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Overview 

During speech perception listeners receive both linguistic information about the speech content as 

well as information regarding the identity of the talker. While these two aspects have been 

traditionally studied in isolation, with a dominant interest for linguistic information over talker 

identity, it is now a widely accepted notion that these two kinds of information are processed in an 

integrated way. The inclusion of talker-related information in the domain of speech perception 

highlighted both benefits and challengers for listeners. On the one hand, linguistic and talker-

identity information appear to be mutually beneficial for the extraction of both kinds of 

information from the speech signal. On the other hand, listeners must take care of the great acoustic 

variability that characterizes the physical dimensions linked to the two kinds of information. The 

aim of the present dissertation is to study three specific cognitive mechanisms that listeners can 

use to access the benefits of the integrated processing of linguistic and talker-related information 

as well as to deal with their intrinsic variability. Three empirical studies employing both 

behavioural and neurophysiological techniques highlight peculiar aspects of abstraction, memory 

retrieval and perceptual learning mechanisms in relation to the consequences of including the 

talker in the study of speech perception.i    
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Chapter 1: General Introduction 

Speech perception refers to a wide set of cognitive processes by which human listeners can 

understand what is being said. All these processes occur in a plethora of social contexts and in all 

of them we inevitably find at least one talker. This consideration may seem trivial except for the 

fact that cognitive and neurophysiological models of speech perception leave the talker in second 

place. For these accounts, talker-related information is considered either as an information to 

remove from the speech signal or is not taken into consideration at all (Gaskell & Marslen-Wilson, 

1998; Halle, 2013; Hickok & Poeppel, 2007; Jacobsen, Schröger, & Alter, 2004; Strange, 1989). 

Although, while understanding what is being said is often presented as the one and only goal of 

speech perception, it should be remembered that identifying who is speaking is fundamental for 

communicating effectively in the complex social world (Kuhl, 2011). From this apparently strict 

separation between the what and the who, the study of speech perception developed across separate 

paths.  

Starting from the acoustic-phonetic level, linguistic and talker-identity information are 

thought to be indexed by different physical features: while phonemes (i.e., vowels) are often 

ascribed to their formant frequencies (Hewlett & Beck, 2013), talker-identity (i.e., voice identity) 

is often reduced to the mean fundamental frequency (Baumann & Belin, 2010). Consequently, also 

the study of the cognitive processes underlying the extraction of linguistic and talker-identity 

information has inherited this functional and neurobiological segregation (Belin & Zatorre, 2003; 

DeWitt & Rauschecker, 2012; Zäske et al., 2017).  

Despite this apparent division, the extraction of linguistic and talker-identity information 

can often be co-dependent, given the fact that the physical dimensions in which they can be 

encoded are intrinsically overlapping  (Hirahara & Kato, 1992; Ladefoged & Broadbent, 1957). 

From such considerations, several studies started to outline the possibility that linguistic and talker-

identity information could be processed in an integrated way. Different behavioural and 

neurophysiological studies provided converging evidence about phoneme identification being 

impaired when the talker keeps changing and likewise, talker-identification being hampered by 

sudden variations in phonemes (Kaganovich et al., 2006; Mullennix & Pisoni, 1990; Zhang et al., 

2016), suggesting that the extraction of linguistic and talker-identity information are 

computationally interdependent. The integration of linguistic and talker-identity information not 
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only emerges at an acoustic-phonetic level of processing but also during higher and more complex 

cognitive operations. Van Berkum et al. (2008) showed that listeners infer social characteristics 

based on the talkers’ voices and use this information to re-evaluate the meaning of utterances in 

real time, suggesting that understanding speech engages a constant integration of semantic 

information emerging from the linguistic content and pragmatic information about the 

communicative context (i.e., the social information inferred from the talker’s voice). These two 

examples may suggest that the integration of linguistic and talker-identity information is intrinsic 

to speech perception at multiple levels of computational complexity and abstraction. 

The inclusion of talker-related information in the study of speech perception, and its strong 

binding with linguistic information, stimulated several studies from which two main points can be 

drawn. On the one hand, several studies have shown that talker-identity information as well as 

linguistic information are mutually beneficial for the extraction of one another. Prior exposure with 

a talker’s voice was shown to facilitate phoneme perception (Eisner & Mcqueen, 2005; K. Johnson, 

1990; Kraljic & Samuel, 2006, 2007; Norris et al., 2003), word recognition in ideal (Creel et al., 

2008; Nygaard et al., 1994; Nygaard & Pisoni, 1998) and noisy situations  (Johnsrude et al., 2013; 

Newman & Evers, 2007; Souza et al., 2013). Likewise, identifying the talker is easier when this 

occurs in the listeners native language (Bregman & Creel, 2014; Perrachione & Wong, 2007; 

Zarate et al., 2015).  

On the other hand, both talker-identity and linguistic information are subject to high degree 

of acoustic variability. Multiple theoretical accounts agree about some key computational steps 

that listeners encounter during speech perception (Eisner & McQueen, 2018; Kemmerer, 2015) in 

order to take care of such variability. Considering the extraction of linguistic information, listeners 

essentially map a continuous signal to discrete linguistic units (i.e., phonemes) that – when 

combined – form meaningful words and sentences. Nevertheless, talkers produce phonemes in 

phonetically different ways (Allen et al., 2003; Peterson & Barney, 1952) thus listeners never hear 

the same acoustic realization of a phoneme twice. What is even more outstanding, is that one 

phoneme produced by one talker could be very acoustically similar to another phoneme produced 

by a different talker (Repp & Liberman, 1987). Known as the lack of invariance problem 

(Liberman et al., 1967), this posits an arduous computational challenge for listeners. All these 

problems may equally concern talker-identification, as listeners can recognize talkers by hearing 

different words which entail variation induced by linguistic information.  
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The remaining sections of this introductory chapter will describe three different cognitive 

mechanisms that listeners may use to benefit from the integration of linguistic and talker-identity 

information and/or to deal with their congenital variability. First, abstraction will be introduced as 

one of the fundamental mechanisms by which listeners can solve the lack of invariance problem 

while dealing with talker-variability through the formation of talker-invariant phoneme 

representations. Importantly, the possibility of extending the use of this mechanism to deal with 

linguistic variability in the talker-identity domain will be addressed. Second, memory retrieval will 

be described as a mechanism that allows listeners to take advantage from familiar linguistic or 

talker-identity information during speech perception. Further, the issue about shared vs. segregated 

retrieval mechanisms across linguistic and talker-identity domains will be addressed.  Third, 

perceptual learning will be framed as the potential mechanism that allows listeners to map the 

idiosyncratic ways by which speakers produce speech to abstract representations of segments and 

suprasegmental structures. More specifically the focus will be on lexical stress.  

1.1 Abstract voice representations 

Abstractionist models of speech perception entail abstract phonological or prelexical 

representation (Gaskell & Marslen-Wilson, 1997; McClelland & Elman, 1986; Norris, 1994) that 

listeners form by abstracting away from the acoustic-phonetic variability of the context. Regarding 

the issue of talker variability, abstract phonological representations might be crucial in supporting 

the storage and retrieval of information about how talkers produce speech. For instance, through 

the normalization process, listeners can compute an acoustic-phonetic model of the talker’s voice 

that can be used online (i.e., within the same instance) to facilitate the mapping between talker-

specific phonetic realization of phonemes to abstract phonological representation (Sjerps et al., 

2011a, 2011b). Additionally, through perceptual learning, listeners can directly extract talker-

specific details about the phonetic realization of phonemes while storing them within abstract 

representations of phonemes and generalize it to future encounters with the same phoneme, also 

when it is embedded in previously unheard words (Eisner & Mcqueen, 2005; McQueen et al., 

2006).  

 While the works presented in this dissertation were developed following the abstractionist 

accounts of speech perception that critically depend on the existence of abstract representations of 

speech units, it is important to consider that other theoretical accounts focus on different 
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perspectives. For instance, episodic models of speech perception hypothesise that listeners store 

independent episodic memories for every word they encounter. These episodic traces would 

encode both linguistic and talker-related acoustic information. When a new word is heard, its 

memory trace is compared to all the other stored traces and the outcome of this process results in 

a weighted activation pattern of all the traces in memory, acting as a kind of distributed 

representation (Goldinger, 1998). While abstractionist accounts frame talker-related variability as 

a problem to solve by removing talker-related information through the normalization and 

abstraction processes, episodic accounts frame it as a valuable resource to listeners which can 

favour the word recognition process.  

One important aspect of such models that partly characterize the studies of this dissertation 

is the value of talker-related information for speech perception. In fact, the abstraction process has 

been mainly studied for its role in dealing with talker-variability allowing listeners to grasp the 

linguistic content while discarding talker-related information. Nevertheless, listeners could face a 

similar problem when they must recognize the talker from different speech tokens: mapping 

different voice tokens to an abstract talker’s voice representation (Belin et al., 2004; Latinus & 

Belin, 2011) might be a similar issue as reconducting different speech tokens to abstract 

phonological representations. Hence, the abstraction process might also favour talker identification 

when listeners are faced with linguistically-driven phonetic variability.  

Numerous studies employing neurophysiological techniques showed that the cognitive 

system can spontaneously form abstract phoneme representations very early in time (Eulitz & 

Lahiri, 2004; Jacobsen, Schröger, & Alter, 2004; Shestakova et al., 2002), while no study showed 

that this might also be the case for voices. Yet, different studies showed that listeners should be 

able to form abstract representations of both phonemes and talker-identities, respectively invariant 

to the talker’s voice or to the speech content, but only as a consequence of explicit task demands 

(Bonte et al., 2009, 2014; Zäske et al., 2014, 2017).  

It is thus still unclear whether the abstraction process that leads to the formation of 

phoneme-invariant talker voice/identity representation is spontaneously activated or follows 

environmental demands and/or the listener’s intentions. Investigating these issues may clarify 

whether the cognitive system is preferentially tuned towards linguistic or talker-identity 

information during speech perception.  In Chapter 2, this and other related issues are addressed, as 

well as the possibility that listeners may form abstract representations via a more general-domain 
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abstraction mechanism. Understanding whether this aspect is specific for speech or broadly 

pertains to the auditory domain might provide important insights about its scopes and constraints.  

1.2 Memory Retrieval of familiar information 

Perceiving speech is easier in a familiar context, being the context a familiar talker or a 

familiar/native language. The familiar talker advantage, that is the facilitation listeners get during 

speech recognition while hearing a familiar talker, and the language familiarity effect, that refers 

to the enhanced talker-recognition performance in native linguistic contexts (Perrachione, 2017), 

clearly highlight the connection of linguistic and talker-identity information and their mutual 

influence during speech perception. Talker familiarity might be an important aid when immersed 

in a multi-talker situation, where listeners are requested to track speech from specific talkers while 

ignoring others to understand what is being said. Johnsrude et al. (2013) showed that this is the 

case, and additionally provided evidence that talker familiarity is beneficial for listeners also when 

familiar talkers must be ignored. In their experiment, listeners heard two simultaneously presented 

sentences. In one condition, one sentence was produced by a familiar voice (i.e., participants’ 

spouses) while the other by an unfamiliar one. In another condition, both sentences were produced 

by unfamiliar voices. Participants were asked to recognize specific words either from the familiar 

or the unfamiliar voices on the basis of cue-words contained in the same sentences, which informed 

participants about what voice would have given the target information. Participants not only 

showed higher accuracy when target words were produced by the familiar voices but also when 

the familiar voice was to be ignored and the unfamiliar one to be attended with respect to when 

both voices were unfamiliar.  

Language familiarity, instead, might be a natural consequence of listeners familiarizing 

with voices in their native language. Zarate et al. (2015) familiarized native English participants 

with the voice of 5 different multilingual talkers through a voice recognition task and then tested 

their recognition capacity. Both the familiarization and the test phases were repeated in English, 

German, Mandarin, Pseudo-English (i.e., English pseudowords) and non-speech (e.g., laughs, cry). 

At test, participants showed gradually descending voice recognition accuracy when shifting from 

English to pseudo-English, German, Mandarin and non-speech, indicating that one possible source 

of the language familiarity effect might be the familiarity with phonetic and phonological 

information.  
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These two effects described above might reflect the ability of the listener to jointly use 

linguistic and talker-related information both when recognizing words or identifying talkers that 

may essentially rest upon shared cognitive mechanisms. In fact, different neurophysiological 

studies showed that representations of native phonemes or familiar talkers are automatically 

retrieved by the cognitive system very early in time (Beauchemin et al., 2006; Dehaene-Lambertz, 

1997; Näätänen et al., 1997) and possibly by similar memory retrieval mechanisms. Within this 

perspective, the similarities between the memory retrieval processes for known linguistic and 

talker-identity information might suggest that listeners exploit the information they know to better 

parse the information they do not know. This may lead to an efficient management of cognitive 

resources as listeners may focus their attention onto the unknown information once they have 

retrieved the familiar one. As mentioned above, one caveat is that listeners possibly familiarize 

with voices in a context where linguistic information is understood, hence familiar. Similarly, the 

acquisition of phonemes in children initially develops in contexts where the voices they hear are 

indeed familiar. Therefore, in Chapter 3 the memory retrieval processes for familiar voices and 

phonemes which have been previously learned in isolation are investigated and compared.  

1.3 Talker-specific perceptual learning  

 As previously mentioned, different talkers may produce the same phonemes in phonetically 

different ways, as well as different phonemes in phonetically similar ways (Adank, Smits, et al., 

2004; Peterson & Barney, 1952). Nonetheless, when listeners familiarize with the talker’s voice 

via a training procedure, word recognition is facilitated (Nygaard et al., 1994), suggesting that the 

exposure to a talker’s voice might help listeners in dealing with lack of invariance and talker-

variability. Further, the talker-familiarity effect generalizes to previously unheard words (Yonan 

& Sommers, 2000), possibly indicating that the advantage that listeners get by being exposed to 

the talker’s voice acts at a pre-lexical level. This particular feature inspired researchers to study 

whether such an effect could stem from listeners’ ability to learn how specific talkers produced 

specific linguistic units. To this regard, different studies showed that listeners can learn how 

different talkers produce phonemes by readjusting the perceptual weights of physical cues by 

which such phonemes can be identified (Eisner & Mcqueen, 2005; Kraljic & Samuel, 2007; Norris 

et al., 2003; Samuel & Kraljic, 2009). In Eisner & Mcqueen (2005), Dutch participants heard a 

talker producing an ambiguous fricative sound between [f] and [s] that was inserted at the end of 
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different words during a lexical decision task. One group of participants heard the ambiguous 

sound in place of an [f] sound (as in witlof, “chicory”), while the other group of listeners heard it 

in place of an [s] sound (as in radijs, “radish”). Subsequently, participants were tested on an 

ambiguous continuum of [εf]–[εs] syllables. The [f]-biased group gave more [εf] responses while 

the [s]-biased group gave more [εs] responses. The same effect was recorded also when the test 

fricatives were spliced after vowels of novel talkers but not when novel talkers produced the whole 

[εf]–[εs] continuum unless the novel talker's fricative sounds were put into the words of the 

exposure talker, suggesting that listeners learned in a talker-specific way. Importantly  in a 

subsequent similar study, McQueen et al. (2006) showed that this kind of  talker-specific learning 

generalized across words. This means that participants could grasp how the talkers produced 

specific phonemes by hearing one set of word during a learning phase but then applied such 

information also when new words were presented at test. This is considered a crucial feature of 

this particular learning process called perceptual learning that is thought to entail abstract 

phoneme representations: by hearing real words in which an ambiguous phoneme has been 

inserted, listeners can activate the corresponding phoneme representation and act at a pre-lexical 

level to readjust the perceptual weights associated to its primary cues.  

On the other hand, a series of studies showed that when listeners encounter talkers with 

non-native accents they relax their acceptance criteria of what would be a correct (i.e., native) 

linguistic production along different levels (Reinisch & Weber, 2012; Witteman et al., 2013; 

Zheng & Samuel, 2020). Relaxation of criteria could be an alternative mechanism to deal with 

talker-related variability, compared to perceptual learning. Nonetheless, this adaptation 

mechanism seems to be restricted to non-native accents, and it is not yet clear if the same 

mechanism could be applied to individual native talkers and the related variability across different 

linguistic levels.  

While the remainder of this section focuses on perceptual learning, it is worth mentioning 

that the studies on non-native accents highlight the value of suprasegmental information for speech 

perception: when hearing non-native speakers, their prosody is possibly the first thing a native 

speaker notices. Suprasegmental information though, is also crucial to perceive the message 

content. In several languages (e.g., Italian, Dutch, German, Spanish) suprasegmental information, 

and more specifically lexical stress, encodes precious linguistic information, allowing the 

distinction of minimal pairs as in the English words FOREarm (i.e., the part of the arm extending 
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from the elbow to the wrist) – foreARM (i.e., to prepare for trouble). While the number of minimal 

stress pairs is quite limited in the mentioned languages, it was shown that knowing the position of 

stress can drastically reduce the number of activated lexical competitors, providing an information 

as useful as the segmental one (Cutler & Pasveer, 2006). Moreover, suprasegmental information 

can also be affected by between-talker variability (Eriksson & Heldner, 2015; Xie et al., 2021), 

thus listeners might be prone to learn how different talkers produce it, in order to correctly perceive 

speech. Studying how listeners learn the idiosyncratic ways in which talkers produce speech, and 

in this specific case, how they produce lexical stress is particularly relevant for a deeper 

understanding of the beneficial relationship between linguistic and talker-related information. In 

Chapter 4, perceptual learning is presented as an effective mechanism by which listeners learn to 

adapt to talker-related variability by updating the connection between phonetic cues and linguistic 

categories on the basis of short-term exposure. Moreover, in the General Discussion section, the 

possibility that talker-specific perceptual learning hinges upon abstraction and memory retrieval 

of both linguistic and talker-identity information is addressed.  
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Chapter 2: Formant-invariant voice and pitch representations are pre-

attentively formed from constantly varying speech and non-speech stimuli.1 

The present study aimed at determining if listeners can form abstract voice representations while 

ignoring constantly changing phonological information and if they can use the resulting 

information to facilitate voice change detection. The study also aimed at understanding whether 

the use of such abstraction mechanism is restricted to the speech domain, or whether it can be 

deployed also in non-speech contexts. We ran an EEG experiment including a passive and an 

active oddball task, each featuring a speech and a rotated-speech condition. In the speech 

condition, participants heard constantly changing vowels uttered by a male speaker as standard 

stimuli which were infrequently replaced by vowels uttered by a female speaker with higher pitch. 

In the rotated-speech condition, participants heard rotated vowels, in which the natural formant 

structure of speech was disrupted. In the passive task, the Mismatch Negativity was elicited after 

the presentation of the deviant voice in both conditions, indicating that listeners could successfully 

group together different stimuli into a formant-invariant voice representation. In the active task, 

responses were faster and more accurate and elicited an enhanced P3b responses compared to the 

rotated-speech condition. Results showed that whereas at a pre-attentive level the cognitive system 

can track pitch regularities while abstracting away from constantly changing formant information 

both in speech and in non-speech, at a volitional level the use of such information is facilitated for 

speech. This facilitation was also testified by a stronger synchronization in the theta band (4-7 Hz), 

potentially pointing towards differences in encoding/retrieval processes.  

  

 
1 This chapter was submitted for publication and is currently under review. The study has been conducted in 

collaboration with dr. Simone Sulpizio (Department of Psychology, University of Milano Bicocca) and dr. Michele 

Scaltritti (Department of Psychology and Cognitive Science, University of Trento). 
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2.1 Introduction 

The speech signal encodes both linguistic and vocal information. These two types of information 

can be selectively extracted and used for different communicative and social goals. In fact, listeners 

can understand the message content irrespectively of who is speaking and can identify the talker’s 

voice regardless of what is being said. However, these operations are not undemanding as they 

may seem and, in order to perform them, speakers need to orient their attention accordingly.  

In an ERP study, Kaganovich et al. (2006) asked participants to listen to different vowels 

uttered by different talkers. In one task, participants were asked to identify the talker 

notwithstanding changes in the unattended vowel dimension, whereas in another task they had to 

identify vowels while ignoring changes in the unattended talker dimension. The Garner paradigm 

(Garner, 2014) employed by the authors predicts that if two dimensions are processed together, 

sudden changes in the unattended dimension would hamper the processing of the attended one. 

Consistently, when compared with a baseline task (i.e., a task where no changes in the unattended 

dimension occurred), both tasks were characterized by a sustained negativity surfacing in the N100 

time-window and spreading until the P3 time window. These findings were interpreted as evidence 

of the involvement of two attention-based processes allowing for the dissociation of phonological 

vs. vocal information. Specifically, a low-level filtering process, occurring in the N100 time 

window, would isolate the physical dimension of interest, whereas a second higher-level one, 

occurring in the P3 time-window, would be responsible for matching the output of the filtering 

process to the correct response representation in working memory.  

This result suggests that when listeners are asked to extract information from a complex 

signal by orienting their attention toward a target information, they need to take care of physical 

variability both in the attended and in the unattended dimensions. Speech tokens embedding 

phonological and vocal information are produced in different ways by different talkers. Thus, 

regardless of the specific type of information to select or ignore, listeners need to use their 

cognitive resources to model and summarize variability within a stable percept. 

One way by which listeners can facilitate the extraction of relevant information from 

speech and deal with physical variability is by forming abstract representations which are 

selectively invariant to changes along specific dimensions of the speech signal (Belin et al., 2004; 

Norris & McQueen, 2008). Concerning this issue,  Bonte et al. (2009) ran an EEG experiment in 

which participants listened to different vowels uttered by different talkers which were randomly 
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presented across different blocks. In separate blocks, they were asked to detect consecutive 

repetitions of either the same vowel or the same talker. In each task (i.e, detect vowel repetitions 

or talker repetitions), the alpha phase realignment surfacing ~250 ms after stimulus presentation 

was stronger for the task-dependent (phonemic or vocal) dimension. According to the authors’ 

interpretation, alpha phase alignment is induced by selective attention guiding the temporal 

binding of information contained in abstract representations previously formed in auditory 

cortices. The interpretation of this result provides a characterization of the neural implementation 

of the task-induced attentional processes reported in Kaganovich et al. (2006), which require 

abstract representations to work correctly. Still, it is not clear how or when such abstract 

representations can inform and orient the attentional processes, nor if their formation occurs pre-

attentively or needs the involvement of attention-based processes. 

There is evidence that abstract (i.e., talker-invariant) representations of phonemes are 

automatically formed by the cognitive system. For example, Jacobsen, Schröger, and Alter (2004)  

ran an EEG experiment with a passive oddball paradigm, in which participants heard one vowel 

as standard stimulus with fixed first (F1) and second formant (F2) values – which are cues for 

vowel identification –, but with continuous variation in F0, which is a cue for voice identification. 

The presentation of a deviant vowel featuring different F1/F2 values yielded an MMN, 

notwithstanding the constant variation along non-linguistic information (i.e., F0 and intensity). 

The finding suggests that listeners automatically abstract away from non-linguistic cues (i.e., F0) 

while focusing on phonological information (i.e., F1 and F2). The results were replicated using 

speech-like stimuli (i.e., complex tones synthesized with the same F0, F1 and F2), but not with 

non-speech stimuli (i.e., simple tones lacking of formant structure, Jacobsen, Schröger, & 

Sussman, 2004). This suggests that abstraction mechanisms are speech-specific and get activated 

only in presence of a formant structure.  

Crucially, no evidence about the potential involvement of these abstraction mechanisms in 

the formation of phoneme-invariant voice representations has been shown yet. However, such 

mechanisms can be reasonably hypothesized, as i) talker-related information is highly relevant 

during communication (Van Berkum et al., 2008), and ii) the cognitive system shows a domain-

general ability to detect the violation of abstract regularities occurring within various physical 

features in acoustic stimuli. Consistently, many EEG studies used the “abstract-feature” oddball 

paradigm (e.g., Saarinen et al., 1992), in which standard stimuli differ along several physical 
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dimensions while being similar with respect to another one. These experiments demonstrated a 

reliable elicitation of the MMN, indexing the ability to automatically group together different 

sounds on the basis of the similarity with respect to one physical dimension, regardless of other 

constantly changing ones (for a review, see Paavilainen, 2013). These kind of abstract regularities 

in sound streams seem to be captured already by the brain of new-borns (Carral et al., 2005). These 

results may thus indicate that the cognitive system is able to extract invariant sound features in 

constantly varying acoustic contexts via a general-purpose auditory abstraction process, which can 

be subsequently used to process different kinds of regularities in several domains such as speech 

(Eulitz & Lahiri, 2004) and music (Virtala et al., 2011).  

Nonetheless, although listeners may be able to track different acoustic regularities in 

sounds and store them within abstract representations via general-purpose mechanisms, they might 

be influenced by their prolonged experience with speech and voices. Consistently, the 

identification of the linguistic (i.e., words) or vocal component (i.e., talker identity) of speech is 

facilitated when one of the two information is familiar to the listener (Johnsrude et al., 2013; 

Nygaard et al., 1994; Zarate et al., 2015), suggesting that even if listeners are focusing on one 

specific dimension of the speech signal, being familiar with the ignored dimension(s) is still 

beneficial. The influence of linguistic and voice-related experience surfaces early in time, as the 

MMN shows larger amplitude when native phonemes (Dehaene-Lambertz, 1997; Näätänen et al., 

1997) and words (Pulvermüller et al., 2001, 2004) or familiar voices (Beauchemin et al., 2006), 

are presented as deviant stimuli. This effect has commonly been considered as an index of a 

memory trace retrieval process (Näätänen et al., 2007), which occurs in a time window compatible 

with the one where the cognitive system forms abstract regularities representations. Thus, listeners 

may be facilitated in detecting regularities when they hear speech by retrieving representations of 

known linguistic/vocal information in which both the attended and the unattended information can 

be encoded.  

This study has two main aims. The first aim is to establish whether the abstraction 

mechanism is information-specific within the speech domain, that is whether listeners can 

spontaneously form abstract representations of the talker’s voice irrespectively of phonological 

information, exactly as they do with phonemes irrespectively of physical variations in the talker’s 

voice (Jacobsen, Schröger, & Alter, 2004; Jacobsen, Schröger, & Sussman, 2004; Shestakova et 

al., 2002). To achieve this goal, the “abstract-feature” oddball paradigm was used. In a first 
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condition, different vowels uttered by a male voice were presented as standard stimuli. While 

F1/F2 values were constantly changed, the F0 value was kept fixed. Standard stimuli were 

infrequently replaced by deviant stimuli, that were produced by a female voice, characterized by 

a higher F0. If listeners can automatically form an abstract representation of the talker’s voice 

irrespectively of the constant variation in phonological information (i.e., F1/F2 values of different 

phonemes), a MMN is expected. This result would indicate that listeners can form phoneme-

invariant representations of the talker’s voice similarly as they build talker-invariant phoneme 

representations. The absence of any MMN, instead, would suggest that the cognitive system is 

preferentially tuned to detecting variation along the phonological dimension, leaving the vocal one 

in second place. If this is the case, the abstraction mechanism under investigation could then be 

considered as information-specific, at least within the speech domain (as suggested by Jacobsen et 

al., (2004) results). 

Since the possible presence of the MMN could also be due to an acoustic-based abstraction 

mechanism, as suggested by the studies reviewed by Paavilainen (2013), the second aim of the 

present study was to understand whether the abstraction mechanism is speech-specific or whether 

it represents a general-purpose mechanism which is then employed across different domains, 

including speech perception. To do this, in a second condition, another “abstract-feature” oddball 

block was implemented, but this time the stimuli corresponded to the spectrally rotated version of 

the speech stimuli presented in the first condition. Spectral rotation consists in manipulating the 

spectrum of a specific sound by selecting a mirroring frequency (e.g., 2000 Hz) and exchanging 

the power values of the high frequencies with those of the low frequencies and vice versa (Blesser, 

1972). This procedure results in auditory stimuli with implausible formant values, disrupting any 

possible recognition of phonological information, while keeping both the spectral complexity and 

the pitch contour intact (Marklund et al., 2018; Sjerps et al., 2011a). If a MMN is successfully 

elicited in this condition, this would indicate that listeners can form abstract representations also 

from non-speech sounds, suggesting that the abstraction mechanism under investigation is not 

speech specific. Additionally, in case the MMN is elicited in both conditions, phonological 

information might still be pre-attentively extracted to facilitate the detection of vocal changes. In 

this case, the MMN should be stronger for the speech condition, indexing the automatic retrieval 

of native phoneme representations. (Dehaene-Lambertz, 1997; Näätänen et al., 1997).  
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Additionally, an active version of the oddball task was conducted, in order to understand 

whether the output of the abstraction mechanisms facilitates the detection of changes within 

specific stimulus features (i.e., pitch) while other constantly varying dimensions (i.e., F1 and F2) 

are disregarded. If this is the case, for the conditions in which a MMN is elicited in the passive 

oddball task, a P3b is expected following the correct detection of deviant stimuli in the active 

oddball task. Moreover, since the amplitude of P3b is sensitive to the amount of cognitive and 

attentional resources deployed to stimulus processing independently of its physical features 

(Duncan et al., 2009), it represents a good index to assess differences in the task demands of 

volitional target detection across speech and non-speech contexts. Therefore, in the possibility that 

a MMN is elicited in both conditions, we would reasonably expect the P3b having a smaller 

amplitude for the condition with higher task demands.  

Finally, we also explored the oscillatory activity in the theta (4-7 Hz), alpha (8-12 Hz) and 

beta (13-30 Hz) frequency bands. Power modulations in the theta band are often found in 

correspondence to the presentation of deviant events in both passive (Jin et al., 2014; Ko et al., 

2012; Koerner et al., 2016) and active oddball tasks with speech and non-speech stimuli (Citherlet 

et al., 2020; Kolev et al., 1997; Spencer & Polich, 1999). These modulations appear to be sensitive 

to pitch variations (Hsu et al., 2015; Li & Chen, 2018) and have been associated to processes of 

encoding (Klimesch, 1999), retrieval (Bastiaansen et al., 2005; Klimesch et al., 2001) and working 

memory load (Fuentemilla et al., 2008; Jensen & Tesche, 2002; Kolev et al., 1997). Power 

modulation in the alpha and in the beta bands are also commonly found in passive and active 

oddball tasks (Hsu et al., 2015; Mazaheri & Picton, 2005; Öniz & Başar, 2009) but while alpha 

activity is associated to attentional control (Wöstmann et al., 2017) and informational gating 

(Strauß et al., 2014), beta modulations are informative about the temporal dynamics of 

maintenance and disruption of perceptual and cognitive sets (Engel & Fries, 2010), which in our 

experiment are induced by the presentation of deviant events. Therefore, the study of oscillatory 

activity within the theta, alpha and beta bands may extend the functional characterization of non-

phase-locked activity underlying fundamental cognitive processes that subserve the extraction of 

regularities in the auditory and in the speech domain, while possibly providing complementary 

evidence with respect to the underlying mechanisms.  
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2.2 Method 

2.2.1 Participants 

Seventeen healthy Italian native speakers were recruited. Two participants were excluded from the 

final sample because of excessive noise in the EEG data. The final sample included 11 female and 

4 male participants (Mage = 22.60, SDage = 2.74), all right-handed (Edinburgh Handedness 

Inventory: M = .78, SD = .13). The sample size was decided on the basis of previous studies that 

used the abstract oddball paradigm and reliably recorded both the MMN and/or the P3b responses 

(Bendixen & Schröger, 2008; Escera et al., 2014; Escera & Malmierca, 2014). Participants 

reported to be neurologically healthy and to have normal hearing2. Participation was compensated 

either with course credit or with 10€ per hour. The study was approved by the Ethical Committee 

of The University of Trento. Participants signed an informed consent document prior to the 

experiment. 

2.2.2 Stimuli 

One female and one male Italian native speaker respectively aged 38 and 36 were recruited to 

record the experimental stimuli. They were asked to read aloud 5 isolated Italian vowels (/a/, /e/, 

/ɛ/, /i/, /ɔ/) three times each. Their voice was recorded at 44100 Hz with a professional recorder in 

a silent room. The best tokens were selected based on quantitative and qualitative evaluation. 

Noisy tokens and tokens with abnormal pitch contours (e.g., list-reading intonation) were 

discarded. After this, the tokens with the smallest difference of F1 and F2 between the two talkers 

were selected in order to minimize any possible attentional shift caused by large F1-F2 differences 

between the talkers. The central 100 ms part of each vowel was extracted. The pitch contour in 

each token was adjusted to a flat line to prevent participants from confounding idiosyncratic pitch 

shifts as talker-identity changes. The pitch was set to an average value that was calculated as the 

mean across all tokens within each speaker. Stimuli were low-pass filtered at the cut-off frequency 

of 4000 Hz in order to match the spectral dimensions of the rotated speech stimuli, which require 

to be low-pass filtered before applying spectral rotation (Blesser, 1972). Intensity was put to an 

 
2 Participants’ musical experience was assessed with the Ollen Musical Sophistication Index (Ollen, 2006) in order to 

avoid confounds in the interpretation of possible amplitude modulation of the MMN component as pitch changes were 

shown to elicit stronger MMNs in musically trained listeners (Chandrasekaran et al., 2009). None of the participants 

was musically trained. 
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average value of 70 dB with linear slopes of 10 ms at the onset and the offset in each token to 

avoid any harsh transition between silence and sound in the EEG experiment.  

 Rotated speech stimuli were created by rotating the spectrum of speech stimuli using a 

spectral rotation function in MATLAB with a cut-off frequency of 4000 Hz (available at 

https://www.phon.ucl.ac.uk/downloads/matlab/Blesser.zip); the same function and other similar 

implementations of the spectral rotation algorithm were used in several studies to produce non-

speech control stimuli in attempt to contrast acoustic and speech-specific perceptual processes 

(Azadpour & Balaban, 2008; Marklund, Gustavsson, Kallioinen, & Schwarz, 2020; Scott, 2000; 

Steinmetzger & Rosen, 2017). The result of this procedure is a sound with a mirrored spectrogram 

along a mirroring frequency (i.e., 2000 Hz corresponding to half of the cut-off frequency) with 

respect to the input sound. This means that the point-by-point power of lower frequencies (e.g., 0 

Hz, 500 Hz, 1000 Hz) is transferred to higher frequencies (4000 Hz, 3500 Hz, 3000 Hz) and vice 

versa. The physical characteristics of the experimental stimuli are summarized in Table 1.  

  

https://www.phon.ucl.ac.uk/downloads/matlab/Blesser.zip
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Table 1. Pitch (F0), First and Second Formant (F1, F2) values of the experimental stimuli for each 

talker and each condition.  

 

  

  Condition   

  Speech Rotated Speech   

Talker’s 

Sex 
Vowel F0 F1 F2 F0 F1 F2   

Male 

a 121 Hz 816 Hz 1252 Hz 121 Hz 768 Hz 1623 Hz   

e 121 Hz 384 Hz 2141 Hz 121 Hz 653 Hz 1360 Hz   

i 121 Hz 360 Hz 2039 Hz 121 Hz 795 Hz 1402 Hz   

ɔ 121 Hz 561 Hz 862 Hz 121 Hz 772 Hz 1007 Hz   

ɛ 121 Hz 571 Hz 1782 Hz 121 Hz 1049 Hz 1717 Hz   

Female 

a 184 Hz 981 Hz 1469 Hz 184 Hz 1269 Hz 2081 Hz   

e 184 Hz 368 Hz 1698 Hz 184 Hz 803 Hz 1332 Hz   

i 184 Hz 329 Hz 1209 Hz 184 Hz 780 Hz 1113 Hz   

ɔ 184 Hz 733 Hz 1169 Hz 184 Hz 964 Hz 1976 Hz   

ɛ 184 Hz 695 Hz 1599 Hz 184 Hz 934 Hz 1675 Hz 
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2.2.3 Procedure 

First, participants were asked to fill questionnaires collecting demographic information, 

handedness, and musical expertise. Then, they were prepared for the EEG recording in a dimly lit 

room. The experiment consisted of a passive and an active version of the oddball task. During the 

passive oddball task, participants were asked to watch a silent video depicting drone footage of 

different landscapes while auditory stimuli were delivered via Etymotic ER-1 headphones at fixed 

volume (70 dB) using E-prime 2.0 Software (Schneider & Zuccoloto, 2007). Speech and rotated-

speech stimuli were presented across two different blocks (speech vs rotated-speech conditions). 

Each block included 680 standard events and 120 deviant events. At the end of each block, the 120 

deviant stimuli were presented in random order to serve as control events. These latter stimuli were 

included in the experiment to control for the effects induced by the physical properties of the 

stimuli. Normally, the MMN component is calculated by subtracting standard ERPs from deviant 

ERPs (Näätänen et al., 2007), but the result of this computation is also influenced by physical 

differences between standard and deviant events. By using control events, which are physically 

identical to deviant events but are presented with the standard events’ distribution, the MMN 

calculated by subtracting control from deviant events is uncontaminated by differences in terms of 

physical features and thus better highlights the cognitive processes of interest (Tuninetti et al., 

2017). Between the two blocks, each of which lasted approximately 11 minutes, participants could 

take a small break. 

 In the speech condition, all the vowels produced by the male speaker were equiprobably 

presented in random order as standard stimuli with a fixed Interstimulus Interval (ISI) of 700 ms. 

All the vowels produced by the female talker were equiprobably presented as deviant stimuli 

(probability of occurrence = .15) with the constraint that a minimum of two standard events 

occurred before the presentation of a deviant event. The same vowel was never repeated in two 

consecutive trials, irrespectively of its standard/deviant status. In the rotated speech condition, the 

same presentation paradigm was applied. The rotated speech condition was always presented first 

as presenting the speech condition first could have made participants aware of the stimulation 

paradigm structure, possibly leading to unwanted attentional modulations in the subsequent block.  

After the passive oddball task, the active oddball task took place. This task was identical 

to the previous one, with the only exception that participants were asked to press a button on a 

joypad as fast as possible when they heard a deviant event. Before doing so, participants were 
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debriefed on what they heard in the passive task to ensure that they understood which stimuli were 

the deviant ones. They were told that the speech stimuli were produced by human voices while 

rotated speech stimuli were produced by guessing how aliens’ voices could have sounded like. 

Participants were to press a button every time they heard the human-female or the alien-female 

voice. Before each experimental block, a practice block was presented. For the first 10 practice 

trials, participants were helped in performing the task by a graphical representation of the stimulus 

list presented on the screen where the information about the standard/deviant status of each 

upcoming stimulus was specified. For the subsequent 20 practice trials participants performed the 

task as in the experimental part, that is with no graphical help and by watching the silent video that 

was presented in the passive task. At the end of the practice block, they received feedback on their 

performance. After this, the experimental blocks started and lasted approximately the same amount 

of time as in the passive task. The whole experiment lasted approximately 1.30 h.  

2.2.4 EEG recording and preprocessing 

The EEG was recorded with an eego sports system (ANT Neuro) at a sampling frequency of 1000 

Hz (filters: DC to 130 Hz, third- order sinc filter), from 64 Ag/AgCl shielded electrodes referenced 

to CPz and placed in the standard 10-10 locations on an elastic cap. Electro-oculograms were 

acquired with an additional electrode placed under the left eye. Impedance was kept < 20 kΩ. Data 

pre-processing was performed with the MATLAB toolboxes EEGLAB (Delorme & Makeig, 

2004), ERPLAB (Lopez-Calderon & Luck, 2014) and FieldTrip (Oostenveld et al., 2011). The 

signal was re-referenced offline to the average reference. Data were high-pass filtered at 0.1 Hz 

using a 2nd order Butterworth filter (12 dB/oct Roll-off). A Notch filter at 50 Hz was then applied 

to attenuate line noise. Independent Component Analysis was run on the continuous signal using 

the Infomax algorithm (Bell & Sejnowski, 1995). Eye-blink and eye-movement components were 

identified with ICLabel algorithm (Pion-Tonachini et al., 2019) and removed. Excessively noisy 

channels were interpolated via spherical interpolation. Mastoid and Electro-Oculogram channels 

were excluded from the analyses. 

2.2.4.1 ERP data pre-processing 

Data were low-pass filtered at 30 Hz using a 2nd order Butterworth filter (12 dB/oct Roll-off). 

Epochs were extracted from -200 ms before stimulus onset until 800 ms after stimulus onset and 

a baseline correction was applied by subtracting the mean voltage of the -200 - 0 pre-stimulus 
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period from the entire epoch. Epochs containing signal with an amplitude exceeding ± 100 µV in 

any of the 62 EEG channels were rejected. An average of 1.03% ± 0.81% of the total number of 

epochs per participant were rejected and the percentage of rejected epochs was similar across 

conditions for the passive oddball task (Control Speech 0.66% ± 1.48%, Deviant Speech 0.83% ± 

0.94%, Control Rotated 2.28% ± 3.72%, Deviant Rotated 0.94% ± 1.21%) and the active oddball 

task (Standard Speech 0.83% ± 1.52%, Deviant Speech 1.00% ± 1.84%, Standard Rotated 0.34% 

± 0.53%, Deviant Rotated 0.38% ± 0.76%).  

For the passive oddball task, separate ERPs were computed by averaging epochs within 

each participant and within all the combinations of the factors condition (speech, rotated speech) 

and stimulus type (control, deviant). The differential waveforms of the MMN were calculated 

within each participant and within each condition, by subtracting the control ERP from the deviant 

ERP. The same averaging method was used for the active oddball task with the factors condition 

(speech, rotated speech) and stimulus type (standard, deviant), but this time only the events with a 

correct response were considered. All the epochs corresponding to standard events coming 

immediately after deviant events were removed from the analysis, to avoid any contamination from 

late potentials triggered by deviant events. 

2.2.4.2  Time-Frequency data pre-processing 

Data were low-pass filtered at 80 Hz using a 2nd order Butterworth filter (12 dB/oct Roll-off). 

Epochs were extracted from -800 ms before stimulus onset until 1200 ms after stimulus onset. 

Epochs containing signal with an amplitude exceeding ± 100 µV in any of the 62 EEG channels 

were rejected. An average of 5.3% ± 3.35 % of the total number of epochs per participant were 

rejected and the percentage of rejected epochs was similar across conditions for the passive task 

(Control Speech 4.39% ± 8.91%, Deviant Speech 4.33% ± 5.30%, Control Rotated 5.83% ± 

7.42%, Deviant Rotated 4.06% ± 4.56%) and the active task (Standard Speech 6.36% ± 7.01%, 

Deviant Speech 7.78% ± 8.77%, Standard Rotated 4.26% ± 4.63%, Deviant Rotated 4.11% ± 

4.77%). The time-frequency representation was computed via Morlet wavelets with 10 ms steps 

from -300 to 800 ms with respect to stimulus onset in each epoch for the 4-30 Hz frequencies (1 

Hz step) with a linearly increasing number of cycles (range 2-10) in order to balance spectral and 

temporal precision (Cohen, 2014). The Event-Related Spectral Perturbations (ERSPs) for both 

active and passive oddball tasks were computed in the whole spectrum by averaging epochs within 
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each participant and within all the combinations of the factors condition (speech, rotated speech) 

and stimulus type (standard, deviant). All the epochs corresponding to standard events coming 

immediately after deviant events were removed from the analysis, to avoid any contamination from 

later potentials triggered by deviant events. For the active oddball task, only the events with a 

correct response were considered. 

 

2.2.5 Statistical Analyses 

Behavioural Data  

Accuracy and RTs were both analyzed using the “lme4” package (Bates et al., 2015) in R Software 

(R Core Team, 2013). Participants' accuracy in the active task was analyzed by means of a 

Generalized Linear Mixed Model (GLMM) with a logit link-function. The best model was selected 

by adding each predictor one by one. For each added predictor, the model was tested via Chi-

Square test against the model without the predictor. The predictor was kept in the model only when 

the Chi-Square test showed significant differences with respect to the model without it. The final 

model included the fixed factors Condition (speech, rotated speech) and Stimulus type (standard, 

deviant) as well as by-participants and by-items random intercepts. Reaction times (RTs) of correct 

deviant events were analyzed by means of a Linear Mixed Model (LMM). Model selection was 

performed with the same method used for the model of accuracy data. The final model included 

Condition (speech, rotated speech) as fixed factor as well as by-participants and by-items random 

intercepts All factors in all models were deviance coded with the numerical values 0.5 and -0.5 

following the factors’ levels order presented in this section. With this coding, the model's 

coefficients represent the main effect, coded as the difference between the levels of each factor. 

Post-hoc comparisons were implemented via “emmeans” R package.  

 

EEG Data 

Nonparametric cluster-based permutation tests were used for both ERPs and time-frequency 

analyses. In this approach, conditions are compared via multiple paired t-tests performed at each 

time point within each channel. T-values with a p-value < .05 are selected and clustered on the 

basis of temporal and spatial adjacency. All the t-values within each cluster are then summed and 

compared with the distribution of the t-values under the null hypothesis which is obtained by 
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calculating the test statistic several times (N = 2,500) on the data points shuffled across conditions. 

The proportion of random permutations where the observed cluster’s t-value is larger than the t-

value drawn from the actual data represents the cluster p-value. When analyzing ERP components 

for which the literature provides robust temporal coordinates (e.g., MMN) and specific directions 

(i.e., positive or negative), one-tailed tests were restricted to an a-priori defined time-window (see 

below). For every statistical test, 95 % Confidence Intervals of the p-value are reported. Cohen’s 

d is also reported and was calculated by dividing the mean of the differences between conditions 

by the standard deviation of the differences between the conditions at test and obtained from the 

individual values of the dependent variable (i.e., voltage or power). Individual values were 

computed separately for each condition by averaging the dependent variable across channels and 

time samples of significant clusters within every individual participant following the indication of 

FieldTrip’s authors (see https://www.fieldtriptoolbox.org/example/effectsize/ for additional 

information). 

In the passive oddball task, the presence of the MMN component within each condition 

was assessed by comparing deviant and control events via a one-tailed test in the 110-225 ms time 

window as suggested in Kappenman et al. (2021)3. Visual inspection of the ERPs also showed the 

presence of a sustained negative component emerging starting ~350 ms after stimulus onset and 

lasting until the end of the epoch, mostly distributed along Frontal and Fronto-Central electrode 

sites (see Figure S1, Appendix A for the ERP waveforms on a large set of channels). This 

component was tentatively identified as the Late Discriminative Negativity (LDN), which was also 

reported in another study encompassing the abstract-feature paradigm as “Late Mismatch 

Negativity” (Zachau et al., 2005). Previous studies that used the canonical oddball paradigm 

reported the presence of this component in different time windows scattered across the 350-600 

ms interval (Choudhury et al., 2015; David et al., 2020; Honbolygó et al., 2020). Given the absence 

of a-priori hypotheses on its presence and/or modulation, the analysis of this component must be 

considered explorative. For this reason, and in order not to select an ad-hoc time window based on 

visual inspection, we performed a one-tailed test in a wider 350-800 m time-window, which safely 

started after the offset of the MMN and lasted throughout the whole epoch. Finally, to assess the 

presence of a P3b component in the active oddball task, a broad time-window was considered, by 

 
3 In the cited study, the measurement windows for the MMN and P300 were identified by cross-validating the time 

windows generally reported in the literature with the results of a cluster-based permutation analysis. 

https://www.fieldtriptoolbox.org/example/effectsize/
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comparing deviant and standard events via a one-tailed test between 300 and 600 ms after stimulus 

onset. The time window was selected following the same logic used for the MMN (Kappenman et 

al., 2021).  The difference between conditions (speech, rotated speech) was then tested by 

comparing the two differential waveforms calculated by subtracting the control ERP from the 

deviant ERP for the MMN and the LDN, and the standard ERP from the deviant ERP for the P3b.  

Statistical analyses on time-frequency data were conducted on theta (4-7 Hz), alpha (8-12 

Hz) and beta (13-30 Hz) frequency bands by averaging power values within each band within the 

same combination of factors by which the ERP analyses were computed. The whole 0-800 ms 

epoch was used in the analyses as we had no specific hypotheses about the temporal unfolding of 

possible power modulation following non-phase locked activity. The two differential ERSPs 

calculated within each condition (i.e., speech vs rotated-speech) by subtracting power of 

control/standard events from the one of deviant events were directly compared. The test ascertains 

the difference between speech and rotated speech conditions and is equivalent to testing for an 

interaction effect between probability (i.e., standard/control and deviant) and condition (speech, 

rotated speech). Post-hoc tests were then performed by directly comparing the ERSPs of 

standard/control events with the ERSPs of deviant events within every condition.  

2.3 Results 

2.3.1 Behavioural Results 

The mean proportion of accurate responses in the speech condition was .99 (SD = .002) for 

standard and .98 (SD = .01) for deviant events, whereas in the rotated speech condition it was .97 

(SD = .06) for standard and .83 (SD = 0.16) for deviant events. The model of accuracy data 

revealed the main effect of Condition (β = 3.24, SE =0.18, z =-17.67, p < .001) showing a higher 

accuracy in the speech condition (M = .99, SD = .004) with respect to the rotated speech condition 

(M = .95, SD = .06). A main effect of Stimulus Type (β = 2.49, SE = 0.10, z = 24.89, p = < .001) 

showed higher accuracy for standard events (M = .98, SD = .03) with respect to deviant events (M 

= .90, SD = .09). The mean reaction times for correctly identified deviant events was 414 ms (SD 

= 86) in the speech condition and 457 ms (SD = 110) in the rotated speech condition. The model 

of reaction times data revealed only the main effect of condition (β = -45.70, SE =3.08, z =-14.82, 

p < .001), showing that participants responded significantly faster in the speech than in the rotated 

speech condition. Behavioural results are summarized in Figure 1. 
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Figure 1. Behavioural results of the active oddball task. (A) Proportion of correct responses broken 

down by Condition (1st column) and by Stimulus type (2nd column). (B)  Reaction times of correct 

responses to deviant events only. Error bars represent the SE and grey points represent individual 

observations. For illustrative purposes, only the relevant portion of the y axis is shown in both 

plots (dashed lines indicate the discontinuity of the axis).   
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2.3.2 ERP Results 

In the passive oddball task, the presence of the Mismatch Negativity in the 110-225 ms time 

window was revealed by a significant difference between control and deviant ERPs for both the 

speech (one negative cluster encompassing the whole window duration, p < .001, 95% CI [.000 

.001], d = 1.646), and the rotated speech condition (one negative cluster surfacing between 138-

225 ms, p < .001, 95% [.000 .001], d = 1.741). Both clusters showed a topographical distribution 

coherent with that of the MMN, being mostly pronounced over Frontal, Fronto-Central and Central 

channels. The test of the interaction did not reveal any difference between conditions in the 110-

225 ms time window. 

 The significant difference in the 350-800 ms between control and deviant ERPs confirmed 

the presence of a LDN component, which was represented by a stronger negativity in the deviant 

than in the control ERPs for both the speech (p < .001, 95% [.000 .002], d = 1.371) and the rotated 

speech condition (p < .001, 95% CI [.000 .001], d = 1.701), respectively captured by negative 

clusters emerging in the 350-800 ms and in the 460-800 ms time window. The test of the interaction 

showed that, in the 350-800 ms time window a stronger LDN response surfaced for the speech 

condition compared to the rotated speech condition, mostly distributed over right frontal electrodes 

as highlighted by the presence of a negative cluster in the 631-733 ms time window (p = .021, 95% 

CI [.014 .027], d = 1.710). ERP results for the passive oddball task are summarized in Figure 2 

(see Figure S1 in Appendix A for additional descriptive plots).  

In the active oddball task, a significant positive difference surfaced between standard and 

deviant ERPs in the P3b time window for the speech (p < .001, 95% CI [.000 .001], d = 2.070) and 

rotated speech condition (p < .001, 95% CI [.000 .001], d = 1.7891), captured by two positive 

clusters emerging in the 300-600 time window, spatially distributed over Central, Centro-parietal, 

Parietal and Parieto-occipital channels. The test on the differential ERPs, calculated by subtracting 

standard ERPs from deviant ERPs, revealed a stronger P3b effect in the speech condition with 

respect to the rotated speech condition (p = .001, 95% [.000 .002], d = 1.490), highlighted by a 

positive cluster mostly distributed over Central and Centro-Parietal channels in the 300-565 ms 

time window. ERP results for the active oddball tasks are summarized in Figure 2 (see Figure S2 

in Appendix A for additional descriptive plots). 
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Figure 2. ERP results. (A) Passive oddball task. The first column displays the differential 

waveforms at a representative channel (Fz) for the speech (continuous line) and the rotated speech 

(dashed line) condition. The grey rectangles indicate the time-window used in the analyses (MMN, 

first row; LDN, second row). In the subsequent columns, topographies show the spatial distribution 

of the MMN (first row) and LDN (second row) in the time windows where significant differences 

emerged. The last column represents the voltage difference between conditions, calculated by 

subtracting the differential waveforms in the rotated speech condition from the ones calculated in 

the speech condition. Electrodes that were included in the clusters for more than 50% of the 

samples within the cluster time windows (reported below the topographies) are represented by 

black asterisk marks superimposed to the maps. (B) Active oddball task. The first column 

represents the ERPs of standard and deviant events at a representative channel (CPz) for the speech 

(continuous line) and the rotated speech (dashed line). In the subsequent columns, topographies 

show the spatial distribution of the differential P300 waveforms, calculated by subtracting the 

standard ERP from the deviant ERP in the time windows where significant differences emerged 

for each condition. The last column represents the voltage difference between conditions, 

calculated by subtracting the differential waveforms in the rotated speech condition from the ones 

calculated in the speech condition. Electrodes are marked as in A. 
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2.3.3 Time-Frequency Results 

In the passive oddball task, the test on differential ERSPs across the speech and rotated-speech 

conditions within the beta band showed the presence of a negative cluster distributed on Central, 

Centro-Parietal and Parietal electrode sites between 310 and 540 ms (p = .022, 95 % CI [.015 .028], 

d = 1.748). The source of this effect was attributed to a significant difference between deviant and 

control events surfaced in the rotated speech condition, as revealed by two spatiotemporally 

distinguishable clusters (see Figure S3, Appendix A). One positive cluster unfolded over left 

Fronto-central and Central channels (p = .009, 95 % CI [.005 .012], d = 1.559), ranging between 

140 and 540 ms, apparently indexing both an early-emerging desynchronization in control events 

and a later occurring synchronization in deviant events (see Figure 3). A second positive cluster 

was detected (p = .017, 95 % CI [.012 .022], d = 1.399) between 630 and 800 ms signaling another 

ERS in deviant events distributed over right Parieto-occipital and Occipital channels. Although, 

the test for the interaction between the speech and the rotated speech condition did not provide a 

statistically reliable result (the upper limit of the p-value 95% C.I. surpassed the critical alpha level 

of 0.025). Given the explorative nature of the time-frequency analysis and the absence of similar 

patterns in previous studies employing the same paradigm, this last result was not further 

interpreted. No significant differences between controls and deviants were found for the speech 

condition in the beta band. The tests on differential ERSPs did not show significant differences 

between conditions either in the theta or in the alpha frequency bands. 

 In the active oddball task, the test on differential ERSPs across speech and rotated-speech 

conditions within the theta band revealed the presence of a positive cluster (p = .013, 95 % CI 

[.009 .018], d = 1.160) surfacing between 320 and 800 ms on right Central, Centro-Parietal and 

Parietal electrodes. Post-hoc tests operated between standard and deviant events within each 

condition, showed that deviant events yielded a stronger synchronization in the theta band 

compared to control events, as highlighted by the presence of a positive cluster both in the speech 

(p < .001, 95 % CI[.000 .001], d = 1.274) and the rotated speech (p < .001, 95 % CI [.000 .001], d 

= 1.2679 ) conditions, widely distributed from Pre-Frontal to Parietal electrode sites, in the 130-

800 ms and in the 150-660 ms time windows, respectively  (see Figure S4, Appendix A). 

Therefore, the effect found for differential ERSPs substantially reflected a stronger theta 

synchronization occurring in deviant evets for the speech condition. In the beta band, the test on 

differential ERSPs, operated between conditions revealed the presence of a positive cluster (p = 



Chapter 2 
 

33 

 

.015, 95 % CI [.010 .019], d = 1.247), emerging between 590 and 800 ms across Central, Centro-

Parietal and Parietal electrode sites. Post-hoc tests operated between standard and deviant events 

within each condition showed a desynchronization in deviant with respect to standard events both 

in the speech (p = .010, 95 % CI [.006 .014], d = 1.360) and the rotated speech condition (p = .004, 

95 % CI [.002 .007], d = 1.242), captured by negative clusters unfolding over Central and Centro-

Parietal channels, in the 250 -590 ms and in the 250 -710 ms time windows, respectively. The 

speech condition was also characterized by a stronger beta synchronization for deviant events with 

respect to standard ones, surfacing right after the earlier-occurring desynchronization and widely 

distributed on the scalp between 570 and 800 ms (p = .010, 95 % CI [.006 .014], d = 1.154), which 

presumably induced the effect highlighted by the test on differential ERSPs (see Figure S5, 

Appendix A). Results are summarized in Figure 3.  
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Figure 3. Time-Frequency results for the active oddball tasks. The time-frequency power spectra 

show the power modulations (% change) characterizing the differential ERSPs for each condition 

(1st and 2nd columns) as well as the difference between them, corresponding to the interaction effect 

(3rd column). Spectra were obtained by averaging activity for the electrodes F5, F3, F1, Fz, F2, F4, 

F6, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, 

CP4, CP6, P5, P3, P1, Pz, P2, P4, P6, PO5, PO3, PO1, POz, PO2, PO4, PO6. Black squares 

represent the temporal distribution of the significant clusters within theta (4-7 Hz) and beta (13-30 

Hz) bands. The mean number of channels included in each cluster represented in the power spectra 

was calculated across all time-samples and only the time-bins including at least half of the mean 

number of channels are enclosed in black squares. Topographies in the lower and higher row show 

the spatial distribution of theta and beta ERDs/ERSs characterizing the differential ERSPs for each 

condition (1st and 2nd columns) as well as the difference between them, corresponding to the 

interaction effect (3rd column). Electrodes that were included in the clusters for more than 50% of 

the samples within the cluster time windows (reported below each topography) are represented by 

black asterisk marks superimposed to the maps. Black squares on topographies represent the 

channels that were included in the averaged spectral plots.  
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2.4 Discussion 

The aim of this EEG study was to understand whether listeners can pre-attentively form phoneme-

invariant voice representations from constantly changing vowel stimuli. The same test was further 

performed when using rotated speech stimuli, in order to clarify whether the phenomenon is 

restricted only to the speech domain. Secondly, the volitional usage of the abstract information 

was examined through an active version of the task. On the basis of our results, we argue that while 

listeners can represent abstract regularities in sounds via a presumably domain-general 

mechanism, the extensive experience they have with speech and voices can facilitate the volitional 

use of the represented information. Particularly, the latter hinges upon pre-existing voice 

representations in which information can be encoded more efficiently and finally matched with 

response categories. 

 

2.4.1 Passive Oddball Task 

The ERP data showed that the MMN was clearly elicited with both speech and rotated speech 

stimuli, with no sizeable differences between these two conditions. Note that the experiment was 

designed so that the MMN could be triggered by the presentation of a deviant stimulus only if the 

preceding standard stimuli were grouped into an abstract regularity representation of the invariant 

F0 despite the constant variations along F1 and F2. In line with previous studies showing that 

listeners can track different regularities in many stimulus features at the same time (Huotilainen et 

al., 1993; Pakarinen et al., 2010), the elicitation of the MMN across both the speech and the rotated 

speech condition indicates that the cognitive system is able to represent abstract regularities via a 

domain-general mechanism. By using this mechanism, the cognitive system can equally form 

talker-invariant phoneme representations as shown by previous studies (Eulitz & Lahiri, 2004; 

Jacobsen, Schröger, & Sussman, 2004, 2004; A. Shestakova et al., 2002), and phoneme-invariant 

voice representations as suggested by our results.  

It is reasonable to think that, in the present experiment, the regularities-extraction 

mechanism did not retain phonological information. In fact, the influence of phonological 

information should have yielded a stronger MMN for the speech condition which instead was 

undistinguishable from the MMN generated in the rotated-speech condition. However, the 

amplitude of MMN can reflect both acoustic and linguistic differences (Näätänen et al., 2007) 

between standard and deviant stimuli. To isolate the contribution of these two sources, previous 
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studies (Christmann et al., 2014; Marklund et al., 2018) contrasted the MMNs generated by vowel 

contrasts in speech and rotated speech using the classic oddball paradigm. These studies showed a 

stronger MMN for speech than for rotated speech stimuli. and suggested that such difference 

reflect the specific contribution of the presence of phonological information to the final amplitude. 

The absence of any difference in the MMN elicited in the speech and the rotated speech condition 

we reported might speculatively suggest that phonological information was stripped away in order 

to form voice representations at a pre-attentive level.  

Interestingly, the phonological/formant information presumably ignored by these early-

occurring mechanisms may have been considered during later processes. In fact, within the passive 

oddball task, a sustained negativity surfaced right after the offset of the MMN, in a 350-800 ms 

time-window and featuring a fronto-central spatial distribution. We identified this sustained 

negativity as an instantiation of the LDN, an automatic response with an unsettled functional 

significance, which occasionally occurs after the MMM (Datta et al., 2010). The LDN has been 

consistently recorded in children (Cheour et al., 2001; Ervast et al., 2015; Shestakova et al., 2003) 

and less often in adults (Bishop et al., 2011; Mueller et al., 2008). Zachau et al. (2005) reported 

the presence of the LDN in adults following abstract-rules violation with simple tones stimuli and 

suggested that the LDN is an index of a transferring mechanism, allowing the formation of 

representations of sound regularities in memory. The authors suggest that this mechanism could 

provide the computational basis for the segmentation of speech signals, further clarifying the 

reasons for which the LDN is consistently found in children (Bishop et al., 2011), who are still 

developing linguistic abilities. This notion was further strengthened by similar results obtained by 

Liu et al. (2014) with consonant and lexical tone contrasts in pre-school and school-aged Mandarin 

speaking children. David et al. (2020) also reported a larger LDN in children with respect to adults, 

elicited by phonologically complex rather than simple multisyllabic non-words. Although this 

regularities-transferring mechanism could be of relevant use for language learning, our findings 

together with previous studies (Zachau et al., 2005) suggest that it is not necessarily language-

specific.  

Even though the activation of the regularities-transferring mechanism may not be restricted 

to the speech domain, it could still be modulated by the presence of meaningful phonological 

information. In fact, we found a stronger LDN for the speech condition, and the difference was 

mainly distributed over right frontal electrode sites. This difference does not stem from differences 



Chapter 2 
 

37 

 

in terms of spectral complexity – speech and rotated speech are thought to be equally complex 

(Maier et al., 2011) –, nor in terms of physical properties of speech and rotated speech stimuli, as 

the differential waveforms were calculated by subtracting the averaged ERPs of deviant events 

from the ERP of physically identical control events. Therefore, this effect seems to be related to 

the presence of high-level information encoded in speech. If this effect is an actual index of an 

information-transferring mechanism subserving learning processes, we could speculate that, when 

hearing natural sounding voices from speech (i.e., containing meaningful phonological 

information), listeners can store the regularity information into a pre-existing voice representation. 

In fact our cognitive system is thought to prototypically represent male and female voices, and 

update those voice models throughout lifetime (Latinus et al., 2013; Petkov & Vuong, 2013; Yovel 

& Belin, 2013). However, even if previous studies might provide sufficient information to interpret 

this result, considering the a-posteriori nature of the analysis and the instability of the test operated 

between speech and rotated speech conditions (upper limit of the p-value 95% C.I. surpassed the 

critical alpha level of .025), the interpretation provided here only represents a tentative proposal.   

2.4.2 Active Oddball Task 

While at a pre-attentive level, abstract pitch/voice regularities seem to be easily extracted from 

sounds irrespectively of the presence of phonological information, at an attentive level it appears 

that the information about previously formed regularities can be transferred to working memory 

and matched to response categories more efficiently when phonological information is present. In 

the active oddball task, participants performed better in the speech than in the rotated speech 

condition. Further, the EEG data showed that the correct detection of the deviant stimuli was 

associated with a clear P3b response, with a stronger amplitude for the speech condition. The P3b 

component is commonly thought to reflect a range of cognitive processes subserving the revision 

of a mental representation induced by incoming stimuli (Donchin, 1981): When new or target 

stimuli are detected, attentional processes are thought to update the stimulus representation held 

in working memory (Polich, 2007). Additionally, previous studies showed that the amplitude of 

the P3b component is also modulated by task difficulty, being lower in the context of higher task 

demands. The latter would directly determine  the amount of cognitive and/or attentional resources 

required to revise mental representations (Kok, 2001; Polich, 1987, 2007). Additionally, as shown 

in previous P300 studies (Başar-Eroglu et al., 1992; Demiralp et al., 2001; Yordanova et al., 2000), 

the correct detection of deviant events was also associated with an increased theta synchronization, 
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which was present both in the speech and in the rotated-speech conditions, albeit enhanced in the 

former compared to the latter. Oscillatory activity within the theta band has a primary role in 

neurophysiological models of memory (Backus et al., 2016; Lisman & Buzsaki, 2008). 

Consequently,  synchronization within the theta band is commonly associated with working 

memory (WM) capacity/load (Dong et al., 2015; Moran et al., 2010; Scharinger et al., 2017) and 

more specifically with the encoding (Klimesch, 1999) and retrieval processes (Bastiaansen et al., 

2005; Klimesch et al., 2001). Thus, looking at behavioural and electrophysiological data together, 

it seems that volitionally detecting an interruption of the pitch/voice regularity required less 

cognitive resources when hearing speech.  

One possibility is that listeners needed more cognitive resources for the acoustic analysis 

of the pitch dimension, given the smaller number of available cues to pitch changes in the rotated 

speech condition. In fact, despite spectral rotation preserves the pitch contour, it disrupts the 

relationship occurring between formant frequencies and pitch in natural speech (Assmann & 

Nearey, 2007). To this regard, enhanced theta ERS over Frontal electrode sites has also been linked 

to higher spectral quality, indicating that the quantity of available spectral information directly 

promotes speech intelligibility (Obleser & Weisz, 2012). Yet, the differences in theta ERS start to 

emerge at ~300 ms across parietal and parieto-occipital electrode sites, suggesting that the source 

of the effects could lie in differences pertaining to higher and later-occurring cognitive levels of 

processing. 

In the context of the neurocognitive model of regularities extraction portrayed by 

Paavilainen (2013), while at a pre-attentive level the auditory cortex automatically represents 

regularities about different acoustic features, at an attentive level explicit awareness about the rules 

governing deviant stimuli presentation is necessary to reach high-levels of accuracy in deviant 

detection. In our study, we made sure participants had explicit knowledge about the task structure 

and the stimuli by directly describing the stimulation paradigm of the active oddball task and 

providing extensive practice. However, despite this, participants had life-long experience with 

speech produced by male and female voices, but certainly not with rotated speech produced by 

“alien male and female voices”. Relatedly, sound regularities appear to be extracted without 

particular attentional focus (Batterink & Paller, 2019; D. Duncan & Theeuwes, 2020), but 

extensive experience with particular auditory material may facilitate top-down processing of the 

extracted regularities, especially with speech stimuli (Monte-Ordoño & Toro, 2017; Sun et al., 
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2015). The specific functional role of experience in facilitating the volitional processing of abstract 

regularities are not yet fully understood and have been linked with enhanced statistical learning 

abilities (Pesnot Lerousseau & Schön, 2021) or with the development of more efficient strategies 

in information encoding (Monte-Ordoño & Toro, 2017). In our experiment, the enhanced theta 

ERS for the speech condition suggests that the presence of intelligible speech and/or human-like 

voices may have promoted a more efficient encoding strategy of the extracted regularities. 

Subsequently, regularities could be stored within pre-existing voice representation, thus requesting 

smaller amounts of cognitive resources, as signalled by the larger P3b amplitude.  

The consequences of this facilitation effect may also be tracked in the pattern of beta 

modulations found for the active task. Oscillatory activity in the beta band is thought to be tied to 

the status of a cognitive and/or perceptual set Engel & Fries, (2010): While synchronization signals 

the maintenance of a set dictated by endogenous top-down processes, desynchronization indexes 

the disruption of cognitive/perceptual sets following exogenous bottom-up sensory components. 

In line with this interpretation, the ERD associated with the presentation of deviant stimuli may 

index a disruption of the previous stable cognitive set in which several different instances of speech 

or non-speech stimuli were being accumulated into one voice/pitch representation. While in the 

rotated speech condition beta ERD appeared to be longer lasting, in the speech condition it was 

readily followed by a synchronization. Qualitatively, a beta synchronization with similar spatial 

distribution seemed to emerge also for the rotated speech condition, but later in time with respect 

to the speech condition (see Figure S5 in Appendix A). This temporal dynamic might further 

suggest that the efficient encoding of regularities in speech also allowed for a faster 

reestablishment of the cognitive set that characterized listeners’ activity prior to the presentation 

of deviant events.  

 

2.4.3 Final Remarks 

In conclusion, we show that listeners pre-attentively track pitch regularities in a context of 

constantly changing formant information irrespectively of the presence of phonological 

information by possibly using a domain-general mechanism which encodes abstract 

representations. Regularities representations are then transferred to long-term memory, while 

encoding additional vocal information in the case of human-like speech. At an attentive level, the 

presence of phonological information facilitates the volitional use of the previously abstracted 
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information, suggesting that the output of pre-attentive abstraction mechanisms is not transferred 

to working memory without effort. ERP and the time-frequency results offer converging evidence 

that the source of the facilitation driven by the presence of phonological information may be 

provided by the extensive experience listeners have with speech and voices. This could 

substantially provide listeners with more efficient encoding strategies which need smaller amounts 

of cognitive resources to encode information into pre-existing voice representations, ultimately 

promoting faster and more accurate behavioural response
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Chapter 3: Early differentiation of memory retrieval processes for 

newly learned voices and phonemes as indexed by the MMN4 

Linguistic and vocal information are thought to be differentially processed since the early stages 

of speech perception, but it remains unclear if this differentiation also concerns automatic 

processes of memory retrieval. The aim of this ERP study was to compare the automatic retrieval 

processes for newly learned voices vs phonemes. In a longitudinal experiment, two groups of 

participants were trained in learning either a new phoneme or a new voice. The MMN elicited by 

the presentation of the two was measured before and after the training.  An enhanced MMN was 

elicited by the presentation of the learned phoneme, reflecting the activation of an automatic 

memory retrieval process. Instead, a reduced MMN was elicited by the learned voice, indicating 

that the voice was perceived as a typical member of the learned voice identity. This suggest that 

the automatic processes that retrieve linguistic and vocal information are differently affected by 

experience. 

  

 
4 This chapter has been published in Brain & Language, and should be cited as Di Dona, G., Scaltritti, M., Sulpizio, 

S. (2021) Early differentiation of memory retrieval processes for newly learned voices and phonemes as indexed by 

the MMN. Brain & Language. 10.1016/j.bandl.2021.104981. The study has been conducted in collaboration with dr. 

Simone Sulpizio (Department of Psychology, University of Milano Bicocca) and dr. Michele Scaltritti (Department 

of Psychology and Cognitive Science, University of Trento). 
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3.1 Introduction 

Albeit linguistic and vocal information are naturally intertwined in the speech signal, these two 

types of information can be selectively extracted to achieve different goals. Indeed, we can 

understand what is said irrespectively of who is saying it, but we can also identify who is speaking 

regardless of what she/he is saying. This selectivity becomes possible due to the way in which the 

cognitive system stores, retrieves and combines different kinds of information that are indexed by 

different physical features of the signal. Psycholinguistic (Norris & McQueen, 2008) and 

psychoacoustic models (Belin et al., 2004) consider phonemes and voices as the fundamental 

information units for speech perception and talker identification, respectively (Formisano et al., 

2008). Phonemes can be described on the basis of their first and second formant frequencies (F1 

and F2) (Obleser et al., 2003) whereas voices are usually reduced to their fundamental frequency 

(F0) (Latinus & Belin, 2011). As their identification relies on different acoustic indexes and is 

performed for different purposes, phonemes and voices are considered to be independently and 

asymmetrically processed by different brain networks. While phoneme identification 

predominantly relies on the left superior temporal gyrus (DeWitt & Rauschecker, 2012) voice 

identification predominantly relies on its right homologous site (Belin & Zatorre, 2003; Zäske et 

al., 2017).  

Despite the aforementioned functional and neurobiological segregation, some evidence 

suggests that linguistic and vocal information are dynamically integrated at different levels. 

Behaviourally, neither linguistic nor vocal information can be purposefully ignored without active 

effort during identification tasks (Mullennix & Pisoni, 1990).  Kaganovich et al. (2006) showed 

that the attentional effort required to filter out either one information or the other is also indexed 

by the modulation of electrophysiological activity at the level of the Event-Related Potentials 

(ERPs), across the N1, N2 and P3 components. Authors suggested that the early onset of this effect 

in the N1 time window indicates that the effort originates during low-level filtering processes. 

Instead, the modulation of the N2 and P3 components was interpreted as being due to a reduced 

amount of attentional resources available to support the activation and selection of high-level 

representations in working memory.  

Further, the integration between vocal and linguistic information also characterizes the 

retrieval processes from long-term memory. When one of the two types of information is retrieved, 

the identification of the other seems facilitated. Word identification is in fact easier when listeners 
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hear familiar voices (Nygaard et al., 1994). Similarly, talker identification is easier when they hear 

native speech (Perrachione & Wong, 2007). These two effects indicate that past experiences with 

either the linguistic (Zarate et al., 2015) or the vocal component (Johnsrude et al., 2013) of the 

speech signal aid the identification of the other type of information. In this perspective, the parallel 

between these two phenomena suggests that they may originate from shared processes that 

automatically retrieve linguistic and vocal information from memory that is then used to orient 

attentional resources to the content of interest (Lakatos et al., 2013). Whereas abstract 

representations of phonemes and voices can be spontaneously formed in a similar way during 

passive listening (see Chapter 2 and Eulitz & Lahiri, 2004; Jacobsen, Schröger, & Alter, 2004; 

Shestakova et al., 2003), it is still unknown whether these two kinds of information are also 

similarly retrieved from long term memory. Addressing this issue will contribute to shed light on 

how top-down processes funnel former linguistic or vocal knowledge into the processing stream 

of the upcoming auditory signal. Here, we used ERPs and focused on the Mismatch Negativity 

(MMN) to investigate how learned voices and learned phonemes are retrieved from long-term 

memory.  

 MMN is a highly informative electrophysiological response that can signal not only 

physical changes in the auditory environment, irrespectively of the listener’s attention (Näätänen 

& Michie, 1979), but also the automatic activation of high-level representations such as memory 

traces (Näätänen et al., 2007; Pulvermüller & Shtyrov, 2006). In the passive-oddball paradigm, a 

sound is repeatedly presented (standard stimulus) and is infrequently replaced by a different sound 

(deviant stimulus). The EEG signal related to deviant events shows a negative displacement from 

the one related to standard events in the N2 time window, usually around 150-250 ms from the 

onset of the deviant sound (Näätänen, 1995). This effect is due to a violation of the representation 

of the standard sound in short term memory (Näätänen et al., 2005). Interestingly, the MMN 

response is sensitive to linguistic experience, being larger when the deviant stimulus is a known 

phoneme (or word) compared to when it is an unknown one (Dehaene-Lambertz, 1997; 

Pulvermüller et al., 2001; Shtyrov & Pulvermüller, 2002). This enhancement effect has been 

interpreted as indexing the retrieval process of native speech material from long-term memory 

(Näätänen et al., 2005). The same pattern has been reported for familiar voices: Beauchemin et al. 

(2006) found that the MMN was larger when the deviant phoneme was produced by a familiar 

talker (i.e., a relative or a friend of the participant), than by an unknown one. The authors suggested 
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that the enhanced MMN reflects the presence of a memory trace retrieval process for familiar 

voices. Interestingly, voice familiarity also affected the P3a, a positivity peaking around 300 ms 

after the onset of the deviant stimulus and usually associated to the automatic reorientation of 

attention (Comerchero & Polich, 1999). With regard to the P3a, Beauchemin et al. (2006) 

suggested that, once retrieved, familiar voices appear as more salient to the listener with respect to 

unknown voices, thus triggering an automatic re-orientation of attention. 

Although scanty evidence mentioned above seems to suggest that memory traces for 

familiar voices and native phonemes are automatically retrieved by means of shared retrieval 

processes as indicated by the presence of an enhanced MMN, there are at least two crucial aspects 

that need to be considered. First, apart from individual acoustic features, the representation of a 

familiar voice could also conceal linguistic information, as such representation would result from 

several meaningful linguistic interactions with a specific talker. In fact, listeners are able to learn 

how specific talkers produce phonemes (Eisner & McQueen, 2005) or whole words (Perrachione 

et al., 2015) by establishing talker-specific phonetic and linguistic representations. A 

representation of a voice could then entail information about how such voice produces specific 

speech sounds (Perrachione, 2017; Perrachione & Choi, 2016). Therefore, to study the similarities 

between the retrieval processes for known phonemes and familiar voices one should isolate the 

two types of information by investigating memory traces selectively built for either linguistic or 

vocal information.  

A second critical aspect is related to the use of electrophysiological measures to study high-

level cognitive processes and the need to account for the dramatic impact that physical properties 

of experimental stimuli may have on the EEG signal. Amplitude and peak latency of MMN are 

extremely sensitive to such changes (Näätänen et al., 2007), hence comparisons between MMNs 

originated by physically different stimuli must be interpreted with caution.  

 In the present longitudinal study, we overcame the two above crucial issues and trained 

two groups of Italian native-speakers in learning a new phoneme and becoming familiar with a 

new voice, and measured their MMN response in both a pre-training and a post-training EEG 

session. In the pre-training session, participants were exposed to two conditions, both featuring the 

same standard stimulus – i.e., the syllable /piː/ produced by an unfamiliar German native speaker. 

The deviant stimulus varied as a function of the condition. In the phoneme-change condition, it 

was the syllable /pyː/ produced by the same unfamiliar talker that produced the deviant stimulus. 
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In the voice-change condition, the deviant stimulus was the same syllable /piː/ of the standard 

stimulus but produced by a different unfamiliar German native speaker. After this first EEG 

session, participants were divided in two groups and were randomly assigned either to a syllable-

identification training or to a talker-identification training. The former group learnt the German 

phoneme /yː/ presented in the phoneme-change condition, whereas the second one familiarized 

with the unfamiliar German voice from the voice-change condition. After the training, participants 

underwent the second EEG session, that was identical to the first one. The use of differentiated 

training procedures allowed for the isolation of different encoding strategies: the focus of attention 

during speech encoding – being directed towards linguistic or talker-related information – 

increases the salience of specific features of the speech signal's representation. Depending on 

which kind of information is encoded, the application of such strategies results in enhanced 

behavioural performances in tasks where the encoded information is needed (McAuliffe & Babel, 

2016; McGuire & Babel, 2020; Theodore et al., 2015).  

Additionally, by learning foreign speaking voices, participants cannot retain any linguistic 

information, and similarly participants learning a new phoneme from an unfamiliar voice cannot 

form a voice identity representation of the talker. Testing participants on identical stimuli in both 

sessions allowed us to control for the influence of physical features and to isolate the high-level 

processes of interest, i.e., the presence of the enhancement effect as a marker of long-term memory 

trace retrieval. 

On the basis of the previous literature, we sketched two clear-cut predictions. First, we 

expected that, in both sessions, an MMN is elicited by all the conditions, as the acoustic changes 

between the standard and deviant stimuli should be clearly detectable. Second, and most 

importantly, we tested whether memory traces for newly learned voices and newly learned 

phonemes are retrieved by means of shared retrieval processes and thus would show similar 

electrophysiological responses. If this is the case, the two different training procedures are 

expected to trigger the same enhancement effect on MMNs: At the post-training EEG session, the 

group involved in the talker-identification training should show enhanced MMN when the learned 

voice is presented as the deviant stimulus whereas the group enrolled in the syllable-identification 

training should show enhanced MMN when the deviant stimulus is the learned phoneme. An 

exploratory analysis of P3a was also carried out as it seems to be differently modulated by the 
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presentation of familiar voices (Beauchemin et al., 2006) or more generally by passive exposure 

to speech sounds (Kurkela et al., 2019).  

 

3.2 Method 

3.2.1 Participants 

Thirty-two healthy Italian native speakers were recruited. Two participants were excluded from 

the analyses as their performance in the talker-identification training did not reach the requested 

threshold. The final sample included thirty participants (26 females and 4 males, Mage = 21.53, 

SDage = 2.69), all right-handed (as established by the Edinburgh Handedness Inventory, Oldfield, 

1971; M = .70, SD = .12). Participants reported to be neurologically healthy and to have normal 

hearing. Participants' foreign language knowledge and use was assessed with a questionnaire 

(Sulpizio et al., 2019), in which participants were asked to: a) state which languages they knew, 

b) estimate the average amount of hours they spent using those languages in a day, c) evaluate 

their written and oral proficiency on a scale from 1 (really low) to 10 (really high) and d) indicate 

whether they had any language certificate. Twenty-nine participants reported English as L2, 1 

participant reported English as L3 and French as L2. With respect to L3 and L4, 15 participants 

reported French, 9 Spanish, 1 Japanese, 1 Chinese and 1 Russian (for further details, see Table S1, 

Appendix B). Importantly, all participants reported no prior knowledge of German, nor any 

attendance to lectures/courses of German throughout their lifetime. Participants' education (in 

years) was also collected (M = 15.66, SD = 2.20). 

 Participation was compensated either with course credit or with 10€ per hour. The study 

was approved by the Ethical Committee of The University of Trento. Participants signed an 

informed consent document prior to the experiment.  

 

3.2.2 Stimuli 

Six male native speakers of German (Mage = 24, SD = 7) were recruited to record the experimental 

stimuli. They were asked to read aloud two brief texts and several isolated words (n = 23) and 

syllables (n = 8) in German. Their voice was recorded at 48000 Hz with a professional recorder in 

a silent room. The texts were two descriptions of two German cities: Hamburg (“Hamburg,” 2019) 

and Saarbrücken (“Saarbrücken,” 2019). Word stimuli were selected among German minimal 
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pairs. This was done to force participants to focus on vowels to retain pitch information during the 

talker-identification training rather than attending to possible idiosyncratic productions of 

consonants. Syllable stimuli were composed of the phoneme /p/ + a German vowel. Specifically, 

the syllables were: /pyː/, /pʊ/, /piː/, /pʏ/, /pɐ/, /pǝ/, /pøː/, /pœ/. To elicit the correct sound without 

the use of phonemic transcription, talkers were asked to read a priming word containing the desired 

syllable before reading the actual isolated syllable. Texts, words, and syllables were presented in 

a random order, and recorded three times each. The best tokens – i.e., those showing, in a 

qualitative assessment, the lowest of noise and the least number of prosodic irregularities – were 

selected. 

One talker was excluded from the subsequent analyses because of a high level of external noise in 

the recording. Following Baumann & Belin, (2010) and using Praat software (Paul Boersma & 

David Weenink, 2018), a voice analysis was performed on the vowels of every syllable token in 

order to understand which physical characteristics differentiated the speakers’ voices. For each 

talker, mean pitch (F0) and mean F4/F5 formant dispersion in all syllables were calculated. Mean 

values and standard deviations are reported in Table 2.  As only four talkers were needed for the 

experiment, talker 5 was excluded as his mean F4/F5 dispersion value (718 Hz) was the most 

distant from the mean F4/F5 dispersion value calculated across all talkers (M = 969 Hz, SD = 147). 

This was done to reduce the number of physical features by which talkers may be identified. Texts, 

words, and syllables produced by Talker 1, Talker 2, Talker 3 were selected as stimuli for the 

talker-identification training. Instead, syllables /piː/ and /pyː/ produced by Talker 4 were used for 

the syllable-identification training: /iː/ and /yː/ are phonologically contrasting in German. By 

means of the syllable-identification training Italian participants were supposed to learn the 

phoneme /yː/, which is not present in the Italian phonological repertoire. 

A continuum between /piː/ and /pyː/ was created to test categorical perception of /iː/ and 

/yː/. The two syllables were morphed with each other using the TANDEM-STRAIGHT MATLAB 

toolbox (Kawahara et al., 2008). TANDEM-STRAIGHT decomposes speech into fundamental 

frequency, formant frequencies, aperiodicity, spectro-temporal density, and time. Anchor points 

across time on the spectrogram were selected to mark onset, midpoint and offset of segments. For 

every anchor point in time, frequency anchors were set on the first and the second formant 

frequencies to obtain smoothly morphed stimuli. The morphing continuum was synthesized 

through linear interpolation of time and aperiodicity parameters and through logarithmic 
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interpolation of pitch (F0), formant frequencies and spectro-temporal density across time-

frequency anchors. A 29-step continuum was generated, producing weighted morphed syllables 

going from 0% /piː/ and 100% /pyː/ to 100% /piː/ and 0% /pyː/.  

For the EEG experiment, the syllable /piː/ produced by Talker 4 was used as standard 

stimulus. To create the phonological contrast, the syllable /pyː/ produced by Talker 4 was selected 

as deviant stimulus. Instead, to create a voice contrast, the syllable /piː/ produced by Talker 1 was 

selected as deviant stimulus. These critical tokens were selected on the basis of duration similarity 

(the exact values are reported in Table S2, Appendix B). The duration of the syllable was set at 

250 ms for all the tokens by cutting the last offset part of the stimuli and inserting a 50 ms fade-

out in amplitude. The physical characteristics of the stimuli used in the EEG experiment are 

summarized in Table 3. Finally, all the syllable tokens were resynthesized using TANDEM-

STRAIGHT to ensure that the stimuli had the same quality overall the whole experiment. The 

intensity of all the tokens was finally set to 60 dB. 

 

Table 2. Mean values and Standard Deviations (SD) of fundamental frequency (F0) and dispersion 

across the fourth and the fifth formant (F4/F5) for every talker5 

 

 

  

 
5 The data of the talker that was excluded for the high level of external noise is not reported in Table 2. 

Talker Mean F0 (SD) Mean F4/F5 Dispersion (SD) 

1 100.78 Hz (8.59) 1060.08 Hz (161.07) 

2 126.27 Hz (6.46) 962.75 Hz (401.37) 

3 111.88 Hz (23.64) 1017.16 Hz (428.98) 

4 112.88 Hz (17.66) 1087.01 Hz (256.90) 

5 118.48 Hz (12.30) 718.03 Hz (305.98) 
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Table 3. Physical characteristics of Standard and Deviant stimuli used in the EEG experiment.6 

 

 

3.2.3 Procedure 

The experiment lasted several days and included two EEG recordings that took place before and 

after a behavioural training, which differed among the experimental groups.  

 

Pre-training EEG session  

During the first day, participants were asked to fill in the questionnaire collecting demographic 

information, handedness, and language background. Then, participants were prepared for the EEG 

recording in a dimly lit room and took part in the pre-training session of the EEG experiment. 

During the experiment, participants were asked to watch a silent video documentary about deep 

sea creatures while auditory stimuli were delivered via Etymotic ER-1 headphones at fixed volume 

(60 dB) using E-prime 2.0 Software (Schneider & Zuccoloto, 2007). 

Stimuli were presented using the passive oddball paradigm. The syllable /piː/ produced by 

Talker 4 was repeatedly presented as standard stimulus with a fixed Interstimulus Interval (ISI) of 

550 ms. The standard stimulus was infrequently replaced by the deviant stimulus with a probability 

 
6 F0, F1 and F2 were measured on the voiced part of the final vowels of the syllables. 

 Standard stimulus Deviant Stimulus 

  phoneme-change  voice-change 

Syllable /piː/ /pyː/ /piː/ 

Talker 4 4 1 

F0 120 Hz 118 Hz 103 Hz 

F1 345 Hz 433 Hz 276 Hz 

F2 2292 Hz 1591 Hz 2377 Hz 

Duration 250 ms 250 ms 250 ms 

Intensity 60 dB 60 dB 60 dB 
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of occurrence of .15. The order of presentation of standard and deviant events was randomized, 

but a minimum of two standard events occurred before the presentation of a deviant event. In the 

voice-change condition the syllable /piː/ produced by Talker 1 was used as deviant, while in the 

phoneme-change condition the syllable /pyː/ produced by Talker 4 was used. The conditions were 

separately presented, one per block and the order of presentation was counterbalanced across 

participants. The two blocks included 850 standard events and 150 deviant events that were 

randomly presented to each participant. Participants took a small break between the two blocks.  

 At the end of the EEG experiment, participants were randomly assigned either to the talker-

identification training or to the syllable-identification training, forming two groups of 15 

participants each. The two groups were matched for age, sex and years of education. 

 

Talker-Identification Training 

Participants assigned to this group took the online version of the Glasgow Voice Memory Test 

(Aglieri et al. 2017; available at https://experiments.psy.gla.ac.uk/index.php) to assess the 

individual ability to memorize and recognize unfamiliar voices. This test was administered in order 

to identify potential phonoagnosic participants in the sample, as indicated by a performance 

scoring below 2 SD from the group-mean (Roswandowitz et al., 2014). No participant showed a 

performance below the selected threshold. 

Then, the talker-identification training started. The training procedure was modelled on 

former studies in literature that were successful in establishing representations of voice identity 

for the trained voices (Fontaine et al., 2017; Latinus et al., 2011).  In this kind of trainings, the use 

of multiple talkers can provide an acoustic space in which voices can be physically represented 

(Andics et al., 2013). This helps listeners to grasp the physical features by which voices can be 

discriminated from each other in the first place. Once a physical substrate is provided, listeners are 

facilitated in pinning idiosyncratic vocal features to identity labels (i.e., personal names) and limit 

the perceptual space around them, solidifying voice representations. This is not the case with 

phonemes, which are already contrastively represented on a common acoustic and perceptual space 

with familiar physical dimensions. 

In the first training block, participants familiarized with the 3 voices (Talker 1, Talker 2, 

Talker 3) by listening to two brief recorded texts for each talker. A fake name and a number (1, 2 

or 3) for each talker was presented at the centre of the screen while the recorded texts were played 
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via headphones at fixed volume (60 dB). To form the stimulus-response mapping, at the end of 

every recording, participants were asked to press the indicated keyboard button corresponding to 

one of the three talkers, following written instructions on the screen. All the recorded texts were 

presented once in a fixed order.  

In the second training block, participants performed a talker identification 3-AFC task: 

Twenty-three words (see Table S3, Appendix B) were then auditorily presented in a random order 

via headphones and participants were asked to identify the talker by pressing button 1, 2 or 3 on 

the keyboard. The names of the talkers and the associated buttons were always visible on the screen 

while the task was performed. After any incorrect answer, the stimulus was presented again, and 

the correct answer was given on the screen. In the third training block participants performed the 

3-AFC task on isolated syllables. All the recorded syllables (/pyː/, /pʊ/, /piː/, /pʏ/, /pɐ/, /pǝ/, /pøː/, 

/pœ/) were presented 5 times for each talker (n = 3) in a random order, for a total of 120 trials. 

Participants received feedback on their performance as they did in the previous block. 

Successively, the test block was presented: This block was identical to the third training block, but 

no feedback was given. After the test block, participants went home and came back in the following 

days to repeat the training, once a day, until their performance at test exceeded the discrimination 

threshold level of 66% in a 3-AFC (Prins, 2016). Two participants that still showed a performance 

below the threshold at the fifth day of training were not invited to take part to the second EEG 

session and were thus excluded from the sample. The day after the criterion was met, participants 

came to the lab for the post-training EEG session. Before the post-training EEG session, they 

repeated the training and the test phase once more to ensure that the identification was consolidated 

(i.e., the discrimination threshold was again above 66%). The training lasted on average 3.33 days 

(SD = 0.72, range 3 - 5). 

 

Syllable-identification Training  

Participants took part in a Syllable Identification and Goodness Rating task, and a Listen-and-

Repeat task. The procedure was the same used by Tamminen et al. (2015) who ran an MMN study 

in which they trained Finnish participants to learn a phoneme not present in their phonological 

repertoire. Here, this procedure was used to teach Italian participants the German phoneme /yː/. 

The training started with a familiarization phase, during which, via headphones, participants could 

listen to the /piː/ and /pyː/ syllables recorded from Talker 4 as many times as they wanted by 
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pressing buttons 1 and 2 on the keyboard. The two stimuli corresponded to the endpoints of the 

29-step continuum. Then, the Syllable Identification and Goodness Rating task started. To be sure 

that participants understood the task, they were presented with a practice block in which all the 29 

variants of the syllables from the continuum were presented once. For every stimulus presentation, 

participants were asked to state which syllable they heard by pressing button 1 or 2 on the 

numerical keyboard. Afterwards, they were asked to express a goodness rating of the stimulus on 

the basis of how much it was representative of the selected syllable category (/piː/ or /pyː/) by 

pressing a button from 1 (bad representative of the category) to 7 (good representative of the 

category) on the keyboard. After the practice, the test blocks were presented. In the test blocks 

participants performed again the Syllable Identification and Goodness Rating task for each of the 

29 variants of the syllables. Each variant was presented 10 times for a total of 290 trials divided 

into 2 blocks, with a small break between them. Afterwards, participants started the Listen-and-

Repeat task. During this task, the stimuli at the two endpoints of the continuum (i.e., /piː/ and /pyː/ 

syllables) were presented via headphones 30 times each and participants were asked to repeat aloud 

each sound as precisely as possible. In the subsequent day, the Listen and Repeat task was repeated 

twice, interleaved by the Syllable Identification and Goodness Rating task. On the third day, the 

Syllable Identification and Goodness rating task was repeated, followed by one last session of the 

Listen-and-Repeat task. Afterwards, the post-training EEG session took place. 

 

Post-training EEG session  

This recording session was identical to the first one, with the exception that no questionnaire was 

administered to the participants. 

 

3.2.4 EEG recording and processing  

The EEG was recorded with an eego sports system (ANT Neuro) at a sampling rate of 500 Hz 

(filters: DC to 130 Hz, third- order sinc filter), from 64 Ag/AgCl shielded electrodes referenced to 

CPz and placed in the standard 10-10 locations on an elastic cap. Electro-oculograms were 

acquired with an additional electrode placed under the left eye. Impedance was kept < 20 kΩ. The 

signal was re-referenced offline to the average reference. Data was filtered between 0.01 and 30 

Hz using a 4th order Butterworth passband filter (24 dB/oct Roll-off) and resampled to 250 Hz. A 

Notch filter at 50 Hz was applied to attenuate line noise. Independent Component Analysis was 
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run on the continuous signal using the Infomax algorithm (Bell & Sejnowski, 1995), and eye blink 

components were identified and removed. Epochs were extracted from 100 ms before stimulus 

onset until 500 ms after stimulus onset and a baseline correction was applied. The baseline was 

corrected by subtracting the mean voltage of the pre-stimulus period (-100 to 0 ms) from the 

waveform of the entire epoch. Epochs containing signal with an amplitude exceeding 100 µV in 

any of the 64 channels were rejected. An average of 2.16 epochs (SD = 4.82) epochs per participant 

were rejected. All the epochs corresponding to standard events coming immediately after deviant 

trials were removed from the analysis, to avoid any contamination from later potentials triggered 

by deviant events. 

 

3.2.5 Statistical Analyses 

Behavioural Data - Talker-identification training  

The accuracy data was analysed by means of a Generalized Linear Mixed Model (GLMM) with a 

logit link-function using the ‘lme4’package (Bates et al., 2015) in R Software (R Core Team, 

2013). Data was fitted to the full model with fixed factors of session (pre-training, post-training), 

talker (Talker 1, Talker 2, Talker 3) and their interaction, and by-participants and by-item random 

intercepts. The best model was selected by implementing backward elimination on the full model 

via likelihood-ratio Chi-squared tests implemented with the drop1 R function.  

 

Behavioural Data - Syllable-identification training  

For each participant, the proportion of /pyː/-answers was fitted to a logistic psychometric function 

with the R package ‘quickpsy’ (Linares & López i Moliner, 2016) which estimates the Point of 

Subjective Equality (PSE) and the slope of the identification response. The PSE is the predicted 

level of morphing where the proportion of answers is at chance level (.5 for 2-AFC tasks). The 

slope value refers to the steepness of the response curve and represents the subjective degree of 

certainty: The steeper the slope the more defined are the two categories. Individual PSE were then 

analysed across sessions to evaluate the effect of training by means of paired t-tests. As slope 

values violated the normality assumption (tested via Shapiro-Wilk test, W = 0.79, p < .001), they 

were analysed via Wilcoxon Signed rank test. Mean goodness ratings associated to the stimulus at 

the PSE were calculated within every participant and within every session. Paired Wilcoxon signed 

rank tests were performed to confront mean goodness ratings at PSE with those at the endpoints 
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of the continuum and z-values were reported. The same statistical test was then used to evaluate 

the possible changes in mean goodness ratings at PSE between the pre-training, mid-training, and 

post-training sessions. All the t-tests and Wilcoxon signed rank tests were then corrected with 

False Discovery Rate (FDR) adjustment.  

 

EEG data  

Separate ERPs were computed by averaging epochs within each participant and within all the 

combinations of the factors condition (phoneme-change, voice-change), probability of occurrence 

(standard, deviant) and session (pre-training, post-training). The MMN was calculated within each 

participant and within each of the combinations of factors condition and session, by subtracting 

the standard ERP from the deviant ERP. Fz, FCz and Cz channels were selected for statistical 

analyses as indicated by previous works on the enhancement effect (Beauchemin et al., 2006; 

Shtyrov et al., 2010; Tamminen et al., 2015). The mean peak latency of MMN was separately 

measured for the phoneme-change and the voice change conditions (Gu et al., 2013) to prevent 

possible influences of overlapping components (i.e., P3a) that could impact the precision of 

measurement of the enhancement effect of the MMN.  This last methodological aspect is critical 

in our experiment as latency differences are likely to occur between two separate MMN 

components that are generated by changes in different physical dimensions (Näätänen et al., 

2007).This was done by averaging the latency values of the most negative peak between 150 and 

350 ms of each participant across all sessions and channels. The mean amplitude of the MMN was 

measured on a 40 ms time window that was centred on the mean peak latency (Steinberg et al., 

2011). 

Paired t-tests were run to compare the mean amplitude of standard and deviant events to 

check that MMN was correctly elicited in the selected time window. Then, a four-way mixed 

ANOVA was performed on the amplitude of MMN with group (talker-identification training, 

syllable-identification training) as between-participants factor and condition (voice-change, 

phoneme-change), session (pre-training, post-training), and channel (Fz, FCz, Cz) as within-

participants factors. 

To verify the presence of the enhancement effect, paired t-tests were performed on the 

mean amplitude of MMN, comparing the pre-training with the post-training session, within every 

group and condition. The amplitude of the enhancement was then calculated by subtracting the 
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mean amplitude of MMN of the pre-training session from the one measured at the post-training 

session. A three-way mixed ANOVA was performed on the amplitude of the enhancement effect 

with the group (talker-identification training, syllable-identification training) as between-

participants factor, and condition (voice-change, phoneme-change) and channel (Fz, FCz and Cz) 

as within-participants factors. 

The qualitative inspection of differential waveforms clearly indicated the presence of a P3a 

component in a scalp area extending from fronto-central to centro-parietal electrode sites. The 

mean amplitude of P3a was calculated on FCz, Cz and CPz on an 80 ms time window (Beauchemin 

et al., 2006) that was centred on the mean peak latency of the most positive peak in the 250-500 

time window. The mean peak latency was calculated using the same method that was used for 

MMN but this time irrespectively of the condition as the use of a relatively large time window 

reduces the influence of other contiguous components (i.e., MMN). 

A five-way mixed ANOVA was run with group (talker-identification training, syllable-

identification training) as a between-participants factor, and condition (voice-change, phoneme-

change), session (pre-training, post-training), probability of occurrence (standard, deviant), and 

channel (FCz, Cz, CPz) as within-participants factors. Greenhouse-Geisser correction was applied 

to degrees of freedom when sphericity assumptions were violated. P-values of post-hoc t-tests were 

corrected applying the FDR correction. 

 

3.3 Results 

3.3.1 Behavioural data 

Talker-Identification Training  

The pre-training and post-training accuracy scores are represented in Figure 4A, B. At the end of 

the post-training session, the mean accuracy in the 3-AFC identification task was 85% (SD = 0.10) 

across all talkers. The mean accuracy for Talker 1, 2 and 3 were 86% (SD = 0.08), 90% (SD = 

0.09), and 79% (SD = 0.09), respectively. The final GLMM included session and talker as fixed 

factors and participants and item as random factors. The model showed a significant effect of 

session, revealing a higher identification accuracy in the last than in the first session (β = 1.33, SE 

= 0.08, z = 15.18, p < .001). The effect of Talker was also significant, with Talker 3 being 

recognized less accurately than Talker 1 (β = -0.63, SE = 0.09, z = -6.36, p < .001) and Talker 2 
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being recognized more accurately than Talker 1 (β = 0.27, SE = 0.10, z = 2.51, p = .011) and Talker 

3 (. β = 0.90, SE = 0.10, z = 8.72, p < .001). 

 

Syllable-Identification Training  

The pre-training and post-training identification responses and goodness ratings are represented in 

Figure 4C, D. PSE values shifted from a location that was approximately at the physical centre of 

the continuum in the pre-training session (MPSE = .53), towards a morphing level nearer to the 

syllable /pyː/ in the post-training session (MPSE = .61), t (14) = 4.02, p = .003. PSE values also 

shifted between pre-training and mid-training session t (14) = 3.28, p = .005 and between mid-

training and post-training session t (14) = 3.46, p = .004, showing a constant increase. Slope values 

showed a significant increase in steepness only from mid-training session to post-training session 

z = 2.78, p = .01. The mean goodness rating values associated to the endpoints of the continuum 

calculated across sessions were higher with respect to the ones at PSE both at the 0% /pyː/ end z = 

5.80, p < .001 and at the 100% /pyː/ end z = 5.77, p < .001, indicating that participants judged the 

endpoints of the continuum as better representatives of the respective syllable categories. The 

mean goodness rating values calculated at PSE did not differ across sessions (all p > .2) meaning 

that the overall perceived quality of the stimuli at PSE did not change after training.  
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Figure 4. Behavioural results of the talker-identification (red) and the syllable-identification 

training (blue) in the pre- (continuous line) and in the post-training (dashed line) sessions. (A) and 

(B) show the proportion of accurate responses for the 3-AFC task of the talker-identification 

training broken down by talker and by session. Error bars represent the standard error. The dashed 

horizontal line represents the behavioural discrimination threshold of .66. Small circles and 

triangles indicate respectively individual scores in the pre- and the post-training sessions. (C) 

Probability of answering /py:/ as a function of the morphing degree across the pre- and post-

training session. The small squares represent the PSE. (D) Goodness ratings as a function of the 

morphing degree across the pre- and post-training sessions. Small squares represent the goodness 

rating at PSE. Shaded grey areas represent the standard error. Small circles and triangles indicate 

respectively individual scores in the pre- and the post-training sessions.  
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3.3.2 EEG 

Mismatch Negativity component 

 Following the peak detection algorithm described above, the mean amplitudes of MMN was 

measured in the 215-255 ms time window for the voice-change condition and in the 199-239 ms 

time window for the phoneme-change condition. The difference between standard and deviant 

events was significant at every channel (all ps < .01) within all the combinations of group, 

condition, and session factors (see Table S4, Appendix B) confirming that MMN was successfully 

elicited. MMN waveforms are displayed in Figure 5A, B. 

The ANOVA on the mean values of MMN showed a three-way interaction between group, 

condition, and session F (1, 28) = 5.37, p = .028, ηp
2 = .161. Follow-up 2-way ANOVAs conducted 

separately within each group indicated that participants enrolled in the syllable-identification 

training only showed a main effect of session F (1,14) = 11.78, p = 0.004, ηp
2 = .457, with larger 

MMN for the post-training than the pre-training session. Differently, the group enrolled in the 

talker-identification training showed a two-way interaction between condition and session F (1,14) 

= 9.92, p = .007, ηp
2 = .415. Although post-hoc comparisons for the talker-identification training 

failed to show any significant difference (all ps > .1) between the sessions, the inspection of the 

means suggested that while the amplitude of MMN decreased (i.e. became less negative) in the 

voice-change condition (Mpre = -1.363, SDpre = 1.116;  Mpost = 1.057, SDpost = 0.755) it increased 

(i.e. became more negative) in the phoneme-change condition (Mpre = -0.813, SDpre = 1.051;  Mpost 

= 1.065, SDpost = 0.975) after the training. Finally, the main effect of channel was also significant, 

F (1.26, 35.28) = 24.00, p < .001. No further effect reached significance (all Fs < 3.727, ps > .063). 

 

The enhancement effect  

The analyses on the enhancement effect (Figure 5C) showed an interaction between group and 

condition F (1,28) = 5.36, p = .028, ηp
2 = 0.161, with the two groups showing two patterns going 

in opposite directions for the conditions that were targeted by the respective training procedures. 

While the amplitude of MMN in the voice-change condition unexpectedly decreased for the group 

enrolled in the talker-identification training, it increased in the phoneme-change condition for the 

group enrolled in the syllable-identification training, yielding a significant difference between the 

two t (28) = 3.03, p = .014. The two groups also differed in the voice-change condition, as in the 

group enrolled in the syllable-identification training this condition yielded an increase in the 
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amplitude of MMN with respect to the decrease recorded in the other group t (28) = 3.09, p = .014. 

Additionally, the group enrolled in the talker-identification training showed a significant 

difference between conditions t (14) = 3.149, p = .014, with the MMN amplitude decreasing in the 

voice-change condition, but increasing in the phoneme-change condition after training (all other 

|t|s < 0.06, ps > .973). No further effect reached significance (all Fs < 3.728, ps > .063).  

 

P3a   

The mean amplitude of P3a was measured in the 282-362 ms time window. The inspection of the 

grand-averaged ERPs suggested that the amplitude recorded for deviant events increased between 

the pre- and post-training session across both groups, and both conditions, but apparently more in 

the group enrolled in the syllable-identification training (Figure 6). The ANOVA showed a 

significant interaction between group and session, F (1,28) = 7.77, p = .009, ηp
2 = .217. Post-hoc 

comparisons revealed that only the group enrolled in the syllable-identification training showed a 

larger P3a in the post-training than in the pre-training session, t (14) = 3.43, p = .016 (all other |t|s 

< 1.98, ps > .113). Additionally, the three-way interaction between condition, channel and 

probability of occurrence was significant, F (1.514, 42.392) = 3.76, p = .042, ηp
2 = .119. The 

analysis of the voice-change condition showed an interaction between probability of occurrence 

and channel, F (1.364, 39.556) = 7.83, p < .001, ηp
2 = .212. The same interaction also emerged in 

the analysis of the phoneme-change condition F (1.268, 36.772) = 6.47, p = .002, ηp
2 = .182. No 

further effect reached significance (all Fs < 3.84, ps > .059).  
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Figure 5. MMN for the different conditions in the group enrolled in the talker-identification (red) 

and the group enrolled in the syllable-identification training (blue). MMN was calculated in the 

pre- (continuous line) and in the post-training (dashed line) sessions at a representative channel 

(FCz) for the voice-change condition (A) and the phoneme-change condition (B). The grey 

rectangle indicates the time-window used in the analysis. (C) Boxplots (upper part) represent the 

differential amplitude calculated by subtracting the MMN measured at the post- from the one 

measured at the pre-training session in both conditions. Barplots (lower part) represent the mean 

amplitude value of MMN (± SE) divided by session (x axis). Boxplots and barplots represent signal 

amplitude averaged across Fz, FCz and Cz channels for the Voice-change condition (left) and the 

Phoneme-change condition (right) in the group enrolled in the talker-identification (red) and the 

syllable-identification training (blue). 
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Figure 6: P3a for the different conditions in the group enrolled in the talker-identification (red) 

and the group enrolled in the syllable-identification training (blue). ERPs for standard and deviant 

events calculated in the pre- (continuous line) and the post training (dashed line) sessions at a 

representative channel (FCz) for the voice-change condition (A) and for the phoneme-change 

condition (B). The grey rectangle indicates the 282-362 ms time-window used in the analysis. 
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3.4 Discussion 

This longitudinal study investigated how listeners automatically retrieve familiar voices and 

phonemes from memory. We trained one group of participants to identify a foreign-speaking voice, 

and the other one to identify and produce a new phoneme without providing any talker related 

information nor different speech samples from which to retain additional voice-specific acoustic 

features. In this way we controlled the influence of linguistic and vocal information during the 

formation of the memory traces for a voice and a phoneme, respectively. 

Behavioural data confirmed that participants learned the trained materials (i.e., voice or 

phoneme). For the talker-identification training, the accuracy improved across days, indicating that 

participants formed a voice representation in memory that helped them to identify the talker 

independently of linguistic information. Similarly, for the syllable-identification training, the shift 

of the PSE (i.e., the category boundary) and the increase in the steepness of the slope indicated 

that the formation of a phonemic representation in memory reshaped the perceptual boundaries 

between the known and the newly-learned phoneme independently of talker’s voice identity.   

The ERP data showed that both voice and phoneme changes successfully elicited an MMN, 

indicating that listeners were able to preattentively detect the acoustic differences that 

characterized the two conditions (Tuninetti et al., 2017). However, with respect to the training-

induced changes in the amplitude of MMN, the enhancement effect was visible for the learned 

phoneme, but not for the learned voice, suggesting that voices and phonemes are retrieved from 

memory via different mechanisms. Below we argue that the automatic retrieval processes elicited 

by the presentation of learned phonemes and voices are differently modulated by experience, 

suggesting that the processing stream of linguistic and vocal information are at least in part 

functionally dissociated since the early stages of speech perception.  

 

3.4.1 Learning and retrieving a new phoneme 

In the behavioural task, the PSE at baseline (i.e., pre-training session) was approximately located 

at the physical centre of the continuum. This suggests that participants initially relied on the 

acoustic features to identify the syllables, but then recalibrated the identification response on the 

basis of what they learned. Within these circumstances, the shift in the PSE towards the /pyː/ 

category possibly reflects the surfacing of a top-down categorization driving the processing of 

acoustic information (Dehaene-Lambertz et al., 2005). Moreover, the increase in the steepness of 
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the slope indicates that the categorization criterion became sharper over time. Goodness ratings 

were not influenced by the training and this suggests that qualitative evaluation processes of newly 

learned phonemes may rely on mechanisms that take more time to develop (Tamminen et al., 2015) 

with respect to the ones responsible for identification and memory retrieval. Nonetheless, the 

learning of a phonological category is also testified by the electrophysiological results: In line with 

previous findings, the group enrolled in the syllable-identification training showed an 

enhancement effect for the learned phoneme which is thought to represent an automatic memory 

retrieval process (Dehaene-Lambertz, 1997; Näätänen et al., 1997). We can exclude that this effect 

may have been determined by an accidental familiarization with the voice of Talker 4 which was 

constantly presented during the training, as – in sharp contrast with the results for the syllable-

identification training - the group enrolled in the talker-identification training showed a reduction 

of MMN as a result of the familiarization with the voice of Talker 1.7 

Taken together, our results are in line with previous works that used listen-and-repeat tasks 

to teach participants foreign vowels and consonants. In these studies, new phonemes are learned 

by exploiting their contrastive nature with native phonemes for different physical features (e.g., 

duration, voice onset time, formant frequencies; (Saloranta et al., 2020;Tamminen et al., 2015; 

Ylinen et al., 2010). Considering the replication of these findings, new phonemes appear to be 

learned even if they are phonetically defined by different physical features and this is a convincing 

clue that points towards the formation of abstract phonemic representations (Shestakova et al., 

2002).  

As an additional finding we reported that, independently of the condition, the group 

enrolled in the syllable-identification training showed a larger P3a in the post-training than in the 

pre-training session. P3a is thought to index an early reallocation of attention that follows the 

detection of change in auditory stimulation and its amplitude increases as a function of both the 

physical differences between the standard and deviant stimuli (Wronka et al., 2012), and the target 

status – i.e., the P3a is larger for target than non-target stimuli (Comerchero & Polich, 1999).  

 
7 An additional analysis was performed to further ascertain the absence of any talker familiarity effect due to the 

exposure to the voice of Talker 4 during the syllable-identification training. Paired t-tests (FDR corrected) on the 

amplitude of standard ERPs averaged across Fz, FCZ and Cz channels were performed in the time window used for 

the analysis of the MMN between the pre and the post-training session. No significant difference was found (all 

ps > .2). 
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The listen-and-repeat procedure required participants to attend to the presented stimuli 

before repeating them out aloud. As a result of the attentional request of this procedure, the 

presentation of the /piː/ and /pyː/ syllables may have induced a target-like response to previously 

non-target sounds also during the EEG experiment, resulting in an enhanced P3a component 

irrespectively of the talker’s voice or the probability of presentation. In fact, during speech 

production multiple stages – as, e.g.,  self-monitoring (Levelt et al., 1999), phonetic encoding and 

articulation  (Jongman et al., 2015, 2020) – require the allocation of sustained attention. Also, 

speech production may enrich the auditory representation with articulatory and motor features 

(Grabski & Sato, 2020; Scott & Perrachione, 2019). For these reasons, it is likely that the specific 

attentional demand enhanced the attentional engagement elicited /piː/ and /pyː/ syllables in the 

EEG recording. This resulted in a stronger P3a, which was generalized to all the instances of /piː/ 

and /pyː/ (i.e., standard and deviant syllable /piː/ across talkers and deviant syllable /pyː/). 

 

3.4.2 Learning and retrieving a new voice 

When comparing the post-training with the pre-training session, for the voice-change condition, 

the amplitude of MMN increased when untrained (i.e., in the group enrolled in the syllable-

identification training), but unexpectedly decreased when it was trained (i.e., in the group enrolled 

in the talker-identification training). Therefore, learning a new voice induced an apparent reduction 

– instead of an enhancement – of the MMN.  

Within the neural voice space, voices are thought to be represented as a function of the 

acoustic distance from a prototypical voice model, which is built and updated throughout the life-

course of individuals (Latinus et al., 2013). While the voice space is fundamental for the 

comparison between different voices, the training-based acquisition of familiarity with a voice 

results in the formation of a within-voice space in which the intra-talker variability is represented 

in relation to a mean voice identity representation (Lavan et al., 2019). Two fMRI studies showed 

that after voice identification training, right inferior frontal cortex and left superior temporal sulcus 

respond more weakly to identity-typical voices vs identity-atypical voices, indicating that the more 

a voice stimulus is near to the hypothetical value of the learned mean voice identity, the less these 

areas will be activated, independently of the position of the voices in the acoustic voice space 

(Andics et al., 2010, 2013). It is possible that in the context of our study, the presentation of the 

learned voice in the post-training EEG session may have triggered the activation of an acquired 
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mean voice representation to which the presented auditory instance was perceived as more 

identity-typical than it was at the pre-training session, thus determining a reduction of amplitude 

of the MMN. Yet, given the differences between indirect and direct measures of 

neurophysiological activity this hypothesis only represents an educated proposal that needs further 

testing. 

The absence of the enhancement effect is in contrast with one particular study that 

investigated automatic memory retrieval processes for familiar voices, in which Beauchemin et 

al., (2006) showed larger MMN responses for the French vowel /a/ pronounced by familiar than 

unknown voices. This inconsistency could be attributable to the different nature of the voice 

representations investigated in the two studies. While Beauchemin et al., (2006) used voices of 

family members or friends of the participants, in the present study, participants were familiarized 

with previously unknown voices through training. Recently familiarized voices acquired through 

training protocols are not fully akin to ecologically acquired voice identities (Maguinness et al., 

2018; Zäske et al., 2017) and appear to be dependent on separate neural networks (Birkett et al., 

2007; Zäske et al., 2017). Another crucial difference between the two studies is the linguistic 

context in which learning occurred: while it was native Beauchemin et al., (2006), in the present 

study a non-native linguistic environment prevented the influence of known linguistic information 

during voice learning. Different studies report enhanced MMN contingent to the presentation of 

native phonemes or words (Dehaene-Lambertz, 1997; Näätänen et al., 1997; Pulvermüller et al., 

2001; Shtyrov & Pulvermüller, 2002) and it was shown that listeners are able to learn how specific 

talkers produce phonemes (Eisner & McQueen, 2005) or whole words (McLaughlin et al., 2015) 

by establishing talker-specific phonetic and linguistic representations. Thus, it is also possible that 

the finding reported in Beauchemin et al., (2006) rather reflects the activation of a talker-specific 

phonetic memory trace for the deviant native phoneme. 

Two other similar studies showed no differences between MMN to familiar vs unfamiliar 

voices (Gustavsson et al., 2013; Plante-Hébert et al., 2017). In these two studies, authors used 

multiple different utterances as experimental stimuli and this methodological aspect may suggest 

that the enhancement effect indeed depends on the presence of specific linguistic information. This 

explanation would also be in line with the unexpected enhancement effects reported for the 

untrained stimuli of our experiment (i.e., the voice-change condition for the group enrolled in the 

syllable-identification training and the phoneme-change condition for the group enrolled in the 
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talker-identification training), which may reflect the retrieval process of a talker-specific phonetic 

memory trace for the tested phonemes.  

Considering the discrepancies between the results of the present study and the ones of 

Beauchemin et al., (2006) further research seems needed in order to better characterize the nature 

of recently familiarized and familiar voice representations as well as the impact of linguistic 

information on voice learning. 

 

3.4.3 Limitations 

The unexpected enhanced MMN for the untrained stimuli in both groups were possibly induced 

by passive exposure to the stimuli in the EEG recording. Different studies attempted to capture the 

effect of passive exposure on auditory change detection mechanisms. Studies with word stimuli 

showed that passive exposure may lead to enhanced MMN for novel tonal contrasts or tonal word-

forms within a single experimental session (L. Liu et al., 2018; Yue et al., 2014). Contrastively, 

other studies showed that while different training tasks can modulate the amplitude of MMN 

(Kraus et al., 1995; Tremblay et al., 1997), passive exposure alone is not sufficient to do so (Elmer 

et al., 2017; Sheehan et al., 2005). As described in Kurkela et al., (2019), the role of passive 

exposure in the modulation of the electrophysiological activity related to auditory change detection 

is still unclear. Therefore, the interpretation offered here only represents a speculative proposal 

that needs to be adequately addressed with further empirical inquiries. 

 

3.4.4 Final remarks and conclusion 

 The different modulation in the amplitude of MMN responses for trained voices and phonemes 

challenge the idea that phonemes and voices are retrieved from memory via shared retrieval 

processes. Interestingly, Schall et al. (2015) showed that, electromagnetic responses during active 

recognition of native speech and familiar voices start to diverge as early as 200 ms after speech 

presentation, irrespectively of the physical properties of the stimuli. Our data show that this 

functional dissociation may characterize also automatic memory retrieval processes as they occur 

in a compatible time window (i.e., ~200-250 ms). Moreover, these processes are possibly 

influenced by the way linguistic and vocal information are represented in the brain. 

 In conclusion, our results clearly show that the brain handles newly learned voices and 

phonemes differently. The automatic processes that retrieve vocal or linguistic information from 
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memory appear to be affected by experience in a different way, suggesting the presence of a 

functional dissociation since the early stages of speech perception.
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Chapter 4: Listeners Deal with Between-Talker Variability by 

Learning Talker-Specific Cues to Lexical Stress8 

A key challenge for listeners during speech perception is to deal with variability in the acoustic 

signal caused by differences between talkers. While previous research has mainly focused on 

segmental talker variability, less is known about how suprasegmental variability is handled. In the 

current experiment, we assessed/probed the use of a specific cognitive mechanism, perceptual 

learning, to deal with between-talker differences in lexical stress. In a learning experiment, 

participants heard Dutch minimal stress pairs (e.g., VOORnaam vs. voorNAAM, ‘first name’ vs. 

‘respectable’) spoken by two talkers. Talker 1 used only F0 to signal stress (with intensity and 

duration set to ambiguous), the second talker used only intensity. Crucially, a second group learned 

the reverse talker-cue mapping. Participants were then tested on words containing two conflicting 

cues to stress (mixed items). For example, F0 signaled initial stress (e.g., VOORnaam) while 

intensity signaled final stress (e.g., voorNAAM) in the same word. We found that, despite these 

conflicting cues, listeners used previously learned information about which talker used which cue, 

to correctly recognize the spoken words. That is, when listeners learned that Talker 1 used F0, the 

mixed item described above was perceived as bearing initial stress when produced by Talker 1. If 

in contrast, listeners learned that Talker 1 used intensity, the word was perceived as bearing final 

stress (and similarly for words produced by Talker 2). This confirmed the use of perceptual 

learning as a mechanism to deal with suprasegmental variability between talkers 

  

 
8 This chapter will be soon submitted to be evaluated for publication. The study has been conducted in collaboration 

with Giulio Severijnen (PhD student at Donders Centre for Cognition) dr. Hans Rutger Bosker (Max Planck Institute 

for Psycholinguistics) and Prof. James McQueen (Donders Centre for Cognition).  
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4.1 Introduction 

Individual differences between talkers lead to highly variable acoustic realizations of speech. For 

instance, consider the English noun ‘IMport’ (capitalization indicates lexical stress) being 

produced by a male and a female talker. Even though the word itself is identical, biological 

differences (e.g., size of the vocal tract), but also individual speaking styles can affect the acoustic 

realization of that word. Such variability can be found at the segmental level (vowels and 

consonants) and the suprasegmental level (e.g., intonation, lexical stress), and both types of 

variability have consequences for correct perception of the intended word. For example, perceiving 

different suprasegmental information (e.g., perceiving the other member of the minimal stress pair: 

the verb ‘imPORT’) may impede successful communication. The present study assessed how 

listeners deal with such variability. More specifically, we investigated the use of a cognitive 

mechanism, perceptual learning, to deal with between-talker variability in lexical stress. 

The presence of acoustic variability in speech has been widely established, and can be 

found at the level of individual segments (i.e., consonants and vowels). For instance, productions 

of vowels contain different formant frequencies depending on gender, age and regional dialects 

(Adank et al., 2007; Adank, van Hout, et al., 2004; Hillenbrand et al., 1995). Also, variability in 

voice onset time (VOT) of stop consonants has been found between talkers (Allen et al., 2003; 

Theodore et al., 2009). On top of these differences within acoustic cues, talkers even appear to 

differ in their cue-weighting strategies (for review, see Schertz & Clare, 2020). That is, speech 

sounds can be defined by a multidimensional cue space. For example, the /b-p/ contrast in English 

relies on multiple cues such as VOT, fundamental frequency (F0), and many more (Lisker, 1986). 

The relative importance of these cues in production differs between talkers depending on their 

native language (Lisker & Abramson, 1964), dialects (Kang, 2013), and individual speaking styles 

(Schertz et al., 2015), adding to the acoustic variability in speech. 

In addition to these differences in segmental structures, talkers also vary in how they 

produce suprasegmental (i.e., prosodic) structures, such as sentence intonation. In Dutch, for 

example, women produce questions using a wider pitch range compared to men (Haan & Van 

Heuven, 1999). Moreover, speech rate is affected by regional dialects in Dutch and gender (Quené, 

2008). In American English, Clopper & Smiljanic (2011) found differences in pause distributions 

and pitch accents between different dialects and genders. Finally, Xie et al. (2021) found that 

prosodic variability is not only present between large scale groups (e.g., dialects or gender) but 
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also on an individual talker level. More specifically, they recorded lexically identical declarative 

statements vs. questions (e.g., ‘It’s raining.’ vs. ‘It’s raining?’), produced in American English, 

and measured F0 and duration of the final syllable (i.e., ‘-ing’). Results indicated that individual 

talkers differed from each other in the category (statement vs. question) means and distributions 

for F0 and duration. In addition, talkers also differed in how correlated the cues were. In other 

words, individual talkers seem to produce prosodic information with variability within each cue, 

but also in how the cues are combined to produce the intended structure (i.e., cue-weighting).  In 

sum, talker variability is thus highly present in speech at both the segmental and suprasegmental 

level.  

The literature on speech perception suggests that listeners are able to exploit this talker-

specific cue use to correctly perceive spoken words, which has been attributed to multiple 

cognitive mechanisms. That is, listeners use normalization (Sjerps et al., 2011b), abstraction 

(McQueen et al., 2006) prediction (Brunellière & Soto-Faraco, 2013; Van Berkum et al., 2005), 

and perceptual learning (Eisner & McQueen, 2005) to deal with variability in the acoustic signal. 

Lehet & Holt, (2020) further illustrated that these mechanisms are applied in tandem, showing that 

normalization and perceptual learning operate at different levels of speech processing. Even 

though all mechanisms offer interesting solutions to the variability problem, the remainder of this 

study will focus on perceptual learning. 

Perceptual learning studies have demonstrated that listeners can change how they map 

acoustic input to perceptual categories of speech sounds. One of the many factors that can drive 

such perceptual learning is distributional information of acoustic cues (Idemaru & Holt, 2011, 

2014). For instance, Idemaru & Holt, (2011) found that listeners can change how much perceptual 

weight is given to different acoustic cues based on the distribution of those cues in the speech 

input. In their experiment, they exposed English participants to words containing voiced/voiceless 

plosives (e.g., beer vs. peer). They found that when the canonical relation between fundamental 

frequency (F0) and voice onset time (VOT) was reversed (a voiced plosive is normally signalled 

with a high F0 and long VOT, but voiced plosives were now signalled with a low F0), listeners 

down-weighted their reliance on the unreliable cue (i.e., F0), showing rapid adaptation to short-

term deviations in cue distributions. In addition to these adaptations to single talkers, listeners can 

also adapt to speech originating from multiple talkers (Eisner & McQueen, 2005; Kraljic & 

Samuel, 2007), making it a useful mechanism to deal with between-talker variability. This was 



Chapter 4 
 

71 

 

also illustrated by (X. Zhang & Holt, 2018), who adopted the same paradigm as Idemaru & Holt, 

(2011, 2014), but crucially included speech originating from two talkers differing in their F0 range. 

Results showed that the speech stimuli were perceived relative to the F0 range of each particular 

talker. More specifically, the same ambiguous F0 value was perceived as being higher in a low F0 

range talker, inducing more /beer/-responses, and vice versa for the high F0 range talker. Similar 

results were induced by modulating talker characteristics (i.e., stimuli spoken by a male or female 

voice) or by visual presentation of a male or female talker. In sum, these experiments illustrate 

simultaneous tracking of speaking styles from multiple talkers. 

While perceptual learning does indeed appear to be useful for dealing with talker 

variability, previous experiments have mostly studied it in relation to segmental variability. It 

remains largely unclear how perceptual learning is applied to suprasegmental variability between 

talkers. One of the few studies looking into this was performed by Xie et al., (2021), who examined 

the role of perceptual learning in the perception of questions vs. declarative statements. In their 

experiment, participants were exposed to segmentally identical phrases (e.g., It’s cooking {./?}) 

which, depending on the intonation contour, can either be perceived as a statement or a question. 

In the training phase, participants heard these phrases with ambiguous intonation contours, 

midway between a statement and a question, and received feedback on how to interpret them. 

Crucially, one group learned to perceive these ambiguous stimuli as statements (i.e., statement-

biasing) while a second group learned to perceive the same phrases as questions (i.e., question-

biasing). In a subsequent test phase, results showed that the statement-biasing group perceived the 

phrases more as statements while the question-biasing group perceived the phrases more as 

questions. This confirmed perceptual learning to deal with variability in one type of prosody: 

sentence intonation. 

Prosody can also influence perception at the lexical level, distinguishing different words 

For instance, lexical stress in free-stress languages, such as English and Dutch, can distinguish 

between segmentally identical words with contrastive stress patterns (e.g., ‘IMport’ vs. 

‘imPORT’). In Dutch, a stressed syllable is usually produced with a higher mean F0, longer 

duration, and greater intensity (Rietveld & Heuven, 2009). Moreover, spectral balance (Sluijter & 

van Heuven, 1996) and acoustic vowel reduction (van Bergem, 1993) have also been identified as 

cues to lexical stress in Dutch, but less so compared to English, where vowels in most unstressed 

syllables are fully reduced to schwa (Cutler, 1986). It is important to note that the acoustic cues to 
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lexical stress are not weighted equally in perception. Rather, when the word appears in an accented 

position in the sentence, the strongest cue to lexical stress is F0. When the word does not appear 

in an accented position, the strongest cue is duration, followed by spectral tilt, overall intensity 

and spectral expansion (Rietveld & Heuven, 2009). 

The importance of lexical stress in word recognition has been emphasized by a number of 

studies. First, Cutler & Van Donselaar, (2001) showed that, in Dutch, lexical stress is used to 

constrain lexical activation. They presented Dutch minimal stress pairs (e.g., VOORnaam vs. 

voorNAAM, ‘first name’ vs. ‘respectable’) in a lexical decision task testing repetition priming 

with stress-matching and stress-mismatching primes (e.g., target: VOORnaam; prime: either 

VOORnaam or voorNAAM). Results showed that only stress-matching primes facilitated target 

lexical decision as depicted by shorter RTs. Second, Reinisch et al. (2010) showed that Dutch 

listeners use lexical stress immediately to facilitate word recognition. In an eye-tracking 

experiment, they exposed listeners to temporarily overlapping word pairs (e.g., OCtopus vs. 

okTOber). When participants were presented with one of the word pairs (e.g., OCtopus), listeners 

fixated the target word (OCtopus) more often than the competitor (okTOber) well before the point 

of segmental disambiguation (i.e., the onset of the third syllable). This illustrates that even when 

lexical stress is not strictly necessary to disambiguate different lexical candidates, listeners use it 

to facilitate perception. Similar effects have been found in English Jesse et al. (2017) and Italian 

(Sulpizio & McQueen, 2012). 

As with sentence intonation, variability is also present in acoustic realizations of lexical 

stress. This was illustrated by Eriksson & Heldner, (2015), who measured acoustic cues (F0, F0 

variation, duration and spectral tilt) to lexical stress in English. They found several differences 

between talkers. First, the difference in mean F0 between stressed and unstressed syllables was 

larger for males compared to females. Second, females produced unstressed syllables with greater 

F0 variation and stressed syllables with longer durations than males. In addition to these gender 

differences, the speaking style (word lists, phrases or spontaneous speech) also modulated the 

abovementioned cues. For example, the effects of stress on mean F0 were smaller in spontaneous 

speech compared to word lists and phrases. Variation between gender and speaking styles has also 

been found in other languages such as Italian and Swedish (Eriksson et al., 2013, 2016).  

Nevertheless, an understudied question concerns how listeners deal with between-talker 

variability in productions of lexical stress. To our knowledge, only two studies have looked into 
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this. First, Bosker (2021) found evidence for perceptual learning in relation to suprasegmental cues 

to lexical stress in Dutch. In his experiments, participants heard ambiguous versions of minimal 

stress pairs (e.g., ambiguous between Dutch CAnon “canon” and kaNON “cannon”) in an initial 

exposure phase. These words were differentially disambiguated for two participant groups by 

orthographic word forms on the screen (e.g., canon induces a Strong-Weak (SW) bias while kanon 

induces a Weak-Strong (WS) bias). Results showed that participants in the SW-bias group indeed 

gave more SW responses while the WS-bias group gave more WS responses on a subsequent 

categorization test. Interestingly, perceptual recalibration was also found across segmentally 

differing words (e.g., using ambiguous versions of SERvisch “Serbian” vs. serVIES “tableware” 

in exposure). In sum, these experiments illustrate that listeners are able to adapt to variability in 

suprasegmental cues to lexical stress, and these adaptations are not tied to the episodic experiences 

with those words but seem to generalize across words. 

Second, Severijnen et al. (2021) investigated whether listeners can also adapt to variability 

in lexical stress in a talker-specific manner. In their experiment, consisting of multiple training 

phases and a final test phase, native Dutch participants learned to associate non-word minimal 

stress pairs to object referents (e.g., USklot referring to a lamp, usKLOT referring to train). The 

non-words were produced by two male talkers who, importantly, used only one cue to signal 

lexical stress in the non-words (e.g., Talker 1 used only F0, while Talker 2 used only intensity).  

In a subsequent test phase, participants heard semantically constraining carrier sentences (e.g., The 

word for lamp is USklot) containing either talker-congruent versions of the non-words (i.e., 

produced with the talker-consistent cues; Talker 1 using F0) or talker-incongruent versions, 

produced with mismatching prosodic cues (e.g., Talker 1 using intensity). Results from a yes/no 

sentence verification task showed that participants were slower to recognize the talker-incongruent 

versions compared to the talker-congruent versions. The authors concluded that the delayed 

processing was due to the talker-incongruent prosodic cues, picked up through talker-specific 

perceptual learning about which talker uses which cues to signal lexical stress in the training phase. 

Even though Severijnen et al. (2021) provided evidence for talker-specific learning of 

lexical stress, their results leave some open questions. First, while the critical result (longer 

response times to the talker-incongruent condition compared to the talker-congruent condition) 

illustrated that listeners were slowed down in perception, it does not necessarily inform us on how 

perceptual learning of prosodic cues actually influences which word is recognized. That is, the 
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target word in both conditions was identical, so the intended word would always be perceived 

regardless of the talker-cue mismatch. In fact, accuracy data in Severijnen et al. (2021) showed no 

difference between both conditions. An open question concerns how perceptual learning of 

prosodic cues can have consequences for word recognition (i.e., which word is perceived instead 

of how it is perceived). Second, even though the behavioral results illustrated perceptual learning 

of prosodic cues, there was no modulation of the N200, and ERP related to acoustic-phonetic 

processing (Connolly & Phillips, 1994), which might question the reliability of the obtained 

results. Third, the test stimuli in Severijnen et al. (2021) always contained only one cue to lexical 

stress. While this provided large experimental control, it does not address whether same learning 

mechanisms are at work when richer stimuli are used (i.e., stimuli involving multiple cues to 

lexical stress).  

The present study tried to fill these gaps, and aimed at providing further evidence for 

perceptual learning of lexical stress in Dutch. We ran an online experiment consisting of a training 

phase and a test phase. In the training phase, participants heard Dutch minimal stress pairs (e.g., 

VOORnaam vs. voorNAAM, ‘first name’ vs. ‘respectable’), produced by two male talkers. Similar 

to Severijnen et al. (2021), each talker used only one acoustic cue to lexical stress. For instance, 

Talker 1 used only F0 (with intensity and duration set to ambiguous values) while Talker 2 used 

only intensity (talker-cue mappings were counterbalanced across participants). In a two-alternative 

forced choice task (2AFC), participants were instructed to identify the correct member of the 

minimal pair, after which they received feedback on their responses. Based on the feedback, we 

expected participants to learn which cue was used by either talker. Note that no explicit feedback 

was given on the cues, we expected participants to learn them implicitly. After the training phase, 

participants were tested on the same word pairs in a 2AFC task. This test included, next to 

perceptually ‘clear’ (i.e., unambiguous) control items, also “mixed items”. These mixed items 

contained two conflicting cues to lexical stress, with F0 signalling one stress pattern, while 

intensity cued another. The crucial comparison then was how the perception of these mixed items 

was influenced by the talker-cue mappings learned in the training phase. 

We had two hypotheses for the present study. First, we predicted that participants would 

interpret the conflicting stress cues in the mixed items at test based on the learned information 

about which cue each talker tended to use. For example, if participants had learned that Talker 1 

used F0 in training and then heard a mixed item produced by Talker 1 in test (e.g., F0 signalling 
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SW, intensity signalling WS), they should prioritize the stress pattern being signalled by F0 (e.g., 

SW). In contrast, if participants learned that Talker 1 used intensity, they should – when presented 

with the exact same test word – prioritize the stress pattern signalled by intensity (e.g., WS).  

Three important differences should be noted between the present study and Severijnen et 

al. (2021). First, Severijnen et al. (2021) used non-words as stimuli, which has the benefit of 

removing any episodic experiences with the words prior to the experiment. While this adds 

experimental control, it leaves an open question of whether the same mechanism is at work with 

existing words. Therefore, the present study used existing Dutch words as stimuli. Second, the test 

items (i.e., mixed items) in the present study were acoustically identical, as opposed to the test 

items in Severijnen et al. (2021). This in turn, adds considerable experimental control to the present 

study by taking away any acoustic influences from the stimuli. Third, the mixed items in the 

present study contain multiple cues to lexical stress compared to the test items in Severijnen et al. 

(2021), which allowed us to observe whether the same learning mechanisms are at play in 

multidimensional stimuli. Fourth, the present study uses a different measure compared to 

Severijnen et al. (2021). That is, the present study examines the categorization responses instead 

of RTs, which serves as a more direct indication of word recognition. In sum, the present study 

tries to provide converging evidence using more realistic and controlled stimuli, with a more direct 

index of word recognition compared to Severijnen et al. (2021). 

 

4.2 Method 

4.2.1 Participants 

We recruited 85 native speakers of Dutch from the Radboud University participant pool. All 

participants gave informed consent and were paid or received course credits for their participation. 

Five participants were excluded because they responded before target word onset on 75% of the 

trials. We excluded these participants because responses before target word onset would not reflect 

any perceptual processes related to the task. The remaining 80 participants did not report to have 

any hearing and/or reading problems (71 male, 9 female, age range: Mage = 21.81, SDage = 3.76). 
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4.2.2 Stimuli 

The stimulus list consisted of Dutch minimal stress pairs that were segmentally identical but 

differing in stress pattern. The list consisted of four disyllabic (VOORnaam vs. voorNAAM, ‘first 

name’ vs. ‘respectable’; capitalization indicates lexical stress) and four trisyllabic word pairs (e.g., 

VOORkomen vs. voorKOmen, ‘to appear’ vs. ‘to prevent’) in which lexical stress lays on the first 

syllable (i.e., Strong-Weak; SW words) or on the second syllable (i.e., Weak-Strong; WS words). 

The words were identified through the CELEX database (Baayen et al., 1996) with matched word 

frequency between SW and WS words (t(14) = - 0.69, p = .49). See Table S5 in Appendix C for 

the complete stimulus list. 

 

4.2.3 Recordings 

The stimuli were recorded by two male native talkers of Dutch, naïve about the experiment 

purpose. The talkers were instructed to produce each member of the minimal pairs twice; once 

with stress on the first syllable, once with stress on the second syllable. Considering that the words 

would be presented in short carrier sentences in the experiment, the talkers were further instructed 

to produce each word as if it occurred at the end of a sentence. This was meant to induce sentence-

final prosodic properties in the recordings, such as F0-declination, intensity drop, and sentence-

final lengthening. In addition to, and separately from these words, we recorded several carrier 

sentences. More specifically, we recorded one semantically neutral sentence (Het woord is…, “The 

word is…) and two feedback sentences (Goed, het woord is…, “Correct, the word is…”; Fout, het 

woord is…, “Wrong, the word is…”). 

 

4.2.4 Stimulus manipulations 

We required two types of stimuli in the experiment. First, for the training phase, we needed stimuli 

in which only one cue signaled lexical stress (e.g., only F0 or intensity while the other cues were 

set to ambiguous values). These would be used as “control items”. Second, for the test phase, we 

needed stimuli that contained two conflicting cues to lexical stress, henceforth: “mixed items”. In 

these stimuli, the cues appeared in opposing directions such that one cue (e.g., F0) signaled a SW 

pattern while the second cue (e.g., intensity) signaled a WS pattern. Duration was always kept at 

an ambiguous value in all stimuli. 
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Control items  

The first step was to use the recordings to create the control items. The recordings were annotated 

using the automatic WEBMaus Basic Tool (Kisler et al., 2017) and were manually checked. For 

the manipulations of the control items, we followed the procedure in Severijnen et al. (2020). We 

used the recordings to measure three prosodic cues that signal lexical stress in Dutch: F0, intensity 

and duration (Rietveld & Heuven, 2009) for each syllable separately using Praat (Boersma & 

Weenink, 2019). First, we measured the mean F0 in the voiced part of the syllable (pitch settings: 

75 – 250 Hz). Second, we measured the mean intensity over the entire syllable using the ‘Get 

intensity’ function in Praat. Third, we calculated the syllable duration. Each cue was measured in 

stressed and unstressed syllables, for all items and both talkers. Next, we averaged across talkers 

and items to obtain mean values for clear SW and WS patterns. Additionally, we averaged across 

stressed and unstressed syllables to obtain a value of an ambiguous syllable for each cue. Lastly, 

we calculated step sizes for each cue by subtracting a clear stressed (SW or WS, depending on the 

first or second syllable) value from an ambiguous value (see Table 4). Given the large differences 

in syllable duration between disyllabic and trisyllabic words, we calculated the acoustic measures 

separately for those words. We then took the stressed syllable from each member of the minimal 

pairs (e.g., VOOR in VOORnaam, NAAM in voorNAAM, VOOR in VOORkomen, KO in 

voorKOmen) and applied the syllable-specific ambiguous settings using PSOLA in Praat (Boersma 

& Weenink, 2019). The syllables were then concatenated to create ambiguous versions of the 

words. In the trisyllabic words, the third syllable was also set to ambiguous duration and intensity 

values while the original F0 contour was kept. No further manipulations were performed on the 

third syllable, and it was then concatenated with the first two syllables. The resulting ambiguous 

stimuli were then taken as midpoint of the lexical stress continua that were created next. 

We created two 7-step continua for each minimal pair and for each talker by altering one 

prosodic cue (F0 or intensity) and keeping the rest ambiguous. The continua ranged from step 1 

(SW) to step 7 (WS) with the ambiguous stimulus in the middle (step 4). Note that we did not alter 

duration as a cue to stress but kept it at an ambiguous value in all the stimuli. We only needed two 

cues as variables, so we decided to drop duration to minimize durational variability in the stimuli. 

To create the F0 and intensity continua, we took the ambiguous stimulus as midpoint and created 

SW stimuli by increasing one cue in the first syllable by its step size and decreasing that cue in the 

second syllable (and vice versa for WS stimuli). For example, for the word pair VOORnaam vs. 
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voorNAAM, we created an F0 continuum in which F0 signaled clear SW and WS patterns with 

intensity and duration at ambiguous values. Similarly, we created an intensity continuum in which 

intensity signaled the stress patterns with ambiguous F0 and duration values. 

Based on auditory evaluation of the resulting continua by the first authors, we noticed that 

the acoustic manipulations did not always have the intended perceptual effect on all items. First, 

we noticed that an acoustically ambiguous value did not always correspond to a perceptually 

ambiguous stimulus. Second, we noticed that the used step size did not always result in clear 

stressed syllables. Note that, since only one cue signaled lexical stress, more extreme step sizes 

might be needed. Given these between-item differences, we opted for an item-specific 

manipulation. For each item, we increased/decreased the ambiguous value by the step size of that 

corresponding cue to obtain a new ambiguous stimulus. Also, the step size was increased if 

necessary (see Supplementary Table S6 and S7 in Appendix C for item-specific values). 

To make the stimuli sound as natural as possible, we performed two further manipulations. 

First, we replaced the original F0 contours with contours containing a linear F0-declination that 

was fixed across items. To find a plausible magnitude for the declination, we calculated the 

difference between the maximum and minimum F0 value in each syllable. We then averaged 

across words and talkers to obtain a mean value for each syllable separately. This yielded a 

plausible declination for each syllable (syllable 1: 28 Hz; syllable 2: 14 Hz). To create the contours, 

we calculated a new starting and end value for the pitch points. We took the mean F0 value in each 

syllable and added half of the declination magnitude to obtain the starting value (i.e., the new 

highest F0 value in the syllable). We subtracted half of the magnitude from the mean to obtain the 

end value (i.e., the new lowest F0 value). We then set the first pitch point in the syllable to the 

starting value, the last pitch point to the end value and interpolated the values between those. This 

resulted in linear contours with the magnitude of the declinations and with the mean F0 of that 

syllable in the middle. Second, the manipulations often led to jumps in F0 between syllables which 

resulted in artificially sounding speech. To reduce this, we smoothed the transitions between the 

syllables by inserting a 5 ms fade out at the end of a syllable and a fade in at the beginning of the 

following syllable. 

Finally, we ran two pretests on the stimuli to select the best steps along the continua 

following two criteria. First, the selected steps should signal clear SW and WS tokens of the words. 

Second, the selected steps should be comparable across talkers and cues. For example, the SW 
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token for Talker 1 using F0 should be comparable to the SW tokens for Talker 2 using intensity 

(and similarly for the rest of the talker-cue combinations). Given all the item-specific 

manipulations that were performed, the pretests thus verified whether the performed manipulations 

allowed us to select items following these criteria. For details on the pretests, see the first section 

of Appendix C. 

 

Table 4. Mean acoustic measures and step sizes of the prosodic cues in all syllables. No step sizes 

are given for the third syllable since no manipulations were performed on that syllable that required 

a step size. Also, two values are provided for duration in each syllable. These correspond to the 

duration values in disyllabic and trisyllabic words. 

  

Syllable  

 Strong-

Weak 

(SW) 

Ambiguous 

Weak- 

Strong 

(WS) 

Step 

sizes 

1st  

Duration(ms) 

Disyllabic 255 225 195 30 

Trisyllabic 212 199 186 13 

F0 (Hz)  130 122 113 8 

Intensity(dB)  71 69 66 3 

2nd  

Duration (ms) 

Disyllabic 369 399 429 30 

Trisyllabic 171 202 233 31 

F0 (Hz)  116 118 122 4 

Intensity (dB)  64 65 67 2 

3rd  

 

Duration (ms)  324 233 265 NA 

F0 (Hz)  108 112 114 NA 

Intensity (dB)  58 59 61 NA 
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Mixed items 

 Next, we used the data on the control items to create the mixed items. For each word and talker, 

we created items in which F0 signaled a SW pattern and intensity a WS pattern (F0-Intensity), and 

vice versa (Intensity-F0). This was done by combining two cue steps along the lexical stress 

continua of the control items. For example, for the mixed item voornaam, we took step 1 on the 

intensity continuum (syllable 1: 69 dB, syllable 2: 46 dB) and step 9 on the F0 continuum (syllable 

1: 94 Hz, syllable 2: 130 Hz). In the mixed item, these values were thus combined (syllable 1: 69 

dB, 94 Hz; syllable 2: 46 dB, 130 Hz). See Figure 7 for the spectrograms of the control and mixed 

items for one of the words in the stimulus set. 

Similar to the control items, we also ran a pretest on the mixed items to select the optimal 

combination of cue steps based on two criteria. First, when combining both cues (e.g., F0 signaling 

SW, intensity signaling WS) into one item, the overall stress pattern should be ambiguous. Second, 

when focusing on only one of the cues, a clear stress patterns should still be perceived (e.g., 

focusing on F0 should result in perception of SW). This pretest verified whether the items indeed 

met the two criteria and were thus suitable for the experiment. Results showed that the 

manipulations did not result in completely ambiguous words. Instead, we found that F0 was the 

more dominant cue in perception (for details on the acoustic manipulations and the pretest, see 

first section in Appendix C). Nonetheless, the mixed items resulted in more ambiguous responses 

compared to the control items, indicating that the two cues to lexical stress were interfering with 

each other. Therefore, we judged the items to be suitable for the main experiment. 
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Figure 7. Spectrograms of control items (F0-continuum, top row; intensity-continuum; middle 

row) and mixed items (bottom row) of one of the target words (voornaam), produced by Talker 1. 

The red lines indicate F0 tracks and the y-axis on the right-hand side, depicted in red, represents 

the scale for the F0 tracks. The blue lines indicate intensity contours and the y-axis on the right-

hand side, depicted in blue, represents the scale for intensity. 
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4.2.5 Procedure 

The experiment was built and hosted online using the Gorilla Experiment Builder 

(www.gorilla.sc). Participants first performed a headphone screening, allowing only participants 

who wore headphones to continue with the experiment, which consisted of a familiarization, 

training and a test phase. The familiarization phase ensured that participants were familiar with the 

pronunciations of the words and their definitions. The aim of the training phase was for participants 

to learn which talker used which cue to signal lexical stress in the control items. After the training 

phase, participants were tested on the mixed items, which would allow us to observe how 

perception of the mixed items was affected by the training phase. Participants assigned to one of 

the talker-cue mappings (e.g., Talker 1 used F0, Talker 2 used intensity and vice versa) and 

response position (e.g., SW item appearing on the left side, WS item on the right side and vice 

versa), all possible combinations were counterbalanced across participants. 

 

Familiarization phase 

 In the familiarization phase, participants were visually presented with orthographic word forms, 

definitions of each member of the minimal pair, example sentences with the words, and auditorily 

presented with the control items of the corresponding words. This ensured that participants were 

familiar with the stimuli before the training phase started. The trial structure was as follows. First, 

we visually presented the SW member of the minimal pair (e.g., VOORnaam) on the top left corner 

of the screen and auditorily presented its corresponding control stimulus. After 1500 ms, we 

presented the WS member on the top right corner with its corresponding control stimulus. Below 

the orthographic depictions of the words, we visually presented their definitions and below that an 

example sentence. After presentation of the orthographic word forms and control items, the task 

was self-paced and all the visual stimuli remained on the screen for the entire trial. Before 

continuing to the next trial, participants had to indicate using button presses whether they did not 

know one (or both) of the words. That information could be taken into account in the data-analysis 

of the results. 

 

Training phase  

In the training phase, participants were exposed to the control items embedded in carrier sentences 

(e.g., Het woord is VOORnaam, ‘The word is first name’), produced by both talkers (see Figure 

http://www.gorilla.sc/
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8a for the trial structure). Furthermore, we visually presented an image of the talker producing that 

sentence 700 ms before sentence onset and visually presented two response options (i.e., the two 

members of the minimal pair; VOORnaam and voorNAAM) 200 ms before sentence onset. Both 

remained on the screen until a response was given. Participants were instructed to respond with 

button presses ([Z] or [M] responding to the left or right response options, respectively) from target 

word onset to which member of the minimal pair they had heard. If no response was given after 

5s, the trial was recorded as a missing data point. After the response, we presented a feedback 

sentence (Goed, het woord is VOORnaam, ‘Correct, the word is first name’, or Fout, het woord is 

VOORnaam, ‘Wrong, the word is first name’). Participants were then visually instructed to press 

the correct button again based on the feedback. After their second response, they heard the target 

word one final time. Participants were presented with three repetitions of the target word in each 

trial. The next trial started after 1 s after the final auditory presentation of the target word. The task 

consisted of 192 experimental trials and was preceded by eight practice trials. The trials were 

presented in randomized order in 4 different counterbalanced lists and no word pairs were ever 

repeated in two consecutive trials. 

 

Test phase  

The test phase was identical to the training phase but differed on two aspects (see Figure 8b for 

the trial structure). First, the target words in the test phase were the mixed items instead of the 

control items. Note that we still included the control items in this phase on 50% of the trials to 

provide solid anchors of unambiguous items to participants. Second, participants did not receive 

feedback on their responses. That is, the next trial began 1 s after participants gave their response. 

The test phase consisted of 192 experimental trials and was not preceded by practice trials. The 

trials were presented in a pseudo-randomized order. That is, we ensured that a control and mixed 

items were not preceded by each other for the same word. 
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Figure 8. a. Trial structure of one trial in the training phase. b. idem, but for the test phase. 
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4.2.6 Data analysis 

Prior to data analysis, we calculated the percentage of timed-out trials (0.7%) and we excluded any 

trials with RTs below 100 ms relative to target word onset (0.5% of the trials). The latter was done 

for two reasons. First, due to an error in the experiment, it was possible for participants to respond 

before target word onset (i.e., before they heard the word). Since the response then does not 

represent any perceptual processes related to the target words, we decided to exclude these items. 

Second, RTs below 100 ms also capture trials on which the majority of the first syllable had not 

yet been heard in its entirety (shortest first syllable duration was 171 ms). Secondly, we analyzed 

familiarization data in order to check whether participants knew all the word stimuli they were 

presented during the experiment. This analysis showed that the 93% of participants knew at least 

14 of 16 words (41.3 % knew all words, 33.8 % knew 15/16 words and 18.8% knew 14/16 words) 

while only the 7% of participants knew less than 13/16 words.  

The analyses of categorization responses were twofold. First, we analyzed the mixed items 

in the test phase as a measure of how perception was affected by the training phase. In both models, 

we analyzed the binomial categorization responses (SW coded as 1; WS as 0) using a Generalized 

Linear Mixed model (GLMM) with a logistic linking function with the lmerTest package 

(Kuznetsova et al., 2017) in R (R Core Team, 2013). Second, we analyzed the control items from 

both the training and test phase to confirm that our participants correctly perceived the intended 

stress patterns in these items across both phases. Given the varying results on the familiarization 

task, we ran these analyses on the complete dataset and a dataset in which the unknown items were 

excluded. 

For the mixed items, we wanted to test whether the talker-cue mapping (e.g., Talker 1 using 

F0, Talker 2 using intensity) affected responses on mixed items depending on the Mixed Item 

Pattern (e.g., F0-Intensity, Intensity-F0) and who produced the mixed items (e.g., Talker 1 or 

Talker 2). This would entail testing a three-way interaction in the model between Mapping, Pattern, 

and Talker. However, to simplify the analyses, we created a new categorical variable with two 

levels (Predicted Response: Predicted SW or Predicted WS) that coded for this three-way 

interaction. Specifically, Predicted Response coded for what we expected the predicted response 

to be (Predicted SW or Predicted WS), depending on the three factors Mapping, Pattern, and 

Talker. For example, for the Mixed Pattern ‘F0-Intensity’ produced by Talker 1, our hypothesis 

was that participants who had learned that Talker 1 uses F0 should perceive this item as SW. In 
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contrast, participants who had learned that Talker 1 uses intensity should perceive the exact same 

item as WS.  

The model with the best fit to the data included the following factors: Predicted Response 

(categorical predictor with two levels, deviance coded with Predicted SW coded as -0.5 and 

Predicted WS coded as 0.5), Talker (categorical predictor with two levels, deviance coded with 

Talker 1 coded as -0.5 and Talker 2 coded as 0.5), Mixed Pattern (categorical predictor with two 

levels, deviance coded with ‘F0-Intensity’ coded as -0.5 and ‘Intensity-F0’ coded as 0.5), and Trial 

Number (continuous predictor). This last predictor was obtained by normalizing the original trial 

number for mixed items ranging from 1 to 96 obtaining proportion of trials ranging from 0 to 1 

within each individual participant. Furthermore, we included interactions between Predicted 

Response and Talker and Predicted Response and Trial Number. We also included random 

intercepts for Participant and Item, by-Participant random slopes for all the fixed factors and by-

Item random slopes for Predicted Response and Talker. Following the procedure in (Bates et al., 

2015), we optimized the random structure using Principal Component Analysis (PCA) on the 

models to obtain the structure that contained the minimally required factors to explain the largest 

variance. This avoided overfitting problems. The analyses were based on 7,554 observations. 

For the control items, the model with the best fit to the data (tested using log-likelihood 

model comparisons) included the following fixed factors: Pattern (categorical predictor with two 

levels, deviance coded with SW coded as -0.5 and WS coded as 0.5), Phase (categorical predictor 

with two levels, deviance coded with training phase coded as -0.5 and test phase coded as 0.5), 

Talker (categorical predictor with two levels, deviance coded with Talker 1 coded as -0.5 and 

Talker 2 coded as 0.5) and Trial Number (continuous predictor). Trial Number was normalized 

with the same method applied to mixed items but separately within each phase (Training, Test) 

containing 192 trials and 96 trials respectively. Furthermore, we included interactions between 

Pattern and Phase, Pattern and Trial Number, Phase and Trial Number, Pattern and Talker, and a 

three-way interaction between Pattern, Phase, and Trial Number. We also included random 

intercepts for Participant and Item with by-Participant random slopes for the factors Pattern, Talker 

and Phase and by-Item random slopes for Pattern and Talker. The random structure was optimized 

using the same approach as for the mixed items. The analyses were based on 22,775 observations 

in total.  
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4.2.7 Power analysis 

A power analysis was computed to estimate the minimal sample size required to reach a power of 

.80 by means of data simulation (Kumle et al., 2021). The final dataset of the experiment was 

simulated 1000 times each for different sample sizes (N=20,40,60,80) using the Mean and the 

Standard Deviation values for control and mixed items drawn from our pre-tests. The effect of 

Predicted Response was implemented as a small .05 difference in proportion of SW responses 

between the "Predicted SW" and the "Predicted WS" factor levels. For each simulation, the model 

including only "Predicted Response" as fixed effect and a by-participant random intercept was 

contrasted with a null model without the predictor including only a by-participant random intercept 

via a Chi-Square test and the p-value was retained. The proportion of significant tests represents 

the estimated power which corresponded to .858 (95% CI [.836 .858]) for the simulation with 

N=80.  

4.3 Results 

4.3.1 Mixed items 

The analysis of mixed items crucially tested whether participants applied their learning about how 

the two talkers signalled lexical stress to perceive spoken words with conflicting stress cues. 

Results for Mixed items are summarized in Figure 9 (e, f, g). Qualitative plots showing the results 

for Mixed items divided by Talker, Pattern/Predicted Response and Mapping are depicted in 

Figure 9b. The main effect of Predicted Response (β = -0.74, SE = 0.14, z = -5.20, p < .001) 

revealed a significant difference between Predicted SW and Predicted WS trials. As depicted in 

Figure 9f, participants showed a higher proportion of SW responses (light red bar) for the Predicted 

SW trials (Mean prop. of SW resp. = .59; SE = .01) and a lower proportion of SW responses (light 

blue bar) for the Predicted WS trials (Mean prop. of SW resp. =.49; SE = .01). This result illustrates 

that perception of identical Mixed items was affected by the learned information about which talker 

used which cue to signal lexical stress. 

Further, a significant main effect of Pattern was found (β = 1.42, SE = 0.27, z = 5.34, p < 

.001), showing that the F0-Intensity pattern (left bar in Figure 9e) was perceived as being more 

SW-biased compared to the Intensity-F0 pattern (right bar in Figure 9e). This demonstrates that 

participants weighed F0 as a cue to lexical stress more heavily than intensity, corroborating 

outcomes from pre-test 3 (see Supplementary Table S9). Importantly, our main effect of interest 
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(i.e., the effect of Predicted Response) was still present regardless of the effect of Pattern. The 

model also revealed a main effect of Talker (β = 0.44, SE = 0.18, z = 2.47, p = .014), showing that 

Talker 2 was perceived as being more SW-biased with respect to Talker 1.  

Lastly, a marginally significant interaction effect between Predicted Response and Trial 

Number (β = 0.36, SE = 0.19, z = 1.92, p = .055) was found. As shown in Figure 9e, while the 

predicted response Predicted SW was characterized by a negative tendency towards less SW-

biased response (Mean Slope = -0.14, SE = 0.14; descending light red line in Figure 9e), the 

predicted response Predicted WS showed the opposite trend (Mean Slope = 0.22, SE = 0.14; 

ascending light blue line in Figure 9e). 

No further effect reached significance. The results of this analysis were replicated in total 

also when the trials including words that participants reported not to know prior to the experiment 

were excluded (see Table S15 in Appendix C for complete model outputs). 

 

4.3.2 Control items 

The analysis of control items tested whether participants could categorize words with one clear 

cue to stress with acceptable accuracy in both the training and test phase. Results for control items 

are summarized in Figure 9 (c, d).   Qualitative plots showing the results for Control items divided 

by Talker, Pattern and Mapping are depicted in Figure 9a. The model revealed a significant effect 

of Pattern (β = -3.14, SE = 0.21, z = -15.00, p < .001), showing that participants could correctly 

perceive the stress cues for SW (Mean prop. of SW resp. = .80, SE = .009; red bar in the right plot 

of Figure 9d) and WS (Mean prop. of SW resp. = .22, SE = .01; blue bar in the right plot of Figure 

9d) patterns.  

A small interaction effect between Pattern and Phase (β = -0.44, SE = 0.15, z = -2.95, p = 

.003) was also found, suggesting a slightly reduced Pattern effect in the test phase compared to the 

training phase (see left plot in Figure 9d). Post-hoc tests confirmed the presence of a strong 

difference between the SW and the WS pattern both in the training (β = 3.18, SE = 0.20, z = 15.91, 

p < .001) and in the test phase (β = 3.15, SE = 0.20, z = 15.37, p < .001). Moreover, in the training 

phase, participants gave slightly more SW-biased responses for both the SW pattern (β = -0.17, 

SE = 0.06, z = 2.64, p = .011) and the WS pattern (β = -0.13, SE = 0.06, z = 2.11, p = .035). 

Another interaction effect between Phase and Trial Number (β = -0.64, SE = 0.13, z = -4.95, p < 

.001) was found as well as a main effect of Phase (β = 0.47, SE = 0.08, z = 5.70, p < .001). 
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The model of control items further showed a significant interaction effect between Pattern, 

Phase and Trial Number (β = -0.95, SE = 0.26, z = 3.68, p < .001) represented in Figure 9c. Post-

hoc comparisons were performed on the slope of Trial Number comparing the levels of Pattern 

(SW, WS) at each level of Phase (Training, Test) and comparing the levels of Phase within each 

level of Pattern. These tests revealed a significant difference in the slope of Trial Number between 

the SW and WS patterns in the Training (β = 0.52, SE = 0.15, z = 3.52, p < .001) but the same test 

was only marginally significant during the Test phase (β = -0.38, SE = 0.21, z = -2.00, p = .06). 

During Training, while the SW pattern was stable throughout the phase (Mean slope = -0.06, SE 

= 0.10; red line in left plot of Figure 9c), the WS pattern showed a negative slope (Mean slope = -

0.58, SE = 0.10; descending blue line in left plot of Figure 9c). This revealed that as the Trial 

Number went on, participants gave more WS responses to the items with a WS pattern. Conversely, 

in the test phase, the opposite tendency was found: while SW pattern was still stable (Mean slope 

= 0.10, SE = 0.15; red line in right plot of Figure 9c), showing no differences between training and 

test (β = 0.16, SE = 0.18, z = -0.90, p = .368), the WS pattern showed a positive slope (Mean = 

0.53, SE = 0.15; ascending blue line in right plot of Figure 9c) revealing that participants gave 

fewer WS responses as the test phase went on, differently from the training phase (β = -1.11, SE 

= 0.18, z = - 6.07, p < .001). No further effect reached significance. The results of this analysis 

were replicated in total also when the trials including words that participants reported not to know 

prior to the experiment were excluded (see Tables S12, S13, S14 in Appendix C for complete 

model outputs and post-hoc tests).  
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Figure 9. Qualitative plots (1st row) and plots of the effects (2nd row) of the proportion of SW 

responses (y-axis) split by different factors (x-axis). a. Qualitative plots for Control items averaged 

across participants, words and phases, separately for each Pattern (SW in red, WS in blue), Talker 

(1, 2) and Mapping (solid line indicates Talker 1: F0, Talker 2: Intensity; dashed line indicates 

Talker 1: Intensity, Talker 2: F0). Points indicate individual participants and error bars represent 

the Standard Error. b. Qualitative plots for Mixed items averaged across participants and words 

divided by Pattern (F0-Intensity, Intensity-F0), Talker (1, 2), Mapping (solid line indicates Talker 

1: F0, Talker 2: Intensity; dashed line indicates Talker 1: Intensity, Talker 2: F0) and Predicted 

Response (Predicted SW in light red, Predicted WS in light blue). Points represent individual 

participants and error bars represent the Standard Error. c. Interaction effect between Pattern, Task 

and Trial Number for Control items. Proportion of SW responses split by Task (Training, Test) 

and Pattern (SW in red, WS in blue). Individual points represent proportions of SW responses 

averaged across trials separately within each word and each participant. Superimposed lines 

represent the slope predicted by the model with hued 95% Confidence Intervals. d. Interaction 

effect between Pattern and Task (left plot) showing the proportion of SW responses split by Phase 

(Training, Test) and Pattern (SW in red and WS in blue). Main effect of Pattern (right plot) 

showing proportion of SW responses averaged across phases and split by Pattern. e. Interaction 

effect between Predicted Response¬, and Trial Number for Mixed items. Proportion of SW 

responses split by Predicted Response (Predicted SW in light red, Predicted WS in light blue 

Individual points represent proportions of SW responses averaged across trials separately within 

each word and each participant. Superimposed lines represent the slope predicted by the model 

with hued 95% Confidence Intervals. f. Main effect for Predicted Response. Proportion of SW 

responses divided by Predicted Response (Predicted SW in light red, Predicted WS in light blue) 

g. Main effect of Pattern. Proportion of SW responses divided by Predicted Response (F0-

Intensity, Intensity-F0). 
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4.4 Discussion 

We investigated whether listeners could adapt to between-talker variability in lexical stress by 

learning to associate specific stress cues to specific talkers. Our study showed that this was the 

case: through perceptual learning, participants mapped different cues to lexical stress to specific 

talkers and used this information to differentially categorize words (i.e., mixed items) with 

conflicting stress cues depending on this talker-cue mapping. This was evidenced in our statistical 

model by a main effect of Predicted Response, showing that participants gave responses biased 

towards the stress pattern category following the talker-contingent cue.  

Our findings are in line with previous studies showing talker-specific perceptual learning 

of segmental (Eisner & McQueen, 2005; Theodore & Miller, 2010; X. Zhang & Holt, 2018) and 

suprasegmental information  (Severijnen et al., 2021; Xie et al., 2021). The use of only one clear 

cue to lexical stress by different talkers in the training phase, which is a pattern that differs from 

the  canonical stress patterns in Dutch where F0 and intensity co-occur as stress cues in (Rietveld 

& Heuven, 2009), pushed participants to recalibrate the perceptual weights of suprasegmental cues 

in a talker-contingent way. Specifically, as they learned that Talker 1 used only intensity as cue to 

stress, they increased the weight of this cue in subsequent perception, while down-weighting F0 

when categorizing minimal stress pairs. This interpretation is coherent with the dimension-based 

statistical learning account (Idemaru & Holt, 2011, 2014; Lehet & Holt, 2017; R. Liu & Holt, 

2015; X. Zhang & Holt, 2018) which states that listeners exploit short-term acoustic regularities 

to adjust the efficiency of specific physical dimensions in signaling speech categories and extends 

the domain of the account to suprasegmental cues. As seen in Zhang & Holt (2018) and Xie et al. 

(2021), despite acoustic cues (i.e., intensity and F0) being equally distributed at the global level of 

the experiment (i.e., the number of trials in which intensity or F0 was the main cue to stress was 

identical), participants managed to track the regularities of both cues at the same time in a talker-

contingent way, separating them into distinct distributions. In our particular experiment, this 

talker-contingent cue tracking may have been driven by acoustic talker differences (e.g., 

pronunciation idiosyncrasies) in the carrier sentences and/or target words themselves, the visual 

talker cues (different cartoon images), or both (see Zhang & Holt, 2018).  

Following the dimension-based learning approach, listeners built talker-contingent weight 

sets based on the cue distributions picked up in the training phase, in which unambiguous words 

were presented. However, the learning process possibly continued throughout the whole 
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experiment, as illustrated by the results in the test phase. Even though the interaction between 

Predicted Response and Trial was only marginally significant, the difference between Predicted 

SW and the Predicted WS responses seemed to be gradually attenuated as the test phase went on 

(see Figure 9e). It is possible that the presence of mixed items weakly altered the talker-specific 

cue-distribution as they provided two conflicting cues to stress. Previous studies showed 

significant and more robust “unlearning” effects for talker-specific segmental information (Kraljic 

& Samuel, 2005) prosodic information (Kurumada et al., 2014) and most importantly for lexical 

stress (Severijnen et al., 2021). All of these studies showed that providing new talker-specific 

information at test, which may have been fully or partially incompatible with the one presented 

during the training phase, reactivated the learning process itself, inducing listeners to update 

perceptual weights. 

It is worth pointing out that minimal stress pairs are rare in Dutch, and sentential contexts 

in which both members of a pair are equally semantically and syntactically acceptable are even 

rarer. This contrasts with languages such as Spanish, where there are many minimal stress pairs 

with shared semantics and syntax (e.g., CANto ‘I sing’ vs. canTÓ ‘she sang’). Therefore, it could 

be considered surprising that Dutch listeners track talker-specific cues to lexical stress at all, as it 

may not provide a major advantage in Dutch spoken word recognition. However, the fact that we 

do find evidence for talker-specific tracking of suprasegmental cues to lexical stress in Dutch 

suggests that it is a relatively robust perceptual mechanism, which can likely also be found in other 

languages with free-stress such German and Spanish, presumably independent of the number of 

minimal stress pairs in a given language. This emphasizes the central role of lexical stress in 

spoken word recognition as well of perceptual learning in the perception of lexical stress. 

The results of the present study are well explained by speech perception models that 

include a belief-updating mechanism (Kleinschmidt & Jaeger, 2015; Norris et al., 2016; Norris & 

McQueen, 2008) that allows listeners to recalibrate perception in a talker-specific way. These 

kinds of models address the variability problem by describing speech perception as a probabilistic 

process. In these models, listeners behave either as optimal recognizers (Norris & McQueen, 2008) 

that use all their prior and present knowledge to understand speech, but also as ideal adapters 

(Kleinschmidt & Jaeger, 2015), able to recalibrate their prior knowledge to optimize recognition 

in future situations. Considering these two notions, listeners appear to have prior beliefs about the 

statistical distributions of phonetic cues in speech built through a lifetime’s experience. In our 
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specific case we can think about prior experience as pertaining the canonical distribution of stress 

cues in Dutch. Listeners can then learn the talker-specific cue distributions of novel talkers they 

have not encountered before and update their prior beliefs about the general distribution of cues 

by exploiting the structured variability (e.g., the consistent use of one or more cues to stress) in the 

utterances these novel talkers produce. The belief-updating feature of these frameworks relies on 

the need of listeners to update their prior knowledge. In other words, if the encountered lexical 

stress pattern differs from listeners prior beliefs (e.g., containing non-canonical cue-distributions), 

they should be pushed to change their knowledge about stress cues by recalibrating perceptual 

weights towards an optimal word recognition level.   

Note that the talker-specific perceptual learning mechanism in the present study might have 

occurred regardless of a need imposed by the experimental task. That is, the present study did not 

employ particularly ambiguous items in training that, unlike in classical perceptual learning 

paradigm, guide recalibration. To this regard, the Ideal Adapter Framework (Kleinschmidt & 

Jaeger, 2015) also predicts that listeners have beliefs about the amount of variability across 

different situations, and consequently between talkers. This prediction about a talker-specific 

uncertainty in cue distributions might suffice to listeners as an “internalized” need to adapt. 

Crucially, these class of models that postulate a belief-updating feature were developed to explain 

results from studies capitalizing on segmental information, and no model was yet developed to 

explain how listeners might deal with variability at the suprasegmental level. Our results might 

indicate that these models are appropriate to also explain how listeners perceive suprasegmental 

information and deal with variability in a talker-specific way.   

The present study goes beyond the findings of another similar study with non-word stimuli 

(Severijnen et al., 2021), suggesting that talker-specific learning of cues to lexical stress also 

applies to existing words. This is an important aspect to highlight as the results of the present study 

show that talker-specific learning is a mechanism that can exploit short-term regularities and 

supersede long-term information about previously known words. In addition, while in  Severijnen 

et al (2021) word recognition was indirectly assessed with RTs, that when delayed may suggest a 

processing difficulty induced by the presentation of an unexpected acoustic word form, in the 

present study spoken word recognition was directly assessed by studying word categorization. 

Moreover, in the present study we employed richer multidimensional test stimuli with two 

different cues with respect to Severijnen et al (2021). 
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 It would be interesting to understand whether talker-specific perceptual learning of 

suprasegmental cues generalized to previously unheard words (i.e., test words which are not 

included in the training stimuli) as seen in previous work on segmental information (Eisner & 

McQueen, 2005). This kind of generalization is considered as an index of a pre-lexical abstraction 

process by which the perceptual weights can be adjusted based on exposure to ambiguous words 

and then used to recognize new words (Cutler et al., 2010) and is incompatible with the episodic 

accounts of word recognition which postulate that listeners store detailed acoustic instances of 

heard words (Goldinger, 1998). Sulpizio & McQueen (2012) showed that listeners form abstract 

representations of lexical stress and recently Bosker, (2021) provided evidence for generalization 

of perceptual learning of lexical stress cues to new words.  

Our design did not test for generalization to new words in detail as the same lexical items 

were used for training and test phases but testing this possibility might be of interest for future 

studies. Nevertheless, our results do provide some indications of generalization of the learning 

process across word episodes, as mixed items were not encountered during training. To this regard, 

it is important to recall the physical differences between control and mixed items. Mixed items 

were not synthesized by directly splicing syllables of control items together (e.g., one intensity-

driven strong syllable and one pitch-driven weak syllable). In fact, physical levels of intensity and 

pitch in control items were drawn from different steps of the pilot-tested continua with respect to 

the mixed items. This was done to raise the level of ambiguity of mixed items for which less-

extreme steps (i.e., less SW or WS) were used with respect to control items. Second, while control 

items had one clear cue to stress (e.g., Intensity or Pitch) and two other cues put to ambiguous 

levels (e.g., Pitch and Duration or Intensity and Duration) mixed items had two conflicting cues to 

stress and only one ambiguous cue (i.e., duration). Thus, at test, participants were presented with 

words that were physically different from the ones they heard in training in which additional 

conflicting cues were present. If participants were to learn episodic instances of stressed words in 

the training phase without extracting talker-specific cue weights, they would not have shown 

differences between the Predicted SW and the Predicted WS patterns and possibly only the Pattern 

effect would have emerged, as it can be strongly linked to the physical characteristics of mixed 

items as shown in our pre-test (see Table S11 and Figure S11 in Supplementary Information).  

In sum, we showed that listeners can learn how two specific talkers signal lexical stress 

and apply that learning in recognizing subsequent tokens from the same talkers. Results fit well 
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with Bayesian models that predict that listeners can adjust their prior beliefs about phonetic cues 

on the basis of short-term regularities. Importantly, while such models have been developed to 

explain how listeners deal with segmental variability, the present study shows that they might also 

account for the way by which listeners deal with suprasegmental variability.   
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 Chapter 5: General Discussion 

The aim of the present dissertation was to study three different cognitive mechanisms that are 

fundamental for listeners to benefit from the integration of linguistic and talker-identity 

information or to deal with their intrinsic variability. The investigation of how such mechanisms 

work could be crucial to understand how listeners can correctly perceive speech while retaining 

both linguistic and talker-identity information as well as to clarify how these kinds of information 

interact.  

Previous studies on the abstraction mechanism in the domain of speech perception 

provided evidence that the listeners need active attentional effort in order to extract either linguistic 

or talker-identity information from the speech signal (Bonte et al., 2009, 2014; Kaganovich et al., 

2006; Mullennix & Pisoni, 1990; Zhang et al., 2016). Instead, other studies focused on the ability 

of the cognitive system to automatically extract linguistic information, while discharging listeners 

from dealing with (i.e., talker-related) non-linguistic information (Eulitz & Lahiri, 2004; Jacobsen, 

Schröger, & Alter, 2004; Jacobsen, Schröger, & Sussman, 2004; Shestakova et al., 2002). 

Following this last series of studies, the EEG and behavioural experiment reported in Chapter 2 

investigated whether listeners could form representations of the talker’s voice which remain 

invariant with respect to phonological information.  

First, EEG results of the passive task showed that listeners can pre-attentively form abstract 

representations of the talker’s voice regardless of constantly changing phonemes, as suggested by 

the elicitation of the MMN. Extending the  results of previous studies on abstract (i.e., talker-

invariant) phoneme representations (Jacobsen, Schröger, & Alter, 2004; Jacobsen, Schröger, & 

Sussman, 2004), this result shows that the abstraction mechanism can also be used to abstract from 

phonological information while retaining the talker’s voice.  

Second, this mechanism appeared to operate even when the formant structure encoding 

phonological information was disrupted, as suggested by the elicitation of the MMN with rotated 

speech. This suggests that the presence of meaningful phonological information is not required for 

the abstraction mechanism to work, thus indicating that this mechanism is not speech-specific, as 

also suggested by similar results obtained with complex tones (Huotilainen et al., 1993; Pakarinen 

et al., 2010). 
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Third, as indicated by enhanced behavioural performance and larger P3b in the speech 

condition of the active task, while at a pre-attentive level listeners appear to form abstract 

representations of voice irrespectively of the presence of meaningful phonological information, at 

an attentive level the presence of phonological information facilitated the detection of changes 

occurring in pitch, the primary dimension indexing talker-identity (Baumann & Belin, 2010). As 

indicated by enhanced power in the theta band for the speech condition, phonological information 

might have facilitated this task by providing access to pre-existing prototypical voice 

representations, which allowed listeners to encode talker-related information more efficiently, 

reducing the amount of cognitive resources needed. 

Similarly to abstraction, memory retrieval seems to be automatically deployed during 

speech perception. Indeed, the two mechanisms seem to unfold within a similar time-window. 

However, in contrast to abstraction which is portrayed as a general-domain ability (in Chapter 2), 

memory retrieval shows a certain degree of functional segregation depending on what kind of 

information is retrieved. Previous studies on the automatic retrieval of memory traces for 

phonemes and voices showed that familiar voices and native phonemes could be retrieved by 

means of shared processes when phonemes and voices were naturally acquired in a native 

linguistic environment (Beauchemin et al., 2006; Dehaene-Lambertz, 1997). The longitudinal 

EEG and behavioural study in Chapter 3 investigated whether newly learned phonemes and voices 

acquired in a non-native linguistic environment are retrieved by shared or segregated processes.  

First, as suggested by the different amplitude modulation of the MMN, the automatic 

retrieval process appears to be functionally dissociated for newly learned phonemes vs. voices, 

similarly as it also occurs when these two kinds of information are actively extracted from the 

speech signal with the support of selective attention (Schall et al., 2015). Second, the study 

successfully replicated EEG and behavioural findings of previous experiments that employed the 

listen-and-repeat paradigm to teach non-native phonological contrasts (Saloranta et al., 2020; 

Tamminen et al., 2015; Ylinen et al., 2010), corroborating its effectiveness.  

In Chapter 4, we studied perceptual learning from the behavioural point of view. This 

mechanism is rather complex and may depend on the synergic activation of more simple processes 

such as the ones investigated in previous Chapters 2 and 3. Previous studies on perceptual learning 

showed that listeners can learn how different talkers produce speech sounds. The majority of these 

studies focused on segmental information (Eisner & McQueen, 2005; Idemaru & Holt, 2011, 2014; 
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Kraljic & Samuel, 2007), but few studies also investigated perceptual learning of suprasegmental 

structures (Bosker, 2021; Xie et al., 2021). The behavioural study in Chapter 4 investigated 

whether listeners could learn how different talkers mark words lexical stress.  

First, results showed that listeners can indeed learn how different talkers mark lexical stress 

also when hearing existing words. As suggested by the Ideal Adapter Framework (Kleinschmidt 

& Jaeger, 2015), by exploiting the short-term distributions of talker-specific cues to stress, listeners 

could adjust the perceptual weights associated to those cues and use the updated weights for word 

categorization.  

Second, the learning process started in the training phase, when participants were exposed 

to words with clear cues to stress, but continued through the test phase, which included words with 

ambiguous cues. This highlights the flexibility of the cognitive system in re-adapting perceptual 

weights as soon as the distributions of cues are altered with respect to the a-priori distributions 

built during lifelong exposure to language.   

5.1 Temporal and computational features of the three mechanisms 

The results of the three empirical studies described in Chapters 2, 3 and 4 provide important 

insights about the temporal and computational features of abstraction, memory retrieval and talker-

specific perceptual learning, which may be informative for models of speech perception in which 

talker-related information is relevant. While we studied the three different mechanisms in 

isolation, some considerations can be made about their interplay, as all of them subserve similar 

purposes but with different functional specificities and domains.  

Abstraction is specifically useful for listeners when dealing with physical variability:  Its 

deployment results in forming a representation based on one main physical dimension that remains 

invariant with respect to changes occurring in other non-relevant dimensions. The study presented 

in Chapter 2 extends the domain of this mechanism: Listeners can automatically form phoneme-

invariant voice representations as they can form talker-invariant phoneme representations (Eulitz 

& Lahiri, 2004; Jacobsen, Schröger, & Alter, 2004; Jacobsen, Schröger, & Sussman, 2004; 

Shestakova et al., 2002). Hence, this result shows that listeners are equipped to face the lack of 

invariance problem (Liberman et al., 1967) also when they must identify the talker while hearing 

variable linguistic structures.  
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In line with our results, the automaticity of such processes was highlighted in a relevant 

fMRI study (Formisano et al., 2008). In this study, different vowels uttered by different speakers 

were passively presented to listeners while neurophysiological activity (i.e., BOLD signal) was 

recorded. By employing machine learning algorithms, authors managed to isolate the neural 

regions that contributed the most to a phoneme-wise classification of neural activity, independently 

of the talkers’ voices, but also to a talker-wise classification, independently of phonemes. Results 

showed that primary auditory cortices, which are associated with the early stages of speech 

perception (Kemmerer, 2015), were involved in the vowel-wise (i.e., phoneme-invariant) or in the 

talker-wise (i.e., talker-invariant) classification of stimuli. This study shows that clear patterns in 

neural signals indicating the formation of abstract phoneme and voice representations can be 

recorded also in absence of task demands and can be attributed to specific brain regions which 

should be involved in the early stages of sound perception. In Chapter 2, thanks to the high 

temporal sensitivity of EEG, we gathered direct evidence about the early occurrence of such 

processes also for the talker dimension.  

Moreover, the study in Chapter 2 also indicated that the formation of abstract voice 

representations could occur in absence of meaningful phonological information (i.e., with rotated 

speech) suggesting that this mechanism works in a similar way across different auditory domains. 

In line with our results, Huotilainen et al. (1993) and  Pakarinen et al. (2010) showed that listeners 

can automatically track sudden changes related to different and co-occurring physical dimensions 

at the same time, even in the case of complex tones (i.e., non-speech sounds). Specifically, 

Pakarinen et al., (2010) reliably recorded the MMN by implementing a no-standard oddball 

paradigm. In this oddball version, only deviant events are presented, as every stimulus is 

characterized by a variation in one specific physical dimension (e.g., intensity, duration, noise 

level). The elicitation of the MMN to each of the deviant types indicates that the stimuli were 

constantly grouped and re-grouped together based on one specific dimension (e.g., intensity) 

despite continuous changes occurring in other dimensions (e.g., duration). Additionally, this 

occurred for different dimensions within the same experiment, suggesting that listeners can form 

abstract representations of multiple sound features at the same time.  

This interpretation might lead the discussion towards two odd conclusions. If listeners can 

automatically take care of physical variability by forming abstract representations of different 

sound features very early in time, variability should not impact their behavioural performance 
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during phoneme categorization or talker identification tasks. Further, if listeners can isolate and 

track different sound features at the same time via bottom-up processes that depend on physical 

features of auditory stimulation, there could be no need for prior knowledge to provide categories 

in which information can be encoded to support such processes.  

Clearly, the first conclusion is in sharp contrast with an extensive literature showing how 

the extraction of linguistic and talker-related information interact at a behavioural level with 

positive (Bregman & Creel, 2014; Perrachione & Wong, 2007; Zarate et al., 2015) or negative 

(Kaganovich et al., 2006; Mullennix & Pisoni, 1990; C. Zhang et al., 2016) outcomes in terms of 

performance. Relatedly, in Chapter 2 we also show that when listeners are actively monitoring 

sound streams looking for changes in the talker’s voice, their behavioural performance is enhanced 

in the presence of meaningful phonological information with respect to when such information is 

disrupted in rotated-speech stimuli. This suggests that while abstraction may automatically occur 

early in time providing useful information to listeners, the active use of such information still 

depends on later controlled processes in which linguistic and talker-related information appear to 

interact.  

With respect to the second conclusion, in the discussion section of Chapter 2, we suggest 

that abstraction per se might relate to a primitive ability that represents the statistical distribution 

of different sound features within auditory streams (Batterink & Paller, 2019; Carral et al., 2005; 

Paavilainen, 2013; Saarinen et al., 1992). While prior experience may have limited influence on 

this low-level and general-domain process, it may show its influence when the extracted 

information must be linked to response categories as for phonemes and voices. To this regard, 

when listeners were actively asked to detect voice changes while ignoring phonological 

information (Chapter 2), we showed enhanced behavioural performances and P3b amplitude in the 

speech condition with respect to when phonological information was disrupted (i.e., rotated 

speech).  

With respect to the timeline of the integration of linguistic and talker-identity information, 

in the context of our study, their interaction starts to improve performance from ~300 ms from 

target onset onwards. The analysis of oscillatory activity suggested that this improvement might 

be due to better encoding strategies for speech, promoted by pre-existing voice and/or phoneme 

representations. Going back to the second conclusion, the influence of top-down processes driven 
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by prior knowledge is not absent but simply surfaces later in time and, more importantly, under 

the control of the listener.  

In Chapter 3, the influence of prior knowledge (instantiated via controlled training 

procedures) in supporting the extraction of phonological and talker-related information is observed 

earlier with respect to the results highlighted in Chapter 2, in a time window contingent to the one 

in which abstraction takes place. Such inconsistency might relate both to the complexity and the 

range of operations that the cognitive system was implementing in the two tasks, or to temporal 

differences in the activation of automatic vs volitional memory retrieval processes. In fact, in 

Chapter 2, to possibly access pre-existing voice representations in the active oddball task, listeners 

had to detect abstract regularities in the audio stream first, an operation that takes a certain amount 

of time. It is reasonable to assume that the cognitive system has computational limitations on the 

number of automatic processes operating on audio streams that can occur in parallel before a 

certain point in time without consequences on performance (Muller et al., 2005; Nager et al., 2003). 

These temporal limitations of automatic processes may consequently call for the intervention of 

selective attention mechanisms, and related cognitive resources, to orient listeners towards task-

relevant aspects of speech (Snyder & Alain, 2007; Sussman et al., 2014). The attentional process 

would thus take over the automatic mechanisms that are not completed before its activation. 

Conversely, when the cognitive system is simply presented with a sound as an instance of either a 

familiar talker voice or a native phoneme (see Chapter 3), it may be able to react faster and retrieve 

the representation automatically without the need to engage other mechanisms before memory 

retrieval.  

Moreover, given that both kinds of information are indexed by physical dimensions which 

occasionally overlap, the quick availability of representations highlighted in Chapter 3 would 

allow sound features and, most importantly, physical variability to be reconducted to specific 

sources. This possibility is considered crucial for the models explaining the language familiarity 

effect. Perrachione, (2017), sketched the phonetic familiarity hypothesis, which states that talker 

identification is improved when listeners hear their native language because of the familiarity with 

the distributions of native phonetic features, which can finally be attributed to meaningful 

phonemic contrasts. Certainly, Italian participants hearing German talkers and phonemes 

employed in the study of Chapter 3 did not have detailed knowledge about the distribution of 

phonetic features of German language. Yet, exposure to a non-native language can enhance the 
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language familiarity effect (Orena et al., 2015). While we do not directly test this hypothesis, we 

cannot exclude that hearing small texts and words in the experiment could have facilitated the 

establishment of talker-identity representations of non-native speakers. Lastly, considering how 

early the cognitive system analyses phonetic aspects of speech (Pereira et al., 2018; Shahin et al., 

2018), our result shows that already at 200 ms from stimulus onset listeners can associate acoustic 

features to representations of both talkers and phonemes. If listeners can identify which part of the 

signal are to be associated to phonemic properties, they could restrict the amount of variability in 

the signal that has to be attributed to talker-related information and vice-versa.  

Among the mechanisms studied within this dissertation, whereas Chapter 3 might highlight 

a potential first step for the integration of linguistic and talker-related information, the talker-

specific perceptual learning described in Chapter 4 represents the most evident connection between 

the two types of information. In fact, the aim of this mechanism is to gather information about how 

specific talkers produce specific linguistic structures which can be used in subsequent encounters 

with such talkers. The functional core of this mechanism is that listeners compute a talker-specific 

set of weights by which they can adjust their perception to correctly interpret acoustic cues during 

speech perception. However, we should not frame perceptual learning as a single mechanism, but 

rather consider it as a process in which different cognitive mechanisms work together to reach one 

common goal. Abstraction and memory retrieval might have a significant role in this workflow. 

Considering abstraction, several studies showed that perceptual learning generalizes to 

previously unheard words (Bosker, 2021; Cutler et al., 2010; Eisner & McQueen, 2005). Note that 

in Chapter 4, we do not provide indication of a generalization of talker-specific cues across the 

lexicon, but only indications of generalization across word episodes given the physical differences 

between training and test stimuli. Nevertheless, generalizing talker-specific knowledge about 

production idiosyncrasies across the lexicon means that if listeners can learn the way by which one 

talker produces, e.g., the /s/ phoneme by hearing specific words, they can apply what they learned 

to new word tokens. Hence, perceptual learning by definition would require abstract 

representations of linguistic structures (Cutler et al., 2010).  

Secondly, since perceptual learning is talker specific as it does not generalize across talkers 

(Eisner & McQueen, 2005), listeners need first to identify the talker to learn about its production 

idiosyncrasies and to apply what they learned in the future. Given that the talker, across different 

encounters, has to be identified by hearing different words, it is reasonable to assume that 
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perceptual learning also hinges upon abstract talker’s voice representations. Considering that also 

face stimuli can trigger talker-specific perceptual learning (Zhang & Holt, 2018), listeners might 

use different multimodal cues to understand who is speaking. Thus, the proposal that listeners need 

abstract voice representations only applies to situations in which the voice is the only available cue 

to talker identity.  

Additionally, both kinds of abstract representations must naturally be retrieved from 

memory, as well as the perceptual mapping between phonetic cues and representations. Given that 

during normal conversation the talker-cue mappings must be retrieved to recognize words, but also 

updated on the basis of new phonetic evidence, a fast and automatic memory retrieval mechanism 

would provide considerable support to talker-specific learning.  

5.2 Theoretical implications for models of speech perception 

The implications discussed in this section could provide initial insights for a model of speech 

perception that addresses the uptake of both linguistic and talker-related information as well as 

their interaction. The models of speech perception in which the talker information is used can be 

positioned on a continuum ranging from abstractionist accounts (Gaskell & Marslen-Wilson, 1998; 

McClelland & Elman, 1986; Norris, 1994; Norris & McQueen, 2008) – in which talker information 

is used to normalize the speech signal to access abstract phonological representations but is then 

discarded – to episodic models – in which listeners retain fine-grained phonetic information 

without needing additional signal transformations such as normalization or abstraction (Goldinger, 

1996, 1998; K. A. Johnson & Mullennix, 1997; Pierrehumbert, 2001).  

 Normalization is often considered as a basic process by which listeners can deal with 

between-talker variability. By stripping away talker-related information from the signal (Pisoni, 

1992; Sjerps et al., 2011a, 2019), listeners can access linguistic information encoded in abstract 

representations. The results we provide in Chapter 2 are not completely in line with the way in 

which abstractionist models would envisage normalization. In fact, these results suggest that 

talker-related information is not stripped away from the signal. Instead, listeners appear to 

automatically form an abstract representation of the talker’s voice equally as they do with 

phonemes (Formisano et al., 2008; Jacobsen, Schröger, & Sussman, 2004). One way to reconcile 

our results with the notion of normalization in abstractionist accounts is that listeners may use 

talker normalization to enhance the access to linguistic information, but possibly retain abstract 
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talker-related information which can be used for other purposes such as talker-identification 

(Lavan et al., 2019). 

These results would not be compatible with episodic models of speech perception 

(Goldinger, 1998) given the compelling evidence of the formation of abstract voice 

representations. Nonetheless, it is important to note that such results cannot account for the absence 

of episodic memory traces which are the information unit of this theoretical framework. Although, 

the results presented in Chapter 2 clearly advocate for the retainment of talker-related information, 

which is a fundamental feature of episodic accounts, in contrast with the abstractionist ones which 

advocate for its removal from the speech signal.   

Additionally, the importance of talker-identity information is highlighted by the results of 

Chapter 3, in which familiarizing with the talker allowed listeners to automatically retrieve a 

talker-identity representation. This feature could be useful to explain the talker-familiarity effect 

(Johnsrude et al., 2013; Nygaard et al., 1994; Nygaard & Pisoni, 1998), which further stresses the 

importance of talker-identity for word recognition. As stated with respect to the relationship 

between normalization and retainment of talker-related information, talker-familiarity and 

normalization do not need to be mutually exclusive, but can coexist. Relatedly, Magnuson et al. 

(2021) showed that despite talker-familiarity provided a significant advantage for word processing 

in noisy conditions, it could not alter the processing cost attributed to normalization, which was 

triggered by changes in the talker-identity. To this regard, in Chapter 3 we show that memory 

retrieval processes for phonemes and voice appear as functionally dissociated.  

 It would be difficult to interpret our findings using episodic models of speech perception, 

as the notion of abstraction is in sharp contrast with the idea that listeners only retain fine-grained 

episodic instances of speech tokens. We could not exclude that some kind of episodic components 

may have contributed to the results of the study in Chapter 3, as we provided no evidence for the 

abstractness of the retrieved memory traces for phonemes and voices. In fact, we are not endorsing 

a perspective in which episodic information is impossible to grasp or useless. With respect to this 

aspect, the Ideal Adapter Framework (Kleinschmidt & Jaeger, 2015) was developed to integrate 

abstract and episodic information and authors state that “some balance between complete 

abstraction and complete lack of abstraction is optimal”. The core assumption of this framework 

is that listeners benefit from having a set of abstract linguistic categories, but also from being able 

to flexibly adapt such categories to new phonetic cue distributions, which often relate to the 
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idiosyncratic way by which specific talkers — or group of similarly accented talkers — produce 

speech. This framework is particularly fitting with the results of the study in Chapter 4, in which 

we report evidence for talker-specific learning of cues to lexical stress in Dutch listeners. In the 

General Discussion we previously argued that talker-specific perceptual learning might crucially 

rely on abstraction and memory retrieval. While theoretically fitting with the framework, direct 

evidence about an involvement of such processes in perceptual learning is still lacking. 

5.3 Future perspectives and conclusion 

Taken together, the results of all the three studies presented in this dissertation suggest that future 

models of speech perception should put substantial efforts in describing how linguistic and talker-

specific information interact by providing precise computational and temporal specifications. First, 

we would like to stress the importance of establishing what kind of automatic processes are 

activated, considering both linguistic as well as talker-specific information as their target. It is 

likely that listeners often do pay attention to what is being said or to who is speaking. Critically 

though, listener cannot choose not to understand what is being said or to ignore who is speaking 

(Mullennix & Pisoni, 1990). Hence, the investigation of automatic processes might provide strong 

computational constraints for the development of new models of speech perception.  

 Second, once this feature is achieved, determining how listeners make an active and 

attentive use of the information which is automatically grasped by the cognitive system could 

elucidate the conditions by which the interaction between linguistic and talker-related information 

have positive or negative consequences for an accurate speech perception. While listeners can rely 

on several automatic mechanisms to deal with variability and to recognize words or talkers, their 

behaviour is often dictated by specific environmental requests. For instance, if listeners are 

requested to extract linguistic information, they surely need talker-related information as outlined 

in this dissertation but not all the information about the talker (e.g., social or biological 

characteristics). Therefore, they must orient their attention and deploy their cognitive resources in 

an optimal way, accordingly.  

 Future studies could investigate this specific issue and characterize the role of selective 

attention in guiding volitional processes during speech perception. In fact, the results presented in 

this dissertation would not allow to draw strong conclusions on attentive processes, and only 

provide initial insights about their involvement in the perception of voice changes in presence vs 
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absence of linguistic information. In particular, the study presented in Chapter 2 could be extended 

with a follow-up experiment in which participants perform a dichotic listening task with the exact 

same stimuli. In the new experiment, deviant stimuli would be presented either only at the right or 

left hear and participants would be asked to pay attention only to the stimulus delivered to one ear, 

while ignoring the other. In this way, participants would perform an active task where attention is 

engaged and automatically allocated to deviants across both streams of stimuli, but selective 

attention is directed only to one specific channel. This could allow to make a first differentiation 

between the automatic and volitional involvement of attention in the task of interest.  

 In conclusion, the experimental works presented in this dissertation highlight specific 

features of three cognitive mechanisms that allow listeners to benefit from the integration of 

linguistic and talker-identity information and to deal with their intrinsic variability. First, we have 

shown that listeners can form abstract representations of the talker’s voice which are invariant to 

changes pertaining phonological information. Further, we have suggested that the abstraction 

mechanism works similarly across different auditory domains. Second, we have shown that the 

automatic memory retrieval processes for linguistic and talker-identity information appear as 

functionally dissociated. Third, we provided evidence for the ability of listeners to learn how 

specific talkers produce specific linguistic structures by adjusting their perceptual weights 

associated to particular acoustic cues.  Finally, we have outlined specific temporal and 

computational features of the studied mechanisms which could be informative for the development 

of future models of speech perception that will adequately address the relationship between 

linguistic and talker-related information. 
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Figure S1. Differential waveforms of the ERPs for the passive oddball task for the speech (solid line) and 

the rotated speech (dashed line) calculated by subtracting deviant ERPs from control ERPs across all the 

electrode sites. 



APPENDIX A 

111 

 

 

  

Figure S2. Standard and deviant ERPs for the active oddball task for the speech (solid line) and the rotated speech (dashed 

line) across all the electrode sites. 
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Figure S3. Topographies show the spatial distribution of beta ERDs/ERSs averaged in contiguous 100 ms time 

windows, characterizing the ERSPs for Control and Deviant events (1st,2nd,4th,5th row) as well as the difference 

between them (3rd, 6th row) for the Rotated Speech (1st-3rd row) and the Speech condition (4th-6th row) for the passive 

oddball task. 
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Figure S4. Topographies show the spatial distribution of theta ERDs/ERSs averaged in contiguous 100 ms time 

windows, characterizing the ERSPs for Standard and Deviant events (1st,2nd,4th,5th row) as well as the difference 

between them (3rd, 6th row) for the Rotated Speech (1st-3rd row) and the Speech condition (4th-6th row) for the active 

oddball task. 
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Figure S5 Topographies show the spatial distribution of beta ERDs/ERSs averaged in contiguous 100 ms time 

windows, characterizing the ERSPs for Standard and Deviant events (1st,2nd,4th,5th row) as well as the difference 

between them (3rd, 6th row) for the Rotated Speech (1st-3rd row) and the Speech condition (4th-6th row) for the active 

oddball task.  
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Table S1. The table shows data of participants’ age (years), sex (F = Female, M = Male), years of 

education, hours of language use and self-reported level of proficiency for L2 averaged across 

written and oral skills (1 = really low; 10 = really high). Standard deviations are in brackets. 

 

 

Groups  

Talker-identification 

training 

Syllable-identification 

training 

Whole  

sample 

Age  21.53 (2.69) 22.53 (2.06) 22.03 (2.41) 

Sex  F = 13; M = 2 F = 13; M = 2 F = 26; M = 4  

Years of  

Education  
15.53 (2.47) 15.73 (1.98) 15.66 (2.20) 

Daily use of 

L2 (hours) 
4.63 (3.17) 3 (2.95) 3.89 (3.28) 

L2 proficiency 6.85 (0.69) 7 (1.26) 6.92 (0.95) 
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Table S2. Duration values in milliseconds of the recorded syllables from talkers 1 and 4. Syllables 

were selected on the base of duration similarity. The selected syllables were then manipulated and 

used for the EEG experiment. 

  

Syllable Talker Token Duration Selected 

/piː/ 

 
4 

1 290 ms Yes 

2 323 ms No 

3 272 ms No 

/piː/ 1 

1 283 ms Yes 

2 455 ms No 

3 425 ms No 

/pyː/ 

 
4 

1 293 ms Yes 

2 327 ms No 

3 275 ms No 
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Table S3. Word stimuli in the talker-identification training 

 

German English 

wann when 

Wahn delusion 

Seele soul 

Säle halls 

Bett bed 

Beet vegetable patch 

Mitte centre 

Miete rent 

Hülle cover 

Hölle hell 

losen to draw lots 

lösen to solve 

Nuss hazelnut 

nass wet 

jener that (m) 

jene that (n) 

Öhr needle’s eye 

Ur aurochs 

(Ich) bäte (I) prayed 

beten to pray 

Bete beetroot 

Lamm lamb 

lahm lame 
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Table S4. The mean MMN amplitude values calculated by group, by session by condition and by 

channel in the 215-255 ms time window for the voice-change condition and in the 199-239 ms 

time window for the phoneme-change condition. Standard deviations are in brackets. Asterisks 

show the level of significance (FDR corrected) of one sample t-test that compared Standard and 

Deviant events for every cell

Group Session Condition Fz  FCz  Cz  

Talker 

Identification 

Training 

Pre-training 

Voice-

Change 

-1.25 

(1.14) ⁎⁎⁎ 
-1.50 (1.08) ⁎⁎⁎ 

-1.11 (0.95) 

⁎⁎⁎ 

Phoneme-

Change 

-0.90 

(1.19) ⁎⁎ 
-0.90 (0.96) ⁎⁎ -0.57 (0.81) ⁎ 

Post-training 

Voice-

Change 

-1.04 

(0.68) ⁎⁎⁎ 
-1.19 (0.69) ⁎⁎⁎ 

-0.79 (0.64) 

⁎⁎⁎ 

Phoneme-

Change 

-1.08 

(0.95) ⁎⁎ 
-0.99 (0.94) ⁎⁎ -0.74 (0.85) ⁎⁎ 

      

Syllable 

Identification 

Training 

Pre-training 

Voice-

Change 

-1.12 

(0.73) ⁎⁎⁎ 
-1.17 (0.96) ⁎⁎⁎ 

-0.71 (0.59) 

⁎⁎⁎ 

Phoneme-

Change 

-1.20 

(0.88) ⁎⁎⁎ 
-1.21 (0.75) ⁎⁎⁎ 

-0.86 (0.59) 

⁎⁎⁎ 

Post-training 

Voice-

Change 

-1.40 

(0.83) ⁎⁎⁎ 
-1.39 (0.72) ⁎⁎⁎ 

-0.93 (0.63) 

⁎⁎⁎ 

Phoneme-

Change 

-1.34 

(0.70) ⁎⁎⁎ 
-1.26 (0.61) ⁎⁎⁎ 

-1.09 (0.65) 

⁎⁎⁎ 

⁎      p <0.05    ⁎⁎    p <0.01    ⁎⁎⁎ p <0.001 
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Pre-tests of experimental stimuli 

Control items pretests and stimulus selection 

In total, we ran two pretests on the control stimuli. Both pretests were built and hosted using the 

Gorilla Experiment Builder (www.gorilla.sc) and were two-alternative forced choice (2AFC) 

categorization experiment. Participants were presented with carrier sentences containing the target 

word in sentence-final position (e.g., Het woord is VOORnaam, ‘The word is first name’), and 

presented with two options on the screen (e.g., VOORnaam and voorNAAM). They were instructed 

to respond with button presses (left or right) to which word they had heard. The task was identical 

across pre-tests, but the target stimuli differed. 

In the first pretest, we tested the lexical stress continua (N = 18, Mage = 22.333, SDage = 

3.395). The aim of this pretest was to select the best steps along the continua following two criteria. 

First, we selected the steps that were most distinct from each other, serving as clear SW and WS 

tokens. Second, we selected the steps that were comparable across talkers and cues. For example, 

we ensured that the selected step that served as a SW token from Talker 1, using intensity would 

be similar to the SW token from Talker 2 using intensity, and similarly across cues. 

We thus tested all seven steps of the F0 and intensity continuum, for both talkers, for all 

eight items. The pretest also tested another 16 words that were eventually not used in the 

experiment. The experimental list thus contained a total of 672 stimuli, which was divided over 

two lists. In each list, participants heard all possible steps, cues and talkers for half of the words. 

Stimuli were presented in randomized order. 

To analyze the results, we calculated the proportion of SW responses on each step which 

provided an indication of how each step was categorized (Figure S6). This illustrated that across 

all words, there was a clear switch from SW to WS. Further, we calculated the proportion of SW 

responses divided by talker and cue, and divided by word. In contrast to the results across words, 

these results illustrated that not every word contained a clear switch. In addition, we found that the 

acoustically ambiguous step (step 4) was not always the perceptual ambiguous step for all the 

words.  

Since we did require clear SW and WS items as well as clear ambiguous stimuli for all 

items, we decided to create new continua based on the following strategy. First, based on the 

results, we took step 5 as the new acoustic middle. Second, we created more extreme steps to create 

http://www.gorilla.sc/
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clear SW and WS items. To achieve this, we increased the number of steps from 7 to 10. Using 

the same step size as in the 7-step continuum, we added steps to the extremes of the continua to 

obtain even more extreme versions of the items.  

The second pretest tested this new 10-step continuum for all the words (N = 18, Mage = 

22.222, SDage = 6.734). To reduce the number of stimuli in the Pilot 2, we only tested a subset of 

the items on the continuum, which were step 1, 3, 5, 6, 8 and 10. By testing these steps, we obtained 

information on whether (1) more extreme acoustic values would be perceived as clear SW and WS 

items (step 1 and 10) and (2) where the perceptual middle lied (step 5 or 6).  

Similar to pretest 1, we calculated the proportion of SW responses on all the steps across 

all items and separately for each word, talker, and cue. Overall, we found that the more extreme 

steps did not result in different categorization responses (see Figure S8). In contrast, the 10-step 

continua did confirm that the perceptual middle was step 6 rather than step 5.  

After extensive piloting, we thus obtained data for two lexical stress continua (7-step and 

10-step) for each cue, word, and talker. Based on these data, we selected the steps that best suited 

the two criteria (most distinct patterns and comparable across talkers and cues). Given the large 

variability in percentage of SW responses between items, we could not select one single step for 

each pattern across all items. We thus made the selection on an item-specific basis. Furthermore, 

we observed better results (i.e., results that better fitted our criteria) in the 7-step continuum for 

some words, and in the 10-step continuum for others. Therefore, we selected the continuum with 

the best perceptual data (7-step or 10-step), for each word separately, and chose the steps that met 

our criteria within that continuum. To ensure that the selection indeed fulfilled our criteria, we 

calculated the percentage of SW responses for each pattern (SW or WS) split by talker and cue 

(see Tables S3 and S4). This confirms that there was a clear switch between patterns which was 

comparable across talkers and cues.  

 

Mixed items manipulations, pretest, and stimulus selection 

To create the mixed items, we needed to select the optimal combination of steps along the continua. 

The resulting items had to meet the criteria of overall ambiguity and clear stress patterns when 

focusing on one cue. Using the results from the first two pretests, and based on auditory evaluations 

by the first authors, we created these items. 
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Manipulations involved several different steps. First, as starting point, we took the selected 

steps that best signaled clear SW and WS items, as evident from the pretests, and combined those 

values. For example, for the mixed item voornaam, we took step 1 on the intensity continuum 

(syllable 1: 69 dB, syllable 2: 46 dB) and step 9 on the F0 continuum (syllable 1: 94 Hz, syllable 

2: 130 Hz). In the mixed item, these values were thus combined (syllable 1: 69 dB, 94 Hz; syllable 

2: 46 dB, 130 Hz). Second, the resulting stimuli were evaluated by the first authors. We noticed 

that in these items, a certain threshold of F0 was required to compete with intensity as a cue. Third, 

we developed a new strategy for finding the optimal combination. Using this first version of the 

mixed items, we chose an F0 step that resulted in an overall ambiguous word and still signalled a 

clear pattern when focusing on only F0 (again, based on auditory evaluations). To find the best 

combination in mixed items, we took this F0 step and combined it with two different intensity 

steps. More specifically, it was combined with the most extreme step based on the perception data 

and one less extreme step. For example, if intensity signalled a SW pattern, we combined F0 step 

7 with step 1 and 2 for intensity. This allowed us to find, using one fixed F0 value, which 

combination with an amplitude value would serve as the best mixed item.  

The stimulus set thus contained two combinations of mixed items (the most extreme and 

one less extreme intensity step) for each pattern (F0-Intensity vs. Intensity-F0), for two talkers and 

for all words. Importantly, these combinations were always made based on data within one of the 

two pilots mentioned before. That is, a step from the 7-step continuum was always combined with 

one from the same continuum, never with another step from the 10-step continuum. Also, recall 

that we only tested steps 1, 3, 5, 6, 8, 10 in pilot 2. However, for these mixed items, we did make 

combinations with the ‘missing’ steps. We did this based on the assumption that steps that lie 

acoustically within this continuum would also be perceptually within the continuum.  

Next, we ran the final pretest in which we tested the different combinations of mixed items 

(N = 18, Mage = 21.166, SDage = 3.185). In addition, we used this pretest to assess the selected steps 

of the control items. This allowed us to observe how those items would be categorized in absence 

of a continuum. Also, they would serve as perceptual anchors of clear SW and WS items. The 

pretest was built and hosted using the Gorilla Experiment Builder (www.gorilla.sc) and the task 

was identical to the first two pretests. 

This pretest consisted of two separate blocks. In the first block, we tested only the control 

items in a randomized order. In the second block, we tested the mixed items. Additionally, we still 

http://www.gorilla.sc/
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provided the control items as anchors (on 50% of the trials) in this second block. The items were 

presented in a pseudorandomized order, ensuring that a mixed item for one specific word pair was 

never preceded by the control item of that word pair. 

Similar to the previous pilots, we calculated the proportion of SW responses for all items. 

That is, we calculated it for the control items (SW and WS tokens) and for all the combinations of 

mixed items (F0-Intensity, Intensity-F0; the most extreme intensity step, one less extreme step).  

Concerning the control items, results illustrated that there was a clear switch between SW 

and WS items. More specifically, the proportion of SW responses was 81% for SW items while it 

was 38% for WS items. Notably, the control items did not reach complete unambiguity (i.e., close 

to 100% or 0%). A possible explanation is that in contrast to normal speech, in which multiple 

cues signal lexical stress, these items only contain one cue. Hence, complete unambiguity might 

not be reached with these items. Still, we did not expect that this would cause problems in the main 

experiment. That is, there is still a large difference between the SW and WS items. In addition, the 

main experiment included feedback on participants’ responses, and we expected it to further 

increase the difference between SW and WS. 

 Concerning the mixed items, we found that perfect ambiguity could not be reached. As 

Table S11 and Figure S11 illustrate, the F0-Intensity items are perceived as more SW-like 

compared to chance-level while the Intensity-F0 items as more WS-like. This suggests that despite 

the presence of two cues, F0 is always perceived as the more dominant cue in these items. Still, 

the results did illustrate that the mixed items are perceived as less extreme than the control items, 

which confirms that the opposing cues conflict with correct perception of the stress patterns. 

Finally, we calculated the proportion of SW responses for the mixed items for each word separately 

and selected the ideal mixed item (i.e., the item that came closest to chance-level) on an item-

specific basis.  

 In sum, our stimulus set consisted of eight different minimal stress pairs. For each pair and 

for both talkers, we had a clear SW and WS item (control items), produced using either F0 or 

intensity, and two mixed items (F0-Intensity, Intensity-F0). 
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Table S5. Dutch words (in Dutch orthography, English translations and IPA transcription) that 

were used as stimuli. Capitalization indicates lexical stress. 

 

  

Dutch SW 

 item 

English SW 

 translation 

Dutch WS  

item 

English WS  

translation 

IPA 

transcription 

AANvaart (I) collide with aanVAARDT (I) accept anvart 

MISbruik Abuse misBRUIK (I) abuse mɪsbrɶyk 

SERvisch Serbian serVIES Tableware sɛrvis 

VOORnaam First name voorNAAM Respectable vɔ:rnam 

VOORkomen To appear voorKOmen To prevent vɔ:rkomɘn 

DOORlopen To move along doorLOpen To go through dɔ:rlopɘn 

VOORuitgang Front exit voorUITgang Progress vɔ:rɶtgɑɡ 

VOORuitzicht Front view voorUITzicht Prospect vɔ:rɶtzɪꭓt 



APPENDIX C 

126 

 

Table S6. Item-specific ambiguous values and step sizes of the three manipulated acoustic cues 

for Talker 1 

 

Word-pair Syllable Ambiguous value Step size 

  F0 Intensity Duration F0 Intensity 

AANvaart  

aanVAARDT 

1 122 69 226 8 2 

2 119 66 399 6 2 

MISbruik   

misBRUIK 

1 126 71 284 8 2 

2 116 64 339 3 2 

SERvisch   

serVIES 

1 126 71 284 16 2 

2 113 64 339 3 2 

VOORnaam  

voorNAAM 

1 126 71 255 8 2 

2 116 64 369 3 2 

VOORkomen 

voorKOmen 

1 126 71 236 8 2 

2 104 64 202 4.5 2 

DOORlopen  

doorLOpen 

1 122 71 224 8 5 

2 113 64 171 4.5 2 

VOORuitgang 

voorUITgang 

1 122 71 236 8 2 

2 110 64 171 6 2 

VOORuitzicht 

voorUITzicht 

1 122 71 224 8 2 

2 110 64 171 6 2 

 

. 
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Table S7. Item-specific ambiguous values and step sizes of the three manipulated acoustic cues 

for Talker 2 

 

  

Word-pair Syllable Ambiguous value 
Step  

size 

  F0 Intensity Duration F0 Intensity 

AANvaart   

aanVAARDT 

1 122 71 226 8 2 

2 113 64 399 3 2 

MISbruik   

misBRUIK 

1 122 71 284 8 2 

2 116 64 339 3 2 

SERvisch   

serVIES 

1 122 71 284 8 2 

2 113 64 339 4.5 2 

VOORnaam  

voorNAAM 

1 122 71 255 8 2 

2 116 64 369 6 2 

VOORkomen  

voorKOmen 

1 122 71 236 8 2 

2 113 64 202 4.5 2 

DOORlopen  

doorLOpen 

1 126 73 224 8 4 

2 113 59 171 4.5 2 

VOORuitgang  

voorUITgang 

1 126 71 224 8 2 

2 110 64 171 4.5 2 

VOORuitzicht  

voorUITzicht 

1 126 71 224 8 2 

2 110 64 171 4.5 2 
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Table S8. Pre-test 1 - Proportion of SW responses for each word pair of the selected steps from 

the 1-7 continuum and the 1-10 continuum, divided by Talker, Cue and Pattern. 

 

  

   Cue 

   Pitch Intensity 

 Pattern Pattern 

Word Pair Talker SW WS SW WS 

AANvaart 

aanVAARDT 

1 .8 .2 .77 .2 

2 .9 .2 .8 .3 

MISbruik 

misBRUIK 

1 .81 .45 .81 .18 

2 .72 .18 .90 .09 

SERvisch 

serVIES 

1 .9 .2 .9 .4 

2 1.0 .5 .9 .5 

VOORnaam 

voorNAAM 

1 1.0 .09 .45 0 

2 .90 .09 .81 .18 

VOORkomen 

voorKOmen 

1 .7 0 .8 .3 

2 .8 .4 .9 .4 

DOORlopen 

doorLOpen 

1 1.0 .18 .63 .09 

2 .90 .45 .72 .36 

VOORuitgang 

voorUITgang 

1 1.0 .18 .72 .27 

2 .72 .54 .81 .36 

VOORuitzicht 

voorUITzicht 

1 .72 .36 .72 .36 

2 .90 .36 .90 .27 
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Table S9. Pre-test 1 – Mean proportion and Standard Deviation of SW responses averaged across 

word pairs of the selected steps from the 1-7 continuum and the 1-10 continuum, divided by Talker, 

Cue and Pattern. 

 

  

  Pattern 

Talker Cue SW WS 

1 

Pitch 

.91 (SD = .11) .18 (SD =.18) 

2 .89 (SD = .07) .33 (SD = .13) 

1 

Intensity 

.76 (SD = .14) .21 (SD = .12) 

2 .88 (SD = .08) .26 (SD = .10) 
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Table S10. Pre-test 2 - Proportion of SW responses for each word pair of the selected combinations 

of steps divided by Pattern 

 

   

   Pattern 

Word Pair Talker F0-Intensity Intensity-F0 

AANvaart 

aanVAARDT 

1 .78 .57 

2 .66 .47 

MISbruik 

misBRUIK 

1 .73 .57 

2 .63 .63 

SERvisch 

serVIES 

1 .68 .36 

2 .63 .36 

VOORnaam 

voorNAAM 

1 .52 .36 

2 .55 .47 

VOORkomen 

voorKOmen 

1 .63 .36 

2 .78 .57 

DOORlopen 

doorLOpen 

1 .68 .47 

2 .73 .57 

VOORuitgang 

voorUITgang 

1 .78 .42 

2 .68 .38 

VOORuitzicht 

voorUITzicht 

1 .52 .57 

2 .47 .42 
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Table S11. Pre-test 2 - Proportion of SW responses for mixed items averaged across word pairs 

of the selected combinations of steps divided by Pattern. 

 

   Pattern 

Talker F0-Intensity Intensity-F0 

1 .67 (SD = .24) .46 (SD = .28) 

2 .64 (SD = .23) .49 (SD = .33) 
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Table S12. Output of the Model for Control Items with all words (left part) and without unknown 

words (right part) 

 

  

Control items - Exposure and Test 

  All words No unknown words 

Predictors 
Log-

Odds 
SE z p 

Log-

Odds 
SE z p 

(Intercept) 0.04 0.09 0.44 0.661 0.04 0.09 0.49 0.625 

Pattern -3.14 0.21 -15.00 <0.001 -3.12 0.21 -14.89 <0.001 

Phase 0.47 0.08 5.68 <0.001 0.49 0.09 5.60 <0.001 

Trial N (normalized) -0.00 0.06 -0.05 0.958 -0.02 0.07 -0.29 0.774 

Talker 0.12 0.18 0.67 0.500 0.15 0.18 0.80 0.424 

Pattern * Phase 0.44 0.15 2.95 0.003 0.49 0.16 3.09 0.002 

Pattern * Trial N -0.05 0.13 -0.38 0.703 -0.08 0.14 -0.60 0.551 

Phase * Trial N -0.64 0.13 -4.95 <0.001 -0.64 0.14 -4.65 <0.001 

Pattern * Talker 0.12 0.30 0.40 0.693 0.04 0.28 0.15 0.883 

Pattern * Phase * 

Trial N 

-0.95 0.26 -3.68 <0.001 -1.03 0.27 -3.76 <0.001 
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Table S13. Post-hoc tests for the Pattern x Phase interaction of the model for Control items with 

all words (left part) and without unknown words (right part). 

 

  

Control Items - Pattern x Phase Post-hoc tests 

 All words No unknown words 

Contrast Log-

Odds 
SE z p Log-

Odds 
SE z p 

SW training - 

WS training 

3.18 0.20 15.91 < .001 3.18 0.20 15.95 < .001 

SW test - 

SW training 

-0.17 0.06 -2.64 0.011 -0.18 0.07 -2.73 0.009 

WS test -  

WS training 

-0.13 0.06 -2.11 0.035 -0.16 0.07 -2.38 0.017 

SW test -  

WS test 

3.15 0.20 15.37 < .001 3.16 0.20 15.40 < .001 
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Table S14. Post-hoc tests for the Pattern x Phase x Trial Number interaction of the model for 

Control items with all words (left part) and without unknown words (right part). 

 

 

 

 

 

 

 

 

 

 

 

Control Items - Pattern x Phase x Trial Number Post-hoc tests 

 All words No unknown words 

Contrast Log-

Odds 
SE z p Log-

Odds 
SE z p 

SW training - 

WS training 

0.52 0.15 3.52 < .001 0.60 0.16 3.78 < .001 

SW test -  

SW training 

0.16 0.18 0.90 0.368 0.12 0.19 0.63 0.531 

WS test -  

WS training 

1.11 0.18 6.07 < .001 1.15 0.20 5.93 < .001 

SW test - 

 WS test 

-0.42 0.21 -2.00 0.06 -0.43 0.23 -1.92 0.073 
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Table S15. Output of the Model for Mixed Items with all words (left part) and without unknown 

words (right part) 

 

  

Mixed Items - Test 

  All words No unknown words 

Predictors 
Log-

Odds 
SE z p Log-Odds SE z p 

(Intercept) 0.18 0.11 1.68 0.092 0.17 0.11 1.58 0.115 

Predicted  

Response 

-0.74 0.14 -5.20 <0.001 -0.73 0.15 -4.77 <0.001 

Talker 0.44 0.18 2.47 0.014 0.44 0.17 2.60 0.009 

Pattern 1.42 0.27 5.34 <0.001 1.47 0.26 5.65 <0.001 

Trial N  

(normalized) 

0.04 0.11 0.37 0.712 0.03 0.12 0.27 0.787 

Predicted Response 

* Talker 

0.64 0.44 1.45 0.148 0.62 0.44 1.40 0.161 

Predicted Response 

* Trial N 

0.36 0.19 1.92 0.055 0.36 0.20 1.78 0.074 
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Figure S6. Pre-test 1 – Proportion of SW responses (y axis) along the 7-step continua averaged 

across participants, Talkers and Cues. Grey lines refer to individual word pairs while thick black 

lines represent the average across word pairs. Error bars represent the standard error.  

  



APPENDIX C 

137 

 

 

Figure S7. Pre-test 1 – Proportion of SW responses (y axis) along the 7-step continua averaged 

across participants divided by Talker and Cue. Grey lines refer to individual word pairs while thick 

black lines represent the average across word pairs. Error bars represent the standard error.  
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Figure S8. Pre-test 2 – Proportion of SW responses (y axis) along the 7-step continua averaged 

across participants, Talkers and Cues. Grey lines refer to individual word pairs while thick black 

lines represent the average across word pairs. Error bars represent the standard error.  
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Figure S9. Pre-test 2 - Proportion of SW responses (y axis) along the 10-step continua (steps 

1,3,5,6,8,10) averaged across participants divided by Talker and Cue. Grey lines refer to individual 

word pairs while thick black lines represent the average across word pairs. Error bars represent the 

standard error. 
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Figure S10. Pre-test 1&2 – Proportion of SW responses (y axis) averaged across word pairs of the 

selected steps from the 1-7 continuum and the 1-10 continuum, divided by Talker, Cue and Pattern. 

Error bars represent the Standard Error. 
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Figure S11. Pre-test 3 - Proportion of SW responses (y-axis) averaged across word pairs and 

participants of the selected combinations of steps divided b
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