashed gray line) on a flat torus. Bottom-right: Fitted tolerance ellipses. Bottom-left: Distance plot.
Genuine data are in gray, scattered outliers in red, and clustered outliers in green.
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Figure 4. Second synthetic example. Fitted and true marginal distributions on the unit circle.

6. Numerical Studies

In this section, we investigate the finite sample behavior of the proposed robust CEM
algorithms through a simulation study with N = 500 replicates. In particular, we consider
MM-estimation with a 50% breakdown point and 95% shape efficiency, the WLE with a
symmetric chi-square RAF and impartial trimming with 25% trimming and reweighting
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based on the 0.975-level quantile of the χ2
p distribution, denoted as MCD. These methods

have been compared to the MLE, evaluated according to the classical CEM algorithm. In
all cases we set J = 3. The data generation scheme follows the lines already outlined
in the second synthetic example: Data are sampled from a WNp(µ, Σ) distribution, with
µ = 0 and Σ = D1/2RD1/2, where R is a random correlation matrix and D = diag(σ1p).
Contamination has been added by replacing a proportion ε of randomly chosen data points.
A couple of outliers configurations have been taken into account:

• Scattered : outlying observation are generated from a uniform distribution on [0, 2π)p.
• Point-mass: observations are shifted by an amount kε in the direction of the smallest

eigenvector of Σ.

We considered dimensions p = 2, 5, sample sizes n = 100,500, σ = π
4 , π

2 , contamination
level ε = 10%, 20%, and contamination size kε = π

2 , π. Initial values are obtained by
subsampling based on 20 starting values. The best solution at convergence is selected
according to the criteria outlined in Section 3.6.

The accuracy of the fitted models is evaluated according to:

(i) The average angle separation:

AS(µ̂) =
1
p

p

∑
i=1

(1− cos(µ̂iµi)),

which ranges in [0, 2], for the mean vector;
(ii) The divergence:

∆(Σ̂) = trace(Σ̂Σ−1)− log(|Σ̂Σ−1|)− p,

for the variance-covariance matrix.

Here, we display the results for the scenario with n = 500. Figure 5 shows the boxplots
for the angle separation and divergence computed using the MCD (red), MM (green), WLE
(blue), and MLE (violet) for all the replicates when p = 2, while the case p = 5 is given in
Figure 6. Under the true model, the robust CEM gives results close to those stemming from
the MLE. In contrast, in the presence of contamination in the data, the proposed robust
CEM algorithm achieves a completely satisfactory accuracy, while the MLE deteriorates,
especially when the contamination level increases. When p = 2, the MCD shows the best
performance among the robust proposals for the more challenging cases with σ = π/2,
when outliers are not well separated from the bulk of genuine data points. The same is not
true for p = 5: The presence of outliers over all the p dimensions needs a different tuning
of robust estimators.

We also investigated the reliability of the proposed outlier detection rule (9) in terms
of swamping and masking. The entries in Table 1 give the median percentage of type–I
errors, that is of genuine observations of wrongly declared outliers, whereas Table 2 gives
the median percentage of type–II errors, that is of non-detected outliers. The testing rule
has been applied for a significance level α = 0.05. We only report the results for p = 2.
Swamping derived by the robust methods is always reasonable. Their masking error is
satisfactory but for the scenario with σ = π/2 and ε = 20%. Actually, in this case the
outliers are not well separated from the group of genuine points. In contrast, the type-II
error stemming from the MLE is always unacceptable. In summary, MM, MCD, and WLE
performs in a satisfactorily equivalent fashion for the task of outlier detection, as long as
outliers exhibit their own pattern different from the rest of the data.
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Figure 5. Boxplots of the angular separation (top) and divergence (bottom) values obtained using
(from left to right) MCD (red), MM (green), WLE (blue), and MLE (violet) with respect to the
contamination level ε, with p = 2 and n = 500.
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Figure 6. Boxplots of the angular separation (top) and divergence (bottom) values obtained using
(from left to right) MCD (red), MM (green), WLE (blue), and MLE (violet) with respect to the
contamination level ε, with p = 5 and n = 500.
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Table 1. Median values of type–I error rate for p = 2 and α = 5%.

n = 100 n = 500

ε σ kε MCD MM WLE MLE MCD MM WLE MLE

0 π
4

π
2 0.05 0.05 0.07 0.05 0.05 0.05 0.06 0.05
π 0.05 0.05 0.07 0.05 0.05 0.05 0.06 0.05

π
2

π
2 0.04 0.03 0.05 0.03 0.04 0.03 0.04 0.04
π 0.04 0.03 0.05 0.03 0.04 0.03 0.04 0.04

0.1 π
4

π
2 0.02 0.02 0.07 0.01 0.02 0.02 0.05 0.01
π 0.02 0.02 0.07 0.01 0.02 0.02 0.05 0.01

π
2

π
2 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
π 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01

0.2 π
4

π
2 0.00 0.01 0.06 0.00 0.01 0.01 0.04 0.01
π 0.00 0.01 0.06 0.01 0.01 0.01 0.04 0.01

π
2

π
2 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01
π 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01

Table 2. Median values of type–II error rate for p = 2 and α = 5%.

n = 100 n = 500

ε σ kε MCD MM WLE MLE MCD MM WLE MLE

0.1 π
4

π
2 0.10 0.10 0.00 0.10 0.08 0.08 0.06 0.14
π 0.10 0.10 0.00 0.15 0.08 0.08 0.06 0.16

π
2

π
2 0.30 0.30 0.30 0.70 0.30 0.32 0.42 0.76
π 0.35 0.30 0.30 0.70 0.30 0.28 0.32 0.78

0.2 π
4

π
2 0.10 0.10 0.05 0.70 0.11 0.10 0.06 0.69
π 0.10 0.10 0.05 0.70 0.11 0.10 0.06 0.71

π
2

π
2 0.80 0.85 0.80 0.85 0.84 0.84 0.83 0.85
π 0.80 0.80 0.80 0.85 0.81 0.83 0.82 0.84

7. Real Data Examples
7.1. Protein Data

The data set contains bivariate information about n = 223 pairs of dihedral an-
gles (φ, ψ) in a protein between three consecutive Alanine amino acids. This data set
was extracted from the vast Protein Data Bank [40] and is available from the R pack-
age CircNNTSR [41]. We compare the results from maximum likelihood estimation with
those stemming from the robust CEM based on MM-estimation (0.5 breakdown point
and 0.95 shape efficiency), weighted likelihood estimation (Hellinger distance RAF and
bandwidth set equal to 0.5), and MCD-type impartial trimming (with 0.5 level of trimming
and reweighting). The classical and robust CEM have been run with J = 3 and initialized
from 20 different starting values obtained through subsampling. The data and the fitted
models are shown in Figure 7. In the left panel the data are displayed on a flat torus; in
the right panel the unwrapped data corresponds to j = (0, 0). In both panels the fitted
models are represented through tolerance ellipses based on the 0.99-level quantile of the χ2

2
distribution. The data are non homogeneous in the sense that at least a couple of distinct
clusters can be well identified. Maximum likelihood is not able to catch such different
patterns in the data. In contrast, all the robust methods are successful in unveiling the
presence of different structures, otherwise undetectable: The tolerance ellipses correspond-
ing to WLE, reweighted MCD, and MM-estimation are almost indistinguishable. Let us
consider the output from the robust CEM based on the reweighted MCD. The results from
the other techniques are very similar and not reported here. According to an outlier testing
rule performed at a significance level α = 0.01, the bulk of the data is composed by about
72% of the points, whereas the remaining 28% are outliers. This classification has been
displayed in Figure 8: Outlying φ angles exhibit a large spread and are mainly located on
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the arc between 3π/2 and 7π/4; outliers in the ψ dimension are mainly clustered close
to π/2, far from the bulk of the data. Group-wise rose diagrams have been also added
to highlight further the differences. Figure 9 shows a distance-distance plot, in which
MLE-based Mahalanobis distances are plotted against their MCD based counterpart. The
horizontal and vertical lines give the χ2

0.99,2 cut-off. The inspection of the distance-distance
plot shows that the robust CEM detects at least a couple of sub-groups in the data that are
largely hidden to maximum likelihood.
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Figure 7. Protein data. MLE (dashed), WLE (solid), MCD (dotted), and MM (dash-dotted).
(Left): Data and fitted model on a flat torus. (Right): Unwrapped data and fitted model for j = (0, 0).
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Figure 8. Protein data. Rose diagrams. Genuine points (black) and outliers (gray) stemming from the reweighted MCD.

7.2. RNA Data

We analyze data about seven independent torsion angles measured for each nucleotide
in RNA molecules: Six dihedral angles and one angle for the base. Data have been taken
from the large RNA data set [42]. The original data was split into 23 clusters. Here, we
consider data from the third cluster, whose size is 232, merged with the 28 measurements
from the twenty-third cluster, for a final sample size n = 260. The reader is pointed to [8]
for maximum likelihood estimation in each cluster. It is plausible to suppose that the data
from cluster 23 stand as outliers with respect to those data from cluster 3, since they have
received a different classification. Indeed, the results displayed in Figure 10 support the
assumption that the points from cluster 23 are clearly spotted by the reweighted MCD
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(with 25% trimming), as well as the WLE (with Symmetric Chi-Square RAF and h = 0.01)
and the MM- (0.5 breakdown and 0.85 shape efficiency) based robust CEM algorithms,
whereas they are masked by maximum likelihood. Then, the proposed robust approach is
able to discriminate between the two groups and reveal the underlying clustered structure
of the data.
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Figure 9. Protein data. Distance-distance plot stemming from the reweighted MCD. The horizontal
and vertical lines give the χ2

2;0.99 quantile.
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Figure 10. RNA data. Distance-distance plot stemming from the reweighted MCD, WLE, and MM-estimation. Points from
cluster 23 are in black. The horizontal and vertical lines give the χ2

7;0.99 quantile.

8. Concluding Remarks

We proposed a methodology to fit a multivariate wrapped normal distribution to
circular data lying on a p—dimensional torus in the presence of outliers. Outliers could
originate from wrong measurements, rare directions, or the presence of sub-groups. The
technique performed satisfactorily with synthetic and real data, both for the task of param-
eter estimation and outlier detection. The estimation algorithm involves a modification
of the classical CEM used to perform maximum likelihood estimation, in which the wrap-
ping coefficients are considered as latent variables. At the M-step of the proposed robust
CEM, we solve a set of complete data estimating equations that define robust estimators
of a multivariate location and scatter, with particular emphasis on weighted likelihood,
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MM-estimation, and impartial hard trimming. This approach allows us to measure outly-
ingness according to the Mahalanobis distance of the complete data to the robust fit. The
methodology is particularly appealing for moderate to large dimensions. As a final remark,
we again point out that the proposed approach can be extended to the family of elliptically
symmetric wrapped distributions in a more general framework.
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