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Abstract: For a long time, spatial structures have been widely used. However, compared with
the high strength of their material, their stability is weak, and especially sensitive to damage and
defects. This feature has increased the engineering industry’s high requirements for their stability
analysis. As we all know, this problem is more prominent for the reticulated shell structure, which
is a classic representative of the spatial structure. However, in the current analysis methods for
the stability of reticulated shells, the deterministic analysis method cannot consider the random
characteristics of defects. Other random methods, such as the random defect modal method, and
many improved methods, require more samples and calculation time. This unfavorable situation
makes its engineering application greatly restricted. In addition, the random modal superposition
method and derivation method based on Monte Carlo has not fundamentally changed this limitation.
In order to fundamentally overcome this traditional shortcoming, this paper comprehensively studies
the advantages of the high accuracy of the random defect modal method and the improved method,
and at the same time, investigates the speed advantage of the response surface method, and then
creates a new stochastic analysis method based on the response surface method. Finally, the analysis
results of the calculation examples in this paper prove that it successfully balances and satisfies
the dual requirements of accuracy and speed required for calculating the stability of the reticulated
shell structure. Moreover, it has universal applicability to different forms of reticulated shells, such
as classic 6-point flat domes, traditional reticulated shell structures, and bionic reticulated shell
structures, and even other types of spatial structures.

Keywords: spatial structure; reticulated shell structures; stability; performance; response surface
method; stochastic algorithm; critical load

1. Introduction

For a long time, people have widely used spatial structures, such as Convention and
Exhibition Centers [1] Sports Stadiums [2], Industrial Plants [3], Transportation Hubs [4],
Military Industry Barracks [5], Ocean Platforms [6], and Tourist Attractions [4]. Compared
with the high strength of their material (usually structural steel), their stability is weaker,
and they are sensitive to various structural damages and defects. This sensitive character-
istic has increased the high requirements of the engineering community for its stability
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analysis [7–9]. As we all know, the reticulated shell structure is the most classic representa-
tive of the space structure, so the stability analysis of the reticulated shell structure is more
important and prominent [10–14]. The main reason for this significant problem is that the
stability of the reticulated shell has a strong correlation with defects [15,16]. What is more,
this defect distribution has strong stochastics [17–20].

However, the current main popular analysis methods for the stability of reticulated
shells are either theoretical methods [21] or deterministic analysis methods [22,23], such
as optimization methods [24], critical imperfection methods [25], and the consistent mode
imperfection methods [26,27], and their improvement methods cannot consider the imper-
fection randomness.

In response to this problem, some scholars have proposed a random analysis method
based on numerical methods—the random defect modal method [28,29]. Based on it,
some other scholars have proposed more improved methods [30]. As a result, they can
accurately solve the random distribution of geometric node defects but generally require
more samples and time consumption [31]. As a result, their engineering application range
is minimal.

Furthermore, it has caused more scholars to explore new solutions, such as explaining
and searching for the most unfavorable defect modes from modal combinations.

The studies of [32,33] took the lead in finding the most unfavorable defect distribution
from a single buckling mode. Luca Bruno [34] combined the characteristic buckling modes
to obtain the most unfavorable defect distribution of the structure. The author of [35] agrees
with the idea of modal combination, admitting that there is always a modal combination,
which may be the most unfavorable defect distribution. On this basis, she proposed that
the combination coefficients of buckling modes can be used as random variables. The
idea was extended to the randomness field and established a new method for stochastic
analysis—the random mode superposition method (simian) bases on the Monte Carlo
sampling (MCS) method [35]. The calculation examples she compiled, and the data of
related physical experiments, proved that the method was advanced at that time. Other
authors [36] endorse this new idea by comparing and studying the calculation results
of this method under different random variable distributions. This study attempted to
find the type or parameter of random variable distribution from which it is easier to
obtain the unfavorable defect distribution. This type of method still cannot eliminate the
traditional drawback of requiring the time-consuming acquisition of a large number of
samples. Therefore, a new method devoted overcoming the abovementioned shortcomings
is described in the present work.

2. A New Method
2.1. Structural Characteristics That the New Method Needs to Meet

Section 1 shows that a new method to be established should abandon the shortcomings
of the current methods. It has shown that these shortcomings mainly are the contradiction
or conflict between calculation accuracy, calculation efficiency, and the application range of
the literature [28,29,35]. For this purpose, the new method must have three characteristics
at least, and at the same time: (i) random characteristics (consider the randomness of
defects); (ii) fitting characteristics (reduce the sample size), and (iii) solvability (obtain the
lowest critical load).

2.1.1. Random Characteristics of the New Method

In the current method, due to the random nature of structural node defects, the
analysis method is required to have random analysis. For example, the Simism [35] method
uses the “participation weight” of the random defect mode as a random factor and uses
it to consider the randomness of the defect equivalently. Its random analysis function
is realized by Monte Carlo (MC) sampling. As mentioned above, this method is limited
to Monte Carlo sampling (MCS), which requires increasing number of sample capacity.
Other methods, compared to Simism method, usually require relatively fewer samples to
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complete random analysis, such as existing response surface methods based on random
variables or response surface methods in other fields. People can boldly explore whether a
new method organically combines the above two advantages (good functions and small
sample capacity). For example, we can use the Simism method as a reference method and
change the Monte Carlo sampling method to other random sampling methods (response
surface method) to construct a new method. We believe that this will be a promising path.

Since the random variables used in response surface method are different from Simism
method, we need to unify random variables, establish new methods, and compile new
algorithms to achieve the purpose of establishing new methods, as shown in Section 2.2.1.

2.1.2. Fitting Characteristics of the New Method

If we can unify random variables into modal “participation weights” as described in
Section 2.1.1, and then replace the MC sampling method with the response surface method,
the proposed novel method naturally has the advantage of the response surface method:
the fitting characteristics of the target volume can reduce the total sample size.

It is important to note that in this new method, due to the variability of the random
variables, it is necessary to optimize and verify the new algorithm to ensure if the compu-
tational power of the small sample size and high precision (inherited from the response
surface method) can be realized on schedule (optimally). (For example: Optimization of
formulas for fitting functions, see Section 2.2.2.)

2.1.3. Solvability of the New Method

If we want to establish a new method by coupling the two existing methods, we should
ensure the solvability of the target quantity, i.e., the critical load. The new method’s content
that needs to be improved only includes the random algorithm (defect generation method)
and the response surface fitting algorithm. However, it does not change the total stiffness
matrix of the structure, load conditions, boundary conditions, amplitude/equivalent
distribution of defects, etc., so its solvability will remain consistent with the original
method. The original methods, such as the Simism method [35], have long been proven to
be solvable. Therefore, this new method is naturally solvable as shown in this work.

2.2. Three Critical Algorithms of the New Method

We can realize three structural characteristics of the new method above by compiling
three functional algorithms. The first is a random algorithm for geometric node defects.
The second is the fitting algorithm of the target response, i.e., stable bearing capacity pcr
function. The third is the algorithm for the lowest stable bearing capacity (corresponding
to the most unfavorable distribution of defects).

2.2.1. Random Algorithm

The stochastic algorithm part of the new method quotes the stochastic analysis theory
used in the literature [35]. In order to clarify the structure of the new method (including
three algorithms), here is an introduction to the critical parts of the theory.

First, according to the structural stiffness matrix [K], the eigenvalue λi(i = 1, 2, . . . , m)
of linear buckling and the corresponding buckling mode {Ui} are solved to obtain the
defect mode vector {∆X} with amplitude R, as shown in Equation (1).

{∆X} = R/max(∆X1
′, ∆X2

′, . . . , ∆Xn
′){∆X}′ (1)

Here, {∆X}′ = ∑m
i=1(ri{Ui}); r1, r2, . . . , rm are participation coefficients, which are

independent random variables; {Ui} is the ith linear buckling mode of the structure; m is
the modal participation order; ∆X1

′ is the displacement vector of node 1 in {∆X}′; n is the
number of structural nodes; and R is the corresponding amplitude.

The displacement vector Uin of the nth node in the ith buckling mode satisfies the
condition, max(Ui1, Ui2, . . . Uin) = 1 that is achieved through normalization processing.

It can be seen from the above that {∆X} is the function of random variable ri.
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At this time, the stochastic finite element stiffness equation [35] is

[KT ]{∆a} = {Q} − {F} (2)

here, [KT ], {∆a}, {Q}, {F} are functions of random variable ri. [KT ] is the tangent stiffness
matrix; {∆a} is the nodal displacements; {Q} is the nodal forces; and {F} is the non-
equilibrium nodal force.

Using conventional methods, such as the arc length method, we can solve Equation (2)
and then obtain the response value of the structure after the input of random variables, i.e.,
stable critical load value pcr.

2.2.2. Polynomial Fitting Functions and Their Coefficients Solution (Collocation Method)

According to the response surface method theory, we take pcr into a polynomial to
obtain the fitting function p̂cr

(
r
)

. There are three ways of fitting:

The first type is the second complete polynomial.

p̂cr

(
r
)
= a0 +

n

∑
i=1

airi +
n

∑
i=1

n

∑
j=i

aijrirj (3)

In the formula, a0, ai, aij are undetermined coefficients.
The second type is a quadratic polynomial without cross terms.

p̂cr

(
r
)
= a0 +

n

∑
i=1

airi +
n

∑
i=1

ai iri
2 (4)

The third type is first-order polynomial fitting.

p̂cr

(
r
)
= a0 +

n

∑
i=1

airi (5)

In order to obtain the undetermined coefficients a0, ai, aij of the fitting function, it is
necessary to select enough expansion points to calculate and find them by solving the
Equations (3)–(5), and then obtain the critical load p̂cr

(
r
)

fitting expression.

This method uses the classical method, least squares method, to solve the undeter-
mined coefficients ai, aij in Equations (3)–(5).

This is assuming that it has obtained k groups of random variables and critical loads
separately and denotes them as (r)

i
, p̂cr(r)

i
.

Here, i = 1, 2, . . . , k, which theoretically must be greater than or equal to the number
of corresponding unknown parameters.

We write Equations (3)–(5) as general formulas:

{Pcr} = ([r]){A}

One can get

[r]T{Pcr} =
(
[r]T [r]

)
{A}

Then
{A} =

(
[r]T [r]

)−1
[r]T{Pcr} (6)

Here, [r] =

 1 r11 . . . r1n r11
2 . . . r1n

2 r11r12 . . . r1n−1r1n
...

...
...

...
...

1 rk1 . . . rkn rk1
2 . . . rkn

2 rk1rk2 . . . rkn−1rkn

,

{Pcr} = (Pcr,1, Pcr,2, . . . Pcr,k)
T

{A} = (a0 a1 . . . an a11 . . . ann a12 . . . an−1n)
T .
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Here, rij is the j-th random variable value of the ith group of data, and pcr,i is the
critical load value of the ith group of data.

Next, we can solve Equation (6) by combining the point-matching method, such as
Box–Behnken method (BBM), matrix method, central composite design method (CCD),
or 2n factorial method, combined with k sampling, and then obtain the undetermined
coefficient {A}.

{A} = (a0 a1 . . . an a11 . . . ann a12 . . . an−1n)
T .

2.2.3. Critical Load Algorithm

This method assumes the distribution form and distribution parameters of k random
variables, first expanding with the mean point as the center, and the expansion range is:
[µri , µ± f σri ]. Here, it determines f by the 3σ principle commonly used in engineering. At
this time, the most unfavorable critical load P of the structure p∗ is defined as follows:

p∗ = µpcr − 3σpcr (7)

We assume that the design value of the bearing capacity of the known reticulated
shell structure without defects is p0. The structural critical state expressed by the reliability
function is:

Z = pcr(r)− 5p0 (8)

Correspondingly, we can define the probability of structural failure under random
defects as:

Pf = P(pcr(r)− 5p0 ≤ 0) (9)

Pf can be obtained by using the same solution method as above to solve pcr.

3. Optimization of Collocation Parameters (CCD and Box–Behnken) of the New Method

As mentioned in Section 2.2, obtaining the fitting function algorithm of pcr is the
second goal of the method in this paper. It can be seen from Equation (6) that the solution
of this proper function depends on the sampling method of {ri}. Therefore, the accuracy
of the pcr function ultimately depends on the various experimental design methods of {ri}
samples. Among these design methods, people use the central composite design (CCD)
method [37] and Box–Behnken method (BBM) [38] more commonly. As people derive them
from different theoretical foundations, they will affect the calculation results of this method.
In addition, other parameters will also affect the calculation results, such as the type of
fitting function selected, the number of random variables selected, etc. What is more, they
affect the fitting accuracy of the response in a coupling manner. In short, their influence
mechanism is not single and linear.

Therefore, we must consider various parameter conditions, such as the type of fitting
function and the number of random variables, respectively, to optimize and compare the
two collocation methods to obtain a better collocation method and its corresponding better
parameter settings in a universal sense.

3.1. Classical Dome Structure Model

In this section, the hexagonal flat reticulated shell [23], which is a classical structure
in the shell stability theory, is used as a calculation example to calculate the optimizing
collocation method and parameter settings.

3.1.1. Model Parameters

The geometric parameters of the hexagonal flat reticulated shell structure are shown
in Figure 1 [23]. The material is assumed to be an ideal elastic material (isotropic), the
elastic modulus is E = 3030 MPa, the shear modulus is 1096 MPa, the Poisson’s ratio is 0.3,
and the mass density is 7850 kg/m3. The component adopts a rectangular solid rod with a
cross-sectional area of 317 mm2. The load P acts downward at vertex 1.
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Figure 1. Numerical model and node number. (a) The plan view of the structural model (m). (b) The
elevation view of the structural model (m).

We assume that the components are rigidly connected, and the periphery is 3-dimension
fixed hinge support. Furthermore, we model this structure by means of ANSYS software,
and the discrete elements of the members are Timoshenko beam elements (beam188).
Figure 1 shows the elements and the corresponding node numbers.

3.1.2. Analysis of Parameters, Calculation of Physical Quantities and Definition of Indicators

The response surface fitting functions considered in this paper mainly include linear
polynomials (Lin), complete quadratic polynomials (Quad), and quadratic polynomials
with cross terms (Quax). We select the random variable number of each function form as 3,
4, 5, and 6. In this paper, the calculation result of MCS method [28,29] is selected as the
reference value for optimization and comparison, as it is the critical load closest to the true
value. The resulting physical quantities used for comparison include calculation time t,
response surface function accuracy, minimum pcr and p∗, etc. Here, we use e to represent
the critical load error between the response surface method and the MCS method, and the
sampling times of MC are 10,000.

The accuracy of this method depends not only on its relative error, e, but also on the
accuracy of its critical value function fitting (R2

adj). If we select one of the indicators for
comparative analysis, the result will be inaccurate. For this reason, we constructed an
effective coefficient, fcec (compound evaluation coefficient), which can comprehensively
consider these two indicators and judge the pros and cons of the method, as shown below:
In the formula, the closer the fcec value is to 1, the higher the prediction accuracy of
the method.

fcec = (1− |E|)R2
adj (10)

Note that the software used in the analysis of this paper is ANSYS 19.1, the computer
used is a Lenovo brand desktop computer, and the processor is Intel (R) Core (TM) i7-
10750H CPU @ 2.60 GHz, with four cores.

3.2. Central Composite Design Allocation Point

Figures 2 and 3 show the calculation results using the central composite design (CCD)
collocation method in this section.
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Figure 2. Comparison of different fitting functions in terms of accuracy.
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Figure 2 shows the effective accuracy fcec of the new method with three fitting functions.
In the three cases, they all consider different numbers of random variables. When using
the Lin polynomial, the curve of the number of random variables–calculation accuracy is a
sine curve of one wavelength, and one of the peaks is very large. When using the Quad
polynomial, the fluctuation phenomenon of the curve is similar to the Lin method, and
the two curves are very close. When using Quax polynomial, the curve has no significant
fluctuations, and the trend is stable. Therefore, given the effective accuracy f and stability,
this method’s response surface fitting function is preferably Quax polynomial.

Figure 3a–c further shows the detailed error and precision values of e, r and fcec when
the method uses three polynomial fittings. Figure 3a shows that the e/r-random variable
curves calculated by this method using Quax polynomials are all stable. At the same time,
it shows that the critical load accuracy e calculated by it is less than 3.70%, which meets
the engineering accuracy. At the same time, Figure 3b,c shows e, r, and f values when
adopting the Quad and Lin polynomials in this method, respectively. The stability of their
e/r//f -random variable number curve is worse than the result of the Quax polynomial,
and the value of e is larger than the result of the Quax polynomial, 27.09% and 19.18%,
respectively, exceeding the usual engineering accuracy of 5%. Therefore, from the various
detailed accuracy (error) analyses shown in Figure 3 above, it can be seen that the Quax
polynomial is also the preferred response surface fitting function of this method.

3.3. Box–Behnken Method (BBM) Distribution Point
3.3.1. Comparison of Calculation Accuracy

The above figures prove that the optimal fitting function is the Quax polynomial when
employing the central composite design (CCD) collocation method.

Not only CCD method, but Quax polynomial is still the optimal fitting function when
using the Box collocation method. This can easily be proven in the same way as in the previ-
ous section. Due to space and time constraints, we will not repeat the verification process.

In order to choose a better method from the two collocation methods of Box and CCD,
this section adopts the same parameter settings as in Section 3.2 to calculate and analyze
their physical quantities and discriminant indexes, respectively.

Below, we compare the pros and cons of the two distribution points in terms of
accuracy and time cost based on the calculation results. Figure 4 shows the results.

Figure 4b shows that the effective accuracy fcec range of the CCD collocation method
is [0.9417–0.996]. Another method, Box collocation, the accuracy range is [0.9285–0.9656].
The upper and lower limits of the accuracy range when using the CCD collocation method
are higher than that of the Box collocation method.
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Figure 5. The time consumed and sampling times when using Box and CCD matching points (with
the same fitting function Quax).

In summary, compared with Box collocation, CCD collocation provides higher accu-
racy. At the same time, it consumes less sampling times and calculation time (sometimes
close). Therefore, CCD is the preferred collocation method for the new method.

4. Effectiveness and Universality of the New Method

We established a new method in the previous section, with its optimized parameters:
CCD collocation and Quax polynomials. Further, this section selects the representative
traditional reticulated shell structure and the new bionic reticulated shell to verify its
effectiveness and universality in the field of space structure.

5. Case Analysis of Traditional Reticulated Shell—Taking K6 Reticulated Shell as
an Example
5.1. Structural Model Parameters

The K6 reticulated shell structure [17] has a span of 7.3342 m and a vector height of
0.9141 m. Figure 6 shows the specific geometric dimensions. The rod adopts a hollow round
tube, the cross-sectional area of the tube is 55.25 mm2, the steel density is 7850 kN/m2, and
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the material’s elastic modulus is E = 3030 MPa, the shear modulus is 1.096 × 103 MPa, and
the Poisson coefficient is 0.3.
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The numerical analysis software used in this article is ANSYS. The rods are discrete
with Beam188 unit. The periphery of the model is assumed to be supported by a 3D fixed
hinge. The load P acts on each node in the direction of gravity.

5.2. Analysis of the Parameters

This section compared the optimized new method with the traditional MCS method.
The number of random variables selected in four comparisons are 3, 4, 5 and 6, respectively.
Every comparison group is sampled 10,000 times. This sample size can reach the initial
convergence to determine a minimum number of samples for stability. The comparative
analysis is conducted using physical target quantity pcr, p* and R2

adj, which are defined in
Equation (7), Section 2.2.2 and Section 3.1.2, respectively.

5.3. Calculation Results

Figure 7 shows the relative error of the new method and the MCS method when
applied to traditional reticulated shells.

Figure 7. Relative error of the new methods of pcr and p∗when used in traditional/bionic reticulated shells.
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We can know from this picture:

(1) Compared with the result of MCS method, the relative error of pcr under each random
variable number of the new method meets the engineering accuracy requirement, not
larger than 5%;

(2) The number of different random variables will cause the results of the new method to
fluctuate to a certain extent. It shows that when we employ the new method to the
traditional reticulated shell, the calculation result has a specific correlation with the
random variable number.

5.4. Example Analysis of Bionic Reticulated Shell Structure

After completing the effective verification of the new method when used in traditional
reticulated shells, this section further studies its applicability for the new type of bionic
reticulated shells, such as applicability for Euryale veins [39], shells [40], bamboo vascular
bundles [41] and water spider diving clocks [42]. The subject of the analysis employs a
spiral net shell as an example.

5.4.1. Mathematical and Geometric Models

This example uses the spiral net shell proposed in the literature [43]. The literature
shows that it has a strict shape design [43], proper meshing, and optimized mechanical
properties—somehow, its stable performance is different from the traditional net shell. Its
mathematical and geometric models can be found in this document [43]. However, for the
sake of brevity and understanding, its structure and numerical model are shown here.

5.4.2. Structural Model

For the new model, a spiral single-layer reticulated shell, structural parameters such
as maximum radius (m) and height (m) are 4.8 m and 0.8333 m, respectively, the ring
division frequency is 48, and the number of loops is 5. The plan view and elevation view of
the corresponding model are shown in Figure 8.

Figure 8. Plan and elevation of the new structure. (a) Plan of structural model. (b) Elevation of
structural model.
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5.4.3. Finite Element Models

The new reticulated shell uses a hollow round tube. The cross-sectional area of
the circular tube is 111.44 mm2. The mechanical parameters of other materials, analysis
software, discrete elements, boundary conditions, and load conditions are the same as
those in Sections 5.1 and 5.4 calculation parameters.

The calculation parameters are the same as in Section 5.2.

5.4.4. Calculation Results

Figure 7 shows the relative error of the calculation results of this method and the
benchmark method when analyzing the new bionic reticulated shell.

As we can obtain from the figures:

(1) The pcr and p∗ of this new method under all random variables is not greater than the
engineering accuracy (5%), indicating that it is effective.

(2) The changing of the number of random defect variables can introduce slight fluc-
tuations into the results of this method. However, from the results of calculation
examples in this paper, it does not have a negative effect.

6. Conclusions

This article proposes a new method to meet the dual high requirements of accuracy
and efficiency in the stochastic stability analysis of spatial structures, which can significantly
improve the engineering application of stochastic stability analysis methods, which were
previously limited. In turn, it can greatly improve the application of the original restricted
stochastic stability analysis method in engineering.

First, we explained the randomness, fitting and solvability characteristics of this
method and its three key algorithms: random, fitting, and critical algorithms.

Then, using a classic structural example and taking the MCS method as the reference
method, the new method’s multiple collocation parameters, and fitting functions were
optimized. In the optimization, when using the central composite design (CCD) collocation
method, the effect is the best when the fitting function employs Quax. Similarly, when using
the Box collocation method, the effect of using Quax remains optimal. (Its optimization
process is the same as CCD, this article did not discuss it in detail.) Moreover, the CCD
method is more accurate than the Box method. It requires less time and less sampling times
than (though sometimes close to) the Box method. In summary, CCD collocation method
and Quax fitting function are the most suitable for the new method.

Finally, the analysis of calculation examples for traditional reticulated shells and bionic
reticulated shells shows that the optimized new method effectively balances efficiency
and accuracy. At the same time, it is universal in analyzing spatial structures, including
various kinds of reticulated shells. It is foreseeable that the new method is expected to
successfully break through the application limitations of the existing stochastic stability
analysis method in the actual engineering of space structures.
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Symbol Lists
[K] Stiffness matrix of structure.
λi Buckling eigenvalue of structure, i = 1, 2, . . . , m.
{Ui} The ith-order linear buckling mode of the structure.
R Amplitude.
{∆X} Defect pattern vector.
{∆X}′ Total response mode.
∆X′i Displacement vector of node i in {∆X}′.
n Number of structural nodes.
m Modal participation order.
ri Participation coefficient, independent random variable, i = 1, 2, . . . , m.
Uin Displacement vector of n—node in i—order buckling mode.
[KT ] Function of random variable ri.
{∆a} Function of random variable ri.
{F} Function of random variable ri.
pcr Response value-stable critical load value.

p̂cr

(
r
)

Fitting function of the critical load.

a0 Undetermined coefficients of fitting function.
ai Undetermined coefficients of fitting function.
aij Undetermined coefficients of fitting function.
(r)

i
Group i random variables, i = 1, 2, . . . , k.

p̂cr(r)
i

Group i critical load, i = 1, 2, . . . , k.

rij Number of j random variables of group i data.
pcr,i The critical load value of group i data.
{A} Undetermined coefficient.
[µri , µ± f σri ] Expansion range of mean point centered expansion.
µri The mean of group i data.
µ The mean of the whole data.
f Factor of model.
σri The standard deviation of group i data.
p∗ The most unfavorable critical load.
p0 Design value of bearing capacity of reticulated shell structure without defects.
Pf Structural failure probability under random defects.
Z Reliability function of critical state of structure.
E Elastic modulus.
e Critical load error between response surface method and Monte Carlo sampling method.
R2

adj Accuracy of critical value unction fitting.
f cec Effective coefficient to judge the method by considering e and R2

adj.
Lin Linear polynomial response surface function.
Quad Complete quadratic polynomial response surface function.
Quax Quadratic polynomial response surface function with cross term.
{Q} Nodal forces.
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