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Abstract

We study a family of surfaces of general type with pg = q = 2 and K2 = 7, originally
constructed by C. Rito in [Rit18]. We provide an alternative construction of these surfaces,
that allows us to describe their Albanese map and the corresponding locusM in the moduli
space of surfaces of general type. In particular we prove that M is an open subset, and it
has three connected components, all of which are 2-dimensional, irreducible and generically
smooth

1 Introduction

In the last two decades, several authors worked intensively on the classification of irregular
algebraic surfaces (i.e., surfaces S with q(S) > 0) and produced a considerable amount of
results, see for example the survey papers [BaCaPi06,MP12,Pen13] for a detailed bibliography
on the subject.

In particular, irregular surfaces of general type with χ(OS) = 1, that is, pg(S) = q(S) ≥ 1
were investigated. By Debarre inequality [Deb81, Théorème 6.1] we have pg ≤ 4. Surfaces with
pg = q = 4 and pg = q = 3 are completely classified, see [Bea82, CaCiML98, HP02, Pir02]. On
the other hand, for the the case pg = q = 2, which presents a very rich and subtle geometry, we
have so far only a partial understanding of the situation; we refer the reader to [Cat00,Cat11,
Cat15,CH06,Pen09,PePol13a,PePol13b,PePol14,PePol17,Pig20,PiPol17,PRR20,Zuc03] for an
account on this topic and recent results.

As the title suggest, in this paper we consider a family of minimal surfaces of general type
with pg = q = 2 and K2 = 7. The existence of these surfaces was originally established by
Rito in [Rit18]; the present work provides an alternative construction of them, that allows us
to describe their Albanese map and their moduli space.

Our results can be summarized as follows.

Theorem 1.1. The Gieseker moduli space Mcan
2, 2, 7 of the canonical models of the surfaces of

general type with pg = q = 2 and K2 = 7 contains three pairwise disjoint open subsets, all
irreducible, generically smooth of dimension 2, such that for each surface S in them, the Albanese
map is a generically finite double cover onto a (1, 2)-polarized non simple abelian surface A.

It is worth to notice here, that there is only another known family of surfaces of general
type with pg = q = 2 and K2 = 7 found by Cancian and Frapporti in [CanFr15] and described
in details in [PiPol17] whose elements have a different Albanese map. Namely, the Albanese
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map is a generically finite triple cover of a principally polarized abelian surface. Hence, being
the degree of the Albanese map a topological invariant (see Proposition 5.1), these families
provide a substantially new piece in the fine classification of minimal surfaces of general type
with pg = q = 2 in the spirit of [Cat84,Cat89,Cat90].

The paper is organized as follows.
In Section 2 we explain our construction in details, pointing out the similarities and the

differences with [Rit18], and computing the invariants of the resulting surfaces (Proposition
2.2). We study their Albanese map, giving a precise description of its image, which is an
abelian surface isogenous to a product of two curves of genus 1, and of its branch curve.

In Section 3 we use our description to study the modular image of Rito’s family, showing
that it has three connected components, all irreducible of dimension 2.

The last two sections contain results of deformation theory headed to compute h1(S, TS) = 2
(Proposition 5.7) from which it follows that each component is open and generically smooth in
the moduli space.

Section 4 is devoted to a general result, Theorem 4.2, about the deformations of the blow-up
at a point, that was crucial for the proof and that we find of independent interest. The situation
is the following: consider a point p in a smooth surface B, a curve D in B smooth at p and a
vector v ∈ TpB. A standard exact sequence associates to v a first-order deformation B of the
blow-up of B in p. Then Theorem 4.2 says that B contains a first-order deformation of the
strict transform of D if and only if the class of v in the normal vector space TpB/TpD extends
to a global section of the normal bundle of D in B.

Finally Section 5 is devoted to the study of the first-order deformations of the surfaces in
M. To show h1(S, TS) = 2, we show in fact that the map H1(S, TS)→ H1(A, TA) is injective,
and its image is given by the first-order deformations of A that are still isogenous to a product.

Acknowledgments. Both authors were partially supported by GNSAGA-INdAM.

Notation and conventions. We work over the field C of complex numbers. By surface
we mean a projective, non-singular surface S, and for such a surface KS denotes the canonical
class, pg(S) = h0(S, KS) is the geometric genus, q(S) = h1(S, KS) is the irregularity and
χ(OS) = 1− q(S) + pg(S) is the Euler-Poincaré characteristic.

2 The construction

In this section we give an alternative, but equivalent, construction to the surface S of general
type with pg = q = 2 and K2 = 7 constructed by Rito in [Rit18].

Let us fix the following points on P2 :

p0 = (1 : 0 : 0), p1 = (0 : 1 : 0), p2 = (0 : 0 : 1), p3 = (1 : 1 : 1), p4 = (1 : a : b).

Moreover, let us denote by ri with i = 1, . . . , 4 the four lines joining p0 with each pi respectively,
i.e.,

r1 = (x2), r2 = (x1), r3 = (x1 − x2), r4 = (bx1 − ax2),

and the two conics:
C1 = (x2

0 − x1x2), C2 = (abx2
0 − x1x2).

Note that both conics are tangent to r1 and r2 respectively in p1 and p2. Finally, p3 ∈ C1 and
p4 ∈ C2.
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Figure 1: σ0 : Blp0(P2) −→ P2
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Fix a square root c of ab and consider the following points on the curves we have just defined

p5 =(1 : −1 : −1), p6 =(1 : −a : −b),
p7 =(c : a : b), p8 =(1 : c : c), p9 =(−c : a : b), p10 =(−1 : c : c).

Finally, let ` = (x0) be the line through p1 and p2 and t = (2x0 − x1 − x2) be the tangent line
to C1 through p3, see Figure 1 to have a visual representation of the situation.

Up to now, we followed Rito in [Rit18], changing the notation only for the curve t (R in
Rito’s notation). Now, we proceed a bit differently. Let us apply the following birational
transformations of P2:

1. We blow up the point p0 and we get σ0 : Blp0(P2) −→ P2 with exceptional divisor E0 (see
Figure 1 again).

Considering the pencil of lines through p0 on Blp0(P2) we have a rational pencil of curves
with self-intersection 0, which include the strict transforms of the four lines ri, i = 1, . . . , 4.
We notice that on Blp0(P2) we can lift the natural involution on P2

j : (x0 : x1 : x2) 7→ (−x0 : x1 : x2)

obtaining an involution whose fixed divisor is E0 + σ∗0(`).

2. The quotient by this involution Blp0(P2)/j is the Segre–Hirzebruch surface F2.

The images of the four lines ri are fibres of the fibration on F2. Moreover, the only negative
section of this fibration coincide with the image of E0.

3. We blow up on F2 the images of the points p1 and p2, introducing two exceptional divisors
E1 and E2.

We recall that the images of the lines r1 and r2 and of the conics C1 and C2 pass all through
these points. Performing this operation the images of r1 and r2 became (−1)-curves (see
Figure 2).

4. We contract the images of the curves r1 and r2. The resulting surface is exactly P1 × P1.

Summarizing we have obtained a rational map of degree 2

σ : P2 99K P1 × P1.

We denote with the same letters the strict transform on P1×P1 of all the curves considered
on P2, since no confusion arises (see Figure 3). The bidouble cover of P1×P1 with ramification
divisors

D1 = 0, D2 = E1 + E2 + r3 + r4, D3 = C1 + C2 + E0 + l,

is the product T1 × T2 of two double covers φj : Tj → P1 branched at 4 points, two curves of
genus 1 (see Figure 3).

The fibre product of the bidouble cover T1 × T2 → P1 × P1 with σ gives the bidouble cover
of P2 studied in [Rit18][Section 3, Step 1], where it is shown that it is birational to an abelian
surface that we denote by A (it was V ′ in [Rit18]). We can summarize this construction with
the following diagram.
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Figure 2: The blow up on F2 of the images of the points p1 and p2
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Figure 3: Contracting r1 and r2 we find P1 × P1

P2

2:1
��

A

ι 2:1
��

π

22:1
oo

F2

��

T1 × T2

22:1yy
P1 × P1

Note that the map ι : A→ T1 × T2 is an isogeny of degree 2.
We see from Figure 3 that the strict transform of the curve C1 is tangent to the curve

t on P1 × P1 at a point p. Locally near p the bi-double cover T1 × T2 → P1 × P1 is given
by the equations u = x2, v = y2, C1 has equation u = 0 and t has equation u = v2. The
reduced transform of C1 on A (that we still denote by C1) has equation x = 0 and the reduced
transform of t (that we still denote by t) has equation x2 = y4, therefore it has a tacnode
(singularity of type (2, 2)). So the divisor t+ C1 is reduced and has a singularity of type (3, 3)
(compare [Rit18][Section 3, Step 2]).

Remark 2.1. We see that we recover the construction due to Rito [Rit18] of an abelian surface
with a (1, 2)-polarization, Please notice that in [Rit18] the abelian surface A was labelled by V ′

and the curves C1 and t by Ĉ1 and R̂.

In [Rit18] it is shown that the divisor t+ C1 is even, i.e. there is a divisor L such that

t+ C1 ≡ 2L,

and that
(t+ C1)2 = 16.
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We give an alternative proof of the 2-divisibility of t + C1 in Pic(A) in the forthcoming
Proposition 3.6. where we also describe all divisor classes L such that t+C1 ≡ 2L. In particular
Proposition 3.6 shows that L is a polarization of type (1, 2) which is a pull-back of a (product)
principal polarization via the isogeny A→ T1 × T2.

This is exactly the situation described by the first author and F. Polizzi in [PePol13a, Remark
2.2]. There the authors suggest how to construct a surface with pg = q = 2 and K2

S = 7 as a
generically finite double cover of A branched along a divisor as t+C1. We follow the suggestion
closely and we summarize the situation with the following special case of [Rit18, Proposition 1]

Proposition 2.2. Let A be an Abelian surface. Assume that A contains a reduced curve whose
class is 2-divisible in Pic(A), whose self intersection is 16, with a unique singular point of type
(3, 3)-point and no other singularity. Then there exists a double cover S → A branched along
this curve. Moreover, the numerical invariants of S are pg(S) = q(S) = 2 and K2

S = 7.

In our case the branch divisor is C1 + t.
Let us now construct S step by step starting from A.

1. First, we resolve the singularity in p. To do that, we need to blow up A twice, first in p
and then in a point infinitely close to p. Let us denote these two blow ups by

B′
σ4−→ B

σ3−→ A.

On B′, let us denote by F the exceptional divisor relative to σ4, by E′ the strict transform
of the exceptional divisor E relative to σ3, by C1 the strict transform of C1 and, finally,
by R the strict transform of t (see Figure 4).

In addition, one gathers the following information: E′ ∼= P1 and (E′)2 = −2, F ∼= P1 and
F 2 = −1, g(C1) = 1 and C2

1 = −2.

2. Second, we consider a double cover of β : S′ −→ B′ ramified over R + C1 + E′ (this is
even since t+C1 is even on A). The surface S′ is a surface of general type, not minimal.
Indeed, it contains a −1-curve, which is Ê = β−1(E′). The ramification divisor is denoted

R̂+ Ĉ1 + Ê. Notice that Ĉ1 has genus 1 and Ĉ1
2

= −1.

3. Finally, to get S we contract the −1-curve Ê.

We can summarize the construction of S with the following diagram.

S′

��

β // B′

σ4
��

S

α
  

B

σ3
��
A

We note that since α is the Albanese morphism of S, we obtained in particular that the
Albanese variety of these surfaces is isogenous to a product of elliptic curves:

Proposition 2.3. The Albanese variety A of the surface S is isogenous to a product via an
isogeny ι : A→ T1 × T2 of degree 2.
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Figure 4: The birational map σ3 ◦ σ4 : B′ → A

3 Rito’s family has three components of moduli dimension 2

The surfaces S are constructed by a configuration of plane curves determined by two parameters
(as noticed already in [Rit18, Section 3, Step 4]), that we denoted by a, b, and a choice of a
linear system |L| such that |2L| contains the divisor |C1 + t|. So there are 24 possible choice
for L, since we can always add to L a 2−torsion line bundle. In this section we prove that the
family has three connected components, all irreducible of moduli dimension 2.

Definition 3.1. Denote by M the locus of the surfaces S above in the Gieseker moduli space
of the surfaces of general type.

The isogeny ι induces two fibrations fi : A −→ Ti with fibres Λi, i = 1, 2 (the fibres are
connected by the forthcoming Lemma 3.4).

Remark 3.2. We label the the ramification points of φ1 : T1 → P1 as a1, a2, a3, a4 using Figure

3 as follows.
φ1(a1) be the projection of the line labeled E1

φ1(a2) be the projection of the line labeled E2

φ1(a3) be the projection of the line labeled r3

φ1(a4) be the projection of the line labeled r4
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Similarly, we label the the ramification points of φ2 : T2 → P1 as b1, b2, b3, b4 so that
φ2(b1) be the projection of the line labeled C1

φ2(b2) be the projection of the line labeled C2

φ2(b3) be the projection of the line labeled l
φ2(b4) be the projection of the line labeled E0

Both fibrations have been considered in [Rit18, Section 3, Step 3]. The fibration f1 is the
pull back of the pencil of the lines through the point p0 and aj corresponds to the line rj .
So, the branching points of φ1 correspond to the lines r1, r2, r3 and r4, that, in the natural
coordinates, give the 4 points (1 : 0), (0 : 1), (1 : 1) and (a : b), with cross-ratio a

b .
The fibration f2 is given by the pencil of conics tangent to the lines ri in the points pi,

i = 1, 2: b1 corresponding to the conic C1, b2 corresponding to C2, b3 corresponding to 2l,
b4 corresponding to r1 + r2. Writing this pencil as 〈x2

0, x1x2〉 we get a parametrization of P1

such that the branching points of φ2 have coordinates (1 : 1), (1 : ab), (1 : 0) and (0 : 1), with
cross-ratio ab.

We deduce the following

Proposition 3.3. Every connected component of M has dimension 2.

Proof. The base of the family of the surfaces S has a finite proper map on an open subset of
C2 given by the parameters (a, b). So, if C is any irreducible component of it, dim C = 2.

The relative Albanese morphism maps C to the moduli space of the Abelian surfaces with a
polarization of type (1, 2). By Proposition 2.3 the image of C is contained in the 2−dimensional
subvariety I of those isogenous to a product of curves. Since these curves are double covers
of P1 branched at 4 points with cross-ratio respectively a

b and ab the general pair of curves of
genus 1 appears in the image of C: the map C → I is generically finite and therefore dominant.

Since isomorphic manifolds have isomorphic Albanese varieties, C → I factors through the
moduli space of the surfaces of general type, and then the moduli dimension of C is 2.

We can now determine the isogeny. Recall that an étale double cover of a variety is
determined up to isomorphism by a 2−torsion line bundle on it, the anti-invariant part of
the direct image of the structure sheaf of the cover. Moreover for {i, j, h, k} = {1, 2, 3, 4},
OT1(ai − aj) ∼= OT1(ak − al) and OT2(bi − bj) ∼= OT2(bk − bl) are the 2−torsion line bundles on
the curves T1, T2.

Lemma 3.4. The anti-invariant part of ι∗OA is isomorphic to OT1(a4 − a3)�OT2(b2 − b1).

Proof. By Remark 3.2 we can write every 2-torsion line bundle on T1 × T2 as OT1(ai − aj) �
OT2(bk − bl). We compute separately each factor by restricting to a fibre of type Λ1 resp.
Λ2. In fact, restricting the isogeny to a fibre of type Λ1 (respectively Λ2) we obtain an étale
double cover of T2 (respectively T1) given by the restriction of the above bundle OT2(bk − bl)
(respectively OT1(ai − aj)).

We did the computation by using the fibres over a3 and b1.
First consider the curve r̂3 := f−1

1 (a3) ⊂ A, we need to show that the anti-invariant part of
(ι|r̂3)∗Or̂3 is OT2(b2 − b1).

It is invariant by the (Z/2Z)2 action on A given by the bidouble cover π, and in fact r̂3

lies in the locus of the fixed points of one of the three involutions. Thus π induces a nontrivial
involution on it, whose quotient is the double cover r̂3 → r3 branched on p3 + p5 + p8 + p10 (see
Figure 1). Note that this implies that r̂3 is connected so k 6= l.

The involution j acts on r3 permuting those points as p3 ↔ p5, p8 ↔ p10 lifting to an
involution on r̂3 without fixed points. Taking the quotient we get a commutative diagram

9



r̂3

π

��

ι // T2

��
r3

σ // P1.

Let us call qj the ramification point in A of π|r̂3 mapping to pj . Then ι(q3) = ι(q5) = b1,
ι(q8) = ι(q10) = b2. So ι∗OT2(b2 − b1) = Or̂3(q8 + q10 − q3 − q5) ∼= Or̂3 : this implies the claim.

The analogous computation for the elliptic curve C1 = f−1
2 (b1) leads to consider the 4 points

on the corresponding conic cut by the lines r3 and r4, permuted by j as p3 ↔ p5, p7 ↔ p9. A
fully analogous computation leads to ι∗OT1(a4 − a3) ∼= OC1 completing the proof.

Recalling that the kernel of ι∗ : Pic(T1 × T2)→ PicA is a subgroup of order 2 generated by
the antiinvariant part of ι∗OA, we deduce

f∗1 ā⊗ f∗2 b̄ ≡ f∗1 ā′ ⊗ f∗2 b̄′ ⇔ either (ā, b̄) = (ā′, b̄′) or ā+ a4 ≡ ā′ + a3 and b̄+ b2 ≡ b̄′ + b1 (1)

that can be written equivalently as

f∗1 ā⊗ f∗2 b̄ ≡ f∗1 ā′ ⊗ f∗2 b̄′ ⇔ either (ā, b̄) = (ā′, b̄′) or ā+ a4 ≡ ā′ + a3 and b̄+ b3 ≡ b̄′ + b4 (2)

Proposition 3.5. We have

C1 + t ∈ |f∗1 (a4 + a3) + f∗2 (b3 + b1)|

Proof. We compute
t = π∗t ≡ π∗l = f∗1a1 + f∗1a2 + f∗2 b3

and the result follows since C1 = f∗2 b1, a1 + a2 ≡ a3 + a4.

It follows that we have the following description of the 16 possible linear systems L.

Proposition 3.6. |L| varies among the linear systems |f∗1 ā⊗ f∗2 b̄| where ā and b̄ solve one of
the following

1) either 2ā ≡ 2a3 and 2b̄ ≡ b4 + b1

2) or 2ā ≡ a4 + a3 and 2b̄ ≡ b3 + b1

Notice that each of the two systems of equations has 16 distinct solutions (ā, b̄), divided
in pairs by the equivalence relation (1); so it gives 8 distinct linear systems. We get then 16
different possible choices of |L| as expected.

Proof. If (ā, b̄) solves the system 2), then 2(f∗1 ā + f∗2 b̄) ≡ f∗1 (a4 + a3) + f∗2 (b3 + b1) ≡ C1 + t
by Proposition 3.5. If (ā, b̄) solves the system 1), then 2(f∗1 ā+ f∗2 b̄) ≡ f∗1 (2a3) + f∗2 (b4 + b1) ≡
f∗1 (a4 + a3) + f∗2 (b3 + b1) again by (2).

So all these linear systems are possible choices. Since they are 16, they are all possible
choices.

We observe that a3 ∈ T1 and b1 ∈ T2 are the images of the essential singularity of the
branching curve of the Albanese map of S.

Inspecting the linear equivalences in Proposition 3.6 we observe that in all cases OT2(b̄− b1)
is a 4− torsion line bundle. On the contrary OT1(ā− a3) is a torsion line bundle whose torsion
order may change: it is 4 in case 2) whereas in case 1) there are two possibilities: it may be
2 or 1. Recalling that we have two pairs (ā, b̄) for each choice of |L| (and then for each S) we
deduce the following natural decomposition of M.
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Definition 3.7. We say that a surface S ∈ M is of type j if the minimal (among the two
possible choices of ā) torsion order of OT1(ā− a3) is j.

By Proposition 3.6 the values that j assumes are 1, 2, 4.
Setting Mj for the subset of M of the surfaces of type j we observe that each Mj is open

and therefore we have decomposed

M =M1 ∪M2 ∪M4

as union of disjoint not empty open subsets.

Now we prove that each Mj is irreducible.

Definition 3.8. We denote (as usual) by M1,3 the moduli space of the curves of genus 1 with
three ordered marked points. We are not assuming the points to be distinct.

We denote an element of M1,3 as (C, x, y, z) where C is a curve of genus 1 and x, y, z ∈ C.
We denote by Nj , j ∈ {1, 2, 4} the subvariety of M1,3 ×M1,3 of the form(

(T1, a3, a4, ā) ,
(
T2, b1, b2, b̄

))
such that

1. OT1(a4 − a3) and OT2(b2 − b1) are torsion line bundles of torsion order 2.

2. OT2(b̄−b1) is a torsion line bundle of torsion order 4 such that OT2(b̄−b1)⊗2 6∼= OT2(b2−b1).

3. if j = 1: ā = a3

if j = 2: ā 6= a4 and OT1(ā− a3) is a torsion line bundle of torsion order 2

if j = 4: OT1(ā− a3)⊗2 ∼= OT1(a4 − a3)

Note the correspondence among conditions 1, 2, 3 and almost all solutions of the equations
Proposition 3.6. The only solutions that do not have a counterpart here are those with ā = a4.
This is the reason for the map in the next statement to have a different degree for j = 1.

Proposition 3.9. For each j = 1, 2, 4 there is a proper finite surjective morphism

mj : Nj →Mj .

Moreover mj is birational if j = 1 whereas degmj = 2 if j = 2 or 4.

Proof. We construct the map mj .
For every

(
(T1, a3, a4, ā) ,

(
T2, b1, b2, b̄

))
∈ Nj we consider the isogeny ι : A → T1 × T2 given

by the 2-torsion bundle OT1(a4 − a3)�OT2(b2 − b1).
Now we construct a bidouble cover π : A 99K P2 as in Rito’s construction.
We consider each Tj with the group structure such that a3 and b1 are the respective neutral

elements. This fixes an action of the Klein group K ∼= (Z/2Z)2 as group automorphisms of
T1 × T2 by (z1, z2) 7→ (±z1,±z2).

Then we choose a point p ∈ ι−1(a3, b1) and consider A with the group structure such that
p is the neutral element, so that ι is a group homomorphism. Considering the analogous action
of the Klein group on A we get a commutative diagram

A

/K

��

ι // T1 × T2

/K
��

D // P1 × P1
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where the vertical maps are quotients by K.
The bidouble cover T1 × T2 → P1 × P1 is ramified at the union of 8 elliptic curves, mapping

to the four 2−torsion points on each factor, including a3, a4 on T1 and b1, b2 on T2. We note
that the 2-torsion bundle OT1(a4 − a3) �OT2(b2 − b1), when restricted to them, is not trivial.
This implies that their preimage on A, ramification locus of the 8 : 1 morphism A→ P1× P1 is
again union of 8 elliptic curves naturally labeled as a1, . . . , a4, b1, . . . , b4.

A direct computation shows that the Klein group of A acts on each of them, action that
is faithful exactly on the curves labeled a1, a2, b3, b4. So the branch locus of the double cover
D → P1 × P1 is the image of them, union of 4 rational curves, two on each ruling. Therefore
D is a Del Pezzo surface of degree 4 with 4 nodes. Solving the 4 nodes we obtain a weak Del
Pezzo surface with a configuration of 8 rational curves whose incidence graph is an octagon with
alternating self intersections −1 and −2: the strict transforms of the ramification lines have self
intersection −1 whereas the exceptional curves have self intersection −2.

-1

-1

-1

-1

-2
-2

-2-2

Now we consider, among the −1 curves in the octagon, the one ‘labeled’ b3: contract first
the other three −1 curves and then the two exceptional curves now of self intersection −1: the
resulting surface is P2 and the remaining three sides of the octagon map to three lines, let’s
call them l (the one coming from the −1-curve “’b3”), r1 and r2. The preimages of the lines of
P1 × P1 labeled a3, a4, b1, b2 are respectively two lines r3 and r4 and two conics C1, C2 forming
the configuration of curves in Figure 1.

Notice that the two points in ι−1(a3, b1) map bijectively to the intersection points of r3 and
C1. We draw the tangent t to C1 in the image of p. Pulling-back t and adding the elliptic
curve dominating C1 we obtain a divisor in A as in Proposition 2.2. We have recovered Rito’s
construction.

Then Proposition 3.5 applies and we have 16 double covers S → A branched on this divisor,
determined by the 32 solutions of the equations in Proposition 3.6. Since the pair (ā, b̄) is
a solution by assumption, we can define as image of our element in Nj the surface S of the
corresponding double cover. Then S belongs to Mj by construction.

It is important to recall here that we have done an arbitrary choice in this construction,
when we chose p ∈ ι−1(a3, b1). We notice now that the isomorphism class of the surface S does
not depend on this choice, since the two corresponding double covers of A are conjugated by
the involution of A given by the isogeny. So we have a well defined morphism Nj →Mj .
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Finally since there are two pairs of possible (ā, b̄) for each |L| the maps mj are proper of
degree 2 for j ≥ 2. For j = 1 the degree is 1 because we are not considering the solutions with
ā = a4. The surjectivity is obvious.

Now, we shall deal with the problem of irreducibility of Nj for j = 1, 2 and 4, to do that we
need to introduce some notation.

Let us recall some well known fact about modular curves, see e.g. [DS05, Section 1.5]. The
principal congruence subgroup of level N is

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z)|

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

A subgroup Γ of SL2(Z) is a congruence subgroup of level N if Γ(N) ⊂ Γ for some N ∈ Z+.
Some important congruence subgroups are

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z)|

(
a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}
.

The modular curve Y(Γ) for Γ is defined as

Y(Γ) = Γ \ H = {Γ · z|z ∈ H}.

The special cases of modular curves for Γ1(N) is denoted by Y1[N ] = Γ1(N) \ H, where H is
the Poincaré half-space.

Theorem 3.10. Points of Y1[N ] correspond to pairs (E,P ), where E is an elliptic curve and
P ∈ E is a point of exact order N . Two such pairs (E,P ) and (E0, P0) are identified when
there is an isomorphism of E onto E0 taking P to P0.

We are interested in the case when N = 4 and in the special modular curve Y1[4] which
parametrizes elliptic curves with 4-torsion points.

Now, let Y1[2, 4] be the space parametrizing an elliptic curves with a 2-line bundle point Q
and a 4-torsion line bundle T such that T 2 6= Q, than we have the following proposition.

Proposition 3.11. Y1[2, 4] is irreducible and generically smooth of dimension 1.

Proof. We proceed as explained in the Appendix A of [PePol13a]. Let E = C/Λ be an elliptic
curve (and Ê its dual abelian variety), E[n] the subgroup of order n torsion points on E and
Ê[n] ⊂ Ê the subgroup of n torsion line bundles. Moreover let G = SL2(Z) be the modular
group. Then G is the orbifold fundamental group of H/G and there is an induced monodromy
action of G on both E[n] and Ê[n], see [Har79].

By the Appell-Humbert theorem, the elements of Ê[2] can be canonically identified with the
4 characters Λ→ C∗ with values in {±1} (see [BL04, Chapter 2]) which are

χ0 := (1, 1), χ1 := (1, −1), χ2 := (−1, 1), χ3 := (−1, −1).

Let {ω1, ω2} be a suitable basis of Λ by [BL04, proof of Proposition 8.1.3], the monodromy
action of

M =

(
α β
γ δ

)
∈ G

induced over a character χ is as follows:
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(M · χ)(ω1) = χ(ω1)αχ(ω2)β

(M · χ)(ω2) = χ(ω1)γχ(ω2)δ.
(3)

Therefore we have

M · χ1 = ((−1)β, (−1)δ), M · χ2 = ((−1)α, (−1)γ), M · χ3 = ((−1)α+β, (−1)γ+δ), (4)

Whereas the 16 elements of Ê[4] correspond to the 16 characters Λ → C∗ with values in
{±i}:

ψ1 := (1, 1), ψ2 := (1, −1), ψ3 := (−1, 1), ψ4 := (−1, −1),
ψ5 := (1, i), ψ6 := (−1, i), ψ7 := (1,−i), ψ8 := (−1, −i),
ψ9 := (i, 1), ψ10 := (i, −1), ψ11 := (−i, 1), ψ12 := (−i, −1),
ψ13 := (i, i), ψ14 := (−i, i), ψ15 := (i, −i), ψ16 := (−i, −i).

By using equations (3) one can compute the induced action of M over a character ψ.
Thus, to prove the first part of the proposition it is sufficient to check that the monodromy

action of G is transitive on the set

{(Q, T ) ∈
(
Ê[2] \ OE

)
×
(
Ê[4] \ Ê[2]

)
| T 2 6= Q}.

This is a straightforward computation which can be carried out as the one in the proof of
[PePol13a, Proposition A1] and it is left to the reader.

Therefore we can consider the set of triples

(z, χ, ψ), z ∈ H, χ ∈ {χ1, χ2, χ3} ⊂ Êz[2], ψ ∈ {ψ5, . . . , ψ16} ⊂ Êz[4],

where Ez is the elliptic curve corresponding to the lattice Z⊕ Zz.
The group G acts on the set of triple (z, χ, ψ), with the natural action of the modular

group on H and by the induced monodromy action on the second two ones. The corresponding
quotient Y1[2, 4] is a quasi-projective variety. Moreover

π : Y1[2, 4] −→ H/G

given by the forgetful map, is an étale cover on a smooth Zariski open set Y0
1 ⊂ H/G; then it

is generically smooth. Finally, by construction Y1[2, 4] is a normal variety, because it only has
quotient singularities. Then, since it is connected, it must be also irreducible.

Finally, let Y1[2, 2] the space parametrizing an elliptic curves with a 2-line bundle Q and a
second 2-torsion line bundle T such that T 6= Q, than we have the following proposition.

Proposition 3.12. Y1[2, 2] is irreducible and generically smooth of dimension 1.

Proof. The proof is analogous to the one for Proposition 3.11. One has to be careful, again, in
checking that the monodromy action of G is transitive on the set

{(Q, T ) ∈
(
Ê[2] \ OE

)
×
(
Ê[2] \ OE

)
| T 6= Q}.

But, again, this follows from the actions (4), from which one sees right away that the image of
T is always different form the image of Q.
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Proposition 3.13. The subvariety Nj ⊂ M1,3 × M1,3 is irreducible, generically smooth of
dimension 2 for each j = 1, 2 and 4.

Proof. First of all, we mean by an elliptic curve marked with a point that we have fixed a group
structure on the curve of genus 1 for which that point is the neutral element. We always choose
for T1 the point a3 and for T2 the point b1 as neutral elements.

After this global consideration, we prove the claim case by case as j varies.

Case j=4:
By Definition 3.8 the variety N4 depends on the following data:

• one elliptic curve T1 marked with a point a3 and a 4−torsion line bundle T1 = OT1(ā−a3)
which is not 2−torsion – its square determines the last point on T1 (a4);

• one elliptic curve T2 marked with a point b1, a 4−torsion line bundle T2 := OT2(b̄ − b1)
and a 2−torsion line bundle OT2(b2 − b1) 6∼= T 2

2 .

In other words there is a dominant morphism

Y1[4]× Y1[2, 4]→ N4.

We observe that Y1[4] is a generically smooth quasi-projective variety, connected, and irreducible
of dimension 1, [DS05, Chapter 2]. By Proposition 3.11 Y1[2, 4] is irreducible and generically
smooth of dimension 1. This concludes the proof since dimN4 = 2 by Proposition 3.3 and
Proposition 3.9.

Case j=2:
By Definition 3.8 the variety N2 depends on the following data:

• one elliptic curve T1 marked with a point a3 and two 2−torsion line bundles T1 = OT1(a4−
a3) and Q = OT1(ā− a3) such that T1 6∼= Q;

• one elliptic curve T2 marked with a point b1, a 4−torsion line bundle T2 := OT2(b̄ − b1)
and a 2−torsion line bundle OT2(b1 − b2) 6∼= T 2

2 .

In other words there is a dominant morphism

Y1[2, 2]× Y1[2, 4]→ N2.

By Proposition 3.12, we have that Y1[2, 2] is irreducible and generically smooth of dimension
1. This concludes the proof since dimN2 = 2 by Proposition 3.3 and Proposition 3.9.

Case j=1:
Finally, we have by Definition 3.8 that the variety N1 depends on the following data:

• one elliptic curve T1 marked with a point a3 and one 2−torsion line bundles T1 = OT1(a4−
a3);

• one elliptic curve T2 marked with a point b1, a 4−torsion line bundle T2 := OT2(b̄ − b1)
and a 2−torsion line bundle OT2(b1 − b2) 6∼= T 2

2 .

In other words there is a dominant morphism

Y1[2]× Y1[2, 4]→ N1.

We observe that Y1[2] is a generically smooth quasi-projective variety, connected, and irre-
ducible of dimension 1, [DS05, Chapter 2]. Ad we conclude as the previous cases.
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Corollary 3.14. The components M1, M2 and M4 of M are irreducible of dimension 2.

Proof. By Proposition 3.9 we have that mj : Nj → Mj is a proper finte surjective morphism
for each j = 1, 2 and 4. Moreover, by Proposition 3.14 we have that each Nj is irreducible of
dimension 2 for each j = 1, 2 and 4.

4 Some remarks on the deformations of a blown up surface

In this section we shall present some classicall results on deformation of a pairs. The main result
is Theorem 4.2, possibly known to the experts, although we could not find it in the literature.
This section will be employed systematically in the Moduli Space Section 5. In particular the
Corollary 4.5 of the Theorem 4.2 is a fundamental step in the proof of the Proposition 5.8, see
Remark 5.6.

Let us first recall some basic definition.
Let B an algebraic nonsingular variety over an algebraically closed field k. A first-order

deformation of B is a commutative diagram

B //

��

B
π
��

Spec(k) // Spec(k[ε])

where π is a flat morphism, Spec(k[ε]) = Spec(k[t]/t2) and such that the induced morphism

B → Spec(k)×Spec(k[ε]) B

is an isomorphism. There is a natural notion of isomorphism between first-order deformations,
see [Ser06, Section 1.2]. The set of first-order deformations, up to isomorphisms, is usually
denoted by T 1(B) and it has a natural structure of complex vector space (see [Sch68]). If B
has a semiuniversal deformation B̃ → Def(B) then every first-order deformation is induced by
a unique map Spec(k[ε])→ Def(B) and then there exists an isomorphisms of vector spaces

T0DefB ∼= T 1(B) ∼= H1(B, TB),

for the last isomorphism see e.g. [Ser06, Proposition 1.2.9].
Now, we look at deformations of subvarieties in a given variety. Given a closed embedding

D in B, a first-order deformation of D in B (fixed) is a cartesian diagram

D �
� //

��

D

π

��

� � // B × Spec(k[ε])

��
Spec(k) �

� // Spec(k[ε]) Spec(k[ε])

where π is flat and it is induced by the projection from B × Spec(k[ε]). Again we can give
a cohomological interpretation to these deformations, indeed there is a natural identification
between the first-order deformations of D in B and H0(D,ND/B), where ND/B is the normal
sheaf of D in B, see e.g. [Ser06, Proposition 3.2.1].

Before introducing the last two situations we are interested in, let us recall the following
definition.
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Definition 4.1. Let D1, . . . , Dk be divisors in a smooth variety X and let x1, . . . , xk be lo-
cal equations for them. Define Ω1

S(logD1, . . . , logDk) to be the subsheaf (as OX -module) of

Ω1
X(D1 + . . .+Dk) generated by Ω1

X and by dxj
xj

for j = 1, . . . k.

The next situation we want to look at is the case of deformation of a pair (B,D) where
j : D ↪→ B is a closed embedding. The deformation theory of morphisms is more subtle if we
want to allow both the domain and the target to deform nontrivially. A first-order deformation
of the pair (D,B) is a commutative diagram

D J //

πD $$

B

πBzz
Spec(k[ε])

where πD and πB come from first deformations of D and B respectively and J is a closed em-
bedding. There is a natural notion of isomorphism between first-order deformations of pairs see
e.g. [Ser06, Section 3.4]. We denote by Def′j the set of isomorphism classes of first-order defor-
mations of the pair (B,D), which are locally trivial. Also in this case we have a cohomological
interpretation, by [Ser06, Proposition 3.4.17], Def′j has a formal semiuniversal deformation and
its tangent space is isomorphic to H1(TB(− logD)), where TB(− logD) is the sheaf of germs of
tangent vectors to B which are tangent to D.

Finally, let us consider the following situation. Let B be a compact complex smooth surface,
p ∈ B and σ : B′ → B the blow up of B in p with exceptional divisor E. Let D be an effective
divisor on B which has multiplicity c in p. Moreover, let us denote by D′ = σ∗(D)−cE the strict
transform of D in B′ and assume that D′ is a smooth normal crossing divisor, meaning that
each component is smooth, no three components share a point and the intersections between
them are transversal. We want to describe the relation between the deformations of the pair
(B′, D′) with those of D in B.

We know that the first-order locally trivial deformations of the pair (B′, D′) are parameter-
ized by the vector space H1(TB′(− logD′)). The natural map

ϑ : H1(TB′(− logD′))→ H1(TB′)

corresponds to the forgetful map, which forgets the deformation of D′. By [Har10, Exercise
10.5] we have an exact sequence

0→ σ∗TB′ → TB → TpB → 0

where TpB ∼= C2 is the tangent space of B in p seen as a skyscreaper sheaf concentrated in
p. Then we consider the long exact sequence in cohomology and in particular the connecting
homomorphism

ψ : TpB → H1(σ∗TB′) ∼= H1(TB′).

The next result give us a better understanding of the intersection between the images of the
maps ϑ and ψ in H1(TB′).

Theorem 4.2. Keeping the same notation as before, assume that D is smooth at p, so c = 1,
and choose an element v ∈ TpB.

Then ψ(v) is contained in Im(ϑ) if and only if the class of v in the normal vector space
TpB/TpD extends to a global section of the normal bundle vD ∈ H0(D,ND|B).

In particular v is tangent to D if and only if vD vanishes in p.
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The idea of the proof is the following.
The image of ϑ corresponds to first-order deformations of B′ that contain a first-order

deformation of D′. The image of ψ corresponds, by the Kodaira–Spencer correspondence, to
the first-order deformations of B′ obtained by moving the point p in B, thus allowing to project
a first-order deformation of the pair (B′, D′) to a first-order deformation of D in B (fixed),
which are elements of H0(D,ND|B). In the following we compute the value of vD at p, and see
how it determines when the corresponding first-order deformation of D in B (fixed) lift to a
first-order deformation of the pair (B′, D′).

Proof. We start constructing a family of first-order deformations of B′.
Let U be an affine chart of B centered in p with local coordinates x, y such that D = {x = 0}.

We consider a section sa,b of the trivial family B × Spec(C[ε]) → Spec(C[ε]) whose image is
contained in U × Spec(C[ε])

B × Spec(C[ε]) ⊃ U × Spec(C[ε]) // Spec(C[ε])

sa,b

aa

obtained by mapping (x, y, ε) to (aε, bε, ε), so that the image is locally the complete intersection

x− aε = y − bε = 0.

Blowing up this section we obtain the following families over Spec(C[ε])

B′a,b //

Φa,b

''
B × Spec(C[ε]) // Spec(C[ε])

U ′a,b
?�

OO

// U × Spec(C[ε])
?�

OO

// Spec(C[ε])

where Φa,b is a first-order deformation of B′. The Kodaira–Spencer correspondence associates
to Φa,b a class in κ (Φa,b) ∈ H1(B′, TB′), its Kodaira–Spencer class. This can be explicitly
computed: following e.g. the proof of [Ser06, Proposition 1.2.9, p. 29] we find

κ (Φa,b) = ψ

(
a
∂

∂x
+ b

∂

∂y

)
.

The blown up chart U ′a,b is the subscheme of U × P1 ×B × Spec(C[ε]) defined by

Y (x− aε) = X(y − bε),

where (X,Y ) are homogeneous coordinates on the factor P1. It is the union of two affine charts,
given respectively by imposing X 6= 0 and Y 6= 0.

Let us work locally and restrict to the affine chart of U ′a,b given by Y 6= 0, and let us

introduce the new coordinate z = X
Y . Then, we can eliminate x by

x = zy + (a− bz)ε

and the exceptional divisor E of the blow-up is {y − bε = 0} in the coordinates y, z.

18



Since D = {x = 0}, the strict transform of D on B′ is, in the coordinates y, z, the divisor
D′ = {z = 0}. Now, κ (Φa,b) is in the image of ϑ if and only if D′ can be extended to a divisor
D′a,b in B′a,b. The image of D′a,b in B × Spec(C[ε]) is

Da,b = {x+ δ(x, y)ε = 0},

an first-order deformation of D in B over Spec (C[ε]) so that δ(x, y) is the affine trace of a global
section of the normal bundle ND|B, an element δ ∈ H0(D,ND|B) ( [Ser06, Proposition 3.2.1]),

locally given by the class of a vector field δ(x, y) ∂
∂x .

The pullback of Da,b on B′a,b contains the exceptional divisor E , thus

y − bε divides zy + (a− bz − δ(zy, y))ε = z(y − bε) + (a− δ(zy, y))ε,

that implies δ(0, 0) = a. Conversely, if δ(0, 0) = a the pull-back of Da,b contains E and then its
strict transform gives an extension D′a,b of D′ in B′a,b.

Since the class of v = a ∂
∂x + b ∂∂y in TpB/TpD equals the class of a ∂

∂x , then ψ (v) is in the

image of θ if and only if there is some δ ∈ H0(B,ND|B) whose value at p is the class of v.

The situation is even simpler if D is a rigid divisor.

Corollary 4.3. Let D be a divisor which is smooth at p and H0(D,OD(D)) = 0. Let v ∈ TpB
such that ψ(v) ∈ Im(ϑ). Then v is tangent to D.

Keeping the same notation as above, the application we have in mind for the next can be
summarized in

Proposition 4.4. Let B′ → B the blow up of B in p and D′ the strict transform of D a divisor
passing through p. Let us further suppose that D ≥ D1 + D2 with D1 and D2 smooth and
transversal in p. Moreover, let us assume that H0(Di,ODi(Di)) = 0 for i = 1, 2. Then

ϑ(H1(B′, TB′(− logD′))) ∩ ψ(TpB) = {0}. (5)

Proof. We have that ϑ factors through the analogous map for Dj , j = 1, 2:

H1(TB′(− log(D′)))→ H1(TB′(− log(Dj)))→ H1(B′, TB′) for j = 1, 2.

Hence, the image of ϑ is contained in the image of both H1(TB′(− log(Dj))) for j = 1, 2. Than
we apply the Corollary 4.3 and we obtain a vector v which is tangent to both D1 and D2.
Finally, observe that if a vector is tangent to two transversal curves must vanish.

Corollary 4.5. Let D be as in Proposition 4.4 and suppose moreover H0(D′,OD′(D′)) = 0.
Then the composition

H1(B′, TB′(− logD′))→ H1(B, TB)

is injective.

Proof. The proof follows directly from the Proposition 4.4 and the following diagram with exact
row and column.

H0(OD′(D′)) = 0

��
H1(TB′(− logD′))

ϑ

�� ((
TpB

ψ // H1(TB′) // H1(TB).
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We conclude the section with the following general result.

Lemma 4.6. Let A be an abelian surface isogenous to a product of elliptic curves T1 × T2. Let
H ⊂ H1(TA) be the linear subspace corresponding to the projective deformations of A and let
Hj ⊂ H1(TA) be the linear subspaces corresponding to the deformations preserving the fibration
A −→ Tj for j = 1, 2. Then H, H1 and H2 are three different hyperplanes such that the
intersection of any two of them is contained in the third.

Proof. The isogeny maps H1(TA) isomorphically to H1(TT1×T2) by a map preserving H, H1

and H2. Therefore we may assume without loss of generality A = T1 × T2.
For a product of curves the period matrix assumes the form

Λ = ΩZ4, Ω : Z4 −→ C2, x 7−→ Ωx =

(
1 0 α 0
0 1 0 δ

)
It is well known that one can identify the deformation space H1(TA) of a polarized abelian

surface A = V/Λ with the space of the square matrices (see [HKW93, Chapter 1]). For

(
a b
c d

)
we obtain the deformation given by(

∆1 τ
)

=

(
1 0 α+ aε bε
0 1 cε δ + dε

)
.

The Riemann–Conditions for an abelian surface with a principal polarization yields the
existence of an integral basis {λi}i for Λ and a complex basis {ei} for V such that the period
matrix can be normalized so that the matrix τ is symmetric with positive definite imaginary
part (see [GH94] p.306). The symmetry condition yields b = c, whereas the positive definiteness,

being an open condition, does not give any condition on

(
a b
c d

)
. So

H = {b = c}.
The subspaces Hj are respectively

b = 0 c = 0

and this concludes the lemma.

5 The moduli space

The following result can be found in [Cat11, Section 5].

Proposition 5.1. Let S be a minimal surface of general type with q(S) ≥ 2 and Albanese map
α : S → A, and assume that α(S) is a surface. Then this is a topological property. If in addition
q(S) = 2, then the degree of α is a topological invariant.

Proof. By [Cat91] the Albanese map α induces a homomorphism of cohomology algebras

α∗ : H∗(Alb(S), Z) −→ H∗(S, Z)

and H∗(Alb(S),Z) is isomorphic to the full exterior algebra

∗∧
H1(Alb(S), Z)) ∼=

∗∧
H1(S, Z).

In particular, if q = 2 the degree of the Albanese map equals the index of the image of∧4H1(S, Z) inside H4(S, Z) and it is therefore a topological invariant.
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Consider a surface S in M. By Proposition 5.1 it follows that one may study the deforma-
tions of S by relating them to those of the flat double cover β : S′ → B′. By [Ser06, p. 162] we
have an exact sequence

0 −→ TS′ −→ β∗TB′ −→ Nβ −→ 0, (6)

where Nβ is a coherent sheaf supported on the ramification divisor R̂+Ĉ1 +Ê called the normal
sheaf of β (cfr. Figure 4).

Lemma 5.2. Keeping the notation above it holds

H i(S′,Nβ) = H i(OR̂(2R̂))⊕H i(OĈ1
(2Ĉ1))⊕H i(OÊ(2Ê)), i = 0, 1. (7)

Moreover we have:

h0
(
OR̂(2R̂)

)
= 0, h0

(
OĈ1

(2Ĉ1)
)

= 0, h0
(
OÊ(2Ê)

)
= 0,

h1
(
OR̂(2R̂)

)
= 2, h1

(
OĈ1

(2Ĉ1)
)

= 2, h1
(
OÊ(2Ê)

)
= 1.

Proof. The ramification divisor of the double cover β : S′ −→ B is the disjoint union of the
divisors Ê, R̂ and Ĉ1, this is enough for (7).

Since Ĉ is an elliptic curve with Ĉ2 = −1, we have that 2Ĉ is not effective on Ĉ and by
Riemann–Roch we conclude that h1

(
OĈ1

(2Ĉ1)
)

= 2.

The computations for Ê ∼= P1 are straightforward.
Finally we work on R̂. Recall that g(R̂) = 3 and R̂2 = 0. Thus, by Riemann–Roch we have

χ
(
OR̂(2R̂)

)
= −2. Therefore, it is sufficient to prove that h0

(
OR̂(2R̂)

)
= 0.

We notice that β∗R = 2R̂, and β|R̂ : R̂ → R is an isomorphism. Then, H0(OR̂(2R̂)) =
H0(OR(R)) = H0(NR|B). Recall that by adjunction the normal bundle of a curve in an abelian
surface equals its canonical bundle, so Nt|A = ωt. The map ν = (σ4 ◦ σ3)|R : R −→ t is the
normalization of t. Let q1, q2 ∈ R such that ν(qi) = p with i = 1, 2 and recall that p is the
tacnode of t. We have

ωR = ν∗ωt ⊗OR(−2q1 − 2q2), NR|B = ν∗Nt|A ⊗OR(−4q1 − 4q2),

this yields
NR|B = ωR ⊗OR(−2q1 − 2q2). (8)

By construction R is a smooth irreducible curve of genus 3 with a (Z/2Z)2-action, by [BO20,
Lemma 2.15] R is not hyperelliptic and all 3 involutions are bielliptic, hence all the three double
quotients are elliptic curves. Thus, choosing a bases of H0(R,KR) coming from the 1-forms of
each elliptic curve, we obtain an embedding of R as a plane quartic curve geometrical invariant
under the action

(x0 : x1 : x2) 7→ (±x0,±x1,±x2).

The quartic equation defining it it is biquadratic equation, in fact we notice that the stabilizer
of the coordinate point (1 : 0 : 0), is not cyclic hence it cannot be contained in R. Therefore,
the monomial x4

0 has non trivial coefficient and so the equation is invariant (biquadratic).
Since the divisor q1 + q2 is invariant, then q1 and q2 have a stabilizer of order 2 and lie on a

coordinate line xj . Assume j = 0 for simplicity,
By (8)

H0(OR̂(2R̂)) 6= 0⇔ (x0) is a bitangent

Let q′1 := (0 : k1 : k2) be the image of q1 (observe that k1 6= 0 and k2 6= 0 otherwise the
stabilizer of q1 would be not-cyclic), so the ideal (x0, k1x2 − k2x1) is the defining ideal of the
point q′1. Assume by contradiction x0 to be a bitangent in q′1. Then the quartic equation defining
R is contained in the ideal (x0, (k1x2− k2x1)2). Being biquadratic yields that R is contained in
the ideal (x2

0, (k1x
2
2 − k2x

2
1)2). This implies that R is singular in q1 but this is absurd.
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Recall that S′ is a surfaces of general type, hence h0(TS′) = 0 and using the bit of information
of the previous lemma, the sequence (6) induces the following long sequence in cohomology.

0 −→ H1(TS′) −→ H1(β∗TB′) −→ H1(Nβ) −→ H2(TS′) −→ H2(β∗TB) −→ 0.

Proposition 5.3. Keeping the notation as above, then the sheaf β∗TB′ satisfies

h0(S′, β∗TB′) =h0(B′, TB′ ⊗ L−1
B′ ),

h1(S′, β∗TB′) =6 + h1(B′, TB′ ⊗ L−1
B′ ),

h2(S′, β∗TB′) =2 + h2(B′, TB′ ⊗ L−1
B′ ).

Proof. Since β : S′ → B′ is a finite map, by using projection formula and the Leray spectral
sequence we deduce

hi(S′, OS′) = hi(B′, OB′) + hi(B′, L−1
B′ ), i = 0, 1, 2.

Recall that pg(S
′) = q(S′) = 2 and B′ is an abelian surface blown up twice, then we have

h0(B′, L−1
B′ ) = 0, h1(B, L−1

B′ ) = 0, h2(B′, L−1
B′ ) = 1, (9)

By the same argument above we have

hi(S′, β∗TB′) = hi(B′, β∗β
∗TB′) = hi(B′, TB′) + hi(B′, TB′ ⊗ L−1

B′ ), i = 0, 1, 2.

We look first at σ3. There is a short exact sequence

0 −→ TB → σ∗3TA → OE(−E)→ 0, (10)

see [Ser06, p. 73] for the general setting of a blow up. Then a direct computation shows

h0(B, TB) = 0, h1(B, TB) = 4, h2(B, TB) = 2.

The analogous computation for σ4, for the exact sequence

0 −→ TB′ → σ∗4TB → OF (−F )→ 0. (11)

yields
h0(B′, TB′) = 0, h1(B′, TB′) = 6, h2(B′, TB′) = 2.

Therefore the claim follows.

Let us consider the exact sequence

0 −→ TB′ → (σ4 ◦ σ3)∗TA → Nσ4◦σ3 → 0, (12)

where the last sheaf is supported on E and F . We tensor (12) by L−1
B′ and we obtain the

sequence
0 −→ TB′ ⊗ L−1

B′ → (L−1
B′ )⊕2 → Nσ4◦σ3 ⊗ L−1

B′ → 0.

Considering the induced long exact sequence in cohomology, by (9) we get

h0
(
TB′ ⊗ L−1

B′
)

= 0 (13)

h1
(
TB′ ⊗ L−1

B′
)

= h0
(
Nσ4◦σ3 ⊗ L−1

B′
)

(14)

and
h2
(
TB′ ⊗ L−1

B′
)

= h1
(
Nσ4◦σ3 ⊗ L−1

B′
)

+ 2 (15)
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Lemma 5.4. It holds
h0
(
Nσ4◦σ3 ⊗ L−1

B′
)

= 2.

Proof. Recall that we set E′ = σ∗4E. Let us consider the exact sequence (10), it lifts on B′ as

0→ σ∗4TB → O⊕2
B′ → σ∗4OE(−E)→ 0.

We put this last exact sequence together with (11) as respectively the middle horizontal sequence
and the first vertical sequence in a diagram. Chasing the diagram we obtain the following

0

��

0

��
TB

��

TB

��
0 // σ∗4(TB0

) //

��

O⊕2B

��

// σ∗4(OE(−E)) // 0

0 // OF (−F )

��

// Nσ4◦σ3

��

// σ∗4(OE(−E)) // 0

0 0

(16)

which is a diagram with exact rows and columns. Let us look at the last horizontal sequence.
Recall that F ∼= P1 ∼= E′, thus OF (−F ) ∼= OP1(1) and OE′(−E′) ∼= OP1(1). Moreover, the
sheaf σ∗4(OE(−E)) is locally free and it is supported on F ∪E′. Its restriction to the irreducible
components are

σ∗4(OE(−E))|E′ ∼= OP1(1), σ∗4(OE(−E))|F ∼= OP1 .

We tensor the last horizontal sequence in (16) by L−1
B
∼= OB′(R+ E′ + C1) and we get

0→ OP1(−1)→ Nσ4◦σ3 ⊗ L−1
B′ → σ∗4(OE(−E))⊗ L−1

B′ → 0.

The long exact sequence in cohomology yields

H i(Nσ4◦σ3 ⊗ L−1
B′ ) ∼= H i(σ∗4(OE(−E))⊗ L−1

B′ ), for all i.

By the intersection computation

(R+ E′ + C1)E′ = −2 and (R+ E′ + C1)F = 4

the sheaf σ∗4(OE(−E)) ⊗ L−1
B′ is a locally free sheaf on E′ ∪ F which has degree −1 on F and

degree 2 on E′. Hence its global sections vanish on F . Fixing an isomorphism E′ ∼= P1, we
obtain an isomorphism between H0(σ∗4(OE(−E))⊗L−1

B′ ) and the subspace of H0(OP1(2)) given
by the sections which vanish on the point E′ ∪ F .

Thus
H0
(
Nσ4◦σ3 ⊗ L−1

B′
) ∼= H0(OP1(1)) ∼= C2.
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Remark 5.5. Let q ∈ S be the point blown-up by S′ → S. The short exact sequence obtained
pushing forward (6) produces a cohomology exact sequence

0→ TqS → H1(S′, TS′)→ H1(S, TS)→ 0.

Recall that if β : S′ −→ B′ is a finite double cover, then H1(S′, TS′) = H1(B′, β∗TS′) splits
as invariant and anti-invariant part. Since q is an isolated fixed point of the involution induced
by the Albanese map, it acts as the multiplication by −1 on TqS and then the image of TqS is
contained in H1(S′, TS′)−. By (e.g. Pardini [Par91, Lemma 4.2]) we have

(β∗TS′)+ ∼= TB′(− log(R+ E′ + C1)) (β∗TS′)− ∼= TB′ ⊗ L−1
B′

By the Lemma 5.4 and (14) then h1(β∗TS′)− = 2, and so TqS maps isomorphically onto
H1(S′, TS′)−.

In particular the map

H1(B′, TB′(− log(R+ E′ + C1)))→ H1(S, TS),

is an isomorphism. Geometrically, this means that we have a bijection between the first-order
deformations of S and the first-order deformations of the pair (B′, R+ E′ + C1).

Remark 5.6. Corollary 4.5 applies to the blow-up σ4 : B′ → B with D′ = R + E′ + C1 since
all required rigidites have been proved in Lemma 5.2.

So the natural map

H1
(
TB′(− log(R+ E′ + C1))

)
↪→ H1

(
TB
)

is injective. Since the map H1
(
TB
)
→ H1

(
TA
)

is an isomorphism,

H1
(
TB′(− log(R+ E′ + C1))

)
↪→ H1

(
TA
)
.

is injective as well.

Hence we have a commutative diagram

H1(TB′(− log((R+ E′ + C1)))

∼=
��

// H1(TB′)

����
H1(TS) �

� // H1(TA).

The left vertical map is an isomorphism by Remark 5.5. The composition of the top horizontal
arrow and the right vertical arrow is the map in Remark 5.6, so injective, and therefore the
lower horizontal map is injective.

Proposition 5.7. It holds
h1(TS) = 2.

Proof. The image of the map H1(TS) → H1(TA) is contained in the hyperplane H of Lemma
4.6, since the Albanese variety of every surface of general type is an abelian variety.

We proved thatH1(TB′(− log((R+E′+C1))) ∼= H1(TS) and the induced map ϕ : H1(TB′(− log(R+
E′ + C1)))→ H1(TA) is injective. So it is enough to prove dim Im(ϕ) = 2
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The function ϕ factorizes as in the following commutative diagram.

H1(TB′(− log(R+ E′ + C1))

��

// H1(TA)

H1(TB′(− log(C1)) // H1(TA(− logC1))

ε

OO

where C1 is the elliptic curve in Figure 4. We recall that A is isogenous to the product of two
elliptic curves T1 × T2 and C1 is a fibre of the induced elliptic fibration f2 on T2.
So the image of ε is contained in H2. Then Im(ϕ) ⊂ H ∩H2 has, by Lemma 4.6, dimension at
most 2. On the other hand it is at least 2 by Proposition 3.3, and therefore it equals 2.

Proposition 5.8. The following holds: for all j ∈ {1, 2, 4} Mj is a generically smooth irre-
ducible component of the moduli space of the surfaces of general type of dimension 2.

Proof. We have shown that Mj is irreducible of dimension 2 in Proposition 3.14. Then by
Proposition 5.7 Def(S) is smooth of dimension 2 at each point. It follows that Mj is an
irreducible component, and that this component is generically smooth.
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