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Abstract. A mapping of a macromolecule is a prescription to construct a simplified representation of
the system in which only a subset of its constituent atoms is retained. As the specific choice of the
mapping affects the analysis of all-atom simulations as well as the construction of coarse-grained models,
the characterisation of the mapping space has recently attracted increasing attention. We here introduce
a notion of scalar product and distance between reduced representations, which allows the study of the
metric and topological properties of their space in a quantitative manner. Making use of a Wang–Landau
enhanced sampling algorithm, we exhaustively explore such space, and examine the qualitative features of
mappings in terms of their squared norm. A one-to-one correspondence with an interacting lattice gas on
a finite volume leads to the emergence of discontinuous phase transitions in mapping space, which mark
the boundaries between qualitatively different reduced representations of the same molecule.

1 Introduction

The research area of computational molecular bio-
physics has experienced, in the past few decades,
impressive advancements in two complementary and
strictly intertwined fields: on the one hand, the steadily
growing and increasingly cheaper computational power
has enabled the simulation of ever larger systems with
atomistic resolution [1,2]; on the other hand, there has
been an explosion of diverse coarse-grained (CG) mod-
els [3–5], i.e. simpler representations of molecules in
terms of relatively few sites interacting through effec-
tive potentials: these have filled several gaps between
the length- and time-scales of interest and the current
capability of all-atom methods to cover them. The sci-
entific efforts making use of one or both these tech-
niques have cracked several important problems open,
ranging from protein folding to cell growth [6–8].

The development of a successful CG model is strongly
dependent on the choice of the reduced representation,
or CG mapping, and on the correct parametrization
of the effective interactions [4,8]. The latter challenge
has received an enormous amount of attention, lead-
ing, e.g. in the case of proteins, to extremely accurate
and sophisticated CG potentials such as OPEP [9,10],
AWSEM [11,12] and UNRES [13,14]. The former task
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has been the object of a smaller number of works, how-
ever its centrality in and beyond the process of coarse
graining has recently started to emerge [8,15]; indeed, a
deep relationship exists between the degrees of freedom
one selects to construct a CG model of the system, and
those one employs to analyse the system’s behaviour
from a more detailed representation.

On the one hand, high-resolution, fully atomistic
models are necessarily required to let the properties and
behaviour of complex biomolecular systems emerge; on
the other hand, the interpretation and understanding
of this behaviour requires a reduction of the mountain
of data and its synthesis in a smaller amount of infor-
mation. In a nutshell, while the generative process has
to be high-resolution to be useful, its outcome has to be
low-resolution to be intelligible. An intuitive example of
this concept is given by the representation of a protein
structure in terms of its Cα’s, i.e. the alpha carbons
of the backbone: this mapping is not only extensively
employed in the development of CG models [16,17](that
is, models in which the whole amino acid is represented
as a single bead whose position coincides with that of
the Cα), but it is also extremely common in the analy-
sis of structures sampled in fully atomistic simulations
[18,19].

A few different strategies have been developed that
aim at identifying the optimal CG mapping to describe
a molecule, which differ most notably in the observable
used to drive the optimisation. There exists a first class
of algorithms that rely on a completely static, graph-
based description of the system [20,21], such as the
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recent one proposed by Webb et al. in which a bottom-
up approach iteratively aggregates separate nodes of
the molecular graph in CG sites [20]. A second group
of approaches makes use of the dynamics of the sys-
tem, obtained through models with more [22,23] or less
[24,25] detailed force fields. For instance, a recent pro-
tocol proposed by us [23] revolves around the analysis
of an all-atom molecular dynamics (MD) [26,27] sim-
ulation trajectory of a protein in terms of a subset of
the molecule’s atoms; a physics-driven choice of the lat-
ter allows one to identify the one or few mappings that
return the most parsimonious yet informative simplified
description of the system.

Each of these methods can be the most appropriate
to investigate specific properties of the system at hand;
at the same time, the majority of them performs the
search for solutions of an optimisation problem within
the overwhelmingly large space of all possible CG rep-
resentations that can be assigned to the system. As an
exhaustive exploration of this mapping space is hardly
feasible in practice, the outcome of such schemes is often
a pool of optimal CG representations, that is, an ensem-
ble of local minima in the—likely—rugged landscape of
the cost function that defines the mapping optimisation
procedure.

Given the complexity of this problem, several natu-
ral questions arise: how degenerate is the space of solu-
tions? Are its elements all markedly distinct from one
another, or do they only represent mostly neutral and
equivalent variations of a “typical” optimal CG map-
ping? Furthermore, how are the solutions distributed
across the space of possible mappings? How much do
they differ from, e.g. randomly chosen CG representa-
tions?

To be in the position of answering these questions,
the most basic instrument one needs is a meter, i.e. a
tool to measure distances in mapping space and assess
the degree of “similarity” among its elements in a quan-
titative manner. The definition of such metric should be
independent of the choice of the function subsequently
employed to quantify the quality of a given reduced
representation, in the same manner, e.g. in which the
Euclidean distance separating two particles is indepen-
dent of the interaction potential acting between them.

The objective of the present work is, thus, to con-
tribute a tool for the exploration and characterisation
of the mapping space, its metric and topological prop-
erties, and the relations among its instances. To this
end, we introduce a notion of scalar product, and con-
sequently of norm and distance, between reduced repre-
sentations of a system. We first make use of these instru-
ments in the exploration of some basic, bare metric and
topological properties of mappings of a single, static
molecular structure, i.e. without reference to its interac-
tions and/or conformational sampling, but rather solely
considering the coordinates of its constituent atoms.
This provides a notion of mapping distance based on
purely geometric properties of the molecule. Through
the application of an enhanced sampling algorithm,
namely the Wang–Landau method [28,29], we char-
acterise this mapping space in its entirety, and asso-

ciate its properties to structural features of the under-
lying molecule. Furthermore, the isomorphism between
the problem of exploring the possible mappings of a
molecule and that of a lattice gas in a finite volume
enables to highlight the emergence of first-order phase
transitions in the latter, distinguishing CG representa-
tions with qualitatively different properties. We then
investigate the topology of the mapping space mak-
ing use of the distance between reduced representa-
tions, which enables a low-dimensional embedding that
highlights its general features. This analysis is per-
formed both in absence and in presence of a cost func-
tion, namely the mapping entropy [23,24,30–32], which
gauges the quality of a given CG representation accord-
ing to an information theoretical measure. Finally, we
suggest a possible manner to extend the tools we intro-
duced to characterise the mapping space in the static
case so as to incorporate information about the refer-
ence system’s exploration of conformational space and
thus, indirectly, about its energetics as well.

The paper is organised as follows: in Sect. 2 we
develop a scalar product between decimation mappings
of a macromolecular structure in a static conformation,
and derive from it a notion of norm and distance in
the mapping space; in Sect. 3 we study CG represen-
tations in terms of the distribution of values of the
squared norm for mappings having a given number of
retained sites N , first through random sampling, then
making use of the Wang–Landau enhanced sampling
method; in Sect. 4 we exploit a duality between the
problem of mappings of a macromolecule and that of
an interacting lattice gas in a finite volume to investi-
gate the properties the molecule’s reduced representa-
tions; in Sect. 5 we discuss some topological features of
the mapping space; in Sect. 6 we discuss an extension of
the structure-based definition of the norm that includes
information about the system’s energetics; in Sect. 7 we
sum up the results of this work and discuss its future
perspectives.

2 Theory

The construction of a CG model for a macromolecular
system starts with the selection of a mapping M , that
is, the projection operator connecting a microscopic,
detailed configuration ri, i = 1, ..., n to a low-resolution
one RI , I = 1, ..., N < n,

M = {MI(r), I = 1, ..., N} ,

MI(r) = RI =
n∑

i=1

cIiri, (1)

where n and N are the number of atoms in the system
and the number of effective interaction sites employed
in its CG simplified picture, respectively. In Eq. 1, the
weights cIi are positive, spatially homogeneous—i.e.
independent of the configuration r—and subject to the
normalization condition

∑n
i=1 cIi = 1 to preserve trans-
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lational invariance [4]. While a particular choice of these
coefficients corresponds to a specific CG representation
of the system, by varying them, along with changing
the degree of CG’ing N , one spans the mapping space
M, whose elements are all the possible low-resolution
descriptions that can be assigned to a macromolecule.

In the perspective of quantitatively characterising the
properties of such space, the cardinality of M in the
continuous definition presented in Eq. 1 makes its thor-
ough exploration, although appealing, hard to handle
in practice. In this work, we, thus, restrict our analysis
to the discrete subspace of CG representations that can
be obtained for a system through a decimation [33,34]
of its microscopic degrees of freedom: a subset of N
constituent atoms is retained while the remaining ones
are neglected.

By selectively discarding a subset of the system’s
atoms, this structural simplification procedure can be
applied to systems of arbitrary size or environments,
e.g. molecules in solution, embedded in lipid mem-
branes, or in the gas phase; the set of potentially
retained atoms can be extended to the solvent as well,
so as to expand the definition of the system under exam-
ination to include e.g. water molecules that form hydro-
gen bonds with the solute. Clearly, the filtering brought
forward by the decimation mapping can be applied to
a single configuration as well as to an ensemble of con-
formations sampled, e.g. in a molecular dynamics sim-
ulation. The outcome would consist, in the first case, in
a single subset of coordinates, which thus preserves no
information about the system other than the positions
of the retained atoms; in the second case, the filtering
would result in a ensemble of reduced representations
whose distribution in configuration space reverberates
the intra- and intermolecular interactions of the under-
lying high-resolution sample.

In this work, we will focus on a particular type
of molecular structure, namely a protein, and restrict
our analysis to decimation mappings in which retained
atoms are only selected among those composing the
molecule. Initially, calculations will be performed only
considering the static, crystallographic configuration
of the molecule; subsequently, its energetics will be
explicitly accounted for in Sect. 6, where we provide
some preliminary results on the extension of the theory
to an ensemble of conformations generated through a
molecular dynamics simulation of the protein in explicit
solvent. Also in this latter case, the environment is
not explicitly retained by the CG mapping—again,
only protein degrees of freedom are considered—but
its effects are implicitly encoded in the distributions
of conformations sampled by the molecule.

Let us, thus, consider a protein composed by n con-
stituent atoms; the number of representations ΩN that
can be constructed by selecting N of them as effective
CG sites is

ΩN =
n!

N !(n − N)!
, (2)

so that the total number of possible decimation map-
pings Ω reads

Ω =
n∑

N=1

ΩN =
n∑

N=1

n!
(n − N)!N !

= 2n − 1, (3)

which becomes prohibitively large as the size of the sys-
tem increases. Consequently, in the following we only
consider the heavy atoms of the molecule as candidate
CG sites, indicating with M the subspace of mappings
obtained according to these prescriptions.

The investigation of the topological structure of M
calls for the introduction of a distance D(M,M ′), M,M ′
∈ M, able to quantify the “separation” between pairs
of points M and M ′ belonging to the space of dec-
imation mappings, that is, pairs of CG representa-
tions employed to represent the system that differ in
the choice of the retained atoms. Such distance must
be equipped with all the associated metric properties,
namely identity, symmetry, and triangle inequality.

To construct D(M,M ′), we consider a static configu-
ration of the molecule, namely the crystallograpic one,
with (heavy) atoms located in positions ri, i = 1, ..., n
and a set of selection operators χM,i, i = 1, .., n defin-
ing mapping M ,

χM,i =
{

1 if atom i is retained,
0 if atom i is not retained, (4)

n∑

i=1

χM,i = N(M), (5)

where N(M) is the number of retained atoms in the
mapping. Taking inspiration from the Smooth Over-
lap of Atomic Positions method (SOAP) developed by
Csány et al. [35,36], we associate with each M ∈ M an
element φM (r) of the Hilbert space of square-integrable
real functions L2(R3) as

φM (r) =
n∑

i=1

φM,i(r) =
n∑

i=1

Ce−(r−ri)
2/2σ2

χM,i, (6)

obtained by centering a three-dimensional Gaussian—
whose normalization factor C will be fixed in the
following—on the position of each atom of the macro-
molecule retained in the mapping.

The inner product 〈φM , φM ′〉 of L2(R3) between two
mappings M and M ′,

〈φM , φM ′〉 =
∫

dr φM (r)φM ′(r), (7)

induces a norm ||φM || for mapping M , with

E(M) = ||φM ||2 = 〈φM , φM 〉, (8)

starting from which the distance D(M,M ′) can be
defined as

D (M,M ′) = ||φM − φM ′ ||
= 〈φM − φM ′ , φM − φM ′〉 1

2 , (9)
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D(M,M ′) satisfying all the aforementioned metric
properties.1

By inserting Eq. 6 in Eq. 7, the inner product
〈φM , φM ′〉 between mappings generated by two distinct
selection operators χM and χM ′ becomes

〈φM , φM ′〉 =
n∑

i,j=1

JijχM,iχM ′,j , (10)

while the associated distance D(M,M ′) in Eq. 9 reads

D (M,M ′) = (E(M) + E(M ′) − 2〈φM , φM ′〉) 1
2

=

⎛

⎝
n∑

i,j=1

JijχM,iχM,j +
n∑

i,j=1

JijχM ′,iχM ′,j +

−2
n∑

i,j=1

JijχM,iχM ′,j

⎞

⎠

1
2

. (11)

In Eqs. 10 and 11, the coupling constant Jij =
Jij(ri, rj) between two atoms i and j is given by

Jij(ri, rj) = C2

∫
dr e−[(r−ri)

2+(r−rj)
2]/2σ2

, (12)

with

Jij (ri, rj) = Jij (|ri − rj |) = Jij (rij) . (13)

due to translational and rotational invariance. By intro-
ducing polar coordinates in Eq. 12, one has

Jij(rij) = 2πC2

∫
drdθ r2 sin θe− 1

2σ2 (2r2+r2
ij−2rrij cos θ)

=
4πσ2

rij
C2e−r2

ij/2σ2
∫

dr re−r2/σ2

sinh
(rrij

σ2

)
, (14)

and a chain of Gaussian integrals provides

Jij(rij) = π3/2C2σ3e−r2
ij/4σ2

= e−r2
ij/4σ2

, (15)

1 In contrast to the original definition of the SOAP
measure—which enables to quantify the similarity between
two molecular structures [35,36]—we here aim at determin-
ing the overlap between different CG representations of a
single compound. As such, with respect to SOAP: (i) in
Eq. 6 we do not employ local densities representing the
chemical environment of a specific atom (which would after-
wards require, e.g. to average over all pairs of atoms for the
calculation of the total similarity kernel [36]), but rather
global ones associated to the molecule as a whole; and (ii)
in Eq. 7 we do not introduce an additional integral over
rotations of one of the two structures. Indeed, there is no
ambiguity in defining the alignment of different CG rep-
resentations, as this is dictated by the original, full-atom
reference.

where the last equality has been obtained by setting,
without loss of generality,

C2 =
1

π3/2σ3
. (16)

Finally, by combining Eqs. 10 and 15 the inner product
〈φM , φM ′〉 reads

〈φM , φM ′〉 =
n∑

i,j=1

e−r2
ij/4σ2

χM,iχM ′,j , (17)

i.e. a sum of Gaussian factors over the positions of all
pairs of atoms retained in the two mappings. Notably,
the factorization with respect to the operators χM and
χM ′ in Eqs. 10 and 17 enables the inner product (and
therefore the distance D and the squared norm E) to
be determined starting from a matrix Jij that can
be calculated a priori over the static structure of the
molecule.

One might ask what kind of information the previ-
ously defined quantities provide about the possible CG
representations of a system. To answer this question,
we first focus on the squared norm of a mapping E(M),
see Eqs. 8 and 17,

E(M) = 〈φM , φM 〉 =
n∑

i,j=1

e−r2
ij/4σ2

χM,iχM,j . (18)

For a given retained atom i, the sum over j in Eq. 18,

Zi(M) =
n∑

j=1

e−r2
ij/4σ2

χM,j , (19)

approximately represents its CG coordination number,
that is, the number of retained atoms in the mapping
that are located within a sphere of radius

√
2σ from i.

By fixing the degree of coarse-graining N , E(M) scales
as

E(M) = NZ̄(M), (20)

Z̄(M) =
1
N

n∑

i=1

Zi(M)χM,i (21)

showing that the dependence of the norm on the spe-
cific selection of atoms is dictated by Z̄(M), the average
CG coordination number. Let us now consider two lim-
iting cases: (i) extremely sparse and homogeneous CG
representations, in which each retained atom does not
have any retained neighbour within a radius of order√

2σ—this condition can only be fulfilled provided that
N is not too large, vide infra, or σ is much smaller than
the typical interatomic distance. In this case, one has
Z̄(M) ≈ 1 and consequently E(M) ≈ N ; (ii) globu-
lar mappings characterised by densely populated (i.e.
almost atomistic) regions of retained sites surrounded
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by “empty” ones. In this case, the average coordina-
tion number Z̄(M) will roughly resemble its atomistic
counterpart, the latter being defined as

z̄ =
1
n

n∑

i,j=1

e−r2
ij/4σ2

, (22)

and thus E(M) ≈ Nz̄. It follows that the squared norm
E(M) captures the average homogeneity of a CG rep-
resentation, that is, whether the associated retained
atoms are uniformly distributed across the macro-
molecule or are mainly localized in well-defined regions
of it. In Fig. 1, we report examples of CG mappings
extracted for these two extreme categories in the case of
adenylate kinase (see Sect. 3 for further details on this
protein) together with a CG representation in which
the retained atoms are randomly selected.

An analogous discussion can be performed for the
inner product 〈φM , φM ′〉 in Eq. 17, calculated between
two mappings M and M ′ that respectively retain N and
N ′ atoms of the system. For a given atom i in mapping
M ,

Ti (M ′) =
n∑

j=1

e−r2
ij/4σ2

χM ′,j , (23)

approximately counts the number of neighbours j in
mapping M ′ located within a sphere of radius

√
2σ from

i. The inner product scales as

〈φM , φM ′〉 = NT̄ (M,M ′) , (24)

T̄ (M,M ′) =
1
N

n∑

i=1

Ti (M ′) χM,i, (25)

where T̄ (M,M ′) is again the average number of neigh-
bours an atom in mapping M has that belong to map-
ping M ′. Eqs. 23, 24 and 25 provide a very intu-
itive explanation of the orthogonality of mappings,
〈φM , φM ′〉 ≈ 0: it is sufficient that each atom in map-
ping M does not have any neighbour in M ′ (and obvi-
ously vice-versa). As such, orthogonal mappings cover
complementary regions of the system.

In general, the existence of an inner product enables
the definition of an angle θM,M ′ between mappings,
whose cosine reads

cos θM,M ′ =
〈φM , φM ′〉

(E(M)E(M ′))
1
2
. (26)

While the orthogonality of mappings (cos θM,M ′ ≈ 0)
has a relatively straightforward interpretation in terms
of their spatial complementarity, the condition of par-
allelism, cos θM,M ′ ≈ 1, is a bit less intuitive. If the
mappings M and M ′ have the same number of atoms
N , by inserting Eqs. 20 and 24 in Eq. 26 one obtains

cos θM,M ′ =
T̄ (M,M ′)

(
Z̄(M)Z̄(M ′)

) 1
2
. (27)

If furthermore the two mappings show also roughly the
same “globularity”, Z̄(M) ≈ Z̄(M ′), their parallelism
requires

T̄ (M,M ′) ≈ Z̄(M), (28)

that is, the average number of neighbors one atom of
M has that belong to mapping M ′ has to be equal
to the average number of neighbors the atom has that
belong to M itself. This means that the two mappings
must place retained atoms across the macromolecule in
a similar fashion. Examples of approximately parallel
and orthogonal CG representations for adenylate kinase
are presented in Fig. 1.

It follows that while E(M) quantifies the aver-
age sparseness of a CG representation, 〈φM , φM ′〉—
or equivalently cos θM,M ′—characterises the average
degree of spatial similarity between two different deci-
mations of the microscopic degrees of freedom of the
system. The distance D(M,M ′) in Eq. 11 combines
these two notions to extract how “far” a pair of CG
representations is in the space of possible mappings M.

Based on these observations, we implemented a
slight modification to the inner product 〈φM , φM ′〉—
and hence to the squared norm E(M) and distance
D(M,M ′)—with respect to the definition originally
presented in Eq. 17, which, however, does not change
its overall properties or interpretation. We have previ-
ously discussed how in the limiting cases of extremely
sparse and globular mappings one respectively obtains
E(M) ≈ N and E(M) ≈ Nz̄, where z̄ is the atomistic
coordination number in Eq. 22. As the number of CG
sites N increases, however, it will be extremely hard for
a retained site not to have any retained neighbor within
a sphere of radius of order σ, so that the exact scaling
of E(M) on the degree of CG’ing N in the case of sparse
mappings will be hardly observed. We thus divide the
inner product in Eq. 17 by the average atomistic coor-
dination number, and define

〈φM , φM ′〉z̄ =
1
z̄

〈φM , φM ′〉. (29)

Consequently, one has

Ez̄(M) =
1
z̄

E(M), (30)

Dz̄ (M,M ′) =
1√
z̄

D (M,M ′) , (31)

while the cosine between two mappings cos θM,M ′ is
not affected by the rescaling. With this choice, globu-
lar mappings are now associated to E(M)z̄ ≈ N , which
can always be observed also in the case of low degrees
of CG’ing, that is, high N . Note that the definition of
〈φM , φM ′〉z̄ in Eq. 29 corresponds to a rescaling of the
coupling constant Jij in Eq. 15 to
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Fig. 1 Top row: Example of possible CG representations for adenylate kinase with N = 214 sites (represented as beads)
characterised by a low (a), intermediate (b) and high (c) mapping squared norm E . By increasing E we move from maximally
homogeneous to extremely globular CG representations. Bottom row: Examples of CG mappings with N = 53 sites that are
approximately parallel (d) and orthogonal (e) to a given one. The atoms composing the reference CG representation are
represented as black beads. Parallel (resp. orthogonal) mappings tend to displace CG sites on similar (resp. complementary)
regions of the system

Jij =
1
z̄

e−r2
ij/4σ2

. (32)

For notational convenience, in the following, we will
omit the subscript z̄ and refer to E(M)z̄, 〈φM , φM ′〉z̄

and Dz̄(M,M ′) as E(M), 〈φM , φM ′〉 and D(M,M ′),
respectively.

3 Exploration of the mapping space

Starting from the definitions introduced in Sect. 2, we
now proceed to perform a quantitative analysis of the
high-dimensional space M of CG representations that
can be constructed for a macromolecule through a deci-
mation of its atomistic degrees of freedom. As a testbed
system we consider adenylate kinase (AKE), a 214
residue-long phosphotransferase enzyme catalysing the
interconversion between adenine nucleotides, namely
adenine diphosphate (ADP), adenine monophosphate
(AMP), and the adenine triphosphate complex (ATP)
[37]. The structure of adenylate kinase can be divided in
three main building blocks [38,39], with the mobile LID
and NMP domains exhibiting a conformational rear-
rangement around a hinge, the stable CORE domain,
which results in an overall open ↔ closed transition of
the enzyme [40,41]. Our calculations require in input

only the value of the σ parameter and a static configura-
tion ri, i = 1, ..., n of the system to determine the set of
Gaussian couplings Jij in Eq. 32. We here set σ = 1.9Å
(that is, half the separation between two consecutive
α carbons), and rely on the open crystal conformation
of adenylate kinase (PDB code 4AKE), excluding from
the analysis all hydrogens composing the biomolecule,
resulting in a total of 1656 heavy atoms.

The investigation of the topological structure of the
decimation mapping space of AKE calls for an exten-
sive characterisation of the relational properties among
its points, achievable by analysing the behaviour of
the distance D(M,M ′) over an ensemble of prototypi-
cal CG representations extracted from M. The discus-
sion carried out in Sect. 2, however, highlighted that
D(M,M ′) strictly depends on two factors: the globu-
larity of each mapping—encoded in the squared norm
E(M)—and their mutual spatial complementarity—
that is, the inner product 〈φM , φM ′〉 or equivalently
the cosine cos θM,M ′ . It is then useful to first focus
on these one- and two-“body” ingredients before com-
bining them into the distance D(M,M ′). As such, in
Sects. 3.1, 3.2 and 4 we will respectively discuss the
behaviour of E(M) and cos θM,M ′ across the map-
ping space of AKE; the analysis of the distance D,
and hence of the topology of M, will be presented in
Sect. 5.
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3.1 Norm distributions

Let us first consider the squared norm E(M) of a CG
representation M defined in Eq. 30. As previously dis-
cussed, this quantity provides information about the
spatial homogeneity of a mapping with a given degree
of CG’in N ; that is to say, it recapitulates how the
retained atoms are distributed across the molecular
structure, from uniformly scattered (E(M) ≈ N/z̄) to
mainly concentrated in well-defined, almost atomistic
domains emerging out of a severely CG’ed background
(E(M) ≈ N).

It is important to stress that mappings belonging
to the two aforementioned extreme cases are routinely
employed by the CG’ing community in the descrip-
tion of a biomolecular system. In proteins, examples
from the homogeneous class include physically intuitive,
residue-based CG representations of the molecule in
terms of its α carbons or backbone atoms [5,8]; homo-
geneity, on the other hand, is often abruptly broken in
chemically informed, multiscale mappings, in which a
higher level of detail, up to the atomistic one, is sharply
localized on the biologically/chemically relevant regions
of the system—e.g. the active sites of the protein—
while the reminder is treated at extremely low reso-
lution [8]. Furthermore, moving away from these lim-
iting cases, an increasing attention is being posed in
employing CG descriptions in which the level of detail
is, although inhomogeneously, quasi-continuosly modu-
lated throughout the molecular structure [8].

Be they fully homogeneous, markedly inhomoge-
neous, or smoothly interpolating between these two
classes, the CG representations that are usually adopted
in the literature to simplify a biomolecule are often
selected a priori by relying on general and intuitive
criteria. Critically, such representations only constitute
elements, isolated instances extracted from the high-
dimensional mapping space M of the system. One natu-
ral question follows: how representative are these “com-
mon” mappings of the diversity of the space M? In
other words, how spatially homogeneous are the possi-
ble CG descriptions that can be designed for a macro-
molecule when no prior knowledge about its chemical
structure or biological function is exploited to guide the
mapping construction?

To answer this question, we start by introducing the
number of mappings ΩN (E) that attain a particular
value E of the squared norm for a given number of CG
sites N , which is given by:

ΩN (E) =
∑

M∈M
δ(N(M), N)δ(E(M), E) (33)

with
∑

M∈M
O(M) =

∑

χ1=0,1

...
∑

χn=0,1

O({χi}), (34)

where O is a generic observable that depends on the
mapping through the operators χi. Normalizing Eq. 33
by the total number of mappings with N sites, ΩN , we

define the conditional probability of having a mapping
with norm E given that the degree of coarse-graining is
N , that is

PN (E) =
ΩN (E)

ΩN
, (35)

which satisfies the normalization condition
∑

E
PN (E) = 1 (36)

regardless of the number of retained sites. PN (E) can
be rewritten as

PN (E) =
(

n!
(n − N)!N !

)−1 ∑′

M∈M
δ (E(M), E) , (37)

where the primed sum runs over all mappings with fixed
resolution N , i.e. over all values of the set of operators
χi = 0, 1, i = 1, .., n satisfying

n∑

i=1

χi = N. (38)

By providing direct insight on the degree of spatial uni-
formity characterising the ensemble of all possible CG
descriptions of a macromolecular system, PN (E) repre-
sents a first important ingredient in the investigation of
the structure of the mapping space M. We, thus, aimed
at analysing the behaviour of the conditional probabil-
ity PN (E) across the decimation mapping space M of
AKE for a set of 16 values of N ranging from N = 53
to 1605, see Table 1. However, even restricted to these
cases, an exhaustive enumeration of all possible CG rep-
resentations of the system is unfeasible in practice: for
example, in the case of AKE (n = 1656), roughly 10276
possible CG representations can be constructed that
describe the enzyme in terms of a subset of N = 214
heavy atoms (one for each residue). This number grows
to 10496 for N = 856 (four heavy atoms per residue on
average), that is, close to the maximum of the binomial
coefficient, obtained for N = n/2, see Eq. 2.

To overcome this combinatorial challenge, for each
degree of CG’ing we generated Ω̃tot = 2×106 uniformly
distributed random mappings as strings χi, i = 1, ..., n
of zeros and ones compatible with Eq. 38, and calcu-
lated the associated squared norm E . Results for each
N were then binned along the E axis in intervals of δE =
0.1, and the corresponding PN (E) was estimated as

PN (E) =
1
δE

Ω̃N (E)

Ω̃tot

, (39)

where Ω̃N (E) is the number of sampled mappings with
squared norm falling between E and E + δE . Note that
in this way we are approximately treating as continu-
ous the intrinsically discrete, unevenly spaced spectrum
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Table 1 Average mapping squared norm 〈E〉N and associated standard deviation σE,N at different degrees of coarse-
graining N , calculated over the mapping space M of AKE. We present random sampling results (RS), as well as those
obtained from a saddle-point approximation to the density of states ΩN (E) determined through the Wang–Landau method
(WL-SP), see text

〈E〉N σE,N

N RS WL-SP RS WL-SP

53 5.41 – 0.31 –
107 14.15 – 0.63 –
214 41.14 40.82 1.32 1.32
321 80.95 – 2.03 –
428 133.58 133.17 2.74 2.74
535 199.04 – 3.45 –
642 277.33 276.93 4.12 4.11
749 368.44 – 4.74 –
856 472.39 471.95 5.29 5.29
963 589.16 – 5.74 –
1070 718.76 718.29 6.06 6.07
1177 861.18 – 6.22 –
1284 1016.43 1016.14 6.16 6.17
1391 1184.51 – 5.79 –
1498 1365.42 1365.05 4.94 4.94
1605 1559.15 – 3.09 –

of possible norms, and the density PN (E)—and con-
sequently ΩN (E)—as piecewise constant. In this “con-
tinuous” limit, the normalization condition of PN (E)
becomes

1 =
∑

E
PN (E)δE �

∫
dEPN (E). (40)

The set of distributions PN (E) obtained from our ran-
dom sampling of the mapping space of AKE are dis-
played in Fig. 2. We observe that, for each value of
the CG resolution N , PN (E) is unimodal and narrowly
peaked around its average squared norm,

〈E〉N =
∫

dEPN (E)E , (41)

〈E〉N being an increasing function of N . On the other
hand, the standard deviation σE,N ,

σE,N =
(∫

dEPN (E)(E − 〈E〉N )2
) 1

2

, (42)

is non-monotonic in the degree of CG’ing: starting from
extremely small values in the case of few retained atoms
(e.g. N = 53, 107 and 214), σE,N increases roughly up to
N ≈ 3n/4 and then starts to decrease, reaching zero for
N = n—in this case, only one possible mapping exists,
namely the atomistic one. These features are further
highlighted in Table 1 and Fig. 3, in which we report the
dependence of 〈E〉N and σE,N on the degree of CG’ing
N as obtained from the distributions PN (E) in Fig. 2.

〈E〉N quantifies the average spatial homogeneity of
the ensemble of CG representations that can be ran-
domly assigned to AKE at a specific resolution. As pre-

Fig. 2 Probability PN (E) of the norm of the mapping E for
AKE calculated at various degrees of CG’ing N , as obtained
from a random sampling of the mapping space M. Arrows
indicate the values of N for which a reconstruction of the
density of states ΩN (E) through the Wang–Landau algo-
rithm has been performed

viously discussed, maximally inhomogenous mappings,
in which a chiseled chunk of the biomolecule is treated
atomistically while the remainder is almost neglected,
are characterised by E ≈ N . Critically, Fig. 3 displays
that such linear scaling lies always above the average
〈E〉N for all degrees of coarse-graining investigated. The
deviation between the two curves is non-monotonic,
with a maximum obtained for N = n/2, and only van-
ishes for N → n, where mappings become very dense as
they collapse towards the atomistic representation. As
a consequence, the CG representations one encounters
by randomly probing the mapping space M tend to be
“sparse” rather than compact. Furthermore, the differ-
ence between the squared norm of the globular case and
〈E〉N is always (but for N≈n) one or two orders of mag-
nitudes larger than the standard deviation of the cor-
responding PN (E), see Fig. 3. It follows that inhomoge-

123



Eur. Phys. J. B          (2021) 94:204 Page 9 of 26   204 

Fig. 3 Inset: Standard deviation σE,N of the mapping
norm E as a function of the degree of CG’ing N obtained
from a random sampling of the mapping space M of AKE.
Main plot: N -dependence of the average squared norm 〈E〉N

(“Random”, black line) and associated 3σE,N confidence
interval (khaki area) as obtained from a random sampling
of the mapping space of AKE, superimposed to the region
covered by the set of single-window, preliminary WL runs
(purple area). The minimum (“WL-min”, blue line) and
maximum (“WL-max”, red line) squared norms reached by
the preliminary runs are highlighted. “WL-max” also corre-
sponds to the scaling E ≈ N obtained in the case of inho-
mogeneous, globular mappings

neous mappings lie extremely far away in the right tails
of the distributions displayed in Fig. 2, thus constitut-
ing an exponentially vanishing subset of the space M.

The suppression of the statistical weight associated
with high-norm, globular CG representations of AKE
in the space of all possible ones is not surprising, and
is solely driven by entropic effects. Indeed, at least for
small and intermediate N , it is extremely unlikely that
a completely random selection of retained atoms across
the biomolecule will result in their dense confinement
within sharply defined spatial domains of the system,
just as it is unlikely for a gas to occupy only a small
fraction of the volume in which it is enclosed. Inter-
estingly, this latter analogy can be pushed further by
noting that the squared norm E(M), see Eqs. 30 and
18, is akin to the negative configurational energy of a
lattice gas living on the irregular grid defined by the
protein’s conformation, whose particle interact via a
hard-core, short-range potential followed by an attrac-
tive Gaussian tail. In this context, the selection opera-
tors χM,i = 0, 1, i = 1, ..., n of a mapping M with N
retained atoms can be interpreted as the set of occupa-
tion numbers describing a distribution of the N parti-
cles of the gas on the n available lattice sites. It follows
that compact CG representations of AKE, located in
the large-E limit of PN (E), are just as challenging to
randomly sample within the space M as are the low-
energy configurations of the gas in which the N parti-
cles spontaneously occupy only a fraction of the avail-
able volume. The implications of this analogy will be
thoroughly explored in Sect. 4.

The strongly entropy-driven distribution of mappings
calls for the introduction of enhanced sampling tech-

niques to boost the exploration of the mapping space;
in this work, we resort to the algorithm proposed by
Wang and Landau (WL) [28,29,42,43]. For each CG
resolution N , the aim is to obtain a uniform sampling
of the possible mapping norms E across the space M, in
contrast to the set of narrowly peaked probability distri-
butions displayed in Fig. 2. In principle, this is attained
by setting up a Markov chain Monte Carlo simulation
in which a transition between two subsequent mappings
M and M ′—both retaining N atoms—is accepted with
probability α given by [28]

αM→M ′ = min
[
1,

ΩN (E(M))
ΩN (E(M ′))

]

= min [1, exp (−[SN (E(M ′)) − SN (E(M))])] , (43)

where ΩN (E) is the density of states defined in Eq. 35
while SN (E) = ln[ΩN (E)] is the corresponding micro-
canonical entropy. When compounded with a symmet-
ric proposal probability π for the attempted move,
πM→M ′ = πM ′→M , the Markov chain in Eq. 43
would generate, after an initial relaxation transient,
CG representations distributed according to p(M) ∼
1/ΩN (E(M)) [28], resulting in a flat histogram PN (E)
of visited norms over the whole range of possible ones
[43].

In practice, however, the density of states in Eq. 43 is
not known a priori. The power of WL approach resides
in its ability to self-consistently obtain ΩN (E) through a
sequence k = 1, ...,K of non-equilibrium simulations in
which increasingly accurate approximations Ω̄k

N (E) to
the exact result are generated, iterations being stopped
when the desired precision is achieved [28,29]. For the
sake of brevity, we here omit an exhaustive discussion
of the general algorithmic workflow behind WL sam-
pling as well as an in-depth description of the specific
implementation employed in this work; these details are
provided in Appendix A.

In the WL reconstruction of a density of states such
as ΩN (E), knowledge of the sampling boundaries proves
extremely beneficial to the accuracy and rate of con-
vergence of the self-consistent scheme [44]. For each
degree of CG’ing investigated, we, thus, initially per-
formed a preliminary, non-iterative WL run to approx-
imately locate the minimum and maximum mapping
norms Emin(N) and Emax(N) achievable for AKE at
that specific CG resolution, and consequently bound
the support of the corresponding ΩN (E).

The results for Emin(N) and Emax(N) obtained from
this analysis are presented in Fig. 3 and Table 2 of
Appendix A. We observe that the mapping norms vis-
ited by the set of preliminary WL runs extend, for all
values of N , over a significantly wider range compared
to the one obtained by random sampling. Remarkably,
the maximum norm Emax(N) exhibits a linear depen-
dence on N that is fully compatible with the one asso-
ciated to globular CG representations, Emax(N) ≈ N ,
highlighting that the WL approach succeeds in explor-
ing this entropically suppressed region of the mapping
space. Furthermore, Fig. 3 displays that the minimum
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Fig. 4 Left: Logarithm of the density of states ΩN (E) of AKE, SN (E) = ln[ΩN (E)], for N = 856. We report results
obtained via (i) Wang–Landau sampling (“WL”, red dotted line), vertically shifting the data so that the minimum of SN

over the range of investigated norms is zero; (ii) a saddle-point approximation of the WL predictions (“SP-approx”, orange
dashed line); and (iii) a random drawing of CG representations (“Random”, black line), in this latter case shifting the curve
so that its maximum coincides with the one of the WL profile. In the figure we also report the squared norm associated to
the mapping in which all the heavy atoms composing the backbone of AKE are retained (“backbone”, dashed blue line),
a CG representation that is commonly employed when CG’ing a protein [5,8]. Right: First (main plot) and second (inset)
derivatives S′

N (E) and S′′
N (E) of the entropy SN (E) determined via WL sampling for N = 856

norm Emin(N) identified by the preliminary runs lies
always below the average 〈E〉N for all values of N . In
contrast to globular mappings, CG representations liv-
ing in this low E limit are maximally homogeneous, that
is, retained atoms are scattered throughout the molec-
ular structure as uniformly as possible. This class con-
stitutes another exponentially vanishing subset of the
mapping space: in the gas picture, it would correspond
to the ensemble of configurations in which gas particles
are regularly distributed within the available volume.

Having approximately identified the range of map-
ping norms achievable for AKE at each CG resolu-
tion, we subsequently moved to the determination of
the associated densities of states ΩN (E) via the iter-
ative WL scheme, see Appendix A for all technical
details. Calculations were only performed for a sub-
set of degrees of CG’ing, namely those in which the
number of retained atoms N is an integer multiple
of the number of residues composing the biomolecule,
N = i · 214, i = 1, ..., 7.

To speed-up convergence of the algorithm, for each
N we slightly reduced the range of norms [Emin, Emax]
with respect to the one predicted by the explorative
WL runs, see Table 2 in Appendix A. This interval was
then divided into a set of overlapping windows in which
independent WL simulations were performed [29]. The
resulting partial densities of states were a posteriori
combined to determine the cumulative ΩN (E) up to a
global multiplicative factor, or, in our case, the entropy
SN (E) = ln[ΩN (E)] up to an additive constant.

WL estimates of the entropy SN (E) are presented in
Fig. 4 for N = 856, while results for all the other degrees
of CG’ing are reported in Fig. 12 of Appendix A. In
all cases, we observe that the behaviour of SN is non-
monotonic in E , exhibiting a unique maximum as the

mapping norm moves from the left to right boundary
of the range of investigated ones—that is, in transition-
ing from extremely homogeneous to maximally globu-
lar CG representations. As ΩN (E) = exp[SN (E)], this
result confirms how these two limiting classes of map-
pings constitute regions of exponentially vanishing size
within the broad space M. At the same time, the overall
shape of SN strongly depends on the degree of CG’ing:
while for high N entropy profiles are nearly symmet-
ric around their maximum, they become increasingly
skewed as fewer and fewer atoms are employed to rep-
resent the macromolecule, see Fig. 12. This asymmetry
becomes apparent by performing, for each CG resolu-
tion, a quadratic expansion of SN around its maximum,

SN (E) � SN (Ẽ(N)) +
1
2
S′′

N

(
Ẽ(N)

) (
E − Ẽ(N)

)2

,

(44)

where Ẽ(N) is the norm at which the first derivative
S′

N of the entropy vanishes, and S′′
N (Ẽ(N)) is the cor-

responding second derivative—the dependence of S′
N

and S′′
N on E being displayed in Fig. 4 for N = 856.

The accuracy of this parabolic, symmetric approxima-
tion in reproducing the exact SN over the whole E-range
increases with the number of retained atoms, see Figs. 4
and 12, especially as far as the limit of high mapping
norms is concerned.

Finally, it is interesting to test the predictions of WL
sampling against the results obtained via a completely
random exploration of the mapping space. To this end,
Fig. 4 and Fig. 12 include a comparison between the
WL entropies SN and their random counterparts Sran

N ,
the latter defined as Sran

N (E) = ln[PN (E)] + CN , where
PN (E) are the probability densities presented in Fig. 2
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and the constants CN are set so that the maxima of
Sran

N and SN coincide. For each value of N the two
profiles are in perfect agreement, thus confirming the
accuracy of the self-consistent WL scheme in determin-
ing the density of states of a system. Critically, results
for Sran

N only extend over a very narrow range of map-
ping norms, centred around the value Ẽ(N) for which
the maximum of the entropy is attained. It is, therefore,
largely unfeasible, by randomly drawing CG representa-
tions, to exhaustively explore the mapping space M of
a macromolecule. In this respect it is worth to inspect
the position, on the E axis, of the Cα and backbone
mappings (which in AKE retain N = 214 and N = 856
sites, respectively), two reduced representations that
are routinely employed for CG’ing proteins [5,8]. These
turn out to be located in the vicinity of the class of
“prototypical” random ones, for which the entropy SN

reaches its maximum; however, their intrinsic regular-
ity, dictated by the position of the retained sites on
the peptide chain, makes these mappings slightly more
homogeneous than the random ones, see Figs. 4 and 12.

To provide a more quantitative measure of the con-
sistency between random and WL sampling results, for
each degree of CG’ing, we recalculated the average and
variance of the mapping norm, see Eqs. 41 and 42, start-
ing from the WL entropies SN . These are used to com-
pute PN (E) making use of a saddle-point approximation
of Eq. 35, namely

PN (E) =
ΩN (E)

ΩN
=

exp[SN (E)]∫
dE exp[SN (E)]

�
(

|S′′
N (Ẽ(N))|

2π

) 1
2

exp
[
1
2
S′′

N (Ẽ(N))(E − Ẽ(N))2
]

,

(45)

where in the last step of Eq. 45 we made use of the
quadratic expansion of SN defined in Eq. 44. Within
the saddle point approximation, one has 〈E〉N = Ẽ(N),
Ẽ(N) being the position of the maximum of SN , and
σE,N = |S′′

N (Ẽ(N))|− 1
2 : these predictions are found to

be in perfect agreement with their random sampling
counterparts, results being presented in Table 1.

3.2 Inner product distributions

We now proceed to the description of the mapping space
M from the perspective of the inner product between
its elements. Following the same scheme of Sect. 3.1,
we here focus on the cosine between mappings that are
constrained to share the same resolution N , and intro-
duce the probability PNN (cos θ) of observing a value of
cos θ provided that this constraint is satisfied:

PNN (cos θ) =
ΩNN (cos θ)

Ω2
N

, (46)

that is, the ratio between the number of mapping pairs
whose cosine is equal to cos θ, Ω2

NN (cos θ), and the
total number of possible pairs Ω2

N . We can now investi-
gate how the average degree of parallelism between two
mappings changes when considering randomly selected
mappings or more peculiar elements of M.

In this section, we compare two data sets, each one
containing 106 elements: the first one was obtained by
computing the cosine between two mappings in which
the retained sites were picked randomly; the second
data set was instead constructed in a more sophisti-
cated manner, making use of the WL sampling scheme
to collect mappings that uniformly span the range
[Emin, Emax] of accessible values of E identified in the
previous section. More specifically, we started a WL
exploration as in Sect. 3.1 over this range and, when all
the reference bins were visited at least once, we began
saving a mapping every 1656 Monte Carlo moves. Map-
pings were saved in different macro-bins, each one cov-
ering an interval of amplitude 20 (in terms of units of
E). Sampling ended when 5000 mappings were saved
in each box, without considering the convergence of
the WL algorithm. The data set was then generated
by computing the cosine (Eq. 26) between randomly
selected pairs of mappings extracted through this pro-
cedure. Importantly, the WL sampling scheme produces
a pool of potentially correlated mappings, so that the
chance of collecting similar elements of M cannot be
excluded.

The normalised histograms of cos(θ) values obtained
from the two datasets are displayed in Fig. 5a for
N = 856. We observe that while the random cosine dis-
tribution displays a narrow peak around its average the
WL histogram is more smeared, reflecting the increased
diversity of the data set. Indeed, the latter histogram
spans values that range from ≈ 1, obtained when two
mappings are perfectly parallel, to 0.457, when two
mappings are as orthogonal as possible given the prop-
erties of the lattice and the selected number of retained
sites. In Fig. 5a, we also report a graphical rendering
of the two maximally orthogonal mappings, which pos-
sess a high value of E (E = 847.32 and E = 843.82,
respectively) and cover different regions of the enzyme’s
structure.

In Fig. 5b, we extend these considerations to differ-
ent values of N , namely those employed in Sect. 3.1.
The random distribution is always confined in a narrow
interval of values of cos θ, while WL data sets are capa-
ble of spanning a much wider range. In particular, for
sufficiently small values of N , it is possible to retrieve
maximally parallel (cos θ = 1) and maximally orthogo-
nal (cos θ = 0) mappings inside the WL dataset. Reach-
ing orthogonality is made possible by the fact that, at
such low values of N , it is possible to confine retained
sites in two separate regions of the protein structure.
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Fig. 5 Left: histogram of cosine values extracted from random (yellow) and WL CG mappings (purple, see main text)
for AKE with N = 856 sites. Elements of M with the lowest value of the cosine (cos θ = 0.457) are shown; such value
corresponds to an angle of 63.25 degrees. Right: range of cosine values covered by the two data sets when N is changed.
The dotted black line shows the average value of cos θ over the different random data sets and the yellow region represents
the points within 3σ from the mean. The red (blue) dotted lines report the maximum (minimum) values of cos θ inside WL
data sets, respectively

4 Lattice gas analogy and phase transitions

As anticipated in Sect. 3, the reduced representation
discussed in the present work, in which a mapping is
defined in terms of a decimation of the atoms available
on the molecular structure, suggests the analogy with
a lattice gas. Also in this case, in fact, we have a num-
ber n of nodes that can be occupied by N ≤ n sites,
each node being accessible to a single site at a time—
thus implementing a hard-core repulsion. This analogy
is a classic of statistical mechanics, and enables one,
e.g. to map an Ising model to a gas of interacting par-
ticles, thus making it manifest that the spontaneous
magnetisation in the former and the liquid–gas phase
transition in the latter belong to the same universal-
ity class [45]. Here, we investigate the consequences of
the lattice gas interpretation of reduced representations
in order to tackle the issue of characterising the map-
ping space from a different perspective. Specifically, we
mutuate concepts from equilibrium statistical mechan-
ics to show that sharp transitions can occur that sep-
arate one or more phases corresponding to classes of
reduced representations endowed with markedly dis-
tinct structural properties. While the previously per-
formed analysis of the smooth and continuous densities
of states ΩN (E) already suggested the existence of such
classes, see Sect. 3, for particular numbers of retained
sites these are shown to be as distinct as two or more
phases of a fluid can be when observed through the
perspective of this statistical mechanical analogue.

The role of the energy can be played by the norm
of the mapping: in analogy with a lattice gas, we
expect that if two retained sites are close to each other,
they feel an attractive interaction, thereby reducing the
energy. We thus define the energy of the system as

E(M) = −E(M). (47)

In the previous sections, we obtained the density of
states in terms of the mapping norm, ΩN = ΩN (E).
Making use of Eq. 47 we can, thus, write

ΩN (E) = ΩN (−E). (48)

Let us now consider a system governed by the lattice
Hamiltonian in Eq. 47 at equilibrium with a reservoir
at temperature T = β−1. The partition function of such
system can be expressed in terms of ΩN (E) via

ZN (β) =
∫

dE e−βEΩN (E)

≡
∫

dE e−(βE−SN (E)), (49)

where we used the relation SN (E) = ln ΩN (E) to define
the entropy. Equation 49 enables us to compute the
dimensionless Helmholtz free energy as

βFN (β) = − ln ZN (β)

= − ln
∫

dE e−(βE−SN (E)). (50)

While the logarithm of the integral can be theo-
retically and numerically cumbersome to compute, it
is possible to obtain a reasonable estimate of βFN

through a saddle point approximation. Specifically, we
can expect that the integral is approximately equal to
the largest integrand, so that

∫
dE e−(βE−SN (E)) � C max

E

(
e−(βE−SN (E))

)
,

(51)

where C is an immaterial constant. This approximation
provides us with a definition of the free energy that is
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Fig. 6 Heat capacity CV (red circles, right ordinate) and
value of the energy E� corresponding to the minimum of
the free energy (blue triangles, left ordinate) as functions of
the inverse temperature β for the system with N = 214. E�

decreases monotonically with β, indicating that higher tem-
peratures correspond to higher values of the average inter-
nal energy of the lattice gas, as expected; however, a jump
discontinuity in E� appears in correspondence of the same
value βgl for which the heat capacity features a sharp peak,
suggesting the occurrence of a first-order phase transition
that separates two distinct phases: a gas (low β) from a liq-
uid (high β) for the lattice gas model, and, correspondingly,
a sparse phase from a dense, localised phase in the case of
mappings

equivalent to the Legendre-Fenchel transform:

βFN (β) � min
E

(βE − SN (E)) . (52)

The thermodynamics of the lattice gas at thermal
equilibrium can thus be retrieved computing Eq. 52 for
a given value of N at all values of β.

It is particularly instructive to investigate the tem-
perature dependence of E�, defined as the value of the
energy for which βE − S(E) reaches its minimum. In
Fig. 6 (blue curve, left ordinate), we report this function
for N = 214: it is possible to observe that E� = E�(β)
decreases monotonically, i.e. the lower the temperature,
the lower the value of the energy—which corresponds
to higher values of the mapping norm. At a particular
value βgl of the inverse temperature, however, E� drops
abruptly: in this context, such behaviour is suggestive
of a first-order, discontinuous phase transition.

To gain further insight, we computed the shapes of
βE − S(E) for values before and after βgl. These func-
tions, reported in Fig. 7, indeed show two minima sepa-
rated by a relatively low barrier; increasing β, the abso-
lute minimum shifts from the right to the left, cross-
ing a point for which the two are essentially degen-
erate. This is the point of coexistence of two distinct
“phases” of our lattice gas: a low density one corre-
sponding to distributed mappings (high energy), and
one ascribable to more dense, compact conglomerates
of sites (low energy). The critical nature of the transi-
tion from one regime to the other is confirmed by the

Fig. 7 Helmholtz free energy βF of the lattice gas as a
function of the energy for different values of the inverse tem-
perature β. For low values of β the curves have a unique and
absolute minimum; however, as β increases, a metastable
minimum appears that, for a particular value of the inverse
temperature, becomes degenerate with the previous one.
The presence of a small but appreciable barrier between the
two minima makes the position of the absolute minimum,
E�, shift abruptly from one to the other, as can be seen in
Fig. 6, thus making E�(β) discontinuous

inspection of the heat capacity, computed as

CV = −β2 ∂2(βF )
∂β2

(53)

and reported in Fig. 6 (red curve, right ordinate). The
sharp, asymmetric peak in CV , located at the value βgl

of the inverse temperature, shows that the lattice gas
crosses a phase transition between a gas and a liquid
phase.

A crucial role in this behaviour is played by the
number of coarse-grained sites. In fact, as N increases,
the system acquires the possibility of crossing a second
phase transition: for example, in the case of N = 1070,
besides the gas–liquid one, it is possible to observe a
second, even sharper discontinuity in E� for a value
of the inverse temperature βls > βgl. This tempera-
ture separates the liquid from the solid phase: when
the lattice gas particles are sufficiently many, and the
temperature sufficiently low, the system can “freeze”
in particularly dense mappings with very low entropy.
Also in this case, the inspection of the heat capacity
(Fig. 13 in Appendix B) supports the interpretation of
this as a phase transition. Finally, if the number of sites
is too large (e.g. N = 1498) no transition is observed,
see Fig. 13.

The observations reported in this section resonate
with those made by Foley and collaborators in a recent
work [15]: there, they observed a phase transition in
a system whose degrees of freedom were the retained
sites of a reduced model of proteins. In that case, the
energy of a given mapping was obtained from the cal-
culation of the spectral quality of the associated model,
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a quantity related to the sum of the eigenvalues of the
covariance matrix obtained integrating exactly a Gaus-
sian network model (GNM). While apparently very dis-
tinct, the spectral quality and the norm of the mapping
might bear substantial similarities: in fact, the former
entails information about a very simple model, whose
mechanical and thermodynamical properties are com-
pletely determined by the contact matrix of the under-
lying protein structure. It is, thus, reasonable to guess
that the mapping norm provides, in an effective and
efficient manner, information akin to that entailed in
the spectral quality about the sparsity or localisation
of the retained sites in a given mapping. If and up to
which degree these two quantities are related, and how
intimately this relation depends on the Gaussian nature
of the GNM, requires further investigations that will be
the object of future studies.

In conclusion of this section, we note that the
observed phase transitions separate mappings so struc-
turally diverse that they can be associated to qualita-
tively different phases. It is, thus, natural to wonder if
and how these phases are organised in the metric space
induced by the norm of the mapping, and what infor-
mation the exploration of the latter can bring about the
system it is applied to. To provide an answer to these
questions, the next section is devoted to the topological
characterisation of the mapping space.

5 Topology

In the previous sections, we analyzed the mapping space
M in terms of the mapping norm E and of the cosine
between its constituent elements. Here, we discuss the
distance D (Eqs. 11, 31) between members of M with
the aim of showing, once again, that a peculiar choice
of retained CG sites, i.e. one impossible to obtain with
random sampling, displays non-trivial statistical prop-
erties that reflect in the topological organization of the
mapping space.

5.1 Topology of the mapping norm space

Without loss of generality,2 we restrict our investiga-
tion to the case N = 214, namely the number of amino
acids of adenylate kinase. We generated a data set of
mappings following the protocol explained in Sect. 3.2;
in this case, the range of values of E was narrower and
only 10 macro-bins of amplitude 20 were explored. The
data set was constructed by randomly selecting 100 ele-
ments for each of the macro-bins, resulting in 1000 CG
mappings that homogeneously span the accessible val-
ues of E .

The sketch map algorithm [46,47] was employed to
embed 1000 points from the high-dimensional space of
mappings M into a two-dimensional plane, at the same

2 The general validity of the discussion presented here is
supported by the results obtained for the case N = 856,
which are reported in Fig. 14 of the Appendix.

time preserving as faithfully as possible the relative dis-
tances among them—that is to say that nearby points
in the mapping space are mapped onto nearby points
on the 2D space, see Fig. 8. The two critical parame-
ters of the algorithm are σd and σD, which modulate
how far and close points are in the low and high res-
olution space, respectively [46]. To provide the reader
with a feeling of the impact that these parameters have
on the structure of the low-dimensional representation,
we report the embeddings obtained for a low (Fig. 8a)
and high (Fig. 8b) value of σd and σD.

In the first case, presented in Fig. 8a and referring to
low values of the σ parameters, data points are in gen-
eral very sparse and uniformly distributed on the plane,
with the exception of a group of points that accumu-
late in a denser cluster: these are particularly compact
mappings localised in a specific region of the molecule.
Such mappings remain close to each other even when
the σ parameters are increased, thus “squeezing” all
points in the low-D embedding, see Fig. 8b. At the same
time, we observe that, in this latter scenario, points
corresponding to low-E , uniform mappings collapse in
a small region of the embedding space. Furthermore, a
third group of points corresponding to compact map-
pings appears, distinct from the ones previously dis-
cussed, and absent in the low-σ embedding.

The high-σ embedding, thus, highlights two rele-
vant features: first, the presence of specific regions
with qualitatively distinct mapping properties; these
are either sparse, but necessarily similar one to the
other (Fig. 8d), or dense, with atoms localised in differ-
ent domains of the molecule (Figs. 8c, e). The distance
among the latter is necessarily large, since the retained
sites cover non-overlapping regions.

The second relevant feature is that different groups of
points, associated to qualitatively distinct types of map-
pings, can be connected one to the other only “passing
through” a third one, as in the case, see Fig. 8, of map-
ping c going going to e through d. This is suggestive of
the presence of routes in mapping space that join points
having the same value of the norm, which, however, can-
not be connected through “iso-E” paths: to transform
mappings such as that in c into that in e through a
sequence of single-site changes (i.e. one retained atom is
discarded, a formerly discarded one is now retained) one
cannot but increase or decrease the value of the norm.

5.2 Topology of mapping entropy space

While the mapping norm E can be employed to investi-
gate the structure of M itself, the quality of a CG rep-
resentation can be determined by means of an appropri-
ate cost function. One such function is, e.g. the map-
ping entropy Smap [23,24,30–32], which is a measure
of the intrinsic information loss that is inherent to the
process of dimensionality reduction operated by a map-
ping. This quantity is defined as

Smap(M) = kB

∫
dr pr(r) ln

[
pr(r)
p̄r(r)

]
, (54)
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Fig. 8 Top: topology of the mapping space M in 2D obtained with the sketch map algorithm [46,47]. The algorithm
requires six parameters, namely σd, ad, bd in the low resolution space and σD, aD, bD in the original, high resolution one.
We select σD = σd = 2 for subfigure (a) and σD = σd = 20 for subfigure (b), while ad = bd = 2 and aD = bD = 5 in both
cases. Mappings are depicted with different colors depending on their norm E . We note that a different choice for σD and
σd results in a completely different 2D embedding (see [46] for a detailed explanation). Bottom: three different mappings
located in three separated regions of the plane in (a, b). Mappings in subfigures (c) and (e) possess very high values of E
and are localised in different domains of the protein. It is interesting to notice that sparse mappings, such as the one in
subfigure (d), are clustered in the same region in (b) but not in (a)

where pr(r) ∝ exp(−βu(r)) is the Boltzmann weight
associated to the atomistic configuration r, while p̄r(r)
represents the “smeared” weight of r upon coarse-
graining the system by means of a CG mapping M .
More specifically, one introduces the probability of sam-
pling the CG configuration R, given by

pR(R) =
∫

dr pr(r)δ(M(r) − R), (55)

where M(r) is the projection operator defined in
Eq. 1, as well as the number of high-resolution micro-
states r mapping onto it,

Ω1(R) =
∫

dr δ (M(r) − R) . (56)

The probability p̄r(r) is then defined as [31]

p̄r(r) = pR(M(r))/Ω1(M(r)). (57)

Critically, while both pr(r) and p̄r(r) are functions of
the atomistic coordinates, they differ in assigning the
probability to a given high-resolution configuration or
microstate, in that p̄r(r) associates the same proba-
bility with all microstates that map onto the same
macrostate R. Minimising the mapping entropy Smap

in the space of possible CG representations of the sys-
tem thus implies maximising the consistency between
the reconstructed probability distribution p̄r(r) and the
all-atom one. In Ref. [23] we derived an approximate
expression for Eq. 54, which allows one to compute this
observable provided a set of configurations and their
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energies are available, e.g. sampled from the canonical
ensemble by means of a MD simulation:

Smap � kB
β2

2

∫
dRpR(R)

〈
(u − 〈u〉β|R)2

〉
β|R ,

(58)

where 〈(u−〈u〉β|R)2〉β|R is the variance of the energies
of the atomistic microstates mapping onto macrostate
R.

While the norm E depends only on the geometric
properties of a single protein conformation, Smap is cal-
culated from an ensemble of configurations sampled
according to the Boltzmann distribution; Smap(M),
thus, contains more information than E(M), since it
makes explicit use of the average structural and ther-
modynamical properties of the system.

Here we employ a data set of 1968 CG mappings
of AKE with N = 214 generated by us in a previous
work [48] and covering a wide range of values of Smap;
the relations among these mappings are then quanti-
fied in terms of their distance D, taking the enzyme
crystal structure as a reference. With respect to this,
it is worth keeping in mind that D intimately depends
on this reference, and mappings that lie close to each
other when a given structure is employed might turn
out to be closer or further away from each other when
a different conformation is used.

Figure 9 shows that the two-dimensional embedding
obtained through the application of the sketch map
algorithm separates the CG mappings according to a
gradient of Smap. In particular, the x component of the
sketch map and the mapping entropy Smap display a
clear anticorrelation. The results suggest that highly
informative mappings, characterised by low values of
Smap, share geometrical features that are not present
in less informative (high Smap) representations. In other
words, the peculiar resolution distribution found in low-
Smap mappings separates them from the other elements
of M. The relevant features that the mapping entropy
highlights thus reverberate in the merely structural
characterisation provided by the mapping distance; this
connection among the norm E , the distance D, and
highly informative representations is potentially inter-
esting and deserves to be further investigated.

6 Extension of the theory to equilibrium
sampling: preliminary results

Insofar, our analysis of the mapping space has relied
on a definition of a scalar product between CG rep-
resentations based on a single, static structure of the
reference protein. Proteins and other biologically rel-
evant macromolecules, however, are not static objects,
but rather flexible entities which, in a typically aqueous
environment, undergo fluctuations and deformations. It
is therefore natural to extend our metric to incorpo-
rate such structural variability; in this Section, we will,

thus, present some preliminary results obtained by per-
forming such an extension, restricting, for the sake of
brevity, the discussion to the case of the mapping norm
E .

We assume our high-resolution (i.e. atomistic) sys-
tem, constituted by the protein (whose atomic coordi-
nates are indicated with r) and its environment (indi-
cated with s), to be subject to an interaction potential
u(r, s). In the canonical ensemble the probability den-
sity to sample a given configuration is proportional to
the Boltzmann weight, that is,

pr(r, s) =
e−βu(r,s)

Z
, (59)

where Z =
∫

drds e−βu(r,s) is the configurational par-
tition function of the system.

The norm E of a mapping in Eqs. 30 and 8 only
depends on a single conformation of the molecule
under examination; however, one can straightforwardly
extend the definition of E—and analogously of the
scalar product and the distance between mappings—to
account for the whole conformational space sampled by
the system, in that the canonical average of the norm
is taken:

〈E〉 =
∫

drds pr(r, s) E(r)

=
∫

drds pr(r, s)
1

z̄(r)

⎛

⎝
n∑

i,j=1

e−r2
ij/4σ2

χM,iχM,j

⎞

⎠

=
n∑

i,j=1

〈Jij〉χM,iχM,j . (60)

Note that the average is carried out both over the pro-
tein and environment degrees of freedom; at the same
time, for mappings that only retain protein degrees of
freedom, the couplings Jij—and thus the norm E—only
depend on the latter. The linearity of the norm with
respect to the couplings allows one to first compute
their thermal average, that is,

〈Jij〉 =
∫

drds pr(r, s)Jij(r)

=
∫

drds
e−βu(r,s)

Z

1
z̄(r)

e−r2
ij/4σ2

, (61)

and subsequently employ them for the calculation of
norms, scalar products, and distances, in the same man-
ner as it was done insofar. In this case, however, the
resulting values entail information about the conforma-
tional space sampled by the whole system, including
the environment, described in terms of a high-resolution
model.

To investigate the effect that accounting for the con-
formational variability of the system has on the norm
of a mapping, Fig. 10 displays a comparison between
the value of E computed on the crystal structure of
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Fig. 9 Application of the sketch map algorithm to a distance matrix obtained calculating D (Eqs. 11 and 30) over a data
set of 1968 mappings [48] that span a wide range of values of mapping entropy. The x component separates very well the
data points according to their value of Smap, thus suggesting that informative mappings can be distinguished among the
elements of M according to a measure of geometrical similarity such as D. The parameters fed to the algorithm are the
following: σD = σd = aD = bD = 5, ad = bd = 2

AKE and its canonical average 〈E〉 obtained through
molecular dynamics sampling. Each point in the plot
represents a E–〈E〉 pair out of 5 × 104 mappings with
N = 214 extracted so as to homogeneously span all the
possible values of E , see Sect. 3.2. The ensemble aver-
age is performed over 104 configurations of a 200 ns
long NVT simulation, the technical details of which are
available in the SI of Ref. [23].

Interestingly, points are very narrowly dispersed
along the diagonal, with a Pearson correlation coeffi-
cient very close to unity. This suggests that, at least
in this case, the canonical average of E is robust to
structural changes: we ascribe this behavior to the fact
that at the outset of the simulation the protein is in its
native state and, due to the strong constraints present
in the molecule, the local environment of each atom
generally performs small-amplitude fluctuations about
a well-defined average. In this particular case, the cou-
plings computed explicitly accounting for the energetics
of the system do not induce significant deviations in the
value of the norm with respect to their static-structure
counterparts it is hence reasonable to expect that the
same will hold for the metric and topological properties
of the mapping space discussed insofar.

However, this consistency will not be observed when
secondary and tertiary structures heavily change, as,
e.g. in the case of protein folding: the value of E cal-
culated over the unfolded polypeptide chain will not
match its canonical average performed over a sam-
ple containing folded, more globular configurations. A
more detailed understanding of how equilibrium sam-
pling can change the metric properties of the mapping
space—especially in the presence of large-amplitude
conformational rearrangements—is required, and will
be the subject of future work.

Fig. 10 Scatter plot of the single-conformation mapping
norm E , calculated on the crystal structure of AKE, against
its canonical average 〈E〉 (Eq. 60) for 5 × 104 CG mappings
with N = 214. The red straight line with slope one serves
as a guide to the eye. The Pearson correlation coefficient is
0.9997

7 Conclusions

In this work we have addressed the problem of defining
a measure to quantify the distance between two low-
resolution representations of a macromolecule, and to
“explore” the metric space induced by it.
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The recent advances in the computational investiga-
tion of soft and biological matter have provided us with
the tools to perform large-scale simulations of large and
complex systems; however, due to the sheer size of the
data produced, one has to filter out the large amount
of detail with which the system is described [8], thus
relying on a coarse-grained description of it.

Decimation mappings offer a simple and intuitive
way of applying this filter, in that only a subset of a
molecule’s atoms is retained; however, not all mappings
entail or deliver the same amount of information, and
the identification of the most informative ones allows
one to highlight relevant properties of the system. Var-
ious methods have been devised [20–25] to identify the
most informative mappings as the solution to an optimi-
sation problem, which thus relies on the definition of an
appropriate cost function. Since the landscape induced
by the latter is typically a rather rugged one, as it is
often the case in the field of complex systems [49,50],
it is to be expected that more than one “optimal” solu-
tion will be found. Hence, to understand the relation-
ship among such solutions, as well as between structural
representation and physical properties in general, it is
of fundamental importance to possess an instrument to
measure the difference, or distance, among mappings.

The metrics proposed here, which builds on the
SOAP measure proposed by Csány and coworkers [35,
36], has been employed to quantify the number, dissim-
ilarity, and structural features of different mappings of
a macromolecule in a static conformation, thereby pro-
viding the basis for quantitative analysis of the afore-
mentioned relationship.

The exploration of the mapping space relied on the
application of the Wang–Landau enhanced sampling
algorithm [28,29], which allowed us to compute the
(logarithm of the) density of states for mappings with a
given number of CG sites, as a function of their squared
norm. On the one hand, these calculations brought to
the surface information about “special” (i.e. atypical)
representations that, just due to their lower number
with respect to randomly sampled ones, are exponen-
tially suppressed; on the other hand, we made use of the
densities of states to implement a lattice-gas analogy in
terms of which we have interpreted mappings of quali-
tatively different types as different phases of the same
physical system undergoing a phase transition. We have
then made use of the distance between mappings to
investigate the properties of optimal reduced represen-
tations obtained by minimising the mapping entropy, a
measure of the amount of information that a given map-
ping can return about the underlying system at thermal
equilibrium: this last analysis has shown that optimal
mappings are markedly distant, and therefore qualita-
tively different, from randomly sampled ones, thus cor-
roborating the idea that the former belong to a particu-
lar subregion of the mapping space endowed with non-
trivial properties. Finally, we proposed a possible exten-
sion of the theory to samples of conformations at ther-
mal equilibrium, focusing on the case of the mapping
norm. In this manner, the Jij couplings are weighted

with the probabilities associated to each configuration,
thus indirectly accounting for the system’s energy.

A number of questions remain open, which could
not be addressed in this work. As a first thing, in the
application of the theory to the system under examina-
tion we have observed a substantial consistency between
the values of the mapping norm computed with single-
structure couplings and their averaged counterparts;
however, it is reasonable to expect that this won’t be
a general case. Consequently, the inclusion of the refer-
ence system’s conformational variability might lead to
interesting outcomes in the analysis of structural and
topological properties of the mapping space. This rele-
vant line of research is currently under investigation.

A second open issue, partially related to the former,
is that the phase transitions that we observed are analo-
gous to the ones reported in a previous work [15], where
explicit reference to the molecule’s free energy was
made: this connection might entail important insights
in the relationship between the properties of mappings
as elements of the mapping space and the functional
characteristics of the underlying system, and it cer-
tainly deserves to be further inspected.

Finally, the general character of the tools developed
in this work make them suitable to be easily com-
bined with other methods. For example, they can be
employed to quantitatively gauge similarities and dif-
ferences among the solutions to the mapping optimisa-
tion problem obtained making use of the various proto-
cols proposed in the literature; or to boost the accurate
determination of cost functions profiles, whose compu-
tation can be accelerated by a preliminary exploration
of the mapping space followed by a cycle of biased
enhanced sampling simulations [48].

In conclusion, the mathematical, biophysical, and
computational methods developed and applied in this
work have served to start gathering the treasure of
information buried in the relationship between how we
look at a system and the properties it is endowed with,
of which we think that what has been reported here has
just scratched the surface.
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Appendix A: Wang–Landau sampling

For the set of selected degrees of coarse graining N reported
in Table 1, the corresponding density of states ΩN (E)
defined in Eq. 33—that is, the number of possible CG rep-
resentations in the mapping space M that retain N atoms
and have a squared norm of E—was determined by rely-
ing on the protocol proposed by Wang and Landau (WL)
[28,29,42,43].

WL sampling enables to self-consistently determine ΩN (E),
or, for computational convenience, the associated entropy
SN (E) = ln[ΩN (E)], through a sequence k = 0, ..., K of
nonequilibrium Monte Carlo (MC) simulations that provide
an increasingly accurate approximation to the correct result
[28,29]. Given a partition of the ensemble of possible norms
E in bins of width δE , the pivotal ingredients of the WL
iterative scheme are, respectively: (i) the MC estimate of
the entropy S̄N (E); (ii) the histogram of visited norms at
iteration k, Hk

N (E); and (iii) the modification factor ln(fk)
governing convergence of the algorithm—for k = 0, one typ-
ically sets S̄N (E) = 0 and ln(f0) = 1.

At the beginning of each iteration k, the histogram Hk
N (E)

is set to zero. Subsequently, a series of MC moves is per-
formed in which a transition between two mappings M and
M ′, respectively with norms E and E ′, is accepted with prob-
ability, see Eq. 43,

αM→M′ = min
[
1, exp

(− [
S̄N (E ′) − S̄N (E)

])]
. (A1)

In our case, both mappings have N sites but differ by
the retainment of a single atom. If the move M → M ′ is
accepted, the histogram Hk

N and entropy S̄N are updated
according to

Hk
N (E ′) = Hk

N (E ′) + 1, (A2)
S̄N (E ′) = S̄N (E ′) + ln(fk), (A3)

while in case of rejection one has to replace E ′ with E in
Eqs. A2 and A3. As highlighted by Eqs. A1 and A3, the early

stages of the WL scheme tend to “push away” the sampling
from already visited regions of the mapping space, thus sig-
nificantly boosting its exploration compared to randomly
drawing CG representations. The algorithm then evolves to
generate a “random walk” in the space of possible norms
[43].

The series of MC moves within iteration k is interrupted
when the histogram of sampled norms Hk

N (E) is “flat”,
meaning that each of its entries does not exceed a threshold
distance from the average of the histogram 〈Hk

N 〉. A typical
requirement is pflat×〈Hk

N 〉 < Hk
N (E) < (2−pflat)×〈Hk

N 〉 for
every value of E , pflat being a predefined flatness parameter.
When the flatness condition is satisfied, iteration k + 1 of
the algorithm begins with a reduced modification factor—in
our case, we set ln(fk+1) = 1

2
ln(fk). Finally, iterations over

k are stopped when ln(fk) < ln(fend) � 1, ln(fend) being
another control parameter provided in input to the WL pro-
tocol. Up to an additive constant, the MC estimate of the
entropy S̄N (E) reproduces the exact result SN (E) with an
accuracy of order ln(fend) [51].

In WL sampling, knowledge of the boundaries of the
domain of the density of states ΩN (E) (equivalently, of the
entropy SN ) plays a crucial role in the convergence the
iterative scheme, e.g. for checking the flatness of the his-
togram HN (E) throughout the simulation [44]. In contrast
to “more traditional” systems such as Ising ferromagnets
on a lattice [28], this information is not readily available
in our case. As such, we initially performed a set of explo-
rative, non-iterative—i.e. without updating the modifica-
tion factor ln(fk)—WL runs so as to approximately locate
the minimum and maximum norms Emin(N) and Emax(N)
achievable at each degree of CG’ing. To mitigate the effect
of bins that are only visited at a very late stage of the simu-
lation, thus risking to temporarily “trap” the mapping space
exploration, we followed the protocol described in Ref. [44]:
every time a bin [Ei, Ei + δE ] was populated for the first
time, it was marked as “visited”, the corresponding entropy
was initialised to the minimum of S̄N (E) over the previ-
ously visited bins, and the histogram HN (E) was reset. The
results obtained from these preliminary runs for Emin(N)
and Emax(N) as a function of N are displayed in Fig. 3 and
summarised in Table 2.

Having identified the range of possible norms for each
investigated degree of CG’ing, we subsequently moved to
the determination of the corresponding entropies SN (E) via
the iterative WL scheme. To boost convergence of the algo-
rithm, for each N we slightly reduced the interval of norms
[Emin(N), Emax(N)] with respect to the one predicted by
the explorative runs, and divided this spectrum in a total
of WN overlapping windows of equal width, see Table 2
[29]. The overlap between two consecutive windows was
fixed to half their size. Within each window, we then per-
formed a separate WL simulation in which confinement of
the range of norms was achieved by rejecting all mapping
moves M → M ′ that would bring the exploration outside
the E interval of interest. In discarding these moves, we con-
currently updated the histogram and entropy of the current
state according to Eqs. A2 and A3 to avoid boundary effects
[52]. Furthermore, also in these production runs we kept
track of the norm bins that were sampled during the course
of the simulation, resetting the histogram every time a new
bin was populated, the entropy of which was initialised to
the minimum of S̄N (E) over the previously visited ones. All
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Table 2 Lower and upper bound of the norms Emin and Emax identified by the set of preliminary WL runs for each degree
of CG’ing N , see Fig. 3, and corresponding values Ēmin and Ēmax employed in the reconstruction of the entropy SN (E)
through the iterative WL scheme. For boosting convergence of the algorithm, the interval [Ēmin, Ēmax] was divided in WN

windows overlapping by half their width; the associated simulations were performed with a flatness parameter pflat = 0.90,
assuming convergence of the iterations when the modification factor ln(fk) became smaller than ln(fend) = 10−6

N Emin Emax Ēmin Ēmax WN

214 25.6 209.8 28 192 3
428 92.4 424.4 98 410 7
642 206.2 633.8 218 618 15
856 371.2 853.0 390 840 17
1070 600.2 1074.2 612 1062 17
1284 900.2 1298.4 910 1290 18
1498 1287.8 1514.6 1296 1504 12

WL simulations were performed setting pflat = 0.90, and
checking the histogram flatness over the visited bins every
3 · 106 “single spin” MC moves that involved the swap of
a retained and a non-retained atom in the mapping. We
interrupted the iterative scheme when the modification fac-
tor ln(fk) became smaller than ln(fend) = 10−6.

For each degree of CG’ing N , the outcome of the con-
verged WL protocol is a set of entropies S̄N,i(E), i =
1, ..., WN , restricted to bounded and overlapping E domains
that need to be combined to provide the complete SN (E)
over the whole range of investigated norms. These S̄N,i(E)
differ—besides numerical uncertainties that are inherent
to the self-consistent scheme [53]—from the exact results
SN,i(E) by additive constants CN,i that are not uniform
across the different WL windows. Rather than determining
the relative shifts that most accurately superimpose the var-
ious S̄N,i(E) profiles within the overlapping regions—see e.g.
Ref. [42]—in this work, we directly considered the (numeri-
cal) derivatives of S̄′

N,i(E) in each WL window,

S̄′
N,i(E) =

dS̄N,i(E)

dE =
1

T
, (A4)

where T is the “temperature” of the system. These deriva-
tives are not affected by the constants CN,i, so that each
S̄′

N,i(E) is approximately equal to its exact counterpart
S′

N,i(E). One can thus combine all the derivatives of the
different WL windows in a global derivative S′

N (E) that
extends over the whole range of analysed norms, from which
the overall entropy SN (E) can be calculated as

SN (E) = SN (Emin(N)) +

∫ E

Emin(N)

S′
N (E ′)dE ′, (A5)

where Emin(N) is the lowest norm sampled at degree of
CG’ing N . Note that in contrast to systems as the ferro-
magnetic Ising model, we do not a priori know the value
of SN (Emin), so that the entropy SN (E) will be only deter-
mined up to a constant.

To merge the set of derivatives and reconstruct S′
N (E) for

each degree of CG’ing, we first applied a Savitzky–Golay fil-
ter [54] to the WL estimates of the entropies S̄N,i(E) so as
to reduce the amount of noise in the simulation results, and
consequently smoothen the derivative S′

N,i(E) of each win-
dow. A comparison of the derivatives obtained in presence
or absence of the filter, see Fig. 11, highlights how this only
applies a tiny correction to the original data, which nonethe-
less significantly improves the quality of the set of S′

N,i(E).

Despite this refinement, the presence of residual numerical
fluctuations leave room to a certain degree of arbitrariness in
how, within the overlap region of two consecutive windows,
the combined derivative should be constructed. At the same
time, these fluctuations appear to be marginal in the vicinity
of the center of a window, while tend to slightly increase if
we move towards its boundaries (data not shown). Exploit-
ing this observation, we thus tackled the problem of merging
the derivatives of two consecutive windows i and i+1 within
their overlap region as follows: first, we divided the region in
three separate intervals, the central one being roughly dou-
ble the size of the other two. Given that the windows overlap
by half their width, it follows that the first interval will be
located close to the center of window i, where the deriva-
tive S′

N,i(E) is numerically more stable, but close to the
boundary of window i + 1, where S′

N,i+1(E) is slightly more
noisy. The opposite holds for the last interval. As such, in the
first and last regions, we considered the combined derivative
S′

N (E) to be equal to S′
N,i(E) and S′

N,i+1(E), respectively.
Within the central interval, by increasing E we move from
the vicinity of the center of window i to that of window i+1.
In this latter region, we, thus, set the final derivative S′

N to
a weighted average of the derivatives of the two windows,
namely

S′
N (E) = (1 − α(E)) S′

N,i(E) + α(E)S′
N,i+1(E), (A6)

where α(E) is a mixing parameter that linearly increases
from zero to one as E moves from the left to the right bound-
ary of the interval.

Repeating this interpolation for all the set of WN

windows—note that in the first (resp. last) half of the first
(resp. last) window no mixing applies—provided us, for each
of the analysed degrees of CG’ing, with a global deriva-
tive S′

N (E) that extends over the whole range of sampled
norms. Figure 11 displays a comparison between S′

N (E) and
the original, piecewise derivatives for the case N = 856,
highlighting the accuracy of our approach. This accuracy
is further confirmed by the smooth behavior of the second
derivative S′′

N (E) calculated from the reconstructed S′
N , that

we display in Fig. 4 for N = 856. Starting from the set
of S′

N (E), the corresponding entropies SN (E) were subse-
quently obtained via direct integration, see Eq. A5, produc-
ing the profiles presented in Fig. 4 and in Fig. 12. In these
figures, entropies were shifted so that their minimum value
is zero.
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Fig. 11 Left: Main figure: Comparison between the piecewise entropy derivatives S′
N,i(E), i = 1, ..., WN of AKE (colored

dots) obtained from the set of independent WL simulations performed over the WN overlapping windows, and the final,
reconstructed derivative S′

N (“Final”, red line) calculated through the mixing procedure of the S′
N,i described in the text. We

report results for N = 856. Inset: Behaviour of the derivative S′
N,i(E) for the last WL window before and after the application

of the Saviztky–Golay filter to the raw simulation results for the entropy S̄N,i(E). Right: Reconstructed derivates S′
N (E)

for N = 856 obtained by varying a subset of the input parameters of the WL protocol. Specifically, we test the sensitivity
of the results to a change in the flatness parameter pflat as well as in the bin width δE , considering as reference profile the
derivative S′

N obtained by setting pflat = 0.95 and δE = 0.2 (red full line)

Finally, it is interesting to test the dependence of our
results on the input parameters of the WL protocol. While
initially all MC simulations were performed with a flatness
condition pflat = 0.90, for the case N = 856, we repeated the
calculations using pflat = 0.95 finding a perfect agreement of
the reconstructed S′

N (E), see Fig. 11. The same sensitivity
analysis was performed for the bin size δE dictating the
discretisation of the mapping norms: while in all simulations
we employed δE = 0.2, by repeating the calculations for
N = 856 with a bin width of δE = 0.5 we again observed
excellent agreement of the results, see Fig. 11.

Appendix B: Heat capacity of the lattice gas

In this Appendix we provide additional information about
the phase transitions observed in the lattice gas analogue

of the mapping norm. Specifically, Fig. 13 displays the heat
capacity CV of the lattice gas, see Eq. 53 in the main text, as
a function of the inverse temperature β for different degrees
of CG’ing N , calculated from the Legendre-Fenchel trans-
form βFN (β) of the WL entropies SN (E), see Eq. 52. While
for the highest degree of CG’ing investigated, N = 1438, the
heat capacity has a smooth dependence on β, for N = 1284
CV develops a sharp peak for low temperatures, which sug-
gests the presence of a solid–liquid transition in the system.
By further decreasing the degree of CG’ing, this solid–liquid
peak gets initially flanked by a shoulder located at higher
temperatures, and finally disappears. The shoulder, on the
other hand, grows in magnitude as fewer and fewer sites are
retained, and becomes a discontinuity for N = 214, suggest-
ing the appearance of a liquid–gas transition.

123



  204 Page 22 of 26 Eur. Phys. J. B          (2021) 94:204 

Fig. 12 Behavior of the entropy SN (E) of AKE for different degrees of CG’ing. For each N , we report results obtained
via (i) Wang–Landau sampling (“WL”, red dotted lines), shifting the data so that the minimum of SN over the range of
investigated norms is zero; (ii) a saddle-point approximation of the WL predictions (“SP-approx”, orange dashed lines);
and (iii) a random drawing of CG representations (“Random”, black lines), in this latter case shifting the curve so that
its maximum coincides with the one of the corresponding WL profile. For N = 214 (resp. N = 856) we further report the
squared norm associated to the Cα (resp. backbone) mapping (“Chem”, blue dashed line), a CG representation that is
routinely employed while CG’ing a protein system [5,8]

123



Eur. Phys. J. B          (2021) 94:204 Page 23 of 26   204 

Fig. 13 Dependence of the heat capacity CV on the inverse temperature β for the lattice gas analogue of the mapping
norm of AKE calculated at several degrees of CG’ing. Sharp peaks in CV at high (resp. low) values of N suggest the
presence of a solid–liquid (resp. liquid–gas) transition in the system. It should be noted that the scales of β and CV are the
same in all plots
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Fig. 14 Application of the sketch map algorithm to the mapping space M: case of N = 856. We employed the same set
of parameters described in Fig. 8 of the main text, where CG mappings have N = 214, with the exception of σD and σd

in subfigure (a), which are equal to 5. The two-dimensional embedding shown here displays similar properties to the one
in the main manuscript; specifically, if σD and σd have low values, essentially all the data points are depicted as isolated
instances in M and only the extremely sparse and globular mappings are capable of forming recognisable clusters. With
a higher value of these parameters, all sparse mappings collapse in a well-defined region of the plane, from which several
routes depart, each one directed towards globular mappings covering different domains of the protein structure
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